

1 Genetically diverse populations spread
2 faster in benign but not in challenging
3 environments

4 Running head: Genetic diversity and population spread

5 Authors: Mortier Frederik^{1,*}, Masier Stefano¹, Bonte Dries¹

6 ¹: Terrestrial Ecology Unit, Department of Biology, Ghent University, Ghent, Belgium

7 * : Corresponding author, fremorti.mortier@ugent.be

8 **Abstract**

9 Population spread from a limited pool of founding propagules is at the basis of biological
10 invasions. The size and genetic variation of these propagules eventually affect whether the
11 invasion is successful or not. The inevitable bottleneck at introduction decreases genetic
12 diversity, and therefore should affect population growth and spread. However, many heavily
13 bottlenecked invasive populations have been successful in nature. These negative effects of a
14 genetic bottleneck are typically considered to be relaxed in benign environments because of a
15 release from stress. Despite its relevance to understand and predict invasions, empirical
16 evidence on the role of genetic diversity in relation to habitat quality is largely lacking. We use
17 the mite *Tetranychus urticae* Koch as a model to experimentally assess spread rate and the size
18 of genetically depleted inbred populations and enriched mixed populations. This was assessed
19 in replicated linear patch systems consisting of benign (bean), challenging (tomato) or a
20 gradient (bean to tomato) habitat. We find that genetic diversity increased population spread
21 rates in the benign but not in the challenging habitat. Additionally, variance in spread was
22 consistently higher in genetically poor populations and highest in the challenging habitat. Our
23 experiment challenges the general view that a bottleneck in genetic variation decreases invasion
24 success in challenging, but not in benign environments.

25

26 Key-words: Movement, dispersal, genetic diversity, population ecology, invasion biology

27 **Introduction**

28 Environmental change can move the physiological limits of a range, and therefore lead to range
29 expansions as determined by population growth and spread (Chuang and Peterson 2016).
30 Ranges can alternatively expand beyond the existing geographical limits by the introduction of
31 individuals away from their original range. But alongside the environmental opportunities for
32 range expansions, population spread requires the individual capabilities to do so. Individual-
33 level life history traits related to reproduction and dispersal will influence the extent and
34 variation in population spread and therefore range border dynamics (Fisher 1937, Angert et al.
35 2011). As these traits have a genetic basis in many organisms (Roff 2001, Saastamoinen et al.
36 2018), range dynamics should to an important extent be determined by the population's genetic
37 composition. Genetic diversity, in numbers and in variation in identity of genotypes, has a well-
38 studied positive effect on various ecological processes. Genetic diversity tends to improve
39 ecological performance as expressed by fitness associated proxies as higher population growth
40 rates, productivity (e.g. Reusch et al. 2005) or movement (e.g. Wagner et al. 2017). This
41 positive relationship between genetic diversity and a variety of demographic processes can be
42 explained by several mechanisms (Hughes et al. 2008, Bolnick et al. 2011).

43 (1) A higher genetic diversity increases opportunities for natural selection to act, hence
44 increasing the average fitness in the population which can eventually increase
45 population growth and improve overall ecological performance. Other evolutionary
46 processes, like inbreeding depression, may in contrast decrease ecological performance.
47 (2) Enhanced sampling in genetically diverse populations increases the probability of the
48 presence of a phenotype with a positive impact on ecological performance.
49 (3) A higher genetic diversity increases the variance in phenotypes which can result in an
50 increase of the mean population's ecological an improved ecological performance

51 relative to the average phenotype when a convex relationships exist between genetic
52 diversity and the ecological function (Jensen's inequality principle).

53 (4) Complementarity effects like niche partitioning and facilitation increase ecological
54 performance by diversifying the ways of performing well.

55 (5) Portfolio effect stabilize fluctuations in the ecological function. Fluctuations from
56 different genotypes that differ in frequency combine to less fluctuating dynamics.

57

58 Range dynamics are even more strongly affected by genetic diversity at longer evolutionary
59 time scales: phenotypes may organize themselves along the range resulting in more dispersive
60 phenotypes disproportionately closer to the leading range edge (Phillips et al. 2010, Burton et al.
61 2010, Phillips and Perkins 2019). This spatial sorting and subsequent spatial selection is known
62 to accelerate range expansion (Fronhofer and Altermatt 2015, Szücs et al. 2017, Van Petegem
63 et al. 2018). Genetic drift during spread may, however, slow expansion (Peischl et al. 2015).
64 These evolutionary processes additionally influence the variability in range expansion in both
65 deterministic and stochastic ways (Williams et al. 2019).

66

67 Spread during an biological invasion fundamentally differs from spread from an established
68 range. At introduction, the invading population's genetic diversity is constrained by several
69 bottlenecks during its transport from the ancestral population to form the eventual founding
70 population (Pierce et al. 2017, Renault et al. 2018). The number of founders and the potential
71 admixture of different founding lines (Dlugosch and Parker 2008, Rius and Darling 2014)
72 eventually determines the severity of this genetic bottleneck. Some invasive populations even
73 show a higher diversity than their ancestral counterparts (Estoup et al. 2016). The number of
74 invaders also imposes demographic effects. A smaller invading population is more vulnerable

75 to Allee effects (Stephens et al. 1999, Taylor and Hastings 2005) and demographic stochasticity
76 (Fauvergue et al. 2012), and is therefore less likely to be successful. The number of invaders is
77 often found to increase invasion success (Colautti et al. 2006, Simberloff 2009, Blackburn et
78 al. 2015). And while the different impact of genetic diversity and demography at establishment
79 has been studied (Ahlroth et al. 2003, Szűcs et al. 2014, Vahsen et al. 2018, Sinclair et al. 2019),
80 its importance for the subsequent population spread is not yet resolved (but see Wagner et al.
81 2017). Such insights are especially needed to solve the genetic paradox of invasions, i.e. the
82 success of invasions despite severe reductions of genetic diversity (Dlugosch and Parker 2008,
83 Mularkey et al. 2013, Estoup et al. 2016, Schrieber and Lachmuth 2017).

84

85 The environment in which the population spreads is another important ecological driver of
86 invasion success. Introductions can occur in an environment that is similar or vastly different
87 from their ancestral one. When the environment of introduction is different and challenging,
88 evolutionary rescue by means of adaptation (Bell and Gonzalez 2011) offers a possible route to
89 tackle the imposed challenges and stimulate population growth and spread. In a benign
90 environment, such adaptations may not be needed to attain high population sizes (Schrieber and
91 Lachmuth 2017). Inbreeding depression is also stronger manifested in a challenging and
92 stressful environment (Fox and Reed 2011). Decreased genetic diversity may therefore
93 constrain population spread in stressful but not in benign environments. The difference in
94 importance of genetic diversity for establishment between benign and challenging
95 environments has already been experimentally demonstrated (Hufbauer et al. 2013, Szűcs et al.
96 2014) and is hinted at in some natural invasions (Daehler and Strong 1997, Hawley et al. 2005).
97 Environments are, however, seldom homogenous in the environmental parameters that
98 determine a species' niche. Rather they gradually change in an autocorrelated way (Legendre
99 1993). Such environmental gradients are anticipated to affect the rate and success of spread in

100 ways that are different from homogenous benign and challenging environments. Like for
101 evolutionary processes (Bell and Gonzalez 2011), a gradual increase in stress may favor
102 population spread compared to a sudden change into a challenging environment and enforce an
103 ecological rescue mechanism.

