

1 **Comparative analysis of early divergent land plants and**
2 **construction of DNA tools for hyper-expression in *Marchantia***
3 **chloroplasts**

4

5

6

7 Eftychios Frangedakis¹, Fernando Guzman-Chavez¹, Marius Rebmann¹, Kasey Markel^{1,6},
8 Ying Yu², Artemis Perraki^{1,7}, Sze Wai Tse¹, Yang Liu³, Jenna Rever¹, Susanna Sauret-
9 Gueto^{1,8}, Bernard Goffinet⁴, Harald Schneider⁵ and Jim Haseloff^{1*}

10

11

12 ¹ Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, UK

13 ² College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China

14 ³ Fairy Lake Botanical Garden & Chinese Academy of Sciences, Shenzhen, China

15 ⁴ Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, US

16 ⁵ Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese
17 Academy of Sciences, Menglun, Yunnan, China

18 ⁶ Present address: Department of Plant Biology, University of California, Davis, US

19 ⁷ Present address: Institute of Molecular Biology and Biotechnology, Foundation for Research
20 and Technology - Hellas, Heraklion, Crete, Greece

21 ⁸ Present address: Crop Science Centre, University of Cambridge, 93 Lawrence Weaver Road,
22 Cambridge, UK

23

24

25 *corresponding author email address: jh295@cam.ac.uk

26

27

28

29

30

31

32

33

34

35

36

37 **ABSTRACT**

38 Chloroplast genes are present at high ploidy in plants, and capable of driving very high levels
39 of gene expression if mRNA production and stability are properly regulated. *Marchantia*
40 *polymorpha* is a simple model plant that allows rapid transformation studies, however post-
41 transcriptional regulation in plastids is poorly characterized in this liverwort. We have mapped
42 patterns of transcription in *Marchantia* chloroplasts. Furthermore, we have obtained and
43 compared sequences from 51 early-divergent plant species, and identified putative sites for
44 pentatricopeptide repeat protein binding that are thought to play important roles in mRNA
45 stabilisation. Candidate binding sites were tested for their ability to confer high levels of
46 reporter gene expression in *Marchantia* chloroplasts, and levels of protein production and
47 effects on growth were measured in homoplasmic transformed plants. We have produced
48 novel DNA tools for protein hyper-expression in a facile plant system that is a test-bed for
49 chloroplast engineering.

50

51 **INTRODUCTION**

52

53 Chloroplasts are the semi-autonomous organelles responsible for the capture of light energy
54 through the conversion of CO₂ to organic molecules in plants. Chloroplast (plastid) genomes
55 are small and highly conserved, present at high copy number per cell, and not subject to gene
56 silencing. Foreign proteins have been produced in chloroplasts at high levels, sometimes
57 reaching a major proportion of the total soluble proteins in transformed plants (Cosa et al.
58 2001; Oey et al. 2009; Kanamoto et al. 2006). However, previous attempts to harness this
59 capacity for routine hyper-expression (>1% soluble protein) have been irregular and sporadic.
60 The primary reasons for this lack of application are the relatively small number of species with
61 established methods for chloroplast transformation, the slow pace and inefficiency of plastid
62 transformation, and the inconsistent levels of gene expression between experiments.

63 Past attempts to build more efficient vectors for chloroplast gene expression have focused on
64 increasing the efficiency of transcription, translation initiation and codon usage. However,
65 recent work has led to a breakthrough in understanding the important roles of post-
66 transcriptional processing and mRNA stability in conferring high levels of gene expression in
67 chloroplasts (Legen et al. 2018; Rojas et al. 2019). Plastid RNA transcripts are subject to a
68 series of complex processing steps that are primarily mediated by nucleus-encoded factors,
69 including pentatricopeptide repeat (PPR) containing proteins. The PPR proteins are a large
70 family of RNA-binding proteins that have undergone a substantial expansion in plants (Barkan
71 and Small 2014) and are required for stabilisation of mRNAs by protection from exonuclease
72 activity in the plastid (Prikryl et al. 2011; Legen et al. 2018). The sequence-specific RNA-
73 binding properties and defined target sites for these proteins make them excellent candidates
74 as artificial regulators of RNA degradation, in addition to being used as highly effective tools
75 for enhancing gene expression in chloroplasts (Legen et al. 2018; Rojas et al. 2019).

76 *Marchantia polymorpha* is one of the few land plant species for which chloroplast
77 transformation is well established (Boehm et al. 2016; Chiyoda, Yamato, and Kohchi 2014).
78 *Marchantia* has a series of characteristics that make it an ideal platform for chloroplast
79 engineering (Boehm et al. 2017). It grows rapidly through both asexual and sexual life cycles,
80 has a remarkable regenerative capacity in the absence of phytohormones, the dominant
81 phase of the life cycle is haploid and transplastomic plants can be isolated within 8 weeks

82 (Sauret-Güeto et al. 2020). In addition, post-transcriptional regulation of chloroplasts mRNAs
83 in *Marchantia* is relatively simple compared to vascular plants. For example, the *Marchantia*
84 nuclear genome encodes 75 PPR proteins (Bowman et al. 2017) directed to chloroplast and
85 mitochondria, while the *Arabidopsis* and rice genomes encode over 450 and 600 PPR
86 proteins, respectively (Gutmann et al. 2020). Additionally, no evidence of PPR protein-
87 mediated base editing has been found in *Marchantia* chloroplast transcripts (Ichinose and
88 Sugita 2016). *Marchantia* shows great promise as a simple and facile test-bed for chloroplast
89 engineering, but little is known of the cis-regulatory elements required to fully exploit the
90 capacity of plastids for high and sustained levels of gene expression.

91 In order to exploit *Marchantia* as a testbed for chloroplast engineering, we conducted a
92 transcriptional analysis of the *Marchantia* chloroplast, and examined an expanded range of
93 Bryophyte plastid genomes for conserved sequences in the 5' UTRs of highly expressed
94 mRNAs. This study provides the first description of chloroplast transcription patterns in a
95 liverwort, and comparisons within this under-studied group of early divergent plants. It has
96 also produced a variety of new DNA tools that enable the generation of plants capable of
97 hyper-expression of proteins in this facile model system.

98
99 **RESULTS**

100

101 ***Marchantia* chloroplast transcriptome analysis**

102 We previously generated a high-quality plastid genome assembly for the *M. polymorpha*
103 Cam1/2 isolates using next generation sequencing data (Genbank accession: MH635409.1)
104 (Sauret-Güeto et al. 2020) (Supplementary Fig. 1). We conducted this assembly to resolve a
105 taxonomic misidentification of the source of the reference plastid genome (Genbank accession
106 NC_001319.1), which likely originated from the related species *Marchantia paleacea* (Kijak,
107 Łodyga, and Odrzykoski 2018). The plastid genome of *M. polymorpha* Cam1/2 is 120,314 bp
108 and contains 123 annotated genes, which are mainly involved in photosynthesis, electron
109 transport, transcription, and translation. A small number of genes with more specific functions
110 are also present, such as the *chl*L gene involved in chlorophyll biosynthesis (Ueda et al. 2014).

111 Recent experiments have demonstrated the crucial importance of both promoter identity and
112 adjacent 5' untranslated regions for initiating and stabilising high levels of transcription in
113 chloroplasts (Rojas et al. 2019; Q. Yu, Barkan, and Maliga 2019). In order to better understand
114 which sequences might be useful for engineering high levels of gene expression, we employed
115 differential RNA sequencing (dRNA-seq) (Sharma et al. 2010), which allowed identification of
116 primary transcripts in extracted chloroplast RNAs. This technique was initially developed for
117 prokaryotic organisms but has also successfully been applied to barley chloroplasts (Sharma
118 et al. 2010; Zhelyazkova, Sharma, et al. 2012). RNAs isolated from *Marchantia* chloroplasts
119 were treated with Terminator™ 5' phosphate dependent exonuclease (TEX) in order to
120 selectively degrade RNAs with 5' monophosphate termini, while primary transcripts with 5'
121 triphosphate termini are resistant to degradation (Fig. 1a). Treated and untreated RNA
122 populations were sequenced to locate transcription start sites (TSS), and putative promoter
123 and 5' UTR regions. The main goals of these experiments were (i) to identify highly transcribed
124 regions of the *Marchantia* chloroplast genome, (ii) to locate transcription start sites of mRNAs
125 that accumulate to high levels, and (iii) screen for conserved sequences that might indicate

126 important features that could be incorporated into synthetic promoter and mRNA elements to
127 promote high levels of protein expression.

128 Short sequence reads (75 bp) were obtained from TEX treated and untreated RNA samples
129 and mapped onto the plastid genome of *M. polymorpha* accession Cam1/2 (MH635409) (Fig.
130 1b and Supplementary Fig.2 and Supplementary Table 1). The levels of transcript abundance
131 could be observed. These were mapped onto different regions of the plastid genome, with
132 evident polarity that reflected the directions of transcription across transcribed genes and
133 operons.

134 We manually assigned a total of 186 potential TSSs to locations on the *Marchantia* chloroplast
135 genome (Fig. 2a and Supplementary table 2). The identified TSSs could be grouped into four
136 categories based on their genomic location: i) gene TSSs (gTSSs), found within a region
137 upstream of annotated genes, ii) internal TSSs (iTSSs) found within annotated genes and
138 giving rise to sense transcripts, iii) antisense TSSs (aTSSs) located on the opposite strand
139 within annotated genes and giving rise to antisense transcripts, which could indicate the
140 synthesis of non-coding RNAs; and iv) orphan TSSs (oTSSs). In total, we mapped 108 gTSSs,
141 40 iTSSs, 21 aTSSs and 17 oTSSs (Fig. 2a).

142 The most abundant gTSSs corresponded to tRNA genes. The *Marchantia* plastid genome
143 encodes 31 unique transfer RNAs (tRNA), five of which are present in two copies in the
144 inverted repeat (IR) regions. Given that the genome contains only 123 genes, the number of
145 identified TSSs exceeded expectations, especially considering that some are likely encoded
146 in co-transcribed operons. The experimental approach can be confounded by post-
147 transcription processing or degradation, or low abundance of primary transcripts.

148

149 **Characterisation of active promoters and transcripts**

150 Plastid transcription is mediated by two distinct RNA polymerases: the eukaryotic nuclear
151 encoded RNA polymerase (NEP) and the prokaryote-like plastid encoded RNA polymerase
152 (PEP), which is retained from the cyanobacterial endosymbiont (Yagi and Shiina 2014). PEP
153 recognises bacterial type promoters that contain conserved domains at positions -35 and -10
154 (TATA) (Ortelt and Link 2014), whereas NEP recognises promoters that have a core sequence
155 "YRTA" (where Y is cytosine or thymine and R is, Guanine or Adenine) motif in close proximity
156 to the transcription start site (Ortelt and Link 2014; Hess and Börner 1999). However, many
157 genes can be transcribed by both. In general, PEP promoters appear to be much stronger
158 than NEP promoters, and highly expressed genes in the plastid genome (e.g., most
159 photosynthesis genes) are usually transcribed from PEP promoters (Ortelt and Link 2014).
160 For this reason, PEP promoters have been predominantly used to drive the expression of
161 plastid transgenes.

162 A limited number of promoters have been employed for transgene expression in chloroplasts,
163 and mainly in systems such as tobacco and *Chlamydomonas* (Adem, Beyene, and Feyissa
164 2017; S. Jin and Daniell 2015). These promoters are derived from highly expressed plastid
165 genes, such as the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase
166 (RuBiSco) (*rbcL*), the photosystem II protein D1 (*psbA*) gene and the plastid rRNA operon,
167 *rrn*. Only two studies have focused on promoter regions of plastid genes in *Marchantia*:
168 (Shimmura et al. 2017) analysed the promoter region of the *psbD* gene and (Lyubetsky,

169 Rubanov, and Seliverstov 2010) predicted the promoter regions of *psaA*, *psbA*, *psbB*, *psbE*
170 and *rbcL* genes based on sequence comparison of several plant species.

171 Studies in *Marchantia* have employed heterologous tobacco *psbA* and *prrn* promoters to drive
172 expression of transgenes (Boehm et al. 2016; Chiyoda, Yamato, and Kohchi 2014). The
173 identification of *Marchantia* plastid gene TSSs has allowed precise characterization of the
174 initiation sites for transcription, and the mapping of the 5' termini of transcripts in a wide range
175 of genes. These newly identified elements crucially expand the repertoire of available
176 promoter parts to be considered when designing transgenes for *Marchantia* chloroplast
177 engineering.

178 The 50-nucleotide regions upstream of the identified TSSs were screened for potential
179 promoter motifs using the Multiple Expectation maximization for Motif Elicitation (MEME) tool
180 (Bailey et al. 2015). We found a -10 TAttaT motif located three to nine nucleotides upstream
181 of the transcription start point for 140 predicted TSSs, similar to that found in barley
182 (Zhelyazkova, Sharma, et al. 2012)(Supplementary Table 3). Examination of the -35 region
183 showed a lower degree of sequence conservation than the -10 box. Two -35 motifs were
184 mapped in only 25 out of those 140 TSSs (Fig. 2b).

185 To distinguish candidate DNA parts for high level gene expression, we used data from
186 untreated dRNAseq samples and identified the 20 protein-encoding genes with the highest
187 RNA accumulation in the *Marchantia* chloroplast. (Fig. 2c). As was predicted based on other
188 plant models (S. Jin and Daniell 2015), the *psbA* and *rbcL* genes have the highest mRNA
189 transcript levels in *Marchantia* chloroplasts. The dRNAseq profiles of the promoter regions of
190 these genes were examined in more detail. The genetic maps and transcript profiles of these
191 regions are shown in Fig. 2d-g. After TEX treatment, we observed an approximately 5-fold
192 enrichment of reads mapped at the 5' end of the primary transcript for *rbcL* and approximately
193 2.5-fold enrichment for *psbA*. The identified TSSs were located 124 bp and 54 bp upstream of
194 the predicted start codons for *rbcL* and *psbA*, respectively. In addition, all four regions show
195 similar gene arrangements compared to plastid genomes of other land plants. The
196 homologous regions in vascular plants include binding sites for conserved PPR proteins that
197 have been found to bind to chloroplast mRNAs, to confer increased RNA stability by protection
198 against ribonucleases, and promote high levels of gene expression. The approximate
199 locations of four potential PPR binding sites are indicated in these regions of the *Marchantia*
200 plastid genome.

