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Abstract

The gut microbiome is associated with diverse diseases, but the universal signature of an
(un)healthy microbiome remains elusive and there is a need to understand how genetics,
exposome, lifestyle and diet shape the microbiome in health and disease. To fill this gap, we
profiled bacterial composition, function, antibiotic resistance and virulence factors in the
gut microbiomes of 8,208 Dutch individuals from a three-generational cohort comprising
2,756 families. We then correlated this to 241 host and environmental factors, including
physical and mental health, medication use, diet, socioeconomic factors and childhood and
current exposome. We identify that the microbiome is primarily shaped by environment and
cohousing. Only ~13% of taxa are heritable, which are enriched with highly prevalent and
health-associated bacteria. By identifying 2,856 associations between microbiome and
health, we find that seemingly unrelated diseases share a common signature that is
independent of comorbidities. Furthermore, we identify 7,519 associations between
microbiome features and diet, socioeconomics and early life and current exposome, of
which numerous early-life and current factors are particularly linked to the microbiome.
Overall, this study provides a comprehensive overview of gut microbiome and the
underlying impact of heritability and exposures that will facilitate future development of

microbiome-targeted therapies.
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Introduction

Alterations in gut microbiota composition and function are associated with a broad range of
human health disorders, from gastrointestinal (Gl) and metabolic diseases to mental
disorders'. The influence of the gut bacteria and microbial pathways on host metabolism
and immunity, together with the fact that the microbiota can be modified, have led to
heightened interest in developing microbiota-targeted therapies®”. In this context, however,
the characteristics of a “healthy” microbiome remain largely unclear, as does the extent to
which the gut microbiome is driven by intrinsic and external factors that might be amenable

to microbiota-targeted therapies.

The capacity to define a “healthy” microbiome has been hampered by the large variation in
microbiome composition between individuals and the large variability in the processing of
faecal samples between studies. Population-based studies, including our previous study on
~1500 Dutch volunteers®, have shown that this variation is partially accounted for by diet,
lifestyle, host genetics and environmental factors, including early-life exposures®®.
However, while the number of microbiome studies has increased exponentially, in-depth
integrative analyses of large standardized, well-phenotyped cohorts remain scarce, even
though this integrative perspective is essential to disentangle meaningful host—-microbiota

associations and identify potential targets for microbiota-directed interventions.

To address these issues, we initiated the Dutch Microbiome Project (DMP) and analysed the
gut microbiome composition and functionality of 8,208 individuals from the Lifelines study —
a three-generational population cohort from a geographic region of approximately 11,400
km? in the Northern Netherlands®. By exploring 241 host characteristics, we determined the
impact of shared household, socioeconomic status, lifestyle and environmental exposures
on the gut microbiota, which together explain 12.9% of the inter-individual variation in gut
microbiota composition and 16.3% of the variation in microbiome functionality. Based on
family relations, we estimated the heritability of the gut microbiota, which varies widely
between different species (max H? = 0.3). We also define the core microbiota and keystone
species in the taxonomic networks of this Dutch population. After correcting for the impact
of technical factors, age, sex, BMI and Bristol stool scale of faecal samples, we identify clear
patterns of microbial taxa and pathway associations between multiple unrelated groups of
diseases and with self-perceived health, which allows us to define features of a healthy or
unhealthy microbiome and to predict the health status independently of comorbidities.
Finally, we identified intrinsic and external factors, including environmental pressures (i.e.
exposome), that influence the (un)healthy microbiome. Overall, this study provides a
comprehensive large-scale exploration of the gut microbiome that will facilitate future
investigations of microbiome-targeted therapies for improvement of long-term human
health.
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Methods
Population cohort and metadata collection

The Lifelines Dutch Microbiome Project (DMP) cohort has been developed as a part of the
Lifelines cohort study. Lifelines is a multi-disciplinary prospective population-based cohort
study using a unique three-generation design to examine the health and health-related
behaviours of 167,729 people living in the North of the Netherlands. It employs a broad
range of investigative procedures to assess the biomedical, socio-demographic, behavioural,
physical and psychological factors that contribute to health and disease in the general
population, with a special focus on multi-morbidity and complex genetics>'°. A total of
8,719 fresh frozen faecal and blood samples were collected from Lifelines participants in
2015 and 2016 to form the DMP cohort. Whole-genome shotgun sequencing was performed
on 8,534 faecal samples, of which 8,208 were retained for downstream analysis after
stringent quality control. Metadata information collected from the participants was grouped
into the following categories: family structure, diseases, gastrointestinal (Gl) complaints,
general health score, medication use, anthropometrics, birth-related factors, reported
childhood (< 16 years) exposures, current exposome (air pollutants, greenspace, urbanicity,

pets and smoking), socioeconomic characteristics and diet (Supplementary table 2d).
Informed consent

The Lifelines study was approved by the medical ethical committee from the University
Medical Center Groningen (METc number: 2017/152). Additional written consent was
signed by all DMP participants or their parents or legal representatives (for children aged
under 18).

Metadata

Metadata was collected by questionnaires and curated as described previously'® and below.
We included 241 phenotypes from a broad range of categories, including socioeconomic
factors, self-reported diseases and medications, quality of life, mental health, education and
employment, nutrition, smoking, stress and childhood environmental factors.
Questionnaires were developed and processed by the Lifelines cohort study'® as described

at www.lifelines.nl. Additional in-depth data curation and acquisition was performed to

assess dietary intake, air pollution and environmental exposures, medication use and gut

health, as described below.
Diet

Habitual diet was assessed through a semi-quantitative Food Frequency Questionnaire (FFQ)
collected 4 years prior to DMP faecal sampling®. The FFQ was designed and validated by the

division of Human Nutrition of Wageningen University using standardized methods™. It
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assesses how often a food was consumed over the previous month on a scale ranging from
‘never’ to ‘6-7 days per week’, along with the usual amount taken. The average daily
nutrient intake was calculated using the Dutch Food Composition database (NEVO, RIVM)
and a mono- and disaccharide-specific food composition table'?, resulting in the generation
of data on 21 dietary factors. Energy adjustment was performed by means of the nutrient
density method™. Published dietary scores and inter-nutrient ratios were calculated as
14,15

indicators of dietary quality and composition

To validate the assumed stability of FFQs across time'**®

, we used questionnaires from
128,501 Lifelines participants to study diet consistency between the baseline questionnaire,
collected 4 vyears prior to this study, and a second smaller-scope nutrient-specific
guestionnaire collected concurrently with DMP faecal sampling. Sixty-five dietary questions,
reflecting consumption of major food categories such as fruits, vegetables, fish, meat,
bread, grains and sweets, as well as special dietary regimes (e.g. vegan or macrobiotic diet),
were compared between the first and second time point. The majority of dietary items were
available for >44,000 individuals at both timepoints (Supplementary table 8). To quantify the
consistency of answers and the degree of change in the 4-year period, we calculated the
consistency (proportion of identical answers) and Euclidean distance between all
participants who answered a question the same way at baseline and follow-up and the
distance between participants who answered differently at follow-up (Supplementary table