104

105 The impact of evolution on range expansion dynamics in different environments is
106 unpredictable (Williams et al. 2019), but significant insights in range expansion can be gained
107 by studying the immediate effects of genetic diversity on the onset of expansions. The genetic
108 diversity of founders can inform us which populations are initially better primed to expand their
109 range, to get ahead and ultimately to invade successfully. We specifically expect genetic
110 diversity to increase population spread more in a challenging environment compared to a benign
111 one. We also explored the effect of genetic diversity on variability in population spread. In
112 parallel with Williams et al. (2019), the direction of this effect likely depends on the balance of
113 deterministic and stochastic forces, affecting the predictability of its effect. Because failed
114 invasions cannot be studied in nature, we established replicated experimental populations of
115 *Tetranychus urticae* Koch (two-spotted spider mite) in linear patch systems in which population
116 spread rate and demography were followed for approximately three generations. Spreading
117 populations varied in their level of genetic diversity at the start (single-female lines or mixed
118 lines), independent of the number of introduced individuals, and differed in the kind of
119 environment they were introduced to (benign, challenging or a gradient from benign to
120 challenging).

121

122

123 Methods

124 Model system

125 We tested population spread of *Tetranychus urticae* Koch (two-spotted spider mite), a
126 generalist arthropod herbivore. This mite is a known pest species that has been found on more
127 than 900 hosts all over the world (Navajas 1998). The species is a model in ecological and
128 evolutionary research because of its ease of use, high fertility and annotated genome (Belluire
129 et al. 2010, Macke et al. 2011, Van Petegem et al. 2018, Masier and Bonte 2020). For this
130 experiment, we collected twelve natural populations from a variety of host plants and two lab-
131 populations in September 2018 (more information in Appendix S1). We sampled at least 50
132 individuals with many more in most of the sampled populations. We maintained the collected
133 populations on *Phaseolus vulgaris* (bean) leaf patches on wet cotton in petri dishes (150 mm
134 diameter) sealed off by a lid with ventilation through which the mites could not escape to keep
135 populations from contaminating each other. We maintained these populations in the lab for six
136 months, which amounted to around fifteen generations, before the start of the first procedures
137 (creating the mixed lines, see below).

138

139 We used *Phaseolus vulgaris* var. prelude (bean) plants or leaf patches to keep our stocks on, to
140 perform the single female line procedures and as a benign host in the experiment. Bean is known
141 to be an optimal host that shows little defense against the mites. We used *Solanum lycopersicum*
142 moneymaker (tomato) as a challenging host. The mites occur on tomato but in past experiments,
143 they attained a lower fitness on it (0.2-0.25 of fecundity on bean, Alzate et al. 2017). Local
144 adaptation to tomato is possible but is never observed to result in a higher fitness on tomato
145 compared to bean (Alzate et al. 2017, Mortier and Bonte 2020). None of the natural populations
146 were sampled from tomato or a host that is taxonomically from the same family (Solanaceae).

147 Genetic diversity

148 To obtain starting populations of mites with different levels of genetic variation, we created one
149 genetically rich population by mixing all collected wild and laboratory lines. Carbonnelle et al.
150 (2007) demonstrated significant genetic differences between natural populations of *T. urticae*
151 in Western Europe at similar geographic scales. The genetically rich mix was formed two
152 months prior to the start of the experiment, spanning around five generations, in order to leave
153 the mixed population enough time to avoid any effect of outbreeding depression. We kept this
154 mixed line in four crates with four to eight bean plants each that were regularly mixed. Each
155 bean plant contained a few hundred to a thousand individuals at all times resulting in a total
156 population of the order of magnitude of ten thousand. This setup supported a high population
157 size to avoid subsequent loss of genetic diversity due to drift or effects of linkage disequilibrium
158 as much as possible. Multiple genetically poor populations were established as single female
159 lines from eight of the collected wild and laboratory lines. The single-female lines were formed
160 by sampling one unfertilized female from a collected line by transferring one quiescent
161 deutonymph, the mite's life stage on the verge of adulthood, to a separate leaf. Due to their
162 parthenogenetic nature, unfertilized eggs from that mite will exclusively produce males that
163 are, then, back-crossed with their mother. As a result, the female produces fertilized eggs
164 hatching males and females. With this procedure, we established a population that consists only
165 of genetic material from the original female, not considering mutations. Low genetic diversity
166 is better retained by smaller population sizes on the leave disks compared to the whole plants.
167 Since densities have been shown to provoke maternal effects on dispersal distance (Bitume et
168 al. 2014), we ensured the populations on whole plants and on leaf discs to be maintained at the
169 same high densities, close to carrying capacity. We performed this procedure with four
170 unfertilized female from each collected line to hedge for likely failure. A mother laid eggs and
171 the unfertilized eggs developed at 26°C, close to the maximum developmental speed. The

172 mother was kept at 17°C while males developed in order to slow the mother's ageing and
173 preserve her fertility to the time of fertilization. During this procedure and in the following four
174 weeks to the start of the experiment, we kept the mites at all times on bean patches ($\pm 5\text{cm} \times 6\text{cm}$)
175 on wet cotton in a petri dish.

176

177 Population spread

178 We tested population spread dynamics in experimental linear system containing plant patches
179 that were connected with bridges (Appendix S2: fig. S2). Every experimental population was
180 placed in a clean plastic crate (26.5cm x 36.5cm) covered in three layers of wet cotton wool
181 (Rolta®soft). Patches of plant leaves (1.5cm x 2.5cm) were connected with one another by a
182 parafilm® bridge (1cm x 8cm) touching the leaf patch, with the remaining edge aligned with
183 paper towel strips. The wet cotton provided an impenetrable and deadly matrix in between plant
184 patches and provided the cost of moving from one patch to another in the form of mortality risk.
185 We started each population spread test by sampling 40 individuals from a start population and
186 placing them on the first patch in their population spread arena. We added two additional
187 connected patches. Every day we added, if needed, new connected patches to always have two
188 empty patches in front of the furthest occupied patch and every two days we replaced the still
189 unoccupied patches to keep the unoccupied patches at the front fresh and attractive for potential
190 spreading mites. From past experience with similar patch setups, we know that mites very rarely
191 disperse more than two patches per day under the established densities. Additionally, all plant
192 patches were replaced with a fresh patch once a week. The old patch was placed upside down
193 on the fresh patch for two days in order for mites of all life stages to move from to the fresh
194 patch. Because the old patch always dried quickly, most mites moved to the fresh patch within
195 those two days. Replacing all plant patches replenished resources to sustain the core of the
196 population. These linear patch systems snaked through our crates for twelve possible patches

197 (Appendix S2: fig. S2). In case a thirteenth (and subsequent) patch was needed, the first (and
198 subsequent) patch and its connection to the next was removed to make space for the new one.
199 We sacrificed trailing patches since we were mostly interested in the leading edge dynamics.
200 The arenas were kept at room temperature, around 23°C, with a 16:8h L:D photoperiod.
201 We started population spread tests in three environments: 1) a benign environment of all bean
202 patches, 2) a challenging environment of all tomato patches and 3) a gradient from benign to
203 challenging patches (with 3 bean patches, 1 tomato patch, 2 bean patches, 2 tomato patches, 1
204 bean patch, 3 tomato patches, 1 bean patch followed by all tomato patches). We started sixteen
205 population spread tests in each environment. Eight tests of a genetically poor population were
206 each started from a single female line from a different natural population. Eight tests of a
207 genetically rich population were each started from mites from a different plant in the mixed
208 population. We recorded population spread as the furthest occupied patch in each range on a
209 daily basis and we recorded the number of mites on each patch on a weekly basis over the
210 duration of 35 days or five weeks. Though generations started to overlap, we estimate that this
211 amounted to around three generations.

