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ABSTRACT 

The temporal lobe is implicated in higher cognitive processes and is one of the regions that 

underwent substantial reorganization during primate evolution. Its functions are instantiated, in 

part, by its complex layout of structural connections. This study identified low-dimensional 

representations of structural connectivity variations in human temporal cortex and explored their 

microstructural underpinnings and associations to macroscale function. We identified three 

eigenmodes which described gradients in structural connectivity. These gradients reflected inter-

regional variations in cortical microstructure derived from quantitative MRI and post-mortem 

histology. Gradient-informed models accurately predicted macroscale measures of temporal lobe 

function. Gradients aligned closely with established measures of functional reconfiguration and 

areal expansion between macaques and humans, highlighting the important role evolution has 

played in shaping temporal lobe function. Our results provide robust evidence for three axes of 

structural connectivity in human temporal cortex with consistent microstructural underpinnings 

and contributions to large-scale brain network function.  
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INTRODUCTION 

The human temporal lobe is involved in multiple cognitive, affective, and sensory processes, 

including memory (Vaz et al., 2019), emotional reactivity (Phelps, 2004), semantic cognition 

(Ralph et al., 2017), as well as auditory processing (Bonilha et al., 2017). Notably, temporal lobe 

subregions have been suggested to serve as origins of major organizational and evolutionary axes 

of the human brain (Goulas et al., 2019; Sanides, 1969), and host structures, such as the middle 

and superior temporal gyri, that have undergone accelerated functional reconfigurations and areal 

expansion in primate evolution (Eichert et al., 2020; Mars, Sotiropoulos, et al., 2018; Xu et al., 

2020). Collectively, these different aspects suggest that the temporal lobe is a hub implicated in 

important features of human cognition, and that its study may provide key insights into cortical 

organization and its phylogenetic basis. 

In an attempt to understand the role of the temporal lobe in whole-brain networks, prior studies in 

non-human animals and human participants have started to delineate the complex connectivity 

profiles of the temporal lobe. Tract tracing studies in non-human primates have charted short range 

connections as well as long range tracts of the temporal lobe (Webster et al., 1991), showing 

distributed connectivity patterns to a diverse territory of cytoarchitectural areas (Beul et al., 2017; 

Mohedano-Moriano et al., 2015; Morán et al., 1987; Sakata et al., 2019). These findings were 

complemented by diffusion MRI tractography studies in both non-human primates (Bryant et al., 

2020) and humans (Saur et al., 2008), where this non-invasive technique can approximate the 

course of white matter fiber tracts both in vivo and ex vivo. Diffusion MRI studies have been 

performed for all major long range fiber bundles (Howells et al., 2018; Roumazeilles et al., 2020; 

Smiley & Falchier, 2009), for short range fiber systems (Attar et al., 2020) as well as the superficial 

white matter (Bodin et al., 2020; Hong, Hyung, et al., 2019; Liu et al., 2016; Oishi et al., 2008).  

Beyond the mapping of specific fiber bundles, recent years have seen a shift towards the 

application of unsupervised approaches that identify and visualize low dimensional eigenmodes in 

connectivity changes across the cortical mantle – also referred to as connectivity gradients 

(Huntenburg et al., 2018; Margulies et al., 2016). A gradient perspective describes transitions of 

brain connectivity in a continuous reference frame, which has been proposed to capture 

subregional heterogeneity as well as functional multiplicity better than techniques that parcellate 

cortex into discrete subregions and average potentially variable properties within parcels 

(Bijsterbosch et al., 2020; Haak & Beckmann, 2020; Mars, Sotiropoulos, et al., 2018). Capitalizing 
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on resting-state functional MRI acquisitions, gradient mapping techniques have previously 

identified principal axes of neural organization in healthy adults and in non-human primates 

(Buckner & Margulies, 2019; Guell et al., 2018; Haak et al., 2018; Margulies et al., 2016; Vos de 

Wael et al., 2018; Xu et al., 2020), and these techniques are increasingly used to study lifespan 

processes related to aging (Lowe et al., 2019; Bethlehem et al., 2020) and typical as well as atypical 

childhood development (Ball, Seidlitz, Beare, et al., 2020; Ball, Seidlitz, O’Muircheartaigh, et al., 

2020; Hong, Vos de Wael, et al., 2019; Larivière et al., 2019; Park, Hong, et al., 2020). In the 

temporal lobe, these techniques have previously been applied to structural connectivity 

information, with the goal of subsequent parcellation (Bajada et al., 2017), to describe the ventral 

and anterior temporal lobe as a structural connectivity convergence zone (Bajada et al., 2019), and 

to relate structural connectivity gradients to meta-analytic task activations (Blazquez Freches et 

al., 2020; Yarkoni et al., 2011).  

In the current work, we expanded on these previous findings in three ways:  

(i) We explored regional associations between structural connectivity gradients in the 

temporal lobe and measures of intracortical microstructure to assess whether large scale 

connectivity axes are reflected in the local microcircuits. Prior findings in non-human 

animals suggest that an area’s cytoarchitectonic properties may be predictive of structural 

connectivity, but precise associations between both remain underspecified in humans 

(Barbas, 2015). To fill this gap, our project leveraged both myelin sensitive MRI contrasts 

as well as post-mortem cytoarchitecture analysis based on BigBrain (Amunts et al., 2013).  