8).
Exposome

Elements of the exposome, neighbourhood urbanicity and income were assessed for the
participant’s home address at the time of faecal sampling. Exposure to two air pollutants,
particulate matter with aerodynamic diameter < 2.5 um (PM,s) and nitrogen dioxide (NO;),
was assigned based on land use regression models developed in the European Study of
Cohorts for Air Pollution Effects (ESCAPE) project’’*®. These estimates are based on

measurement data from 2009 and reflect long-term ambient air pollution exposures®.

Greenspace was assigned using the Normalized Difference Vegetation Index (NDVI), which
reflects the average density of green vegetation within a 100-meter circular buffer around
the participant’s residential address. The NDVI was derived from a LANDSAT 5 (TM) satellite
image taken in 2016 and captures the density of green vegetation at a spatial resolution of
30x30 m based on land surface reflectance of visible (red) and near-infrared parts of

spectrum.

Neighbourhood urbanicity was assigned based on a five-category scale of surrounding
address density developed by Statistics Netherlands (1 = very urban, = 2500 addresses per

km? to 5 = very rural, < 500 addresses per km?, data for 2015)%°. Neighbourhood income was
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considered a proxy of neighbourhood socioeconomic position and defined as the proportion

of persons with low (< 40™ percentile) income (Statistics Netherlands, data for 2015)%.
Stool characteristics, diseases and medication

Participants recorded a bowel movement diary, Bristol stool scale, daily medication use and
Gl symptoms daily for seven days in the week of stool sample collection, and these records
were used to extract information on drug use, stool characteristics, stool frequency and Gl
symptoms during the week of stool collection. The validated ROME Il questionnaires*! were
used to characterize functional Gl disorders, and participants were classified as having either
no functional Gl diseases or irritable bowel syndrome, functional diarrhoea, functional
constipation or functional bloating. Information about the presence of other diseases was
self-reported and collected using Lifelines questionnaires. Diseases were grouped into 11
disease categories. The presence of cancer was grouped into a separate category defined as
“any cancer”, independent of cancer type. Non-alcoholic fatty liver disease fibrosis score®
and fatty liver index” were calculated from the anthropometrics and blood measurements,

2233 piseases with < 20 cases were excluded from further analysis.

as described previously
Self-reported medications were grouped into categories based on Anatomical Therapeutic
Chemical classification (ATC codes) at the most-specific ATC level (5-digit ATC code if
possible). ATC categories with < 20 users were grouped into a higher level (4-digit or 3-digit)
ATC class, and categories with < 20 individuals that could not be grouped according to ATC
classification were excluded from further analysis. In total, 62 drug groups were included

(Supplementary table 2a).
Sample collection, DNA extraction and sequencing

Faecal sample collection was performed by participants at home. Participants were asked to
freeze stool samples within 15 min of stool production. The frozen samples were collected
by Lifelines personnel, transported to the Lifelines biorepository on dry ice and stored at -
80°C until DNA extraction. Microbial DNA was isolated with the QlAamp Fast DNA Stool Mini
Kit (Qiagen, Germany), according to the manufacturer’s instructions, using the QlAcube
(Qiagen) automated sample preparation system. Metagenomic sequencing was performed
at Novogene, China using the Illlumina HiSeq 2000 platform to generate approximately 8 Gb
of 150 bp paired-end reads per sample (mean 7.9 gb, st.dev 1.2 gb).

Profiling microbiome composition and function

Metagenomes were profiled consistent with previous data analysis of 10001BD** and
Lifelines-DEEP™® cohorts, as follows. KneadData tools (v0.5.1)>> were used to process
metagenomic reads (in fastq format) by trimming the reads to PHRED quality 30 and
removing lllumina adapters. Following trimming, the KneadData integrated Bowtie2 tool

(v2.3.4.1)* was used to remove reads that aligned to the human genome (GRCh37/hg19).
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Taxonomic composition of metagenomes was profiled by MetaPhlAn2 tool (v2.7.2)* using
the MetaPhlAn database of marker genes mpa_v20 _m200. Profiling of genes encoding
microbial biochemical pathways was performed using the HUMANN2 pipeline (v0.11.1)%®
integrated with the DIAMOND alignment tool (v0.8.22)%%, UniRef90 protein database
(v0.1.1) and ChocoPhlAn pan-genome database (v0.1.1). As a final quality control step,
samples with unrealistic microbiome composition (eukaryotic or viral abundance > 25% of
total microbiome content or total read depth < 10 million) were excluded, leaving 8,208
samples for further analyses. Analyses were performed using locally installed tools and
databases on CentOS (release 6.9) on the high-performance computing infrastructure

available at our institution and using the MOLGENIS data platform?®.

In total, we detected 1,253 taxa (4 kingdoms, 21 phyla, 35 classes, 62 orders, 128 families,
270 genera and 733 species) and 564 pathways in at least one of the samples in the quality
controlled—dataset. To deal with sparse microbial data in the downstream analysis, we
focused on bacterial and archaeal species/pathways with a mean relative abundance >
0.01% that are present in at least 5% of participants. This yielded 257 taxa (6 phyla, 11
classes, 15 orders, 30 families, 59 genera and 136 species) and 277 pathways. Together,
these microbial features accounted for 97.86% and 87.82% of the average taxonomic and

functional compositions, respectively.

