

1 **Modified N-linked glycosylation status predicts trafficking defective human**
2 **Piezo1 channel mutations**

3

4 Jinyuan Vero Li¹, Chai-Ann Ng^{1,2}, Delfine Cheng^{1,2}, Mingxi Yao³, Yang Guo^{1,2}, Ze-Yan Yu^{1,2},
5 Yogambha Ramaswamy⁴, Lining Arnold Ju⁴, Philip W Kuchel⁵, Michael P Feneley^{1,2}, Diane Fatkin^{1,2}
6 & Charles D Cox^{1,2#}

7 ¹Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia. ² St
8 Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia. ³Mechanobiology
9 Institute, National University of Singapore, Singapore. ⁴School of Biomedical Engineering, Faculty of Engineering,
10 The University of Sydney, Camperdown, New South Wales, Australia. ⁵School of Life and Environmental Sciences,
11 University of Sydney, Sydney, New South Wales, Australia.

12

13

14 ***Running title:*** N-linked glycosylation in Piezo1 channels

15

16

17 #To whom correspondence should be addressed:

18 Dr Charles D Cox

19 E-mail: c.cox@victorchang.edu.au

20 Tel: (+61) 292958632

21

22

23 Keywords: post-translational modification, mechanosensitive channels, trafficking, protein biosynthesis

24

25

26

27

28

29

30

31

32

33 **Abstract**

34 Mechanosensitive channels are integral membrane proteins that sense mechanical stimuli. Like all
35 membrane proteins, they pass through biosynthetic quality control in the endoplasmic reticulum
36 and Golgi that results in them reaching their destination at the plasma membrane. Here we show
37 that N-linked glycosylation of two highly conserved asparagine residues in the ‘cap’ region of
38 mechanosensitive Piezo1 channels are necessary for the mature protein to reach the plasma
39 membrane. Both mutation of these asparagines (N2294Q/N2331Q) and treatment with an enzyme
40 that hydrolyses N-linked oligosaccharides (PNGaseF) eliminates the fully glycosylated mature
41 Piezo1 protein. The N-glycans in the cap are a pre-requisite for higher-order glycosylation in the
42 ‘propeller’ regions, which are present in loops that are essential for mechanotransduction.
43 Importantly, trafficking-defective Piezo1 variants linked to generalized lymphatic dysplasia and
44 bicuspid aortic valve display reduced fully N-glycosylated protein. The higher order glycosylation
45 status *in vitro* correlates with efficient membrane trafficking and will aid in determining the
46 functional impact of Piezo1 variants of unknown significance.

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63 **Introduction**

64 The Piezo family of ion channels has only two members, Piezo1 and Piezo2^{1,2}. These are large
65 membrane proteins with more than 30 transmembrane helices that decode mechanical cues. Piezo1
66 in particular appears to be a central mechanotransducer in the cardiovascular system^{3,4} and is
67 sensitive to membrane forces^{2,5-7} and thus lipid composition⁸⁻¹². Like all other integral membrane
68 proteins, Piezo1 channels undergo biosynthetic quality control in the endoplasmic reticulum (ER)
69 and Golgi¹³. This study focussed on exactly how these processes regulate the membrane expression
70 of Piezo1.

71

72 All membrane proteins undergo folding and maturation in the ER and Golgi, where N-linked
73 glycosylation usually fulfils a critical role in biosynthetic quality control^{13,14}. N-linked
74 glycosylation is the process by which oligosaccharides are covalently attached to asparagine
75 residues in proteins. This process begins with the co-translational addition of core-glycans in the
76 ER and culminates in the processing and addition of higher order glycans in the Golgi prior to
77 vesicular transit to the plasma membrane. The higher order glycans can be high mannose, complex,
78 or hybrid glycans, depending on which types of carbohydrates are added^{13,15}. Once the glycans are
79 added to the membrane protein, they alter their folding and stability^{16,17}. In many cases, the glycans
80 act as a ‘quality control stamp’ certifying the folding status of the membrane protein during its
81 biosynthesis.

82

83 It is particularly evident that N-linked glycosylation is important in the biosynthetic quality control
84 of plasma membrane ion channels. The hERG K⁺ channel (K_{v11.1})^{18,19}, cystic fibrosis
85 transmembrane conductance regulator (CFTR)²⁰ and polycystic kidney disease proteins²¹ have all
86 been studied in this regard. Variants in these ion channels cause channelopathies that arise from
87 two broad mechanisms: 1) a functional defect in the channel; or 2) aberrant plasma membrane
88 trafficking. In fact, most disease-causing variants are aberrantly trafficked. For example, in the
89 case of K_{v11.1} mutations, ~80% of variants linked to long QT syndrome type II (LQTS2) ameliorate
90 trafficking²². The N-linked glycosylation of K_{v11.1} produces a characteristic pattern on a Western
91 blot consisting of a fully glycosylated protein of larger molecular size (~155 kDa) and a core
92 glycosylated protein that is smaller (~135 kDa)^{18,19,22-25}. The upper band (larger molecular size) is
93 a surrogate of the mature membrane protein¹⁷ and as a result, has been used extensively to

94 interrogate variants of unknown significance in Kv11.1^{22,24,26}. Thus, trafficking-defective mutants
95 lack the mature form, and rather than showing a double band appearance on a Western blot they
96 have a single band that represents the core-glycosylated protein. Given that variants of Piezo1 have
97 been linked to disease (e.g., generalized lymphatic dysplasia^{27,28} and bicuspid aortic valve²⁹) we
98 explored whether human Piezo1 undergoes N-linked glycosylation and whether this serves as a
99 predictor of efficient membrane trafficking.

100
101 Here we report on the molecular events that occur during the trafficking of Piezo1 channels and
102 we showed that N-linked glycosylation was critical in the biosynthetic quality control of this
103 channel. In particular, we demonstrated a novel mechanism whereby two highly conserved
104 asparagines in the cap (N2294Q and N2331Q), which are essential for normal trafficking of Piezo1
105 to the plasma membrane, dictated the glycosylation status of the propeller domains that extend out
106 from the central ion conducting pore³⁰⁻³². Also, higher order glycosylation of the N-terminus was
107 seen to be a surrogate for the mature membrane protein during the trafficking of various human
108 Piezo1 variants. These findings will be useful when assessing the effects of mutations generated
109 during structure-function studies, or when exploring disease-linked variants. As a proof of concept,
110 we showed that loss-of-function Piezo1 variants such as G2029R that are known to be trafficking-
111 defective²⁸ lack higher order N-glycosylation when expressed *in vitro*. Furthermore, we revealed
112 that some loss-of-function variants that affect trafficking display a dominant negative effect on
113 function and retard the trafficking of the wild-type protein. These findings have broad significance
114 for future studies of diseases resulting from *PIEZO1* variants.

115

116 **Methods**

117 **Cell lines**

118 Piezo1^{-/-} HEK293T cells²⁸ were a gift from Dr Ardem Patapoutian (The Scripps Research
119 Institute, La Jolla, CA, USA); HEK293 (R78007, Scientific, Waltham, MA, USA) was a gift
120 from Dr Nicola Smith (UNSW, Sydney, NSW, Australia); HEK293S GnT1^{-/-} cells were a gift
121 from Dr Jamie Vandenberg (VCCRI, Sydney, NSW, Australia); and human BJ-5ta-hTERT
122 foreskin fibroblasts were provided by Dr Michael Sheetz (UTMB, Galveston, TX, USA). Cell
123 lines were not authenticated and were not listed in the database of commonly misidentified cell

124 lines maintained by ICLAC (<http://iclac.org>) and NCBI Biosample
125 (<http://www.ncbi.nlm.nih.gov/biosample>). All cell lines were confirmed to be mycoplasma free.
126

127 **Mutagenesis**

128 Site directed mutagenesis of human and mouse Piezo1 was undertaken using a custom protocol
129 with the high-fidelity polymerase PfuUltra. The mouse C-terminal GFP fusion construct was
130 generated by deleting the IRES sequence using site-directed mutagenesis from the pcDNA3.1
131 IRES GFP construct of mouse Piezo1 (Provided by Dr Ardem Patapoutian). Primers for point
132 mutations and fusion protein generation are listed in Table1.
133

Primer	Sequence
hP1-N2294Q Sense:	gcgggagcttaccaggcacggccgaca
hP1-N2294Q Anti-sense:	tgtcgccgtgcctctgttagagctccgc
hP1-N2331Q Sense:	ggccctggccctcagacactgcacgg
hP1-N2331Q Anti-sense:	ccgtgcagtgtctgaggggccagggcc
hP1-L939M Sense:	tggcctcaataccatcagcagcagcacttg
hP1-L939M Anti-sense:	caagtgcgtgcgtatgggtattcgaggcca
hP1-G2029R Sense:	aaggccagctgcgcagcacggcttg
hP1-G2029R Anti-sense:	caagaccgtgtgcgcagactggcctt
hP1-S217L Sense:	catgcgccaccccttggcccttc
hP1-S217L Anti-sense:	gagaggccaagggtggcgatg
hP1-Y2022A Sense:	tgaccgcgcctcgccctgcgcaagacc
hP1-Y2022A Anti-sense:	ggcttgcgcaggcgaggcggtca
hP1-K2502R Sense:	ggtagaggaagatgagcctggcgtaactct
hP1-K2502R Anti-sense:	ggaggagttgtacgcgcaggctcatttctac
hP1_N295Q_Sense	cgtggggctggagcactggggaccc
hP1_N295Q_Anti-sense	cttcgtggtcccaccaggctccagcc
hP1_N658Q_Sense	gtgaaggccaggctggagcactggggaccc
hP1_N658Q_Anti-sense	ctgcctactggcgcagctactggctcac
hP1_N885Q_Sense	gaaggcgtggcactggctggaaactccctg
hP1_N885Q_Anti-sense	caggagtattccagccaggctgcaccgaggccctc
hP1_N892Q_Sense	gcaagttgtctggggaaaggctgg
hP1_N892Q_Anti-sense	gccctcccccaaggcaccaactgtgcc
hP1_N1095Q_Sense	gagggttgtggactggggccggaaag
hP1_N1095Q_Anti-sense	cttcggggcccccaggccaccaacctc
hP1_N1222Q_Sense	ggagatgtacggtgacactggatcagaatgaggcagtc
hP1_N1222Q_Anti-Sense	gactgcctcattctgtaccaggcacgtcatcatctcc
mP1_Ct_GFP fusion-Sense	tggacacgtgagaggagacaaccatggtagcaag
mP1_Ct_GFP fusion-Anti-sense	cttgctcaccatggtgtcccttcacgtgtcca

134 **Table 1. List of primers for site-directed mutagenesis of human (hP1) and mouse
135 (mP1) Piezo1.**

136 **Western blotting**

137 Cells were cultured in Dulbecco's modified Eagle medium (DMEM; Sigma-Aldrich, St. Louis,
138 MO, USA) supplemented with 10% v/v foetal bovine serum (ThermoFisher Scientific, Waltham,
139 MA, USA) and incubated at 37°C with 5% CO₂. GFP or mCherry-fused WT and mutant human
140 Piezo1 cloned from HEK cells³³, or GFP-fused mouse Piezo1 were transfected into HEK293T
141 Piezo1^{-/-} cells, HEK293S GnT1^{-/-} or HEK293 cells (ThermoFisher Scientific, Cat. No. R78007)
142 using Lipofectamine 3000 transfection reagent (ThermoFisher Scientific) with 800 ng of DNA
143 (400 ng WT and mutants, respectively, for co-expression transfection). The medium was changed
144 24 h after transfection. Cells were harvested 72 h after transfection and solubilized in radio-
145 immunoprecipitation assay buffer (RIPA) buffer [Tris buffer 10 mM, ethylenediaminetetraacetic
146 acid (EDTA) 1 mM, NaCl 140 mM, in (% w/v): Sodium deoxycholate 0.1, SDS 0.1, Triton X-100
147 1.0, pH 7.2] supplemented with 1 × EDTA-free protease inhibitor cocktail tablets (Sigma-Aldrich),
148 1 mM (phenylmethylsulfonyl fluoride) PMSF, 2 mM tris(2-carboxyethyl)phosphine (TCEP), and
149 1 mM N-ethylmaleimide (NEM) for 10 min on a rotating wheel at 4°C. Cell lysates were cleared
150 by centrifugation at 13,000 × g at 4°C for 20 min. Transfection efficiency was estimated, and the
151 relative Piezo1 concentration was determined from the intensity of fluorescence of the lysate using
152 a PHERAstarFS microplate reader (BMG LABTECH, Ortenberg, Germany).

153 For PNGaseF (peptide N-glycosidase F, EC 3.5.1.52) digestion, 5% v/v PNGaseF (New England
154 Biolabs, Ipswich, MA, USA) and 50 mM NEM were added to lysates mixed with 1 × GlycoBuffer
155 and incubated on ice for 1 h. Lysates that were undigested or digested with PNGaseF were then
156 mixed with SDS-PAGE sample buffer, and loaded and run on a 3-8% Tris-Acetate gel (Thermo
157 Fisher Scientific) before being transferred to a nitrocellulose membrane (Bio-Rad, Hercules, CA,
158 USA).

159 For quantitative Western blot analysis, GFP-fused Piezo1 was probed with a rabbit monoclonal
160 anti-GFP antibody (Santa Cruz Biotechnology, Dallas, TX, USA; 1:5,000 dilution); mCherry-
161 fused Piezo1 protein was probed with rat monoclonal anti-mCherry antibody (Clone 16D7,
162 ThermoFisher Scientific; 1:1,000 dilution); the native human Piezo1 channel was probed using a
163 mouse monoclonal anti-Piezo1 antibody (Cat# NBP2-75617, Novus Biologicals, Centennial, CO,
164 USA; 1:1,000 dilution); mouse anti-α-actinin antibody (Santa Cruz Biotechnology; 1:5,000
165 dilution) or anti-α-tubulin (Clone DM1A, Sigma Aldrich, T9026) antibody was added
166 simultaneously for a loading comparison followed by anti-rabbit IRDye680 at 1:20,000, anti-rat

167 IRDye800 at 1:10,000 and anti-mouse IRDye800 at 1:20,000 (Li-Cor) to enable quantification
168 with the LI-COR Odyssey system (LI-COR Biotechnology, Lincoln, NE, USA). Image studio (LI-
169 COR Biotechnology) was used to calculate the ratio of the fully glycosylated upper band
170 (FG)/core-glycosylated lower band (CG) in a manner that was similar to previous reports²⁶.
171

172 **Electrophysiology**

173 Transiently transfected Piezo1^{-/-} HEK293T cells were plated on 35 mm dishes for patch clamp
174 analysis. The extracellular solution for cell-attached patches contained high K⁺ to zero the
175 membrane potential; it consisted of 90 mM potassium aspartate, 50 mM KCl, 1 mM MgCl₂ and
176 10 mM HEPES (pH 7.2) adjusted with 5 M KOH. The pipette solution contained either 140 mM
177 CsCl or 140 mM NaCl with 10 mM HEPES (pH 7.2) adjusted with the respective hydroxide.
178 Ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) was added to control
179 levels of free pipette (extracellular) Ca²⁺ using the online EGTA calculator—Ca-EGTA
180 Calculator TS v1.3—Maxchelator. Negative pressure was applied to patch pipettes using a High
181 Speed Pressure Clamp-1 (ALA Scientific Instruments, Farmingdale, NY, USA) and recorded in
182 millimetres of mercury (mmHg) using a piezoelectric pressure transducer (WPI, Sarasota, FL,
183 USA). Borosilicate glass pipettes (Sigma-Aldrich) were pulled with a vertical pipette puller
184 (PP-83, Narashige, Tokyo, Japan) to produce electrodes with a resistance of 1.8-2.2 MΩ.
185 Single-channel Piezo1 currents were amplified using an AxoPatch 200B amplifier (Axon
186 Instruments, Union City, CA, USA), and data were sampled at a rate of 10 kHz with 1 kHz
187 filtration, and analysed using pCLAMP10 software (Axon Instruments). The Boltzmann
188 distribution function was used to describe the dependence of mesoscopic Piezo1 channel
189 currents and open probability, respectively, on the negative pressure applied to patch pipettes.
190 Boltzmann plots were obtained by fitting open probability $P_o \sim I/I_{max}$ versus negative pressure
191 using $P_o/(1-P_o) = \exp [\alpha (P-P_{1/2})]$, where P is the negative pressure (suction) in mm Hg, $P_{1/2}$ is
192 the negative pressure at which $P_o = 0.5$, and α (mm Hg)⁻¹ is the slope of the plot of $\ln [P_o/(1-$
193 $P_o)]$ versus $(P-P_{1/2})$, reflecting the channels' mechanosensitivity.