(ii) Structural connectivity is generally assumed to constrain functional connectivity (Deco et 

al., 2017; Honey et al., 2009; Suárez et al., 2020; Wang et al., 2019). Here we assessed 

whether structural connectome gradients within the temporal lobe, as a low dimensional 

representation of structural connectivity, can predict intrinsic functional organization 

derived from resting-state fMRI acquisitions, both with respect to macroscale functional 

motifs as well as node-wise estimates of functional connectivity.  

(iii) Finally, to determine phylogenetic principles of structural connectome organization, we 

examined whether structural connectivity gradients reflect principal dimensions of primate 

evolution. To this end, we studied the relationship of gradients with areal expansion and 

functional reconfigurations from non-human primates to humans (Xu et al., 2020).  
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Our approach capitalized on multimodal image processing and advanced diffusion tractography 

analyses. Specifically, we leveraged a high-resolution representation of temporal lobe structural 

connectivity to resolve subregional heterogeneity in connectivity and multiplicity of potentially 

overlapping gradients. Our findings were replicated both in a hold-out dataset from the same site, 

and in a dataset acquired with a different scanner, imaging parameters, and preprocessing pipeline. 

We have released all codes to replicate the main figures on https://github.com/MICA-

MNI/micaopen   

RESULTS 

Our main analyses were based on 75 unrelated participants of the Human Connectome Project 

(HCP) S900 release (Van Essen et al., 2013), a large-scale open-access neuroimaging dataset 

comprised of healthy young adults (HCP-Discovery; n=75; age=29.2+3.6, female=47). We also 

replicated all findings in a subset of unrelated participants from HCP, (HCP-Replication; n=75; 

age=28.9+4.0, female=44). For each participant, we mapped structural connectivity of each vertex 

in the gray-white matter interface of the temporal lobe to the entire cortex using high resolution 

tractography (see Methods, for details). To identify structural connectivity gradients, we used non-

linear dimensionality reduction techniques that identify spatial eigenvectors explaining inter-

regional variations in structural connectivity (Coifman & Lafon, 2006). To assess the 

reproducibility of our findings, we repeated our analyses on the Microstructure Informed 

Connectomics (MICs) dataset, a separate dataset of healthy controls who underwent 3T imaging 

comparable to the HCP protocol in our center (54 controls, 30.5+7.3 years old, 20 females).  

Multiple gradients of structural connectivity in the temporal lobe  
In HCP-Discovery, the first three components of temporal cortical gradients collectively explained 

67% of variance in temporal lobe structural (Fig. 1Error! Reference source not found.A). Findings 

were similar in the left and right hemispheres. We thus present only left hemisphere results in the 
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main figures (for right hemisphere results, see 

 

Supplementary Fig. 1). Gradient solutions were consistent across the different datasets studied, 

with absolute correlations between G1-3 of HCP-Discovery with G1-3 of HCP-Replication and 

MICs exceeding r>0.96. 

The first structural connectivity gradient (G1) ran between the superior temporal gyrus and the 

medial temporal lobe (Fig. 1Error! Reference source not found.A), the second (G2) along the 

posterior-anterior axis, and the third (G3) from anterolateral to posteromedial. To determine the 

connectivity patterns represented by each gradient, we mapped the connectivity of the top/bottom 

10% of vertices of each gradient and assessed changes in the spatial distribution of connectivity 

profiles at the anchors of each gradient. G1 connectivity changes differentiated between visual and 
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parietal connectivity, G2 involved changes from temporal pole and insula to visual/parietal cortex 

and lateral frontal cortex, and G3 described changes from visual/parietal to lateral temporal and 

frontal (Supplementary Fig. 2).  

 

Fig. 1 Diffusion embedding of structural connectivity. (A) Streamlines were generated throughout the entire brain and 

systematically mapped to the cortical surface using nearest neighbor interpolation. We computed the affinity matrix 

of the connectivity matrix using a cosine similarity kernel and constructed gradients of structural connectivity of the 

temporal lobe to ipsilateral hemisphere with diffusion embedding. The first three gradients of diffusion embedding, 

sorted by variance explained of each vector, were selected for further analyses. Eccentricity in this manifold space 

was high in posterior medial temporal lobe and the superior temporal gyrus. (B) The relationship of eccentricity with 

connectivity distance (left) and degree centrality (right). The star denotes a significant correlation. 
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In order to provide a scalar metric in multivariate gradient space and quantify connectome-level 

differentiation across the cortical mantle, we calculated an eccentricity measure that captures the 

distance from the origin in gradient space (Park, Bethlehem, et al., 2020). Low eccentricities were 

situated in the middle temporal gyrus, while high eccentricity was present in posterior superior 

temporal and medial temporal regions. To determine the connectivity patterns underlying gradient 

eccentricity, we performed spatial correlation analyses between eccentricity and topological 

measures of degree centrality and long-distance connectivity (Fig. 1B). Findings were corrected 

for spatial autocorrelation with Moran Spectral Randomization (Wagner & Dray, 2015) 

implemented in BrainSpace (Vos de Wael et al., 2020), and adjusted for multiple comparisons 

using a false discovery rate procedure (Benjamini & Hochberg, 1995). Gradient eccentricity 

correlated with connectivity distance in both hemispheres (left/right r=-0.76/-0.70, pmoran<0.002), 

but not with degree centrality (left/right r=0.46/0.28, pmoran<0.22). Results replicated in all datasets 

i.e., gradients were bilaterally associated with connectivity distance (left/right HCP-Replication:  

r=-0.75/0.70, pmoran<0.002; MICs: r=-0.78/0.71, pmoran<0.01), but not degree centrality (HCP-

Replication: r=0.44/0.27, pmoran<0.23, MICs: r=0.40/0.39, pmoran<0.19). 

