

1 **Distinct role of nucleus accumbens D2-MSN projections to**
2 **ventral pallidum in different phases of motivated behavior**
3
4
5

6 **Carina Soares-Cunha^{1,2}, Raquel Correia^{1,2}, Ana Verónica Domingues^{1,2}, , Bárbara**
7 **Coimbra^{1,2}, Nivaldo AP de Vasconcelos^{1,2,3,4}, Luísa Pinto^{1,2}, Nuno Sousa^{1,2,5}, Ana João**
8 **Rodrigues^{1,2*}**

9
10 1- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho,
11 Braga, Portugal.
12 2- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
13 3- Physics Department, Federal University of Pernambuco (UFPE), Recife, Pernambuco, 50670-
14 901, Brazil.
15 4- Department of Biomedical Engineering, Federal University of Pernambuco (UFPE), Recife,
16 Pernambuco, 50670-901, Brazil.

17
18
19

20 **Running Title:** Nucleus accumbens D2-MSNs shape motivated behavior
21
22
23

24 **Correspondence:**
25 Ana João Rodrigues
26 School of Medicine
27 University of Minho
28 Campus de Gualtar
29 4710-057 Braga
30 Portugal
31
32 **Email:** ajrodrigues@med.uminho.pt
33 Tel:+351253604929

34 **Abstract**

35 The nucleus accumbens (NAc) is a key region in motivated behaviors. NAc medium spiny
36 neurons (MSNs) are divided into those expressing dopamine receptor D1 or D2. Classically, D1-
37 and D2-MSNs have been described as having opposing roles in reinforcement but recent evidence
38 suggests a more complex role for D2-MSNs.

39 Here we show that optogenetic modulation of D2-MSN to ventral pallidum (VP) projections
40 during different stages of motivated behavior has contrasting effects in motivation. Activation of D2-
41 MSN-VP projections during a reward-predicting cue results in increased motivational drive,
42 whereas activation at reward delivery results in decreased motivation; optical inhibition has the
43 opposite behavioral effect. In addition, in a free choice instrumental task, animals prefer the lever
44 that originates one pellet in opposition to pellet plus D2-MSN-VP optogenetic activation, and vice
45 versa for optogenetic inhibition.

46 In summary, D2-MSN-VP projections play different (and even opposing) roles in distinct
47 phases of motivated behavior.

48

49

50 **Keywords**

51 Nucleus accumbens; ventral pallidum; reward; motivation; medium spiny neurons; D2-MSNs

52 **Introduction**

53

54 Organisms are faced with the necessity to look for rewards in the environment to survive.
55 While natural rewards (e.g. food) motivate goal-directed behavior, similar mechanisms appear to
56 be involved in drug seeking, which can lead to drug abuse (Robbins 2002). Interestingly, individuals
57 associate environmental cues with specific rewards, causing for these cues to acquire motivational
58 significance that can shape goal-directed behavior (Rescorla 1994). For example, food-associated
59 cues can induce feeding in sated animals (Holland and Petrovich 2005), and drug-associated cues
60 can elicit drug taking after withdrawal (Grimm et al. 2002), suggesting that such motivational cues
61 have the ability to shape goal-directed behavior. Given these common cue-reward associative
62 mechanisms that natural and non-natural rewards share, by understanding the mechanisms that
63 guide motivated behavior for natural rewards it may be possible to provide insight into similar
64 pathological processes in drug addiction.

65 The nucleus accumbens (NAc) plays a significant role in regulating reward-seeking and
66 motivated behaviors (Berridge 2007). Electrophysiological studies have shown that NAc neurons
67 encode both the predictive value of environmental stimuli and the specific motor behaviors required
68 to respond to them (Carelli 2002; Nicola et al. 2004). Interestingly, with learning, NAc neurons, and
69 in particular those located in the core subregion (Ambroggi et al. 2011), develop responses to cues
70 predicting rewards (Roitman et al. 2005). In addition, others have shown that the NAc contains
71 distinct classes of neurons: one that increases firing at cue exposure in a cue-reward association
72 task; while other exhibits attenuated firing rate specifically at reward delivery (Gale et al. 2014).

73 The NAc receives dopamine signals from the ventral tegmental area (VTA), which acts
74 predominantly via activation of D1 or D2 dopamine receptors that are expressed by largely non-
75 overlapping populations of medium spiny neurons (MSNs) (Gerfen and Surmeier 2011). These two
76 MSN sub-populations project to different outputs: D1-MSNs project to the VTA, while both D1- and
77 D2-MSNs project to the ventral pallidum (VP) (Lu et al. 1998; Kupchik et al. 2015). Initial studies
78 suggested that different NAc MSN subtypes play distinct and opposing roles in motivated
79 behaviors: while activation of D1-MSNs promotes reward-related outcomes, activation of D2-MSNs
80 blunts rewarding events (Lobo et al. 2010; Kravitz et al. 2012; Calipari et al. 2016). However, other
81 studies challenged this functional opposing view and showed that NAc D2-MSN optical stimulation
82 promotes self-stimulation (Cole et al. 2018), suggesting that D2-MSNs may be pro-rewarding in
83 some contexts. Moreover, we have shown that brief optical activation of D2-MSNs paired with a
84 reward-predicting cue enhances motivation to obtain food rewards (Soares-Cunha et al. 2016,
85 2018). In addition, specific cue-driven activation of D2-MSN-VP projections would increase
86 motivation towards obtaining a food reward (Soares-Cunha et al. 2018). Interestingly, this
87 behavioral effect was triggered by a transient decrease in activity of GABAergic neurons within the
88 VP which, in turn, resulted in disinhibition of dopaminergic activity of the VTA (Soares-Cunha et al.
89 2018), known to induce increased motivational levels (Ilango et al. 2014; Han et al. 2017).
90 Nonetheless, others have shown that chronic inhibition of D2-MSNs during a progressive ratio (PR)
91 task (using chemogenetics), leads to enhanced motivation without affecting the sensitivity to reward
92 devaluation (Carvalho Poyraz et al. 2016). Interestingly, despite increasing motivation, inhibition of
93 D2-MSNs would cause animals to initiate more frequently behavior without goal-directed efficiency
94 (Gallo et al. 2018), an effect caused by disinhibition of VP GABAergic activity (Gallo et al. 2018).
95 These studies and others further support the notion that reward-related behavioral responses
96 depend on normal connectivity between NAc and VP (Chang et al. 2018), and that VP is a critical

97 interface between reward processing and motor output (Chang et al. 2018; Ottenheimer et al.
98 2018).

99 In general, these results seem to point for the importance of D2-MSN-VP in specific
100 sequences of behavior such as action initiation and cue-driven responses. Thus, to better
101 understand the contribution of D2-MSN-VP projections in reward-related behaviors, we optically
102 manipulated these neurons during specific segments of behavior. We show that optogenetic
103 stimulation of D2-MSN-VP projections can bi-directionally modulate motivated behavior depending
104 on the timing of stimulation: activation during a cue that predicts a reward increases motivation
105 while activation of the same neurons at reward delivery decreases motivation in different behavioral
106 paradigms. This study adds to a better understanding on the role of D2-MSN-VP projections in
107 motivated behaviors and shows that these neurons play a much more complex role in reinforced
108 behavior than previously anticipated.

109

110

111 **Results**

112

113 **Optogenetic activation D2-MSN terminals modulates ventral pallidum activity**

114 Previous data from our group showed that optogenetic stimulation of NAc core D2-MSNs cell
115 bodies during cue exposure increases motivation and is rewarding (Soares-Cunha et al. 2016).
116 However, it remains to be determined if this behavioral effect is through D2-MSN terminals in the
117 VP or through another downstream region. So, in order to better understand the role of D2-MSN-
118 VP projections in motivated behavior, we used optogenetics to manipulate these terminals.

119 We unilaterally injected an AAV5 containing a construct with channelrhodopsin (ChR2) in
120 fusion with enhanced yellow fluorescent protein (eYFP) under the control of the dopamine receptor
121 D2 minimal promoter (pAAV-D2R-hChR2(H134R)-eYFP) in the NAc core of wild type *Wistar Han*
122 rats (D2-ChR2 group; Figure 1A), which allows specific manipulation of D2⁺ neurons (Soares-
123 Cunha et al. 2016; Zalocusky et al. 2016). Expression of eYFP was observed in cell bodies in the
124 NAc core (Figure 1B) and in D2-MSN terminals located in the dorsal VP (dVP; Figure 1C), the VP
125 sub-region that is innervated by the NAc core D2-MSNs (Heimer et al. 1991). We next used single-
126 cell *in vivo* electrophysiology in anesthetized animals to evaluate optically-evoked response of dVP
127 neurons to D2-MSN terminal activation (1s, 25ms light pulses at 20Hz) (Figure 1D). Half of recorded
128 dVP neurons responded to D2-MSN terminal stimulation by decreasing firing rate (15 cells), 10%
129 increased firing rate (3 cells) and 40% (12 cells) presented no change in comparison with baseline
130 (Figure 1E). As a consequence, the net firing rate of dVP significantly decreased during the stimulus
131 period ($F_{(2,29)} = 7.32, p = 0.0083$, one way ANOVA; Figure 1E) in comparison to baseline activity
132 (Bonferroni *post hoc*, $p = 0.0339$). After optical stimulation, dVP firing rate returned to baseline
133 levels (Bonferroni *post hoc*, $p = 0.6083$). This effect is also shown in the temporal variation of activity
134 of all recorded neurons (Figure 1F).

135

136 **Cue-paired optogenetic activation of D2-MSN-VP projections increases motivation**

137 Previous data presented conflicting results regarding D2-MSNs' role in motivation (Carvalho
138 Poyraz et al. 2016; Soares-Cunha et al. 2016, 2018; Gallo et al. 2018), suggesting that these
139 neurons play distinct roles in different stages of motivated behavior. In this work, we decided to
140 focus on the modulation of D2-MSN-VP terminals in motivated behaviors. First, we tested D2-ChR2
141 animals in the PR task that has one active lever associated with reward delivery and one inactive
142 lever (Figure 1G). Each trial begins with turning ON of a cue light located above the active lever.
143 The PR directly measures motivational level which is given by the breakpoint, that is the moment

144 when the animal gives up pressing for the reward (Wanat et al. 2010). Control group was injected
145 with an AAV containing pAAV-D2R-eYFP (D2-YFP) (Figure 1 – figure supplement 1A-B).

146 During continuous reinforcement (CRF) training, both groups increased lever pressing
147 throughout days similarly ($F_{(1,66)} = 1.5, p = 0.2230$, two way ANOVA; Figure 1H). All animals
148 increased lever pressing in the fixed-ratio (FR) schedule days in the correct versus incorrect lever
149 ($F_{(3,22)} = 61.3, p < 0.0001$, two way ANOVA; Figure 1I).

150 After stable lever pressing, we performed optical stimulation (1s, 25ms pulses at 20Hz) of D2-
151 MSN terminals in the dVP paired with cue light period of the PR session. D2-MSN-VP stimulation
152 induced a significant increase in the number of cumulative lever presses (D2-ChR2 ON versus D2-
153 ChR2 OFF; $F_{(5,72)} = 10.6, p < 0.0001$, two way ANOVA; Figure 1J). D2-ChR2-stimulated animals
154 presented a 51% increase in breakpoint in comparison to D2-YFP-stimulated rats ($t_{11} = 5.98, p <$
155 0.0001 , unpaired t test; Figure 1K). All D2-ChR2 rats displayed a significant increase in breakpoint
156 in the session with optical stimulation (ON) in comparison with the session without optical
157 stimulation (OFF) ($t_6 = 10.2, p < 0.0001$, paired t test; Figure 1L), which was counterbalanced
158 between days. This enhancement was not due to changes in food consumption, since the number
159 of pellets earned was similar in the two PR sessions ($t_6 = 2.0, p = 0.0930$, paired t test; Figure 1 –
160 figure supplement 1C).