212

213 Statistical models

214 We analyzed the outcome of our experiment using Bayesian inference. In R (3.6.3), the ‘brms’
215 (2.12.0; Bürkner 2018) package implements ‘Stan’ (Carpenter et al. 2017) as a framework for
216 parameter posterior estimation using Hamiltonian Monte Carlo (HMC).

217 *Mean population spread:*

218 We constructed a multi-level model to estimate effects on mean population spread. We
219 modelled furthest occupied patch as response variable with a Gaussian distribution. We
220 modelled a fixed effect of time, the environmental treatment and the genetic diversity treatment

221 and a variable intercept and slope (in time) for each population spread arena (i.e. random effect
222 of replicate population spread arena and its interaction with time).

223 *Variability in population spread:*

224 We estimated effects on variance in population spread among replicates from the same
225 treatment for each point in time. We again modelled population spread (furthest occupied patch)
226 with a Gaussian distribution, but estimated effects on both the mean and standard deviation.
227 We modelled the mean of the Gaussian distribution with a fixed effect of time, the
228 environmental treatment and the diversity treatment. However, we modelled no variable
229 intercepts but pooled that variation around the mean originating from among different replicates
230 together with the residual variation in order to model all variation around the mean. We then
231 proceeded to model the standard deviation of the Gaussian distribution also with a fixed effect
232 of time, the environmental treatment in and the diversity treatment in the same model. This
233 way, the model estimated the standard variation for each treatment at each point in time. We
234 calculated coefficients of variance from the estimated mean and standard deviation in
235 population spread.

236 *Total population size:*

237 Population size can help explain population spread. Therefore, we modelled total population
238 size across all patches as a response variable with a negative binomial distribution. We model
239 a fixed effect of time, the environmental treatment and the diversity treatment and a variable
240 intercept and slope (in time) for each population spread arena.

241 *Population density:*

242 We modelled total population sizes across all patches as a response variable with a negative
243 binomial distribution. We model a fixed effect of the amount of occupied patches, the
244 environmental treatment and the diversity treatment. We build a model like the previous but

245 with the amount of occupied patches as fixed effect to understand whether larger populations
246 were larger because they occupied more patches or because they had a higher density.

247

248 We report model outcomes as plots of the posterior distribution or direct calculations of
249 marginal effects of the posterior distribution. Bayesian inference considers less the most likely
250 parameter or marginal effect value but rather the whole distribution of likely values, which can
251 most faithfully be reported visually instead of as a metric. We always plotted the 0.09 and 0.91
252 percentiles of the likelihood distribution. We want to stress that this is by no means a
253 significance threshold, but only serves as two arbitrary extremes to aide interpretation of the
254 plotted distribution. We also include the estimated difference between two groups differing in
255 a treatment to directly assess the estimated effect of that treatment in most plots.

256 A more detailed description of the statistical models and their outcomes can be found in the
257 supplementary materials (see Appendix S3). The data files and scripts to analyze them are
258 published (doi: 10.5281/zenodo.4025183).

259 **Results**

260 Mean population spread

261 All populations showed an initial burst of spread during the first days where the relative high
262 density of mites at the starting patch incentivized mites to leave for the next patch. This resulted
263 in an estimated intercept higher than one, the expected intercept as all populations started with
264 one occupied patch (fig. 1, top). Mites in the tomato environment spread very little after this
265 initial burst resulting in the edge lingering around the fourth patch on average. In the bean and
266 gradient environment, however, the population on average kept spreading for the duration of
267 the experiment. The higher genetic diversity of the mixed populations resulted in a faster
268 spreading population in the bean environment as seen in the predominantly negative estimated
269 difference in slope between both diversity treatments (sfl-mix, fig. 1, bottom left). Genetic
270 diversity had no convincing effect in the gradient or tomato environment as seen in the
271 estimated differences in slope (sfl-mix) around zero (fig. 1, bottom middle, bottom right). On
272 bean, mixed lines reached on average the ninth patch while single female lines reached on
273 average the sixth patch. On the gradient, both treatments reached on average the eighth patch.
274 Contrary to expectations, the effect of genetic diversity on population spread was larger in the
275 benign relative to the challenging environment.

276 Variability in population spread

277 The genetically rich mixed lines had a less variable population spread compared to the single
278 female lines in all environments (fig. 2). In the bean and gradient environments, variance was
279 more or less constant and the difference in variance due to genetic diversity was relatively small.
280 However in the tomato environment, the coefficient of variance increased in time and show a
281 relatively sizeable difference in the coefficient of variance between genetically poor and rich
282 lines.

283

284 Total population size

285 Total population sizes were smaller on tomato compared to the bean and gradient treatment
286 (fig. 3, top). On tomato we found a larger population size of mixed compared to single female
287 lines (fig. 3, bottom right). The estimated differences between the genetically diverse and
288 depleted lines on bean had zero (i.e. the no difference), close to the 91 percentile visual aide we
289 plot (fig. 3, left). We estimated no difference on the gradient (fig. 3, bottom middle).

290 Population density

291 By adding the number of occupied patches as a predictor to the model instead of time, we found
292 total population size to be affected by the amount of patches: total population size increased
293 with plant patches (fig.4, top). Population sizes for a given number of plant patches of mixed
294 and single female lines were estimated not to differ on bean and the gradient (fig. 4, bottom left,
295 middle). However, mixed lines showed a higher population size for a given number of plant
296 patches on tomato, as shown by the increasingly positive difference in population size (fig. 4,
297 bottom right). This indicated a higher density in mixed lines than in single female lines.
298 Densities of many mixed lines on tomato even exceeded densities in the benign environment.

299

300 **Discussion**

301 The hypothesis of genetic diversity benefiting population size and spread in challenging but not
302 in benign environments is only partially validated by our experiment. In contrast to common
303 predictions, we document a positive effect of genetic diversity on population spread rate in the
304 benign bean environment but not in the challenging tomato environment. In support, we
305 detected a positive effect of genetic diversity on total and local population sizes in the
306 challenging tomato environment, but not in the benign bean environment. This accords with
307 findings of Hufbauer et al. (2013) and Szucs et al. (2014) for population growth in whiteflies
308 and flour beetles.

309

310 In line with Wagner et al. (2017), we found that diversity accelerated spread in the benign
311 environment. Such increased expansions should theoretically result from increased population
312 growth and dispersal (Fisher 1937, Angert et al. 2011), or any combination of these two.
313 Diversity effects are known to affect population growth (Hughes et al. 2008), and can lead to a
314 fast population growth to or even beyond carrying capacity. At this population size. A positive
315 density-dependence of dispersal (Matthysen 2005, Bowler and Benton 2005, Kawasaki et al.
316 2017) then, can circumvent strong density regulation by competition as a result from strong
317 growth and lead to a faster range expansions ('so-called pushed range expansions; Dahirel et
318 al. 2020). Average local population sizes in our experiment did not differ conclusively between
319 the diversity treatments, whereas those of spread did. We therefore attribute the accelerated
320 range expansion in part to the fact that diverse population may impose higher per capita
321 dispersal rates by for instance a sampling effect that enables more dispersive genotypes to be
322 present or heterosis and positive body condition effects on dispersal (Wagner et al. 2017).