To contextualize the gradients in their cognitive underpinnings, we decoded the structural 

gradients and eccentricity map using Neurosynth, an ad hoc meta-analysis of previous fMRI 

studies (Yarkoni et al., 2011) (Supplementary Fig. 3). Both G1, G3, and eccentricity represent 

axes of sensory functions to self-generated cognitive processes (G1: auditory vs 

memory/navigation terms, G3: cognitive vs auditory terms, eccentricity: cognitive vs perception 

terms). G2 differentiated stress/affect related terms from visual/word related terms (e.g., “visual” 

and “word form” vs “stress”, “pain” and “regulation”). 

Microstructural underpinnings 

Prior research in non-human animals has shown inter-regional connectivity is predicted by 

cytoarchitectural similarity (Barbas, 2015), and recent functional MRI work showed 

correspondence between functional gradients and proxies for intracortical myelin (Huntenburg et 

al., 2017; Larivière et al., 2019; Paquola et al., 2019; Vos de Wael et al., 2018). Here, we examined 

the relationship between structural connectivity gradients and in-vivo measures of cortical 

microstructure. Specifically, we tested for associations of gradient eccentricity and intracortical 
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T1w/T2w intensity, a proxy for myelin (Glasser & Essen, 2011), and observed a strong association 

(Fig. 2A; left/right r=0.69/0.78, pmoran<0.012). Associations to cortical thickness were only 

moderate (left/right r=-0.43/-0.44, pmoran<0.024) and those to curvature did not reach statistical 

significance (left/right r=-0.07/-0.11,It pmoran<0.65). Similar findings were seen in HCP-

Replication (left/right T1w/T2w r=0.68/0.78, pmoran<0.012; cortical thickness  r=-0.45/-

0.44, pmoran<0.020; curvature r=-0.07/0.12, pmoran<0.637) and in the MICs dataset, which used 

quantitative T1 relaxometry as a myelin proxy (left/right qT1 r=-0.36/-0.66 pmoran<0.062; cortical 

thickness r=-0.33/-0.31, pmoran<0.08; curvature r=0.01/0.03, pmoran<0.91). 

 

Fig. 2 Microstructural basis of the structural gradients. (A) We tested for linear relations between eccentricity and 

curvature, cortical thickness, as well as T1w/T2w intensity. Stars denote significant correlations. (B) We tested for an 

association between microstructural profile covariance derived previously from the BigBrain atlas (Amunts et al., 

2013; Paquola et al., 2019), and eccentricity. Eccentricity was projected to the same parcellation scheme as 

microstructural profile covariance by taking the mean within each parcel.  

Next, we evaluated the association between gradients and cortical cytoarchitecture (Error! 

Reference source not found.B), capitalizing on the BigBrain dataset, an ultra-high resolution 3D 

histological reconstruction of a post-mortem human brain (Amunts et al., 2013). We adopted a 

previously established approach to identify cytoarchitectural gradients (Paquola et al., 2019) and 

compared the principal cytoarchitectural gradient, which runs from primary sensory to limbic 
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areas, to our in vivo structural connectivity gradients. We found strong associations in both 

hemispheres (left/right r=-0.65/-0.73, pmoran<0.002). Again, results were replicated in both HCP-

replication (left/right r=-0.64/-0.73, pmoran<0.002) and MICs (left/right r=-0.60/-0.71, 

pmoran<0.028).  

Functional associations  
Structural connectivity is ultimately assumed to give rise to functional connectivity (Deco et al., 

2017; Honey et al., 2009; Suárez et al., 2020; Wang et al., 2019). As such, we hypothesized that 

axes of structural connectivity would capture the organization of large-scale functional 

connectivity. We related the structural connectivity gradients to intrinsic functional community 

organization, a predominant motif of macroscale neural function (Fig. A) (Yeo et al., 2011). Using 

a 5-fold cross validation, we computed group-level structural gradients for the training and testing 

group. We derived beta values from the training sets with a group-level multinomial logistic 

regression and used those to predict the layout of the Yeo-Krienen intrinsic functional communities 

from the group-level testing set. Predictions were accurate and stable (Cohen’s kappa mean+SD 

left/right: 0.77+0.01/0.81+0.01). Beta values derived from HCP-Discovery gradients also could 

accurately predict macroscale functional communities from the HCP-Replication (Cohen’s kappa 

left/right: 0.77/ 0.82) as well as the MICs (Cohen’s kappa left/right: 0.69/0.70).  