161 When optogenetic activation occurred during the inter-trial interval (ITI), no differences in the
162 cumulative lever pressing (Figure – figure supplement 1D), breakpoint (Figure – figure supplement
163 1E), or number of food pellets earned (Figure 1 – figure supplement 1F) was observed between
164 D2-ChR2 and D2-YFP animals, showing that the motivation boost effect is restricted to particular
165 stages of behavior.

166 **Cue-paired optogenetic inhibition of D2-MSN-VP projections decreases motivation**

167 We next inhibited D2-MSN-VP terminals during PR performance. Animals were injected with
168 an AAV5 containing halorhodopsin (eNpHR) under the control of the D2 minimal promoter (pAAV-
169 D2R-eNpHR3.0-eYFP) (Figure 2A,B; Figure 1 – figure supplement 1A,B) (Soares-Cunha et al.
170 2016).

171 D2-NpHR and D2-YFP rats presented similar rate of lever pressing in the training sessions.
172 During CRF training, both groups increased lever pressing similarly across days of training ($F_{(1,60)} =$
173 $2.9, p = 0.0962$, two way ANOVA; Figure 2C), and all animals increased lever pressing in the FR
174 schedule in the correct versus incorrect lever ($F_{(3,18)} = 27.5, p < 0.0001$, two way ANOVA; Figure
175 2D). D2-MSN-VP optical inhibition (10s constant light at 10mW) during cue light period of the PR
176 session, induced a significant decrease in the number of cumulative lever presses (D2-eNpHR ON
177 versus D2-eNpHR OFF; $F_{(5,48)} = 5.3, p = 0.0006$, two way ANOVA; Figure 2E). This was translated
178 into a 43% decrease of the breakpoint of D2-eNpHR group in comparison to D2-YFP stimulated
179 rats ($t_9 = 3.4, p = 0.0076$, unpaired t test; Figure 2F). All D2-NpHR rats displayed a significant
180 decrease in breakpoint in the ON session in comparison with the OFF session ($t_6 = 10.2, p < 0.0001$,
181 paired t test; Figure 2G). D2-NpHR and D2-YFP rats earned a similar number of pellets in the PR
182 session ($t_9 = 0.1, p = 0.8925$, unpaired t test; Figure – figure supplement 1A).

183 Optogenetic inhibition during the ITI did not induce differences in the cumulative lever pressing
184 (Figure 2 – figure supplement 1B), breakpoint (Figure 2 – figure supplement 1C), or number of food
185 pellets earned (Figure 2 – figure supplement 1D).

186 **Impact of reward-paired optogenetic modulation of D2-MSN-VP projections in motivation**

187 D2-MSN-VP modulation during cue exposure induced robust changes in motivational drive,
188 but the impact of this manipulation during other task-relevant periods remained unknown. Thus, we

191 next paired D2-MSN-VP projection activation/inhibition with cue exposure as in the previous task,
192 and in another session, optical modulation was paired with reward (pellet) delivery (Figure 3A).
193 Interestingly, D2-ChR2 animals presented a significantly lower number of cumulative lever presses
194 (30.2% less) performed in the PR session with optical stimulation paired with reward delivery, in
195 comparison with D2-YFP animals ($F_{(5,60)} = 9.9, p < 0.0001$, two way ANOVA; D2-ChR2 reward
196 versus D2-YFP reward, Tukey's multiple comparison, $p < 0.0001$; Figure 3B). In addition, D2-ChR2
197 animals presented a significantly lower number of cumulative lever presses in comparison to the
198 PR session in which they received optical activation at cue exposure (48.2% decrease; Tukey's
199 multiple comparison, $p < 0.0001$; Figure 3B). As compared to D2-YFP, there was a 46.5% reduction
200 in breakpoint ($t_{19}=7.1, p < 0.0001$, unpaired t test); and a 64% reduction in comparison to D2-ChR2
201 cue session ($t_{11}=15.6, p < 0.0001$, paired t test; Figure 3C,D).

202 Optogenetic inhibition of D2-MSN-VP projections paired with reward delivery significantly
203 increased the number of cumulative lever presses in comparison to both D2-YFP (18.2% increase;
204 Tukey's multiple comparison, $p = 0.0495$; Figure 3B) and D2-eNpHR cue (24.3% increase; Tukey's
205 multiple comparison, $p = 0.0036$; Figure 3B). As compared to D2-YFP, there was a 36.9% increase
206 in breakpoint ($t_{17}=8.6, p < 0.0001$, unpaired t test); and a 105% increase in comparison to D2-
207 eNpHR cue ($t_{10}=11.9, p < 0.0001$, paired t test; Figure 3C,D).

208 No significant differences were observed in the number of food pellets earned during the PR
209 sessions (Figure 3 – figure supplement 1A).

210

211 Optogenetic activation of D2-MSN-VP projections paired with reward shifts preference and 212 decreases motivation

213 Considering the distinct role of D2-MSN-VP projections in different stages of the PR test, we
214 tested animals in another reward-related task. Animals were tested in a two-lever free choice
215 behavioral paradigm, in which animals have available two levers that deliver one food pellet each;
216 one lever is randomly assigned to stimulate D2-MSN-VP projections (stim+), while the other lever
217 is assigned to deliver the pellet alone (stim-) (Figure 4A).

218 Throughout acquisition days, D2-ChR2 rats showed a clear preference for pressing the stim-
219 lever in comparison with the stim+ lever ($F_{(7,48)} = 7.3, p < 0.0001$, two way ANOVA; Bonferroni
220 multiple comparison, $p < 0.0001$; Figure 4B). As expected, D2-YFP rats showed no preference for
221 either lever (Figure 4B). Regardless of this preference, no significant differences were found in the
222 total number of lever presses (in both levers) in the last day of training between D2-ChR2 (average
223 of 1230.1 lever presses) and D2-YFP (average of 996.3 lever presses) rats ($t_{11} = 1.6, p = 0.1426$,
224 unpaired t test; data not shown).

225 Considering this preference, we next decided to evaluate individuals' behavior in reward
226 extinction conditions. The same behavioral task was performed but no pellet was delivered on
227 either lever, though optical stimulation still occurred at stim+ lever (Figure 4D). Interestingly, both
228 groups decrease lever pressing in both levers, indicating that the instrumental response was
229 dependent on the delivery of the reward (Figure 4E).

230 After 2 reminder sessions with laser paired with reward delivery in the assigned lever, we
231 performed the task in laser extinction conditions, i.e., the outcome is the same in both levers – one
232 pellet – but no stimulation is given (Figure 4G). D2-ChR2 animals showed no preference for either
233 lever under laser extinction conditions ($F_{(5,30)} = 1.2, p = 0.3178$, two way ANOVA; Bonferroni
234 multiple comparison, $p > 0.9999$; Figure 4H).

235 Next, we performed two sessions of PR, one session for each lever (Figure 4J).
236 Interestingly, D2-ChR2 rats pressed cumulatively more in the PR session in which animals worked
237 for the stim- lever, in comparison with the session in which they had to press for the stim+ lever

238 ($F_{(6,72)} = 135.7$, $p < 0.0001$, two way ANOVA; *Bonferroni* multiple comparison, $p < 0.0001$; Figure
239 4K). There was a significant decrease in breakpoint (53%) in all D2-ChR2 animals for stim+ lever
240 in comparison to stim- ($t_6 = 10.3$, $p < 0.0001$, paired *t* test; Figure 4M). No differences in the number
241 of food pellet consumed during both PR sessions was found (D2-ChR2 stim+ versus D2-ChR2
242 stim-; $t_6 = 0.6$, $p = 0.5729$, paired *t* test; Figure 4 – figure supplement 1A).

243

244 **Optogenetic inhibition of D2-MSN-VP projections paired with reward shifts preference and**
245 **increases motivation**

246 We next performed the two-lever free choice behavioral paradigm with optogenetic inhibition
247 of D2-MSN-VP terminals. Rats were presented with two levers that originated a food pellet, but
248 stim+ was now associated with optogenetic inhibition of D2-MSN-VP projections. A significant
249 difference was found between choice of levers along the days of training: D2-eNpHR rats showed
250 a significant preference for pressing the stim+ lever in comparison with stim- lever ($F_{(7,56)} = 26.8$, p
251 < 0.0001, two way ANOVA; Figure 4C). As anticipated, D2-YFP rats showed no preference for
252 either lever (Figure 4C). No significant differences were found in the total number of lever presses
253 in the last day of training between D2-NpHR (average of 1135 lever presses) and D2-YFP (average
254 of 996.3 lever presses) ($t_9 = 0.9$, $p = 0.3780$, unpaired *t* test; data not shown).

255 We next performed the task in food extinction conditions (Figure 4D). Both groups significantly
256 decreased lever pressing on either lever (Figure 4F), indicating that stimulation alone is not
257 sufficient to maintain increased lever pressing.

258 Next, we performed the same task but in laser extinction conditions, which makes the outcome
259 (pellet alone) equal in both levers (Figure 4G). D2-eNpHR animals showed no preference for either
260 lever ($F_{(5,40)} = 6.8$, $p = 0.001$, two way ANOVA; *Bonferroni* multiple comparison, $p > 0.9999$; Figure
261 4I).

262 After performing a reminder of the two-lever free choice task, we performed two PR sessions, one
263 for each lever (Figure 4J). D2-eNpHR rats pressed cumulatively more in the PR session in which
264 animals worked for the stim+ lever in comparison with stim- lever ($F_{(5,40)} = 217.0$, $p < 0.0001$, two
265 way ANOVA; *Bonferroni* multiple comparison, $p < 0.0001$; Figure 4L). This was reflected in a
266 significantly increased breakpoint (103%) in all D2-eNpHR animals for the PR session of stim+
267 lever in comparison with the session of stim- lever ($t_4 = 8.6$, $p = 0.0010$, paired *t* test; Figure 4N).
268 No differences in the number of food pellets consumed in both PR sessions was observed (D2-
269 eNpHR stim+ versus D2-eNpHR stim-; $t_4 = 2.1$, $p = 0.1045$, paired *t* test; Figure 4 – figure
270 supplement 1B).

271

272 **No differences in food consumption with D2-MSN-VP modulation**

273 In order to further verify if D2-MSN-VP projections play a relevant role in food consumption
274 we evaluated the amount of food – normal chow and food pellets – that animals would consume in
275 one session with no optogenetic modulation and one session with either optogenetic activation (D2-
276 ChR2) or optogenetic inhibition (D2-eNpHR) of D2-MSN-VP projections. For this, all animals
277 performed three days of free food consumption in a cage similar to the home cage and the amount
278 of food consumed was monitored by evaluating the weight at the end of each 30-minute session;
279 all animals performed two days of consumption test without optical stimulation (that were averaged)
280 and one day with optogenetic stimulation. Neither optogenetic activation nor optogenetic inhibition
281 of D2-MSN-VP projections had a significant impact in the consumption of normal chow or food

282 pellets (Figure 4 – figure supplement 2A-F), indicating that the changes in motivation caused by
283 optogenetic modulation were not due to differences in food consumption or satiety.