201

202 **Operons**

203 Many chloroplast genes, often functionally-related, are organised in co-transcribed operons.
204 Examples include the *psbB* operon and the two ATP synthase (*atp*) operons (the large
205 *atpI/H/F/A* and the small *atpB/E* operon). Operons are usually transcribed as a unit and the
206 transcripts processed to yield smaller monocistronic mRNAs. Operon processing is mediated
207 by various factors that recognise particular operon non-coding sequences. These sequences
208 harbour gene expression elements, such as PPR binding motifs, that are potentially useful for
209 plastid engineering applications. As for promoters, the available information about operon
210 structure and regulation in *Marchantia* is very limited.

211 The *psbB* operon comprises five genes encoding the photosystem II subunits CP47 (*psbB*), T
212 (*psbT*), and H (*psbH*) as well as cytochrome b6 (*petB*) and subunit IV (*petD*) of the cytochrome
213 b6f complex. In *Arabidopsis* it is initially transcribed as a large precursor mRNA, which is

214 extensively processed (Meierhoff et al. 2003). Each of the *petB* and *petD* genes contains an
215 intron, which is spliced during post-transcriptional modification. The *psbB* operon is regulated
216 by more than one promoter (Fig. 2d). In particular, the small subunit of photosystem II (*psbN*),
217 which is encoded in the intercistronic region between *psbH* and *psbT*, is transcribed in the
218 opposite direction by an additional promoter. In *Marchantia* we identified a TSS 144 bp
219 upstream of the *psbB* gene, 47 bp upstream of the *psbN* gene, 36 bp upstream the *psbH* gene
220 and 43 bp upstream the *petB* gene.

221 The large *atp* operon is composed of four genes: *atpL*, *atpH*, *atpF* and *atpA*. Plastid operons
222 often have multiple promoters that enable a subset of genes to be transcribed within the
223 operon (Kuroda and Maliga 2002). For example, this operon is transcribed by two PEP
224 promoters in *Arabidopsis*, one upstream and one within the operon, and harbours four
225 potential sites for RNA-binding proteins (Malik Ghulam et al. 2013) . In *Marchantia* we
226 identified a TSS 73 bp upstream of the *atpL* gene and an internal TSS (*atpL*) 143 bp upstream
227 of the *atpH* gene (Fig. 2e).

228

229 Comparisons with other bryophyte plastid genomes

230 Over 4,500 plastid genomes have been sequenced to date, and the overwhelming majority of
231 these belong to angiosperm plants (Gutmann et al. 2020; Tonti-Filippini et al. 2017; Y. Yu et
232 al. 2019). Sequence comparisons between the plastid genomes of land plants have revealed
233 gross gene rearrangements, but individual coding regions and a number of gene clusters are
234 recognisably conserved. In addition, certain cis-regulatory sequences, such as PPR-binding
235 sites, are conserved and often located near the 5' termini of mRNA transcripts (Zhelyazkova,
236 Hammani, et al. 2012). However, the small size and apparent sequence redundancy of the
237 domains makes them difficult to identify by comparison between divergent species. At the
238 initial phase of our investigation, only eight bryophyte plastid genomes were publicly available.
239 To overcome this limitation we expanded the sampling to 51 plastid genomes from bryophytes,
240 and used comparative genomics to screen the *Marchantia* plastid genome for potential
241 regulatory sequences.

242 We determined the complete sequences of 28 liverwort plastid genomes, 13 moss genomes
243 and one hornwort genome. We also included in our analysis three recently published hornwort
244 plastid genomes (F.-W. Li et al. 2020) and eight published liverwort plastid genome sequences
245 (Supplementary Table 4 and 5), as well as three angiosperm plastid sequences for reference.
246 The dataset comprised representatives of all three classes of liverworts, namely
247 Haplomitriopsida, Marchantiopsida, and Jungermanniopsida (Söderström et al. 2016). In
248 summary, we included representatives of six of the 15 liverwort orders, 13 of the 26 moss
249 orders (Liu et al. 2019) and three of the five hornwort orders (Villarreal and Renner 2012)
250 currently recognized (Fig. 3a and Table 1). Comparison of the newly generated bryophyte
251 plastid genomes further supports the observation of a remarkable conservation of plastid
252 genome structure among land plants (Liu et al. 2019).

253

254

255

256

257

Lineages	Orders	Families	Orders sampled	Families sampled
Hornworts	5	11	3	3
Liverworts	15	87	7	21
Mosses	29	109	13	14
Angiosperms	64	418	3	4

258

259 **Table 1:** Sampling of land plant plastid genomes employed in this study.

260

261 **Identification of putative PPR protein binding sites**

262 In order to identify conserved sequences that could be important for mRNA function in the
263 chloroplast, we performed a phylogenetic comparison of mRNA sequences (up to ~100 bp)
264 upstream of the predicted initiator codon of the highly expressed *petB*, *rbcL*, *atpH* and *psbH*
265 coding regions (Fig. 3 b-e). It is known that similar regions within the corresponding
266 angiosperm mRNA sequences encode binding sites for specific PPR proteins. The HCF152
267 PPR protein binds to a sequence located in the 5' untranslated region of the *petB* chloroplast
268 mRNA. It has been experimentally demonstrated that binding of the protein to RNA transcripts
269 stabilises them against 5'→3' ribonuclease degradation in *Arabidopsis* (Meierhoff et al.
270 2003). We also included in our analysis the High Chlorophyll Fluorescence 107 (HCF107)
271 protein, which is a member of the family of PPR proteins that contain domains similar to
272 histone acetyltransferases (HAT). HCF107 stabilizes the *psbH* transcript and activates *psbH*
273 translation (Felder et al. 2001). The MRL1 PPR protein binds to a sequence located in the 5'
274 untranslated region of the *rbcL* chloroplast gene. In *Arabidopsis*, MRL1 is necessary for the
275 stabilization of the *rbcL* processed transcript, likely because it acts as a barrier to 5'→3'
276 degradation (Johnson et al. 2010). The PPR10 protein binds to a sequence located in the 5'
277 untranslated region of the *atpH* chloroplast gene and has been found to play a role in
278 controlling translation by defining and stabilising the 5' terminus, protecting it from
279 exonuclease activity (Pfalz et al. 2009). The *Marchantia* nuclear genome encodes 75 PPR
280 proteins (Pfalz et al. 2009; Bowman et al. 2017) including recognizable homologs of High
281 Chlorophyll Fluorescence 152 (HCF152), Maturation of *rbcL1* (MRL1), PPR10 and HCF107
282 (Supplementary Fig. 3).

283 We used the new bryophyte plastid genome alignments to search for conserved mRNA
284 sequence motifs across both bryophyte and angiosperm plant species. Fig. 3b-e shows the
285 alignments of 30 plastid genome segments from bryophytes and key angiosperm species
286 (alignments for all bryophyte species used in this study in Supplementary Fig. 4). The
287 alignments correspond to the 5' sequences of *petB*, *psbH* and *rbcL* and *atpH* mRNAs. The
288 relevant PPR protein binding sites have been experimentally determined in certain
289 angiosperms, and the binding footprints are indicated (Zhelyazkova, Hammani, et al. 2012).

290 These footprints coincide with conserved nucleotide sequences at the binding site. These
291 sequences appear highly conserved across the angiosperms and bryophytes for the
292 *Marchantia* *petB*, *psbH* and *rbcL* chloroplast mRNAs, although less so for the *atpH* mRNA.

293 The nucleotide sequence similarity of these putative binding sites, and existence of
294 homologous PPR proteins in *Marchantia* suggests that the functional relationship between
295 nuclear-encoded PPR proteins and regulation of chloroplast mRNA stability may be conserved
296 for (at least) *petB*, *psbH* and *rbcL* across the land plants. Further, these putative PPR protein
297 binding sites in *Marchantia* might be transplanted into engineered chloroplast genes and
298 confer improved mRNA stability. We built and tested hybrid gene genes to test this hypothesis.

299

300 **Creating artificial leader sequences**

301 We have developed an open source DNA toolkit for facile engineering of nuclear and plastid
302 genomes in *Marchantia* (Sauret-Güeto et al. 2020). The toolkit is based on Loop assembly
303 (Pollak et al. 2019), a Type IIS method for DNA construct generation that employs a recursive
304 strategy to greatly simplify the process of plasmid assembly. It allows rapid and efficient
305 production of large DNA constructs from DNA parts that follow a common assembly syntax.
306 Unlike other systems that require elaborate sets of vectors, Loop assembly requires only two
307 sets of four complementary vectors. In a series of reactions, standardized DNA parts can be
308 assembled into multi-transcriptional units (Fig. 4a). The system includes DNA vectors and
309 basic parts for transformation of the *Marchantia* plastid genome (Fig. 4b).

310 We cloned the intergenic region between the *Marchantia* *psbH* and *petB* genes (104 bp in
311 length) and sequences corresponding to the 5' UTRs of the *petB* gene (58 bp), *rbcL* (68 bp),
312 *atpH* (123 bp) and *psbH* (48 bp). The amplified sequences were then fused downstream of
313 the tobacco (*Nicotiana tabacum*) *psbA* promoter (61 bp). The intact Nt *psbA* promoter has
314 been reported to have activity in *Marchantia*, albeit with low expression levels (Boehm et al.
315 2016). The hybrid promoter elements were assembled with a chloroplast codon optimised
316 turquoise fluorescent protein reporter (mTurq2cp) (Boehm, et al., 2016).

317 Chloroplast protein synthesis is mediated by bacterial-type 70S ribosomes, and translation
318 initiation is mediated by ribosome-binding sites, adjacent to the start codon on an mRNA. The
319 sequence and spacing between the ribosome-binding sequence and the start codon is known
320 to be important for the efficiency of translation initiation in cyanobacteria and chloroplasts **XXX**
321 (Weiner et al. 2020). The default common syntax for Type IIS assembly DNA parts (Patron et
322 al. 2015) introduces extra sequences at the termini of each element. The assembly of a 5'
323 UTR part can introduce an extra adenine (A) nucleotide upstream of the ATG start codon.
324 To test whether this has an effect on the expression efficiency of the transgene in *Marchantia*
325 chloroplasts we generated two versions of the constructs, a version for standard assembly
326 with an extra “A” and customised versions without. For the latter, we generated new L0 parts
327 with ATGg as the 3' overhang and mTurq2cp L0 constructs with ATGg as the 5' overhang. We
328 also generated constructs with mutant PPR binding sites, which contained sequence changes
329 in the putative PPR protein binding site (Fig. 4c-d and Supplementary Table 6). As an
330 additional control, we used a construct with the *Nt-psbA* core promoter fused to a 54 bp
331 sequence containing the multi-cloning site from the pUC18 vector (45 bp) and a synthetic
332 ribosome binding sequence (Hayashi et al. 2003) (hereafter called “control 5'UTR”).
333 Transplastomic plants containing this construct showed very low levels of fluorescence.

334 The modified genes were assembled in chloroplast transformation vectors that contained the
335 *aadA* spectinomycin resistance gene and flanking sequences for insertion by homologous
336 recombination into the *rbcL-trnR* intergenic region of the *Marchantia* plastid genome.
337 Chloroplasts were transformed by particle bombardment of germinating *Marchantia* spores,
338 which are relatively easy to harvest in large numbers after sexual crossing, and stored
339 indefinitely in a cold, desiccated state before use. DNAAdelTM (Seashell Technology)
340 nanoparticles were used as plasmid DNA carriers for the biolistic delivery into chloroplasts.
341 The use of DNAAdelTM reduces the time and labour required for loading of the plasmid DNA
342 onto the microcarrier used for DNA delivery, compared to conventional metal carriers.

343 Three weeks after bombardment successful transformants were visible under a fluorescence
344 stereomicroscope. After 6–8 weeks on antibiotic selection, plants were tested for
345 homoplasticity (Supplementary Fig. 5). Five independent homoplastic lines for each construct
346 were obtained. Little variation in levels of fluorescence was seen between the independent
347 homoplastic lines, when examined using a stereo fluorescent microscope. Plants transformed
348 with the 5'UTR *Mp-psbH* exhibited similar levels of expression to the control 5'UTR and were
349 not further characterised (Supplementary Fig. 6).

350

351 **Testing the leader sequences**

352 Three independent homoplastic lines for each construct were selected for further investigation.
353 We developed and applied a three-step image processing pipeline to quantify chloroplast
354 fluorescence intensity. This consisted of (i) acquisition of two-channel fluorescent micrographs
355 using a confocal microscope, with a blue channel tuned to capture cyan fluorescent protein
356 (CFP) fluorescence and a red channel tuned for chlorophyll autofluorescence, (ii) automated
357 segmentation using a custom Fiji macro to identify regions of interest (ROI), and (iii)
358 quantification of fluorescence intensity levels in each channel within each ROI. Mean CFP
359 fluorescence intensity within each ROI was normalized by chlorophyll autofluorescence to
360 account for fluorescence signal attenuation for plastids deeper within the sample (Markel
361 2018) (Supplementary Fig. 6 and Fig. 7). First we report the results from transformants
362 containing custom 5' UTR parts with native sequence and spacing adjacent to the start codon
363 of the reporter gene. The highest levels of mTurq2cp fluorescence were measured in plants
364 transformed with constructs containing the 5'UTR-*Mp-rbcL* leader sequence (Fig. 5a and
365 Supplementary Table 7). Plants transformed with constructs containing mutations in the
366 putative MRL1 PPR binding site within the 5'UTR-*MprbcL* sequence showed a reduction, but
367 not complete loss of fluorescent protein levels. This is not unexpected since the ribosome
368 binding sequence and promoter were still present.