To further assess the capacity of gradient features to predict regional functional connectivity, we 

leveraged decision tree regression with Euclidean distances between vertices in gradient space as 

predictors and edgewise functional connectivity within the temporal lobe as outcome variable. In 

a 5-fold cross validation trained on group-level folds of HCP-Discovery, gradient space distances 

were predictive of functional connectivity of held-out subjects at the single subject level (Fig. 3B; 

mean+SD left/right: r=0.50+0.04/0.46+0.05). A decision tree regression trained on the entire 

HCP-Discovery dataset accurately predicted single subject functional connectivity in both HCP-

Replication (Fig. 3B; left/right r=0.49+0.05/0.43+0.05) and MICs (left/right r=0.50+0.03/ 

r=0.46+0.04). In all datasets prediction quality was excellent in the lateral temporal lobe but less 

favorable in the medial temporal lobe (Fig. 3C), possibly due to lower signal-to-noise ratio in this 

region.  
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Fig. 3 Functional markers of the structural gradients. (A) 
Based on a canonical network parcellation (Yeo et al., 
2011), we attempted to predict the functional networks. 
Performance was high with a Cohen’s kappa of 
0.77+0.01(left) and 0.81+0.01 (right). Predicted networks 
shown here are the results of one of the five folds. (B) 
Histograms of the prediction accuracy per subject, as 
measured by the Pearson correlation between empirical 
and predicted data, of a decision tree regression estimating 
functional connectivity from structural gradients. HCP-
Discovery predictions were trained with a 5-fold cross-
validation, the predictions of the other datasets were 
trained on HCP-Discovery (C) Pearson’s correlation 
between the predicted and empirical functional 
connectivity for every vertex across subjects. Predictions 
were especially accurate in lateral temporal regions, and 
less robust in the medial temporal lobe. 

Evolutionary associations  
Last, we assessed whether eccentricity also 

relates to measures of phylogenetic changes in 

the temporal lobe (Fig. 4). We found associations 

to previously established indices of functional 

homology (left/right: r=0.50/0.51, pmoran<0.04), a 

measure for similarity of functional organization 

between human and macaque, and areal 

expansion (left/right: r=-0.52/-0.31, pmoran<0.04), 

a measure for the surface areas increase of human 

cortex relative to homologue regions in 

macaques (Xu et al., 2020). These results 

replicated both in HCP-Replication (functional 

homology; left/right: r=0.50/0.50, pmoran<0.04; 

areal expansion; left/right: r=-0.52/-0.31, pmoran<0.04) as well as in MICs (functional homology; 

left/right: r=0.48/0.54, pmoran<0.04; areal expansion; left/right: r=-0.54/-0.40, pmoran<0.03).  
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Fig 4. Relationship between the structural gradients and phylogenetic markers. Both functional homology and areal 

expansion are significantly associated with eccentricity of the first three structural gradients.  

DISCUSSION 

The temporal lobe hosts a diverse array of functional processes implicated in sensory processing, 

memory, and language abilities, and is among the macroscopic structures most frequently 

compromised in neurological and neuropsychiatric disorders, including Alzheimer’s disease 

(Braak & Braak, 1991) and drug-resistant epilepsy (Dam, 1982). To provide a comprehensive 

account of its substructural organization in humans, our study harnessed manifold learning 

operating on high resolution diffusion MRI tractography data of the temporal lobe to identify 

separate, yet partially overlapping axes of its structural connectome embedding. These axes were 

found to relate to MRI-based measures of intracortical myelination as well as post-mortem 

histology, supporting potential microcircuit underpinnings of these spatial trends in structural 

connectivity variations. Supervised learning experiments indicated that structural gradients can 

serve as sensitive, low-dimensional predictors of the functional organization of the temporal lobe. 

Notably, structural connectivity gradients also related to established markers of functional 

reconfiguration and areal expansion between humans and non-human primates, supporting the 

potential of connectome gradients in shaping evolutionary changes. Results were reproducible 

across multiple datasets, indicating generalizability. Collectively, our findings provide robust 

evidence for an association between tissue microstructure, structural connectivity, and functional 

motifs of the temporal lobe, which suggests their potential to serve as major organizational axis 

bridging between its microcircuit and macroscale layout.    

Diffusion MRI is the only non-invasive method to approximate the course of white matter 

connections in humans. Based on multi-shell diffusion acquisitions of the HCP and MICs datasets, 
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we applied constrained spherical deconvolution (Jeurissen et al., 2014) and spherical-

deconvolution informed filtering of tractograms (R. E. Smith et al., 2015a) to estimate streamline 

weights interconnecting cortical areas. These techniques provide biologically meaningful weights 

of the modelled streamlines (R. E. Smith et al., 2015b), and reduce fiber tracking biases (Yeh et 

al., 2016) as well as partial volume effects (Jeurissen et al., 2014). By propagating each streamline 

to cortical surface points, rather than to macroscopic parcels, we were able to resolve fine grained 

changes in temporal lobe connectivity and thus account for heterogeneity of subregional 

connectivity. We enhanced this vertex-wise approach with manifold learning techniques that allow 

for the low-dimensional representation of spatial variations in temporal lobe structural 

connectivity. Already established by previous neuroimaging studies (Bajada et al., 2019; Blazquez 

