

1 Association between the extent of DNA methylation at the CpG sites of *HIF3A* and
2 parameters of obesity in the general Japanese population

3

4 Genki Mizuno ^{1,2}, Hiroya Yamada ³, Eiji Munetsuna ⁴, Mirai Yamazaki ⁵, Yoshitaka Ando ^{1,6}, Ryosuke Fujii

5 ¹, Yoshiki Tsuboi ¹, Atsushi Teshigawara ⁶, Itsuki Kageyama ⁶, Keisuke Osakabe ⁷, Keiko Sugimoto ⁷, Hiroaki

6 Ishikawa ⁶, Naohiro Ichino ⁷, Yoshiji Ohta ⁸, Koji Ohashi ⁶, Shuji Hashimoto ³, and Koji Suzuki ^{1*}

7

8 ¹ Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake,
9 Aichi, Japan

10 ² Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University Hospital, Toyoake,
11 Aichi, Japan

12 ³ Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Aichi, Japan

13 ⁴ Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan

14 ⁵ Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu,

15 Kagawa, Japan

16 ⁶ Department of Clinical Biochemistry, Fujita Health University School of Medical Sciences, Toyoake, Aichi,

17 Japan

18 ⁷ Department of Clinical Physiology, Fujita Health University School of Medical Sciences, Toyoake, Aichi,

19 Japan

20 ⁸ Department of Chemistry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan

21

22 *Corresponding author

23 E-mail:ksuzuki@fujita-hu.ac.jp (KS)

24

25 Short Title

26 Association between DNA methylation of *HIF3A* and parameters of obesity

27

28

29

30 **Abstract**

31 Obesity is a major public health problem worldwide owing to the substantial increase in risk

32 of metabolic diseases. Hypoxia-inducible factors (HIFs) regulate transcriptional responses to hypoxic

33 stress. DNA methylation in the CpG sites of intron 1 of *HIF3A* is associated with body mass index in

34 the whole blood and adipose tissue. This study investigates the correlation between DNA methylation

35 of *HIF3A* and parameters of obesity, including thickness of visceral (VAT) and subcutaneous adipose

36 tissues, in the general Japanese population. Participants (220 men and 253 women) who underwent

37 medical examination were enrolled in this cross-sectional study. We used pyrosequencing to quantify

38 DNA methylation (CpG sites of cg16672562, cg22891070, and cg27146050) in *HIF3A*. DNA

39 methylation of *HIF3A* was only different in women. Multiple regression analysis showed that DNA

40 methylation level at cg27146050 was associated with thickness of VAT in women. DNA methylation

41 level at cg27146050 also correlated with body mass index and percentage of body fat in women after

42 excluding smokers and non-smokers who quit smoking with the last 5 years. DNA methylation in the

43 CpG site (cg27146050) of *HIF3A* correlated with parameters of obesity in Japanese women.

44

45 **Introduction**

46 Obesity is a major public health concern worldwide. In obese individuals, non-esterified

47 fatty acids, adipokines, and other factors are extensively released from adipose tissues, thereby leading

48 to abnormalities in obesity-related cell functions ¹. Consequently, obesity induces various diseases,

49 such as insulin resistance, type 2 diabetes, and cardiovascular disease ^{2,3}. Thus, obesity is a risk factor

50 for various metabolic diseases, and preventing obesity results in the prevention of metabolic diseases.

51 Recent years have seen the diversification of lifestyle and eating habits that have increased the number

52 of obese individuals globally ⁴. Lifestyle, environmental factors, and genetic factors trigger obesity ⁵,

53 ⁶. Lifestyle and/or environmental factors cause epigenetic alterations in several health conditions, such

54 as obesity and metabolic disease ⁷⁻¹⁰.

55 DNA methylation is an epigenetic mechanism that regulates gene expression by adding a

56 methyl donor to cytosine to enable the regulation of transcription ¹¹. Lifestyle factors, including dietary

57 habits, modulate DNA methylation ¹². Several animals ¹³⁻¹⁵ and epidemiological studies ¹⁶⁻¹⁸ have

58 shown that environmental factors, including food intake, tobacco smoking, and alcohol consumption,

59 cause DNA methylation in the blood or tissues. Moreover, global DNA hypermethylation in

60 leukocytes is associated with increased risk of cardiovascular diseases in the general Japanese
61 population ¹⁹. Thus, DNA methylation may be a novel biomarker for metabolic diseases caused by
62 environmental factors and lifestyles.