194 Single-channel amplitudes were measured by Gaussian fits (Clampfit; Axon Instruments) on an
195 all-points-histogram of current amplitudes over a 2 s period exhibiting only single-channel

196 openings. Conductance was then calculated by regressing a line on the graph of current amplitude
197 vs holding potential at five separate voltages.

198 **Immunogold labelling and electron microscopy**

199 Cells were grown to 70-80% confluence on fibronectin-coated coverslips before being fixed with
200 4% w/v paraformaldehyde (PFA) in 100 mM Sorensen's phosphate buffer (pH 7.2) for 20 min.
201 Piezo1 localisation was detected using electron microscopy (EM) with immunogold labelling
202 using nanogold followed by silver enhancement. The protocol was adapted from Biazik et al³⁴ as
203 follows: Free aldehyde was quenched with 0.1 M glycine for 20 min and the cell membranes were
204 permeabilized with 0.005% w/v saponin (containing 0.1% w/v bovine serum albumin in 1 × PBS)
205 for 8 min. The samples were then incubated with mouse monoclonal anti-Piezo1 antibody (1:60
206 dilution, Cat# NBP2-75617, Novus Biologicals) overnight at 4°C. The next day, the samples were
207 washed and incubated with a secondary antibody that was conjugated with 1.4 nm nanogold (1:60
208 dilution, Cat# 2002-0.5 mL, Nanoprobes, Yaphank, NY, USA) for 1 h. The labelled cells were
209 then fixed in 2.5% w/v glutaraldehyde for 10 min and quenched with 0.1 M glycine for 20 min.
210 The nanogold was silver enhanced for 7 min using an HQ silver enhancement kit (Cat# 2012-45
211 mL, Nanoprobes). The silver was further stabilised by gold toning that involved 15 min incubation
212 in 2% w/v sodium acetate, 10 min incubation in 0.05% w/v gold (III) chloride trihydrate (on ice)
213 and 10 min incubation in 0.3% w/v sodium thiosulfate pentahydrate (on ice). Because of the
214 sensitivity to light of the reagents, the silver enhancement and gold toning steps were performed
215 in a dark room under a red light. Finally, the cells were post-fixed with 1% w/v osmium tetroxide
216 + 1.5% w/v potassium ferricyanide for 1 h, *en bloc* stained with 2% w/v uranyl acetate for 20 min,
217 dehydrated in a gradient of ethanol, embedded in Procure resin, and polymerised at 60°C for 48 h.
218 Polymerised resin blocks were sectioned using an ultramicrotome (Ultracut 7, Leica
219 Microsystems, Wetzlar, Germany) to generate 60 nm ultra-thin sections that were collected on 200
220 mesh copper grids. Sections were post-stained with 2% w/v uranyl acetate and Reynold's lead
221 citrate for 10 min, each before imaging under a transmission electron microscope at 200 kV (G2
222 Tecnai, FEI, Hillsboro, OR, USA).

223

224 **Mouse tissue**

225 Tissue collection protocols were approved by the Garvan Institute and St. Vincent's Hospital
226 Animal Ethics Committee and were in accordance with the guidelines of the Australian code for
227 the care and use of animals for scientific purposes (8th edition, National Health and Medical
228 Research Council, Canberra, ACT, Australia, 2013) and the Guide for the Care and Use of
229 Laboratory Animals (8th edition, National Research Council, USA, 2011). Piezo1-Tdtomato mice
230 (The Jackson Laboratory Stock No: 029214) were housed in light boxes and entrained to a 12:12
231 light: dark cycle for 1 week before the experiments. Mice aged 10 weeks old were euthanized with
232 carbon dioxide, lung tissue harvested and immediately homogenized in RIPA buffer, as above, for
233 protein extraction.

234

235 **RBC collection**

236 Human RBCs were prepared from blood obtained by venipuncture from the cubital fossa of normal
237 informed-consenting donors under approval from the University of Sydney Human Ethics
238 Committee (signed, approved consent form; Project No. 2012/2882). The blood was
239 anticoagulated with 15 IU mL⁻¹ porcine-gut heparin (Sigma-Aldrich). The blood was centrifuged
240 in 50 mL Falcon tubes at 3000 × g for 5 min at 4°C to sediment the RBCs, and the plasma and
241 buffy coat were removed by vacuum-pump aspiration. RBCs were lysed prior to blotting in RIPA
242 buffer as documented above.

243 **Immunofluorescence and Western blotting of unroofed fibroblasts**

244 The unroofing method for selectively isolating basal membranes of cells was adapted from³⁵.
245 Briefly, human BJ-5ta-hTERT foreskin fibroblasts were seeded onto glass coverslips pre-coated
246 with 90 nM fibronectin (20 µg mL⁻¹; Cat F1141-5MG, Sigma-Aldrich). After 24 h, the cells were
247 washed with PBS then incubated in an hypo-osmotic buffer containing 2.5 mM triethanolamine
248 (TEA) (pH 7.0) for 3 min at room temperature. The cells were seen to be slightly swollen at this
249 stage in the preparation. Immediately after, the TEA medium was removed and the coverslips were
250 washed with PBS containing protease inhibitor (1 tablet of cOmplete Mini, EDTA-free per 10 mL
251 of 1 × PBS) using a fine-tip transfer pipette.

252 Once the cells were unroofed (the extent of this was assessed under a light microscope: unroofed
253 cells had no nucleus), the coverslips were transferred to 4% v/v PFA in cytoskeleton buffer [CB;

254 10 mM 2-(*N*-morpholino)ethanesulfonic acid (MES) pH 6.1, 138 mM KCl, 3 mM MgCl₂, 2 mM
255 EGTA] and left to fix for 10 min. The fixed cells were then labelled for actin, the focal adhesion
256 proteins, and nuclei using, respectively, phalloidin conjugated to AlexaFluor568 (A12380,
257 ThermoScientific), a mouse anti-vinculin antibody (1:200; V9131, Sigma-Aldrich), and DAPI.
258 Images were acquired using a widefield fluorescence microscope at 63 × (Ti2-E, Nikon, Tokyo,
259 Japan). Alternatively, after unroofing the cells they were lysed in fresh RIPA buffer prior to
260 Western blotting.

261 **Biotinylation**

262 Human BJ-5ta-hTERT foreskin fibroblasts cells were grown to 70-90% confluence on a 60 mm
263 dish before being biotinylated. Cells were washed three times using ice cold PBS and then
264 incubated with biotin buffer (154 mM NaCl, 10 mM HEPES, 3 mM KCL, 1 mM MgCl₂, 0.1 mM
265 CaCl₂, 10 mM glucose, pH 7.6) containing 1 mg/mL Sulfo-NHS-Biotin (ThermoFisher Scientific,
266 EZ-LinkTM, Lot. No. TI266926) for 1 h on ice. The biotin buffer was then washed off and quenched
267 using 5 mL DMEM containing 25 mM HEPES and 0.25 % w/v gelatin for 10 min on ice. Cells
268 were then washed three times using ice cold PBS and solubilized using 1 mL RIPA buffer. Cell
269 lysates were cleared by centrifugation at 13,000 × g at 4 °C for 20 min. 100 µL supernatant was
270 taken and supplemented with 2 % w/v SDS and 0.8 M urea and designated as the “input” sample.
271 The remaining supernatant was incubated overnight at 4 °C with 100 µL Streptavidin-Agarose
272 beads (Sigma-Aldrich, Lot#: SLBR5741V) blocked using 0.5 % w/v bovine serum albumin for 1
273 h. Beads were collected and washed three times using RIPA buffer in a 0.8 mL centrifuge column
274 (ThermoFisher Scientific, Pierce, Cat. No. 89868) with centrifugation at 500 × g at 4 °C for 1 min.
275 100 µL flow-through lysate were taken from the first centrifuge and supplemented with 2 % w/v
276 SDS and 0.8 M urea to be the flow-through comparison. For protein elution, beads were loaded
277 with 100 µL 0.9 % w/v NaCl solution supplemented with 2 % SDS and 0.8 M urea, and boiled at
278 65 °C for 5 min. Then they were centrifuged at 500 × g at 4 °C for 1 min in the column, and the
279 biotinylated eluate was collected. Identical protein amounts input, biotinylated and flow-through
280 samples were loaded for Western blotting then probed with mouse monoclonal anti-Piez01
281 antibody (Cat. No. NBP2-75617, Novus Biologicals) and mouse anti-α-actinin antibody (Santa
282 Cruz Biotechnology, Dallas, TX, USA).

283

284 **Ca²⁺ imaging**

285 Piezo1^{-/-} HEK293T cells expressing Piezo1 were seeded into a 96 well plate and incubated with
286 100 µL of 2 µM Fura-2-AM in DMEM for 30 min at 37°C. Ca²⁺ transients were recorded using a
287 20 × objective mounted on a Nikon Ti2e microscope and illuminated with a CoolLED pE-340
288 Fura LED light source.

289

290 **Results**

291 **N-linked glycosylation of heterologously expressed Piezo1**

292 First, we used Piezo1 fusion proteins to probe Piezo1 expression because there are no specific anti-
293 Piezo1 antibodies; instead we exploited highly specific antibodies to GFP and mCherry. This
294 allowed us to correct for minor variability in transient transfection by using the GFP or mCherry
295 fluorescence intensity of the cell lysate to calculate the relative amounts required to load for
296 Western blotting. Initial trials at probing Piezo1 expression in Piezo1^{-/-} HEK293T cells with
297 Western blotting showed extensive smearing in the lanes. This was corrected by adding a reducing
298 agent during cell lysis, thus preventing protein cross-linking and aggregation. Figure S1A shows
299 gels run using samples without reducing agents in RIPA buffer compared with samples with 5 mM
300 β-mercaptoethanol, 5 mM TCEP, or 10 mM of the alkylating agent NEM, during cell lysis. We
301 found that NEM treated Piezo1 was slightly larger in molecular size due to the large number of
302 cysteines present in Piezo1. Specifically, if all 57 -SH groups were in a reduced state before
303 modification with NEM (0.125 Da) there would have been an increase in size of $57 \times 0.125 \text{ Da} =$
304 7.125 kDa, thus resulting in a significant net increase.

305 With lysates from HEK cells, Western blots showed two distinct bands (Fig. 1 A, B; fully
306 glycosylated - FG; core glycosylated – CG and UG; unglycosylated) that resembled Piezo1 from
307 native mouse tissue (specifically aorta)³⁶. To determine if the two bands resulted from different
308 extents of glycosylation, Piezo1-GFP lysates were incubated with PNGaseF that only hydrolyses
309 N-linked glycosyl units from the free end of an oligosaccharide chain, and a mixture of
310 deglycosylases that hydrolyse N- and O-linked oligosaccharides. Figure 1B shows the upper band
311 (labelled fully glycosylated - FG) was absent after treatment, while the lower band had increased
312 mobility suggesting reduced size. The molecular correlates of the UG, CG and FG bands are
313 illustrated pictorially in Fig. 1C. PNGaseF alone and the mixture of deglycosylases produced the

314 same effect. The estimated size difference on the removal of N-linked oligosaccharides, based on
315 the calibrating ladder on the gel, was 20 - 30 kDa.

316 As a positive control for PNGaseF digestion we used Kv11.1 the hERG potassium channel. This
317 channel is known to undergo N-linked glycosylation and migrates as two species (Fig. 1D-E), a
318 core glycosylated protein (CG, ~135 kDa) and a fully glycosylated protein (FG) of higher
319 molecular size (~155 kDa)¹⁸. On treatment with PNGaseF we also saw cleavage of the upper band
320 regardless of which tagged version of the protein was used. This included the generation of a
321 previously reported PNGaseF resistant modification shown in Fig. 1E, labelled with a red arrow.

322 **N-glycosylation of endogenous Piezo1**

323 The next experiments addressed the question of N-linked glycosylation in cell types that natively
324 express Piezo1. Here, we studied RBCs and lung tissue that are known to have high levels of
325 expression of Piezo1¹, isolated from a Piezo1-TdTomato reporter mouse. Figure 1F shows that in
326 both RBCs and lysate from lung tissue that the molecular size that Piezo1 runs at is reduced by
327 treatment with PNGaseF. Furthermore, the extent of glycosylation was not altered by the
328 TdTomato tag.

329 We compared human Piezo1-1591-mCherry to mouse Piezo1-TdTomato extracted from lung
330 tissue that had different tags fused at different positions (Fig. 1F-G). While the sample of mPiezo1-
331 TdTomato fusion protein was larger (~320 kDa), it still clearly contained the species of larger
332 molecular size (glycosylated version), which was reduced in size in the sample that had been
333 treated with PNGaseF. In comparison to the extracts from HEK cells and lung tissue, only one
334 band was observed in the RBC lysate; it became smaller on PNGaseF treatment (Fig. 1F).

335 To explore further where in the cell the higher order glycans (that we now refer to as “full”
336 glycosylation) were added to Piezo1, the trafficking between the ER and Golgi was inhibited with
337 brefeldin A (Fig. 1I). This fungal metabolite prevents movement of proteins from the ER to the
338 Golgi by disassembling transport vesicles³⁷. Treatment of cells with brefeldin A led to the
339 accumulation of the lower band on Western blots, and after 12-16 h the upper fully glycosylated
340 version was no longer evident (Fig. 1J). Therefore, we concluded that the higher order glycans
341 were added to Piezo1 in the Golgi.

342 If, like Kv11.1, the fully glycosylated form of Piezo1 was indicative of the mature membrane protein,
343 then brefeldin A treated (>12-16 h) cells should have reduced stretch-activated currents. Indeed,

344 the peak stretch-activated currents recorded from Piezo1^{-/-} HEK293T cells heterologously
345 expressing Piezo1-GFP, compared to those from untreated or acutely treated cells were reduced
346 (Fig. 1K-L). The average current per patch for Piezo1-GFP expressed in Piezo1^{-/-} HEK293T was
347 154 ± 28 pA ($n = 8$), and this was reduced ~6 fold to 27 ± 5 pA ($n = 8$) after 16 h treatment with
348 brefeldin A. This was not due to blockade of Piezo1 as a 5 min acute treatment with brefeldin A
349 did not affect Piezo1 currents, 164 ± 22 pA ($n = 7$) (Fig 1K-L).