Freches et al., 2020; Haak et al., 2018; Huntenburg et al., 2017; Margulies et al., 2016; Paquola et 

al., 2019), these techniques are able to model both gradual and overlapping modes of connectivity 

without reliance on a priori boundaries (Haak & Beckmann, 2020). Recapitulating prior work, we 

found that the temporal lobe is best described by three gradients (Bajada et al., 2019; Blazquez 

Freches et al., 2020), spanning medio-lateral (G1), anterior-posterior (G2) and anterolateral-

posteromedial (G3) axes. Although there have been several reports of asymmetry of the white 

matter tracts of the temporal lobe, such as greater fiber density and tract volume in the left arcuate 

fasciculus than the right  [for review see (Ocklenburg et al., 2016)], the symmetry of the structural 

gradients indicates gross similarity between large scale network embedding of left and right 

temporal lobes. We then tested for associations with MRI-based measures of curvature, cortical 

thickness, and intracortical microstructure. In line with our hypotheses and prior work suggesting 

a close link between internal cortical architecture and structural connectivity (Beul et al., 2017; 

García-Cabezas et al., 2019; Scannell et al., 1995; Young, 1992), we found strong associations 

between connectome gradients and MRI proxies of cortical myelin. The relationship with cortical 

thickness and curvature was weaker, suggesting that our cortical connectivity gradients closely 

reflect intracortical factors and only to a lesser extent macroscopic morphological variations and/or 

potential biases from sulco-gyral folding (Schilling et al., 2018). A closer link to microstructure 

was also suggested by harnessing BigBrain derived cytoarchitecture gradients (Amunts et al., 

2013; Paquola et al., 2019). Collectively, these findings highlight the close relationship between 

microstructure and structural connectivity, supporting the extension of the structural model of 
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connectivity to humans in the temporal lobes (Beul et al., 2017; García-Cabezas et al., 2019; 

Scannell et al., 1995; Young, 1992). 

Many studies found that structural connectivity may predict functional connectivity by assuming 

that the strength of functional interactions depends, in part, on the density and efficacy of both 

direct and indirect structural connections (Deco et al., 2017; Honey et al., 2009; Wang et al., 2019). 

We hypothesized that the structural gradients, despite their low dimensionality, would still 

accurately describe functional interactions. Supervised learning approaches with cross-validation 

could show that gradient-informed models predicted the spatial layout of previously described 

intrinsic functional communities in the human brain (Yeo et al., 2011). At a more local scale, 

gradients could also predict patterns of inter-regional functional connectivity, even when trained 

and tested on datasets acquired from different scanners. Overall, our results support that low-

dimensional eigenmode representations of structural connectivity may potentially underpin 

intrinsic functional architecture of the human connectome. Such a conclusion is in line with several 

prior studies in healthy individuals showing that whole-brain structural connectivity gradients 

shape dynamic signaling at rest (Park et al., 2021) as well as dynamic brain reconfigurations during 

tasks (C. Murphy et al., 2019).  In the study of brain diseases associated with macroscale 

dysfunction, connectivity gradients have furthermore been used to contextualize changes in brain 

network architecture (Larivière et al., 2020; Li et al., 2020), supporting their utility to serve as 

coordinate systems of macroscale functional interactions in healthy and diseased brains.  

Cross-species comparisons provide a potential window into human uniqueness by studying brain 

reconfigurations between humans and non-human primates (Buckner & Krienen, 2013; Krubitzer, 

2007). Whilst a remarkable conservation of macroscale organizational principles between 

macaques and humans is evident (Glasser et al., 2014; Margulies et al., 2016; Valk et al., 2020), 

association cortices have specifically undergone a striking expansion in relative surface and 

potential participation in distributed functional networks (Buckner & Krienen, 2013; Hill et al., 

2010; Mars et al., 2017; Mueller et al., 2013; Patel et al., 2015). Here, we showed that structural 

connectivity gradients spatially align with the pattern of evolutionarily diverging brain areas and 

areal expansion, an index for relative areal size differences across species (Xu et al., 2020). Areas 

near the center of the structural manifold were less functionally homologous and have undergone 

more expansion relative to macaques. This may indicate that evolutionary changes have 

preferentially occurred along particular fiber tracts including, for example, the arcuate fasciculus 
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which has undergone critical anatomical modifications between non-human and human primates 

(Ardesch et al., 2019; Eichert et al., 2019, 2020; Mars, Eichert, et al., 2018; Mars et al., 2013; 

Rilling et al., 2008). When taken together with the cognitive terms from the Neurosynth meta-

analysis, these results indicate that phylogenetic differences in the temporal lobe are primarily 

situated along those tracts associated with self-generated cognitive processes.  