63 Dick et al. ²⁰ conducted two epigenetic genome-wide analyses to show the increase in DNA
64 methylation at three CpG sites (cg16672562, cg22891070, and cg27146050) in intron 1 of *HIF3A* in
65 the blood was associated with body mass index (BMI). Similarly, Main et al. ²¹ and Wang et al. ²²
66 demonstrated that DNA methylation in *HIF3A* in the blood is associated with BMI in patients with
67 type 2 diabetes and childhood obesity, respectively. Isoforms of HIF are constitutively expressed in
68 mammalian cells and regulate transcriptional response to hypoxic stress ^{23, 24}. HIFs are unstable at
69 normal oxygen levels in mammalian cells. The reduction in normal cellular oxygen levels caused by
70 environmental factors, diseases, effusion of blood, and adiposity stabilize HIFs, thereby enabling its
71 nucleocytoplasmic translocation and binding to the hypoxia response element in the promoter of target
72 genes and regulating target gene transcription and expression. Pfeiffer et al. ²⁵ have shown that
73 methylation of *HIF3A* in the adipose tissue correlates with dysfunctional human subcutaneous adipose
74 tissue (SAT) and visceral adipose tissue (VAT). These studies indicate that DNA methylation of

75 *HIF3A* is associated with the development of obesity, and may be an obesity-related factor worldwide.

76 Furthermore, DNA methylation of *HIF3A* in the blood is associated with insulin resistance in patients

77 with type 2 or gestational diabetes^{21,26}. There are only a few reports on the association between DNA

78 methylation of *HIF3A* and BMI in humans. The thickness of adipose tissues is a more reliable

79 parameter of obesity as compared to BMI that is an indirect parameter. To the best of our knowledge,

80 there is no study on the correlation between DNA methylation of *HIF3A* and thickness of adipose

81 tissues, such as VAT and SAT, that directly reflects obesity.

82 In this study, we attempted to verify whether DNA methylation of *HIF3a* (CpG sites of

83 cg16672562, cg22891070, and cg27146050) in the blood associated with the thickness of VAT and

84 SAT in the general Japanese population. We further determined whether DNA methylation in *HIF3A*

85 in the blood correlated with the thickness of VAT and SAT in Japanese non-smokers^{27,28}.

86

87 **Materials and methods**

88 **Participants**

89 This cross-sectional study was approved by the Ethics Review Committee of Fujita Health

90 University (Approval number: HG19-069). We enrolled 473 participants (220 men and 253 women)

91 who took part in the medical examination of the general (middle-aged) population in Yakumo town,

92 Hokkaido, Japan, in August 2015^{29,30}. We obtained written informed consent from all the participants

93 for the use of individual genome samples. Information on lifestyle habits was obtained from

94 questionnaires.

95

96 **Measurements of obesity parameters**

97 Parameters of obesity were measured as described previously³¹. Percentage of body fat (%)

98 body fat) was measured using bioelectrical impedance analysis with the Tanita MC780 multifrequency

99 segmental body composition analyzer (Tokyo, Japan). The thicknesses of VAT and SAT were

100 assessed using ultrasound with ProSound a7 and UST-9130 convex probe (Hitachi Aloka Medical,

101 Ltd, Tokyo, Japan). Thickness of VAT and SAT were defined as the distance (cm) from the

102 peritoneum to the vertebral bodies and depth (cm) from the skin to the linea alba, respectively.

103

104 **Blood test and determination of DNA methylation**

105 Blood was collected during the medical examination of the general population, and the

106 serum was separated from the blood by centrifugation at 2,000×g for 10 min at room temperature. For

107 biochemical analysis of the blood, enzymes and components in the serum were assayed using an auto-

108 analyzer (JCS-BM1650, Nihon Denshi Co., Tokyo, Japan) at Yakumo General Hospital.

109 DNA methylation was analyzed using the buffy coat obtained upon centrifugation of the

110 blood collected in ethylenediaminetetraacetic acid (EDTA)-2Na-containing tubes under the same

111 conditions as those used for blood biochemical tests. Genomic DNA was extracted from the buffy coat

112 using the NucleoSpin Tissue kit (Takara, Shiga, Japan). Bisulfite conversion was performed using the

113 Epitect Bisulfite Kit (Qiagen, Valencia, CA, USA). Polymerase chain reaction (PCR) was used to

114 amplify the intron 1 of *HIF3A* using EpiTaqTM HS (for bisulfite-treated DNA; Takara, Shiga, Japan).

115 Levels of DNA methylation were quantified using pyrosequencing with the PyroMark Q24 Advanced

116 kit (Qiagen, Valencia, CA, USA) and analyzed using the parameters previously described ²⁰⁻²²,

117 including three CpG sites (Fig 1). Table 1 lists the sequences of primers used for PCR and

118 pyrosequencing. The primers used for pyrosequencing were designed based on a previous study ²⁵

119 using PyroMark Assay Design 2.0 (Qiagen, Valencia, CA, USA).