Based on the abundance profiles of taxa that passed the filtering process, alpha diversity, as
measured by richness and Shannon entropy, was calculated at family-, genus- and species-
level using specnumber and the function diversity, respectively, in R package vegan (v.3.6.1).
Rarefaction and extrapolation (R/E) sampling curves for estimation of total richness of
species and genera in the population were constructed using a sample size-based

interpolation/extrapolation algorithm implemented in the iNEXT package for R*°.
Profiling of bacterial virulence factors and antibiotic resistance genes

Metagenomes were searched for bacterial virulence factors (VFs) using the shortBRED
toolkit (v0.9.5)*" and the database of Virulence Factors of Pathogenic Bacteria (VFDB) core
dataset of DNA sequences (downloaded on 01/11/2018)*>. The shortBRED tool
shortbred_identify.py (v0.9.5) was used to identify unique markers for VFs, with the
UniRef90 database (downloaded on 01/11/2018) used as negative control, and the
shortbred_quantify.py tool (v0.9.5) was used to perform a quantification of these markers in
metagenomes. Quantification of antibiotic resistance genes was performed using shortBRED
tool shortbred_quantify.py (v0.9.5), with markers generated using shortbred_identify.py
(v0.9.5) on the CARD database of bacterial antibiotic resistance genes (downloaded
01/11/2018)33, with the UniRef90 database used as negative control. This identified 190 VFs

and 303 antibiotic resistance gene families (ARs), of which 47 VFs and 98 ARs were present
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in at least 5% of participants with relative abundance > 0.01%. These accounted for 95.22%

of VF composition and 98.08% of AR composition, respectively.
Estimation of heritability of microbiome

To accommodate covariate effects, we estimated the heritability of microbiome features
using a variance components model implemented in the software POLY34,35. We first
considered a base model in which variance is partitioned into a polygenic component, Vg,
shared between individuals that is proportional to their kinship coefficient, and an
environmental component, Ve, that is unique to each individual. Thus, if Y is the measured
trait, the variance of Y is Var(Y) =Vg+Ve, and its broad heritability is H2=Vg/(Vg+Ve). Of note,
this measure reflects the overall impact of genes on the phenotype, thus including all
potential models of action, as opposed to narrow heritability, which only includes additive
effects. After fitting this base model, we also considered two refined models that included i)
an additional variance component to model a shared environment for people belonging to
the same family, Vh, and ii) a covariate with values 0/1 that distinguishes family members
currently living in the same house from those who do not. We compared the significance of
these two models to the basic model using a likelihood ratio test and found the base model

to be the most appropriate fit for all microbiome traits.

We restricted the analysis of heritability to the relative abundances of the 242 microbial
taxa present in at least 250 individuals and focused on 4,745 individuals in 2,756 families in
which at least two individuals had available microbiome data. In total, the analysis included
2,756 parent-child pairs, 530 sibling pairs and 815 pairs with second-degree or more distant
relationships. All models were adjusted for age, sex, BMI, read depth and stool frequency,
and values of relative abundances of taxa were transformed using the centred log-ratio (clr)
transformation®®. Benjamini-Hochberg correction was used to control the multiple testing

false discovery rate (FDR), and results with FDR < 0.1 were considered significant.
Estimation of the effect of co-housing on microbiome

We estimated the effect of co-housing on microbiome composition, function, ARs and VFs
by comparing beta-diversities of the microbiomes of co-housing study participants (1,710
unrelated pairs, 285 parent—child pairs and 144 sibling pairs) to those of participants who
did not share housing (2,000 unrelated pairs, 301 parent—child pairs and 299 sibling pairs).
Microbiome distance was calculated for every pair using Bray-Curtis dissimilarity, and mean
dissimilarities within groups were compared using Mann-Whitney U tests using the
Benjamini-Hochberg correction to control multiple testing FDR. Results were considered
significant at FDR < 0.05.
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Calculation of microbiome-phenotype associations

The microbiome composition variance explained by phenotypes was calculated by
permutational multivariate analysis of variance using distance matrices, implemented in the
adonis function for R package vegan (v.2.4-6), using 20,000 permutations and a Bray-Curtis
distance matrix calculated using relative abundances of microbial species. A separate
analysis was performed to calculate the microbiome functional potential explained by
phenotypes using equivalent methodology. The functional dissimilarity matrix was
calculated using the Bray-Curtis dissimilarity index calculated on the relative abundances of

MetaCyc microbial biochemical pathways.

Prior to association analysis of phenotypes and microbiome features, the microbiome data
was transformed using the clr transformation. The geometric mean for clr transformation of
relative abundances of taxa was calculated on species-level and applied to higher levels. The
associations between phenotypes and microbial features (microbial taxa, MetaCyc
functional pathways, CARD and VFDB entities) were calculated using linear regression,
adjusting for age, sex and BMI of the individual along with Bristol stool scale of the faecal
sample and technical factors (DNA concentration, sequencing read depth, sequencing batch
and sampling season). Benjamini-Hochberg correction was used to control for multiple
testing with the number of tests equal to the number of tested feature—phenotype pairs.

Results were considered significant at FDR < 0.05.
Quantification of microbiome—disease—drug interactions

To disentangle interactions between the gut microbiome, medication and diseases, we
explored the effect of a selection of drugs and the common diseases for which these drugs
are used: functional Gl disorders and proton pump inhibitors, type 2 diabetes and
antidiabetic drugs, and depression and selective serotonin reuptake inhibitors. We extracted
subsets of participants with the disease and those who report using disease-associated
medication and used these subsets to construct multivariate models including both
medication use and disease, additionally adjusting for other factors as described above in

Calculation of microbiome-phenotype associations.
Definition of core microbiome and prediction of keystone microbiome features

To identify core microbial species and pathways, we used a bootstrapping-based selection
approach. We randomly sampled 1% to 100% of the samples of the cohort a hundred times
and calculated the standard deviation of the presence rate of each microbial
species/pathway at different sampling percentages. Microbial features with a presence rate
of more than 95% of samples were defined as the core microbiome, and we identified 9

core microbial species and 143 core microbial pathways (Supplementary table 1a,b).
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To analyse microbiome community structure, we constructed microbial species and

d3728, Relative

pathway co-abundance networks using SparCC, as previously publishe
abundances of taxa were converted to estimated read counts by multiplying abundance
percentages by total sequenced reads per sample after quality control. For pathway
analysis, the read counts (RPKM) from HUMANN2 were directly used for SparCC. Significant
co-abundance was controlled at FDR 0.05 level using 100 permutations. In each
permutation, the abundance of each microbial feature was randomly shuffled across
samples. In this way, we obtained 6,473 species and 55,407 pathway co-abundances at FDR
< 0.05. Features that ranked in the top 20% in the number of network connections (node
degree) were considered keystone species or pathways, resulting in 28 keystone species and