350 While probing tagged versions of Piezo1 we identified the same double band in the untagged
351 Piezo1, using a newer mouse monoclonal anti-Piezo1 antibody (Cat. No. NBP2-75617, Novus
352 Biologicals). This antibody reproducibly recognized human Piezo1 which presented as two bands
353 on a Western blot. Importantly, un-transfected Piezo1^{-/-} HEK293T cells served as a negative
354 control (SI Fig. 1B). This antibody also recognized native Piezo1 in human RBCs but failed to
355 recognize mouse Piezo1-GFP recombinantly expressed in Piezo1^{-/-} HEK293T cells. This finding
356 was confirmed when the same Western blot was probed with a GFP antibody (SI Fig. 1B). Hence,
357 we concluded that the untagged protein also underwent glycosylation and that a tag does not
358 influence N-glycosylation.

359 Endogenous Piezo1 in immortalized human fibroblasts also showed two bands on a Western blot
360 (Fig. 2A). The higher molecular weight band was much more intense than that of human Piezo1
361 that had been transiently expressed in HEK293 or Neuro2A cells (Figs. 2A-B and SI Fig. 2). The
362 ratio of the upper band compared to the lower band was >10 fold higher in fibroblasts (Figs. 2B).
363 The upper band was assigned to the N-glycosylated protein since treatment with PNGaseF
364 decreased the molecular size, giving coalescence of both bands (Fig. 2A).

365 We sought to determine whether the upper band, assigned as the N-glycosylated protein,
366 represented the fully mature plasma membrane protein. For this we used a method to “unroof”
367 fibroblasts. This protocol removes apical plasma membranes, nucleus, and organelles and leaves
368 only the basal membrane attached to the tissue culture substrate (Fig. 2C). The procedure has been
369 widely used in conjunction with various imaging methods^{38,39} and also proteomics³⁵ but it has
370 rarely been used for studying plasma membrane localization.

371 Proof of successful unroofing was obtained by staining for the focal adhesion protein vinculin, and
372 imaging with epifluorescence microscopy (Fig. 2D). While focal adhesions containing vinculin
373 were not clearly defined with intact cells, focal adhesions labelled with vinculin became well

374 defined once the cells were unroofed. We and others have shown that Piezo1 is present in the basal
375 membrane of fibroblasts^{40,41} so Western blots were performed on extracts from intact and unroofed
376 cells. From unroofed cells, only the upper band, which was assigned to the glycosylated protein
377 remained (Fig. 2E); and the unroofed cells also lacked α -tubulin as previously reported³⁵. We
378 concluded that the mature membrane pool of Piezo1 in fibroblasts was highly N-glycosylated. This
379 was supported by experiments illustrating only the FG version was biotinylated (Fig. 2F).
380 Furthermore, these experiments confirmed that endogenous Piezo1 in human fibroblasts
381 underwent N-linked glycosylation in a manner similar to Piezo1 that was transiently expressed in
382 HEK cells, Neuro2a cells, and endogenous Piezo1 in mouse lung tissue. Finally, unlike
383 heterologous systems where large amounts of protein are produced, the fully N-glycosylated
384 Piezo1 was the larger proportion of natively expressed Piezo1 in fibroblasts.

385 **Piezo1 N-glycosylation of two Asn residues in the cap**

386 Having established the existence of N-glycosylation of Piezo1 we sought specification of the sites
387 of this post-translational modification. The on-line program NetNglyc1.0⁴² predicted nine sites
388 that could be N-linked, six in the N-terminus and three in the C-terminus. The three asparagines
389 identified by NetNglyc1.0 in the C-terminal domain are in the cap or C-terminal extracellular
390 domain (CED)^{31,32}, one of which is buried and seems unlikely to accept N-glycosylation, while the
391 other two are freely accessible from the extracellular space (Fig. 3A). Previous mass spectrometry
392 identified a glycosylated peptide corresponding to one of these predicted asparagines (N2331)⁴³.
393 Both asparagines are highly conserved in homologues of Piezo1 and have the classical signature
394 sequence Asn-Xaa-Ser/Thr for N-linked glycosylation (Fig. 3B). In contrast, these Asn residues
395 are not conserved in Piezo2; but a recent Cryo-Electron Microscopy (Cryo-EM) structure of mouse
396 Piezo2 shows at least one glycan in the cap region⁴⁴. Therefore, to test if the fully glycosylated
397 Piezo1 protein was dependent on either of these asparagines, we created single mutants (N2294Q,
398 N2331Q), and a double mutant (N2294Q and N2331Q; also called “CapQQ”).

399 Only a minor decrease occurred in the amount (as measured by Western blots) of the fully
400 glycosylated species in the single mutants but there was complete abolition of the upper band in
401 the double mutant (N2294Q and N2331Q) (Fig. 3C), which mirrored the effect of treatment with
402 PNGaseF.

403 We compared the intensity of the upper fully glycosylated (FG) band with the lower core
404 glycosylated (CG) band in replicate experiments (Fig. 3D). Removal of the oligosaccharides from
405 both the single Piezo1 mutants and control WT-Piezo1-GFP treated with PNGaseF are shown in
406 Figs. 3E-F. Comparison between PNGaseF treatment of WT, N2294Q, N2331Q showed patterns
407 that suggested that the upper FG band was removed and the size of the lower bands were reduced
408 to the level of the un-glycosylated form of the protein. In addition, Western blots of the protein
409 from the double mutant N2294Q/N2331Q showed no upper (fully glycosylated) band while the
410 lower core glycosylated protein was reduced in size (Fig. 3E). This finding suggested that core
411 glycosylation also occurred in the N-terminal domain of Piezo1. This aligns with published
412 findings on Piezo2 that show glycans in the propeller region⁴⁴.

413 The FG form of an ion channel often indicates the functional form, so we tested if changes in
414 Western blots correlated with electrophysiological analysis. A high-speed pressure clamp was used
415 to apply negative pressure to cell-attached patches of transiently transfected Piezo1^{-/-} HEK293T
416 cells. The two single mutants showed normal stretch-activated responses (Fig. 4A-B), which was
417 consistent with two bands on Western blots. Given strong evidence that the cap is involved in
418 Piezo1 inactivation⁴⁵, we tested if inactivation was modified, but neither of the Asn to Gln mutants
419 affected inactivation time constants in cell-attached patches (Fig. 4C). However, the
420 N2294Q/N2331Q mutant had almost no stretch-activated current (Fig. 4A-B), which was
421 consistent with the Western blot pattern and indicated that the FG Piezo1 protein represented the
422 membrane protein pool (Fig. 3E).

423 From these data we could not rule out that N-glycosylation may also be required for stretch
424 activation of Piezo1. The processing of N-glycans from high-mannose to higher molecular weight
425 glycans (>10 kDa in size - termed complex or hybrid) requires the enzyme N-acetylglucosaminyl-
426 transferase I (GnT1, also known as MGAT1). Structural biologists have widely used HEK293S
427 GnT1^{-/-} cells to restrict the heterogeneity introduced by N-linked glycosylation when attempting
428 to determine structures using X-ray crystallography, and more recently Cryo-EM⁴⁶. As these cells
429 cannot process higher order glycans (hybrid or complex), we asked two questions: (1) “Is the fully
430 glycosylated species of human Piezo1 present on Western blots from lysates of GnT1^{-/-} cells?” (2)
431 “Can these cells support stretch induced gating of Piezo1 channels?”

432 First, Piezo1-GFP channels expressed in HEK293S GnT1^{-/-} cells presented as a single band on
433 Western blots consistent with the upper band being a glycosylated species containing higher order
434 glycans (SI Fig 3A). Piezo1-GFP also exhibited stretch-activated currents suggesting higher order
435 glycosylation was not needed for stretch activation. Much like transient transfection in Piezo1^{-/-}
436 HEK293T cells expression of the CapQQ mutant generated negligible stretch-activated currents
437 when transiently transfected in HEK293S GnT1^{-/-} (SI Fig 3B-C). Here we should note that the
438 residual current seen when transfecting the CapQQ (N2294Q/N2331Q) in HEK293S GnT1^{-/-} could
439 have come from the endogenous Piezo1 in this cell type. The sensitivity of the stretch-activated
440 currents of Piezo1-GFP was lower when expressed in HEK293S GnT1^{-/-} cells (SI Fig 3D). The
441 expression of Piezo1-GFP in GnT1^{-/-} cells suggested that higher order glycans are not needed for
442 stretch activation and that only the core-glycans were ultimately necessary for transit through the
443 Golgi to the plasma membrane.

444 To support the hypothesis that the double mutant (N2294Q/N2331Q) that lacked higher order
445 glycosylation was trafficking-defective we used ratiometric Ca²⁺ imaging to explore the effect of
446 Yoda-1 (2 μM) on Ca²⁺ influx. Fluorescence did not change in cells expressing the double mutant
447 (N2294Q/N2331Q) on adding Yoda-1 thus indicating that the Ca²⁺ concentration did not rise (SI
448 Fig 4). These mutations do not reside near the putative Yoda-1 binding pocket so we surmised that
449 they would be unlikely to influence Yoda-1 binding⁴⁷.

450 We confirmed the trafficking defect using nano-gold immunolabeling and transmission electron
451 microscopy (TEM) in combination with Piezo1^{-/-} HEK293T cells. The micrographs clearly showed
452 WT Piezo1 had reached the plasma membrane, while the N2294Q/N2331Q double mutant showed
453 little or no membrane labelling (Fig. 4D). Quantification of the ratio of membrane versus
454 intracellular nano-gold staining of Piezo1 and N2294Q/N2331Q showed a marked reduction in
455 membrane labelling of N2294Q/N2331Q, which was consistent with a trafficking defect (Fig. 4E).
456 Nano-gold labelling was not seen in un-transfected Piezo1^{-/-} HEK293T cells.

457 To corroborate the veracity of the antibody's specificity, in addition to the Western blots shown in
458 SI Fig 1, and immunogold negative controls (Fig. 4D: rightmost panels), immunofluorescence was
459 used in combination with Piezo1-GFP expressed in Piezo1^{-/-} HEK293T cells. SI Fig. 5 shows no
460 staining of Piezo1^{-/-} HEK293T cells and more convincingly that un-transfected cells were not
461 labelled (SI Fig 5).

462 **Piezo1 higher order N-linked glycosylation in the propellers**

463 To determine the location of N-linked glycosylation in Piezo1 channels use was made of a split
464 human Piezo1 construct generated by the Gottlieb laboratory⁴⁸. This construct has two portions of
465 human Piezo1; the first extends from residue 1 to 1591 fused to mCherry (N-terminal portion -
466 propellers) and the second starts with GFP that is fused to residue 1592 and extends to residue
467 2521 (C-terminal portion – pore and cap) (Fig. 5A). Western blotting showed that this construct
468 was expressed as two separate molecular entities smaller in size than WT Piezo1 (Fig. 5B).

469 The size of the C-terminal portion of the split protein (Fig. 5B; shown in green) was minimally
470 affected by PNGaseF treatment (~5 kDa), the size of which was indicative of 1-2 core glycans (~
471 2-5 kDa). Instead, the larger glycan appeared to be present on the N-terminal portion of the protein
472 (Fig. 5B-C). The N-terminal portion (colored red) migrated as two bands. The larger more diffuse
473 band was abolished and the lower band reduced in size on treatment with PNGaseF (Fig. 5B).

474 The N2294Q/N2331Q double mutant of the split construct gave a C-terminal domain that was
475 unaffected by PNGaseF treatment, again indicating that it was un-glycosylated; but the N-terminal
476 portion had no higher order glycosylation (Fig. 5B, white box). Thus, the two Asn residues in the
477 cap appeared to determine the glycosylation status of the propeller asparagines. The higher order
478 glycosylation in the N-terminal fragment was also ablated by incubation with brefeldin A (Fig.
479 5D). This is consistent with the split protein being processed in a similar fashion to the full-length
480 Piezo1 (Fig. 1I).

481 The WT split protein produced stretch-activated current when expressed in Piezo1^{-/-} HEK293T
482 cells, while the double mutant (N2294Q and N2331Q) did not (Fig. 5E-F). As a means of providing
483 further supporting evidence for core glycans being added to Piezo1 at both N2294 and N2331, we
484 made single mutants of the same split construct and compared the molecular size to the split WT
485 and double mutant (N2294Q and N2331Q). The corresponding blot showed a similar size between
486 the single mutants (Fig. 5G). The size was less than that of WT but larger than the double mutant,
487 further suggesting that both asparagines were glycosylated (Fig. 5G).

488 The split construct that produced smaller Piezo1 protein fragments was used to determine if the
489 propeller domains contained a site for higher order glycosylation. There are six residues that are
490 possibilities to undergo N-linked glycosylation in the N-terminus of human Piezo1: N295, N658,
491 N885, N892, N1095 and N1222. Of these, five out of the six are in extracellular loops while one

492 (N1222) is part of a transmembrane helix, so it was not explored further. Single Asn to Gln
493 mutations were made to prevent N-linked glycosylation in the split construct. Again, the CapQQ
494 (N2294Q and N2331Q) mutant had a smaller C-terminal fragment that was concluded to be due
495 to a lack of core-glycans in the cap; and N885Q had limited higher order glycosylation on their N-
496 terminal fragments despite containing the two critical Asn residues in the cap ([Fig. 5H](#)).

497 Subsequently, constructs of full-length Piezo1 were made in which all five Asn residues were
498 mutated to Gln. Stretch activated currents were measured for each of these full length Piezo1
499 variants ([Fig. 6A](#)). Figure 6B shows the peak currents of cell-attached patches when these mutants
500 were expressed in Piezo1^{-/-} HEK293T cells. Specifically, there was a large reduction in stretch
501 activated currents in N885Q; and Western blotting confirmed an almost complete loss of higher
502 order glycosylation in this single mutant ([Fig. 6C](#)). None of the five mutations altered unitary
503 conductance from WT (47 ± 2 pS; $n = 5$) ([SI Fig. 6](#)).

504 We noted that the higher order glycosylation of N658Q was different as the patch clamp data
505 showed a mild reduction in stretch-activated currents ([Fig. 6C](#)). Based on these findings
506 combinations of Asn to Gln mutants were constructed.

507 A double mutant of N295Q and N885Q gave stretch-activated responses that largely followed the
508 current generated from the single N885Q mutant; while a combination of N658Q and N885Q
509 further reduced the stretch activated current ([Fig. 6D-E](#)). Combining all five N-terminal Asn
510 residues to Gln mutants (N295Q, N658Q, N885Q, N892Q, N1095Q), or all seven Asn residues
511 subjected to electrophysiological analysis in this study (N295Q, N658Q, N885Q, N892Q,
512 N1095Q, N2294Q, N2331Q) resulted in maximum currents that fell to almost zero in response to
513 negative pressure pulses ([Fig. 6E](#)). The construct harboring seven Asn to Gln (7N-Q) mutations
514 did not reach the plasma membrane as assessed using immunogold labelling in a manner similar
515 to that seen with the CapQQ (N2294Q/N2331Q) in Figure 3.