Theoretical accounts, empirical findings, and gradual changes in research culture have increased 

the scientific value of replications in neuroscience (Ioannidis, 2005; Moonesinghe et al., 2007; 

Open Science Collaboration, 2015). Here, we replicated our findings in two datasets: 1) a set of 

unrelated young adults derived from the same dataset as the discovery set (HCP-Replication) as 

well as 2) a separate dataset acquired at the Montreal Neurological Institute (MICs). Even after 

stringent corrections for both spatial autocorrelation (Wagner & Dray, 2015) and multiple 

comparisons (Benjamini & Hochberg, 1995), most findings held across all datasets indicating good 

reproducibility. We have released all utilized feature data and associated analysis scripts 

(https://github.com/MICA-MNI/micaopen), for independent verification of our results and follow-

up analysis. We hope that these data and associated findings continue to pave the way into studying 

the important relationship between the microstructure, connectivity, and evolutionary 

development of the temporal lobe. 

METHODS 

Participants 

We selected 150 unrelated participants from the Human Connectome Project dataset for whom all 

resting-state, diffusion weighted imaging and structural scans were available and completed in full 

(Van Essen et al., 2013). These participants were split into HCP-Discovery (n=75; age=29.2+3.6, 

female=47) and HCP-Replication (n=75; age=28.9+4.0, female=44) datasets. For the MICs 

dataset, all data were collected in a single testing session per participant between April 2018 and 

March 2020. Participants (n=54; 30.5+7.3, female=20) all provided informed consent. Participants 

reported no history of neurological illness. The study was approved by the Ethics Committee of 

the Montreal Neurological Institute and Hospital.  
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Image Acquisition 
a) HCP. Images were acquired on the customized Siemens 3T “Connectome Skyra”. Two T1w 

images were acquired with a 3D MPRAGE sequence with the following parameters: TR=2400 ms, 

TE=2.14 ms, flip angle=8 deg, FOV=224x224mm2, voxel size=0.7mm isotropic. Two T2w images 

were acquired with identical parameters except for the following: TR=3200ms, TE=565ms, 

variable flip angle. Four resting-state fMRI images were acquired with a gradient-echo echo-planar 

imaging (EPI) sequence (TR=720ms, TE=33.1ms, flip angle=52 deg, FOV=208x180 mm, 2 mm 

isotropic voxels, and 1200 volumes per run). Diffusion images were acquired with a spin-echo EPI 

sequence (TR=5520 ms, TE=89.5 ms, flip angle=78 deg, FOV=210x180 mm, 1.25mm isotropic 

voxels, b-values 1000, 2000, and 3000 s/mm2, 90 diffusion weighting directions). Six diffusion 

image scans were acquired each lasting 9 minutes and 50 seconds. Half the runs were acquired 

with left-to-right phase encoding and the other half with right-to-left. 

b) MICs. Images were acquired on a 3T Siemens Magnetom Prisma-Fit equipped with a 64-

channel head coil. Two T1w scans were acquired with a 3D-MPRAGE sequence (0.8mm isotropic 

voxels, matrix=320×320, 224 sagittal slices, TR=2300ms, TE=3.14ms, TI=900ms, flip angle=9°, 

iPAT=2). Quantitative T1 (qT1) relaxometry data was acquired using a 3D-MP2RAGE sequence 

(0.8mm isotropic voxels, 240 sagittal slices, TR=5000ms, TE=2.9ms, TI 1=940ms, T1 2=2830ms, 

flip angle 1=4°, flip angle 2=5°, iPAT=3, bandwidth=270 Hz/px, echo spacing=7.2ms, partial 

Fourier=6/8). We combined two inversion images for qT1 mapping to minimise sensitivity to B1 

inhomogeneities and optimize intra- and inter-subject reliability (Haast et al., 2016; Marques et 

al., 2010). DWI images were obtain with spin-echo EPI, including three shells with b-values 300, 

700, and 2000s/mm2 and 10, 40, and 90 diffusion weighting directions per shell, respectively 

(TR=3500ms, TE=64.40ms, 1.6mm isotropic voxels, flip angle=90°, refocusing flip angle=180°, 

FOV=224×224 mm2, slice thickness=1.6mm, multiband factor=3, echo spacing=0.76ms, number 

of b0 images=3). One 7 min rs-fMRI scan was acquired using multiband accelerated 2D-BOLD 

EPI (TR=600ms, TE=30ms, 3mm isotropic voxels, flip angle=52°, FOV=240×240mm2, slice 

thickness=3mm, multiband factor=6, echo spacing=0.54ms). Participants were instructed to keep 

their eyes open, look at a fixation cross, and not fall asleep. Two spin-echo images with reverse 

phase encoding were acquired for distortion correction of the rsfMRI scans (phase 

encoding=AP/PA, 3mm isotropic voxels, FOV=240×240mm2, slice thickness=3mm, 

TR=4029 ms, TE=48ms, flip angle=90°, echo spacing=0.54 ms, bandwidth=2084Hz/Px).  
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Structural Preprocessing 
a) HCP. Structural images underwent standard HCP preprocessing (Glasser et al., 2013). In short, 

T1w images were corrected for gradient nonlinearity. Repeated scans were co-registered and 

averaged. After brain extraction and readout distortion correction, T1w and T2w images were co-

registered using rigid body transformations. Non-uniformity correction based on the T1w and T2w 

contrasts was applied. Preprocessed images were nonlinearly registered to MNI152 space. Cortical 

surfaces were extracted using FreeSurfer 5.3.0-HCP (Dale et al., 1999; Fischl, Sereno, & Dale, 