53 keystone pathways (Supplementary table 1e).
Identification of microbiome clusters

To identify microbial clusters and assess the presence of gut enterotypes in our cohort, we
performed the partitioning around the medoid method on the relative abundances of
microbial species and used the Calinski-Harabasz index to select the optimal number of
clusters, as previously published in a study of gut enterotypes®. Enrichment of phenotypes

in each cluster was assessed by logistic regression in R.
Calculation of microbiome signatures predictive of diseases and health

We calculated the microbial signatures predictive of the 36 most common (N ases>100)
diseases in our dataset. In addition, we defined a “healthy” phenotype as an absence of any
self-reported disease. Using this definition, 2,937 (36%) out of 8,208 individuals were
defined as “healthy”.

To build prediction models for common diseases, the dataset was randomly split into
training (90%) and test (10%) sets. Next, we performed elastic net L1/L2 regularized
regression (R package glmnet v.4.0) on the training set, using Shannon diversity, clr-
transformed microbial taxa, clr-transformed MetaCyc bacterial pathways and age, sex and
BMI as fixed covariates (not penalized in the models). The model for each disease was
calculated independently using five-fold cross-validation to select the optimal lambda
penalization factor (at L1/L2 mixing parameter alpha fixed at 0.5). The lambda with minimal

cross-validation error was used in the downstream analysis.

In total, we defined three probabilistic models: a “null” signature that only includes effects
of general covariates (age, sex and BMI), a “microbiome” signature that includes all selected
microbiome features and a “combined” signature that includes both the effects of

microbiome features and general covariates.
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Data availability

Raw sequencing data and corresponding metadata that support the findings of this study
are available on request from the corresponding author R.K.W. The participant metadata
are not publicly available as they contain information that could compromise research

participant privacy/consent.

The authors declare that all other data supporting the findings of this study are available

within the paper and its supplementary information files.
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Results
Overall picture of gut microbial composition

In this study we characterized the composition and function of the gut microbiota of 8,208
individuals from the Northern Netherlands. Participants were of a wide age range (8-84
years), 57.4% were female and 4,745 individuals clustered into 2,756 families. The
participants were largely (99.5%) of Dutch European ancestry (Fig.1la, Supplementary table
2d).

A total of 1,253 taxa (4 kingdoms, 21 phyla, 35 classes, 62 orders, 128 families, 270 genera
and 733 species) and 564 metabolic pathways were present in the dataset, of which 257
taxa and 277 pathways had a relative abundance higher than 0.01 and were present in > 5%
of individuals. Our sample size allowed us to capture ~100% of the estimated microbial
functional potential (including biochemical pathways, virulence factors and antibiotic
resistance genes) and microbial taxa at level of genus or higher. By subsampling the cohort,
we estimated that the presence rates of these microbial features become stable when 40%
or more of the cohort is sampled (~3,300 samples). However, we also observed that the
number of microbial species discovered continued to increase with increasing sample size,
with the total number of species in the population estimated to be 612 (standard deviation
= 20) at 25,000 samples, suggesting that the sampled population contains rare undiscovered
microbial species (Fig. 1b, Supplementary fig. 1). Gut microbiota composition was found to
be highly variable across the population, with the relative abundance of the phylum
Bacteroidetes, for example, ranging from 5% to > 95% (Supplementary fig. 2c). However, the
most abundant microbial pathways were largely stable across the population

(Supplementary fig. 2d).
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Figure 1: Summary of the Dutch Microbiome Project

a, Graphical summary of the cohort and overview of available metadata (n = number of variables
collected, N = sample size). b, Number of microbial features discovered in relation to sample size.
Error bars denote the standard deviation of 100 resamplings. c, Biplot of principal coordinate analysis
visualising the beta-diversity of the microbiome data. Colour indicates relative abundance of
Prevotella copri. Arrows indicate the influence of self-reported health, anthropometrics and faecal
sample metadata. VFs: bacterial virulence factors, CARD: antibiotic resistance gene families.
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Core microbes and pathobionts are keystone species in the gut ecosystem

To pinpoint bacterial species and pathways potentially critical for the organisation and
maintenance of the gut ecosystem, we investigated 8,208 samples in our cohort for bacteria
present in > 95% of individuals (core microbes) and for bacteria that form the central nodes

in bacterial co-abundance networks (keystone features)®**°

. We identified 9 core species
(Subdoligranulum sp., Alistipes onderdonkii, A. putredinis, A. shahii, Bacteroides uniformis, B.
vulgatus, Eubacterium rectale, Faecalibacterium prausnitzii and Oscillibacter sp.) that are
highly consistent with those found in previous studies of UK, US and European and non-

western populations (Supplementary Table 13)6,41—44

. We also identified 28 species and 53
pathways as potential keystone features defined by more than 109 and 337 significant co-

abundances, respectively (false discovery rate (FDR) < 0.05).

We observed that 5 of the 9 core microbial species (A. putredinis, A. shahii, F. prausnitzii,
Oscillibacter sp. and Subdoligranulum sp.) are also keystone species, implying that these 5
microbes are not only highly prevalent, they play central roles in the gut microbiome
ecosystem in the Dutch population. For example, F. prausnitzii, a major butyrate producer
that is depleted in many chronic diseases**®, had a significant co-abundance with the
majority of Bacteroidetes and Bifidobacterium species (Supplementary table 1e). In addition
to these core species, we identified potential keystone species with low prevalence in the
population (prevalence < 0.1), including Ruminococcus gnavus and multiple species from
genus Clostridium. These keystone bacteria were further observed to be positively
associated with multiple diseases in the current study (Supplementary table 3b), as also

seen in previously published studies*’*%.