516 Western blot analysis of the double mutants, particularly N658Q and N885Q showed an almost
517 complete loss of the higher order glycosylation in a manner similar to the CapQQ
518 (N2294Q/N2331Q) ([Fig. 6G](#)). The 5N-Q (N295Q, N658Q, N885Q, N892Q, N1095Q) and 7N-Q
519 (N295Q, N658Q, N885Q, N892Q, N1095Q, N2294Q, N2331Q) mutants on Western blots, had
520 bands that were consistent with full-length protein but there was a complete lack of the upper fully
521 glycosylated species ([Fig. 6H](#)). Moreover, the lower band in both the 5N-Q and 7N-Q Piezo1

522 mutants were smaller than that of the core-glycosylated Piezo1-GFP. This finding was consistent
523 with the lack of core-glycans being attached at these sites. As final evidence that all the N-linked
524 glycans were removed from the 7N-Q mutant, we treated it with PNGaseF and saw that it had no
525 effect on protein size (Fig. 6H).

526 **Lack of higher order N-glycosylation in trafficking defective Piezo1 mutants**

527 As the data above suggested that the higher order glycosylation was a surrogate for normal
528 membrane trafficking in human Piezo1 channels, we investigated if disease-linked variants were
529 identifiable by using this approach. Such an approach has been extensively used in studies of loss-
530 of-function disease-causing variants in Kv11.1 that as mentioned previously cause LQTS2¹⁸. First,
531 variants linked to generalized lymphatic dysplasia (L939M²⁷ and G2029R²⁸) were studied.

532 Much like the Cap QQ (N2294Q/N2331Q) mutant, G2029R shows no higher order glycosylation
533 (Fig. 7A). In comparison, L939M Western blots appeared similar to those of the WT, with two
534 bands. The relative amounts were quantified using the intensity of the upper band (fully
535 glycosylated, FG) versus that of the lower band (core glycosylated, CG) and these showed a
536 marked reduction of the FG band in the Cap QQ (N2294Q/N2331Q) and the G2029R mutants
537 (Fig. 7B). The latter mutant had already been convincingly shown with immunofluorescence to be
538 trafficking-defective²⁸, a fact we confirmed here using immunogold electron microscopy (Fig. 7C).
539 Supporting this finding, little to no stretch-activated current was seen in cell-attached patches
540 expressing G2029R in comparison to L939M in which peak currents were comparable to WT (Fig.
541 7D-E). This finding provided further support for the idea that the presence of higher order N-linked
542 glycosylation is indicative of normal membrane trafficking.

543 While the maximum stretch-activated L939M currents were comparable to WT, they did show a
544 modest rightward shift in the pressure-response curve (Fig. 7F-G). It is important to note that we
545 were not aiming to definitively ascribe disease causation to L939M, in fact, the patient with this
546 mutation also had other missense variants reported in Piezo1 (F2458L, R2456C), which we did
547 not test²⁷. What was evident was that WT and L939M Piezo1 both showed a double band on a
548 Western blot, and they gave stretch activated currents; and both CapQQ and G2029R only had the
549 lower band in the Western blots and gave limited stretch activated currents.

550 Given that we could clearly distinguish a trafficking defective human Piezo1 variant (G2029R)
551 from WT or a variant that reaches the plasma membrane (L939M), we posit that this experiment
552 could serve as an assay for ameliorated trafficking.

553 **Temperature effects on trafficking**

554 Again, using parallels with the Kv11.1 and CFTR literature, we attempted to rescue aberrant
555 trafficking using two methods. The first was low temperature treatment, and the second was a
556 pharmacological approach^{18,22,49,50}. Specifically, a cohort of Kv11.1 and CFTR variants could be
557 rescued at low temperature (<30 °C) which is thought to improve protein folding and hence
558 trafficking. The same experimental protocol was used for the Piezo1 variants, expressed in
559 HEK293 cells for 24 h at 27 °C. WT Kv11.1 was used with a temperature rescuable mutant A422T
560 as a positive control. 24 h at 27 °C increased the amount of fully glycosylated Kv11.1 A422T which
561 was consistent with previous reports (Fig. 7H-I). With the same protocol for Piezo1 the density of
562 the upper band in the Western blot of the G2029R mutant was not increased. Furthermore, the
563 treatment reduced the upper band of WT and L939M suggesting amelioration of trafficking (Fig.
564 7J). The lower membrane expression level was confirmed by using patch clamp experiments (Fig.
565 7K). Importantly, all patch clamp experiments were carried out at room temperature as previous
566 reports suggested that Piezo1 activity is temperature dependent⁵¹. These findings provided further
567 evidence that the intensity of the upper band in Western blots of the HEK Piezo1 proteins reported
568 on channel trafficking to the plasma membrane.

569 **Drug effects on trafficking**

570 Kv11.1 is stabilized by the channel blocker E4031, which improves membrane trafficking²². So we
571 tested if the antagonist of Yoda-1 activation Dooku-1⁵² offers the same type of chaperone effect
572 on Piezo1. Also, if Dooku-1 did not inhibit stretch-activation of Piezo1, this type of molecule
573 might be used therapeutically if it could improve trafficking.

574 Treatment of HEK cells for 48 h with 5 µM Dooku-1 (higher concentrations could not be attained
575 due to its low solubility) did not improve the intensity of the upper Western blot FG band of the
576 WT, L939M or the G2029R mutant of Piezo1 (Fig. 7L). In the process of confirming this outcome
577 with patch clamp analysis, the current per patch of Piezo1 was seen to be reduced by 30-60% (Fig.
578 7M). After washout, peak currents per patch returned to >80% of untreated levels. This suggested

579 that Dooku-1 perturbed Piezo1 stretch-activation. Therefore, we tested acute addition of 5 μ M
580 Dooku-1. Indeed, it reduced stretch activation by ~50%, which was largely reversed on washout.
581 This warrants further study. While neither temperature nor Dooku1 could reverse amelioration of
582 trafficking this does provide the basis for future studies to look at a wider range of loss-of-function
583 Piezo1 mutants. However, it was first necessary to see if modified N-glycosylation was applicable
584 to other reported disease-linked Piezo1 variants.

585 **Co-expression of trafficking defective Piezo1 mutants**

586 Heterozygous Piezo1 missense variants have been linked to disease. To broaden the relevance our
587 data, we investigated more variants with genetic loci that are linked to bicuspid aortic valve
588 (BAV)²⁹ and examined how co-expression of disease-linked variants with WT Piezo1 might affect
589 Piezo1 activity. First, WT Piezo1-GFP was co-expressed with equivalent amounts of DNA of
590 L939M and G2029R. The stretch activated currents elicited by negative pressure application from
591 a high-speed pressure clamp (Fig. 8A) were recorded followed by the variants at loci linked to
592 BAV (Fig. 8B-D). Co-expression of G2029R and S217L with Piezo1-GFP had a large effect on
593 the stretch evoked currents, with Y2022A affecting them to a lesser extent (Fig. 8A-C). The stretch
594 evoked activity was seen to be correlated with the extent of fully glycosylated protein, as seen for
595 L939M and G2029R (Fig. 7B). Consistent with all the previous data, G2029R, S217L showed a
596 reduced upper FG band in the Western blot (Fig. 8E). Moreover, co-expression of the G2029R,
597 S217L mutant with the WT protein also reduced the FG band compared with the control (Fig. 8E-
598 G). This finding follows the maximal amount of current elicited from cell-attached patches and
599 suggested a dominant-negative effect (Fig. 8H).

600 We could not guarantee that 100% of the cells were transfected with *both* WT and mutant protein
601 DNA as they were both GFP fused. However, the patch clamp observations shown in Fig 8 were
602 seen to be consistent by co-expressing a GFP fused Piezo1 with mCherry fused mutant proteins
603 (Fig. 9 & SI Fig. 7). This allowed us to select only cells that were expressing both fused proteins
604 for electrophysiological analysis; almost identical current patterns were recorded (SI Fig. 7) to
605 those of the maximal current data shown in Fig 8H.

606 As final evidence that some mutants displayed a dominant-negative effect we focussed on the
607 S217L mutant. Western blots of this mutant had a single band with little sign of the higher
608 molecular weight fully glycosylated species, regardless of the cell type in which it was expressed

609 (Fig. 8E; Fig. 9A-B). Western blots on cell lysate from Piezo1^{-/-} HEK293T co-transfected with
610 every combination of WT and S217L-GFP and -mCherry fused proteins are shown in Fig 9. Both
611 S217L-GFP and -mCherry fused Piezo1 showed a single band with elimination of the band
612 corresponding to the glycosylated species of the co-transfected wild-type protein (Fig. 9B). The
613 lack of fully glycosylated species correlated well with the stretch evoked current (Fig. 9C).

614

615 **Discussion**

616 Post-translational modification is critical for function and localization of transmembrane proteins.
617 N-linked glycosylation is one of the most frequently encountered and heterogeneous forms of co-
618 and post-translational modification. Here we showed that the mechanically-gated ion channel
619 Piezo1 underwent N-linked glycosylation and migrated as a doublet on a Western blot similar to
620 other ion channel proteins like Kv11.1^{18,25}. This double band appearance on Western blots was not
621 dependent on the nature of the molecular tag attached to it. The fully glycosylated species was
622 evident in GFP tagged proteins (C-terminal or 1591 position), mCherry tagged proteins (1591
623 position), mouse Piezo1 fused to TdTomato and un-tagged natively expressed Piezo1 in
624 fibroblasts.

625 By using PNGaseF, which specifically cleaves N-linked oligosaccharides, the upper band of
626 human Piezo1 was found to be heavily N-glycosylated (~25 kDa). Treatment with a mixture of
627 deglycosylases produced a similar effect on Western blots implying that the upper band species
628 was unlikely to contain significant amounts of cleavable O-linked oligosaccharides. This was
629 supported by the use of GnT1^{-/-} HEK293S cells. Unlike most cell types this cell has a genetic
630 deletion that prevents the processing of higher order glycans. Western blots from lysates of these
631 cells also lacked an upper band. Using brefeldin A treatment, which inhibits vesicular transport
632 between the ER and Golgi, we showed that the higher order N-glycans were added in the Golgi.

633 In other ion channel proteins the fully glycosylated protein (upper band) has been used as an
634 indicator of normal membrane trafficking, whereas the core glycosylated protein (lower band)
635 largely represents the immature version present mainly in the ER and Golgi^{18,22,53}. Consistent with
636 this knowledge, using unroofed fibroblasts and biotinylation we showed that the N-glycosylated
637 version of natively expressed Piezo1 constituted the major component of the membrane pool of
638 Piezo1. In RBCs only a single Piezo1 band was evident in Western blots and the single band size

639 was reduced on PNGaseF treatment. This finding was consistent with the lack of ER and Golgi in
640 mature RBCs.

641 The higher order glycosylation of Piezo1 was dependent on two critical Asn sites in the cap region
642 ([Fig. 10](#)). Which of these two asparagines that became glycosylated seemed of little consequence
643 as single mutants (N2294Q or N2331Q) could still traffic and produce mechanically evoked
644 currents. A previous mass spectrometry study suggested at least one of these two Asn residues in
645 Piezo1 was glycosylated⁴³ which is consistent with a Cryo-EM structure of Piezo2 where one
646 glycosylated asparagine was resolved in the cap⁴⁴. When both residues were ablated (N2294Q and
647 N2331Q) little to no current was present in electrophysiological experiments; and the protein
648 lacked the higher molecular weight band indicative of a protein with higher order N-glycosylation.
649 Interestingly, PNGaseF reduced the size of the core glycosylated N2294Q/N2331Q double mutant
650 protein, thus indicating that other sites also undergo N-linked glycosylation.

651 Using a split Piezo1 protein, we showed that both Asn residues became glycosylated and indeed
652 that these residues dictated higher order glycosylation in the propeller regions. Of the six sites
653 predicted to undergo N-glycosylation in the propellers, we identified two crucial residues in the
654 that are the sites of higher order glycosylation (N658 and N885). The analogous residues to N658
655 and N885 in mouse Piezo1 are present in two loops that were previously identified by the Xiao
656 laboratory to be essential for mouse Piezo1 function; and in electrophysiological stretch assays
657 they gave minimal current consistent with our results³².

658 Thus, our data suggested that the lack of a higher molecular weight species on a Western blot, as
659 seen with the double mutant (N2294Q/N2331Q), indicates aberrant trafficking of Piezo1. This
660 mirrors perfectly what has been reported with Kv11.1 and CFTR channels¹⁸. Ultimately it is core N-
661 glycosylation in the cap and propellers that are necessary for trafficking, as current can still be
662 produced in specialized GnT1^{-/-} cells that *cannot* process higher order glycans (although they can
663 produce lower molecular weight mannose containing glycans). In all cells expressing GnT1 that
664 we have tested, such processing in the ER and Golgi results in higher order glycosylation and the
665 upper band on a Western blot.

666 Probing N-glycosylation status in this manner provides a rapid and reliable method to determine
667 if human Piezo1 variants, that are generated for structure-function studies or in studies of disease-
668 linked variants, exhibit aberrant trafficking exemplified by our data on G2029R, a known

669 trafficking defective Piezo1 variant²⁸. We also used glycosylation status to attempt to rescue
670 G2029R using two widely used strategies; low temperature treatment and a pharmacological
671 chaperone²². Neither aided G2029R trafficking; but for Kv11.1 channels only a subset of mutants
672 could be rescued²² by the respective treatments. Nevertheless, it is plausible that other Piezo1
673 mutants may be rescuable using alternative approaches⁵⁴ or pharmacological chaperones.

674 N-glycosylation status can also be used in co-expression studies to interrogate the impact of
675 disease-linked variants on the WT protein, thus mimicking heterozygosity. Here, we provide
676 evidence that some Piezo1 variants had a dominant negative effect as they reduced WT function.
677 The most notable example of this was S217L. Its effect was very similar to that of dominant
678 negative mutants such as A561V on the trafficking of the Kv11.1 channel⁵⁵. While there was no
679 guarantee that every cell was expressing exactly the same quantity of mutant and WT Piezo1
680 proteins, as would be in the case *in vivo*, the data from Western blots and patch clamp analysis
681 were consistent with a dominant negative effect. This was congruent with the fact that the higher
682 molecular weight species (the FG Piezo1 protein) was indicative of the functional membrane
683 protein pool.

684 While we concluded that the latter mutants are aberrantly trafficked we could not rule out the fact
685 that additional disease-causing mechanisms such as reduced stability or gating phenotypes
686 (particularly for S217L²⁹) existed. However our data demonstrated that trafficking deficient Piezo1
687 mutants were differentially processed in heterologous expression systems as seen in the extensive
688 studies of Kv11.1^{18,49,56-59} and CFTR^{20,60,61}.

689 We have described this larger species evident on Western blots as the “fully glycosylated” protein
690 which has “higher order” glycosylation. The larger species could have complex glycosylation or
691 hybrid glycans¹⁵. The exact composition of the glycans is beyond the scope of this study. However,
692 it is likely of interest going forward when trying to decipher whether these glycans may interact
693 with the extracellular matrix and function as molecular tethers as suggested for the epithelial
694 sodium channel (Fig. 10)⁶². The glycans may also facilitate interactions with binding partners such
695 as PECAM1⁶³ or E-cadherin⁶⁴, or with specific lipids such as glycolipids⁶⁵.