120 **Fig 1. A target sequence of intron 1 region in *HIF3A* gene**

121 The target region of *HIF3A* gene DNA methylation analyzed by pyrosequence was decided based on

122 previous studies. It has reported that the 3 CpG sites (cg16672562, cg22891070 and cg27146050) of

123 intron 1 in *HIF3A* gene in the blood are associated with BMI in EWAS study.

124 **Table 1. Sequences of primers used for PCR and Pyrosequence**

Primer	Sequence (5'-3')
Forward	TGGTTGAAGGGTTATTAGGG
Reverse	Biotin- <i>ACTCTATCCCACCCCTTT</i>
Sequence 1	TTTAGGGGGTAGG
Sequence 2	GGTGAGATGATTATAGGAA

125

126 **Statistical analysis**

127 All statistical analyses were performed using JMP version 14.0 (SAS Institute, Cary, NC,

128 USA). Serum aspartate transaminase (AST), alanine transaminase (ALT), triglyceride, and high-

129 density lipoprotein (HDL) cholesterol levels have been represented by the geometric means and

130 interquartile ranges owing to log-normal distribution. Other characteristics (including DNA
131 methylation) have been represented as mean±standard deviation (SD). We analyzed the association of
132 DNA methylation level at each CpG site of intron 1 in *HIF3A* with the parameters of obesity using
133 single correlation and multiple linear regression and adjusted for age, systolic blood pressure,
134 hemoglobin A1c, %neutrophil, smoking habit and exercise habit. For multiple testing, the Bonferroni
135 method was used to counteract the problem of multiple comparisons. $P<0.05$ was considered
136 statistically significant.

137

138 **Results**

139 Table 2 lists the characteristics of the participants in this study. There were significant
140 differences in various parameters of obesity between men and women, such as smoking habit and
141 blood biochemical test, but not hemoglobin A1c and blood pressure. Moreover, DNA methylation
142 levels at three CpG sites in intron 1 of *HIF3A* were significantly different between the sexes (Table
143 3).

144 **Table 2. Characteristics of participants in this study**

	Men	Women	P-value
n	220	253	
Age (years)	66.3 ± 8.28	64.5 ± 8.00	0.017 ^a
Blood glucose (mg/dL)	93.8 ± 14.5	87.6 ± 17.0	<0.001 ^a
Hemoglobin A1c (%)	5.80 ± 0.54	5.72 ± 0.55	0.190
AST (IU/L)	23.4 (19.0-26.8)	21.6 (18.0-24.5)	0.003 ^b
ALT (IU/L)	23.1 (17.3-31.0)	18.9 (14.0-24.0)	<0.001 ^b
Triglyceride (mg/dL)	102.5 (72.0-144.8)	86.3 (64.5-117.0)	<0.001 ^b
Total cholesterol (mg/dL)	203.5 ± 32.4	217.5 ± 35.0	<0.001 ^a
HDL cholesterol (mg/dL)	52.4 (44.0-61.0)	61.8 (53.0-72.0)	<0.001 ^b
LDL cholesterol (mg/dL)	121.3 ± 30.2	127.0 ± 31.1	0.042 ^a
Systolic blood pressure (mmHg)	134.8 ± 20.6	128.8 ± 19.2	0.001 ^a
Diastolic blood pressure (mmHg)	79.8 ± 13.0	72.9 ± 12.6	<0.001 ^a
Various parameters of obesity			

BMI (kg/m ²)	24.1 ± 2.78	23.0 ± 3.60	<0.001 ^a
VAT thickness (cm)	64.6 ± 14.7	50.4 ± 11.7	<0.001 ^a
SAT thickness (cm)	14.3 ± 3.81	13.2 ± 4.62	0.006 ^a
% body fat	23.7 ± 4.16	32.8 ± 6.13	<0.001 ^a
Smoking habit, n (%)			
Never	45 (21)	193 (77)	<0.001 ^c
Ever	126 (57)	40 (16)	
Current	49 (22)	19 (7)	
Exercise habit, n (%)			
few	102 (47)	139 (55)	0.366
sometimes	43 (20)	44 (17)	
1 time/week	24 (11)	23 (9)	
>2 times/week	49 (22)	47 (19)	

145 Values are mean ± SD, geometric mean (25-75th parentheses), or n (%). $P < 0.05$ was considered

146 statistically significant. a: student t test, b: Wilcoxon test, c: Pearson's chi-square test

147

148 Correlations between DNA methylation levels at the CpG sites in intron 1 of *HIF3A* and

149 parameters of obesity were analyzed using single linear regression owing to the differences in DNA

150 methylation of *HIF3A* in men and women (Tables 3 and 4). There was no significant correlation

151 between DNA methylation level at each CpG site and the parameters of obesity in men and women.