Prevotella copri defines microbiome clusters

To evaluate if gut microbiomes in our cohort show distinct clusters, we examined the data
using principal coordinate analysis (PCoA) and identified that the first principal coordinate is

largely driven by Prevotella copri (rSpearman=0.68, P=3.6x10"%°

, Fig. 1c, Supplementary
table 9). This bacterium is bimodally distributed in our cohort and defines two robust
clusters based on its presence or absence (Supplementary fig. 3a,b). It was previously
suggested that a gut microbiota with a low abundance of Prevotella is associated with
higher incidence of irritable bowel syndrome (IBS)*°, and we also observe that the cluster
with a high abundance of P. copri has a lower risk of IBS (OR =0.72, 95% Cl 0.86-0.61) and is
positively associated with general health (OR = 1.24, 95% Cl 1.40-1.11, FDR < 0.05,
Supplementary fig. 3c). While previous studies have reported distinct enterotypes

dominated by Bacteroides, Prevotella and Ruminococcaceae®°

, we only observed two such
clusters in our cohort, possibly because our cohort is ethnically uniform and comes from a

constrained geographic area.
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Unlike microbiome composition, the PCoA of functional potential was not dominated by any
single pathway, and the top features explaining variance were found to be queuosine
biosynthesis, peptidoglycan biosynthesis and L-isoleucine biosynthesis pathways

(Supplementary table 9).
Microbiome is largely determined by cohabitation, but core species are heritable

We next explored the relative contributions of family structure, co-housing and other
exposome factors in shaping the gut microbiome. We utilised the multi-generational family
structure of our cohort to estimate the heritability of microbial taxa and identified 31
heritable taxa (12.8% of the tested taxa) at FDR < 0.1 (Fig. 2a,b, Supplementary table 5). The
highest heritable values were observed for Sutterella wadsworthensis (H*> = 0.3) and
multiple species from genera Bacteroides, Collinsella and Phascolarctobacterium (H* ~0.21).
While comprising a relatively minor part of the microbiome, the heritable taxa were found
to be enriched within the set of core microbes (3/9 core taxa were heritable, Chi-squared
test p-value < 1.0e-6) and to have significantly higher prevalence and abundance in the
population compared to non-heritable taxa (Mann-Whitney U test p-values < 1.0e-6). In
addition, 11/31 heritable taxa were positively associated with health, whereas only 3/31

heritable taxa were negatively associated with health (Supplementary table 5).
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Figure 2: Heritability and impact of cohabitation on the gut microbiome

a, Top heritable species. b, Top heritable genera. ** taxa significantly heritable at FDR < 0.1.
* taxa with nominally significant heritability (p-value < 0.05). Panels ¢, d and e show pairwise

microbiome distance comparisons. Bray-Curtis dissimilarities calculated using microbial

species of groups of c¢) random, non-cohabiting pairs compared to cohabiting partners,

parent-child pairs and sibling pairs, d) random pairs compared to non-cohabiting parent-

child and sibling pairs and e) random pairs compared to non-cohabiting first-degree relatives
and cohabiting first-degree relatives. Significantly different groups: ** for FDR < 1.0e-5 and *

for FDR < 0.05.

We further investigated the effect of cohabitation versus heritability by comparing the

microbiome composition of first-degree relatives (parent—child pairs and siblings) living

together to those of related pairs living separately and unrelated cohabiting participants

(cohabiting partners) and to those of people living separately (randomly selected unrelated

participants). The microbiomes of cohabiting pairs were more similar than the microbiomes

of participants living separately, regardless of the relatedness of these pairs, with parent—

child pairs, sibling pairs and unrelated partners all having microbiomes significantly closer to

each other than randomly sampled non-cohabiting pairs (Fig. 2c, p-values < 1.0e-5).
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Microbiomes of cohabiting parent—child and sibling pairs were significantly more similar
than equivalent pairs living separately, while related pairs living separately were not
significantly different from random unrelated pairs (Fig. 2d,e). We further observed similar
patterns in the compositions of microbial pathways, virulence factors and antibiotic

resistance genes (Supplementary fig. 4a-c).

These results indicate that whole-microbiome composition is significantly influenced by
cohabitation, with genetics playing a less important role. However, a minor proportion of
the gut microbiome, e.g. species from genera Sutterella and Collinsella, is significantly
heritable.

Overview of microbiome—-phenotype associations

We then explored the associations of microbial features to 241 individual measures
including technical factors, anthropometrics, early-life and current exposome, diet, self-
reported diseases and medication use, medical measurements and socioeconomics (Fig. 3a).
These phenotypes explained 12.9% of microbiome taxonomic composition and 16.3% of
microbiome function, with the largest contribution coming from technical factors, stool
characteristics, diseases, medication use and anthropometrics (Fig. 3c, Supplementary
tables 4a-c).

After correcting for technical factors, we observed 4,530 associations of phenotypes with
taxa, 5,224 with pathways, 1,848 with antibiotic resistance genes and 385 with virulence
factors (Supplementary table 3g, Supplementary fig. 5). Individually, the largest number of
associations were observed for keystone and core taxa, including Flavonifractor plautii, F.
prausnitzii, Alistipes senegalensis and species of genera Clostridium and Subdogranulum
(Supplementary tables 3b,h). Below, we describe a selection of association results.

Supplementary tables 3a-h provide a complete overview.
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Figure 3: Microbiome—-phenotype associations

a, Selected study-wide-significant associations (FDR < 0.05) per phenotype group, clustered

by taxonomy. Bar height indicates the number of associations relative to the maximal

number of associations for the phenotype group. b, Microbiome—phenotype associations for

diet, childhood and current exposome and socioeconomics in comparison to healthy

microbiome signature. Microbial species are clustered by association p-value using

hierarchical clustering and coloured by direction of association. Study-wide significant

associations (FDR < 0.05) are marked with + or -. Coloured associations without a mark

indicate nominally significant associations (p-value < 0.05). ¢, The variance in microbiome

composition and function explained by phenotype groups.

Age, sex and BMI ranked among the top phenotypes in our analysis of interindividual

variation of beta-diversity, explaining 0.6%, 0.53% and 0.32%, respectively, as did individual

microbiome feature associations (Supplementary tables 3a-e). Bristol stool scale explained

the largest proportion of beta diversity for any single factor in our cohort (R®>=0.77%, FDR

0.012), and the sampling season also explained significant proportion of variance (R?