1999; Fischl, Sereno, Tootell, et al., 1999), with minor modifications to incorporate information 

from both T1w and T2w scans. Cortical surfaces were aligned using MSMAll to the Conte69 

template (Robinson et al., 2014).  

b) MICs. Data were preprocessed with a Freesurfer 6.0 recon_all pipeline. Both native T1w scans 

were provided as input and combined through this pipeline. Manual corrections of the pial and 

white matter surfaces were performed for all subjects. Curvature and cortical thickness estimates 

were generated by the recon_all pipeline. To acquire tissue segmentations for anatomically 

constrained tractography, the same images underwent a separate pipeline which included linear 

alignment of both T1w scans, non-uniformity correction, and intensity normalization. Corrected 

images were segmented into tissue types using MRtrix3’s 5ttgen (R. E. Smith et al., 2012). qT1 

images were linearly aligned to the cortical surface using boundary based registration (Greve & 

Fischl, 2009). qT1 values were interpolated to the surface by taking the average of seven trilinear 

interpolations evenly interspersed between the 20th and 80th percentile distances from the pial to 

white matter surfaces using Freesurfer’s mri_vol2surf command.  

Resting-State Preprocessing 

a) HCP. Data underwent standard HCP preprocessing (Glasser et al., 2013). In short, the timeseries 

were corrected for gradient non-linearity and head-motion. The R-L/L-R scan pairs we used to 

correct for geometric distortions. Resulting images were warped to the structural image using rigid 

body and boundary-based registrations. This warp was concatenated with the warp from T1w 

image space to MNI152 space to transform functional images to MNI152 space. Further 

processing removed the bias field, removed the skull, and normalized whole brain intensity. A 

high pass filter (>2000s FWHM) was used to correct for scanner drift, and additional noise was 

removed using ICA-FIX (Salimi-Khorshidi et al., 2014).  
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b) MICs. The first five volumes were discarded to allow for magnetic field saturation. Images were 

then reoriented, and motion and distortion corrected. Nuisance variable signal was removed using 

an ICA-FIX classifier trained on this dataset and subsequent spike regression (Salimi-Khorshidi et 

al., 2014). Further tissue-specific signal regression was not performed (K. Murphy & Fox, 2017; 

Vos de Wael et al., 2017). A warp to the Freesurfer T1w image was computed by averaging 

volumetric timeseries across the time dimension and registering this image using boundary-based 

registration. Timeseries were sampled to the surface by taking the average of seven trilinear 

interpolations evenly interspersed between the 20th and 80th percentile distances from the pial to 

white matter surfaces.  

Diffusion Preprocessing  

a) HCP. Images underwent standard HCP preprocessing (Glasser et al., 2013). In short, image 

intensity was normalized across scans. The topup and eddy algorithms were used to correct for 

EPI distortions, eddy currents, and motion. A gradient nonlinearity correction was performed, and 

the deviation of the b-values and b-vectors was computed. Mean b0 images were registered to the 

T1w image with boundary-based registration (Greve & Fischl, 2009), and this registration was 

used to transform DWI images to T1w space. The brain was masked based on a Freesurfer 

segmentation.  

b) MICs. Data were preprocessed and denoised with MRTrix3’s dwipreproc, which is based on 

FSL’s eddy correction and topup, and dwidenoise (Andersson et al., 2003; S. M. Smith et al., 2004; 

Tournier et al., 2012). Freesurfer segmentations were registered to the subject’s DWI space using 

boundary-based registration (Greve & Fischl, 2009).  

High resolution diffusion tractography and gradient mapping  

Tractography was performed identically for the HCP and MICs dataset with MrTrix3 (Tournier et 

al., 2012). Response functions for each tissue type were estimated using the dhollander algorithm 

(Dhollander et al., 2016). Fiber orientation distributions were modelled with multi-shell multi-

tissue spherical deconvolution (Jeurissen et al., 2014) and subsequently underwent multi-tissue 

informed log-domain intensity normalization. The structural T1w image was segmented into five 

tissue types (R. E. Smith et al., 2012). Anatomically constrained tractography was performed 

systematically for each temporal lobe voxel in the gray-white matter interface by generating 

streamlines using second order integration over fiber orientation distributions (Tournier et al., 
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2010). Streamlines were seeded dynamically from the white matter using the SIFT model (R. E. 

Smith et al., 2015a). Streamline generation was aborted when 40 million streamlines had been 

accepted. Each streamline was assigned a weight by optimizing a cross-section multiplier derived 

with the SIFT2 algorithm (R. E. Smith et al., 2015a). Streamline termini were assigned to their 

nearest vertex on the surface of the gray-white matter interface. Streamlines of which either 

terminus was further than 3mm from its nearest vertex were discarded. Connectomes were 

smoothed on the surface using a 20mm full width at half maximum Gaussian smoothing kernel. 