152 **Table 3. DNA methylation levels (%) at *HIF3A* gene sites by pyrosequence analysis**

CpG site	Men	Women	P-value
cg16672562	17.3 ± 5.12	20.1 ± 5.96	<0.001 ^a
cg22891070	21.5 ± 7.37	24.9 ± 8.03	<0.001 ^a
cg27146050	14.3 ± 4.74	17.1 ± 5.00	<0.001 ^a
mean	17.6 ± 5.00	20.6 ± 5.57	<0.001 ^a

153 Values are mean ± SD. $P < 0.05$ was considered statistically significant. a: student t test

154 **Table 4. Single correlation analysis between *HIF3A* gene DNA methylation levels and obesity**

155 **parameters in Japanese men and women**

Men								
CpG site	BMI		VAT		SAT		% Body fat	
	<i>r</i>	<i>P</i>	<i>r</i>	<i>P</i>	<i>r</i>	<i>P</i>	<i>r</i>	<i>P</i>
cg16672562	0.087	0.210	0.082	0.244	0.029	0.682	0.074	0.295
cg22891070	0.114	0.111	0.028	0.689	0.045	0.525	0.054	0.444
cg27146050	0.013	0.854	-0.006	0.937	0.050	0.478	-0.021	0.766
mean	0.089	0.202	0.049	0.565	0.048	0.496	0.046	0.520
Women								
CpG site	BMI		VAT		SAT		% Body fat	
	<i>r</i>	<i>P</i>	<i>r</i>	<i>P</i>	<i>r</i>	<i>P</i>	<i>r</i>	<i>P</i>
cg16672562	-0.029	0.661	-0.066	0.317	0.025	0.704	-0.026	0.690
cg22891070	0.024	0.720	-0.042	0.530	0.047	0.476	0.049	0.461
cg27146050	-0.038	0.562	-0.109	0.099	-0.028	0.679	-0.045	0.497
mean	0.176	0.791	0.075	0.263	0.019	0.771	0.006	0.926

157

158 Table 5 shows the results of multiple linear regression analysis for the correlation between

159 DNA methylation levels at CpG sites in intron 1 of *HIF3A* and the parameters of obesity. In men, there

160 was no significant correlation between DNA methylation level at each CpG site and the parameters of

161 obesity. In women, significant correlations were observed between DNA methylation level at

162 cg27146050 and VAT thickness ($P<0.05$). However, DNA methylation levels at cg16672562 and

163 cg22891070 did not significantly correlate with any parameter of obesity in women.

164 **Table 5. Multiple linear regression analysis for correlations between *HIF3A* gene DNA**

165 **methylation levels and obesity parameters**

Men								
CpG site	BMI		VAT		SAT		% Body fat	
	β	P	β	P	β	P	β	P
cg16672562	0.060	0.391	0.092	0.175	-0.024	0.736	0.052	0.462
cg22891070	0.081	0.241	0.030	0.656	-0.007	0.922	0.040	0.570

cg27146050	-0.012	0.868	0.005	0.938	-0.016	0.819	-0.038	0.594
mean	0.059	0.402	0.050	0.467	-0.016	0.818	0.027	0.706
Women								
CpG site	BMI		VAT		SAT		% Body fat	
	β	P	β	P	β	P	β	P
cg16672562	-0.071	0.299	-0.084	0.220	-0.027	0.682	-0.062	0.369
cg22891070	-0.002	0.974	-0.060	0.374	0.004	0.946	0.021	0.755
cg27146050	-0.085	0.215	-0.161	0.029	-0.095	0.156	-0.095	0.165
mean	-0.059	0.400	-0.104	0.140	-0.039	0.569	-0.047	0.505

166 Adjusted for age, systolic blood pressure, hemoglobin A1c, %neutrophil, smoking habit and exercise

167 habit. $P < 0.05$ was considered statistically significant.

168

169 Smoking habits alter the status of DNA methylation^{27,28}. Therefore, we examined whether

170 DNA methylation of the different regions of *HIF3A* were associated with the parameters of obesity in

171 non-smokers (i.e., the participants excluding current smokers and non-smokers who stopped smoking

172 within the last 5 years; Table 6). There was no significant correlation between DNA methylation level

173 at each CpG site and the parameters of obesity in men. In women, there were significant correlations

174 between DNA methylation level at cg27146050 and BMI, VAT thickness, and % body fat ($P<0.05$).