0.36%, FDR = 0.012, Supplementary table 4a), both highlighting the importance of assessing

1R


https://doi.org/10.1101/2020.11.27.401125
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.27.401125; this version posted November 27, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

faecal sample consistency and collection time-frame effects in microbiome studies. Based
on these results, we included corrections for age, sex, BMI, Bristol stool scale and sampling
season into all our association models alongside the corrections for technical factors

described above (Supplementary tables 3a-e).
Definition of healthy and disease-associated gut microbiome

To define the microbiome signatures of health and disease, we associated microbiome
features to self-reported health and 81 diseases that had at least 20 cases in the cohort,
including Gl and hepatological, cardiovascular and metabolic, mental and neurological,
pulmonary, and other disorders. We identified 1,206 significant health/disease associations
with bacterial taxa, 1,182 with microbial pathways, 390 with antibiotic resistance gene
families and 76 with bacterial virulence factors (FDR < 0.05, Supplementary tables 3b-f).
Different diseases showed varying numbers of associated microbes, with the strongest
signatures observed for cardiovascular and metabolic disorders, such as non-alcoholic fatty
liver disease and Type 2 Diabetes (T2D), and for Gl disorders including Inflammatory Bowel
Disease (IBD) and IBS (Supplementary table 3f). We observed consistent microbiome-
disease patterns across the majority of diseases (Fig. 4), allowing us to pinpoint microbiome
signatures shared between different/independent diseases as well as features that define a

healthy (i.e. absence of disease) microbiome.

The shared microbiome signatures of disease (described in further detail in the
Supplementary Discussion) mainly consisted of increases in species from Anaerotruncus,
Ruminococcus, Bacteroides, Holdemania, Flavonifractor, Eggerthella and Clostridium genera
and decreases in Faecalibacterium, Bifidobacterium, Butyrivibrio, Subdoligranulum,
Oxalobacter, Eubacterium and Roseburia. Gut microbiome pathways shared across diseases
with different aetiologies mainly consisted of increases in biosynthesis of L-ornithine,
ubiquinol and menaquinol, enterobacterial common antigen, Kdo-2-lipid-A and
molybdenum cofactor and decreases in biosynthesis of amino acids, deoxyribonucleosides
and nucleotides, anaerobic energy metabolism and fermentation to short chain fatty acids
(mainly butanoate). Furthermore, virulence factors were increased in some diseases,
including T2D and Gl disorders, with the largest effect observed for bacterial adherence and
iron-uptake factors (VF036, VF0228, VF0236, VF0404 and VF0394).

To further validate the commonality of the microbiome signatures for diseases, we
constructed L1/L2 regularized regression prediction models for the 36 most common
diseases with > 100 cases each in the cohort using a randomly selected 90% of our data as a

training set and 10% as a test set.

The microbiome-driven predictive signature of health (lack of any reported disease) showed

a prediction area under the curve (AUC) of 0.62 on the training set and of 0.57 on the test
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set, which was comparable with the AUC for prediction of general anthropomorphic
parameters (age, sex and BMI; AUC of 0.58 on both training/test sets). Combining
microbiome and anthropometric data resulted in AUCs of 0.64 and 0.61 (training/test set).
L1/L2 regression selected 73 microbial features for the “health/disease” model fit, of which
the majority were microbial taxa rather than pathways (Supplementary table 6a). These
features were found to be largely consistent with the healthy microbiome signature we had
identified in the association analysis (Fig. 4), with 22/31 species selected by the model also
associated with > 5 diseases in our analyses. The microbiome signatures for 29 out of 36
tested diseases showed AUCs > 0.55 on the test set, with the highest predictive power
observed for T2D (AUC = 0.81), gallstones (AUC = 0.66) and kidney stones (AUC = 0.64). No
predictive power (AUC < 0.5) was observed for severe acne, undefined anaemia, non-hip
fractures and reports of high cholesterol (Supplementary table 6b). Additionally,
microbiome predictions of diseases showed high correlation despite the low disease co-
morbidities in our cohort (Fig. 4b). Finally, we calculated the recently developed Gut
Microbiome Health Index (GMHI)®* for our data and identified a significant difference in
GMHI between healthy and unhealthy individuals (p-value = 1.1e-11, balanced accuracy
0.61, Supplementary fig. 6). Our microbiome signature of health showed high overlap with
signatures reported in the GMHI study>?, with 43/50 GMHI signals replicating across studies
at genus or species level (Supplementary table 1). In addition to the observed consistency in
families Clostridiaceae, Ruminococcaceae and Lachnospiraceae and genera Bacteroides,
Bilophila, Coprococcus, Faecalibacterium, Ruminococcus and Sutterella, we also discovered
55 novel microbiome—-health associations not identified in the GMHI study, including for
species from Butyrivibrio and Akkermansia and Prevotella genera (Supplementary tables
3b,10).
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Figure 4: Microbiome signatures of health and diseases.

a, Heatmap of microbial species associated with categories of diseases and health status.
Diseases are sorted and labelled by disease type. Microbial species are clustered by
association p-value (indicated by colour intensity) using hierarchical clustering. Associations
are coloured by direction of effect (blue = positive, orange = negative), with associations
significant at study-wise FDR < 0.05 marked with +/- for positive/negative correlations.
Coloured associations without a label indicate nominally significant associations (p-value <
0.05, no multiple testing correction). b, Comparison of correlations between signatures
predictive for diseases (lower triangle) and comorbidities of these diseases in the cohort
(upper triangle).

