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For HIV, the time since infection can be estimated from
sequence data for acutely infected samples. One popular
approach relies on the star-like nature of phylogenies gener-
ated under exponential population growth, and the resulting
Poisson distribution of mutations away from the founding
variant. However, real-world complications, such as APOBEC
hypermutation and multiple-founder transmission, present a
challenge to this approach, requiring data curation to remove
these signals before reasonable timing estimates may be ob-
tained.

Here we suggest a simple alternative approach that derives the
timing estimate not from the entire mutational spectrum but
from the proportion of sequences that have no mutations. This
can be approximated quickly and is robust to phenomena such
as multiple founder transmission and APOBEC hypermutation.
QOur approach is Bayesian, and we adopt a conjugate prior
to obtain closed form posterior distributions at negligible
computational expense.

Using real data and simulations, we show that this approach
provides accurate timing estimates and credible intervals with-
out the inconvenience of data curation and is robust to com-
plicating phenomena that can mislead existing approaches or
cause them to fail entirely. For immediate use we provide an
implementation via Google Sheets, which offers bulk analysis
of multiple datasets, as well as more detailed individual-donor
analyses. For inclusion in data processing pipelines we provide
implementations in three languages: Julia, R, and Python.

Correspondence: benjamin.murrell@ki.se

Introduction

HIV prevention efficacy trials can leverage accurate inference
of time since infection (hereafter referred to as "infection
time") in order to identify correlates of protection.! While
clinical diagnostic staging can inform timing estimates, there
is particular interest in using viral sequence data from early
in infection for this purpose. For HIV, roughly 80% of in-
fections are homogeneous, initiated by one distinct founding
strain>*, suggesting a strong transmission bottleneck. While
the exact mechanism of the transmission bottleneck is un-
known, there is evidence that route of transmission is associ-
ated with increased odds of observing multiple founder infec-
tions.>> These estimates were based on relatively shallow
sequencing, and it is possible that the deployment of higher
throughput sequencing will reveal that the transmission of
multiple founder variants occurs even more frequently.

Following the establishment of the initiating founder

strain(s), HIV typically grows rapidly and exponentially’.
This leaves an imprint on the resulting phylogeny: the tree is
largely "star-like" with all lineages coalescing near the most
recent common ancestor (MRCA).3 It has been observed that
acute HIV infections with a homogeneous strain typically
follow this pattern.” The diversity of this acute-infection
virus population has been found to increase roughly linearly
with time, motivating the development of several methods
for diversity-based infection time estimation.’~'4 One pop-
ular method is Poisson-Fitter, > a maximum likelihood ap-
proach which estimates infection time from the distribution
of pairwise Hamming distances between aligned sequences,
under the assumption that the number of mutations from the
founder to each observed sequence follows a Poisson distri-
bution. Violations of this assumption have been attributed to
APOBEC mediated hypermutation, the transmission of mul-
tiple variants, the onset of immune selection, or stochastic
early mutations. !>

Hypermuation via host APOBECs (apolipoprotein B mRNA-
editing catalytic polypeptides) introduces G to A mutations
into the HIV genome by cytidine deamination of the neg-
ative strand cDNA. 7! While typically understood as an
"all-or-nothing" phenomenon associated with defective viral
Vif, 2921 geveral studies have demonstrated that more subtle,
sub-lethal levels of can occur in in vitro experiments.>>>3 Ad-
ditionally, studies using Poisson-Fitter timing estimates have
noted that removal of APOBEC-targeted sites restores a Pois-
son distributed mutational spectrum. >>*

For multiple founder infections, prior to the onset of im-
mune selection (Fiebig stage I and II) and recombination,
a theoretical population resembles a collection of star-like
phylogenies - one for each founder - each with the same
root-to-tip distances. If the founder strains can be discrimi-
nated, and all sequences assigned to the correct founder, then
each founder can be modelled separately to obtain indepen-
dent estimates of A. In practice, the difficulty of such split-
ting can range from trivial, to difficult, to nearly impossible.
Multiple variant transmission from acute donors is known to
occur, and may be more prevalent than previously appreci-
ated.? It is particularly unclear in this scenario how to dis-
tinguish closely-related founder variants that diverged in the
donor population from stochastic early mutations separating
variants that diverged in the recipient population. A variety
of founder identification methods of varying complexity ex-
ist,20-28 and do not uniformly agree.