323

324 In contrast to the benign environment, genetically diverse and less diverse populations both
325 stop expanding after the initial leap in spread in the challenging environment. This means that
326 less diverse populations spread as fast as diverse populations under these conditions, while
327 reaching lower population sizes. Negative effects of a low genetic diversity on reproduction are
328 therefore anticipated to be compensated by an increase in dispersal. Dispersal to avoid kin
329 competition is well documented in *Tetranychus urticae* (Bitume et al. 2013, Van Petegem et al.
330 2018) and is a plausible cause of the enhanced dispersal in genetically impoverished
331 populations. Mixed and single female lines reach equal high densities in the benign environment
332 and any kin-competition is likely overruled by resource competition which reverses a negative
333 effect of diversity on dispersal to a positive.

334

335 Population dynamics on the gradient share characteristics from both the homogeneous benign
336 bean and homogeneous challenging tomato environments. Ranges on the gradient reached on
337 average the position where the mites started to encounter more tomato patches than bean
338 patches, with some populations spreading beyond this point. But because population spread
339 started in the benign environment, populations on the gradient unsurprisingly grew and spread
340 at similar rates to populations on bean. No diversity effects were however observed. The
341 genetically poor populations spread as far as the enriched populations on the gradient, but
342 further than genetically poor populations on bean. We therefore attribute the spread of
343 genetically poor populations to the environment rather than to a diversity effect. The insertion
344 of challenging patches likely stimulated dispersing mites to skip the challenging patches in
345 search of the next bean patch, which suggest an additional effect of the gradient's patchy nature.
346 Obviously, informed movement leading to habitat choice must enable such a behavior (Egas
347 and Sabelis 2001, Mortier and Bonte 2020).

348

349 The impact of spatial sorting, selection and local adaptation on range expansions, have been
350 studied experimentally in recent years (Fronhofer and Altermatt 2015, Van Petegem et al. 2016,
351 2018, Szücs et al. 2017). We deliberately limited our experiment to roughly 2-3 generations to
352 focus on the immediate effect of genetic diversity on the initial population spread. Selection as
353 a precursor of local adaptation and spatial evolution may play an important role from the first
354 generation onwards (Szücs et al. 2017). All replicate populations spread at least a few patches
355 and assuming some heritable difference in the ability to spread, this should result in some spatial
356 sorting while determining the resulting population spread rate at the same time. Similarly, the
357 ability to better reproduce in the local environment, if heritable, will be proportionally
358 overrepresented in the next generation and may increase population spread rate simultaneously.
359 It is therefore clear that if such mechanisms, or any other long term mechanism, would have
360 manifested during the short term of the experiment, we are actually underestimating them.

361
362 Genetically diverse lines were characterized by a lower variability in spread among replicates
363 in every environment, hence showing a more consistent and predictable spread rate. This
364 consequence of genetic diversity is found for many ecological processes (Hughes et al. 2008).
365 The difference between genetically diverse and poor populations is larger and starts earlier in
366 time on the challenging tomato. Williams et al. (2019) attribute variability in range expansion
367 dynamics to the balance of variance generating (stochastic) and variance reducing
368 (deterministic) evolutionary forces. Analogously, we propose that different diversity effects can
369 have a variance increasing or decreasing effect on population spread. A probably relevant effect
370 is that higher population sizes reduce demographic stochasticity as a consequence. Since
371 movement is positively related to density, and hence population size, variability in spread is
372 also expected to be minimized in genetically diverse populations. This explains differences in
373 variability between the diversity treatments on tomato and explains the higher overall variability

374 on tomato compared to the other environments. We furthermore speculate that larger
375 differences in variability between genetically diverse and poor replicates on tomato are due to
376 specific genotypes disproportionately impacting range spread. Population spread in the
377 genetically poor lines will be either high or low depending on the presence or absence of the
378 impactful genotype. In comparison, all genetically rich lines are more likely to contain this or
379 any other high impact genotype, hence reducing any variance in population spread among
380 replicates. The smaller difference in variability between genetically diverse and poor lines in
381 the benign bean environment suggests a smaller contribution of specific high-dispersive
382 genotypes, but rather a larger contribution of positive effects of diversity in and of itself. Our
383 data does not allow us to infer a specific mechanism but we speculate that niche partitioning of
384 residents and dispersers is at play. We are not talking about niche partitioning in terms of type
385 of resource but in terms of diverging movement strategies to exploit the same limited resources
386 in the landscape (Bonte et al. 2014, Schlägel et al. 2020). It is more expected that competitive
387 subordinates move as an adaptive behavior when competition is strong, as expected in a benign
388 environment (stabilizing mechanisms; cfr. Chesson 2000). Such fitness stabilizing mechanisms
389 can accelerate range spread in genetically diverse populations, not because of the presence of a
390 specific genotype but because the diversity of genotypes provoking synergies that cannot be
391 reached in isolation. It is not unlikely that a possible higher diversity of movement strategies
392 may have induced some strategies to disperse more to outrun competition in the benign
393 environment.

394

395 The view that invaded environments are the ones where species are released from stress is one
396 of the most important paradigms in invasion biology. The enemy-release hypothesis, for
397 instance, builds on this view of invaded environments being inherently benign (Keane 2002,
398 Colautti et al. 2004). Such a mechanism implies that the release of stressful interactions should

399 outweigh any potential maladaptation to the new environment. We do not see any reason why
400 this assumption should hold. Rather, a strong bias exists in invasion biology as all observed
401 invasions have been by definition successful, with any reference to failed invasions in both
402 challenging and benign environments lacking. Experiments like ours that observe aspects of
403 ongoing invasion, spread in our case, instead of the aftermath, circumvents this survivorship
404 bias. Another aspect of the classic view on invasions is that high propagule pressure, which
405 avoids demographic stochasticity and results in a higher genetic diversity, increases an
406 invader's success. Our results from challenging environments however illustrates that a genetic
407 bottleneck does not decrease population spread in the initial phase and, therefore, may
408 ultimately not decrease invasion success. This is opposite to the established explanation for the
409 genetic paradox of invasions that a genetic bottleneck should still affect a population in a
410 challenging environment. However, our results still support the idea that the effect of a genetic
411 bottleneck is conditional on the environment. Bear in mind that these challenging environments
412 already support a lower invasion success inherently that, as we showed, may not be aided by
413 genetic diversity. Genetic adaptation to the challenging environment may, however impose a
414 niche shift on the longer term, and therefore allowing the invading population to capitalize on
415 its genetic diversity. Such niche shifts have been observed in experimental (Szücs et al. 2017)
416 and successful natural invasions (Broennimann et al. 2007), but tend to be the exception rather
417 than the rule (Peterson 2011, Petitpierre et al. 2012, Strubbe et al. 2013).

418 [Acknowledgements](#)

419 FM thanks the Special Research Fund (BOF) of Ghent University for a PhD scholarship. SM thanks Fonds
420 Wetenschappelijk Onderzoek (FWO) of Flanders for a PhD scholarship. DB, FM and SM are additionally
421 supported by FWO research grant G018017N. We also thank Nicky Wybouw from the department of
422 plants and crops (UGent) for providing the two laboratory population of tomato-bred two-spotted
423 spider mites. Lastly, we thank Steven Goossens with help in collecting some of the natural mite
424 populations.

425

426 [References](#)

427 Ahlroth, P., R. V Alatalo, A. Holopainen, T. Kumpulainen, and J. Suhonen. 2003. Founder
428 population size and number of source populations enhance colonization success in
429 waterstriders. *Oecologia* 137:617–620.

430 Alzate, A., K. Bisschop, R. S. Etienne, and D. Bonte. 2017. Interspecific competition
431 counteracts negative effects of dispersal on adaptation of an arthropod herbivore to a new
432 host. *Journal of Evolutionary Biology* 30:1966–1977.