369 The *Mp-psbH-petB* intergenic region also conferred high levels of fluorescence, although
370 levels were lower than those of plants containing the 5'UTR *Mp-rbcL* sequence. Plants
371 transformed with constructs containing a 10bp mutation in the putative HCF152 PPR binding
372 site (Supplementary Table 6) in the *Mp-psbH-petB* sequence showed reduced fluorescence
373 levels. The 5'UTR *Mp-petB* sequence also conferred higher levels of fluorescence protein
374 expression compared to the control 5'UTR but lower than that of the *Mp-psbH-petB* intergenic
375 region. Plants transformed with constructs containing the 5'UTR *Mp-petB* sequence with a 15
376 bp mutation that removed the putative binding site for HCF152 did not show significant
377 reduction in fluorescence (Supplementary Table 6). The 5'UTR *Mp-atpH* sequence produced
378 levels of mTurq2cp fluorescence similar to that of 5'UTR *Mp-petB*.

379 The standardized syntax for Type IIS assembly of plant genes contains a site for gene fusions
380 at the ATG initiation codon, which requires the sequence AATG to be placed at the junction of
381 5'UTR and coding sequence. We also tested the activity of constructs assembled this way,
382 bearing an additional A residue adjacent to the start codon, in order to determine any effects
383 on the efficiency of gene expression. Fluorescence levels were only slightly lowered compared
384 to plants transformed with constructs containing the 5'UTR-(ATGg) sequences, indicating that
385 the extra "A" introduced by the common syntax overhang did not have major effects on
386 expression of the marker transgene. These observations were further supported by western
387 blot studies of fluorescent protein levels in the plants.

388 Detergent soluble proteins were extracted from three independent lines for each construct,
389 and fractionated by SDS polyacrylamide gel electrophoresis. mTurq2cp protein levels were
390 assayed by western blotting using an anti-GFP antibody, and an anti-actin antibody was used
391 to measure levels of endogenous actin protein as a loading control (Fig. 5b). Consistent with
392 the results obtained using ratiometric imaging, the 5'UTR Mp-*rbcL* leader sequence conferred
393 the highest levels of protein accumulation followed by the Mp-*psbH*-*petB* intergenic region.
394 Constructs containing 5'UTR Mp-*petB* and 5'UTR Mp-*atpH* similar, lower levels of expression.
395 The addition of an extra "A" between the 5'UTR and the mTurq2cp coding sequence did not
396 greatly affect the expression of mTurq2cp in these experiments. However, substantially lower
397 levels of fluorescent protein were seen in plants bearing mutations in the predicted PPR
398 binding sites in 5'UTRs derived from Mp-*rbcL* and the Mp-*psbH*-*petB* intergenic region.

399 Based on these analyses the mRNA leader sequences corresponding to the Mp-*psbH*-*petB*
400 intergenic region and 5'UTR Mp-*rbcL* were selected as the best candidates for generating high
401 level gene expression in *Marchantia* chloroplasts. (Fig. 5c-e).

402

403 ***Marchantia rbcL* native promoter**

404 The selected mRNA leader sequences with PPR-binding sites were all tested with the *N.*
405 *tabacum* *psbA* promoter. To test the importance of the promoter in driving transgene
406 expression, we cloned the entire promoter and 5'UTR region from the Mp-*rbcL* gene (185 bp
407 upstream of the start codon), in order to compare it with the *Nt-psbA* promoter-driven version.
408 Native transcripts from the Mp-*rbcL* promoter were found to accumulate at notably high levels
409 in *Marchantia* (Fig. 2c). The native promoter was fused to the mTurq2cp coding sequence,
410 and transformed into the *Marchantia* chloroplast genome as described for the other gene
411 fusions. Confocal microscopy of the transformed plants confirmed (i) the exclusive chloroplast
412 localisation of the expressed transgene, and (ii) high levels of fluorescent protein expression.
413 High levels of mTurq2cp protein accumulation were further confirmed by ratiometric
414 fluorescence measurements and a western blot analysis. However, the levels were not
415 significantly over those conferred by the *Nt-psbA* promoter fusion (Fig. 5a and Supplementary
416 Fig. 6). This indicated that either both promoters had similar properties in *Marchantia*
417 chloroplasts, or that rates of RNA transcription, mRNA stability, translation or protein stability
418 might be saturated, and rate limiting.

419

420 **Quantification of transgene expression**

421 In order to estimate the amount of protein produced in transplastomic *Marchantia* plants we
422 expressed His6-tagged mTurquoise2 in *E. coli* under the control of the T7 promoter and purified
423 the protein by affinity chromatography. (Supplementary Fig. 8). Serial dilutions of the purified

424 mTurquoise2 were used to create a standard curve (fluorescence emission versus protein
425 concentration) to allow accurate measurement of protein levels. Total protein was extracted
426 from the *Marchantia* thallus tissue of plants harbouring different constructs (see Materials).
427 The CFP fluorescence for each sample was then measured using a Clariostar plate reader
428 and the protein concentration was calculated based on the standard curve. Up to 460 µg per
429 g of tissue (~15% total soluble protein) was obtained from homoplastic plants harbouring the
430 construct containing the *Nt-psbA* promoter and *Mp-rbcL* leader sequence (Fig.6a-b).
431
432

433 **Growth rates of transplastomic plants**

434 Growth defects have been observed in plant species with high levels of chloroplast transgene
435 expression (Hennig et al. 2007; Lössl et al. 2005). Very high levels of expression of a stable
436 protein can lead to delayed plant growth (Oey et al. 2009). To test whether the accumulation
437 of foreign proteins had an effect on *Marchantia* growth, we compared the growth of wild-type
438 gemmae with those of lines transformed with the different constructs (Fig. 6c-k). The
439 accumulation of fresh and dry weights were measured after one month of growth on agar-
440 based media. Plants transformed with the construct containing the 5'UTR *Mp-rbcL*, which
441 resulted in the highest levels of mTurq2cp accumulation, showed an approximately 35%
442 biomass reduction compared to wild type. Interestingly, in comparison to other systems,
443 *Marchantia* showed a higher tolerance to foreign protein accumulation in the chloroplast. For
444 example, the potato showed significant biomass decrease in response to green fluorescence
445 protein (GFP) overexpression. (Q. Yu, Barkan, and Maliga 2019). Interestingly, plants
446 transformed with the construct containing the 5'UTR *Mp-rbcL* construct showed lower size
447 reduction than those transformed with the *Mp-psbH* - *Mp-petB* containing construct, despite
448 higher levels of transgene accumulation.

449

450

451 **DISCUSSION**

452 Chloroplasts are attractive vehicles for transgene hyper-expression. Chloroplasts are sites for
453 energy generation and high level protein expression and play a major role in metabolite
454 production in plant cells. Plastid genes are present in high gene copy numbers per cell, can
455 be highly transcribed, and are not subject to gene silencing. The plastid genome is compact
456 and conserved across the terrestrial plants, and shows great promise as a platform for low-
457 cost, large scale bioproduction.

458 *Marchantia* is one of the few plant species that have well-established methods for chloroplast
459 transformation. It provides a facile testbed for chloroplast engineering, with simple culture
460 requirements for culture (i.e. no need for glasshouses and expensive or specialised
461 infrastructure for plant growth), and offers the benefits of spontaneous regeneration at high
462 efficiency in the absence of phytohormones, fast selection for homoplasmy, simple
463 microscopic observation and rapid amplification and propagation through both asexual and
464 sexual life cycles. Further, a standardised system for rapid, semi-automated DNA assembly
465 and libraries of modular DNA parts are available for *Marchantia*.

466 Recent work in the field has demonstrated the requirement for proper post-transcriptional
467 regulation for high level gene expression in the chloroplasts of angiosperm plants (Prikryl et

468 al. 2011; Legen et al. 2018; Pfalz et al. 2009; Zhelyazkova, Hammani, et al. 2012). In
469 particular, nuclear-encoded PPR-proteins play a direct role in stabilizing the termini of specific
470 mRNAs by direct binding, likely to protect the mRNAs against exoribonuclease degradation.
471 The plastid genomes of early divergent plants, like *Marchantia*, possess a coding capacity
472 broadly similar to gymnosperm and angiosperm species. However, gene regulation is different
473 in a number of respects, such as the absence of RNA editing in *Marchantia*. Further, non-
474 coding sequences in the plastid genome have diverged markedly. These key determinants of
475 expression levels remain inaccessible to genetic manipulation, owing to insufficient
476 understanding of native regulation and very limited availability of characterised parts. In order
477 to fully exploit the potential benefits of the *Marchantia* system, we needed to “domesticate”
478 important regulatory functions that allow properly regulated and high-level gene expression.

479 In this work, we describe the mapping of transcription patterns on the plastid genome of light-
480 grown *Marchantia*. This allowed us to obtain empirical evidence for levels of transcription
481 across the plastid genome. We precisely identified the promoter start sites for a number of
482 highly expressed chloroplast genes. These genes have homologues in better-studied model
483 systems, like tobacco, maize and *Arabidopsis*, where terminal sites for PPR protein binding to
484 mRNAs have been characterized recently. However, sequence drift and the limited size of
485 these functionally important sequences make them difficult to identify by inspection in widely
486 divergent species.

487 While thousands of gymnosperm and angiosperm plastid genomes are available to build
488 phylogenetic comparisons, the record for bryophytes has been sparse. We have engaged in
489 a program of plastid genome sequencing to expand the data available for liverworts, hornworts
490 and mosses. We have contributed 30 new bryophyte plastid genome sequences, and here,
491 have used the newly expanded set to draw phylogenetic comparisons across the 5' non-
492 coding sequences of high abundance *Marchantia* transcripts. These regions correspond to
493 mRNA termini that contain PPR protein binding sites in well-characterized angiosperm model
494 systems. These fine-detail comparisons revealed conserved nucleotide sequences that may
495 correspond to binding sites in *Marchantia*, and reflect an ancient origin for PPR-mediated
496 control of gene expression in chloroplasts.

497 The identification of these conserved domains, which are putative PPR protein binding
498 elements in the 5' UTRs of chloroplast mRNAs, has allowed us to assemble a modular library
499 of DNA parts that could confer transcript stability. In order to test the function of these novel
500 5' UTR elements, the candidate sequences were each assembled as components of gene
501 fusions between a chosen promoter and the mTurq2cp fluorescent protein coding sequence
502 and terminator. The novel genes were incorporated into chloroplast transformation vectors,
503 and homoplasmic transformants were generated. The levels of fluorescent protein expression
504 in transformed plants were measured by microscopy-based ratiometric imaging, western blot
505 analysis and protein extraction and quantitation. The presence of putative PPR protein binding
506 sites at the 5' termini of artificial mRNAs conferred markedly higher levels of reporter gene
507 expression. Mutations within the putative binding domains reduced levels of gene expression.
508 Highest levels of gene expression were seen in plants with reporter genes containing active
509 promoters and the 5' UTRs of *Mp-rbcL* and the *Mp-psbH-petB* intergenic region. A single
510 inserted gene of interest could produce up to 15% of total soluble protein. Analysis of the
511 growth rates of these plants showed that there was some penalty for hyperexpression in the
512 form of slower growth. Lowered growth rates did not correspond directly to the level of

513 ectopically expressed fluorescent protein, and it is possible that the mRNA transcripts
514 themselves may interfere with growth, perhaps through competition with native transcripts for
515 the different target PPR proteins. This indicates that conditional expression may be useful,
516 through regulation of transcription in the chloroplast, regulation of mRNA stability through
517 conditional expression of heterologous PPR proteins or supplementary expression of any
518 limiting PPR proteins.

519 The identification and domestication of these mRNA stabilizing elements allows the prospect
520 of enhanced gene design for engineering of the *Marchantia* plastid genome, to take advantage
521 of the speed of this experimental system. Both the hybrid *Nt-psbA* promoter-5' UTR *Mp-rbcL*
522 and native *Mp-rbcL* promoter-5' UTR sequences show high activity with minimal deleterious
523 effects on growth, and look promising for future work in *Marchantia*. The transformation,
524 regeneration and rescue of homoplasmonic transformants in tobacco may take 6-9 months, while
525 a similar experiment can take 8 weeks in *Marchantia*. Further, the vegetative life cycle for
526 *Marchantia* can take a little as 2 weeks, and a single cycle through the sexual phase will give
527 rise to millions of progeny as plant spores. *Marchantia* is a weed and can grow quickly. It may
528 be useful as a cheap, easy to maintain and high yielding platform for small-scale
529 bioproduction. Further, the DNA toolkit developed and characterized in *Marchantia* may
530 function in plastids from a wide variety of plants.

531

532 MATERIALS & METHODS

533

534 Chloroplast isolation

535 Chloroplast isolation buffer (CIB) composition: 50 mM HEPES-KOH pH7.5, 0.33 M sorbitol, 1
536 mM MgCl₂, 1 mM MnCl₂, 2 mM EDTA. 5 mM Na-ascorbate and 1% (w/v) BSA (final
537 concentration) were added immediately before use. Percoll® (#17-0891-02, GE Healthcare)
538 gradients were prepared as follows: 20mL 30% (v/v) Percoll solution was prepared by mixing
539 6mL Percoll and 14mL CIB. 10mL 70% (v/v) Percoll solution was prepared by mixing
540 7mL Percoll and 3mL CIB. For the preparation of 30%:70% (v/v) Percoll gradient, 15mL of 30%
541 (v/v) Percoll were placed into a 50mL Falcon tube and 6mL of 70% (v/v) Percoll solution was
542 carefully underlaid using a 5mL Gilson pipette.