Both APOBEC and multivariant transmission are examples
of processes that inflate the average pairwise distance be-
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Fig. 1. Relationship between mutation rate and the number of sequences
with no mutations. A. Poisson distributions for varying A. Our “ZFitter” approach
uses only the proportion of sequences that have zero mutations. B. Posterior dis-
tributions over X for two different sample sizes (N=10, and N=100), each with five
different counts of unmutated sequences. These posterior distributions over A can
be translated to time through an apriori known or estimated mutation rate.

tween sequences and cause violations of the Poisson assump-
tions that Poisson-Fitter relies upon. These can be remedied
by curation, removing APOBEC hypermutated sequences or
sites and grouping sequences by founder before attempting
to estimate the time since infection. These curation steps are
non-trivial however, and both introduce a substantial effort
burden on the user and potentially multiple user-level deci-
sions for each infection time estimate, which may be sta-
tistically problematic, depending on how these estimates are
used.?

Here we describe ZFitter (for ‘“Zero-Fitter”) which, like
Poisson-Fitter, aims to estimate infection time from HIV se-
quence datasets, but is designed to be more robust to the Pois-
son violations that are routinely observed in HIV sequence
datasets.

Methods

Inference. ZFitter begins with the observation that, for most
datasets sampled from acute infection, there are multiple se-
quences that are identical to each other, typically represent-
ing variants that have not mutated away from the founder.
Like Poisson-Fitter, ZFitter assumes that mutations are Pois-
son distributed, with parameter A, which we can subsequently
relate to “time” through a known mutation rate. Under this
Poisson assumption, the number of sequences with no mu-
tations, s, among a fixed total of IV sampled sequences, is
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Binomial distributed with probability mass function
N
P(S =s|\) < )e‘As(le_’\)N_s. 1)
s

ZFitter is Bayesian in nature, and we introduce a two-
parameter family of conjugate prior distributions for the
above likelihood, denoted Z(«, 3). The density functions are
defined for all o, 8 > 0, and all A > 0, as

P(\a,8) = me—ma )

Assuming a Z(a, 3) prior over )\, the posterior distribution
is Z(a+s,8+ N —s). Figure 1A shows Poisson distri-
butions (and the expected proportion of sequences with no
mutations) for varying A. And using our standard prior of
a =0.3,8 =1 (which we use throughout), figure 1B displays
example posterior distributions corresponding to a range of
N and s counts. We consider cases where s = 0 to be “ines-
timable” by ZFitter, where all we can do is provide a lower-
bound on the infection time.

Our parameterisation of the family is motivated by the obser-
vation that A\ ~ Z(a, 3) if and only if e=* ~ Beta(a, 3). Us-
ing this, the quantile function for a Z(«, 3)-distributed ran-
dom variable, F—1 (¢), can be expressed in terms of the stan-
dard quantile function for a Beta(«, 3)-distributed variable,

Flgelta(q)’ as
F(q) =—log (Fg.,,(1—q)). A3)

All 95% Bayesian “Credible Intervals” (CIs) presented here
are F~1(0.025) to F~1(0.975).

This approach has a number of computational and statistical
consequences. Computationally, we can approximate s rela-
tively well with the number of identical sequences, which is
trivial to compute from sequence datasets. A multiple se-
quence alignment is not even required for this. Secondly,
given chosen prior parameters and s and N counts, the con-
jugacy above provides closed-form expressions for posterior
medians, and any required posterior credible intervals.
Statistically, ZFitter involves a trade-off. On the one hand,
not all the information in the sequences is exploited, as the
full mutational spectrum is ignored, attending to only the
zero-valued mass. Under perfect Poisson assumptions, ZFit-
ter should thus provide less precise and less confident esti-
mates of time since infection. On the other hand, this ren-
ders ZFitter far more robust to particular assumption viola-
tions that frequently occur in real-world data. Key among
these are APOBEC-mediated hypermutation, which dramat-
ically inflates the mutation rate (real or apparent) of a small
number of sequences, and multiple founder infections. Both
can cause a dramatic shift in the distribution of pairwise dis-
tances, but will only minimally affect the proportion of com-
pletely unmutated sequences. We demonstrate this robust-
ness through simulation.

Implementation. The approach described here is so com-
putationally trivial that it can be implemented in a simple
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Fig. 2. ZFitter and Poisson-Fitter estimates for simulated datasets. Simulated
(“True”) infection times ranged from 5 to 80 days. A 1:1 line is included for refer-
ence. A. Star-like, single founder. Zfitter (blue) and Poisson-Fitter estimates (red)
are shown, with no Poisson-Fitter correction. B. Star-like, single founder with sim-
ulated APOBEC hypermutation. Both Poisson Fitter estimates for all sequences
(red) and with APOBEC positions removed from the alignment (green) are shown.
C. Star-like, dual founder. Both Poisson Fitter estimates for all sequences (red) and
the largest homogeneous virus lineage (green) are shown.D. Star-like, dual founder
with simulated APOBEC hypermutation. Both Poisson Fitter estimates for all se-
quences (red) and the largest homogeneous virus lineage with APOBEC positions
removed from the alignment (green) are shown.