433 Angert, A. L., L. G. Crozier, L. J. Rissler, S. E. Gilman, J. J. Tewksbury, and A. J. Chuncu.
434 2011. Do species' traits predict recent shifts at expanding range edges ? *Ecology Letters*
435 14:677–689.

436 Bell, G., and A. Gonzalez. 2011. Adaptation and Evolutionary Rescue in Metapopulations
437 Experiencing Environmental Deterioration. *Science* 332:1327–1330.

438 Belliure, B., M. Montserrat, and S. Magalhaes. 2010. Mites as models for experimental
439 evolution studies. *Acarologia* 50:513–529.

440 Bitume, E. V., D. Bonte, O. Ronce, F. Bach, E. Flaven, I. Olivieri, and C. M. Nieberding.

441 2013. Density and genetic relatedness increase dispersal distance in a subsocial
442 organism. *Ecology Letters* 16:430–437.

443 Bitume, E. V., D. Bonte, O. Ronce, I. Olivieri, and C. M. Nieberding. 2014. Dispersal
444 distance is influenced by parental and grand-parental density. *Proceedings of the Royal
445 Society B: Biological Sciences* 281:20141061.

446 Blackburn, T. M., J. L. Lockwood, and P. Cassey. 2015. The influence of numbers on
447 invasion success. *Molecular Ecology* 24:1942–1953.

448 Bolnick, D. I., P. Amarasekare, M. S. Araújo, R. Bürger, J. M. Levine, M. Novak, V. H. W.
449 Rudolf, S. J. Schreiber, M. C. Urban, and D. A. Vasseur. 2011. Why intraspecific trait
450 variation matters in community ecology. *Trends in Ecology & Evolution* 26:183–192.

451 Bonte, D., A. De Roissart, N. Wybouw, and T. Van Leeuwen. 2014. Fitness maximization by
452 dispersal: evidence from an invasion experiment. *Ecology* 95:3104–3111.

453 Bowler, D. E., and T. G. Benton. 2005. Causes and consequences of animal dispersal
454 strategies: relating individual behaviour to spatial dynamics. *Biological Reviews* 80:205–
455 225.

456 Broennimann, O., U. A. Treier, H. Müller-Schärer, W. Thuiller, A. T. Peterson, and A.
457 Guisan. 2007. Evidence of climatic niche shift during biological invasion. *Ecology*
458 *Letters* 10:701–709.

459 Bürkner, P.-C. 2018. Advanced Bayesian Multilevel Modeling with the R Package brms. *The*
460 *R Journal* 10:395.

461 Burton, O. J., B. L. Phillips, and J. M. J. Travis. 2010. Trade-offs and the evolution of life-
462 histories during range expansion. *Ecology Letters* 13:1210–1220.

463 Carbonnelle, S., T. Hance, A. Migeon, P. Baret, S. Cros-Arteil, and M. Navajas. 2007.

464 Microsatellite markers reveal spatial genetic structure of *Tetranychus urticae* (Acari:
465 *Tetranychidae*) populations along a latitudinal gradient in Europe. Experimental and
466 Applied Acarology 41:225–241.

467 Carpenter, B., A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. Brubaker,
468 J. Guo, P. Li, and A. Riddell. 2017. Stan : A Probabilistic Programming Language.
469 Journal of Statistical Software 76.

470 Chesson, P. 2000. Mechanisms of Maintenance of Species Diversity. Annual Review of
471 Ecology and Systematics 31:343–366.

472 Chuang, A., and C. R. Peterson. 2016. Expanding population edges: theories, traits, and trade-
473 offs. Global Change Biology 22:494–512.

474 Colautti, R. I., I. A. Grigorovich, and H. J. MacIsaac. 2006. Propagule Pressure: A Null
475 Model for Biological Invasions. Biological Invasions 8:1023–1037.

476 Colautti, R. I., A. Ricciardi, I. A. Grigorovich, and H. J. MacIsaac. 2004. Is invasion success
477 explained by the enemy release hypothesis? Ecology Letters 7:721–733.

478 Daehler, C. C., and D. R. Strong. 1997. Reduced herbivore resistance in introduced smooth
479 cordgrass (*Spartina alterniflora*) after a century of herbivore-free growth. Oecologia
480 110:99–108.

481 Dahirel, M., A. Bertin, M. Haond, A. Blin, E. Lombaert, V. Calcagno, S. Fellous, L.
482 Mailleret, and E. Vercken. 2020. Shifts from pulled to pushed range expansions caused
483 by reductions in connectedness. bioRxiv.

484 Dlugosch, K. M., and I. M. Parker. 2008. Founding events in species invasions: genetic
485 variation, adaptive evolution, and the role of multiple introductions. Molecular Ecology
486 17:431–449.

487 Egas, M., and M. W. Sabelis. 2001. Adaptive learning of host preference in a herbivorous
488 arthropod. *Ecology Letters* 4:190–195.

489 Estoup, A., V. Ravigné, R. Hufbauer, R. Vitalis, M. Gautier, and B. Facon. 2016. Is There a
490 Genetic Paradox of Biological Invasion? *Annual Review of Ecology, Evolution, and*
491 *Systematics* 47:51–72.

492 Fauvergue, X., E. Vercken, T. Malausa, and R. A. Hufbauer. 2012. The biology of small,
493 introduced populations, with special reference to biological control. *Evolutionary*
494 *Applications* 5:424–443.

495 Fisher, R. A. 1937. THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES. *Annals of*
496 *Eugenics* 7:355–369.

497 Fox, C. W., and D. H. Reed. 2011. INBREEDING DEPRESSION INCREASES WITH
498 ENVIRONMENTAL STRESS: AN EXPERIMENTAL STUDY AND META-
499 ANALYSIS. *Evolution* 65:246–258.

500 Fronhofer, E. A., and F. Altermatt. 2015. Eco-evolutionary feedbacks during experimental
501 range expansions. *Nature Communications* 6:6844.

502 Hawley, D. M., D. Hanley, A. A. Dhondt, and I. J. Lovette. 2005. Molecular evidence for a
503 founder effect in invasive house finch (*Carpodacus mexicanus*) populations experiencing
504 an emergent disease epidemic. *Molecular Ecology* 15:263–275.

505 Hufbauer, R. A., A. Rutschmann, B. Serrate, H. Vermeil de Conchard, and B. Facon. 2013.
506 Role of propagule pressure in colonization success: disentangling the relative importance
507 of demographic, genetic and habitat effects. *Journal of Evolutionary Biology* 26:1691–
508 1699.

509 Hughes, A. R., B. D. Inouye, M. T. J. Johnson, N. Underwood, and M. Vellend. 2008.

510 Ecological consequences of genetic diversity. *Ecology Letters* 11:609–623.

511 Kawasaki, K., N. Shigesada, and M. Iinuma. 2017. Effects of long-range taxis and population
512 pressure on the range expansion of invasive species in heterogeneous environments.

513 *Theoretical Ecology* 10:269–286.

514 Keane, R. 2002. Exotic plant invasions and the enemy release hypothesis. *Trends in Ecology
& Evolution* 17:164–170.

516 Legendre, P. 1993. Spatial Autocorrelation: Trouble or New Paradigm? *Ecology* 74:1659–
517 1673.

518 Macke, E., S. Magalhaes, F. Bach, and I. Olivieri. 2011. Experimental Evolution of Reduced
519 Sex Ratio Adjustment Under Local Mate Competition. *Science* 334:1127–1129.

520 Masier, S., and D. Bonte. 2020. Spatial connectedness imposes local- and metapopulation-
521 level selection on life history through feedbacks on demography. *Ecology Letters*
522 23:242–253.