543 Plants were grown in a 12h light : 12h dark cycle, and thallus tissue was harvested 2-3 hours
544 after the start of the light cycle to minimise the amount of starch accumulated in chloroplasts.
545 40g of tissue was split into four equal parts and each homogenised using a mortar and pestle
546 in 100mL of CIB. The homogenate was filtered through two layers of Miracloth (#475855,
547 Millipore) into six 50mL Falcon tubes and centrifuged at 1200 g for 7 min. The supernatant
548 was discarded and the pellet from each tube was carefully resuspended in 2mL of CIB using
549 a paint brush. The resuspended pellet was transferred to the top of a Percoll gradient using a
550 cut-off 1 mL pipette tip, and spun at 7000 g for 17 min at 4°C using slow acceleration and
551 deceleration. Broken chloroplasts resided in the top fraction, while intact chloroplasts
552 accumulated at the interface of the two Percoll layers. Chloroplasts from the interface were
553 transferred to a 50mL falcon tube. 25mL of CIB was added, and tubes were centrifuged at
554 1500 g for 5 min at 4°C. The supernatant was discarded and the pellet was flash frozen in
555 liquid N₂.

556

557 **RNA extraction**

558 RNA extraction was performed using the *miR*Vana™ miRNA Isolation Kit (#AM1560,
559 ThermoFisher/Ambion) according to manufacturer instructions. After RNA extraction, samples
560 were treated with DNase I using the TURBO DNA-free™Kit (#AM1907,
561 ThermoFisher/Ambion) following the manufacturer's instruction. The integrity of the DNase
562 treated RNA was confirmed by capillary electrophoresis using the Agilent Bioanalyzer and the
563 Agilent RNA 6000 Nano kit (#5067-1511, Agilent) according to the manufacturer's instructions.

564

565 **Differential RNA-sequencing**

566 Samples were treated and sequenced by vertis Biotechnologie AG, Germany. Detailed
567 protocol in Supplementary Fig. 2.

568

569 **Differential RNA-sequencing processing**

570 FASTQ read files were mapped against the Cam-1/2 plastid assembly (Genbank accession
571 no. MH635409) using STAR-2.7.3a (Dobin et al. 2013). First, we generated a STAR index for
572 the MH635409 assembly using the FASTA file of the assembly and existing genome
573 annotation in GTF format (with settings: --runMode genomeGenerate --sjdbOverhang 74 --
574 genomeSAindexNbases 7). We then used multi-sample two pass mapping. In the first pass,
575 samples were pooled and jointly mapped against the index to enable detection of unannotated
576 transcripts and splice junctions. We supplied the genome annotation at this step and used
577 conservative filtering of potential novel splice sites, (with settings: --alignIntronMax 800 --
578 outSJfilterCountUniqueMin 40 40 40 40 --outSJfilterCountTotalMin 50 50 50 50 --
579 sjdbOverhang 74). For the second pass we mapped each library against the index using both
580 the existing genome annotation and the list of novel junctions generated by the first pass,
581 using the same parameters as before. Mapping statistics for each library are provided in
582 Supplementary Table 1.

583 We split the SAM output files into reverse and forward mapped reads using samtools view (H.
584 Li et al. 2009) **XXX** and converted them to BAM format. Each file was sorted using samtools
585 sort and per base coverage calculated using samtools depth. Base coverage was normalised
586 and expressed as coverage per million mapped reads for each library. Coverage, data
587 processing and visualisation was performed in R version 3.5.1. Plots were generated using
588 ggplot2, ggbio (Yin, Cook, and Lawrence 2012) and circlize (Gu et al. 2014) packages.

589 Gene expression was quantified using kallisto (Bray et al. 2016). Protein coding transcript
590 sequences were extracted from the MH635409 assembly sequence and used to build a
591 kallisto index. FASTQ files from control libraries were processed using kallisto quant. Levels
592 of gene expression were reported in units of transcripts per million (TPM).

593

594 **TSS identification**

595 A 5' end was annotated as a TSS when it had: i) a coverage in both TEX+/TEX- libraries of
596 at least > 2 per million mapped reads, ii) a start at the same genomic position (nucleotide) in
597 both libraries and iii) an enrichment > 1 in the TEX+ library (109 putative TSS in total). A 5'
598 end that was not enriched in TEX+ libraries was accepted as a TSS if it extended into an

599 annotated gene (65 putative TSSs in total). We assigned 12 additional TSS that do not fall into
600 the above categories when they extended into an annotated gene and a PEP promoter motif
601 was predicted using MEME (Bailey et al. 2015).

602

603 **Marchantia PPR homolog prediction**

604 Orthofinder was used (Emms and Kelly 2015) for the identification of PPR and HAT homologs
605 between *M. polymorpha* and *A. thaliana* and *maize*.

606

607 **DNA extraction, sequencing and *de novo* bryophyte plastid genome assemblies**

608 DNA extraction, sequencing and *de novo* assembly of plastid genomes were performed
609 according to (Y. Yu et al. 2019). In addition, NGS data generated for a previous study (Y. Yu
610 et al. 2019; Liu, Medina, and Goffinet 2014) were used for *de novo* assembly of *Anomodon*
611 *attenuates*, *Atrichum angustatum*, *Bartramia pomiformis*, *Bryum argenteum*, *Entosthodon*
612 *attenuates*, *Funaria hygrometrica*, *Hypnum imponens*, *Orthotrichum stellatum*, *Ptychomnion*
613 *cygnisetum*, *Sphagnum palustre*, *Tetraphis pellucida* and *Ulota hutchinsiae* moss plastid
614 genome sequences. Assemblies were performed using GetOrganelle (J.-J. Jin et al. 2020)
615 (Supplementary Table 5). and annotated using GeSeq (Tillich et al. 2017). Genome
616 alignments were performed using MUSCLE (Edgar 2004a).

617

618 **Marchantia chloroplast DNA manipulation**

619 Genomic DNA was extracted according to (Sauret-Güeto et al. 2020). Constructs were
620 generated using DNA parts and vectors from the OpenPlant kit (Sauret-Güeto et al. 2020).
621 Construct sequences are listed in Supplementary Table 6. Primers used for construct
622 generation are listed in Supplementary Table 8. Chloroplast transformation was performed as
623 previously described in (Sauret-Güeto et al. 2020). The genotyping of transplastomic lines was
624 performed as previously described in (Sauret-Güeto et al. 2020). Genotyping primers used
625 are listed in Supplementary Table 8.

626

627 **Imaging**

628 Gemmae were plated on half strength Gamborg B5 plus vitamins (#G0210, Duchefa
629 Biochemie) with 1.2% (w/v) agar plates and placed in a growth cabinet for 3 days under
630 continuous light with 150 $\mu\text{E m}^{-2} \text{ s}^{-1}$ light intensity at 21 °C. A gene frame (#AB0576,
631 ThermoFisher) was positioned on a glass slide and 30 μL of half strength Gamborg B5 1.2%
632 (w/v) agar placed within the gene frame. 5 gemmae were then placed within the media filled
633 gene frame, 30 μL of milliQ water was added and then a cover slip was used to seal the
634 gene frame. Plants were then imaged immediately using an SP8 fluorescent confocal
635 microscope All images were acquired using the same instrument setting, Cyan and
636 chlorophyll. 16 Z stacks, 3 μm thickness.

637

638 Images were acquired on an upright Leica SP8X confocal microscope equipped with a 460-
639 670 nm supercontinuum white light laser, 2 CW laser lines 405nm, and 442 nm, and 5 channel
640 spectral scanhead (4 hybrid detectors and 1 PMT). Imaging was conducted using either a 20x
641 air objective (HC PL APO 20x/0.75 CS2) or a 40x water immersion objective (HC PL APO
642 40x/1.10 W CORR CS2). Excitation laser wavelength and captured emitted fluorescence

643 wavelength window were as follows: for mTurq2cp (442 nm, 460-485 nm) and for chlorophyll
644 autofluorescence (488 or 515, 670-700 nm). Chlorophyll autofluorescence was imaged
645 simultaneously with mTurq2cp.

646

647 **Plastid segmentation pipeline.**

648 Plastid segmentation was achieved using an automated Fiji macro as described previously
649 (Markel 2018), the source code is included in Supplementary Fig. 7c. In brief, the chlorophyll
650 autofluorescence channel was duplicated, and the new copy subjected to a series of
651 smoothing and thresholding steps using the Phansalkar algorithm (Phansalkar et al., n.d.),
652 and the subsequent segmented regions were split using a watershed algorithm. Regions of
653 interest were then used for quantification of marker gene and chlorophyll fluorescence and
654 analysis of plastid parameters such as size and shape. Analysis in Figure 5 is based on the
655 average fluorescence intensity within each ROI, with the CFP channel normalized by the
656 chlorophyll channel. The full dataset (including additional parameters such as maximum and
657 minimum fluorescence intensity within each ROI as well as area of ROIs) is included as
658 Supplementary Table 7.

659

660 **Western blotting**

661 *Marchantia* thallus tissue (100 mg) was excised from plants grown for 4 weeks on half strength
662 Gamborg B5 medium including vitamins with 1.2% (w/v) agar, at 21 °C in continuous light, 150
663 $\mu\text{E m}^{-2} \text{s}^{-1}$ and ground in liquid nitrogen. The tissue powder was resuspended in 500 μL 5×
664 Laemmli loading buffer (0.2 M Tris-HCl pH 6.8, 5 % w/v SDS, 25 % v/v glycerol, 0.25 M DTT,
665 0.05 % w/v bromophenol blue) with added Roche cOmplete protease inhibitor (#
666 11836170001, Roche. Samples were further diluted 21 times in 5x Laemmli loading buffer
667 containing Roche protease inhibitor, heated at 95 °C for 5 minutes and centrifuged at 1000 g
668 for 10 minutes. The supernatant was transferred to a new tube. Equal amounts of proteins
669 were separated by denaturing electrophoresis in NuPAGE gel (#NP0322BOX, Invitrogen) and
670 electro-transferred to nitrocellulose membranes using the iBlot2 Dry Blotting System
671 (ThermoFisher). mTurq2cp was immunodetected with anti-GFP antibody (1:4000 dilution) (JL-
672 8, #632380, Takara) and anti-mouse-HRP (1:15000 dilution) (#A9044, Sigma) antibodies.
673 Actin was immunodetected with anti-actin (plant) (1:1500 dilution) (#A0480, Sigma) and
674 (1:15000 dilution) anti-mouse-HRP (#A9044, Sigma) antibodies, using the iBind™ Western
675 Starter Kit (#SLF1000S, ThermoFisher). Western blots were visualised using the ECL™ Select
676 Western Blotting Detection Reagent (#GERPN2235, GE) following the manufacturer's
677 instructions. Images were acquired using a Syngene Gel Documentation system G:BOX F3.

678

679 **Plant biomass estimation**

680 For each line 30 gemmae were placed on two petri dishes with 25mL of media (half strength
681 Gamborg B5 plus vitamins) and grown for a month, at 21 °C, with continuous light, 150 μE
682 $\text{m}^{-2} \text{s}^{-1}$. The fresh and dry weight was measured using a scale.

683

684

685

686 **Total soluble protein estimation**

687 Marchantia thallus tissue (200 mg) from 4 week old plants grown on half strength Gamborg

688 B5 medium including vitamins and 1.2% (w/v) agar, at 21 °C in continuous light, 150 μ E m⁻²

689 s⁻¹ was ground in liquid nitrogen and resuspended in 700 μ L protein extraction buffer (50 mM

690 Tris-HCl pH 7.5, 150 mM NaCl, TWEEN 20 0.1% (v/v), 10 % (v/v) glycerol, 1 mM DTT) plus

691 Roche cOmplete protease inhibitor (# 11836170001, Roche). Total soluble protein

692 concentration was estimated using a Pierce™ 660nm Protein Assay Kit as above (#22662,

693 Thermo Scientific).

694

695 **Protein yield estimation**

696 *E. coli* BL21 Star (DE3) (#C601003, Invitrogen,) was transformed with the pCRB SREI6His

697 plasmid (Boehm et al., 2016) to express the mTurquoise2 protein. A culture of 10 mL was

698 used to inoculate 250 mL of LB medium supplemented with ampicillin and grown in 2.5L

699 baffled Tunair™ shake flasks (#Z710822, Sigma Aldrich) at 37°C with vigorous shaking (200

700 rpm). Cultures were monitored by spectrophotometry until OD600 reached 0.6. T7 RNA

701 polymerase expression was induced by the addition of IPTG to a final concentration of 1 mM.

702 Cultures were grown for 5 h at 30 °C, with shaking at 200 rpm. Cells were then harvested by

703 centrifugation at 5000g for 12 min at 4 °C. To purify the recombinant protein under native

704 conditions, the pellet was processed using the Ni-NTA Fast Start Kit (#30600, Qiagen), and

705 cells were disrupted by lysozyme and detergent treatment according to the manufacturer's

706 instructions. Purified protein was concentrated using an Amicon Filter 3K (#UFC500324,

707 Millipore). In order to avoid any interference with downstream procedures, imidazole was

708 removed using a Zeba™ spin desalting column (#89882, Thermo Scientific) following the

709 manufacturer's protocol. Purified protein was stored in 50 mM sodium phosphate, pH 7.4 with

710 5 mM benzamidine at -20 °C.

711 The concentration of the mTurquoise2 protein was determined using a Pierce™ 660nm

712 Protein Assay Kit (#22662, Thermo Scientific) and used as reference to build a mTurquoise2

713 standard curve (linear regression) based on fluorescence (random fluorescence units (RFU))

714 against concentration.

715 This curve was employed to estimate mTurq2cp protein amount in Marchantia samples

716 (prepared following the same steps described in the total soluble protein estimation) per gram

717 of tissue. Samples values were adjusted by subtracting the fluorescence values of the blank.

718 In all the cases, a CLARIOstar (BMG) plate reader was used with an excitation and emission

719 wavelength appropriate for mTurq2cp measurement (excitation:430-20 nm, emission: 474-20

720 nm, gain 500 nm).

721

722

723

724

725

726

727
728
729
730

731 **Acknowledgements**

732

733 We are thankful to Suvia Honkanen for advice throughout the project.
734 This work was funded as part of the BBSRC/EPSRC OpenPlant Synthetic Biology Research
735 Centre Grant BB/L014130/1 to J.H., BBSRC BB/F011458/1 for confocal microscopy to J.H.,
736 BBSRC Research Studentships for M.R. (1943399) and National Natural Science Foundation
737 of China (NSFC) (No. 31970227) to YY.