spreadsheet. Indeed, we offer a public “Google Sheets” im-
plementation: https://bit.1ly/3pOsa2a. This offers
two kinds of functionality: i) a bulk processing option, where
counts of sequences (total, and non-singletons) are input for
a large number of datasets, and infection estimates and ClIs
are provided for each, and ii) a single-dataset processing op-
tion, where either counts are entered, or sequences are pasted
in directly, and both the estimates, and a plot of the prior and
posterior distributions are displayed. For convenient incorpo-
ration into computational pipelines, simple implementations
in Julia, Python and R are included in Supplemental S1-3.

Simulations. To generate simulated sequences from a
founder env sequence, an HKY85 30 qubstitution rate matrix,
(), was used with a transition to transversion ratio of 4.5.
Equilibrium frequencies were calculated from an HIV dataset
derived from a single donor3': 74 = 0.34,7¢c = 0.17,7¢ =
0.23, 77 = 0.24. The @ matrix was scaled to yield an average
rate of 1.19e-5 substitutions per site per day; the daily inter-
nal rate used by Poisson-Fitter.?® All individual simulations,
unless otherwise noted, consisted of 100 sequence observa-
tions and time, ¢, was varied from 5 to 80 days. Mutations
are sampled from P = ¢@?.

Star-like, single founder. Infections were modelled as star
trees with all observed sequences equidistant from the root.
Branch lengths were set equal to the time (in days) since in-
fection.
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Star-like, dual founder. Two separate founder sequences were
sampled from the “source” population, derived from one
timepoint of a longitudinally-sampled donor from a primary
infection cohort.?! Founder frequencies were drawn from
a Multinomial distribution, which itself was drawn from a
Dirichlet distribution with a concentration parameter of 1.
Sequences from each founder were then mutated as in the
single-founder case.

APOBEC-mediated hypermutation. APOBEC rates were
simulated from a mixture of Gamma distributions:

2
flaia,B) =" mifi(x,a,B) €)
=1

with prior weights m; = 0.9, m3 = 0.1 and gamma parameters
a1 =1, f1 =1le—4, ag =10, and S = 0.006. This mod-
els a situation where 90% of the sequences are only weakly
affected by APOBEC activity (on average only 1.2% of this
90% have any APOBEC mutations at all), but 10% of se-
quences have more substantial APOBEC effects, mimicking
those observed in more severe APOBEC-affected datasets.
Context-dependent APOBEC effects were introduced pro-
portional to their empirical occurrence across trinucleotide
contexts estimated from a control dataset. Fig ED1 shows the
frequencies of APOBEC mutations per sequence introduced
by this scheme.

Results

Simulated. Figure 2 summarises the performance of ZFit-
ter and Poisson-Fitter on simulated sequence datasets. For
single founder infections, where Poisson assumptions are
clearly satisfied, estimates from both methods closely tracked
the simulated infection time (Figure 2A). For single founder
infections with APOBEC mediated hypermutation, ZFitter
performed similarly to post-curation Poisson-Fitter with all
APOBEC positions scrubbed from the alignment, and was
significantly more accurate than Poisson-Fitter without any
curation (Figure 2B). In comparison to true infection time,
both curated Poisson-Fitter and Zfitter estimates for the low-
est range of infection times were biased slightly upward.
For ZFitter, this is because a high percentage of APOBEC-
mutated sequences presents a non-negligible influence on the
number of completely unmutated sequences for smaller ¢, but
matters relatively less when ¢ is large. It is not yet clear why
post-curation Poisson-Fitter exhibits this behavior as well.
For both dual founder simulations, ZFitter was able to in-
fer reasonable estimates of infection time from all combined
sequences, closely matching curated Poisson-Fitter, which,
here, relied on perfect knowledge of how to group the se-
quences by founder, and was estimated for the largest lineage
only (Figure 2C,D).