696 In integrins, N-glycans are important for clustering. Hence future studies could explore whether
697 higher order Piezo1 glycosylation is involved in the previously identified clustering of Piezo1 in
698 the plasma membrane⁹. If N-glycans are a means of interactions with other membrane proteins, or

699 the ECM⁶², this gives cells an extra dynamic mechanism to regulate mechanosensitivity. This may
700 explain the differential sensitivity to applied force seen when Piezo1 was expressed in HEK293S
701 GnT1^{-/-} cells that cannot process higher order glycans.

702 In conclusion, we have shown that the fully glycosylated version of Piezo1 *in vitro* is indicative of
703 the mature species, which is localized to the plasma membrane. Thus N-glycosylation status will
704 be valuable in studies of disease-linked variants of Piezo1; and the cell-biological protocols
705 developed here could provide an analytical platform for identifying molecular chaperones to be
706 used in the clinical treatment of Piezo1 trafficking defective variants.

707

708 **Acknowledgements**

709 CDC is supported by an NSW Health EMCR Fellowship. CDC and PWK were supported by
710 Australian Research Council Discovery Project Grant DP190100500. The experiments were in
711 part supported by the Victor Chang Cardiac Research Institute Innovation Centre, funded by the
712 NSW Government.
713

714 **Declaration of Interests**

715 The authors declare no competing interests

716

717 **References**

718

- 719 1 Coste, B. *et al.* Piezo1 and Piezo2 are essential components of distinct mechanically
720 activated cation channels. *Science* **330**, 55-60, doi:10.1126/science.1193270 (2010).
- 721 2 Coste, B. *et al.* Piezo proteins are pore-forming subunits of mechanically activated
722 channels. *Nature* **483**, 176-181, doi:10.1038/nature10812 (2012).
- 723 3 Douguet, D., Patel, A., Xu, A., Vanhoutte, P. M. & Honore, E. Piezo Ion Channels in
724 Cardiovascular Mechanobiology. *Trends Pharmacol Sci* **40**, 956-970,
725 doi:10.1016/j.tips.2019.10.002 (2019).
- 726 4 Beech, D. J. & Kalli, A. C. Force Sensing by Piezo Channels in Cardiovascular Health
727 and Disease. *Arterioscler Thromb Vasc Biol* **39**, 2228-2239,
728 doi:10.1161/ATVBAHA.119.313348 (2019).
- 729 5 Syeda, R. *et al.* Piezo1 Channels Are Inherently Mechanosensitive. *Cell reports* **17**,
730 1739-1746, doi:10.1016/j.celrep.2016.10.033 (2016).
- 731 6 Cox, C. D. *et al.* Removal of the mechanoprotective influence of the cytoskeleton reveals
732 PIEZO1 is gated by bilayer tension. *Nature communications* **7**, 10366,
733 doi:10.1038/ncomms10366 (2016).
- 734 7 Lewis, A. H. & Grandl, J. Mechanical sensitivity of Piezo1 ion channels can be tuned by
735 cellular membrane tension. *eLife* **4**, doi:10.7554/eLife.12088 (2015).
- 736 8 Romero, L. O. *et al.* Dietary fatty acids fine-tune Piezo1 mechanical response. *Nature*
737 *communications* **10**, 1200, doi:10.1038/s41467-019-09055-7 (2019).
- 738 9 Ridone, P. *et al.* Disruption of membrane cholesterol organization impairs the activity of
739 PIEZO1 channel clusters. *Journal of General Physiology*, doi:In press (2020).

740 10 Tsuchiya, M. *et al.* Cell surface flip-flop of phosphatidylserine is critical for PIEZO1-
741 mediated myotube formation. *Nature communications* **9**, 2049, doi:10.1038/s41467-018-
742 04436-w (2018).

743 11 Shi, J. *et al.* Sphingomyelinase Disables Inactivation in Endogenous PIEZO1 Channels. *Cell reports* **33**, 108225, doi:10.1016/j.celrep.2020.108225 (2020).

744 12 Cox, C. D. & Gottlieb, P. A. Amphipathic molecules modulate PIEZO1 activity. *Biochemical Society transactions* **47**, 1833-1842, doi:10.1042/BST20190372 (2019).

745 13 Tannous, A., Pisoni, G. B., Hebert, D. N. & Molinari, M. N-linked sugar-regulated
746 protein folding and quality control in the ER. *Seminars in cell & developmental biology*
747 **41**, 79-89, doi:10.1016/j.semcd.2014.12.001 (2015).

748 14 Spiro, R. G. Protein glycosylation: nature, distribution, enzymatic formation, and disease
749 implications of glycopeptide bonds. *Glycobiology* **12**, 43R-56R,
750 doi:10.1093/glycob/12.4.43r (2002).

751 15 Aebi, M. N-linked protein glycosylation in the ER. *Biochimica et biophysica acta* **1833**,
752 2430-2437, doi:10.1016/j.bbamer.2013.04.001 (2013).

753 16 Glzman, R. *et al.* N-glycans are direct determinants of CFTR folding and stability in
754 secretory and endocytic membrane traffic. *The Journal of cell biology* **184**, 847-862,
755 doi:10.1083/jcb.200808124 (2009).

756 17 Gong, Q., Anderson, C. L., January, C. T. & Zhou, Z. Role of glycosylation in cell
757 surface expression and stability of HERG potassium channels. *American journal of
758 physiology. Heart and circulatory physiology* **283**, H77-84,
759 doi:10.1152/ajpheart.00008.2002 (2002).

760 18 Vandenberg, J. I. *et al.* hERG K(+) channels: structure, function, and clinical
761 significance. *Physiological reviews* **92**, 1393-1478, doi:10.1152/physrev.00036.2011
762 (2012).

763 19 Petrecca, K., Atanasiu, R., Akhavan, A. & Shrier, A. N-linked glycosylation sites
764 determine HERG channel surface membrane expression. *The Journal of physiology* **515** (Pt 1),
765 41-48, doi:10.1111/j.1469-7793.1999.041ad.x (1999).

766 20 Chang, X. B. *et al.* Role of N-linked oligosaccharides in the biosynthetic processing of
767 the cystic fibrosis membrane conductance regulator. *Journal of cell science* **121**, 2814-
768 2823, doi:10.1242/jcs.028951 (2008).

769 21 Cai, Y. *et al.* Altered trafficking and stability of polycystins underlie polycystic kidney
770 disease. *The Journal of clinical investigation* **124**, 5129-5144, doi:10.1172/JCI67273
771 (2014).

772 22 Anderson, C. L. *et al.* Large-scale mutational analysis of Kv11.1 reveals molecular
773 insights into type 2 long QT syndrome. *Nature communications* **5**, 5535,
774 doi:10.1038/ncomms6535 (2014).

775 23 Ke, Y. *et al.* Trafficking defects in PAS domain mutant Kv11.1 channels: roles of
776 reduced domain stability and altered domain-domain interactions. *The Biochemical
777 journal* **454**, 69-77, doi:10.1042/BJ20130328 (2013).

778 24 Foo, B., Williamson, B., Young, J. C., Lukacs, G. & Shrier, A. hERG quality control and
779 the long QT syndrome. *The Journal of physiology* **594**, 2469-2481,
780 doi:10.1113/JP270531 (2016).

781 25 Apaja, P. M. *et al.* Ubiquitination-dependent quality control of hERG K+ channel with
782 acquired and inherited conformational defect at the plasma membrane. *Molecular biology
783 of the cell* **24**, 3787-3804, doi:10.1091/mbc.E13-07-0417 (2013).

784

785

786 26 Perry, M. D. *et al.* Rescue of protein expression defects may not be enough to abolish the
787 pro-arrhythmic phenotype of long QT type 2 mutations. *The Journal of physiology* **594**,
788 4031-4049, doi:10.1113/JP271805 (2016).

789 27 Fotiou, E. *et al.* Novel mutations in PIEZO1 cause an autosomal recessive generalized
790 lymphatic dysplasia with non-immune hydrops fetalis. *Nature communications* **6**, 8085,
791 doi:10.1038/ncomms9085 (2015).

792 28 Lukacs, V. *et al.* Impaired PIEZO1 function in patients with a novel autosomal recessive
793 congenital lymphatic dysplasia. *Nature communications* **6**, 8329,
794 doi:10.1038/ncomms9329 (2015).

795 29 Faucherre, A. *et al.* Piezo1 is required for outflow tract and aortic valve development.
796 *Journal of molecular and cellular cardiology* **143**, 51-62,
797 doi:10.1016/j.yjmcc.2020.03.013 (2020).

798 30 Saotome, K. *et al.* Structure of the mechanically activated ion channel Piezo1. *Nature*
799 **554**, 481-486, doi:10.1038/nature25453 (2018).

800 31 Guo, Y. R. & MacKinnon, R. Structure-based membrane dome mechanism for Piezo
801 mechanosensitivity. *eLife* **6**, doi:10.7554/eLife.33660 (2017).

802 32 Zhao, Q. *et al.* Structure and mechanogating mechanism of the Piezo1 channel. *Nature*
803 **554**, 487-492, doi:10.1038/nature25743 (2018).

804 33 Bae, C., Gnanasambandam, R., Nicolai, C., Sachs, F. & Gottlieb, P. A. Xerocytosis is
805 caused by mutations that alter the kinetics of the mechanosensitive channel PIEZO1.
806 *Proceedings of the National Academy of Sciences of the United States of America* **110**,
807 E1162-1168, doi:10.1073/pnas.1219777110 (2013).

808 34 Biazik, J., Yla-Anttila, P., Vihinen, H., Jokitalo, E. & Eskelinen, E. L. Ultrastructural
809 relationship of the phagophore with surrounding organelles. *Autophagy* **11**, 439-451,
810 doi:10.1080/15548627.2015.1017178 (2015).

811 35 Kuo, J. C., Han, X., Yates, J. R., 3rd & Waterman, C. M. Isolation of focal adhesion
812 proteins for biochemical and proteomic analysis. *Methods in molecular biology* **757**, 297-
813 323, doi:10.1007/978-1-61779-166-6_19 (2012).

814 36 Ranade, S. S. *et al.* Piezo1, a mechanically activated ion channel, is required for vascular
815 development in mice. *Proceedings of the National Academy of Sciences of the United
816 States of America* **111**, 10347-10352, doi:10.1073/pnas.1409233111 (2014).

817 37 Nebenfuhr, A., Ritzenthaler, C. & Robinson, D. G. Brefeldin A: deciphering an enigmatic
818 inhibitor of secretion. *Plant physiology* **130**, 1102-1108, doi:10.1104/pp.011569 (2002).

819 38 Gordon, S. E., Munari, M. & Zagotta, W. N. Visualizing conformational dynamics of
820 proteins in solution and at the cell membrane. *eLife* **7**, doi:10.7554/eLife.37248 (2018).

821 39 Taraska, J. W. A primer on resolving the nanoscale structure of the plasma membrane
822 with light and electron microscopy. *The Journal of general physiology* **151**, 974-985,
823 doi:10.1085/jgp.201812227 (2019).

824 40 Yao, M. *et al.* *Force-dependent Piezo1 recruitment to focal adhesions regulates adhesion
825 maturation and turnover specifically in non-transformed cells* (Cold Spring Harbor
826 Laboratory, 2020).

827 41 Ellefsen, K. L. *et al.* Myosin-II mediated traction forces evoke localized Piezo1-
828 dependent Ca(2+) flickers. *Commun Biol* **2**, 298, doi:10.1038/s42003-019-0514-3 (2019).

829 42 Blom, N., Sicheritz-Ponten, T., Gupta, R., Gammeltoft, S. & Brunak, S. Prediction of
830 post-translational glycosylation and phosphorylation of proteins from the amino acid
831 sequence. *Proteomics* **4**, 1633-1649, doi:10.1002/pmic.200300771 (2004).

832 43 Wollscheid, B. *et al.* Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. *Nature biotechnology* **27**, 378-386, doi:10.1038/nbt.1532 (2009).

833 44 Wang, L. *et al.* Structure and mechanogating of the mammalian tactile channel PIEZO2. *Nature* **573**, 225-229, doi:10.1038/s41586-019-1505-8 (2019).

834 45 Lewis, A. H. & Grandl, J. Inactivation Kinetics and Mechanical Gating of Piezo1 Ion Channels Depend on Subdomains within the Cap. *Cell reports* **30**, 870-880 e872, doi:10.1016/j.celrep.2019.12.040 (2020).

835 46 Struwe, W. B. & Robinson, C. V. Relating glycoprotein structural heterogeneity to function - insights from native mass spectrometry. *Current opinion in structural biology* **58**, 241-248, doi:10.1016/j.sbi.2019.05.019 (2019).

836 47 Botello-Smith, W. M. *et al.* A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1. *Nature communications* **10**, 4503, doi:10.1038/s41467-019-12501-1 (2019).

837 48 Bae, C., Suchyna, T. M., Ziegler, L., Sachs, F. & Gottlieb, P. A. Human PIEZO1 Ion Channel Functions as a Split Protein. *PloS one* **11**, e0151289, doi:10.1371/journal.pone.0151289 (2016).

838 49 Wang, Y. *et al.* The role and mechanism of chaperones Calnexin/Calreticulin in which ALLN selectively rescues the trafficking defective of HERG-A561V mutation. *Biosci Rep* **38**, doi:10.1042/BSR20171269 (2018).

839 50 Wang, X., Koulov, A. V., Kellner, W. A., Riordan, J. R. & Balch, W. E. Chemical and biological folding contribute to temperature-sensitive DeltaF508 CFTR trafficking. *Traffic (Copenhagen, Denmark)* **9**, 1878-1893, doi:10.1111/j.1600-0854.2008.00806.x (2008).

840 51 Zheng, W., Nikolaev, Y. A., Gracheva, E. O. & Bagriantsev, S. N. Piezo2 integrates mechanical and thermal cues in vertebrate mechanoreceptors. *Proceedings of the National Academy of Sciences*, 201910213, doi:10.1073/pnas.1910213116 (2019).

841 52 Evans, E. L. *et al.* Yoda1 analogue (Dooku1) which antagonizes Yoda1-evoked activation of Piezo1 and aortic relaxation. *British journal of pharmacology* **175**, 1744-1759, doi:10.1111/bph.14188 (2018).

842 53 Ke, Y., Hunter, M. J., Ng, C. A., Perry, M. D. & Vandenberg, J. I. Role of the cytoplasmic N-terminal Cap and Per-Arnt-Sim (PAS) domain in trafficking and stabilization of Kv11.1 channels. *The Journal of biological chemistry* **289**, 13782-13791, doi:10.1074/jbc.M113.531277 (2014).

843 54 Kanner, S. A., Shuja, Z., Choudhury, P., Jain, A. & Colecraft, H. M. Targeted deubiquitination rescues distinct trafficking-deficient ion channelopathies. *Nature methods*, doi:10.1038/s41592-020-00992-6 (2020).

844 55 Kagan, A., Yu, Z., Fishman, G. I. & McDonald, T. V. The dominant negative LQT2 mutation A561V reduces wild-type HERG expression. *The Journal of biological chemistry* **275**, 11241-11248, doi:10.1074/jbc.275.15.11241 (2000).

845 56 Foo, B. *et al.* Mutation-specific peripheral and ER quality control of hERG channel cell-surface expression. *Scientific reports* **9**, 6066, doi:10.1038/s41598-019-42331-6 (2019).

846 57 Smith, J. L. *et al.* Pharmacological correction of long QT-linked mutations in KCNH2 (hERG) increases the trafficking of Kv11.1 channels stored in the transitional endoplasmic reticulum. *American journal of physiology. Cell physiology* **305**, C919-930, doi:10.1152/ajpcell.00406.2012 (2013).