284

285

286

287 **Discussion**

288

289 Despite remarkable advances in identifying the role of specific neuronal populations of the
290 reward circuit in motivated behaviors (Parker et al. 2016; Saunders et al. 2018; Engelhard et al.
291 2019), there is still a lot of controversy regarding NAc D1- and D2-MSNs (Soares-Cunha et al.
292 2016, 2019; Natsubori et al. 2017; Cole et al. 2018). D2-MSNs have been considered to play a
293 crucial role in inducing transient punishment and aversive responses (Kravitz et al. 2012); however,
294 accumulating evidence points to a heterogenous role of this neuronal population in behavior
295 (Soares-Cunha et al. 2016, 2019; Natsubori et al. 2017; Cole et al. 2018). In the present study we
296 report that optogenetic activation of D2-MSN-VP projections occurring at the same time as reward-
297 predicting cue increases motivation. Contrary, if optogenetic stimulation was paired with reward
298 (pellet) delivery, this resulted in decreased breakpoint/motivation. Inhibition experiments led to
299 opposit effects in behavior, confirming these results. In addition, we report that in a free-choice
300 task in which rats could press a lever to receive a food pellet or a food pellet paired with laser
301 stimulation, a shift in preference towards pellet alone was observed, and *vice versa* for optogenetic
302 inhibition. These results suggest that D2-MSN terminals in the VP are likely differentially activated
303 during different phases of motivated behaviors.

304

305 Previously we showed that cue-paired optogenetic activation of D2-MSNs in the NAc leads to
306 a significant increase in motivation (Soares-Cunha et al. 2016). However, other studies showed
307 that chronic inhibition of these neurons using chemogenetics increases motivation (Carvalho
308 Poyraz et al. 2016; Gallo et al. 2018). This apparently contradictory findings can now be reconciled
309 with the evidence that D2-MSNs appear to play distinct roles during different stages of reward-
310 related tasks. Our data indicates that D2-MSN-VP projections are important to add value to a cue
311 that predicts a future reward, and to increase effort towards obtaining the reward. Conversely,
312 activation of D2-MSN-VP projections at reward delivery decreases breakpoint/motivation, contrary
313 to the observed effects with cue-paired optical activation. This behavioral data suggests that D2-
314 MSN-VP inputs activation is necessary to invigorate cue value, but suppression of D2-MSN-VP
315 activity is required for efficient reward consumption.

316 Altogether the PR task data pinpoints that D2-MSNs projecting to the VP are necessary to
317 encode the value of a reward-predicting cue, but not so much for the reward itself. In agreement,
318 in the two-choice task, optogenetic activation of D2-MSN-VP projections paired with reward delivery
319 (stim+) shifts preference for stim- lever; the contrary was observed with optical inhibition of these
320 terminals. Interestingly, and in support of our behavioral results, data from extracellular recordings
321 in the dorsomedial striatum has shown that D2-MSNs are selectively active during action initiation,
322 but are suppressed at outcome delivery (Nonomura et al. 2018). In addition, electrophysiological
323 studies performed in the NAc have shown that MSNs exhibit phasic increases in firing rate during
324 cue presentations, but attenuated firing rates at reward delivery (Gale et al. 2014). Similarly,
325 electrophysiological recordings in the NAc during a Pavlovian conditioning approach task showed
326 that MSNs exhibit significant responses during task performance: while MSNs increase firing rate
327 during conditioned stimulus presentations, the responses to reward were predominantly inhibitory
328 (Wan and Peoples 2006). Yet, it is important to refer that in these electrophysiological studies no

329 separation between D1- and D2-MSNs was performed. More recently, a key role for D2R-
330 expressing neurons in the NAc has been identified in response to reward-predicting cue, given that
331 these neurons increased firing at cue, but not at lever pressing, that predicted lever availability for
332 electrical stimulation of the VTA (Owesson-White et al. 2016). Interestingly, calcium transients of
333 D1- or D2-MSNs detected in the ventrolateral striatum with fiber photometry during a PR task,
334 showed that D2-MSNs increase activity at trial start, but decrease as lever pressing for reward
335 continues, reaching minimal levels at reward delivery (Natsubori et al. 2017). Moreover, higher D2-
336 MSN calcium transients associated with cue exposure were correlated with a higher motivational
337 state (Natsubori et al. 2017). Although dorsal and ventrolateral striatum are functionally distinct
338 from the NAc, these data are in agreement with our results indicating that D2-MSNs in the core
339 subregion are highly relevant for the reward-predicting cue period. Importantly, this effect may be
340 subregion specific, because core and shell have different behavioral roles, presumably because of
341 different inputs that they receive (Zahm 1999; Voorn et al. 2004). We focused our attention on NAc
342 core projections to the VP because this sub-region has been proposed to be particularly relevant
343 for acquisition of cue-reward associations, while shell seems to be more relevant for reward
344 prediction and affective processing (Carelli 2004; Saddoris 2013; Saddoris et al. 2015; West and
345 Carelli 2016; Sackett et al. 2017)

346 Another interesting finding from this study was that in reward extinction conditions, laser
347 stimulation *per se* was not able to support the shift in preference. This data may be defying to
348 reconcile with the fact that brief optical activation of D2-MSNs *per se* is reinforcing since it induces
349 place preference (Cole et al. 2018). Nevertheless, these findings are similar to previous studies in
350 which optogenetic stimulation of central amygdala (Robinson et al. 2014) or laterodorsal
351 tegmentum-to-NAc projections (Coimbra et al. 2019) increased preference for the lever associated
352 with optical stimulation, but only if paired with food reward. One possible explanation is that in the
353 two-choice task, animals are mildly food restricted so their primary goal is to obtain the food pellet,
354 so in reward extinction conditions the stimulation alone is not enough to sustain lever pressing.
355 One other possibility is that one would need additional sessions to observe self-stimulation of these
356 projections.

357 In laser extinction conditions, in which pressing either lever results in equal pellet delivery,
358 animals pressed similarly on each lever. Still, in a reminder session where optical inhibition was
359 associated with reward delivery in stim+ lever, animals would show a significant increase in
360 motivation to work for that lever. Again, this suggests that D2-MSNs-VP terminals are likely
361 suppressed during reward delivery. Although these effects could be attributed to potential
362 alterations in the hedonic value of the reward (Berridge 2007; Berridge et al. 2009) caused by
363 stimulation itself, the fact that stimulation during free feeding behavior did not induce any
364 consumption differences for chow or food pellets likely rules out this hypothesis.
365

366 One possibility by which modulation of D2-MSNs in the VP could affect motivated behavior is
367 that activation of these projections causes an indirect effect in downstream regions important for
368 motivated behaviors, namely the VTA that is densely innervated by VP GABAergic projections
369 (Flagel et al. 2011; Ostlund et al. 2014; Burke et al. 2017; Soares-Cunha et al. 2019). Given that
370 optogenetic activation of D2-MSN-VP projections causes a net decrease in the firing rate of VP
371 putative GABAergic neurons, the tonic inhibitory control that VP GABAergic neurons exert over
372 dopaminergic neurons in the VTA is inhibited (Hjelmstad et al. 2013), which could lead to increased
373 dopaminergic activity and consequent increase in motivated responses. Indeed, previous data from
374 our team showed that optical activation of D2-MSNs leads to inhibition of VP GABAergic neurons,
375 and consequently increased VTA dopaminergic activity (Soares-Cunha et al. 2019).

376

377

378 **Conclusion**

379 In the present work we show that D2-MSN-VP projections differentially contribute for distinct
380 phases of motivated behavior. Activity of these neurons is necessary to increase the value of a cue
381 that predicts a reward, but it does not seem necessary for the operant execution of the task. This
382 is particularly shown in the two-choice task, where, although D2-ChR2 animals show preference
383 for one of the levers (stim-) as learning of the instrumental task progresses, the total number of
384 lever presses (stim+ lever plus stim- lever) does not differ from control animals. Interestingly, this
385 is also observed in studies showing preference for the stim+ lever (Robinson et al. 2014; Coimbra
386 et al. 2019).

387

388 It is becoming increasingly evident that D2-MSNs have divergent roles in different stages of
389 behavior, which highlights the need to perform electrophysiological recordings with opto-tagging
390 (Kravitz et al. 2013) or calcium imaging (Klaus et al. 2017) in freely behaving animals during task
391 performance, to determine the temporal activity of D2-MSN-VP projections during behavior.

392

393 Overall, this work shows that the role of D2-MSN-VP projections in reinforced behaviors is far
394 more complex than anticipated, suggesting the need of a coordinated activity of the same neuronal
395 population during behavioral performance for the execution of highly motivated behaviors.

396 **Materials and Methods**

397

Key Resources Table				
Reagent type (Species) or resource	Designation	Source or Reference	Identifier	Additional information
Strain (<i>Ratus norvegicus</i> , male)	Wistar han rat	Charles River Laboratories, Spain	NA	Wild-type rats
Recombinant DNA reagent	AAV5-D2R-hChR2(H134R)-eYFP	Deisseroth lab	NA	
Recombinant DNA reagent	AAV5-D2R-eNpHR3.0-eYFP	Deisseroth lab	NA	
Recombinant DNA reagent	AAV5-D2R- eYFP	Deisseroth lab	NA	
Antibody	goat anti-GFP	Abcam	catalog #A-11055, RRID: AB_2534102	1:500
Antibody	Alexa fluor 488 donkey anti-goat	Invitrogen	catalog #A-11055, RRID: AB_2534102	1:500
Software, algorithm	Spike2	Cambridge Electronic Design	RRID:SCR_000903	
Software, algorithm	Med-PC program	Med Associates	RRID:SCR_012156	
Software, algorithm	GraphPad Prism	GraphPad Software Inc	RRID:SCR_002798	Version 8.4.0
Software, algorithm	Python packages (numpy 1.10.1; scipy 0.18.1)	, Python Software Foundation, Beaverton, OR, USA	NA	

398

399

400 **Animals**

401 Male *Wistar Han* rats (two to three months old at the beginning of the experiments) were used.
402 Animals were maintained under standard housing conditions with 12/12h light/dark cycle (lights on
403 from 8a.m. to 8p.m.) and room temperature of 21 ± 1°C, with relative humidity of 50–60%. Rats
404 were individually housed after optical fiber implantation and standard diet (4RF21, Mucedola SRL)
405 and water were given *ad libitum*, until the beginning of the behavioral experiments, in which animals
406 switched to food restriction to maintain 85% of initial body weight.

407 Behavioral manipulations occurred during the light period of the light/dark cycle. Health
408 monitoring was performed according to FELASA guidelines (Nicklas et al. 2002). All procedures
409 were conducted in accordance with European Regulations (European Union Directive
410 2010/63/EU). Animal facilities and animal experimenters were certified by the National regulatory
411 entity, Direção-Geral de Alimentação e Veterinária (DGAV). All protocols were approved by the
412 Ethics Committee of the Life and Health Sciences Research Institute (ICVS) and by DGAV (protocol
413 number 19074, approved on 08/30/2016).

414

415 **Constructs and virus**

416 eYFP or hChR2(H134R)-eYFP or eNpHR3.0-eYFP were cloned under the control of the D2R
417 minimal promoter region as described before (Soares-Cunha et al. 2016; Zalocusky et al. 2016).
418 Constructs were packaged in AAV5 serotype by the University of North Carolina at Chapel Hill
419 (UNC) Gene Therapy Center Vector Core (UNC). AAV5 vector titers were 3.7–6 × 10¹² viral
420 molecules/ml as determined by dot blot.

421

422 **Surgery and optic fiber implantation**

423 Rats were anesthetized with 75 mg kg⁻¹ ketamine (Imalgene, Merial) plus 0.5 mg
424 kg⁻¹ medetomidine (Dorbene, Cymedica). Virus was unilaterally injected into the NAc; coordinates
425 from bregma, according to (Paxinos and Watson 2005): +1.2 mm anteroposterior (AP), +1.2 mm
426 mediolateral (ML), and -6.5 mm dorsoventral (DV; D2-ChR2 group and D2-eYFP control group).
427 An optic fiber was then implanted in the VP (coordinates from bregma: -0.1 mm AP, +2.4 mm ML,
428 and -7.5 mm DV), which was secured to the skull using two 2.4 mm screws (Bilaney) and dental
429 cement (C&B kit, Sun Medical).