Empirical. ZFitter estimates were obtained from 130 Sanger
SGA datasets from two published studies on acute HIV in-
fection.>® For an in-depth description of the results of each
dataset and associated metadata, see Table S1. Figure 3 dis-
plays the correlation between ZFitter and Poisson-Fitter for

bioRxiv | 3


https://bit.ly/3pOsa2a
https://doi.org/10.1101/2020.11.28.402271
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.28.402271; this version posted November 29, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

324
® HD Poisson
256 1 ® HD non-Poisson

All unique; HD non-Poisson
e single founder
* multiple founder

196 -
144
100 4

64 - *

ZFitter, days
*

ZFitter assumptions violated: n=1
Poisson-Fitter assumptions violated: n=29

0 25 100 225 400 625
Poisson-Fitter, days

Fig. 3. ZFitter and Poisson-Fitter estimates for 109 Sanger SGA datasets. Hor-
izontal and vertical rules represent the 95% CI for both estimates. A 1:1 line is in-
cluded for reference. Points are colored by whether or not the Poisson assumptions
were supported by the distribution of pairwise Hamming Distances (HD - groups
"HD Poisson" and "HD non-Poisson") and whether or not all observed sequences
were unique.

the 109 out of 130 datasets with a published Poisson-Fitter es-
timate. As expected from the simulations, Poisson-Fitter and
ZFitter largely agree when the distribution of pairwise Ham-
ming distances suggest that the Poisson assumptions are not
violated. Also as expected from the simulations, violations of
the Poisson model tend to produce Poisson-Fitter estimates
which are skewed toward longer infection times. This is par-
ticularly apparent in case of multiple founder infection (as
adjudicated in the original publications). The median ZFitter
estimated infection time for all multiple founder infections
is 27 days, while the median Poisson-Fitter estimate is 136
days. For 4 datasets (Z03, SC42, Z29, and 4013291), all se-
quences were unique, producing elevated and diffuse ZFitter
posterior distributions.

Figure 4 displays ZFitter estimates for all 130 datasets
grouped by Fiebig stages.??> Timing estimates from infec-
tions with Fiebig stages II and III differed significantly from
infections in Fiebig stage V, but all other comparisons were
not significant (Mann-Whitney U Test). The relatively fast
clinical progression through stages II, III, and IV could ex-
plain part of why their median ZFitter estimates are so simi-
lar. Stages II, III and IV have typical duration times of five,
three, and six days, respectively.3> Stage V is longer, with a
median duration of 70 days.

Discussion

Accurately estimating the date of HIV infection is a criti-
cal parameter for on-going clinical trials aimed at HIV pre-
vention, where the knowledge of the titer or concentration
of inhibitors at the time of infection is required to deter-
mine the correlates of protection. ! In a recent study, Poisson-
Fitter, a maximum likelihood approach which models the
distribution of nucleotide mutations in a acute infection,
yielded more accurate, more precise and unbiased estimates
for the time of infection than did coalescent phylogenetic
models implemented in BEAST. 24.33 However, violations of
the Poisson-Fitter model assumptions of star-like phylogeny
and a Poisson-distributed accumulation of mutations by var-
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ious phenomena, including APOBEC-mediated hypermuta-
tion, immune mediated selection, recombination, or multiple-
founder transmission can mislead Poisson-Fitter’s estimates,
requiring manual data curation and iterative Poisson fitting.
Here, we developed a method which is more robust to these
complications by only considering if a sequence has mutated
away from the founding strain. This approach does not lever-
age all the information in the sequences and will therefore
be less precise when mutations are truly Poisson distributed.
However, this is a potentially beneficial trade-off, as many
assumption violations will dramatically skew the distribution
of pairwise distances but not substantially alter the propor-
tion of unmutated sequences. The performance of Zfitter on
simulated datasets (Figure 2) demonstrates its comparable
performance to Poisson-Fitter when infections are homoge-
neous, as well as ZFitter’s robustness to both APOBEC me-
diated hypermutation and multiple founder infection, which
require additional curation for reasonable Poisson-Fitter esti-
mates. The simulated level of APOBEC only induces small
bias in estimated infection time for low ¢. This is in con-
trast to Poisson-Fitter, which is relatively sensitive to these
sequences as they induce strong perturbations to the distri-
bution of pairwise Hamming distances and skew A upwards.
And even when APOBEC sites are removed, Poisson-Fitter
appears to have the same bias at low ¢ as ZFitter.

To investigate ZFitter’s behavior on real data from acute
HIV infection, we processed 130 Sanger SGA datasets from
published studies with Poisson-Fitter estimates of infection
time.>® ZFitter and Poisson-Fitter estimates were largely
consistent when there was a good Poisson model fit, albeit
with larger uncertainty than observed in our simulations (Fig-
ure 3). This was at least partly due to lower sampling depth
in available datasets (median=28). In a similar manner to the
dual-founder simulations, in instances of multiple founder
infection ZFitter produced timing estimates more consistent
with acute infection when run on all available sequences.
There are several caveats to our approach which are impor-
tant to discuss. As all of our signal comes from the number
of sequences which cluster together, estimates made on any
dataset where all sequences are unique or the ratio of s to N
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Fig. 4. ZFitter estimates by Fiebig stage for 130 SGA datasets. Vertical rules
represent the 95% CI for each estimate. Horizontal rules for each Fiebig stage
indicate the group median. The number of datasets for each stage and the median
estimate (in days) is included in the x axis label. Points are colored as in Figure 3.
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is very small should be treated with caution. One biological
process that can fragment the founding virus lineage is early
T cell mediated selection. This is predominantly positive/di-
rectional selection by CD8+ T cells narrowly focused on a
small number of epitopes and is known to occur relatively
early in infection associated with initial control of plasma vi-
ral load.?*37 We have not investigated the effect of such a
process on our inference since we do not know how to appro-
priately simulate it, but we note that for real, single-founder
datasets, our estimates did not appear to be biased either way
compared to Poisson-Fitter. Therefore, at the very least we
are not especially affected by this process.