523 Matthysen, E. 2005. Density-dependent dispersal in birds and mammals. *Ecography* 28:403–
524 416.

525 Mortier, F., and D. Bonte. 2020. Trapped by habitat choice: Ecological trap emerging from
526 adaptation in an evolutionary experiment. *Evolutionary Applications* 13:1877–1887.

527 Mullarkey, A. A., D. L. Byers, and R. C. Anderson. 2013. Inbreeding depression and
528 partitioning of genetic load in the invasive biennial *Alliaria petiolata* (Brassicaceae).
529 *American Journal of Botany* 100:509–518.

530 Navajas, M. 1998. Host plant associations in the spider mite *Tetranychus urticae* (Acari :
531 Tetranychidae): insights from molecular phylogeography. *Experimental and Applied
532 Acarology* 22:201–214.

533 Peischl, S., M. Kirkpatrick, and L. Excoffier. 2015. Expansion Load and the Evolutionary
534 Dynamics of a Species Range. *The American Naturalist* 185:E81–E93.

535 Van Petegem, K. H. P., J. Boeye, R. Stoks, and D. Bonte. 2016. Spatial Selection and Local
536 Adaptation Jointly Shape Life-History Evolution during Range Expansion. *The
537 American Naturalist* 188:485–498.

538 Van Petegem, K., F. Moerman, M. Dahirel, E. A. Fronhofer, M. L. Vandegehuchte, T. Van
539 Leeuwen, N. Wybouw, R. Stoks, and D. Bonte. 2018. Kin competition accelerates
540 experimental range expansion in an arthropod herbivore. *Ecology Letters* 21:225–234.

541 Peterson, A. T. 2011. Ecological niche conservatism: a time-structured review of evidence.
542 *Journal of Biogeography* 38:817–827.

543 Petitpierre, B., C. Kueffer, O. Broennimann, C. Randin, C. Daehler, and A. Guisan. 2012.
544 Climatic Niche Shifts Are Rare Among Terrestrial Plant Invaders. *Science* 335:1344–
545 1348.

546 Phillips, B. L., G. P. Brown, and R. Shine. 2010. Life-history evolution in range-shifting
547 populations. *Ecology* 91:1617–1627.

548 Phillips, B. L., and T. A. Perkins. 2019. Spatial sorting as the spatial analogue of natural
549 selection. *Theoretical Ecology* 12:155–163.

550 Pierce, A. A., R. Gutierrez, A. M. Rice, and K. S. Pfennig. 2017. Genetic variation during
551 range expansion: Effects of habitat novelty and hybridization. *Proceedings of the Royal
552 Society B: Biological Sciences* 284.

553 Renault, D., M. Laparie, S. J. McCauley, and D. Bonte. 2018. Environmental Adaptations,
554 Ecological Filtering, and Dispersal Central to Insect Invasions. *Annual Review of
555 Entomology* 63:345–368.

556 Reusch, T. B. H., A. Ehlers, A. Hammerli, and B. Worm. 2005. Ecosystem recovery after
557 climatic extremes enhanced by genotypic diversity. *Proceedings of the National
558 Academy of Sciences* 102:2826–2831.

559 Rius, M., and J. A. Darling. 2014. How important is intraspecific genetic admixture to the
560 success of colonising populations? *Trends in Ecology & Evolution* 29:233–242.

561 Roff, D. 2001. Life History, Evolution of. Pages 631–641 *Encyclopedia of Biodiversity*.
562 Elsevier, Sunderland, Ma.

563 Saastamoinen, M., G. Bocedi, J. Cote, D. Legrand, F. Guillaume, C. W. Wheat, E. A.
564 Fronhofer, C. Garcia, R. Henry, A. Husby, M. Baguette, D. Bonte, A. Coulon, H. Kokko,
565 E. Matthysen, K. Niitepõld, E. Nonaka, V. M. Stevens, J. M. J. Travis, K. Donohue, J.
566 M. Bullock, and M. del Mar Delgado. 2018. Genetics of dispersal. *Biological Reviews*
567 93:574–599.

568 Schlägel, U. E., V. Grimm, N. Blaum, P. Colangeli, M. Dammhahn, J. A. Eccard, S. L.
569 Hausmann, A. Herde, H. Hofer, J. Joshi, S. Kramer-Schadt, M. Litwin, S. D. Lozada-
570 Gobilard, M. E. H. Müller, T. Müller, R. Nathan, J. S. Petermann, K. Pirhofer-Walzl, V.
571 Radchuk, M. C. Rillig, M. Roeleke, M. Schäfer, C. Scherer, G. Schiro, C. Scholz, L.
572 Teckentrup, R. Tiedemann, W. Ullmann, C. C. Voigt, G. Weithoff, and F. Jeltsch. 2020.
573 Movement-mediated community assembly and coexistence. *Biological Reviews*
574 95:1073–1096.

575 Schrieber, K., and S. Lachmuth. 2017. The Genetic Paradox of Invasions revisited: the
576 potential role of inbreeding \times environment interactions in invasion success. *Biological
577 Reviews* 92:939–952.

578 Simberloff, D. 2009. The Role of Propagule Pressure in Biological Invasions. *Annual Review
579 of Ecology, Evolution, and Systematics* 40:81–102.

580 Sinclair, J. S., S. E. Arnott, K. L. Millette, and M. E. Cristescu. 2019. Benefits of increased
581 colonist quantity and genetic diversity for colonization depend on colonist identity.
582 *Oikos* 128:1761–1771.

583 Stephens, P. A., W. J. Sutherland, and R. P. Freckleton. 1999. What Is the Allee Effect? *Oikos*
584 87:185.

585 Strubbe, D., O. Broennimann, F. Chiron, and E. Matthysen. 2013. Niche conservatism in non-
586 native birds in Europe: niche unfilling rather than niche expansion. *Global Ecology and*
587 *Biogeography* 22:962–970.

588 Szűcs, M., B. A. Melbourne, T. Tuff, and R. A. Hufbauer. 2014. The roles of demography and
589 genetics in the early stages of colonization. *Proceedings of the Royal Society B: Biological Sciences* 281:20141073.

591 Szűcs, M., M. L. Vahsen, B. A. Melbourne, C. Hoover, C. Weiss-Lehman, R. A. Hufbauer,
592 and T. W. Schoener. 2017. Rapid adaptive evolution in novel environments acts as an
593 architect of population range expansion. *Proceedings of the National Academy of Sciences of the United States of America* 114:13501–13506.

595 Taylor, C. M., and A. Hastings. 2005. Allee effects in biological invasions. *Ecology Letters*
596 8:895–908.

597 Vahsen, M. L., K. Shea, C. L. Hovis, B. J. Teller, and R. A. Hufbauer. 2018. Prior adaptation,
598 diversity, and introduction frequency mediate the positive relationship between
599 propagule pressure and the initial success of founding populations. *Biological Invasions*
600 20:2451–2459.

601 Wagner, N. K., B. M. Ochocki, K. M. Crawford, A. Compagnoni, and T. E. X. Miller. 2017.
602 Genetic mixture of multiple source populations accelerates invasive range expansion.

603 Journal of Animal Ecology 86:21–34.

604 Williams, J. L., R. A. Hufbauer, and T. E. X. Miller. 2019. How Evolution Modifies the
605 Variability of Range Expansion. Trends in Ecology & Evolution 34:903–913.