430 Rats were allowed to recover for three weeks before initiation of the behavioral trainings.

431

432

433 **Behavior**

434 *Animals and apparatus.* Rats were habituated to 45 mg of food pellets (F0021; Bio-Serve) in
435 the home cage, which were used as reward during the behavioral protocol, 1 day before training
436 initiation. Behavioral sessions were performed in operant chambers (Med Associates) that
437 contained a central, recessed magazine to provide access to 45 mg of food pellets (Bio-Serve),
438 two retractable levers with cue lights located above them that were located on each side of the
439 magazine. Chamber illumination was obtained through a 2.8-W, 100-mA light positioned at the top-
440 center of the wall opposite to the magazine. The chambers were controlled by a computer equipped
441 with the Med-PC software (Med Associates).

442

443 *PR 1 schedule of reinforcement.* All training sessions started with illumination of the house
444 light that remained until the end of the session. On the first training session [continuous
445 reinforcement (CRF) sessions] one lever was extended. The lever would remain extended
446 throughout the session, and a single lever press would deliver a food pellet (maximum of 50 pellets
447 earned within 30 minutes). In some cases, food pellets were placed on the lever to promote lever
448 pressing. After successful completion of the CRF training, rats were trained to lever press on the
449 opposite lever using the same training procedure. In the four following days, the side of the active
450 lever was alternated between sessions. Then, rats were trained to lever press one time for a single
451 food pellet in a fixed ratio (FR) schedule consisting in 50 trials in which both levers are presented,
452 but the active lever is signaled by the illumination of the cue light above it. FR sessions began with
453 extension of both levers (active and inactive) and illumination of the house light and the cue light
454 over the active lever. Completion of the correct number of lever press led to a pellet delivery,
455 retraction of the levers and the cue light turning off for a 20-s inter-trial interval (ITI). Rats were
456 trained first with one lever active and then with the opposite lever active in separate sessions (in
457 the same day). In a similar manner, rats were then trained using an FR4 reinforcement schedule
458 for 4 d and a FR8 for 1 day. On the test day, rats were exposed to PR or FR experimental sessions
459 (one session per day) according to the following schedule: day 1, FR4; day 2, PR (optical
460 stimulation); day 3, FR4; day 4, PR (no optical stimulation). PR sessions were identical to FR4
461 sessions except that the operant requirement on each trial (T) was the integer (rounded down) of
462 1.4^(T-1) lever presses, starting at 1 lever press. PR sessions ended after 15 min elapsed without
463 completion of the response requirement in a trial. All animals performed 4 sessions of PR: in the
464 first session all animals received no optogenetic manipulation; in following sessions one third of the
465 animals received optogenetic manipulation during ITI, one third received optogenetic manipulation
466 at cue exposure and one third received optogenetic manipulation at pellet delivered. The days of
467 optogenetic manipulation were counterbalanced between groups. All PR sessions were separated
468 by two days of FR4 with no stimulation.

469 Optical activation consisted of: 473nm, 25ms light pulses over 1s, 10mW at the tip of the
470 implanted fiber.

471 Optical inhibition consisted of: 589nm, 10 s of constant light, 10mW at the tip of the implanted
472 fiber.

473

474 *Two-choice schedule of reinforcement.* During instrumental training, rats were presented two
475 illuminated levers, one on either side of the magazine (Robinson et al. 2014). Presses in one lever
476 (stim+) lead to instrumental delivery of a pellet plus laser stimulation (optical activation: 1s, 20Hz,
477 473nm; optical inhibition: 4s constant light, 589 nm; both with 10mW at the tip of the implanted
478 fiber) accompanied by a 4s auditory cue (white noise or tone; always the same paired for a
479 particular rat, but counterbalanced assignments across rats). In contrast, pressing the other lever
480 (stim-) delivered a single pellet accompanied by another 4s auditory cue (tone or white noise), but
481 with no laser illumination. For both levers, presses during the 4s after pellet delivery had no further
482 consequence. Each daily session began with a single presentation of each lever (either stim+ or
483 stim-) to ensure that the rat sampled both reward outcomes. After these two initial trials, both levers
484 were presented simultaneously for the remainder of the session (30 minutes total), allowing the rat
485 to freely choose between the two. Training sessions consisted in three days of Fixed Ratio (FR) 1,
486 one day of FR4, one day of Random Ratio (RR) 4 and three days of RR6.

487

488 *Food extinction.* To assess whether laser stimulation alone could maintain responding on a
489 stim+ associated lever when the reward was discontinued, rats were given the opportunity to earn
490 the same levers but without pellet (pellet extinction) (Robinson et al. 2014). Each completed trial
491 (RR4) on the stim+ lever resulted in the delivery of laser stimulation (optical activation: 1s, 20Hz,
492 473nm; optical inhibition: 4s constant light, 589 nm; both with 10mW at the tip of the implanted
493 fiber) and the previously paired auditory cue but no pellet delivery. Each completed trial on the
494 other lever (previously pellet alone) resulted in the delivery of its auditory cue but no pellet itself.

495

496 *Laser extinction.* To test the persistence of laser-induced preference, rats received 2 days
497 reminder training with stim+ versus stim- (Robinson et al. 2014). After that, rats underwent 4
498 consecutive days of laser-extinction testing, where outcomes for both levers consisted in the
499 delivery of a pellet and the associated auditory cue, with no administration of laser stimulation.

500

501 *PR 2 schedule of reinforcement.* The PR test was performed with either the stim+ lever or
502 stim- lever (order of test conditions was balanced across animals) and was repeated for each
503 animal with the other lever (Robinson et al. 2014). The number of presses required to produce the
504 next reward delivery increased after each reward, according to an exponential equation (PR =
505 $[5e^{(\text{reward number} \times 0.2)}] - 5$ and rounded to the nearest integer). To determine whether any preference in
506 responding was the result of increased workload, animals were given a FR4 session (identical to
507 the initial day of training) after the first PR.

508

509 *Normal chow consumption.* We next examined the effect of laser stimulation on voluntary
510 normal chow consumption in a 30-minute chow consumption test. Intake test was conducted in a
511 familiar chamber (similar to the home cage) containing bedding on the floor in which rats had serial
512 access to pre-weighed quantities of regular chow pellets (20 g) while also having constant access
513 to water. Intake tests were repeated on 3 consecutive days. Laser stimulation was administered
514 only on 1 day (optical activation: 20Hz, 473nm throughout the entire session; optical inhibition:
515 constant light, 589 nm throughout the entire session; both with 10mW at the tip of the implanted

516 fiber), which occurred on either day 2 or 3 (counterbalanced across rats). Control intake was
517 measured in the absence of any laser stimulation on the 2 remaining days (day 1 and either day 2
518 or 3, averaged together to form a baseline measurement). Chow was weighed at the end of the
519 test to calculate the amount consumed.

520

521 *Food pellets consumption.* We examined the effect of laser stimulation on voluntary palatable
522 food consumption in a 30-minute test food pellet consumption test. Intake test was conducted in a
523 familiar chamber (similar to the home cage) containing bedding on the floor in which rats had serial
524 access to pre-weighed quantities of food pellets (around 20 g) while also having constant access
525 to water. Intake tests were repeated on 3 consecutive days. Laser stimulation was administered
526 only on 1 day (optical activation: 20Hz, 473nm throughout the entire session; optical inhibition:
527 constant light, 589 nm throughout the entire session; both with 10mW at the tip of the implanted
528 fiber), which occurred on either day 2 or 3 (counterbalanced across rats). Control intake was
529 measured in the absence of any laser stimulation on the 2 remaining days (day 1 and either day 2
530 or 3, averaged together to form a baseline measurement). Food pellets were weighed at the end
531 of the test to calculate the amount consumed.

532

533 *Food preference.* We examined the effect of laser stimulation on voluntary food preference in
534 a 90 min free-intake test. Intake tests were conducted in a familiar chamber (similar to the home
535 cage) containing bedding on the floor in which rats had serial access to pre-weighed quantities of
536 chow (20 g) and food pellets (about 20 g), while also having constant access to water. Each food
537 intake session consisted of 30 min access to 20 g of chow followed by 60 min of access to about
538 20 g of food pellets and chow. Intake tests were repeated on 3 consecutive days. Laser stimulation
539 was administered only on 1 day (optical activation: 20Hz, 473nm throughout the entire session;
540 optical inhibition: constant light, 589 nm throughout the entire session; both with 10mW at the tip of
541 the implanted fiber), which occurred on either day 2 or 3 (counterbalanced across rats). Control
542 intake was measured in the absence of any laser stimulation on the 2 remaining days (day 1 and
543 either day 2 or 3, averaged together to form a baseline measurement). Chow and food pellets were
544 weighed at the end of the test to calculate the amount consumed.

545

546 **Optogenetic manipulation**

547 Optical manipulation was performed using either a 473 nm (ChR2) or 589 nm (NpHR) DPSS
548 lasers, which were controlled by the MedPC software (Med Associates), through a pulse generator
549 (Master-8; AMPI, New Ulm, MN, USA).

550 Before all behavioral sessions, rats were connected to an opaque optical fiber, through
551 previously implanted ferrules placed unilaterally in the VP.

552 Optical stimulation was performed as follows: 473 nm; frequency of 20 Hz; 25ms pulses; 10
553 mW at the tip of the implanted fiber.

554 Optical inhibition was performed as follows: 589 nm; 4sec continuous light of 10 mW at the tip
555 of the implanted fiber.

556

557 ***In vivo* single cell electrophysiological recordings**

558 Three weeks post-surgery, D2-ChR2 rats ($n = 4$) were anaesthetized with urethane (1.44 g
559 kg⁻¹, Sigma). The total dose was administered in three separate intraperitoneal injections, 15 min
560 apart. Adequate anesthesia was confirmed by the lack of withdrawal responses to hindlimb
561 pinching. A recording electrode coupled with a fiber optic patch cable (Thorlabs) was placed in the
562 VP (coordinates from bregma: 0 to -0.12 mm AP, +2.3 to +2.5 mm ML, and -7 to -7.6 mm DV).

563 Single neuron activity was recorded extracellularly with a tungsten electrode (tip impedance 5–10
564 Mat 1 kHz) and data sampling was performed using a CED Micro1401 interface and Spike2
565 software (Cambridge Electronic Design). The DPSS 473 nm laser system, controlled by a
566 stimulator (Master-8, AMPI) was used for intracranial light delivery. Optical stimulation was
567 performed as follows: 473 nm; frequency of 20 Hz; 12.5-ms pulses over 1 s, 10 mW.

568 Firing rate histograms were calculated for the baseline (10 s before stimulation), stimulation
569 period and after stimulation period (10 s after the end of stimulation). Spike latency was determined
570 by measuring the time between half-peak amplitude for the falling and rising edges of the unfiltered
571 extracellular spike.

572 We defined the neuronal instantaneous firing rate of the i -th neuron as given by $r_i(a_k, b_k) = h$
573 (u_i, a_k, b_k, w), where h is a histogram function over the vector u_i which stores the spiking times of
574 the i -th neuron in the population, within the time interval $[a_k, b_k]$, and w was the bin size for h (usually
575 $w=1s$). In order to calculate the PETH, each recorded spike train from a single neuron was aligned
576 by the onset of optical stimulation. For each neuronal instantaneous firing rate r_i the average activity
577 during baseline was subtracted ($r_i = r_i - \text{avg}(r_i[t < 40s])$), and then neurons were sorted by the average
578 activity during optical stimulation.