Another potential source of error is recombination between
distinct founder strains. Recombinant sequences are fre-
quently detected in acute infection when initiated by two or
more founding strains.>>® When they contain unique break-
points, these sequences inflate the number of unique se-
quences in the data. We do not explicitly filter for recom-
binant sequences currently in ZFitter, as most standard meth-
ods for recombination detection either require specification
of founding lineages in advance (RAPR)3® or require an
amount of phylogenetic signal which may be lacking in in-
stances of multiple founder infection from a low diversity
source (RDP4).3? However, we note that the effect of recom-
bination on s is similar to that of APOBEC: even extreme
APOBEC hypermutation of a sequence will reduce s by one,
just as would that sequence harbouring a single mutation, or
a sequence being the recombined offspring of two other se-
quences. This is to say that, as long as the per-sequence prob-
ability of at least one mutation is substantially higher than the
probability of recombination or hypermutation, ZFitter’s es-
timate should remain relatively robust to such processes.

ZFitter may open the door for new strategies for identifying
founder variants and grouping sequences into founder clades.
For low-diversity multivariant founder infections, the founder
identification problem suffers from a chicken/egg issue. It
can be difficult to split a dataset into founders without know-
ing the amount of post-infection divergence. But estimat-
ing the post-infection divergence, especially with methods
such as Poisson-Fitter, require that datasets are already split
into founding clades. By providing robust estimates of post-
infection divergence without any curation, simply relating the
number of unmutated sequences to the expected divergence,
ZFitter’s \ estimates may be useful as inputs to founder clus-
tering algorithms, which we will explore in future work.

Here we have shown that the performance of ZFitter on real
and simulated data supports its further investigation as a tim-
ing estimator for sequences from acute HIV infection. The
method is trivial to implement and is designed to require no
sequence curation to obtain timing estimates. Where exten-
sive sequence curation is feasible, ZFitter should provide a
valuable supplementary method to existing approaches such
as Poisson-Fitter, allowing a consistency check by comparing
the uncurated ZFitter estimate to the curated Poisson-Fitter
estimate. Where curation is infeasible, ZFitter provides a
useful standalone approach to estimating acute viral infection
times.
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Supplementary Note 1: Julia Implementation

using BioSequences
using Distributions: quantile, Beta
using StatsBase: countmap, median

ZF_cdf (p,a,b) = —-log(quantile(Beta(a,b),1-p));
rate = 1.19e-5; #subs site”-1 day”-1

reader = open (FASTA.Reader, "ungapped-sequences.fasta");
segs = [sequence (record)) for record in reader];
close (reader);

counts = countmap (seqgs);

N = length(seqgs);

s = N - sum(values (counts) .== 1);
seglLen = median (length. (seqgs));

#posterior interval incorporating (0.3, 1.0) prior
p = [0.025, 0.5, 0.975];
ZF_cdf.(p, s + 0.3, N - s + 1.0) ./ (seglen =* rate)

Supplementary Note 2: Python Implementation

from Bio import SeqIO

from statistics import median

from scipy.special import betaincinv
from math import log

def ZF_cdf(p, a, b):
return -log(betaincinv(a, b, 1 - p))
rate = 1.19e-5 #subs site”-1 day”-1

segs = [str(r.seq) for r in SeqlO.parse ("ungapped-sequences.fasta",
counts = dict ()
for s in seqgs:
counts[s] = counts.get(s,0)+1
N = len(seqgs)
s =N - sum([v == 1 for v in counts.values()])
seqlLen = median([len(s) for s in seqgs])

#posterior interval incorporating (0.3, 1.0) prior
p = [0.025, 0.5, 0.975]
[ZF_cdf(p_i, s + 0.3, N - s + 1.0) / (segLen » rate) for p_i in p]

Supplementary Note 3: R Implementation

library ("Biostrings")
library ("stats")