878 58 Smith, J. L. *et al.* Trafficking-deficient hERG K(+) channels linked to long QT syndrome
879 are regulated by a microtubule-dependent quality control compartment in the ER.
880 *American journal of physiology. Cell physiology* **301**, C75-85,
881 doi:10.1152/ajpcell.00494.2010 (2011).

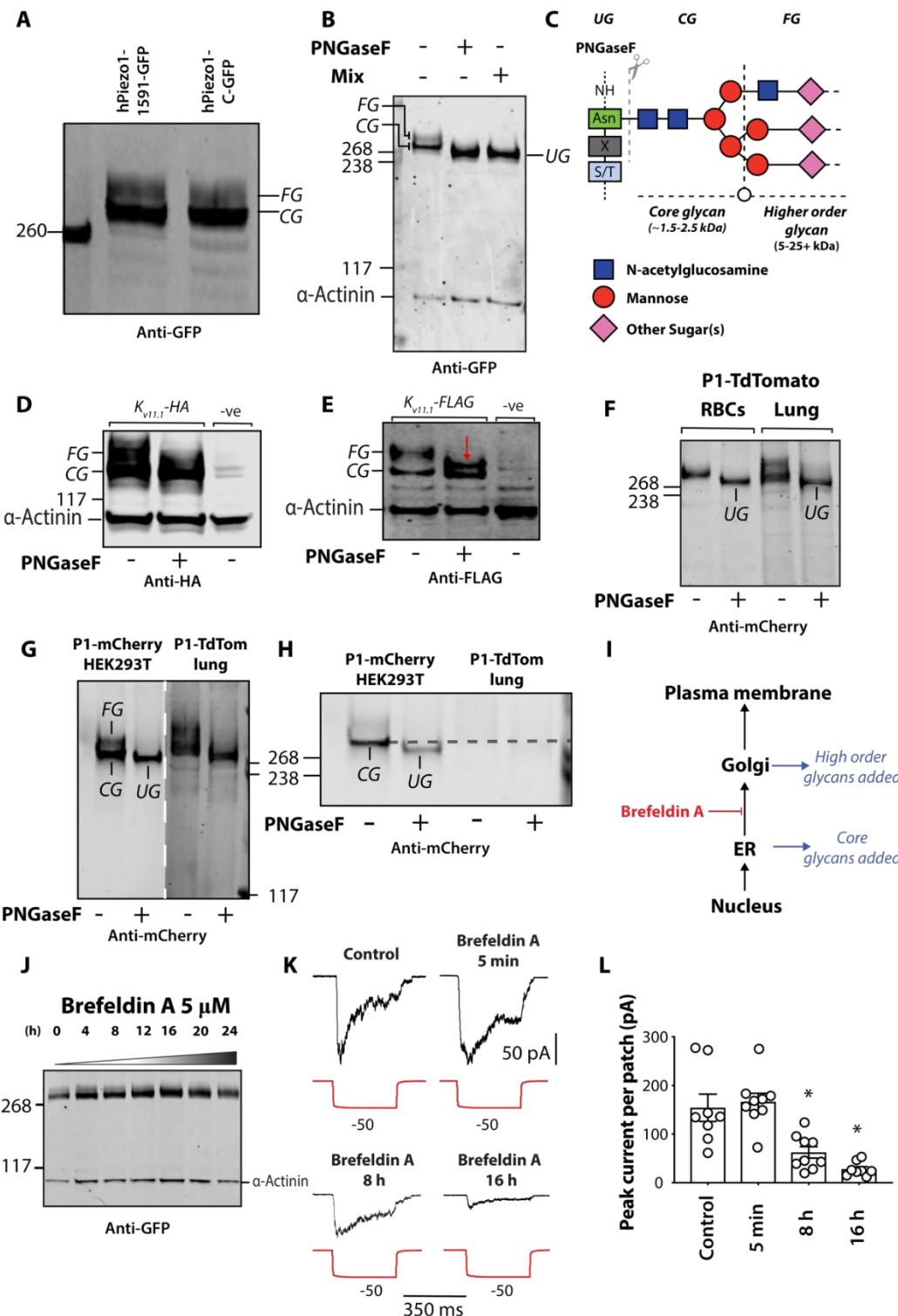
882 59 Zhou, Z., Gong, Q. & January, C. T. Correction of defective protein trafficking of a
883 mutant HERG potassium channel in human long QT syndrome. Pharmacological and
884 temperature effects. *The Journal of biological chemistry* **274**, 31123-31126,
885 doi:10.1074/jbc.274.44.31123 (1999).

886 60 Loo, M. A. *et al.* Perturbation of Hsp90 interaction with nascent CFTR prevents its
887 maturation and accelerates its degradation by the proteasome. *The EMBO journal* **17**,
888 6879-6887, doi:10.1093/emboj/17.23.6879 (1998).

889 61 Owsianik, G., Cao, L. & Nilius, B. Rescue of functional DeltaF508-CFTR channels by
890 co-expression with truncated CFTR constructs in COS-1 cells. *FEBS letters* **554**, 173-178
891 (2003).

892 62 Knoepp, F. *et al.* Shear force sensing of epithelial Na(+) channel (ENaC) relies on N-
893 glycosylated asparagines in the palm and knuckle domains of alphaENaC. *Proceedings of
894 the National Academy of Sciences of the United States of America* **117**, 717-726,
895 doi:10.1073/pnas.1911243117 (2020).

896 63 Chuntharpursat-Bon, E. *et al.* Cell adhesion molecule interaction with Piezo1 channels is
897 a mechanism for sub cellular regulation of mechanical sensitivity. 602532,
898 doi:10.1101/602532 %J bioRxiv (2019).

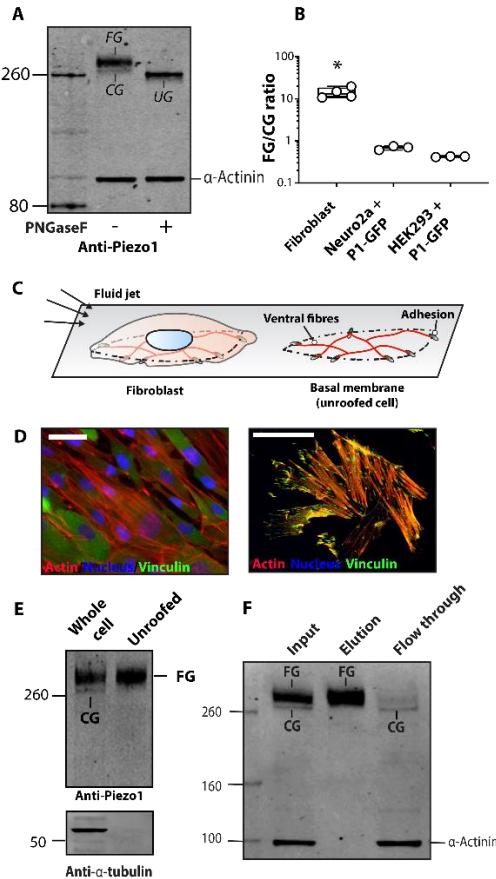

899 64 Wang, J., Jiang, J., Yang, X., Wang, L. & Xiao, B. Tethering Piezo channels to the actin
900 cytoskeleton for mechanogating via the E-cadherin- β -catenin mechanotransduction
901 complex. 2020.2005.2012.092148, doi:10.1101/2020.05.12.092148 %J bioRxiv (2020).

902 65 Buyan, A. *et al.* Piezo1 Forms Specific, Functionally Important Interactions with
903 Phosphoinositides and Cholesterol. *Biophysical journal* **119**, 1683-1697,
904 doi:10.1016/j.bpj.2020.07.043 (2020).

905 66 Kanner, S. A., Jain, A. & Colecraft, H. M. Development of a High-Throughput Flow
906 Cytometry Assay to Monitor Defective Trafficking and Rescue of Long QT2 Mutant
907 hERG Channels. *Frontiers in physiology* **9**, 397, doi:10.3389/fphys.2018.00397 (2018).

908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923

924 **Figures**


925

926

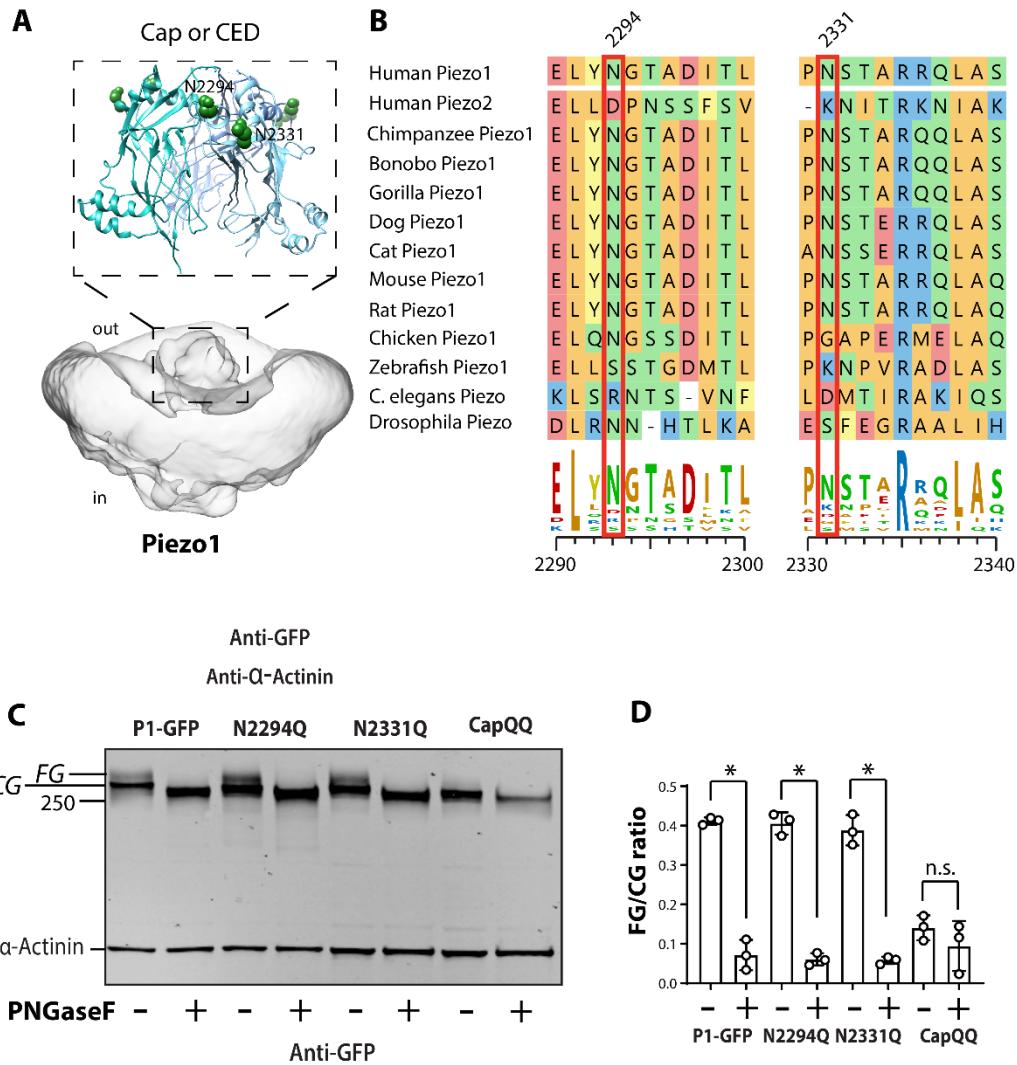
927

928 **Figure 1. N-linked glycosylation of Piezo1 in a heterologous expression system and in native**
929 **cell types.** (A) A representative Western blot of hPiezo1-1591-GFP and Piezo1-C-GFP expressed
930 in HEK293 cells. (B) A representative Western blot illustrating cleavage of the upper FG (fully
931 glycosylated) band of the Piezo1 doublet in the presence of the enzyme PNGaseF and a mix of O-
932 and N-linked deglycosylase (CG – core-glycosylated, UG – unglycosylated). (C) Schematic
933 illustration of PNGaseF mediated cleavage of N-linked glycans at the molecular level. (D)
934 Representative Western blot showing the effect of PNGaseF digestion on Kv11.1-HA and (E) Kv11.1-
935 FLAG protein expressed in HEK293 cells. The red arrow denotes a previously identified PNGaseF
936 resistant Kv11.1 component. (F) Representative Western blot comparing the effect of PNGaseF
937 digestion of mouse Piezo1-TdTomato from red blood cells (RBCs) and lung tissue. (G)
938 Comparison of Western blot of human Piezo1-1591-mCherry expressed in HEK293 cells with
939 mouse Piezo1-TdTomato from mouse lung tissue. (H) Reduced intensity, of representative blot
940 shown in panel G to illustrate the reduction in size of the lower CG band in addition to the loss of
941 the upper FG band. (I) Schematic representation of where N-glycans are added and the site of
942 action of the fungal metabolite brefeldin A. (J) Representative Western blot of Brefeldin A
943 treatment (0-24 h) on human Piezo1-GFP lysate. (K) Raw electrophysiological traces from cell-
944 attached patches of Brefeldin A treated Piezo1-/- HEK293T expressing Piezo1-GFP recorded at -
945 65 mV. (L) Quantification of peak Piezo1 currents per patch elicited by negative pressure pulses
946 in the presence of brefeldin A for escalating durations. Data expressed as mean \pm SEM * p<0.05
947 determined by Kruskal-Wallis test with Dunn's post-hoc test.