175 **Table 6. Multiple linear regression analysis for correlations between HIF3A gene DNA**

176 **methylation and obesity parameters in non-smokers**

CpG site	BMI		VAT		SAT		% Body fat	
	β	P	β	P	β	P	β	P
cg16672562	0.086	0.306	0.098	0.228	-0.046	0.581	0.068	0.426
cg22891070	0.101	0.233	0.040	0.627	0.004	0.963	0.030	0.727
cg27146050	-0.017	0.847	0.012	0.883	-0.027	0.754	-0.067	0.449
mean	0.077	0.368	0.059	0.475	-0.228	0.790	0.020	0.821

Women				
	BMI	VAT	SAT	% Body fat

CpG site	β	P	β	P	β	P	β	P
cg16672562	-0.009	0.103	-0.075	0.311	-0.050	0.492	-0.110	0.133
cg22891070	-0.059	0.413	-0.068	0.345	-0.007	0.924	-0.019	0.791
cg27146050	-0.152	0.040	-0.179	0.016	-0.110	0.132	-0.162	0.029
mean	-0.124	0.096	-0.114	0.129	-0.056	0.449	-0.102	0.170

177 Adjusted for age, systolic blood pressure, hemoglobin A1c, %neutrophil and exercise habit, and

178 excluded for current smoker (include stopped smoking less than 5 years). $P < 0.05$ was considered

179 statistically significant.

180

181 Discussion

182 We determined the association between DNA methylation at three CpG sites (cg16672562,

183 cg22891070, and cg27146050) of the intron 1 of *HIF3A* and parameters of obesity in the general

184 Japanese population. There was a significant difference in the DNA methylation of *HIF3A* between

185 the sexes. Multiple linear regression analysis showed a correlation between DNA methylation at

186 cg27146050 in *HIF3A* and thickness of VAT in women. Excluding current smokers and non-smokers

187 who stopped smoking within the last 5 years, there correlations between DNA methylation at

188 cg27146050 in *HIF3A* and thickness of VAT thickness, BMI, and % body fat in women.

189 In this study, DNA methylation at each CpG site of intron 1 of *HIF3A* was higher in women

190 than those in men. This was consistent with that reported by Main et al. ²¹. This difference between

191 men and women suggests that women exhibit lower expression of *HIF3A* during hypoxia than the

192 expression in men under similar conditions owing to differential capacities of gene regulation. Women

193 exhibit a relatively less pronounced physiological response to hypoxic stress than that in men ³². This

194 can be attributed to the increase in DNA methylation of *HIF3A* in women.

195 Dietary factors, such as nutrition, cause a change in DNA methylation ¹². We have recently

196 demonstrated that the intake of dietary vitamin affects lipid profiles via the modulation of DNA

197 methylation within lipid-related genes ¹⁶. DNA methylation variants of *HIF3A* are associated with

198 alterations in BMI based on the consumption of total vitamins or supplemental vitamin B ³³. Therefore,

199 it is possible that the intake of vitamins or other nutrients causes a change in DNA methylation in

200 *HIF3A*, thereby resulting in the development of obesity.

201 Tobacco smoking is another environmental factor that affects the incidence of obesity ³⁴.

202 DNA methylation positively correlates with smoking habits ^{27,28}. Thus, smoking habits may influence

203 the association between *HIF3A* DNA methylation and the parameters of obesity. We determined

204 whether DNA methylation in *HIF3A* associated with parameters of obesity in non-smokers (excluding

205 current smokers and non-smokers who stopped smoking within the last 5 years). The correlation

206 between DNA methylation at various sites of *HIF3A* and parameters of obesity increased in this

207 population than that including non-smokers and smokers. To the best of our knowledge, this is the

208 first report on the correlation between DNA methylation levels at the CpG sites in *HIF3A* and

209 parameters of obesity, such as thickness of VAT and smoking habits, in the general Japanese

210 population. However, smokers were not excluded from the group of non-smokers. Therefore, future

211 studies should focus on determining the association between DNA methylation in *HIF3A* and

212 parameters of obesity within non-smokers.

213 Dick et al. ²⁰ demonstrated the correlation between DNA methylation levels at three CpG

214 sites (cg16672562, cg22891070, and cg27146050) in intron 1 of *HIF3A* in the blood and BMI; this

215 has also been confirmed by other studies ^{21,34}. In women, DNA methylation at cg27146050 correlated

216 with the thickness of VAT (based on multiple linear regression analysis). However, this association

217 has been reported in men²⁰. This discrepancy may be explained attributed to the differences in DNA

218 methylation of *HIF3A* and smoking habits of men and women. Thus, future studies are warranted to

219 elucidate the extent of DNA methylation in *HIF3A* between men and women.

220 Dick et al.²⁰ used a microarray to demonstrate the association between *HIF3A* DNA

221 methylation and BMI in humans. Microarrays are useful in understanding global DNA methylation.