738

739

740

741 **Author contributions**

742

743 JH and EF designed the project. EF and MR analysed the dRNASeq data, EF, JR and SWT
744 performed cloning, EF and SSG carried out imaging, KM developed and performed imaging
745 analysis, EF, AP and FGC performed protein western blotting and protein yield estimation, YY
746 and HS sequenced bryophyte plastid genomes, YL and BG provided the NGS data for the
747 moss plastid genome assemblies. JH and EF wrote the manuscript and all authors commented
748 on the manuscript.

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

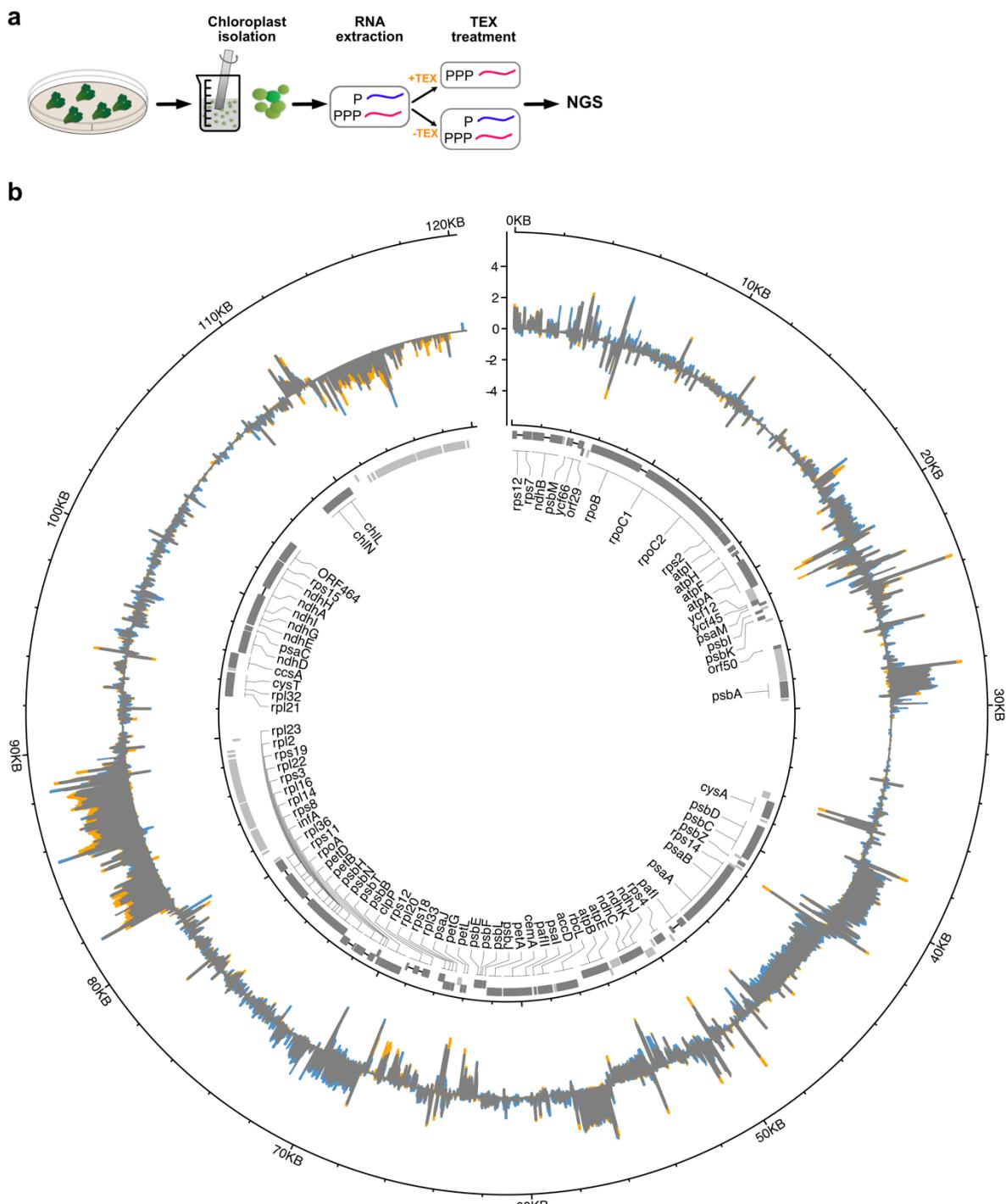
766

767

768

769

770


771

772

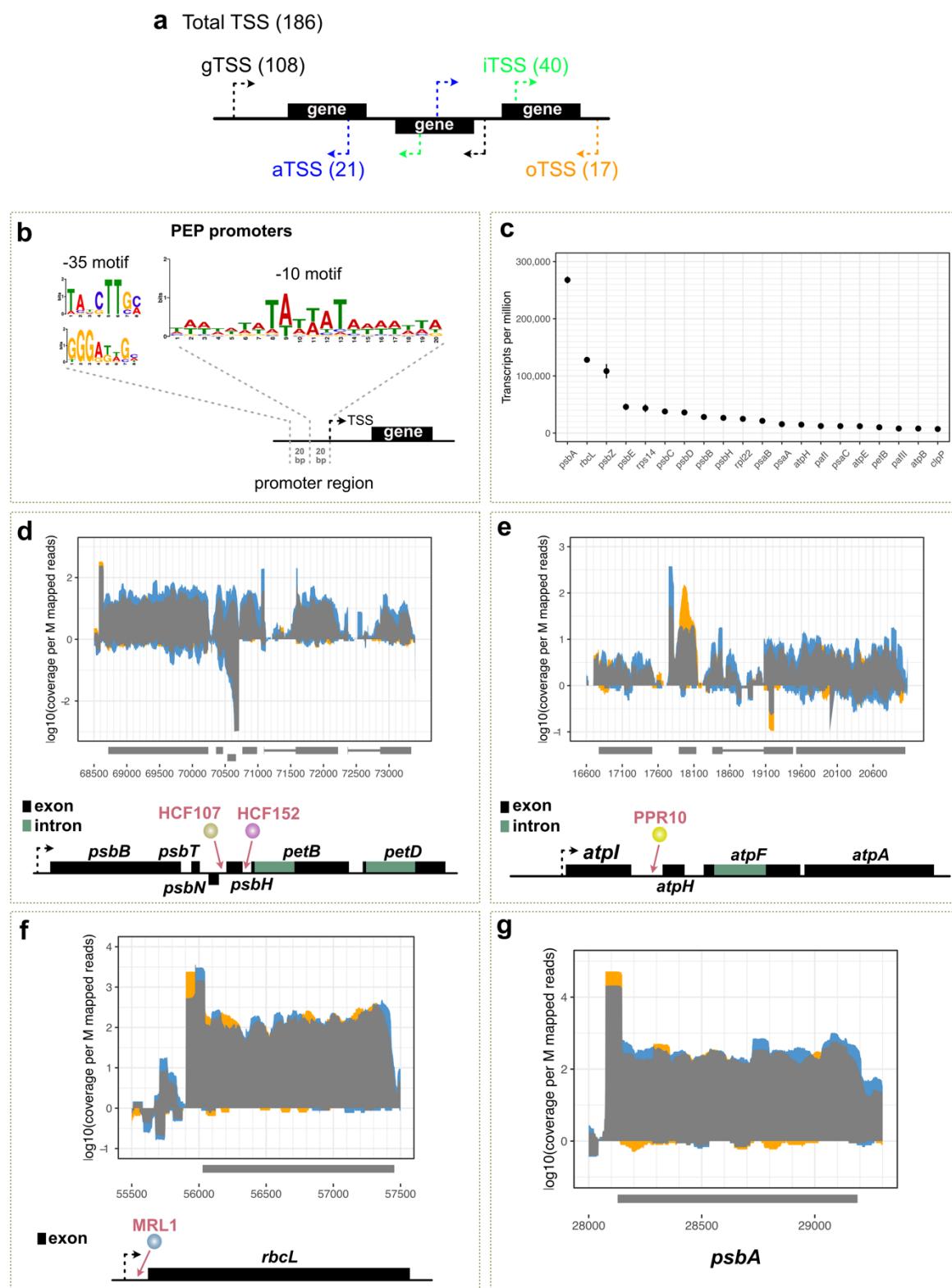
773

774
775
776
777
778
779
780
781
782
783

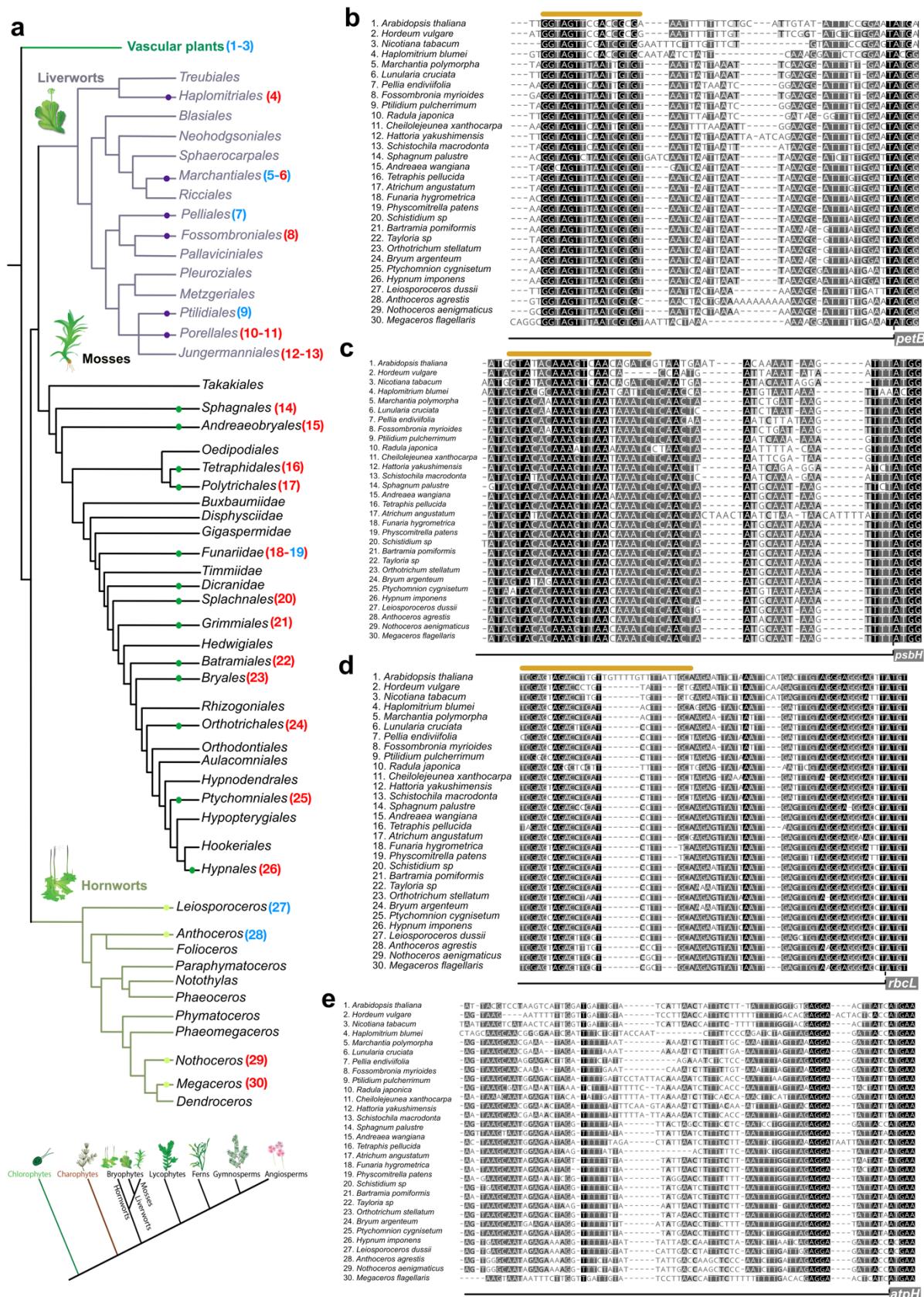
FIGURES

784

785
786
787
788
789
790


791 **Fig. 1: a)** Outline of dRNAseq pipeline: The plant tissue is collected and homogenised. Intact
792 chloroplasts are isolated from homogenised plant tissue, RNA is extracted and then subjected
793 to treatment with the terminator exonuclease (TEX) enzyme. TEX degrades RNAs with a 5'
794 monophosphate (processed transcripts) but not with a 5' triphosphate (primary transcripts).
795 Consequently, the comparison of next generation sequencing libraries generated from TEX
796 treated (TEX+) and non-treated (TEX-) samples can be used to identify the protected primary
797 transcripts and their TSSs. The identification of TSS allows also the more accurate mapping
798 of promoter regions.

799
800


b) dRNAseq in *Marchantia*.

801 Outer circle: Mapped reads of TEX treatment (TEX+ libraries) and non-enriched (TEX-
802 libraries) mapped on *M. polymorpha* accession Cam1/2 accession plastid genome
803 (MH635409). Forward strand coverage faces outwards, reverse strand coverage faces
804 inwards. Y-axis: log10 coverage per million mapped reads. Blue: excess TEX- coverage (TEX-
805 enrichment), Orange: excess TEX+ coverage (TEX+ enrichment), Grey: TEX- = TEX+. Inner
806 circle depicts the gene organization of the *Marchantia* plastid genome. Protein coding genes
807 are shown in dark grey, boxes show coding sequences and lines introns. Non-coding genes
808 are shown as light grey boxes. Boxes for genes encoded clockwise face outwards, those
809 encoded counterclockwise strand genes face inwards. Gene names are shown for protein
810 coding genes in the centre.