948
949

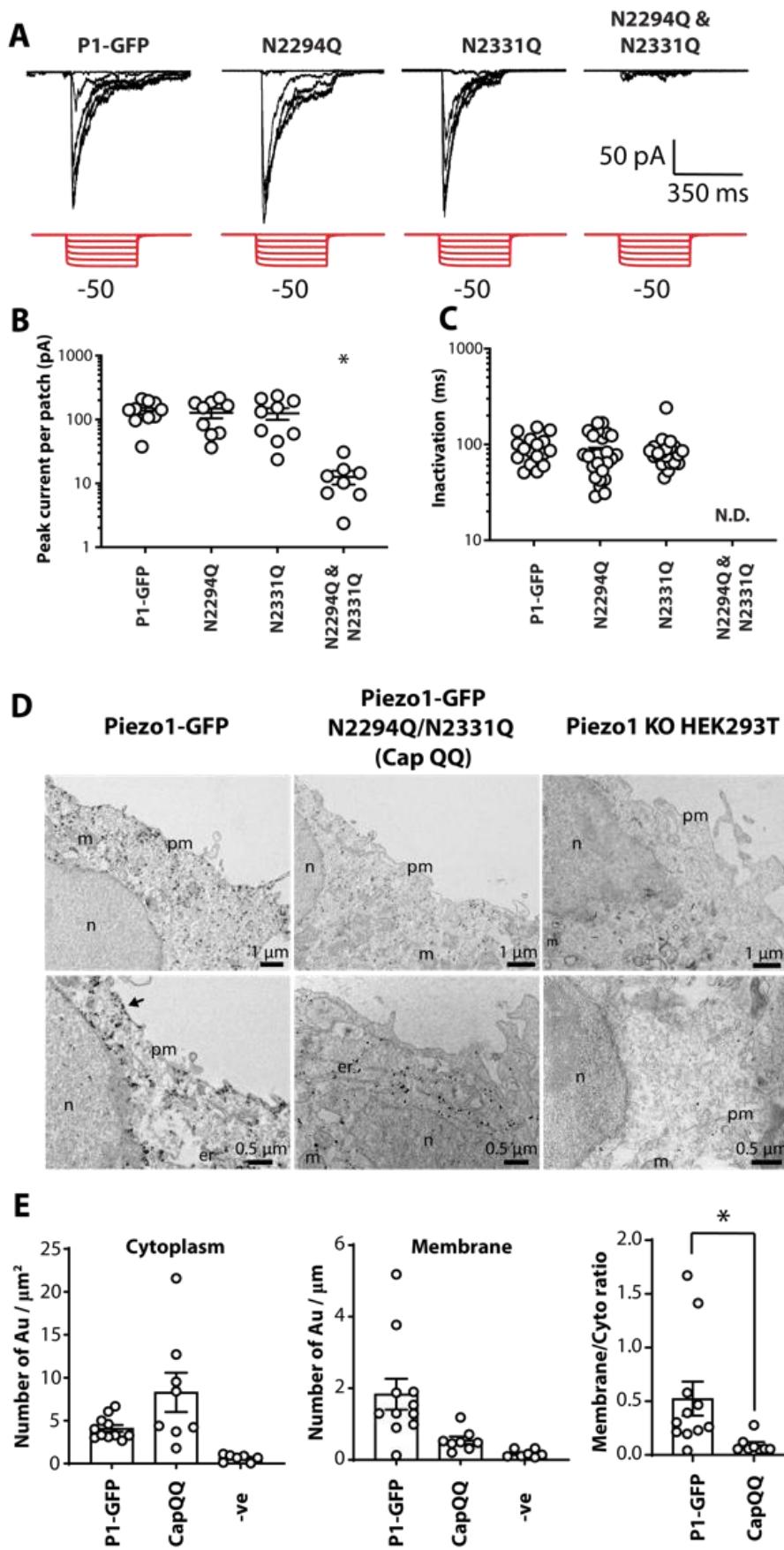
950

951

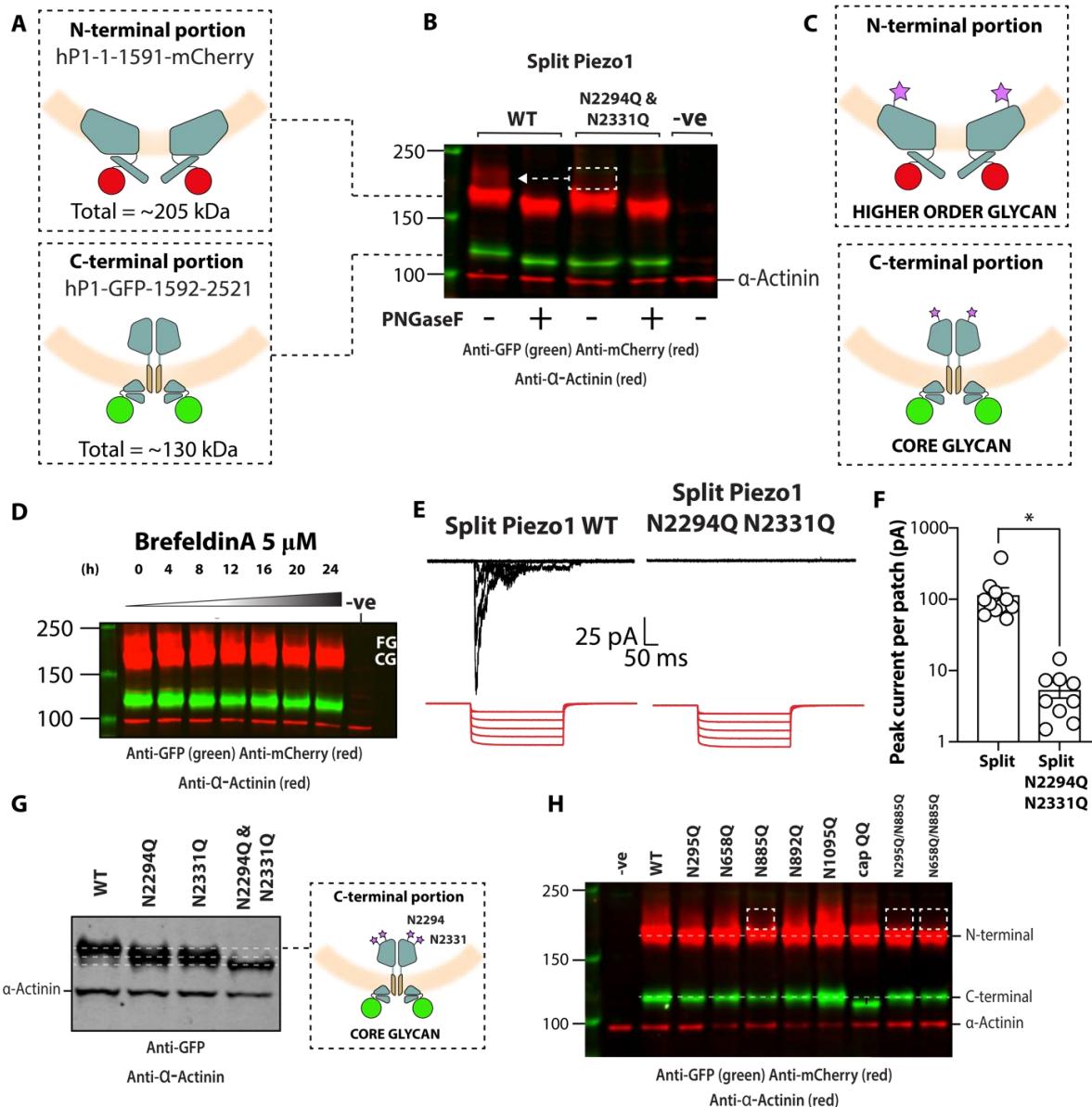

Figure 2. N-glycosylation of endogenous Piezo1 in human fibroblasts.

952

953

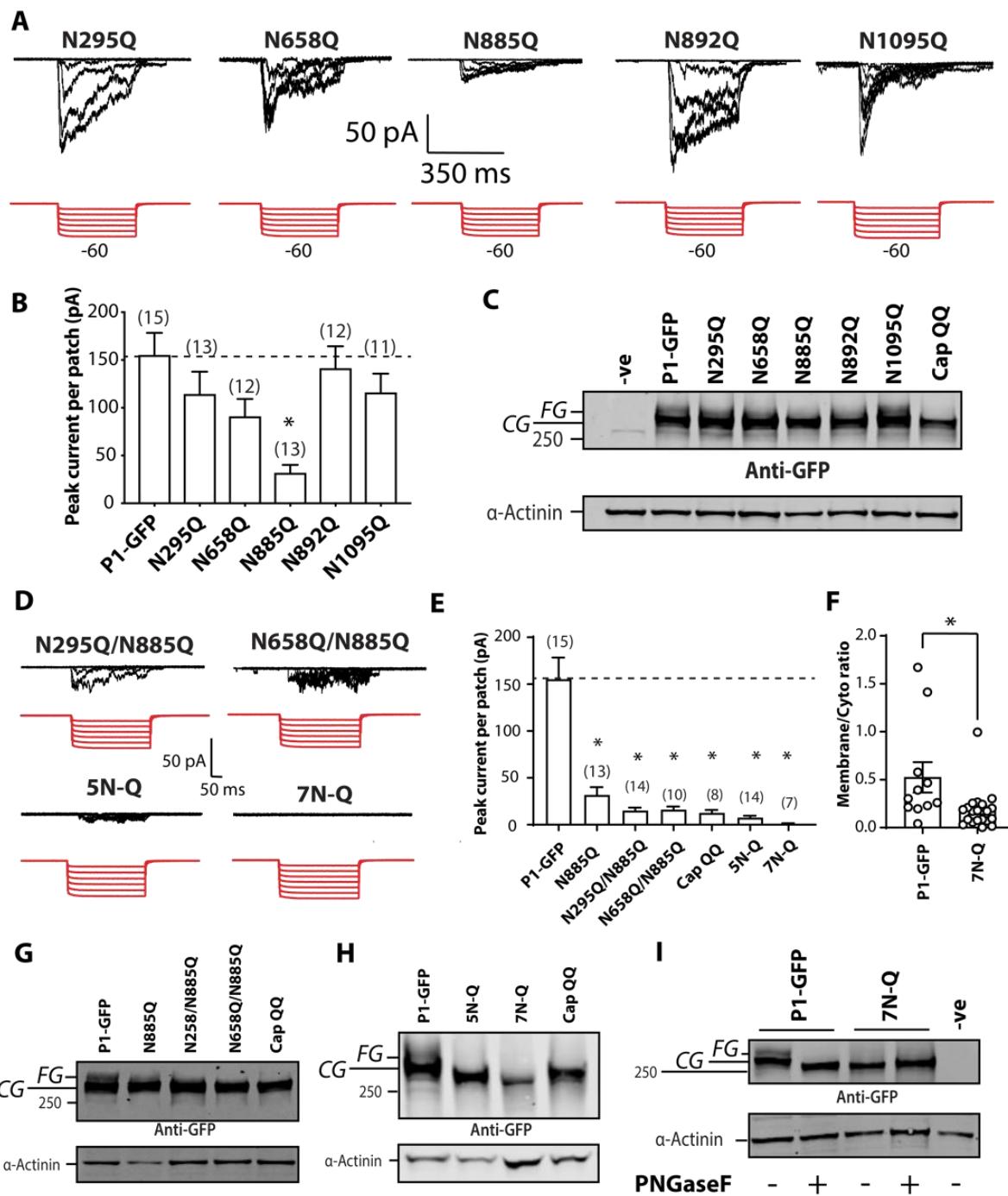

(A) A representative Western blot of untreated immortalized human foreskin fibroblasts versus PNGaseF treated fibroblast lysate probed using the anti-Piezo1 antibody and anti-α-actinin antibody as a loading control. (B) The ratio [FG/CG] of the upper band (FG) and lower band (CG) of fibroblast Piezo1 and Piezo1 heterologously expressed in Neuro2A and HEK293T. (C) Schematic illustration of an intact fibroblast, and an unroofed fibroblast. (D) A representative image of an intact fibroblast (*left panel*), and an unroofed fibroblast (*right panel*) using standard wide-field microscopy and a 63x oil objective. (E) A representative Western blot of intact fibroblast lysate versus unroofed fibroblast lysate probed using anti-Piezo1 antibody and anti α-tubulin antibody as a loading control to confirm unroofing. A representative Western blot of biotinylated immortalized human foreskin fibroblasts. (CG – core-glycosylated, FG – fully glycosylated) * p<0.05 determined by Kruskal-Wallis test with Dunn's post-hoc test.

963



964

965 **Figure 3. Influence of Asparagine residues in the cap region of human Piezo1 on N-**
 966 **Glycosylation.** (A) Two asparagine residues present in the Cap domain of Piezo1. (B) Multiple
 967 sequence alignment illustrates these asparagine residues are highly conserved in Piezo1
 968 homologues. (C) Representative blot showing the effect of PNGaseF treatment on lysate from
 969 HEK293 cells expressing Piezo1-GFP, N2294. N2331Q and N2294Q/N2331Q (CapQQ). (D)
 970 Quantification of the ratio [FG/CG] of the upper band (FG) and lower band (CG) with and without
 971 PNGaseF for Asn mutants in the Cap region. * p<0.05 determined by Kruskal-Wallis test with
 972 Dunn's post-hoc test.


974 **Figure 4. Effect of mutation of N2294 and N2331 on mechanically induced gating of Piezo1.**
975 (A) Electrophysiological recordings of HEK293T Piezo1^{-/-} expressing Piezo1-GFP, N2294,
976 N2331Q and N2294Q/N2331Q in the cell-attached configuration in response to negative pressure
977 applied using a high-speed pressure-clamp (red). (B) Quantification of peak current elicited per
978 patch. (C) Quantification of inactivation t of Piezo1-GFP, N2294, N2331Q and N2294Q/N2331Q
979 from cell-attached recordings (ND - not determined). (D) Immunogold labelling using mouse
980 monoclonal anti-Piezo1 primary antibody and electron microscopy of HEK293T Piezo1^{-/-} (KO)
981 and cells expressing Piezo1-GFP and the CapQQ mutant (N2294Q/N2331Q)[pm-plasma
982 membrane, n-nucleus, m-mitochondria, er-endoplasmic reticulum]. (E) Quantification of
983 immunogold labelling in the cytoplasm (per μm^2), membrane (per μm) and the ratio of membrane
984 to cytoplasmic labelling using immunogold comparing Piezo1 to the CapQQ mutant
985 (N2294Q/N2331Q). *p<0.05 determined using Mann-Whitney U test.
986
987

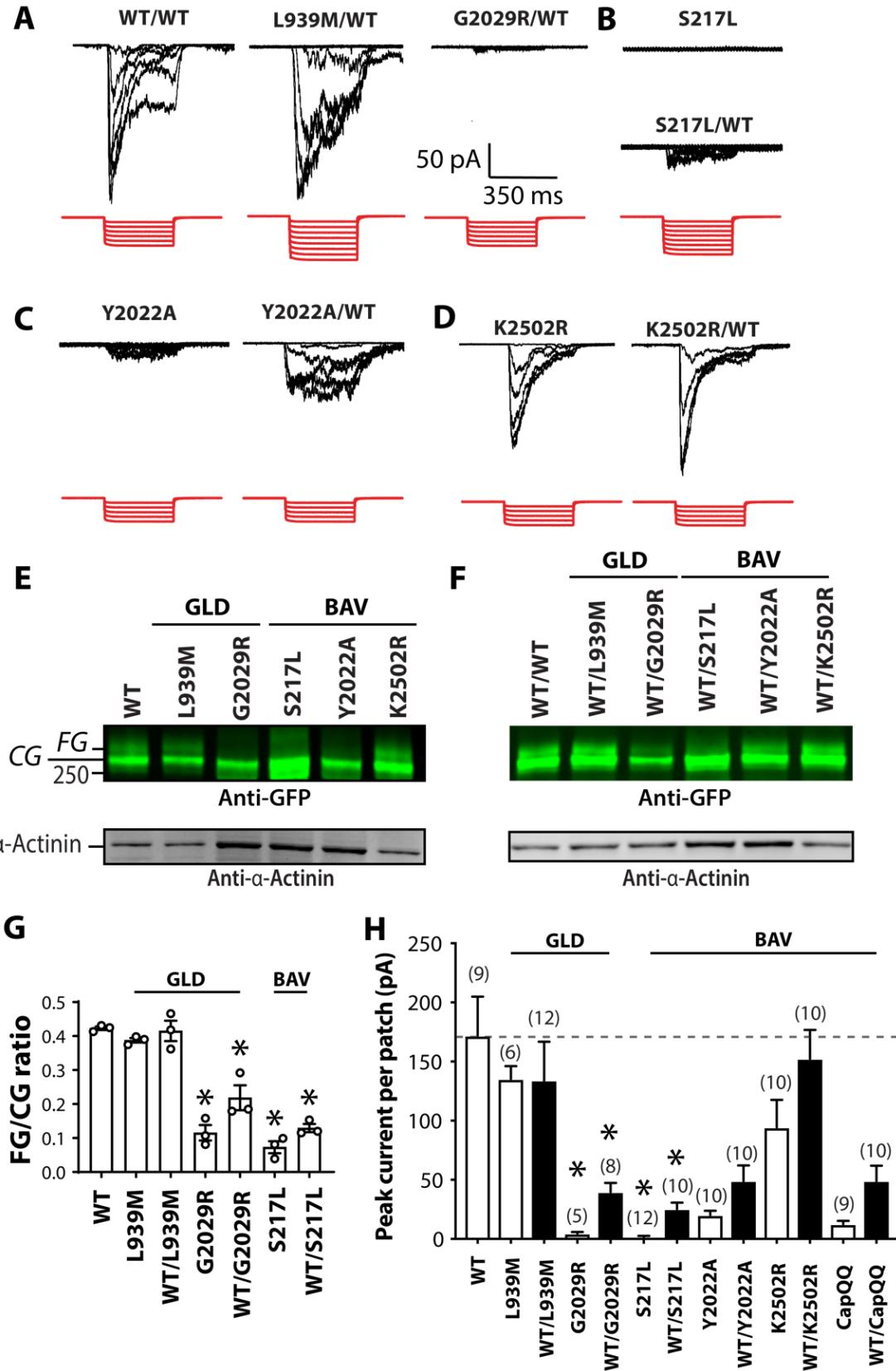
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001