222 However, this technique cannot measure methylation using immobilized methylated probes and

223 exhibits poor quantification. Thus, this study employed pyrosequencing to analyze DNA methylation

224 in *HIF3A*. This method is excellent in quantifying the extent of DNA methylation at selected CpG

225 sites in specific target genes. Thus, pyrosequencing provides a more reliable scenario of the association

226 between DNA methylation at CpG sites of intron 1 of *HIF3A* and parameters of obesity in the general

227 Japanese population than the correlation reported by Dick et al.²⁰.

228 Finally, Hatanaka et al.³⁵ showed that the ectopic expression of *HIF3A* induces the

229 expression of several adiposity-associated genes in 3T3-L1 cells. This suggests that low levels of DNA

230 methylation in *HIF3A* upregulates *HIF3A*, thereby resulting in adiposity. Accordingly, we observed a

231 positive correlation between DNA methylation in *HIF3A* and thickness of VAT (that directly reflects

232 obesity as compared to BMI) in women. Therefore, the thickness of VAT has important clinical

233 implications in obesity-related diseases.

234 Taken together, the DNA methylation level at cg27146050 of intron 1 of *HIF3A* correlated

235 well with parameters of obesity in non-smokers of the general Japanese women. This study has some

236 limitations. First, the data do not show a causal relationship between DNA methylation at different

237 sites of *HIF3A* and parameters of obesity since this was a cross-sectional study. Second, this study

238 analyzed a small sample size. Finally, we did not determine alterations in the mRNA levels of *HIF3A*.

239 Thus, future studies should focus on analyzing the association between DNA methylation level in

240 *HIF3A* and the parameters of obesity over a longer period using a larger sample size. Furthermore, we

241 will attempt to analyze the mRNA and protein levels of *HIF3A* in the blood of participants.

242

243 Conclusion

244 This is the first study to report the correlation between DNA methylation at CpG site in

245 *HIF3A* and parameters of obesity, such as thickness of visceral adipose tissue and smoking habit, in

246 the general Japanese population. DNA methylation of the CpG sites of *HIF3A* may be associated with

247 body mass index.

248

249 **Acknowledgments**

250 We thank the participants and staff of the Health Examination Program for Residents of

251 Yakumo, Hokkaido, Japan.

252

253 **Conflict of interest**

254 There is no conflict of interest.

255

256 **Reference**

257 1. Blüher M. Adipose tissue dysfunction in obesity. *Exp Clin Endocrinol Diabetes* 2009;117(6): 241-

258 250. doi: 10.1055/s-0029-1192044. PubMed PMID: 19358089.

259 2. Bastien M, Poirier P, Lemieux I, Després JP. Overview of epidemiology and contribution of obesity

260 to cardiovascular disease. *Prog Cardiovasc Dis* 2014;56: 369-381. doi: 10.1016/j.pcad.2013.10.016.

261 PubMed PMID: 24438728.

262 3. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2

263 diabetes. *Nature* 2006;444(7121): 840-846. doi: 10.1038/nature05482. PubMed PMID: 17167471.

264 4. Blüher M. Obesity: global epidemiology and pathogenesis. *Nat Rev Endocrinol* 2019;15(5): 288-

265 298. doi: 10.1038/s41574-019-0176-8. PubMed PMID: 30814686.

266 5. Hruby A, Manson JE, Qi L, Malik VS, Rimm EB, Sun Q, et al. Determinants and Consequences of

267 Obesity. *Am J Public Health* 2016;106(9): 1656-1662. doi: 10.2105/AJPH.2016.303326. PubMed

268 PMID: 27459460.

269 6. Temelkova-Kurktschiev T, Stefanov T. Lifestyle and genetics in obesity and type 2 diabetes. *Exp*

270 *Clin Endocrinol Diabetes* 2012;120(1): 1-6. doi: 10.1055/s-0031-1285832. PubMed PMID: 21915815.

271 7. Yamada H, Ohashi K, Suzuki K, Munetsuna E, Ando Y, Yamazaki M, et al. Longitudinal study of

272 circulating miR-122 in a rat model of non-alcoholic fatty liver disease. *Clin Chim Acta* 2015;446: 267-

273 271. doi: 10.1016/j.cca.2015.05.002. PubMed PMID: 25958847.

274 8. Hiratsuka I, Yamada H, Munetsuna E, Hashimoto S, Itoh M. Circulating MicroRNAs in Graves'

275 Disease in Relation to Clinical Activity. *Thyroid* 2016;26(10): 1431-1440. doi: 10.1089/thy.2016.0062.

276 PubMed PMID: 27610819.

277 9. van Dijk SJ, Molloy PL, Varinli H, Morrison JL, Muhlhausler BS. Epigenetics and human obesity.

278 *Int J Obes (Lond)* 2015;39(1): 85-97. doi: 10.1038/ijo.2014.34. PubMed PMID: 24566855.