579 VP GABAergic neurons were identified as those having a baseline firing rate between 0.2 and
580 18.7 Hz (Richard et al. 2016). Other non-identified neurons (corresponding to less than 10% of
581 recorded cells) were excluded from the analysis.

582

583 Immunofluorescence (IF)

584 Ninety minutes after initiation of the PR test, rats from Group I were deeply anesthetized with
585 pentobarbital (Eutasil) and were transcardially perfused with 0.9% saline followed by 4%
586 paraformaldehyde. Brains were removed and post-fixed in 4% paraformaldehyde for 24 hours.
587 Afterwards, brains were transferred to a 30% sucrose solution (for at least 48h), and then prepared
588 for sectioning. Coronal vibratome sections (50 μ m) of NAc and VP were incubated with goat anti-
589 GFP (1:500, Abcam; catalog #ab6673, RRID: AB_305643).

590 Appropriate secondary fluorescent antibody was used (1:500, Invitrogen; catalog #A-11055,
591 RRID: AB_2534102). Finally, all sections were stained with 4',6-diamidino-2-phenylindole (DAPI; 1
592 mg ml $^{-1}$).

593 Images were collected and analyzed by confocal microscopy (Olympus FluoViewTMFV1000).
594 Cell counts were normalized to the area of the brain region.

595

596 Statistical analysis

597 Prior to any statistical comparison between groups, normality tests (Shapiro-Wilks (S-W))
598 were performed for all data analyzed. When normality assumptions were met, statistical analysis
599 using parametric tests was performed: comparison between two groups in the behavioral
600 parameters was made using Student's t -test (when normality assumptions were not met Mann-
601 Whitney was performed instead); comparison between behavior on the ON side and the OFF side
602 within the same subject was performed using paired t -test; Analysis of Variance (ANOVA) for
603 repeated measures was used to compare firing rate before, during and after stimulation, and
604 Sidak's *post hoc* multiple comparisons was used for group differences determination (when
605 normality assumptions were not met Friedman's test was performed, and Dunn's multiple
606 comparison for *post hoc* analysis).

607 For the analysis of electrophysiological temporal variation, for each time bin, the activity during
608 stimulation was considered significant when on that time bin the activity was out 95% of the
609 distribution of the baseline activity. In the case of brief optogenetic stimulation datasets, given the

610 zero mean baseline activity, the p-value was calculated as the fraction of samples in baseline
611 activity, which were, in absolute value, greater than the value of the onset activity (single sample).
612 For prolonged stimulation datasets, Komlogorov-Smirnov for 2 samples was performed to
613 determine differences between the distribution of the stimulus period and the baseline.

614 All statistical analysis was performed using Python packages (numpy 1.10.1; scipy 0.18.1,
615 Python Software Foundation, Beaverton, OR, USA) and GraphPad (Prism 7, La Jolla, CA, USA).

616 Results are presented as mean \pm SEM. All of the statistical details of experiments can be
617 found throughout the results description; these include the statistical tests used and exact p-value.
618 The n for each experiment is indicated in the figures' legends.

619

620

621 **Acknowledgments**

622

623 We would like to acknowledge Karl Deisseroth from Stanford University, for providing the viral
624 constructs.

625 CS-C and AJR have Scientific Employment Stimulus Contracts from Foundation for Science
626 and Technology (FCT) (CEECIND/03887/2017; CEECIND/02130/2017). AVD has an FCT grant
627 (SFRH/BD/147066/2019).

628 This work was funded by Bial Foundation 30/2016; and by FCT under the scope of the
629 project PTDC/MED-NEU/29071/2017 (REWSTRESS).

630 Part of this work was developed under the scope of the project NORTE-01-0145-FEDER-
631 000013, and FCT projects POCI-01-0145-FEDER-007038 and POCI-01-0145-FEDER-016428,
632 supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the
633 Portugal 2020 Partnership Agreement, through the European Regional Development Fund
634 (FEDER) and through the Competitiveness Factors Operational Programme (COMPETE).

635

636

637 **Declaration of interests**

638 The authors declare no competing interests.

639 **References**

640 Ambroggi F, Ghazizadeh A, Nicola SM, Fields HL. Roles of Nucleus Accumbens Core and Shell in
641 Incentive-Cue Responding and Behavioral Inhibition. *J Neurosci*. 2011 May
642 4;31(18):6820–30.

643 Berridge KC. The debate over dopamine's role in reward: the case for incentive salience.
644 *Psychopharmacology (Berl)*. 2007 Apr;191(3):391–431.

645 Berridge KC, Robinson TE, Aldridge JW. Dissecting components of reward: 'liking', 'wanting', and
646 learning. *Curr Opin Pharmacol*. 2009 Feb;9(1):65–73.

647 Burke DA, Rotstein HG, Alvarez VA. Striatal Local Circuitry: A New Framework for Lateral
648 Inhibition. *Neuron*. 2017 Oct;96(2):267–84.

649 Calipari ES, Bagot RC, Purushothaman I, Davidson TJ, Yorgason JT, Peña CJ, et al. In vivo imaging
650 identifies temporal signature of D1 and D2 medium spiny neurons in cocaine reward.
651 *Proc Natl Acad Sci U S A*. 2016 Mar 8;113(10):2726–31.

652 Carelli RM. Nucleus accumbens cell firing during goal-directed behaviors for cocaine vs. 'natural'
653 reinforcement. *Physiol Behav*. 2002 Jul;76(3):379–87.

654 Carelli RM. Nucleus accumbens cell firing and rapid dopamine signaling during goal-directed
655 behaviors in rats. *Neuropharmacology*. 2004 Jan;47:180–9.

656 Carvalho Poyraz F, Holzner E, Bailey MR, Meszaros J, Kenney L, Kheirbek MA, et al. Decreasing
657 Striatopallidal Pathway Function Enhances Motivation by Energizing the Initiation of
658 Goal-Directed Action. *J Neurosci*. 2016 Jun 1;36(22):5988–6001.

659 Chang SE, Todd TP, Smith KS. Paradoxical accentuation of motivation following accumbens-
660 pallidum disconnection. *Neurobiol Learn Mem*. 2018 Mar;149:39–45.

661 Coimbra B, Soares-Cunha C, Vasconcelos NAP, Domingues AV, Borges S, Sousa N, et al. Role of
662 laterodorsal tegmentum projections to nucleus accumbens in reward-related behaviors.
663 *Nat Commun* [Internet]. 2019 Sep 12 [cited 2019 Nov 19];10. Available from:
664 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6742663/>

665 Cole SL, Robinson MJF, Berridge KC. Optogenetic self-stimulation in the nucleus accumbens: D1
666 reward versus D2 ambivalence. *PloS One*. 2018;13(11):e0207694.

667 Engelhard B, Finkelstein J, Cox J, Fleming W, Jang HJ, Ornelas S, et al. Specialized coding of
668 sensory, motor and cognitive variables in VTA dopamine neurons. *Nature*. 2019
669 Jun;570(7762):509–13.

670 Flagel SB, Clark JJ, Robinson TE, Mayo L, Czuj A, Willuhn I, et al. A selective role for dopamine in
671 stimulus–reward learning. *Nature*. 2011 Jan;469(7328):53–7.

672 Gale JT, Shields DC, Ishizawa Y, Eskandar EN. Reward and reinforcement activity in the nucleus
673 accumbens during learning. *Front Behav Neurosci* [Internet]. 2014 Apr 3 [cited 2020 Aug

674 24];8. Available from:
675 <http://journal.frontiersin.org/article/10.3389/fnbeh.2014.00114/abstract>

676 Gallo EF, Meszaros J, Sherman JD, Chohan MO, Teboul E, Choi CS, et al. Accumbens dopamine
677 D2 receptors increase motivation by decreasing inhibitory transmission to the ventral
678 pallidum. *Nat Commun.* 2018;14(1):1086.

679 Gerfen CR, Surmeier DJ. Modulation of striatal projection systems by dopamine. *Annu Rev
680 Neurosci.* 2011;34:441–66.

681 Grimm JW, Shaham Y, Hope BT. Effect of cocaine and sucrose withdrawal period on extinction
682 behavior, cue-induced reinstatement, and protein levels of the dopamine transporter
683 and tyrosine hydroxylase in limbic and cortical areas in rats: *Behav Pharmacol.* 2002
684 Sep;13(5):379–88.

685 Han X, Jing M, Zhao T, Wu N, Song R, Li J. Role of dopamine projections from ventral tegmental
686 area to nucleus accumbens and medial prefrontal cortex in reinforcement behaviors
687 assessed using optogenetic manipulation. *Metab Brain Dis.* 2017 Oct;32(5):1491–502.

688 Heimer L, Zahm DS, Churchill L, Kalivas PW, Wohltmann C. Specificity in the projection patterns
689 of accumbal core and shell in the rat. *Neuroscience.* 1991 Jan;41(1):89–125.

690 Hjelmstad GO, Xia Y, Margolis EB, Fields HL. Opioid modulation of ventral pallidal afferents to
691 ventral tegmental area neurons. *J Neurosci Off J Soc Neurosci.* 2013 Apr
692 10;33(15):6454–9.

693 Holland P, Petrovich G. A neural systems analysis of the potentiation of feeding by conditioned
694 stimuli. *Physiol Behav.* 2005 Dec 15;86(5):747–61.

695 Ilango A, Kesner AJ, Broker CJ, Wang DV, Ikemoto S. Phasic excitation of ventral tegmental
696 dopamine neurons potentiates the initiation of conditioned approach behavior:
697 parametric and reinforcement-schedule analyses. *Front Behav Neurosci [Internet].* 2014
698 May 6 [cited 2020 Mar 11];8. Available from:
699 <http://journal.frontiersin.org/article/10.3389/fnbeh.2014.00155/abstract>

700 Klaus A, Martins GJ, Paixao VB, Zhou P, Paninski L, Costa RM. The Spatiotemporal Organization
701 of the Striatum Encodes Action Space. *Neuron.* 2017 Aug;95(5):1171-1180.e7.

702 Kravitz AV, Owen SF, Kreitzer AC. Optogenetic identification of striatal projection neuron
703 subtypes during in vivo recordings. *Brain Res.* 2013 May;1511:21–32.

704 Kravitz AV, Tye LD, Kreitzer AC. Distinct roles for direct and indirect pathway striatal neurons in
705 reinforcement. *Nat Neurosci.* 2012 Jun;15(6):816–8.

706 Kupchik YM, Brown RM, Heinsbroek JA, Lobo MK, Schwartz DJ, Kalivas PW. Coding the
707 direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections.
708 *Nat Neurosci.* 2015 Sep;18(9):1230–2.

709 Lobo MK, Covington HE, Chaudhury D, Friedman AK, Sun H, Damez-Werno D, et al. Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. *Science*.
710 2010 Oct 15;330(6002):385–90.

712 Lu XY, Ghasemzadeh MB, Kalivas PW. Expression of D1 receptor, D2 receptor, substance P and
713 enkephalin messenger RNAs in the neurons projecting from the nucleus accumbens.
714 *Neuroscience*. 1998 Feb;82(3):767–80.

715 Natsubori A, Tsutsui-Kimura I, Nishida H, Bouchekioua Y, Sekiya H, Uchigashima M, et al.
716 Ventrolateral Striatal Medium Spiny Neurons Positively Regulate Food-Incentive, Goal-
717 Directed Behavior Independently of D1 and D2 Selectivity. *J Neurosci Off J Soc Neurosci*.
718 2017 Mar 8;37(10):2723–33.

719 Nicklas W, Baneux P, Boot R, Decelle T, Deeny AA, Fumanelli M, et al. Recommendations for the
720 health monitoring of rodent and rabbit colonies in breeding and experimental units. *Lab
721 Anim*. 2002 Jan;36(1):20–42.