811

818 **Fig. 2:** a) Graphical summary of different species of TSSs identified in *Marchantia* plastid
819 genome using dRNAseq. A total of 186 potential TSSs, with the most abundant species
820 associated with tRNAs. The identified TSSs could be further grouped into four categories
821 based on their genomic location: i) gene TSSs (gTSSs), found within a region upstream of
822 annotated genes, ii) internal TSSs (iTSSs) found within annotated genes and giving rise to
823 sense transcripts, iii) antisense TSSs (aTSSs) located on the opposite strand within annotated
824 genes and giving rise to antisense transcripts; and iv) orphan TSSs (oTSSs). In total 108
825 gTSSs, 40 iTSSs, 21 aTSSs and 17 oTSSs were mapped.
826 b) MEME (Bailey et al. 2015) analysis discovered a -10 PEP consensus element upstream of
827 140 TSSs (e-value 5.3e-028). Two -35 PEP consensus motifs were predicted in 25 out of the
828 140 sequences. Top: 16 sequences (e-value: 2.5e+001) Bottom: 9 sequences (e-value: 8.4e-
829 002).
830 .
831 c) Top 20 genes, excluding tRNAs and rRNAs, with the highest expression levels (TPM) in
832 *Marchantia* chloroplast.
833
834 d-g) Primary transcript enriched (TEX+ libraries) and non-enriched (TEX- libraries) mapped
835 on the genomic location of d) *Mp-psbB* operon and e) large *Mp-atp* operon f) *Mp-rbcL* and g)
836 *Mp-psbA*. X-axis: genomic position. Y-axis: coverage per million of mapped reads. Blue:
837 excess TEX- coverage (TEX-enrichment), Orange: excess TEX+ coverage (TEX+
838 enrichment) and Grey is TEX- = TEX+. Operon maps are depicted below the graphs
839
840 d) The *psbB* operon comprises five genes: *psbB*, *psbT*, *psbH*, *petB* and *petD*. Each of the
841 *petB* and *petD* genes contains an intron. The *psbN* gene, which is encoded in the intercistronic
842 region between *psbH* and *psbT*, is transcribed in the opposite direction. In *Marchantia* we
843 identified a TSS 144 bp upstream the *psbB* gene, 47 bp upstream the *psbN* gene, 36 bp
844 upstream the *psbH* gene and 43 bp upstream the *petB* gene. In *Arabidopsis* the HCF152 PPR
845 protein binds to a sequence located in the 5' untranslated region of the *petB* chloroplast gene
846 stabilising RNA transcripts against 5'→3' exonuclease degradation (Meierhoff et al. 2003). The
847 HCF107 protein binds upstream *psbH* to stabilize the *psbH* transcript and activates *psbH*
848 translation (Felder et al. 2001).
849
850 e) The large *atp* operon is composed of four genes: *atpI*, *atpH*, *atpF* and *atpA*. In *Marchantia*
851 we identified a TSS 73 bp upstream the *atpI* gene and an internal TSS (*atpI*) 143 bp upstream
852 the *atpH* gene. In maize the PPR10 protein binds to a sequence located in the 5' untranslated
853 region of the *atpH* chloroplast gene and has been found to play a role in controlling translation
854 by defining and stabilising the termini, protecting them from exonucleases (Pfalz et al. 2009).
855
856 f) We identified a TSS 124 bp upstream the *rbcL* gene. In *Arabidopsis* the MRL1 PPR protein
857 binds to a sequence located in the 5' untranslated region of the *rbcL* chloroplast gene, acting
858 as a barrier to 5'→3' degradation (Pfalz et al. 2009; Johnson et al. 2010).
859
860 g) We identified a TSS 54 bp upstream the *psbA* gene.
861
862
863
864

868 **Fig. 3: a)** Bryophyte phylogeny modified from (Liu et al. 2019) using the most recent
869 phylogenetic inference about the relationship of bryophytes (F.-W. Li et al. 2020). Numbers
870 next to Order names indicate sampled species which were included in our analysis. Bottom:
871 Land plant phylogenetic tree based on (F.-W. Li et al. 2020) with bryophytes being
872 monophyletic and hornworts being sister to mosses and liverworts

873 **b-e)** Multiple sequence alignments, using MUSCLE (Edgar 2004a), of upstream nucleotide
874 sequences of *petB* (b), *psbH* (c), *rbcL* (d), and *atpH* (e) genes from 27 different bryophyte
875 species and three angiosperms. Numbers next to species names correspond to the
876 phylogenetic Order in (a). ATG site is indicated with a dashed line. Coding sequence is
877 indicated with a grey box. The predicted PPR binding site is highlighted by an orange line
878 above. The coloring used for that column depends on the fraction of the column that is made
879 of letters from this group. Black: 100% similar, dark-grey 80-100% similar, lighter grey: 60%-
880 80% similar, white: less than 60% similar.

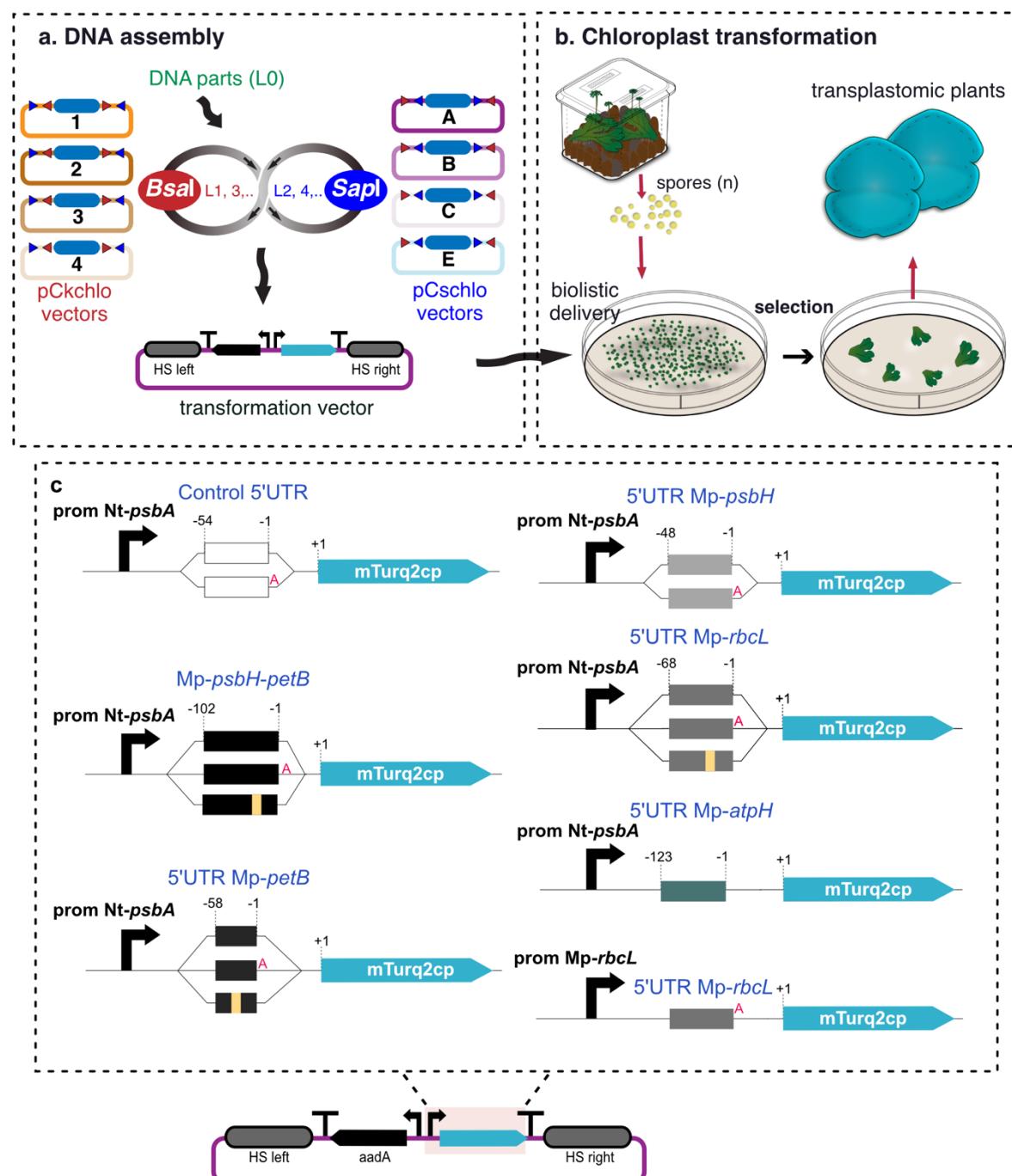
881

882

883

884

885


886

887

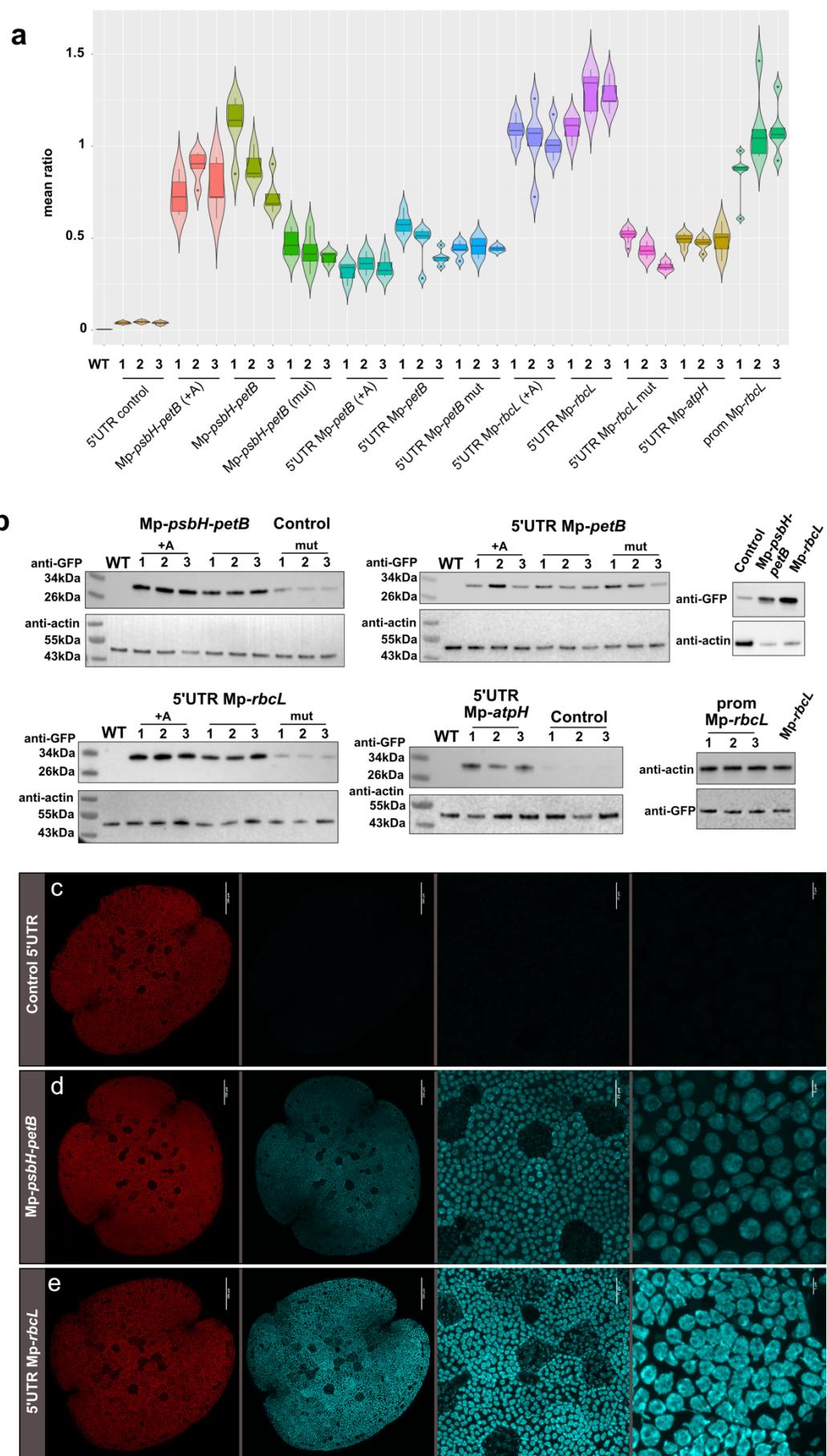
888

889

890

891
892
893
894
895
896
897
898
899
900
901
902

903 **Fig. 4:**


904 **a) Chloroplast Loop assembly overview**

905 Level 0 (L0) DNA parts are assembled in Level 1 (L1) transcription units (TUs) into one of the
906 four pCkchlo vectors, depicted with numbered circles, by *Bsal*-mediated Type IIS assembly
907 (sequential restriction enzyme digestion and ligation reactions). L1 TUs are assembled to
908 Level 2 (L2) multi-TUs into one the four pCschlo vectors by *Sapl*-mediated Type IIS assembly.
909 The recursive nature of Loop assembly means that this workflow can be repeated for higher
910 level assemblies (L3, L4 etc). *Bsal* and *Sapl* recognition site represented with red and blue
911 triangles respectively. HS: homologous sequences, bended arrows: promoters, arrows:
912 coding sequences and “T”: terminators. Blue filled rectangle: LacZ bacteria selection cassette.
913

914 **b) Microboxes** are used to produce spores. 7 day old sporelings are bombarded with DNAdelTM
915 nanoparticles coated with the desired DNA construct. After bombardment, sporelings are
916 plated on selective media, and after 4 weeks successful transformants start to be visible. After
917 a second round of selection (4 weeks), gemmae are produced and can be tested for
918 homoplasmy by genotyping PCR.
919

920 **c) Top:** Schematic representation of different constructs. Boxes represent the 5' UTR region
921 used. Numbers above the boxes correspond to the nucleotide position in relation to the CDS
922 first nucleotide. Red “A” indicates the extra adenine nucleotide introduced by the common
923 syntax. Cloned the region between *Mp-psbH* and *Mp-petB* (*Mp-psbH-petB*, 104 bp in length),
924 58 bp upstream of the *Mp-petB*, 48 bp upstream of *psbH*, 68 bp upstream of *MprbcL* and 123
925 bp upstream of *Mp-atpH* and. The amplified sequences were then fused with the *Nt-psbA*
926 promoter (61 bp) and the mTurq2cp fluorescent protein coding sequence. The promoter and
927 5'UTR region (185 bp) of *Mp-rbcL* was also fused to mTurq2cp. All constructs were generated
928 using the OpenPlant kit and Loop assembly.
929

930 **Bottom:** Schematic representation of a L2 Loop construct to express the chloroplast codon
931 optimized mTurq2cp fluorescent protein (Boehm et al., 2016) under the control of the tobacco
932 *Nt-psbA* promoter and different combinations of PPR binding sequences (top figure) using the
933 left and right homologous sequences for integration in the chloroplast *rbcL-trnR* intergenic
934 region (Sauret-Güeto et al. 2020).
935
936
937
938
939
940
941
942
943
944

946

947 **Fig. 5: Foreign protein accumulation in transplastomic lines harbouring various**
948 **candidate stabilisation elements.**

949

950 **a) Mean ratio of cyan and chlorophyll fluorescence**

951 Five gemmae per line, for three lines per construct, were imaged and the ratio of cyan to
952 chlorophyll fluorescence was calculated. 5'UTR Mp-*rbcL* confers the highest levels of
953 expression followed by Mp-*psbH-petB*. 5'UTR-MppetB and 5'UTR Mp-*atpH* have similar levels
954 of expression. Expression levels are reduced for both when the predicted PPR binding
955 sequence is mutated. The addition of an adenine between the 5'UTR and the mTurq2cp
956 coding sequence does not affect the expression of mTurq2cp.