279 10. van Dijk SJ, Tellam RL, Morrison JL, Muhlhausler BS, Molloy PL. Recent developments on the

280 role of epigenetics in obesity and metabolic disease. *Clin Epigenetics* 2015;7: 66. doi:

281 10.1186/s13148-015-0101-5. PubMed PMID: 27408648.

282 11. Moore LD, Le T, Fan G. DNA methylation and its basic function. *Neuropsychopharmacology*

283 2013;38(1): 23-38. doi: 10.1038/npp.2012.112. PubMed PMID: 22781841.

284 12. Lim U, Song MA. Dietary and lifestyle factors of DNA methylation. *Methods Mol Biol* 2012;863:

285 359-376. doi: 10.1007/978-1-61779-612-8_23. PubMed PMID: 22359306.

286 13. Munetsuna E, Yamada H, Yamazaki M, Ando Y, Mizuno G, Hattori Y, et al. Maternal high-

287 fructose intake increases circulating corticosterone levels via decreased adrenal corticosterone

288 clearance in adult offspring. *J Nutr Biochem* 2019;67: 44-50. doi: 10.1016/j.jnutbio.2019.01.016.

289 PubMed PMID: 30856463.

290 14. Ohashi K, Munetsuna E, Yamada H, Ando Y, Yamazaki M, Taromaru N, et al. High fructose

291 consumption induces DNA methylation at PPAR α and CPT1A promoter regions in the rat liver.

292 *Biochem Biophys Res Commun* 2015;468: 185-189. doi: 10.1016/j.bbrc.2015.10.134. PubMed PMID:

293 26519879.

294 15. Yamazaki M, Munetsuna E, Yamada H, Ando Y, Mizuno G, Murase Y, et al. Fructose

295 consumption induces hypomethylation of hepatic mitochondrial DNA in rats. *Life Sci* 2016;149: 146-

296 152. doi: 10.1016/j.lfs.2016.02.020. PubMed PMID: 26869391.

297 16. Fujii R, Yamada H, Munetsuna E, Yamazaki M, Ando Y, Mizuno G, et al. Associations between

298 dietary vitamin intake, ABCA1 gene promoter DNA methylation, and lipid profiles in a Japanese

299 population. *Am J Clin Nutr* 2019;110(5): 1213-1219. doi: 10.1093/ajcn/nqz181. PubMed PMID:

300 31504085.

301 17. Fujii R, Yamada H, Munetsuna E, Yamazaki M, Mizuno G, Tsuboi Y, et al. Dietary vegetable

302 intake is inversely associated with ATP-binding cassette protein A1 (ABCA1) DNA methylation

303 levels among Japanese women. *Nutrition* 2019;65: 1-5. doi: 10.1016/j.nut.2019.02.010. PubMed

304 PMID: 31029915.

305 18. Gao X, Zhang Y, Breitling LP, Brenner H. Tobacco smoking and methylation of genes related to

306 lung cancer development. *Oncotarget* 2016;7(37): 59017-59028. doi: 10.18632/oncotarget.10007.

307 PubMed PMID: 27323854.

308 19. Tsuboi Y, Yamada H, Munetsuna E, Yamazaki M, Mizuno G, Murase Y, et al. Relationship

309 between Long Interspersed Nuclear Element-1 DNA Methylation in Leukocytes and Dyslipidemia in

310 the Japanese General Population. *J Atheroscler Thromb* 2018;25(12): 1231-1239. doi:

311 10.5551/jat.43570. PubMed PMID: 29628482.

312 20. Dick KJ, Nelson CP, Tsaprouni L, Sandling JK, Aïssi D, Wahl S, et al. DNA methylation and

313 body-mass index: a genome-wide analysis. *Lancet* 2014;383(9933): 1990-1998. doi: 10.1016/S0140-

314 6736(13)62674-4. PubMed PMID: 24630777.

315 21. Main AM, Gillberg L, Jacobsen AL, Nilsson E, Gjesing AP, Hansen T, et al. DNA methylation

316 and gene expression of HIF3A: cross-tissue validation and associations with BMI and insulin

317 resistance. *Clin Epigenetics* 2016;8(1): 89. doi: 10.1186/s13148-016-0258-6. PubMed PMID:

318 27594926.

319 22. Wang S, Song J, Yang Y, Zhang Y, Wang H, Ma J. HIF3A DNA Methylation Is Associated with

320 Childhood Obesity and ALT. *PLoS One* 2015;10(12): e0145944. doi: 10.1371/journal.pone.0145944.

321 PubMed PMID: 26717317.

322 23. Duan C. Hypoxia-inducible factor 3 biology: complexities and emerging themes. *Am J Physiol*

323 *Cell Physiol* 2016;310(4): C260-269. doi: 10.1152/ajpcell.00315.2015. PubMed PMID: 26561641.