To describe the largest axes of variance in connectivity we used diffusion map embedding 

(Coifman & Lafon, 2006), a non-linear dimensionality reduction techniques technique used 

previously to identify neocortical, hippocampal, and cerebellar functional gradients (Guell et al., 

2018; Margulies et al., 2016; Vos de Wael et al., 2018). Gradients were computed and aligned 

using the BrainSpace toolbox (https://github.com/MICA-MNI/BrainSpace) (Vos de Wael et al., 

2020), with the following settings: sparsity thresholding at the 75th percentile, a cosine affinity 

kernel, diffusion map embedding dimensionality reduction with α=0.5, and automated diffusion 

time estimation. Gradient computations were performed separately on left and right temporal 

lobes. Interhemispheric connections were not included in the gradient computation. Left and right 

gradients were aligned with Procrustes alignment (Langs et al., 2015) as implemented in 

BrainSpace. Eccentricity was computed from the aligned gradients by computing the Euclidean 

distance to the origin of the manifold space spanned by the first three gradients. 

Statistical testing 
Testing for linear associations between cortical markers and gradients likely leads to biased test 

statistics due to the spatial autocorrelation of MRI data violating the independence of observations 

assumption (Alexander-Bloch et al., 2018). Instead, for each statistical test we generated random 

datasets with comparable spatial properties. Specifically, we generated random datasets with 

equivalent spatial autocorrelation as the response variable using Moran spectral randomization 

with the singleton procedure (Wagner & Dray, 2015) as implemented in BrainSpace (Vos de Wael 

et al., 2020). All linear models were fitted for the original data as well as 1000 corresponding 

simulated datasets. Presented p-values were derived from the percentile rank of the true F-statistic 

in the distribution of F-statistics in the simulated data. Multiple comparison were corrected for 

false discovery rate with the Benjamini-Hochberg procedure (Benjamini & Hochberg, 1995).  
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Tractography analyses 
Connectivity distance, a measure that characterizes the relationship between physical distance and 

connectivity (Larivière et al., 2020), was computed by thresholding the structural connectivity 

matrix at the 80th percentile, multiplying each connection by the geodesic distance between their 

nodes, and averaging all connections for each node. Degree centrality was computed as the 

column-wise sum of the connectivity matrix. Statistical significance of the association between 

both degree centrality as well as connectivity distance with the gradients was assessed with Moran 

spectral randomization (Wagner & Dray, 2015).  

BigBrain Gradient 

To assess histological properties of the brain we used BigBrain, an ultrahigh resolution atlas of a 

single post-mortem brain stained for cell bodies (Amunts et al., 2013). Gradients of microstructural 

profile covariance were computed as described previously (Paquola et al., 2019). In short, 18 

equivolumetric surfaces were constructed between the outer and inner cortical surfaces. To reduce 

partial volume effects, the inner cortical surface was removed. A linear model implemented in 

SurfStat (Worsley et al., 2009) was used to correct for anterior-to-posterior increases in intensity 

values (Amunts et al., 2013). Surface vertices were grouped into 1012 parcels which respected the 

boundaries of the Desikan-Killiany atlas (Desikan et al., 2006; Hong et al., 2017). A 

microstructural profile covariance matrix was constructed by computing the Pearson correlation 

of every pair of vectors whilst controlling for the average whole-cortex intensity profile. Gradients 

were constructed from this matrix using BrainSpace default parameters (90% sparsity, normalized 

angle kernel, diffusion map embedding, α=0.5, automated diffusion time estimation). To compare 

structural connectivity gradients to BigBrain gradients, the structural gradients were parcellated 

using the same parcellation scheme. Moran spectral randomization (Wagner & Dray, 2015) was 

used to test for associations between BigBrain gradient 1 and the structural gradients.  

Functional Predictions 

Structural gradients were used to predict canonical resting-state networks published previously  

[(Yeo et al., 2011); https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011]. 

HCP-Discovery was split into five folds of 15 subjects each; for each fold we performed a 

multinomial logistic regression with the first three gradients as predictor variables and networks 

as outcome variables. Beta values derived from the training set were used to predict probabilities 
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of each network in the testing set. Each vertex was assigned to the network with the highest 

probability. Additionally, we derived beta values from the entire HCP-Discovery dataset and used 

these to predict functional networks from HCP-Replication and MICs gradients.  

To further assess the relationship between structural gradients and edgewise functional 

connectivity, we used a decision tree with binary splits for regression. Similar to the network 

prediction, training and testing was performed both with 5-fold cross validation as well as training 

on HCP-Discovery and testing on the other datasets. Model training was performed with the 

fitrtree function as implemented in MATLAB R2019b with a minimum leaf size of 20, a maximum 

number of splits of 20, and otherwise default parameters.   

Evolutionary Analyses 

We tested for associations between our gradients and two markers of evolutionary change between 

humans and macaques: functional homology and areal expansion. Both measures were presented 

in a prior paper (Xu et al., 2020), hence we only provide a short overview here. Functional 

homology is a measure for the functional similarity of a human brain area with its macaque 

counterpart. It is computed based on the maximum cosine similarity of functional gradient profiles 

within a 12mm search light around the corresponding human/macaque vertices. An areal 

expansion map shows the relative expansion of human cortex compared to macaques. It is 

computed by dividing the local area of human cortex by the corresponding area of macaque cortex 

where correspondence was defined based on functional homology. We tested for associations 

between these two markers and the structural gradients using Moran spectral randomization 

(Wagner & Dray, 2015). 
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