957

958 **b) Western blots**

959 Immunoblot analysis of mTurq2 accumulation in transplastomic lines. Total cellular proteins
960 were separated by denaturing gel electrophoresis, blotted and probed with anti-GFP and anti-
961 actin antibodies. Control 5'UTR, Mp-*psbH-petB*, 5'UTR Mp-*petB*, 5'UTR Mp-*rbcL* and 5'UTR
962 Mp-*atpH*. +A: Adenine introduced by the common syntax present between the 5'UTR and the
963 mTurq2cp coding sequence, Mut: predicted PPR binding sequence mutated. Numbers
964 correspond to three independent lines per construct used.

965

966 **c-e)** Microscopy images of *Marchantia* transplastomic 0 day gemmae expressing the
967 mTurq2cp fluorescent protein under the control of the Nt-*psbA* promoter fused to different
968 candidate stabilisation sequences: control 5'UTR, Mp-*psbH-petB*, and 5'UTR MprbcL. From
969 left to right; first panel: Chlorophyll autofluorescence channel (Scale bars: 100 μ m), second
970 Panel: mTurq2cp channel (Scale bars: 100 μ m), third and fourth panel: Higher magnification
971 images showing mTurq2cp accumulation inside the chloroplasts of all cells (Scale bars: 20
972 μ m and 5 μ m, respectively). All images acquired using identical instrument settings. 5'UTR
973 MprbcL confers the highest levels of expression followed by Mp-*psbH* - Mp-*petB*.

974

975

976

977

978

979

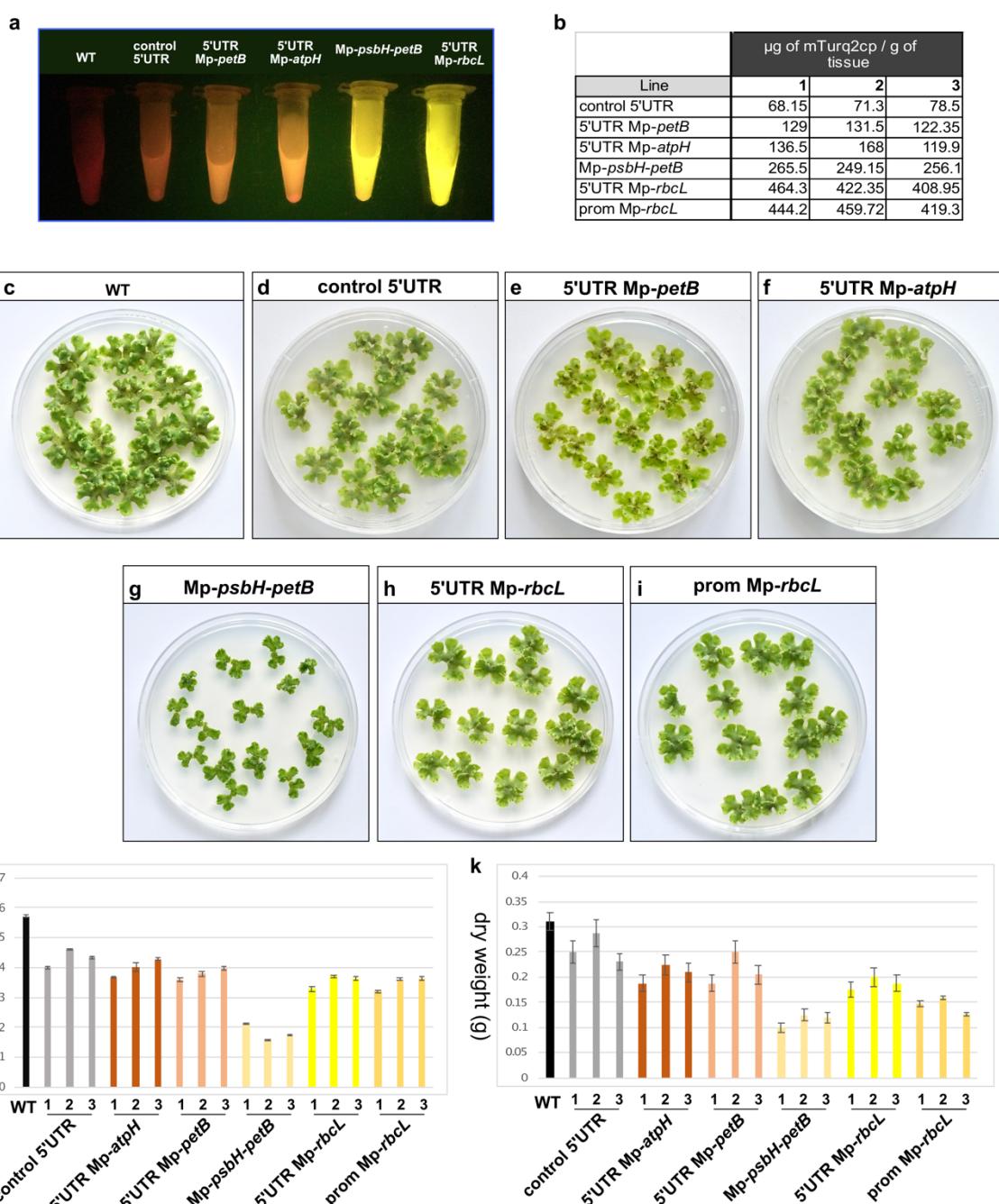
980

981

982

983

984


985

986

987

988

989

990
991
992
993
994
995
996
997
998
999
1000

1001 **Fig. 6:**

1002 **a)** Total protein extract from 200mg of 1 month old gemmae under blue light transillumination.
1003 Red corresponds to chlorophyll autofluorescence and yellow to mTurq2cp fluorescence.
1004 Extract from plants transformed with the construct containing 5'UTR MprbcL are exhibiting the
1005 brightest fluorescence.

1006

1007 **b)** Estimation of μg of mTurq2cp/g of fresh tissue, for three independent lines per construct.

1008

1009 **c-i)** Comparison of growth between wild type and transplastomic *Marchantia* one month old
1010 gemmae expressing different constructs. All transplastomic plants showed a reduction in
1011 growth and biomass. Plants transformed with the construct containing the Mp-psbH - 5'UTR
1012 Mp-petB sequence showed the most extreme growth reduction phenotype.

1013

1014 **j-k)** The fresh and dry weight was measured for 30 one month old gemmae, and the average
1015 values of two different experiments are shown on graphs I and J. Plants transformed with the
1016 construct containing the 5'UTR Mp-rbcL, even though they express the highest levels of
1017 mTurq2cp, they only showed an approximately 35% reduction in biomass. Error bars: standard
1018 error.

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049
1050
1051
1052
1053

REFERENCES

- 1054 Adem, Muhamed, Dereje Beyene, and Tileye Feyissa. 2017. "Recent Achievements
1055 Obtained by Chloroplast Transformation." *Plant Methods*.
1056 <https://doi.org/10.1186/s13007-017-0179-1>.
- 1057 Bailey, Timothy L., James Johnson, Charles E. Grant, and William S. Noble. 2015. "The
1058 MEME Suite." *Nucleic Acids Research* 43 (W1): W39–49.
- 1059 Barkan, Alice, and Ian Small. 2014. "Pentatricopeptide Repeat Proteins in Plants." *Annual
1060 Review of Plant Biology* 65 (January): 415–42.
- 1061 Boehm, Christian R., Bernardo Pollak, Nuri Purswani, Nicola Patron, and Jim Haseloff. 2017.
1062 "Synthetic Botany." *Cold Spring Harbor Perspectives in Biology* 9 (7).
1063 <https://doi.org/10.1101/csdperspect.a023887>.
- 1064 Boehm, Christian R., Minoru Ueda, Yoshiki Nishimura, Toshiharu Shikanai, and Jim
1065 Haseloff. 2016. "A Cyan Fluorescent Reporter Expressed from the Chloroplast Genome
1066 of Marchantia Polymorpha." *Plant & Cell Physiology* 57 (2): 291–99.
- 1067 Bowman, John L., Takayuki Kohchi, Katsuyuki T. Yamato, Jerry Jenkins, Shengqiang Shu,
1068 Kimitsune Ishizaki, Shohei Yamaoka, et al. 2017. "Insights into Land Plant Evolution
1069 Garnered from the Marchantia Polymorpha Genome." *Cell* 171 (2): 287–304.e15.
- 1070 Bray, Nicolas L., Harold Pimentel, Pál Melsted, and Lior Pachter. 2016. "Near-Optimal
1071 Probabilistic RNA-Seq Quantification." *Nature Biotechnology* 34 (5): 525–27.
- 1072 Chiyoda, Shota, Katsuyuki T. Yamato, and Takayuki Kohchi. 2014. "Plastid Transformation
1073 of Sporelings and Suspension-Cultured Cells from the Liverwort Marchantia Polymorpha
1074 L." *Methods in Molecular Biology* 1132: 439–47.
- 1075 Cosa, Brandy De, Brandy De Cosa, William Moar, Seung-Bum Lee, Michael Miller, and
1076 Henry Daniell. 2001. "Overexpression of the Bt cry2Aa2 Operon in Chloroplasts Leads
1077 to Formation of Insecticidal Crystals." *Nature Biotechnology*.
1078 <https://doi.org/10.1038/83559>.
- 1079 Dobin, Alexander, Carrie A. Davis, Felix Schlesinger, Jorg Drenkow, Chris Zaleski, Sonali
1080 Jha, Philippe Batut, Mark Chaisson, and Thomas R. Gingeras. 2013. "STAR: Ultrafast
1081 Universal RNA-Seq Aligner." *Bioinformatics*.
1082 <https://doi.org/10.1093/bioinformatics/bts635>.
- 1083 Edgar, Robert C. 2004a. "MUSCLE: Multiple Sequence Alignment with High Accuracy and
1084 High Throughput." *Nucleic Acids Research* 32 (5): 1792–97.
- 1085 ———. 2004b. "MUSCLE: A Multiple Sequence Alignment Method with Reduced Time and
1086 Space Complexity." *BMC Bioinformatics* 5 (August): 113.
- 1087 Emms, David M., and Steven Kelly. 2015. "OrthoFinder: Solving Fundamental Biases in
1088 Whole Genome Comparisons Dramatically Improves Orthogroup Inference Accuracy."
1089 *Genome Biology* 16 (August): 157.
- 1090 Felder, S., K. Meierhoff, A. P. Sane, J. Meurer, C. Driemel, H. Plücken, P. Klaff, B. Stein, N.
1091 Bechtold, and P. Westhoff. 2001. "The Nucleus-Encoded HCF107 Gene of Arabidopsis
1092 Provides a Link between Intercistronic RNA Processing and the Accumulation of
1093 Translation-Competent psbH Transcripts in Chloroplasts." *The Plant Cell* 13 (9): 2127–
1094 41.
- 1095 Gutmann, Bernard, Santana Royan, Mareike Schallenberg-Rüdinger, Henning Lenz, Ian R.