Figure 5. N-glycosylation of Piezo1 in a split construct. (A) Diagram depicting the human split Piezo1 protein. (B) Representative blot showing the split human Piezo1 protein and the split human Piezo1 protein with the double cap mutant N2294Q and N2331Q with and without PNGaseF treatment. (C) Diagram illustrating where glycans are likely to be located. (D) Effect of brefeldin A treatment overtime on the human split Piezo1 protein. (E) Electrophysiological recordings of Piezo1^{-/-} HEK293T cells expressing human split Piezo1 and the double cap mutant N2294Q and N2331Q in the cell-attached configuration in response to negative pressure applied using a high-speed pressure-clamp (red). (F) Quantification of peak current elicited per patch. (G) Representative Western blot of the C-terminal domain of the human Piezo1 split protein compared with single N2294Q and N2331Q and the double cap mutant N2294Q and N2331Q (CapQQ). (H) Representative Western blot showing the comparison of N-terminal Asn to Gln mutations in the N-terminal portion of the human split Piezo1 and the double cap mutant N2294Q and N2331Q (CapQQ). *p<0.05 determined by Mann-Whitney-U test. -ve represents an un-transfected control.

1002

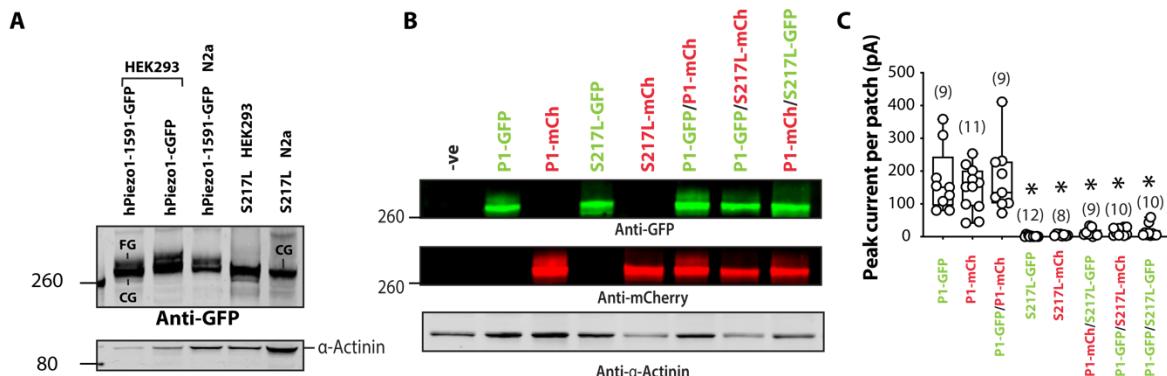
1003

1004 **Figure 6. Higher order N-glycosylation in the N-terminus of Piezo1.** (A) Electrophysiological
 1005 recordings of Piezo1^{-/-} HEK293T expressing single Asn to Gln Piezo1-GFP mutations in the N-
 1006 terminus (N295Q, N658Q, N885Q, N892Q, N1095Q) in the cell-attached configuration in
 1007 response to negative pressure applied using a high-speed pressure-clamp (red). (B) Quantification


1008 of peak current elicited per patch for point mutations shown in A compared to current from Piezo1-
1009 GFP. (C) Representative Western blot of all Asn to Gln mutants in the N-terminus of Piezo1
1010 compared to the double mutant in the Cap region (CapQQ). (D) Electrophysiological recordings
1011 of HEK293T Piezo1^{-/-} expressing Piezo1 with multiple Asn to Gln mutations (as indicated) in the
1012 cell-attached configuration in response to negative pressure applied using a high-speed pressure-
1013 clamp (red). [5N-Q - N295Q, N658Q, N885Q, N892Q, N1095Q and 7N-Q - N295Q, N658Q,
1014 N885Q, N892Q, N1095Q, N2294Q, N2331Q]. (E) Quantification of peak current elicited per
1015 patch for mutation combinations shown in D compared to current from Piezo1-GFP, N885Q and
1016 CapQQ. (F) Membrane to cytoplasmic ratio of immunogold labelling of the 7N-Q mutation
1017 compared to human Piezo1. (G) Representative Western blot showing the comparison between
1018 Asn to Gln mutations of single and double mutations illustrating the strong impact of N885
1019 mutation on the upper FG band of Piezo1 heterologously expressed in Piezo1^{-/-} HEK293T. (H)
1020 Representative blot showing the comparison between multiple Asn to Gln mutations 5N-Q, 7N-Q
1021 and the CapQQ (N2294Q/N2331Q). (I) Representative blot showing the comparison between
1022 PNGaseF digested WT and the 7N-Q mutant. * p<0.05 determined by Kruskal-Wallis test with
1023 Dunn's post-hoc test or Mann-Whitney-U test. -ve represents an un-transfected control.
1024

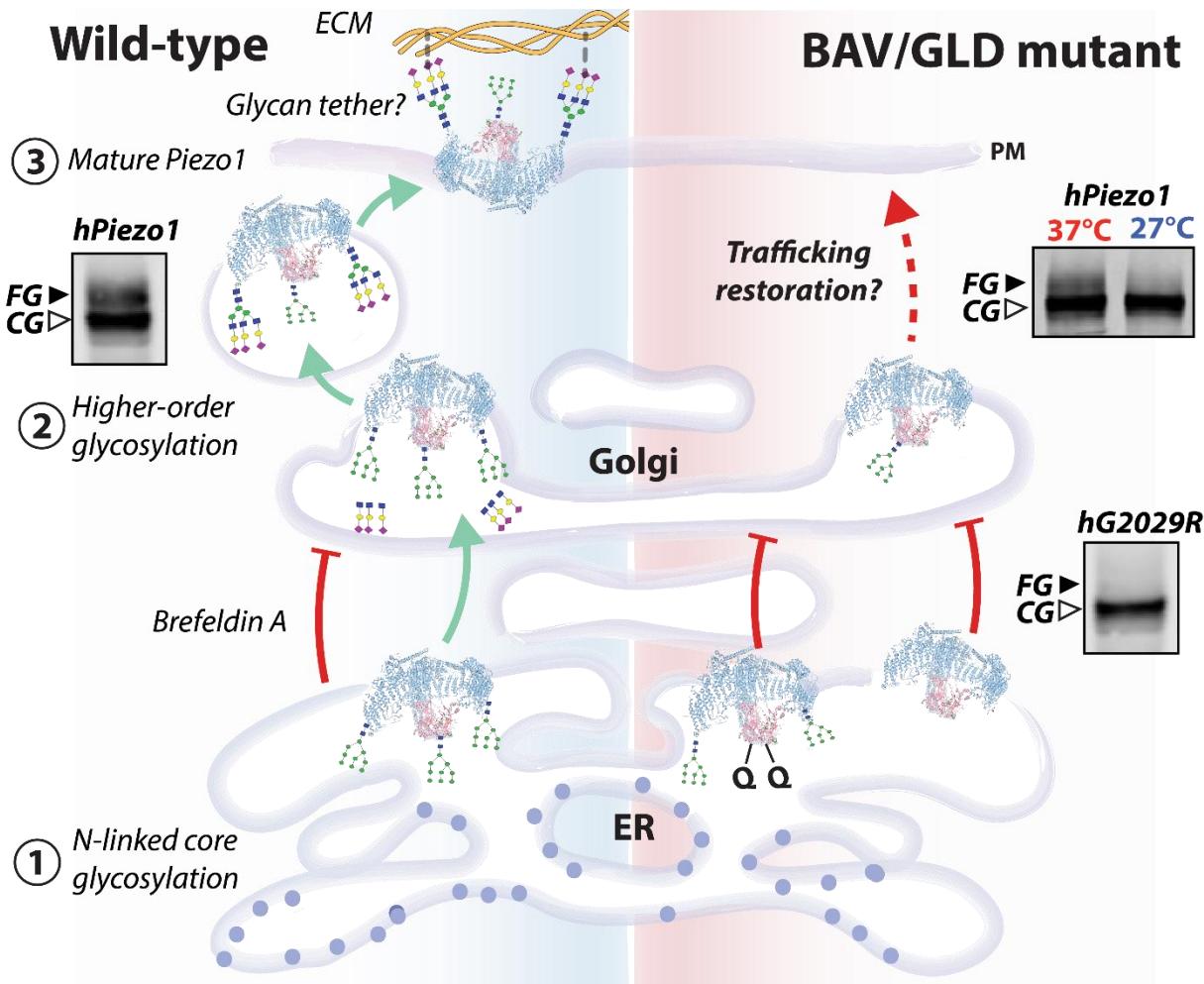
1025
1026
1027
1028
1029
1030

Figure 7. N-glycosylation status of Piezo1 variants linked to generalized lymphatic dysplasia (GLD). (A) Representative Western blot showing Piezo1 protein, CapQQ (N2294Q/N2331Q) and two GLD associated mutations (L939M and G2029R). (B) Relative quantification of intensity of upper band (FG) over lower band (CG) for Piezo1, CapQQ, L939M and G2029R. (C) Membrane to cytoplasmic ratio of immunogold of G2029R compared to human Piezo1. (D)


1031 Electrophysiological recordings of Piezo1^{-/-} HEK293T expressing L939M and G2029R in the cell-
1032 attached configuration in response to negative pressure applied using a high-speed pressure-clamp
1033 (red). (E) Quantification of peak current elicited per patch for point mutations shown in D
1034 compared to current from Piezo1-GFP and CapQQ mutant. (F) Pressure response curve for Piezo1-
1035 GFP against L939M expressed in Piezo1^{-/-}HEK293T. (G) Box and whiskers plot showing the P₅₀
1036 [-mmHg] of Piezo1-GFP and L939M variant. (H) Representative Western blot showing that 27°C
1037 treatment for 24 hours does not change the upper FG band of Kv11.1 WT markedly, but considerably
1038 increases the upper FG band while concomitantly decreases the lower CG band of Kv11.1 A422T
1039 mutant which is temperature rescuable. (I) Quantification of upper FG band/lower CG band ratio
1040 of samples shown in H. (J) Representative Western blot including HEK293T cells incubated at
1041 37°C while expressing Piezo1-GFP as a control, and 27°C for 24 hours for Piezo1-GFP, CapQQ,
1042 L939M, and G2029R. (K) Quantification of peak current elicited per patch for Piezo1^{-/-} HEK293T
1043 cells expressing P1-GFP incubated at 37°C and 27°C for 24 hours. (L) Representative Western
1044 blot comparing the effect of 5 μM Dooku1 treatment for 48 h on upper FG bands of P1-GFP,
1045 L939M and G2029R. (M) Quantification of peak current elicited per patch showing the effect of
1046 treatment with 5 μM Dooku1 on P1-GFP. This includes both 48 h of treatment with Dooku1
1047 compared to washout and acute treatment compared to washout. * p<0.05 determined by Kruskal-
1048 Wallis test with Dunn's post-hoc test or Mann-Whitney-U test. -ve represents an un-transfected
1049 control.

1051 **Figure 8. N-linked glycosylation status of Piezo1 in disease-linked variants co-expressed with**
1052 **WT Piezo1.** (A) Electrophysiological recordings of Piezo1^{-/-} HEK293T expressing Piezo1-GFP
1053 co-expressed with Piezo1-GFP, L939M, G2029R in the cell-attached configuration in response to
1054 negative pressure applied using a high-speed pressure-clamp (red). (B) Electrophysiological
1055 recordings of bicuspid aortic valve (BAV) linked mutant S217L alone and co-expressed with
1056 Piezo1-GFP. (C) Electrophysiological recordings of Y2022A alone and co-expressed with Piezo1-
1057 GFP. (D) Electrophysiological recordings of K2502R, alone and co-expressed with Piezo1-GFP.
1058 (E) Representative Western blot of Piezo1-GFP, L939M, G2029R, S217L, Y2022A and K2502R.
1059 (F) Representative Western blot of Piezo1-GFP/Piezo1-GFP, L939M/Piezo1-GFP,
1060 G2029R/Piezo1-GFP, S217L/Piezo1-GFP, Y2022A/Piezo1-GFP and K2502R/Piezo1-GFP. (G)
1061 Quantification of upper FG band/lower CG band ratio of Piezo1-GFP, L939M, G2029R, S217L,
1062 and L939M, G2029R, S217L co-expressed with Piezo1-GFP. (H) Quantification of peak current
1063 elicited per patch of Piezo1-GFP, L939M, G2029R, S217L, Y2022A, K2502R, CapQQ and each
1064 mutant co-expressed with Piezo1-GFP. * denotes statistical significance p<0.05 determined by
1065 Kruskal-Wallis test with Dunn's post-hoc test. (GLD – generalized lymphatic dysplasia; BAV –
1066 bicuspid aortic valve).

1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096


1097

1098
1099

1100 **Figure 9. Comprehensive analysis of co-expression of S217L Piezo1 and WT Piezo1 fused to**
1101 **GFP and mCherry.** (A) Representative Western blot of Piezo1-GFP and S217L expressed in
1102 HEK293 and Neuro2a cells (N2a). (B) Representative Western blot of Piezo1-GFP, Piezo1-
1103 mCherry, S217L-GFP, S217L-mCherry, and co-expression of Piezo1-GFP/Piezo1-mCherry,
1104 Piezo1-GFP/S217L- mCherry, Piezo1-mCherry/ S217L-GFP. The GFP and mCherry signal are
1105 shown separately. (C) Quantification of peak current elicited per patch of all combinations
1106 expressed in Piezo1^{-/-} HEK293T cells. * denotes statistical significance p<0.05 determined by
1107 Kruskal-Wallis test with Dunn's post-hoc test.

1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124

1125

1126

1127

1128

Figure 10. Summary of Piezo1 biosynthetic pathway. Core-glycans added in the cap (N2294/N2331) while folding in the ER are critical for higher order glycans being added in the propeller (primarily at N885) in the Golgi. Aberration of glycosylation impairs trafficking, and perhaps the larger glycans may act as molecular tethers linking to the ECM as suggested for ENaC⁶². Summary adapted from Kanner *et al.*,⁶⁶

1133

1134