The disease-associated microbiome is a combination of disease and medication signatures

We observed a large overlap between disease-associated microbiome patterns and
microbiome associations with medication use (Supplementary fig. 7, Supplementary tables
3a-g), with the largest effects observed for proton pump inhibitors (PPIs), antibiotics,
biguanide antidiabetics, osmotic laxatives and intestinal anti-inflammatory agents (84, 56,
47 and 32 associations with microbial taxa, respectively, at FDR < 0.05). To disentangle
medication use from the diseases for which these drugs are prescribed, we constructed
microbiome-drug-disease multivariate models for diseases where drug use is strongly
correlated and/or specific for the disease: antidiabetics in T2D, selective serotonin reuptake
inhibitors in depression and PPIs in functional Gl disorders/IBS. We observed that both drug
use and presence of the disease are independently and significantly associated with
microbiome features in these models (Supplementary table 7), with consistent effect
directions and strength. This observation may indicate that the unhealthy gut microbiome

signature reflects both the disease and the medication used to treat it.
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Childhood environment is associated to healthy microbiome in adult life

Since it is known that the first 2-3 years of life are crucial for microbiome development, we
examined the influence of early-life (age < 4 years) factors on the adult microbiome. We
identified 106 associations with taxa, 30 with pathways, 22 with antibiotic resistance genes
and 2 with virulence factors (FDR < 0.05), with only minimal effects observed for birth mode,
breastfeeding and preterm birth (Fig. 3b, Supplementary fig. 8). Childhood living
environment (defined on a scale from 1 = rural to 5 = highly urban) was significantly
associated with the adult microbiome (54, 8 and 7 associations with taxa, pathways and
CARDs, respectively, at FDR < 0.05). A rural childhood environment was associated with an
increase in various species of bacteria, including P. copri, F. prausnitzii, Rothia mucilaginosa
and various species of Bifidobacterium and Mitsuokella genera, abundances of which were
also positively associated with increased general health. In contrast, gut abundances of
species from genera Bacteroides, Alistipes and Biophila were reduced in participants with

urban childhood environments.

Furthermore, parental smoking was associated with the microbiome composition of their
children (15, 9 and 4 associations with taxa, pathways and CARDs, respectively, at FDR <
0.05). Here we observed associations between parental smoking and decreased abundances
of F. prausnitzii and P. copri, consistent with observations for current smokers. Finally, pet
ownership during childhood was associated with the adult microbiome (7 associations at
FDR < 0.05), with decreases in Alistipes finegoldii, Lactobacillus delbrueckii and species from

Dialister and Bilophila genera observed in participants who had pets as children.

We observed minimal effects for birth mode, breastfeeding and preterm birth (Fig. 3b,
Supplementary fig. 8). These included an association of C-section with increases in P. copriin
adults and of higher birth weight with increases in Bacteroides eggerthii and Butyrivibrio

crossotus.
Urbanicity, smoking, pollutants and pets are linked to health-associated bacteria

Next, we studied environmental factors at time of sampling. We identified significant shared
positive association patterns between healthy microbiome signatures, pet ownership, rural
living environment and greenspace surface area in the living environment (Fig. 3b), including
increases in P. copri, Bacteroides plebeius, Desulfovibrio piger and species of genus
Mitsuokella and decreases in Bacteroides fragilis and Bilophila wadsworthia. These
associations were in contrast to the associations seen for increased measurements of NO,
and small particulate matter pollutants, which showed microbiome signatures in the

opposite direction and negative association with health (Supplementary fig. 9).

Smoking phenotypes, including current active and passive smoking and a history of past

smoking, were among the strongest phenotypes associated with microbiome composition in
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our study. Active smoking was associated with 41 species and 84 pathways (FDR < 0.05, Fig.
3b), with 60% of these factors also associated with previous smoking, suggesting a long-
lasting signature of smoking. Intriguingly, 15 of these were further associated with passive
smoking, highlighting the need to consider passive smoking in disease risk models. The
directionality of associations was consistent across the three smoking phenotypes and
shared direction with microbiome signatures of diseases, including decreased abundance of
the butyrate-producing bacteria Roseburia hominis, F. prausnitzii, Coprococcus catus and
Subdoligranulum spp; decreased abundance of the facultative oral bacteria Veillonella spp
and Haemophilus parainfluenzae; and increased abundance of several species within order
Clostridiales, including Flavonifractor plautii, Pseudoflavonifractor capillosus and

Oscillibacter spp (Supplementary fig. 9).
High dietary quality is linked to health-associated microbes

We identified 378 associations between 20 dietary factors, which were found to be stable
over a 5-year period between food frequency questionnaire (FFQ) collection and faecal
sampling (Supplementary table 8, Supplementary Discussion), and 82 species
(Supplementary table 3f). The Lifelines diet score (LLDS), a diet quality score based on
international nutrition literature'®, showed the highest number of associations (79
associations with taxa, 44 with pathways, 20 with antibiotic resistance genes and 8 with
virulence factors at FDR < 0.05), followed by total alcohol intake, glycemic load, protein diet
score (reflecting quantity and source of protein) and total carbohydrate intake. The LLDS
and protein intake scores, including animal protein, showed association patterns that
overlapped with signals between microbiome features and increased general health, such as
decreases in Clostridia species, increases in Butyrivibrio and Roseburia genera and pathways
involved in ubiquinol and menaquinol synthesis. In contrast, total dietary carbohydrate

intake and glycemic load showed the opposite associations (Fig. 3b, Supplementary fig. 10).
Socio-economic factors are associated with microbiome composition

Several measurements related to the socio-economic status of the participants were
available for our cohort. This included information about the number of working hours,
income per month, religion and neighbourhood characteristics. In total, we observed 220
significant associations (FDR < 0.05). Of these, 72 were between bacterial abundances and
monthly salary, with higher income associated with a healthy microbiome signature, such as
an increase in F. prausnitzii, Akkermansia municiphila and Bifidobacterium adolescentis. In
contrast, the “unhealthy microbiota” Clostridium bolteae, Ruminococcus gnavus and
Streptococcus parasanguinis were more abundant in participants with lower incomes.
Similar patterns were observed when analysing the differences between people living in

high-income neighbourhoods versus low-income neighbourhoods. In our cohort, a high
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income showed low but significant correlations with neighbourhood greenspace area, rural
living environment and higher LLDS (Spearman correlations 0.22, 0.17 and 0.07,
respectively; correlation test FDRs < 1.0e-6), all of which share microbiome patterns
observed in high income participants, implying that microbiome—income association is likely
a combination of multiple factors, including a healthier diet and lifestyle and a less urban

living environment.
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Discussion

Microbiome studies have associated the gut microbiome to diverse chronic and acute
diseases', to the functioning of the immune system>? and to drug response, highlighting
that the gut microbiome is an essential factor in maintenance of human health. While
multiple microbiome-targeting therapies are currently being investigated in clinical trials>*,
the therapeutic potential of microbiome-targeting interventions is still confounded by a lack
of consensus in the definition of a healthy or unhealthy microbiome and by a limited
understanding of how heritability, exposome, lifestyle and diet shape microbiome
signatures of health and disease. To bridge this gap, we analysed the microbiomes of 8,208
individuals from an extensively phenotyped three-generation cohort, allowing us to pinpoint
core and keystone microbiome features and assess the effect of technical variables,
anthropometrics, heritability, cohousing, diseases, diet and environmental exposures on the
microbiome.