ZzF_cdf <- function(p, a, b) { -log(gbeta(l-p, a, b)) }
rate = 1.19e-5 #subs site”-1 day”-1

seqgs <- readDNAStringSet ("upgapped-sequences.fasta", "fasta")
t <- sort(table(seqgs), decreasing = T)

N <- length (seqgs)

s <= sum(t[t != 11)

seqlLen <- median (Biostrings::width (seqgs))
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#posterior interval incorporating (0.3, 1.0) prior
p <- c(0.025, 0.5, 0.975)
ZF_cdf(p, s + 0.3, N - s + 1.0) / (seqlLen % rate)
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Table S1. ZFitter and Poisson-Fitter results for published Sanger SGA datasets from acute infection and associated metadata.
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Subject Fiebig Stage Subtype Founders Recombination N S  ZFitter median (95% CI) Poisson-Fitter median (95% CI) HD Poisson  Study ‘g-g
1006 11 B 1 NA 42 30 12¢(6,19) 10 (5, 14) True Keele_2008 §-cgs
1054 I B 1 NA 39 24 16 (10, 26) 15 (9, 22) True Keele_2008 ,8,%
1056 I B 1 NA 46 29 15(9,24) 12 (7, 16) True Keele_2008 3 ;-:
6240 I B 1 NA 17 11 156, 30) 19 (11, 28) True Keele_2008 %%
6244 I B 1 NA 11 6 218,45 21 (7, 34) True Keele 2008 =4
9010 I B 1 NA 19 11 19(9,35) 20 (11, 29) True Keele_2008 =5
9014 I B 1 NA 14 7 24(11,45) 18 (9, 27) True Keele_2008 3 g'
9015 I B 1 NA 36 25 13(7,21) 11 (7, 16) True Keele_2008 ;5%‘
9017 I B 1 NA 26 21 8(3,16) 9(@3,15) True Keele_2008 gg
9019 \Y% B 1 NA 18 5 38(21,64) 24 (17, 30) True Keele_2008 7o
9020 I B 1 NA 25 14 20(11,34) 25 (18, 33) True Keele_2008 %E
9021 I B 1 NA 34 29 6(,12) 9(@3,15) True Keele_2008 g 23
9023 I B 1 NA 18 5 38(21,65) 23 (12, 33) True Keele_2008 gg B
9024 I B 1 NA 25 8  34(20,54) 27 (18, 35) True Keele_2008 ) g &
9025 I B 1 NA 19 9  23(12,40) 16 (8, 24) True Keele 2008 § & §
9028 I B 1 NA 23 14 14(7,26) 9(4,14) True Keele_2008 g = E
9032 11 B 1 NA 39 26 14(8,22) 9 (6, 13) True Keele_2008 Q §_ =
9033 I B 1 NA 20 8  28(15,47) 21(12,29) True Keele_2008 538 @
9075 I B 1 NA 22 12 17(9,30) 11(5,17) True Keele_2008 N z
9077 I B 1 NA 24 15 16(8,29) 15 (7,22) True Keele 2008 ;«736 g
9079 I B 1 NA 26 18 13(6,23) 14 (7,21) True Keele 2008 853
61792 I B 1 NA 19 8 24(13,42) 15 (8, 22) True Keele_2008 §;‘U§
62130 I B 1 NA 11 7 17(6,37) 19 (6, 31) True Keele_2008 sz
62357 I B 1 NA 14 7 25(11,47) 19 (11, 28) True Keele_2008 = ;_’ 3
62995 I B 1 NA 27 10 28(17,44) 13(7,19) True Keele 2008 g o %
63054 I B 1 NA 20 12 18(8,33) 25 (16, 33) True Keele_2008 @ ﬁ;
63396 I B 1 NA 21 15 11(4,21) 6(2,11) True Keele_2008 g_i
PRB926 I B 1 NA 14 7 24(11,47) 27 (11, 43) True Keele_2008 4R
PRB931 I B 1 NA 19 5 46(25,76) 42 (31, 53) True Keele_2008 % i
PRB956 I B 1 NA 27 16 18(9,30) 15(9,21) True Keele_2008 3o
PRB958 11 B 1 NA 24 12 24 (13,40) 24 (17,31) True Keele 2008 3 é
PRB959 I B 1 NA 32 21 15(8,25) 13 (6, 19) True Keele_2008 gé
REJO A% B 1 NA 21 10 25(13,43) 23 (13, 33) True Keele_2008 gg
SCO05 I B 1 NA 30 19 16(8,27) 21 (15, 28) True Keele_2008 B2
SC11 I B 1 NA 20 16 8(3,18) 30,7 True Keele_2008 3%
SC20 v B 1 NA 43 27 16(9,25) 14 (8, 19) True Keele_2008 El
SC45 I B 1 NA 29 15 22(13,36) 18 (12, 24) True Keele 2008 =5
THRO \Y B 1 NA 27 17 16(8,27) 17 (9, 26) True Keele_2008 g'g
TRJO I B 1 NA 18 6  37(20,64) 36 (22, 49) True Keele_2008 §§
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Subject Fiebig Stage Subtype Founders Recombination N S  ZFitter median (95% CI) Poisson-Fitter median (95% CI) HD Poisson  Study