606

607 Figure legends:

608 Figure 1: Top: population spread as the furthest occupied patch over the duration of the

609 experiment for mixed (red) and single female (blue) populations in the bean (left), gradient

610 (middle) or tomato (right) environment. The fine lines show the recorded spread of each

611 population for each day while the wide lines with shades represent the statistical (BMC)

612 model estimate with likelihood interval of the 0.09 and 0.91 quantiles. Bottom: differences in

613 estimated slopes of population spread in time (single female line - mix) in the bean (left),

614 gradient (middle) or tomato (right) environment. The dashed line indicates equal estimated

615 slopes.

616 Figure 2: population spread variability as coefficient of variance (CV) of the number of

617 occupied patches over the duration of the experiment for mixed (red) and single female (blue)

618 populations in the bean (left), gradient (middle) or tomato (right) environment. The dots show

619 the calculated coefficient of variance in population spread (standard deviation in population

620 spread divided by mean population spread) among all populations each day while the wide

621 lines with shades represent the statistical (BMC) model estimate with likelihood interval of

622 the 0.09 and 0.91 quantiles

623 Figure 3: total population size (top) for mixed (red) and single female (blue) populations and

624 estimated differences in total population size between single female lines and mixes (sfl-mix)

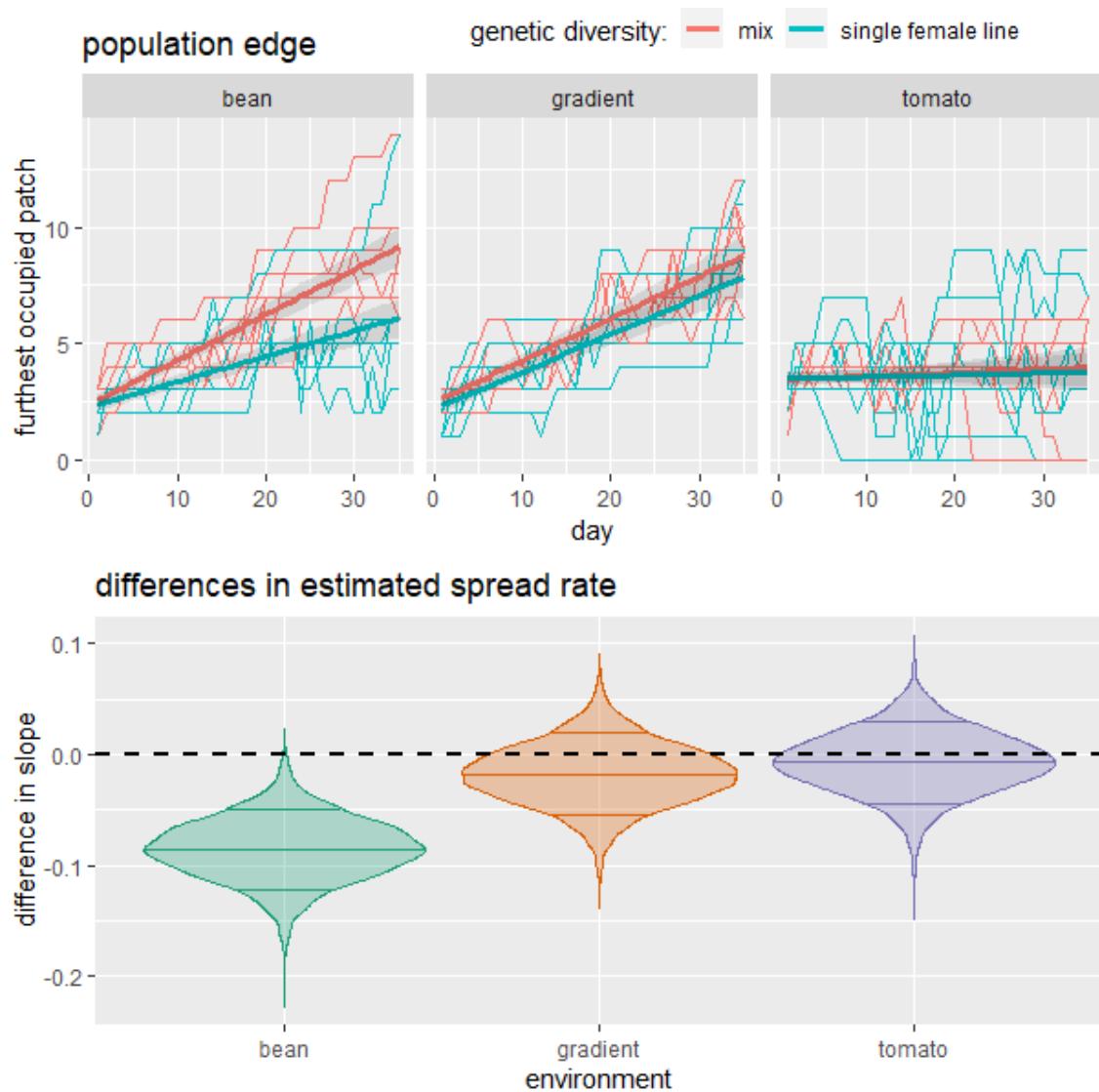
625 (bottom) in the bean (left), gradient (middle) or tomato (right) environment. The fine lines

626 show the recorded total population size of each population each week while the wide lines

627 with shades represent the statistical (BMC) model estimate with likelihood interval of the 0.09

628 and 0.91 quantiles. The estimated differences in total population size (bottom) between single

629 female lines and mixes (sfl-mix) visualizes whether the differences due to genetic diversity in

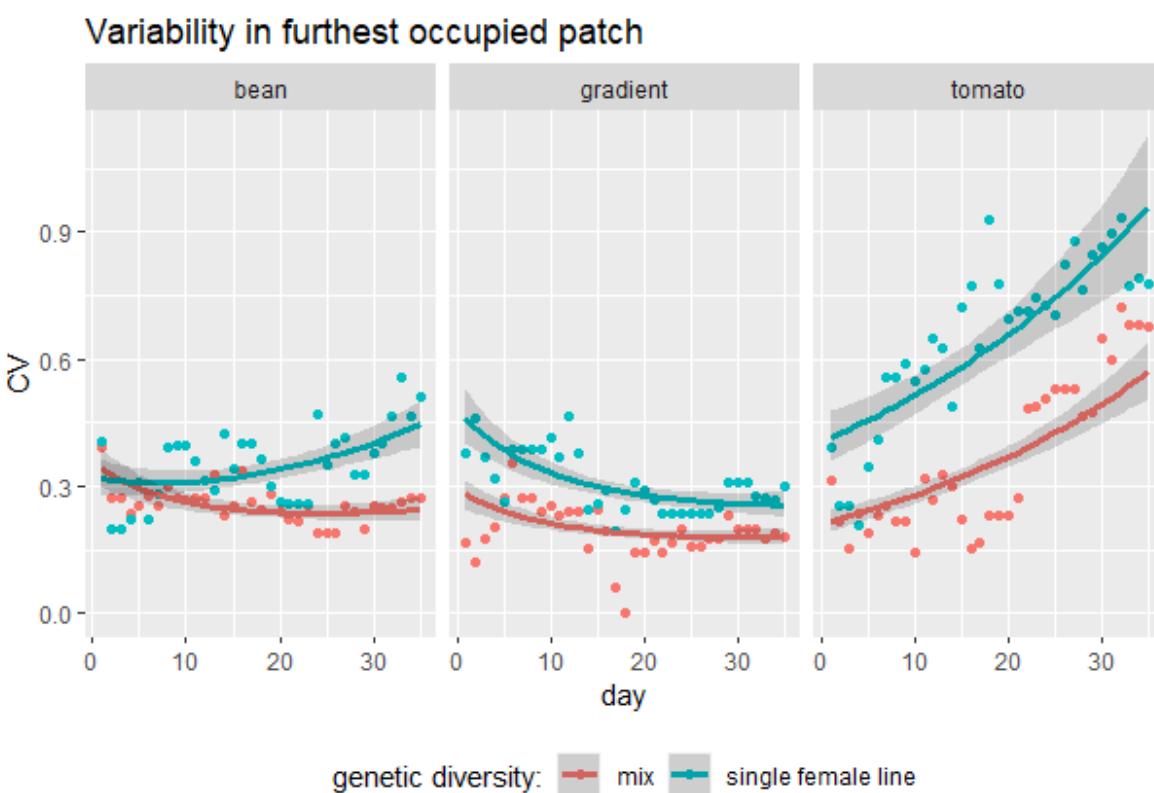

630 its respective top panel differs from zero (dashed line).