722 Nicola SM, Yun IA, Wakabayashi KT, Fields HL. Cue-Evoked Firing of Nucleus Accumbens Neurons
723 Encodes Motivational Significance During a Discriminative Stimulus Task. *J Neurophysiol*.
724 2004 Apr;91(4):1840–65.

725 Nonomura S, Nishizawa K, Sakai Y, Kawaguchi Y, Kato S, Uchigashima M, et al. Monitoring and
726 Updating of Action Selection for Goal-Directed Behavior through the Striatal Direct and
727 Indirect Pathways. *Neuron*. 2018 19;99(6):1302-1314.e5.

728 Ostlund SB, LeBlanc KH, Kosheleff AR, Wassum KM, Maidment NT. Phasic Mesolimbic Dopamine
729 Signaling Encodes the Facilitation of Incentive Motivation Produced by Repeated
730 Cocaine Exposure. *Neuropsychopharmacology*. 2014 Sep;39(10):2441–9.

731 Ottenheimer D, Richard JM, Janak PH. Ventral pallidum encodes relative reward value earlier
732 and more robustly than nucleus accumbens. *Nat Commun*. 2018 Dec;9(1):4350.

733 Owesson-White C, Belle AM, Herr NR, Peele JL, Gowrishankar P, Carelli RM, et al. Cue-Evoked
734 Dopamine Release Rapidly Modulates D2 Neurons in the Nucleus Accumbens During
735 Motivated Behavior. *J Neurosci*. 2016 Jun 1;36(22):6011–21.

736 Parker NF, Cameron CM, Taliaferro JP, Lee J, Choi JY, Davidson TJ, et al. Reward and choice
737 encoding in terminals of midbrain dopamine neurons depends on striatal target. *Nat
738 Neurosci*. 2016;19(6):845–54.

739 Paxinos G, Watson C. *The Rat Brain in Stereotaxic Coordinates*. Elsevier Academic Press; 2005.

740 Rescorla RA. Control of instrumental performance by Pavlovian and instrumental stimuli. *J Exp
741 Psychol Anim Behav Process*. 1994;20(1):44–50.

742 Richard JM, Ambroggi F, Janak PH, Fields HL. Ventral Pallidum Neurons Encode Incentive Value
743 and Promote Cue-Elicited Instrumental Actions. *Neuron*. 2016 Jun 15;90(6):1165–73.

744 Robbins T. Limbic-Striatal Memory Systems and Drug Addiction. *Neurobiol Learn Mem.* 2002
745 Nov;78(3):625–36.

746 Robinson MJF, Warlow SM, Berridge KC. Optogenetic excitation of central amygdala amplifies
747 and narrows incentive motivation to pursue one reward above another. *J Neurosci Off J*
748 *Soc Neurosci.* 2014 Dec 10;34(50):16567–80.

749 Roitman MF, Wheeler RA, Carelli RM. Nucleus Accumbens Neurons Are Innately Tuned for
750 Rewarding and Aversive Taste Stimuli, Encode Their Predictors, and Are Linked to Motor
751 Output. *Neuron.* 2005 Feb;45(4):587–97.

752 Sackett DA, Saddoris MP, Carelli RM. Nucleus Accumbens Shell Dopamine Preferentially Tracks
753 Information Related to Outcome Value of Reward. *eneuro.* 2017
754 May;4(3):ENEURO.0058-17.2017.

755 Saddoris MP. Rapid dopamine dynamics in the accumbens core and shell Learning and action.
756 *Front Biosci.* 2013;E5(1):273–88.

757 Saddoris MP, Sugam JA, Stuber GD, Witten IB, Deisseroth K, Carelli RM. Mesolimbic Dopamine
758 Dynamically Tracks, and Is Causally Linked to, Discrete Aspects of Value-Based Decision
759 Making. *Biol Psychiatry.* 2015 May;77(10):903–11.

760 Saunders BT, Richard JM, Margolis EB, Janak PH. Dopamine neurons create Pavlovian
761 conditioned stimuli with circuit-defined motivational properties. *Nat Neurosci.* 2018 Aug
762 1;21(8):1072–83.

763 Soares-Cunha C, Coimbra B, David-Pereira A, Borges S, Pinto L, Costa P, et al. Activation of D2
764 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation.
765 *Nat Commun.* 2016 Jun 23;7:11829.

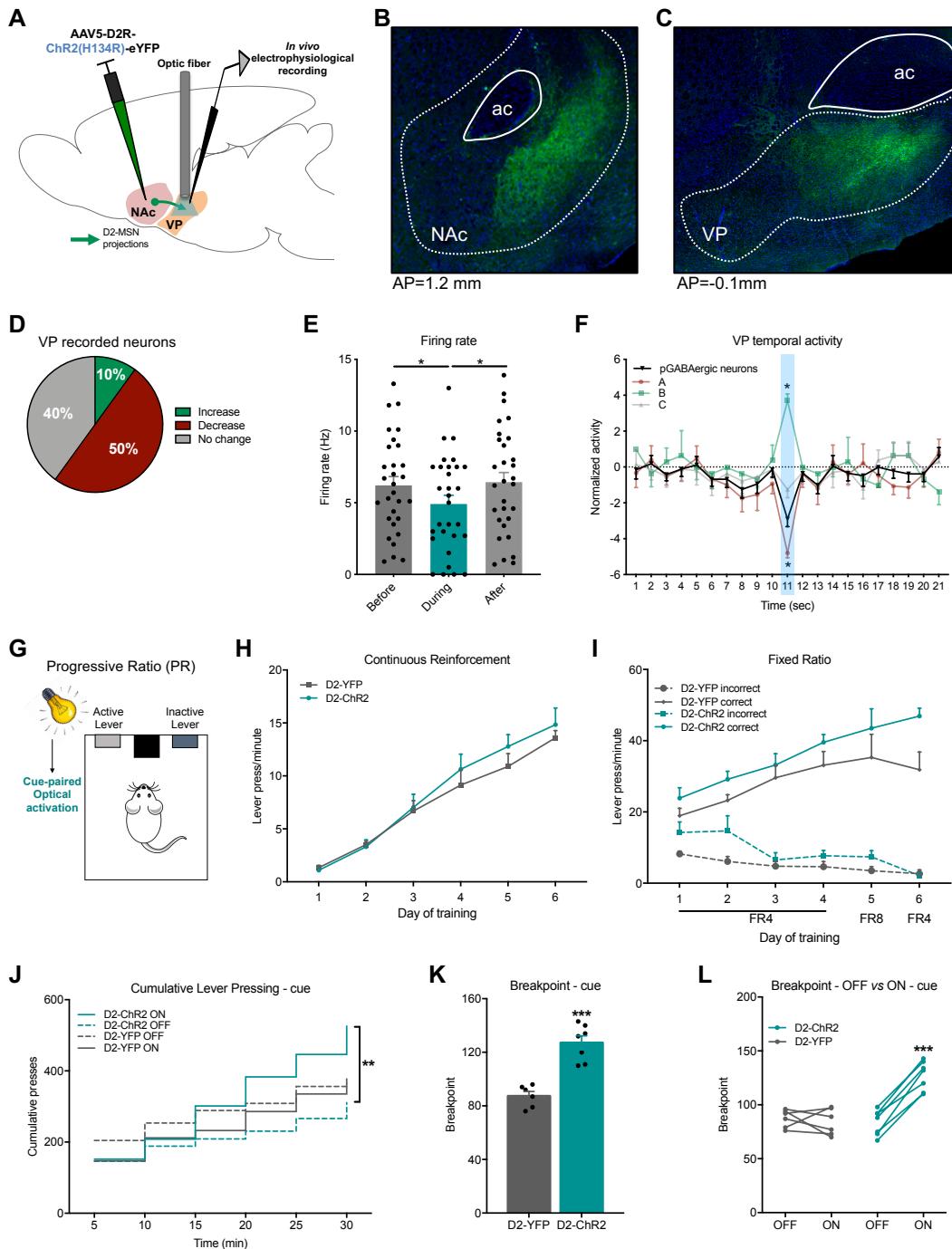
766 Soares-Cunha C, Coimbra B, Domingues A, Vasconcelos NAP de, Sousa N, Rodrigues AJ. Nucleus
767 accumbens microcircuit underlying D2-MSN-driven increase in motivation. *eNeuro.*
768 2018;

769 Soares-Cunha C, de Vasconcelos NAP, Coimbra B, Domingues AV, Silva JM, Loureiro-Campos E,
770 et al. Nucleus accumbens medium spiny neurons subtypes signal both reward and
771 aversion. *Mol Psychiatry.* 2019 Aug 28;

772 Voorn P, Vanderschuren LJM, Groenewegen HJ, Robbins TW, Pennartz CMA. Putting a spin on
773 the dorsal–ventral divide of the striatum. *Trends Neurosci.* 2004 Aug;27(8):468–74.

774 Wan X, Peoples LL. Firing Patterns of Accumbal Neurons During a Pavlovian-Conditioned
775 Approach Task. *J Neurophysiol.* 2006 Aug;96(2):652–60.

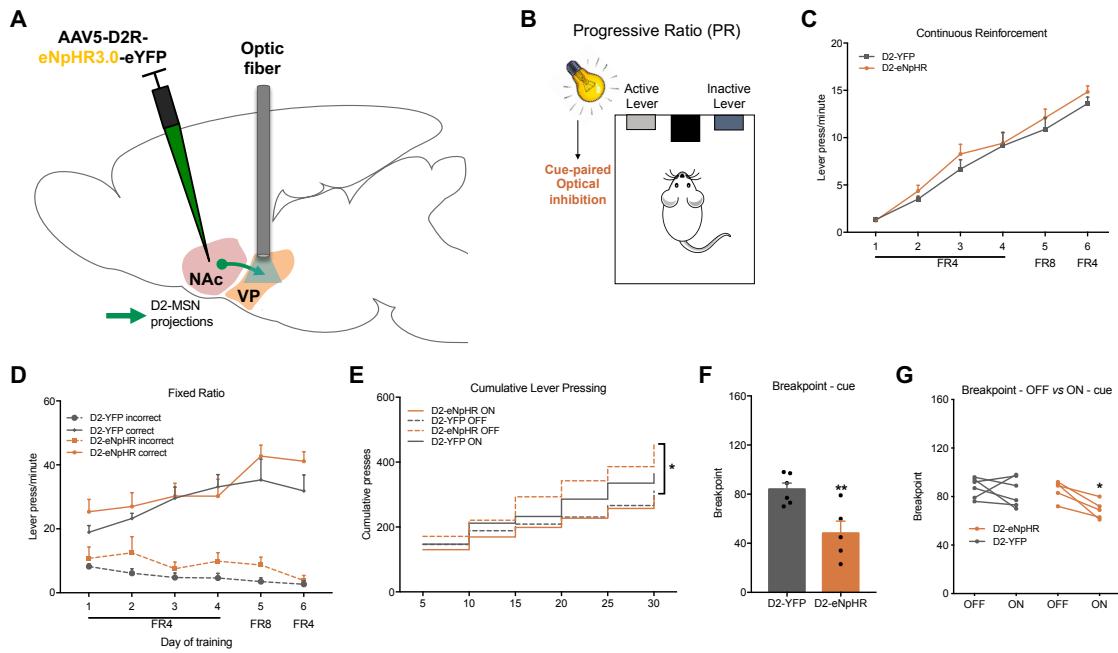
776 Wanat MJ, Kuhn CM, Phillips PEM. Delays Conferred by Escalating Costs Modulate Dopamine
777 Release to Rewards But Not Their Predictors. *J Neurosci.* 2010 Sep 8;30(36):12020–7.