TT28P \Y% B 1 NA 28 18 15(8,26) 13 (8, 19) True Keele_2008
TT29P I B 1 NA 20 16 8(3,18) 8(2,14) True Keele_2008
TT34P v B 1 NA 29 17 18 (10, 31) 18 (11, 24) True Keele_2008
WEAUdIS 1I B 1 NA 44 22 23(15,34) 23 (17,29) True Keele_2008
WITO I B 1 NA 16 9 20(9,39) 24 (12, 36) True Keele_2008
702 A% B 1 NA 21 11 22(11,39) 26 (17, 35) True Keele_2008
705 I B 1 NA 15 6 31(15,57) 29 (19, 40) True Keele_2008
713 v B 1 NA 31 8 46(29,69) 57 (45, 68) True Keele_2008
720 11 B 1 NA 26 15 1910, 32) 18 (12, 25) True Keele_2008
723 \% B 1 NA 15 9 18(8,306) 14 (7, 20) True Keele_2008
727 A% B 1 NA 25 11 28(16,45) 33 (22, 44) True Keele_2008
732 v B 1 NA 10 6 19(6,41) 20 (7, 33) True Keele_2008
734 I B 1 NA 18 11 188, 33) 28 (14, 42) True Keele_2008
736 VI B 1 NA 17 5 41(22,72) 49 (36, 62) True Keele_2008
1018 I B 1 NA 50 26 22(14,32) 34 (24, 43) False Keele 2008
1053 11 B 1 NA 60 38 15(10,23) 14 (6, 21) False Keele_2008
6248 11 B 1 NA 20 7 32(17,53) 67 (25, 109) False Keele_2008
1001 I B 1 NA 62 34 20(13,28) 27 (20, 35) False Keele_2008
RHPA \% B 1 NA 31 14 27(16,42) 32 (21, 43) True Keele 2008
9022 I B 1 NA 23 10 25(14,41) 14 (9, 19) True Keele_2008
63215 \% B 1 NA 19 6 33(18,55) 17 (9, 26) True Keele_2008
TT35P I B 1 NA 43 31 11¢(6,18) 21 (7, 35) False Keele_2008
63358 I B 1 NA 27 10 27(16,43) 34 (24, 44) True Keele_2008
9031 v B 1 NA 20 4 44(25,72) 37 (24, 50) True Keele_2008
9029 I B 1 NA 22 7 32(19,53) 20(11,29) True Keele_2008
1059 111 B 1 NA 39 17 28(18,41) 41 (24, 58) False Keele_2008
12007 I B 1 NA 25 8  34(20,54) 27 (19, 36) True Keele_2008
1058 v B 1 NA 45 22 24(15,35) 29 (20, 38) False Keele_2008
SUMAdJS I B 1 NA 35 23 148,24 13 (9, 17) False Keele_2008
1012 I B 1 NA 43 23 21(13,31) 31 (25, 38) True Keele 2008
SCs1 \% B 1 NA 33 21 16(8,26) 23 (17, 28) True Keele 2008
SC22 I B 1 NA 38 21 19(12,30) 30 (22, 38) False Keele_2008
9030 II B 1 NA 19 7  28(15,48) 27 (9, 45) False Keele_2008
SC31 v B 1 NA 36 20 20(12,31) 31 (18, 44) False Keele_2008
CH40E v B 1 NA 29 18 17(9,28) 23 (17, 30) True Keele_2008
CH77E v B 1 NA 51 16 35(25,49) 35 (29, 41) True Keele_2008
CHS8E 111 B 1 NA 46 19 30(20,43) 36 (28, 44) False Keele_2008
MEMI A% B 1 NA 32 9 42(27,64) 83 (68, 98) False Keele_2008
733 I B 1 NA 21 12 1910, 35) 41 (31, 52) True Keele_2008
6247 I B 2 Yes 32 26 83,15 25(17,33) False Keele_2008
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Subject Fiebig Stage Subtype Founders Recombination N S  ZFitter median (95% CI) Poisson-Fitter median (95% CI) HD Poisson  Study
TT31P II B 2 Yes 67 38 19(13,27) 45 (39, 50) False Keele_2008
731 II B >1 No 17 2 72(39,128) 111 (92, 130) True Keele_2008
63068 1T B 2 Yes 20 11 21(10,37) NA False Keele_2008
TT27P v B 3 No 38 24 15(9,25) NA False Keele_2008
62615 I B 3 No 28 13 22(13,36) NA False Keele_2008
735 v B 2 Yes 21 13 178,31 NA False Keele_2008
9026 III B 2 No 15 8 18 (8, 35) NA False Keele_2008