631 Figure 4: total population size regressed over the furthest occupied patch by that population
632 (top) for mixed (red) and single female (blue) populations and estimated differences in total
633 population size between single female lines and mixes (sfl-mix) (bottom) in the bean (left),
634 gradient (middle) or tomato (right) environment. The fine lines show the recorded total
635 population size of each population each week while the lines and shades represent the
636 statistical (BMC) model estimate with confidence likelihood of the 0.09 and 0.91 quantiles.
637 The estimated differences in total population size (bottom) between single female lines and
638 mixes (sfl-mix) visualizes whether the differences due to genetic diversity in its respective top
639 panel differs from zero (dashed line). All recorded time points are plotted for every population
640 and the model only estimates the range of occupied patches that was observed per
641 combination of diversity and environment.

642

643 Figures:

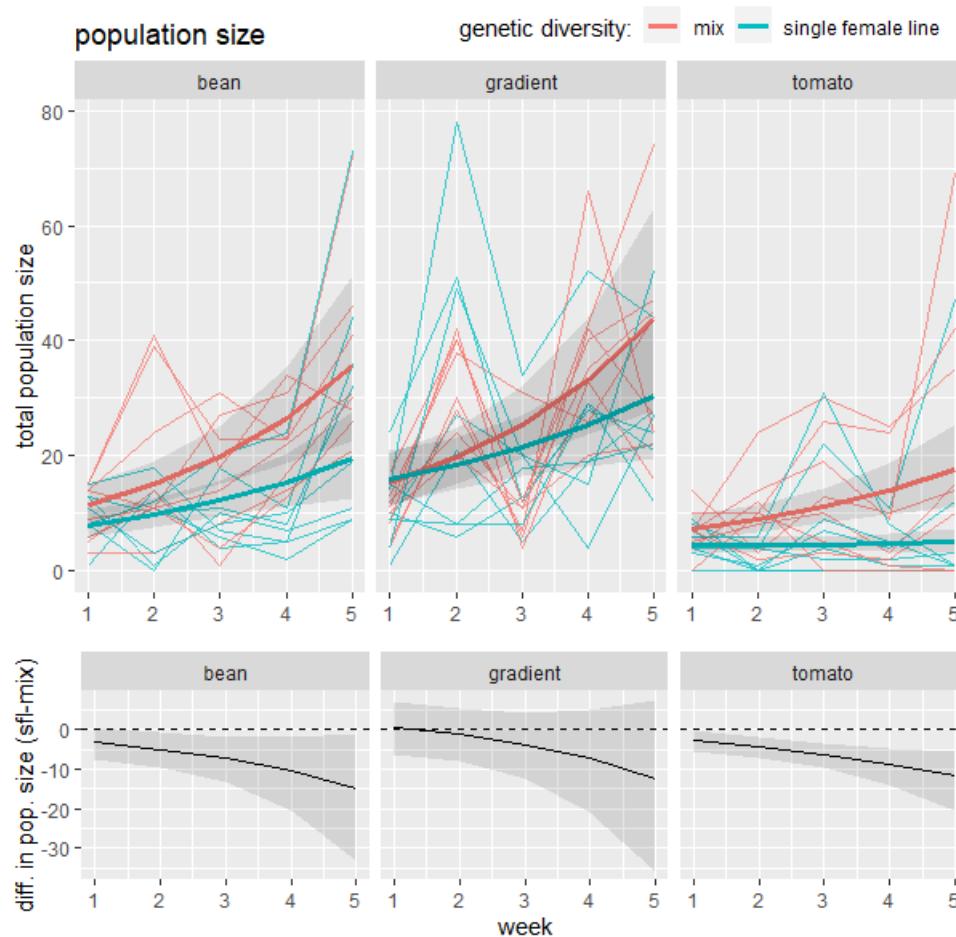
644 Figure 1:



645

646

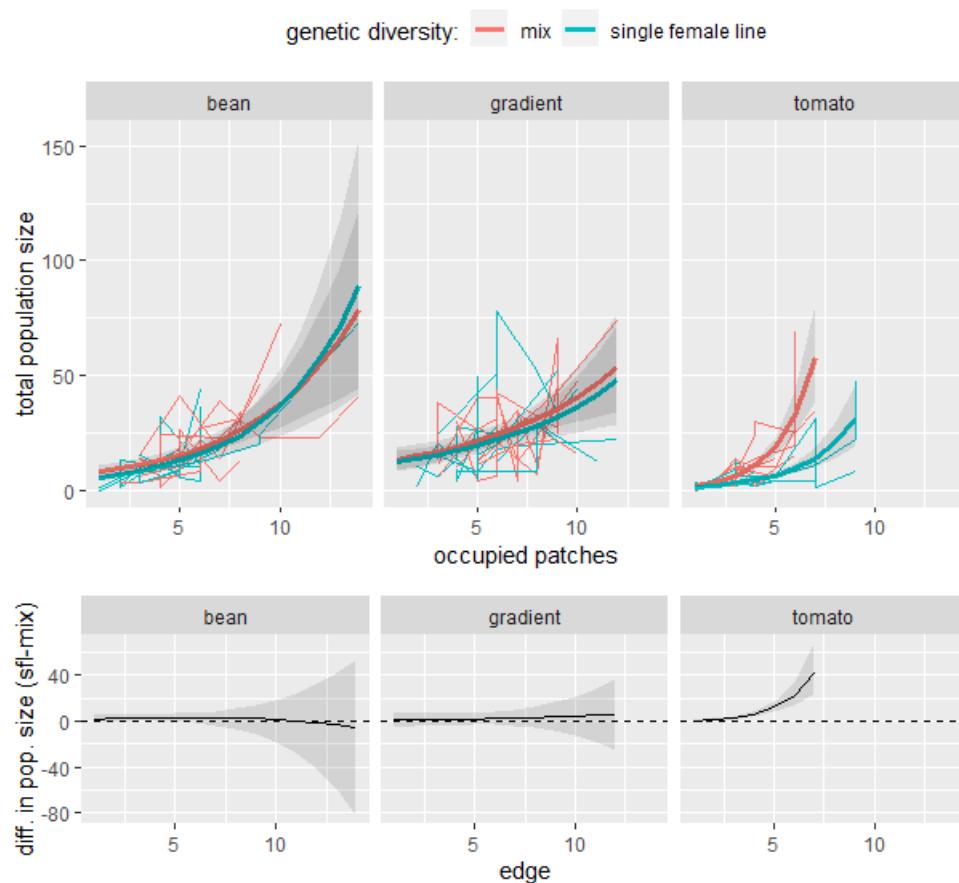
647 Figure 2:


648

649

650 Figure 3:

651



652

653 Figure 4:

654

effect range size on population size

655