778 West EA, Carelli RM. Nucleus Accumbens Core and Shell Differentially Encode Reward-
779 Associated Cues after Reinforcer Devaluation. *J Neurosci*. 2016 Jan 27;36(4):1128–39.

780 Zahm DS. Functional-anatomical Implications of the Nucleus Accumbens Core and Shell
781 Subterritories. *Ann N Y Acad Sci*. 1999 Jun;877(1 ADVANCING FRO):113–28.

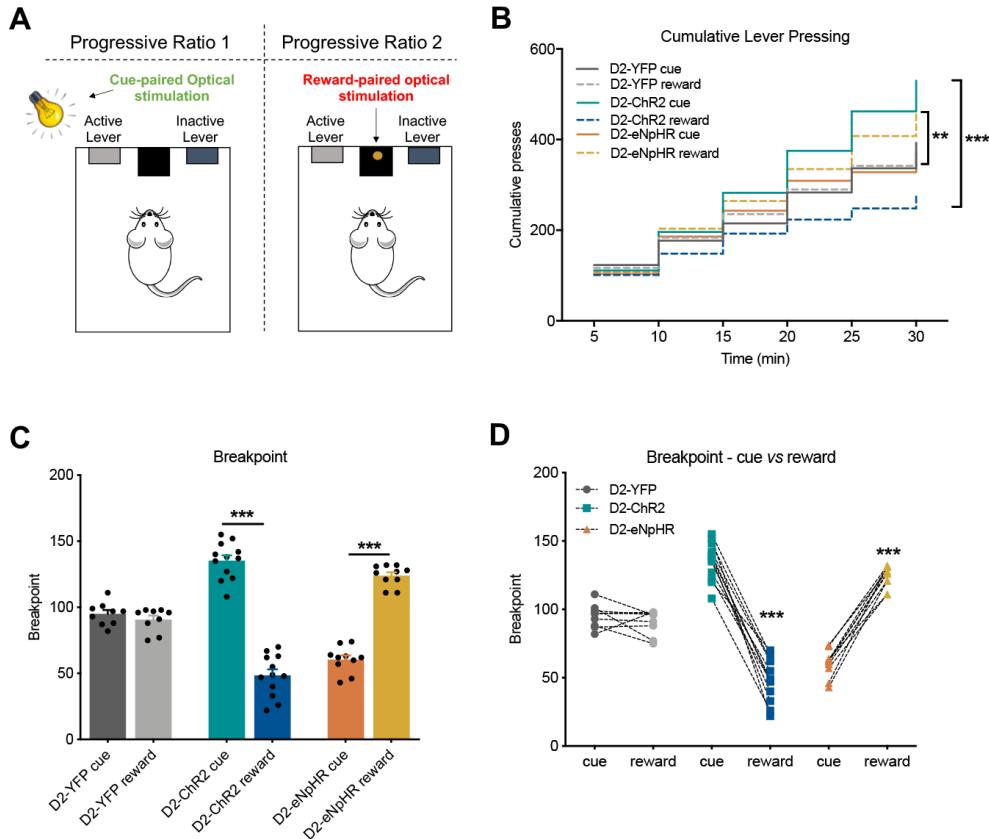
782 Zalocusky KA, Ramakrishnan C, Lerner TN, Davidson TJ, Knutson B, Deisseroth K. Nucleus
783 accumbens D2R cells signal prior outcomes and control risky decision-making. *Nature*.
784 2016 Mar 31;531(7596):642–6.

785

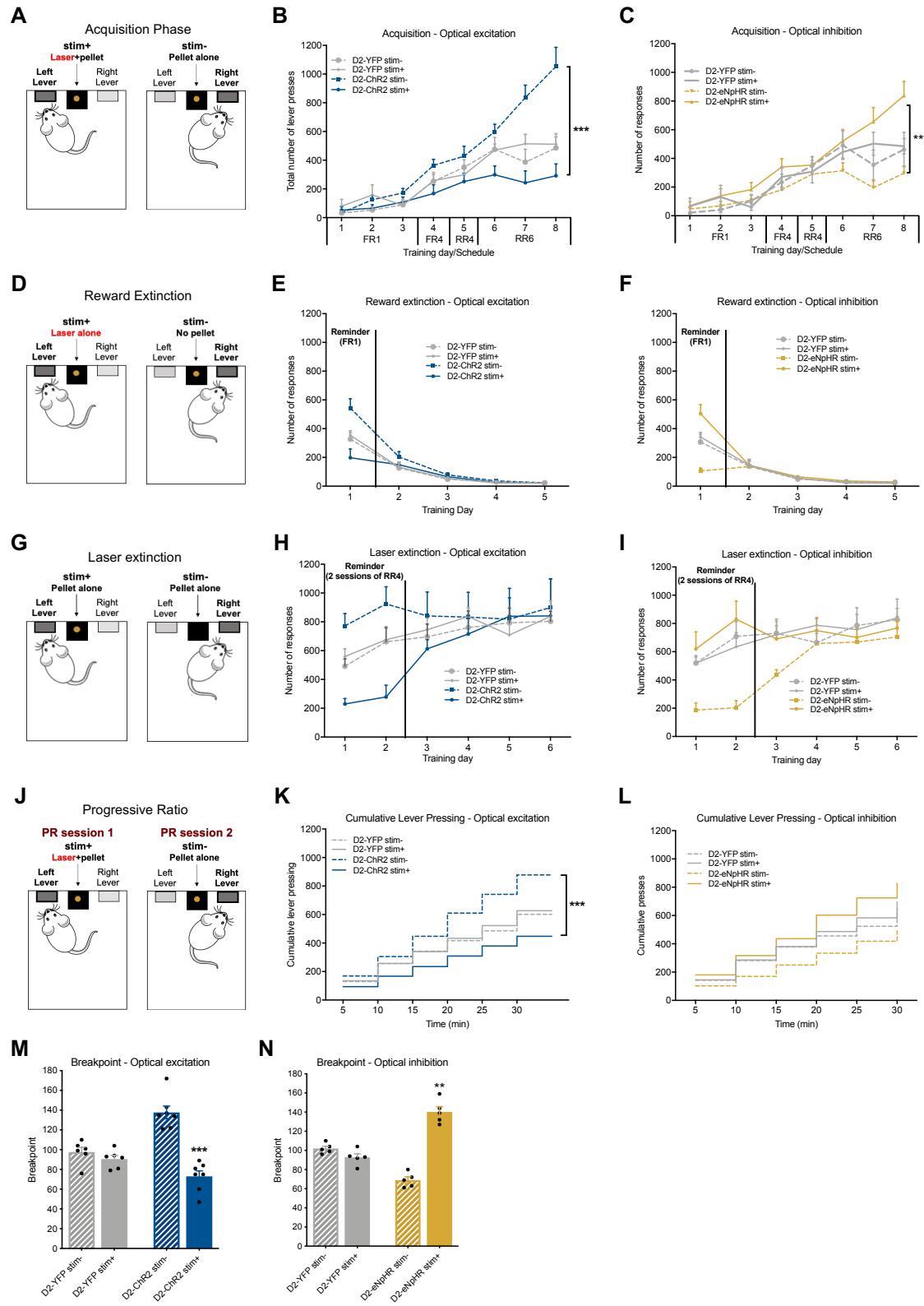

786 **Figures**
 787

788
 789 **Figure 1** with 1 supplement. Optogenetic activation of D2-MSN-VP terminals during cue exposure increases
 790 motivation. **A** Strategy used for NAc D2-MSN-VP projection optogenetic stimulation and electrophysiological
 791 recordings in the dVP. ChR2-YFP was unilaterally injected into NAc, mainly targeting core. Stimulation was
 792 made in terminals in the dVP. **B** Representative immunofluorescence showing eYFP expression in the NAc
 793 and **C** in terminals in the dVP; scale bar=400 μ m; AP = anteroposterior. **D** Pie chart showing that 50% of
 794 putative GABAergic (pGABAergic) VP neurons decrease firing rate during optical stimulation (20 pulses of

795 25ms at 20Hz). **E** dVP neurons significantly decrease firing rate in response to optical stimulation of D2-MSNs
796 terminals (n=30 neurons/4 rats). **F** PSTH of temporal variation of the normalized activity of pGABAergic VP
797 neurons that decrease (A; green, n=15 neurons), increase (B; red, n=3 neurons) and do not change activity
798 (C; gray, n=12 neurons) during the stimulation period (blue). **G** Rats were submitted to a PR session in which
799 optogenetic activation of D2-MSN-VP (20 pulses of 25ms at 20Hz) was paired with cue light presentation
800 above the active lever at trial initiation. **H** CRF training sessions of the PR schedule, shown as average of
801 number of lever presses per minute. **I** FR training sessions of the PR test shown as average number of lever
802 presses per minute. **J** Optogenetic stimulation of D2-MSN-VP projections during cue exposure increases
803 cumulative presses in the PR test session. **K** D2-MSN-VP terminal stimulation induces a significantly higher
804 breakpoint in comparison to D2-YFP animals. **L** All D2-ChR2 rats increase breakpoint in the session with
805 optical stimulation (ON) in comparison with the session without (OFF). n_{D2-ChR2}=7, n_{D2-eYFP}=6. Error bars
806 denote SEM. *p ≤ 0.05.