9076 I B 2 No 32 21 14(8,25) NA False Keele_2008
CHI9E \Y% B >3 Yes 33 10 39(25,58) NA False Keele_2008
718 v B 3 Yes 34 10 41 (26, 60) NA False Keele_2008
SC33 I B 2 No 27 15 20(11,33) NA False Keele_2008
CAAN A\ B >2 Yes 40 15 33(21,48) NA False Keele_2008
BORId9 II B 5 Yes 29 10 35(22,55) NA False Keele_2008
1051 III B 4 Yes 50 29 18(11,27) NA False Keele_2008
730 v B 2 Yes 30 3 76(47,119) NA False Keele_2008
716 v B 5 Yes 19 2 75@42,131) NA False Keele_2008
703 A\ B 3 Yes 22 0 188 (82, 516) NA False Keele_2008
PRB957 1T B 4 No 36 18 23(14,35) NA False Keele_2008
CHI16E \" B 2 Yes 20 7 36 (20, 60) NA False Keele_2008
12008 II B 2 No 31 19 16(9,27) NA False Keele_2008
SC42 v B >3 Yes 25 0 192 (86, 520) NA False Keele_2008
710 VI B >2 Yes 17 2 71(39,127) NA False Keele_2008
729 A\ B >3 Yes 16 0 175 (72, 499) NA False Keele_2008
4013171 v B >9 Yes 86 22 44 (33,57) 662 (525, 792) False Li_2010
4013211 III B 2 No 30 13 28(16,43) 54 (44, 64) False Li_2010
4013226 II B 1 NA 33 18 20(12,33) 15 (9, 21) True Li_2010
4013240 II B 3 Yes 66 33 23(16,32) 66 (56, 76) False Li_2010
4013242 v B 1 NA 37 16 28(18,42) 16 (10, 22) True Li_2010
4013291 v B 1 NA 25 0 192 (87, 522) 61 (53, 70) False Li_2010
4013296 II B 1 NA 25 8 37 (22, 59) 34 (26, 42) True Li_2010
4013321 II B 1 NA 49 24  24(16,35) 39 (33, 45) True Li_2010
4013327 v B 1 NA 24 17 12(6,23) 11 (5, 18) True Li_2010
4013383 I B 2 No 70 49 12 (8, 18) 554 (534, 572) False Li_2010
4013396 v B 1 NA 39 22 19(12,30) 16 (11, 21) True Li_2010
4013419 1T B 3 Yes 78 40 22(16, 30) 548 (506, 591) False Li_2010
4013440 II B 1 NA 30 10 37(23,56) 23 (18, 28) True Li_2010
4013446 I B 1 NA 23 14 17 (8, 30) 24 (12, 35) False Li_2010
4013448 I B 4 Yes 54 23 28(19,39) 411 (367, 456) False Li_2010
4013448 1T B 4 Yes 54 23 28(19,39) 411 (367, 456) False Li_2010
AD75 II B 1 NA 54 31 19(12,27) 9 (6, 13) True Li_2010
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AD77 \Y B 3 NA 40 7  58(39,84) 84 (74, 95) False Li_2010
AD83 \Y% B 3 Yes 44 18 30(20,43) 66 (36, 95) False Li_2010
HOBRO0961 1I B 1 NA 42 24 19(11,29) 17 (13,22) True Li_2010
INMEO632 1II B 1 NA 46 29 16(9,24) 12 (8, 16) True Li_2010
701010055 1I B 1 NA 28 16 19(10,32) 15 (10, 21) True Li_2010
701010068 IV B 7 Yes 8 5  52(39,70) 688 (583, 792) False Li_2010
700010106  1II B 1 NA 40 15 32(21,47) 13 (8, 18) True Li_2010
701010027 V B 1 NA 27 9 37(22,58) 42 (32,52) True Li_2010
701010108 V B 1 NA 35 16 26(16,40) 39 (34, 45) False Li_2010
700010246 IV B 1 NA 45 24 21(13,31) 19 (13, 25) True Li_2010
700010238 V B 3 Yes 38 12 38(25,55) 161 (149, 174) False Li_2010
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Fig. ED1. Histogram of G to A mutation counts for 50,000 simulated APOBEC events. The frequecy of the Oth bin (no G to A

mutations) was 0.890.
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