In addition to confirming known microbiome associations with age, sex and BMI43’55, our

results highlight the importance of considering often-omitted confounders related to the
stool samples (stool consistency), sampling season and sample processing (such as DNA
concentration or sequencing batch). This is especially important when studying diseases

where age, sex, BMI and faecal consistency are often associated with the disease.

Our observation that the microbiome is primarily associated to cohabitation and
environment rather than relatedness corroborates previous studies that identified limited
overall microbiome heritability®® and divergence in microbiomes of twins who stopped
cohousing®’. However, we do identify that the core component of the gut microbiome is
significantly heritable, whereas it is the disease-associated microbes that are largely
influenced by environment. These results suggest that the bacteria with low heritability that
are enriched in diseases, e.g. species from genera Clostridia, Flavonifracter and Veillonella,
might be more susceptible to microbiome-altering therapies than more heritable bacteria

such as those from genera Sutterella, Collinsella and Bacteroides.

By comparing associations between microbiome, health and diverse diseases, we identified
a common signal for dysbiosis in the gut (Fig. 4) that was largely consistent with a previous
study.” The existence of shared dysbiosis has considerable implications for microbiome
research and development of microbiota-targeting diagnostics and therapies. It implies that
the gut microbiome is a biomarker of general health, which is supported by our prediction

5158 However, this also complicates microbiome-based

models and by previous studies
diagnosis of individual diseases because single-disease models might be confounded by
signals shared across unrelated diseases, and testing such models for specificity in mixed-

disease cohorts will be an important step before clinical implementation. The shared
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microbiome signature is also exciting because it suggests that microbiome-targeting
interventions could improve overall human health. This is supported by our observations
that lifestyle factors generally considered healthy, such as adherence to current dietary
recommendations and no smoking, associate with similar microbiome patterns to those
associated with general health. While microbiome-drug interactions are well described in
vitro®®, and characterized in vivo for antibiotics, PPIs®® and antidiabetics®®, our results
suggest that the general microbiome dysbiosis is a combination of drug- and disease-effects,
implying that many currently understudied drugs, such as SSRls, have a negative effect on

the gut microbiome. This also highlights the importance of controlling for medication use.

By linking (un)healthy microbiome patterns to childhood and current exposome, diet and
socioeconomics, we observed that a healthier diet14, childhood and current exposure to
rural environment and pets, exposure to greenspace and higher income share signals with
healthy microbiome patterns. These observations support the microbiome diversity
hypothesis (also known as the hygiene hypothesis) — a postulate that reduction in exposure
to microbiota contributes to an increase in the frequency of autoimmune and allergic

6283 Notably, while the classic hygiene hypothesis focuses on pathogens and the

diseases
impact of early-life exposures, our results suggest that exposures in adulthood also
contribute to (un)healthy microbiome patterns, implying that the environment shapes the
microbiome throughout human life and, as such, microbiome-targeted therapies could be
effective throughout an individual’s life. Furthermore, while we identified negative
correlations of diet scores, pets and rural environment with opportunistic pathogens, such
as Clostridia species, we also observed positive correlation with commensals such as
butyrate producers from genera Bacteroides, Alistipes and Faecalibacterium, implying that
exposure not only to pathogens but also to commensals from the environment plays an

important role in establishing a healthy gut ecosystem.

We also observed that smoking, a high-carbohydrate diet and exposure to NO;, and small
particulate matter (PM,s) are positively correlated with disease-linked bacterial species
from genera Clostridia and Ruminococcus. While air pollutants were previously associated to
Gl diseases in humans®®, and have been shown to affect the gut microbiota of mice, the
effects of air pollutants on the human gut microbiota are still unclear®. Our results suggest
that air pollutants negatively impact the human gut microbiota and might increase risk for

development of Gl diseases by contributing to general microbiome dysbiosis.

In addition to identifying links between current exposome and microbiome, we also found
that childhood exposures to smoking, pets and rural environment are associated with the
subsequent adult microbiome. While the effect sizes for these associations were lower than
those of equivalent current exposures measured alongside faecal sampling, the effect

directions and patterns were consistent, suggesting that environmental exposures can have
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a long-lasting effect on the gut microbiome. This is further supported by our observation
that smokers who stopped smoking still showed microbiome associations similar to current
smokers, albeit with lower effect sizes. Notably, we observed limited associations between
microbiome and exposures during and shortly after birth, including breastfeeding, birth
mode and preterm birth. These exposures are known to shape infant microbiota®®®’, but
our findings indicate that their effects on the adult microbiome are indiscernible, possibly
because the selective pressures induced by these exposures end early in human life and
these early effects are superseded over time by other selective pressures such as diet,

exposure to microbiota of family members and environment.

Notably, while we measured 241 phenotypes from a broad set of categories, we could only
explain ~15% of the variation in microbiome composition and function between individuals.
While this level of explained variance is consistent with those found in previous large-scale

©56% it implies that the gut microbiome is

studies of European and American populations
highly individual and that our current understanding of the factors that shape it is still
limited. A potential explanation for the existence of this “missing variance” is that the
microbiome composition and function are a result of an individual's history of lifestyle and
exposures, and cross-sectional measurement is thus insufficient to fully explain it. This is
supported by our observation that early-life exposures are associated with microbiome in
adult age and that cohousing participants have significantly closer microbiomes than non-
cohabiting individuals, regardless of relatedness. Future quantification of this missing
variance, potentially by long-time-frame longitudinal studies, will play a critical part in future

development of microbiome-targeting diagnostics and therapies.

Conclusion

We generated and analysed the largest, multi-generational gut microbiome cohort to date
that has been collected and profiled in a highly standardized matter, and linked it to
extensive phenotype data. We defined and described a gut dysbiosis shared across diverse
diseases and identified novel links between this dysbiosis and heritability, childhood and
current exposome, lifestyle and socioeconomics. This study demonstrates the power of
large-scale, well-phenotyped cohorts for dissecting the links between gut microbiome,
health, genetics and environment and provides a rich resource for future studies for

microbiome-directed interventions.
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