324 24. Ravenna L, Salvatori L, Russo MA. HIF3 α : the little we know. *Febs j* 2016;283(6): 993-1003. doi:

325 10.1111/febs.13572. PubMed PMID: 26507580.

326 25. Pfeiffer S, Krüger J, Maierhofer A, Böttcher Y, Klöting N, El Hajj N, et al. Hypoxia-inducible

327 factor 3A gene expression and methylation in adipose tissue is related to adipose tissue dysfunction.

328 *Sci Rep* 2016;6: 27969. doi: 10.1038/srep27969. PubMed PMID: 27346320.

329 26. Zhang Y, Chen Y, Qu H, Wang Y. Methylation of HIF3A promoter CpG islands contributes to

330 insulin resistance in gestational diabetes mellitus. *Mol Genet Genomic Med* 2019;7(4): e00583. doi:

331 10.1002/mgg3.583. PubMed PMID: 30743315.

332 27. Maeda K, Yamada H, Munetsuna E, Fujii R, Yamazaki M, Ando Y, et al. Association of smoking

333 habits with TXNIP DNA methylation levels in leukocytes among general Japanese population. *PLoS*

334 *One* 2020;15(7): e0235486. doi: 10.1371/journal.pone.0235486. PubMed PMID: 32609762.

335 28. Silva CP, Kamens HM. Cigarette smoke-induced alterations in blood: A review of research on

336 DNA methylation and gene expression. *Exp Clin Psychopharmacol*. Epub ahead of print 13 July 2020.

337 DOI: 10.1037/pha0000382. PubMed PMID: 32658533.

338 29. Ando Y, Yamazaki M, Yamada H, Munetsuna E, Fujii R, Mizuno G, et al. Association of

339 circulating miR-20a, miR-27a, and miR-126 with non-alcoholic fatty liver disease in general

340 population. *Sci Rep* 2019;9(1): 18856. doi: 10.1038/s41598-019-55076-z. PubMed PMID: 31827150.

341 30. Yamada H, Suzuki K, Ichino N, Ando Y, Sawada A, Osakabe K, et al. Associations between

342 circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver. *Clin*

343 *Chim Acta* 2013;424: 99-103. doi: 10.1016/j.cca.2013.05.021. PubMed PMID: 23727030.

344 31. Munetsuna E, Yamada H, Ando Y, Yamazaki M, Tsuboi Y, Kondo M, et al. Association of

345 subcutaneous and visceral fat with circulating microRNAs in a middle-aged Japanese population. *Ann*

346 *Clin Biochem* 2018;55: 437-445. doi: 10.1177/0004563217735124. PubMed PMID: 28920467.

347 32. Botek M, Krejčí J, McKune A. Sex Differences in Autonomic Cardiac Control and Oxygen

348 Saturation Response to Short-Term Normobaric Hypoxia and Following Recovery: Effect of Aerobic

349 Fitness. *Front Endocrinol (Lausanne)* 2018;23(9): 697. doi: 10.3389/fendo.2018.00697. PubMed

350 PMID: 30532736.

351 33. Huang T, Zheng Y, Qi Q, Xu M, Ley SH, Li Y, et al. DNA Methylation Variants at HIF3A Locus,

352 B-Vitamin Intake, and Long-term Weight Change: Gene-Diet Interactions in Two U.S. Cohorts.

353 *Diabetes* 2015;64(9): 3146-3154. doi: 10.2337/db15-0264. PubMed PMID: 26001398.

354 34. Watanabe T, Tsujino I, Konno S, Ito YM, Takashina C, Sato T, et al. Association between Smoking

355 Status and Obesity in a Nationwide Survey of Japanese Adults. *PLoS One* 2016;11(3): e0148926. doi:

356 10.1371/journal.pone.0148926. PubMed PMID: 27007232.

357 35. Hatanaka M, Shimba S, Sakaue M, Kondo Y, Kagechika H, Kokame K, et al. Hypoxia-inducible

358 factor-3alpha functions as an accelerator of 3T3-L1 adipose differentiation. *Biol Pharm Bull*

359 2009;32(7): 1166-1172. doi: 10.1248/bpb.32.1166. PubMed PMID: 19571379.

Sequence 1→

5' – GTAGGAGGGGATGCGGGTGTAGTTAGGATTCGGGTGCGAGTTACGAGT

Sequence 2→

GGGTGCGTACGGCGGTGAGATGATTATAGGAAAGGGTCGGTTTG

cg16672562

cg22891070

GGTGGGGAGGGGGGGTATTCTGAGTTAGTTAAGAGGGTTTTATT

AGTTAGGAGGGGGCGTTGAGAGGGGGCGAACGATAGTTGGTTAAAA – 3'

cg27146050

Figure