- 1096 Castleden, Rose McDowell, Michael A. Vacher, et al. 2020. "The Expansion and
1097 Diversification of Pentatricopeptide Repeat RNA-Editing Factors in Plants." *Molecular*
1098 *Plant* 13 (2): 215–30.
- 1099 Gu, Zuguang, Lei Gu, Roland Eils, Matthias Schlesner, and Benedikt Brors. 2014. "Circlize
1100 Implements and Enhances Circular Visualization in R." *Bioinformatics* 30 (19): 2811–
1101 12.
- 1102 Hayashi, Keiko, Takashi Shiina, Nao Ishii, Kayou Iwai, Yoko Ishizaki, Kazuya Morikawa, and
1103 Yoshinori Toyoshima. 2003. "A Role of the –35 Element in the Initiation of Transcription
1104 at psbA Promoter in Tobacco Plastids." *Plant and Cell Physiology*.
1105 <https://doi.org/10.1093/pcp/pcg041>.
- 1106 Hennig, Anna, Katharina Bonfig, Thomas Roitsch, and Heribert Warzecha. 2007.
1107 "Expression of the Recombinant Bacterial Outer Surface Protein A in Tobacco
1108 Chloroplasts Leads to Thylakoid Localization and Loss of Photosynthesis." *The FEBS*
1109 *Journal* 274 (21): 5749–58.
- 1110 Hess, W. R., and T. Börner. 1999. "Organellar RNA Polymerases of Higher Plants."
1111 *International Review of Cytology* 190: 1–59.
- 1112 Ichinose, Mizuho, and Mamoru Sugita. 2016. "RNA Editing and Its Molecular Mechanism in
1113 Plant Organelles." *Genes* 8 (1). <https://doi.org/10.3390/genes8010005>.
- 1114 Jin, Jian-Jun, Wen-Bin Yu, Jun-Bo Yang, Yu Song, Claude W. dePamphilis, Ting-Shuang Yi,
1115 and De-Zhu Li. 2020. "GetOrganelle: A Fast and Versatile Toolkit for Accurate de Novo
1116 Assembly of Organelle Genomes." *Genome Biology* 21 (1): 241.
- 1117 Jin, Shuangxia, and Henry Daniell. 2015. "The Engineered Chloroplast Genome Just Got
1118 Smarter." *Trends in Plant Science*. <https://doi.org/10.1016/j.tplants.2015.07.004>.
- 1119 Johnson, Xenie, Katia Wostrikoff, Giovanni Finazzi, Richard Kuras, Christian Schwarz,
1120 Sandrine Bujaldon, Joerg Nickelsen, David B. Stern, Francis-André Wollman, and
1121 Olivier Vallon. 2010. "MRL1, a Conserved Pentatricopeptide Repeat Protein, Is
1122 Required for Stabilization of rbcL mRNA in Chlamydomonas and Arabidopsis." *The*
1123 *Plant Cell* 22 (1): 234–48.
- 1124 Kanamoto, Hirosuke, Atsushi Yamashita, Hiroshi Asao, Satoru Okumura, Hisabumi Takase,
1125 Masahira Hattori, Akiho Yokota, and Ken-Ichi Tomizawa. 2006. "Efficient and Stable
1126 Transformation of *Lactuca Sativa* L. Cv. Cisco (lettuce) Plastids." *Transgenic Research*
1127 15 (2): 205–17.
- 1128 Kijak, Hanna, Weronika Łodyga, and Ireneusz J. Odrzykoski. 2018. "Sequence Diversity of
1129 Two Chloroplast Genes: rps4 and tRNAGly (UCC), in the Liverwort *Marchantia*
1130 *Polymorpha*, an Emerging Plant Model System." *Acta Societatis Botanicorum Poloniae*.
1131 <https://doi.org/10.5586/asbp.3573>.
- 1132 Kuroda, Hiroshi, and Pal Maliga. 2002. "Overexpression of the clpP 5'-Untranslated Region
1133 in a Chimeric Context Causes a Mutant Phenotype, Suggesting Competition for a clpP-
1134 Specific RNA Maturation Factor in Tobacco Chloroplasts." *Plant Physiology* 129 (4):
1135 1600–1606.
- 1136 Legen, Julia, Stephanie Ruf, Xenia Kroop, Gongwei Wang, Alice Barkan, Ralph Bock, and
1137 Christian Schmitz-Linneweber. 2018. "Stabilization and Translation of Synthetic Operon-
1138 Derived mRNAs in Chloroplasts by Sequences Representing PPR Protein-Binding
1139 Sites." *The Plant Journal: For Cell and Molecular Biology* 94 (1): 8–21.
- 1140 Li, Fay-Wei, Tomoaki Nishiyama, Manuel Waller, Eftychios Fragedakis, Jean Keller, Zheng
1141 Li, Noe Fernandez-Pozo, et al. 2020. "Anthoceros Genomes Illuminate the Origin of
1142 Land Plants and the Unique Biology of Hornworts." *Nature Plants* 6 (3): 259–72.
- 1143 Li, Heng, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor Marth,

- 1144 Goncalo Abecasis, Richard Durbin, and 1000 Genome Project Data Processing
1145 Subgroup. 2009. "The Sequence Alignment/Map Format and SAMtools." *Bioinformatics*
1146 25 (16): 2078–79.
- 1147 Liu, Yang, Matthew G. Johnson, Cymon J. Cox, Rafael Medina, Nicolas Devos, Alain
1148 Vanderpoorten, Lars Hedenäs, et al. 2019. "Resolution of the Ordinal Phylogeny of
1149 Mosses Using Targeted Exons from Organellar and Nuclear Genomes." *Nature
1150 Communications* 10 (1): 1485.
- 1151 Liu, Yang, Rafael Medina, and Bernard Goffinet. 2014. "350 My of Mitochondrial Genome
1152 Stasis in Mosses, an Early Land Plant Lineage." *Molecular Biology and Evolution* 31
1153 (10): 2586–91.
- 1154 Lohse, Marc, Oliver Drechsel, Sabine Kahlau, and Ralph Bock. 2013.
1155 "OrganellarGenomeDRAW—a Suite of Tools for Generating Physical Maps of Plastid
1156 and Mitochondrial Genomes and Visualizing Expression Data Sets." *Nucleic Acids
1157 Research* 41 (W1): W575–81.
- 1158 Lössl, Andreas, Karen Bohmert, Hans Harloff, Christian Eibl, Stefan Mühlbauer, and Hans-
1159 Ulrich Koop. 2005. "Inducible Trans-Activation of Plastid Transgenes: Expression of the
1160 R. Eutrophaphb Operon in Transplastomic Tobacco." *Plant and Cell Physiology*.
1161 <https://doi.org/10.1093/pcp/pci157>.
- 1162 Lyubetsky, Vassily A., Lev I. Rubanov, and Alexandr V. Seliverstov. 2010. "Lack of
1163 Conservation of Bacterial Type Promoters in Plastids of Streptophyta." *Biology Direct* 5
1164 (May): 34.
- 1165 Malik Ghulam, Mustafa, Florence Courtois, Silva Lerbs-Mache, and Livia Merendino. 2013.
1166 "Complex Processing Patterns of mRNAs of the Large ATP Synthase Operon in
1167 *Arabidopsis* Chloroplasts." *PLoS One* 8 (11): e78265.
- 1168 Markel, Kasey. 2018. "Improved Plastid Transformation in Marchantia Polymorpha."
1169 University of Cambridge. <https://www.repository.cam.ac.uk/handle/1810/284386>.
- 1170 Meierhoff, Karin, Susanne Felder, Takahiro Nakamura, Nicole Bechtold, and Gadi Schuster.
1171 2003. "HCF152, an *Arabidopsis* RNA Binding Pentatricopeptide Repeat Protein Involved
1172 in the Processing of Chloroplast psbB-psbT-psbH-petB-petD RNAs." *The Plant Cell* 15
1173 (6): 1480–95.
- 1174 Oey, Melanie, Marc Lohse, Bernd Kreikemeyer, and Ralph Bock. 2009. "Exhaustion of the
1175 Chloroplast Protein Synthesis Capacity by Massive Expression of a Highly Stable
1176 Protein Antibiotic." *The Plant Journal: For Cell and Molecular Biology* 57 (3): 436–45.
- 1177 Ortelt, Jennifer, and Gerhard Link. 2014. "Plastid Gene Transcription: Promoters and RNA
1178 Polymerases." *Methods in Molecular Biology*. https://doi.org/10.1007/978-1-62703-995-6_3.
- 1179 Patron, Nicola J., Diego Orzaez, Sylvestre Marillonnet, Heribert Warzecha, Colette
1180 Matthewman, Mark Youles, Oleg Raitskin, et al. 2015. "Standards for Plant Synthetic
1181 Biology: A Common Syntax for Exchange of DNA Parts." *The New Phytologist* 208 (1):
1182 13–19.
- 1183 Pfalz, Jeannette, Omer Ali Bayraktar, Jana Prikryl, and Alice Barkan. 2009. "Site-Specific
1184 Binding of a PPR Protein Defines and Stabilizes 5' and 3' mRNA Termini in
1185 Chloroplasts." *The EMBO Journal* 28 (14): 2042–52.
- 1186 Phansalkar, Neerad, Sumit More, Ashish Sabale, and Madhuri Joshi. n.d. "Adaptive Local
1187 Thresholding for Detection of Nuclei in Diversely Stained Cytology Images."
1188 https://it.mathworks.com/matlabcentral/answers/uploaded_files/23812/ICCSP_thresholding_2.pdf.
- 1189 Pollak, Bernardo, Ariel Cerdá, Mihails Delmans, Simón Álamos, Tomás Moyano, Anthony
1190

- 1192 West, Rodrigo A. Gutiérrez, Nicola J. Patron, Fernán Federici, and Jim Haseloff. 2019.
1193 “Loop Assembly: A Simple and Open System for Recursive Fabrication of DNA
1194 Circuits.” *The New Phytologist* 222 (1): 628–40.
- 1195 Prikryl, Jana, Margarita Rojas, Gadi Schuster, and Alice Barkan. 2011. “Mechanism of RNA
1196 Stabilization and Translational Activation by a Pentatricopeptide Repeat Protein.”
1197 *Proceedings of the National Academy of Sciences of the United States of America* 108
1198 (1): 415–20.
- 1199 Rojas, Margarita, Qiguo Yu, Rosalind Williams-Carrier, Pal Maliga, and Alice Barkan. 2019.
1200 “Engineered PPR Proteins as Inducible Switches to Activate the Expression of
1201 Chloroplast Transgenes.” *Nature Plants* 5 (5): 505–11.
- 1202 Sauret-Güeto, Susanna, Eftychios Fragedakis, Linda Silvestri, Marius Rebmann, Marta
1203 Tomaselli, Kasey Markel, Mihails Delmans, Anthony West, Nicola J. Patron, and Jim
1204 Haseloff. 2020. “Systematic Tools for Reprogramming Plant Gene Expression in a
1205 Simple Model.” *ACS Synthetic Biology* 9 (4): 864–82.
- 1206 Sharma, Cynthia M., Steve Hoffmann, Fabien Darfeuille, Jérémie Reignier, Sven Findeiss,
1207 Alexandra Sittka, Sandrine Chabas, et al. 2010. “The Primary Transcriptome of the
1208 Major Human Pathogen *Helicobacter Pylori*.” *Nature* 464 (7286): 250–55.
- 1209 Shimmura, Shuichi, Mikio Nozoe, Shota Kitora, Satoko Kin, Shigeru Matsutani, Yoko
1210 Ishizaki, Yoichi Nakahira, and Takashi Shiina. 2017. “Comparative Analysis of
1211 Chloroplast psbD Promoters in Terrestrial Plants.” *Frontiers in Plant Science*.
1212 <https://doi.org/10.3389/fpls.2017.01186>.
- 1213 Söderström, Lars, Anders Hagborg, Matt von Konrat, Sharon Bartholomew-Began, David
1214 Bell, Laura Briscoe, Elizabeth Brown, et al. 2016. “World Checklist of Hornworts and
1215 Liverworts.” *PhytoKeys* 59 (January): 1.
- 1216 Tillich, Michael, Pascal Lehwerk, Tommaso Pellizzer, Elena S. Ulbricht-Jones, Axel Fischer,
1217 Ralph Bock, and Stephan Greiner. 2017. “GeSeq - Versatile and Accurate Annotation of
1218 Organelle Genomes.” *Nucleic Acids Research* 45 (W1): W6–11.
- 1219 Tonti-Filippini, Julian, Paul G. Nevill, Kingsley Dixon, and Ian Small. 2017. “What Can We Do
1220 with 1000 Plastid Genomes?” *The Plant Journal: For Cell and Molecular Biology* 90 (4):
1221 808–18.
- 1222 Ueda, M., A. Tanaka, K. Sugimoto, T. Shikanai, and Y. Nishimura. 2014. “chIB Requirement
1223 for Chlorophyll Biosynthesis under Short Photoperiod in *Marchantia Polymorpha* L.”
1224 *Genome Biology and Evolution*. <https://doi.org/10.1093/gbe/evu045>.
- 1225 Villarreal, Juan Carlos, and Susanne S. Renner. 2012. “Hornwort Pyrenoids, Carbon-
1226 Concentrating Structures, Evolved and Were Lost at Least Five Times during the Last
1227 100 Million Years.” *Proceedings of the National Academy of Sciences of the United
1228 States of America* 109 (46): 18873–78.
- 1229 Weiner, Iddo, Noam Shahar, Pini Marco, Iftach Yacoby, and Tamir Tuller. 2020. “Solving the
1230 Riddle of the Evolution of Shine-Dalgarno Based Translation in Chloroplasts.” *Molecular
1231 Biology and Evolution* 37 (2): 609.
- 1232 Yagi, Yusuke, and Takashi Shiina. 2014. “Recent Advances in the Study of Chloroplast
1233 Gene Expression and Its Evolution.” *Frontiers in Plant Science* 5 (February): 61.
- 1234 Yin, Tengfei, Dianne Cook, and Michael Lawrence. 2012. “Ggbio: An R Package for
1235 Extending the Grammar of Graphics for Genomic Data.” *Genome Biology* 13 (8): R77.
- 1236 Yu, Qiguo, Alice Barkan, and Pal Maliga. 2019. “Engineered RNA-Binding Protein for
1237 Transgene Activation in Non-Green Plastids.” *Nature Plants* 5 (5): 486–90.
- 1238 Yu, Ying, Hong-mei Liu, Jun-bo Yang, Wen-zhang Ma, Silvia Pressel, Yu-huan Wu, and
1239 Harald Schneider. 2019. “Exploring the Plastid Genome Disparity of Liverworts.” *Journal*

- 1240 *of Systematics and Evolution*. <https://doi.org/10.1111/jse.12515>.
- 1241 Zhelyazkova, Petya, Kamel Hammani, Margarita Rojas, Rodger Voelker, Martín Vargas-
- 1242 Suárez, Thomas Börner, and Alice Barkan. 2012. “Protein-Mediated Protection as the
- 1243 Predominant Mechanism for Defining Processed mRNA Termini in Land Plant
- 1244 Chloroplasts.” *Nucleic Acids Research* 40 (7): 3092–3105.
- 1245 Zhelyazkova, Petya, Cynthia M. Sharma, Konrad U. Förstner, Karsten Liere, Jörg Vogel, and
- 1246 Thomas Börner. 2012. “The Primary Transcriptome of Barley Chloroplasts: Numerous
- 1247 Noncoding RNAs and the Dominating Role of the Plastid-Encoded RNA Polymerase.”
- 1248 *The Plant Cell* 24 (1): 123–36.
- 1249
- 1250