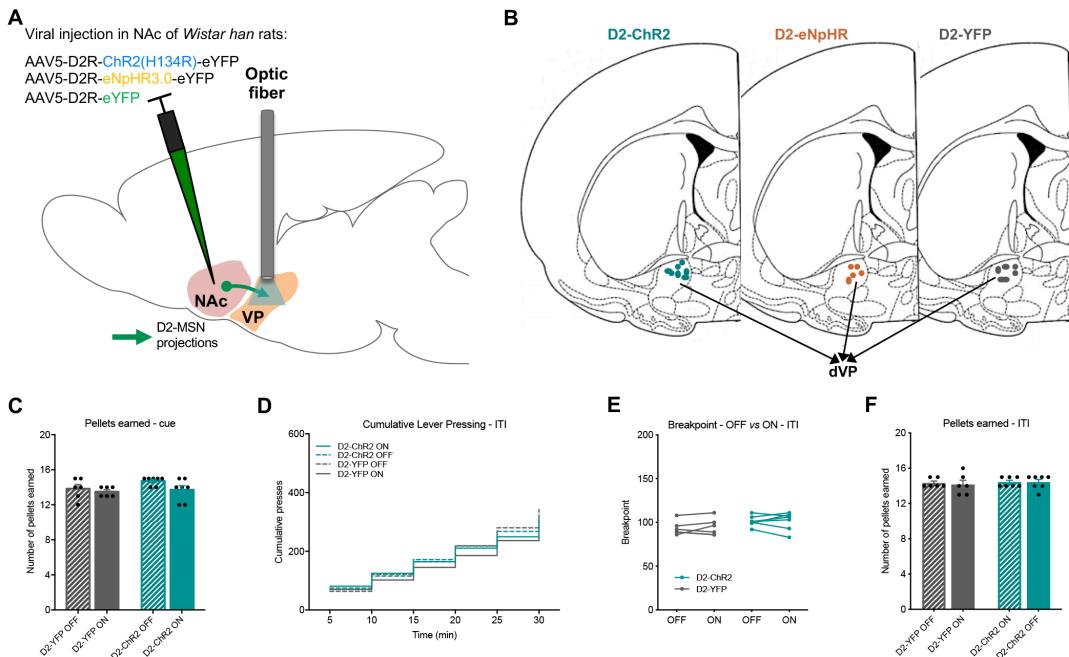

807

808

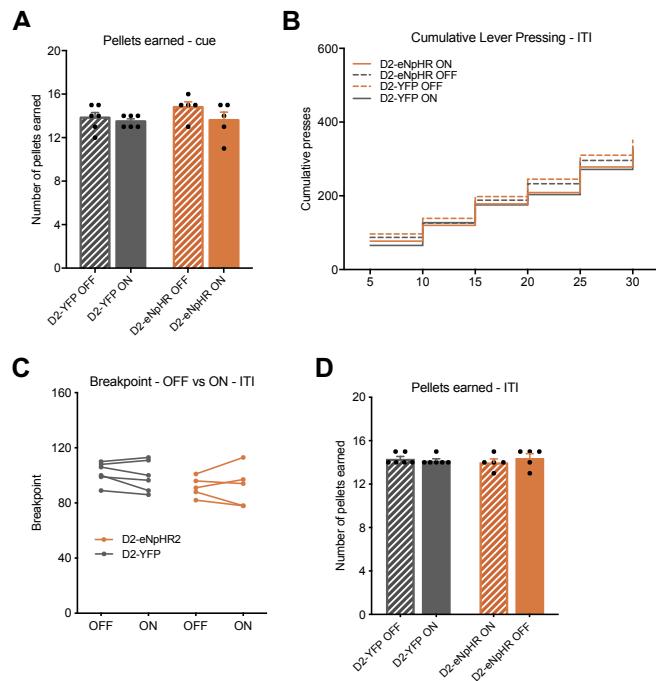

809

810 **Figure 2 with 1 supplement.** Optogenetic inhibition of D2-MSN-VP terminals during cue exposure decreases
 811 motivation. **A** Strategy used for optogenetic inhibition of D2-MSN-VP terminals. **B** Rats were submitted to a
 812 PR session in which optogenetic inhibition of D2-MSN-VP (10sec of constant light at 10 mW) was paired with
 813 cue light presentation above the active lever at trial initiation. **C** CRF training sessions of the PR schedule,
 814 shown as average of number of lever presses per minute. **D** FR training sessions of the PR test shown as
 815 average number of lever presses per minute. **E** Optogenetic inhibition of D2-MSN-VP terminals during cue
 816 exposure decreases cumulative presses in the PR test session. **F** D2-MSN-VP terminal inhibition induces a
 817 significantly lower breakpoint in comparison to D2-YFP animals. **G** All D2-ChR2 rats decrease breakpoint in
 818 the session with optical inhibition (ON) in comparison with a session without optical inhibition (OFF). $n_{D2-eNpHR}=5$, $n_{D2-eYFP}=6$. Error bars denote SEM. * $p \leq 0.05$; ** $p \leq 0.01$.

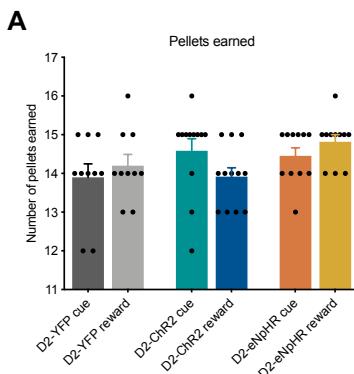
819
820
821
822
823
824
825
826
827
828
829
830
831


Figure 3 with 1 supplement. Optogenetic modulation of D2-MSN-VP terminals at reward delivery decreases motivation. A Rats were tested in two PR sessions: in one, optogenetic modulation – excitation: 20 pulses of 25ms at 20Hz; inhibition: 10sec of constant light at 10 mW - was paired with cue presentation; in the other session, optogenetic modulation was paired with reward delivery. **B** Optogenetic activation of D2-MSN-VP terminals at cue exposure results in a significantly higher number of cumulative lever presses in comparison to D2-YFP control animals and in comparison with D2-ChR2 stimulated during reward delivery; optogenetic inhibition of D2-MSN-VP terminals at cue exposure results in a significantly lower number of cumulative lever presses in comparison to D2-YFP animals and in comparison with D2-eNpHR stimulated during reward delivery. **C, D** Optogenetic stimulation of D2-MSN-VP terminals at cue exposure results in a significantly higher breakpoint in comparison with control animals and with optogenetic stimulation of the same neurons at reward delivery; the opposite is observed with optogenetic inhibition of the same projections. $n_{D2-ChR2}=12$; $n_{D2-eNpHR}=11$; $n_{D2-YFP}=10$. Error bars denote SEM. ** $p \leq 0.01$; *** $p \leq 0.001$.

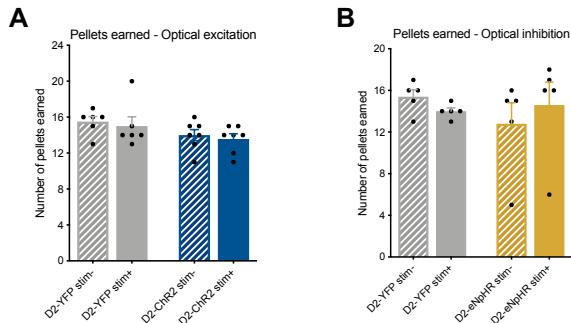
832
833
834


Figure 4 with 2 supplement2. Optical activation/inhibition of D2-MSN-VP terminals paired with reward delivery reduces/increases preference and decreases motivation. **A** In a two-choice acquisition lever pressing task,

835 pressing stim+ lever results in the delivery of a food pellet reward and optical stimulation (D2-ChR2; 20 pulses
836 of 25ms at 20Hz) or optical inhibition (D2-eNpHR; 10sec of constant light at 10 mW); pressing stim- lever
837 results in delivery of food pellet reward alone. **B** Time-course representation of the responses of D2-ChR2
838 and D2-eYFP rats. D2-ChR2 rats show reduced preference for stim+ lever in comparison with stim- lever,
839 while D2-eYFP show no preference for either lever. **C** Time-course representation of the responses of D2-
840 eNpHR and D2-eYFP rats; D2-eNpHR rats show increased preference for stim+ lever in comparison with stim-
841 lever, while D2-eYFP show no preference. **D** Next, rats were tested in pellet extinction sessions, in which no
842 reward is given in any of the levers. **E** In pellet extinction, all D2-ChR2 decrease response for both levers. **F**
843 In pellet extinction, all D2-eNpHR animals decrease response for both levers. **G** In laser extinction sessions,
844 pressing in either stim+ or the stim- results in the delivery of food pellet alone, making the reward in both levers
845 equal. **H** In laser extinction conditions, D2-ChR2 rats showed no preference for either lever; the same was
846 observed for D2-eYFP rats. **I** under laser extinction, D2-eNpHR rats showed no preference for either lever,
847 pressing the same amount of times in both; the same was observed for D2-eYFP rats. **J** Rats were subjected
848 to two PR sessions, one for each lever: in one session, animals are tested for the stim+ lever, and in the other
849 session animals are tested for the stim- lever. **K** Cumulative lever pressing, showing that D2-ChR2 rats press
850 less on the stim+ lever session in comparison with the stim- lever session. **L** Cumulative lever pressing,
851 showing that D2-eNpHR rats press more on the stim+ lever session in comparison with the stim- lever session.
852 **M** Decrease in the breakpoint for stim+ session in comparison with stim- session in D2-ChR2 animals. **N**
853 Increase in breakpoint for stim+ session in comparison with stim- session for D2-eNpHR rats. $n_{D2-ChR2}=7$, n_{D2-}
854 $eYFP}=6$. Error bars denote SEM. *** $p \leq 0.001$.
855

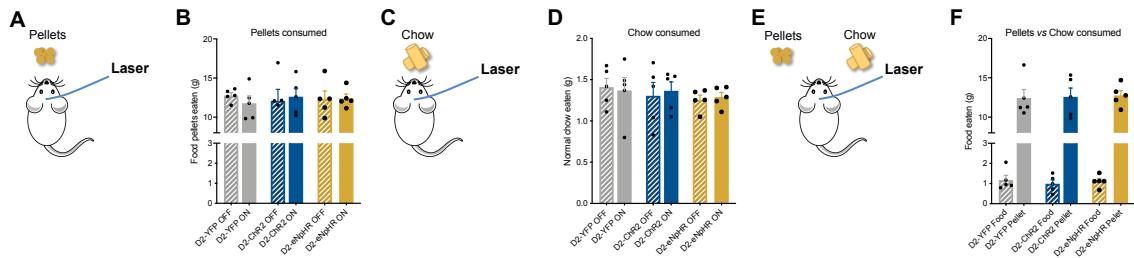

856

857 **Figure 1 – figure supplement 1.** Optogenetic activation of D2-MSN-VP terminals during cue exposure
 858 increases motivation. **A** Strategy used for optogenetic stimulation of D2-MSN-VP terminals; rats received AAV
 859 injection of either AAV5-D2R-ChR2(H134R)-eYFP (for optical activation), AAV5-D2R-eNpHR3.0-eYFP (for
 860 optical inhibition) or AAV5-D2R-eYFP (control) in the NAc, followed by optic fiber placement in the VP. **B**
 861 Schematic of optic fiber placement location of D2-ChR2, D2-eNpHR and D2-eYFP rats. **C** In the PR session,
 862 all D2-ChR2 rats earned the same number of food pellets. **D-F** D2-MSN-VP terminal optical stimulation during
 863 inter-trial-interval (ITI), a period of time-out from the task, does not change **D** cumulative presses, **E** breakpoint
 864 or **F** the number of food pellets earned in the PR session. $n_{D2\text{-}ChR2}=7$, $n_{D2\text{-}eYFP}=6$. Error bars denote SEM.



865

866 **Figure 2 – figure supplement 1.** Optogenetic inhibition of D2-MSN-VP terminals during cue exposure
867 decreases motivation. **A** In the PR session all D2-eNpHR rats earned the same number of food pellets. **B-D**
868 D2-MSN-VP terminal optical inhibition during inter-trial-interval (ITI), a period of time-out from the task, does
869 not change **C** cumulative presses, **D** breakpoint or **J** the number of food pellets earned in a PR session. $n_{D2-eNpHR}=5$,
870 $n_{D2-eYFP}=6$. Error bars denote SEM.



871
872 **Figure 3 - figure supplement 1.** Optogenetic modulation of D2-MSN-VP terminals at reward delivery
873 decreases motivation. **A** Number of food pellets earned during both PR sessions. $n_{D2\text{-}ChR2}=12$; $n_{D2\text{-}eNpHR}=11$,
874 $n_{D2\text{-}eYFP}=10$. Error bars denote SEM.

875

876 **Figure 4 - figure supplement 1.** Optical activation/inhibition of D2-MSN-VP terminals paired with reward
877 delivery reduces/increases preference and decreases motivation. **A** Food pellets earned during both PR
878 sessions. **B** Food pellets earned during both PR sessions. $n_{D2\text{-}ChR2}=7$, $n_{D2\text{-}eYFP}=6$, $n_{D2\text{-}eNpHR}=5$. Error bars
879 denote SEM.

880

881 **Figure 4 – figure supplement 2.** Optogenetic modulation of D2-MSN-to-VP terminals does not change food
882 consumption. **A** Optogenetic modulation was performed during a free consumption behavioral session for food
883 pellets. **B** The amount of food pellets consumed was similar between a session with optical modulation (ON
884 session) and a session with no optical modulation (OFF session) for all groups. **C** Optogenetic activation or
885 inhibition was given during a free consumption behavioral session for regular chow. **D** the amount of chow
886 consumed was similar between a session with optical modulation (ON session) and a session with no optical
887 modulation (OFF session) for all groups. **E** Optogenetic activation or inhibition was given during a free
888 consumption behavioral session in which rats could chose to consume both food pellets and regular chow. **F**
889 All rats preferred to consume food pellets, irrespective of the experimental group. $n_{\text{ChR2}}=5$, $n_{\text{D2-eNpHR}}=5$, $n_{\text{D2-}}$
890 $\text{eYFP}=5$. Error bars denote SEM. *** $p \leq 0.001$.