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ABSTRACT

The temporal lobe is implicated in higher cognitive processes and is one of the regions that
underwent substantial reorganization during primate evolution. Its functions are instantiated, in
part, by its complex layout of structural connections. This study identified low-dimensional
representations of structural connectivity variations in human temporal cortex and explored their
microstructural underpinnings and associations to macroscale function. We identified three
eigenmodes which described gradients in structural connectivity. These gradients reflected inter-
regional variations in cortical microstructure derived from quantitative MRI and post-mortem
histology. Gradient-informed models accurately predicted macroscale measures of temporal lobe
function. Gradients aligned closely with established measures of functional reconfiguration and
areal expansion between macaques and humans, highlighting the important role evolution has
played in shaping temporal lobe function. Our results provide robust evidence for three axes of
structural connectivity in human temporal cortex with consistent microstructural underpinnings

and contributions to large-scale brain network function.
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INTRODUCTION

The human temporal lobe is involved in multiple cognitive, affective, and sensory processes,
including memory (Vaz et al., 2019), emotional reactivity (Phelps, 2004), semantic cognition
(Ralph et al., 2017), as well as auditory processing (Bonilha et al., 2017). Notably, temporal lobe
subregions have been suggested to serve as origins of major organizational and evolutionary axes
of the human brain (Goulas et al., 2019; Sanides, 1969), and host structures, such as the middle
and superior temporal gyri, that have undergone accelerated functional reconfigurations and areal
expansion in primate evolution (Eichert et al., 2020; Mars, Sotiropoulos, et al., 2018; Xu et al.,
2020). Collectively, these different aspects suggest that the temporal lobe is a hub implicated in
important features of human cognition, and that its study may provide key insights into cortical

organization and its phylogenetic basis.

In an attempt to understand the role of the temporal lobe in whole-brain networks, prior studies in
non-human animals and human participants have started to delineate the complex connectivity
profiles of the temporal lobe. Tract tracing studies in non-human primates have charted short range
connections as well as long range tracts of the temporal lobe (Webster et al., 1991), showing
distributed connectivity patterns to a diverse territory of cytoarchitectural areas (Beul et al., 2017;
Mohedano-Moriano et al., 2015; Moran et al., 1987; Sakata et al., 2019). These findings were
complemented by diffusion MRI tractography studies in both non-human primates (Bryant et al.,
2020) and humans (Saur et al., 2008), where this non-invasive technique can approximate the
course of white matter fiber tracts both in vivo and ex vivo. Diffusion MRI studies have been
performed for all major long range fiber bundles (Howells et al., 2018; Roumazeilles et al., 2020;
Smiley & Falchier, 2009), for short range fiber systems (Attar et al., 2020) as well as the superficial
white matter (Bodin et al., 2020; Hong, Hyung, et al., 2019; Liu et al., 2016; Oishi et al., 2008).

Beyond the mapping of specific fiber bundles, recent years have seen a shift towards the
application of unsupervised approaches that identify and visualize low dimensional eigenmodes in
connectivity changes across the cortical mantle — also referred to as connectivity gradients
(Huntenburg et al., 2018; Margulies et al., 2016). A gradient perspective describes transitions of
brain connectivity in a continuous reference frame, which has been proposed to capture
subregional heterogeneity as well as functional multiplicity better than techniques that parcellate
cortex into discrete subregions and average potentially variable properties within parcels

(Bijsterbosch et al., 2020; Haak & Beckmann, 2020; Mars, Sotiropoulos, et al., 2018). Capitalizing
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on resting-state functional MRI acquisitions, gradient mapping techniques have previously
identified principal axes of neural organization in healthy adults and in non-human primates
(Buckner & Margulies, 2019; Guell et al., 2018; Haak et al., 2018; Margulies et al., 2016; Vos de
Wael et al., 2018; Xu et al., 2020), and these techniques are increasingly used to study lifespan
processes related to aging (Lowe et al., 2019; Bethlehem et al., 2020) and typical as well as atypical
childhood development (Ball, Seidlitz, Beare, et al., 2020; Ball, Seidlitz, O’Muircheartaigh, et al.,
2020; Hong, Vos de Wael, et al., 2019; Lariviére et al., 2019; Park, Hong, et al., 2020). In the
temporal lobe, these techniques have previously been applied to structural connectivity
information, with the goal of subsequent parcellation (Bajada et al., 2017), to describe the ventral
and anterior temporal lobe as a structural connectivity convergence zone (Bajada et al., 2019), and
to relate structural connectivity gradients to meta-analytic task activations (Blazquez Freches et

al., 2020; Yarkoni et al., 2011).
In the current work, we expanded on these previous findings in three ways:

(1) We explored regional associations between structural connectivity gradients in the
temporal lobe and measures of intracortical microstructure to assess whether large scale
connectivity axes are reflected in the local microcircuits. Prior findings in non-human
animals suggest that an area’s cytoarchitectonic properties may be predictive of structural
connectivity, but precise associations between both remain underspecified in humans
(Barbas, 2015). To fill this gap, our project leveraged both myelin sensitive MRI contrasts
as well as post-mortem cytoarchitecture analysis based on BigBrain (Amunts et al., 2013).

(i)  Structural connectivity is generally assumed to constrain functional connectivity (Deco et
al., 2017; Honey et al., 2009; Sudrez et al., 2020; Wang et al., 2019). Here we assessed
whether structural connectome gradients within the temporal lobe, as a low dimensional
representation of structural connectivity, can predict intrinsic functional organization
derived from resting-state fMRI acquisitions, both with respect to macroscale functional
motifs as well as node-wise estimates of functional connectivity.

(i)  Finally, to determine phylogenetic principles of structural connectome organization, we
examined whether structural connectivity gradients reflect principal dimensions of primate
evolution. To this end, we studied the relationship of gradients with areal expansion and

functional reconfigurations from non-human primates to humans (Xu et al., 2020).


https://doi.org/10.1101/2020.11.26.400382
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.26.400382; this version posted November 27, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Our approach capitalized on multimodal image processing and advanced diffusion tractography
analyses. Specifically, we leveraged a high-resolution representation of temporal lobe structural
connectivity to resolve subregional heterogeneity in connectivity and multiplicity of potentially
overlapping gradients. Our findings were replicated both in a hold-out dataset from the same site,
and in a dataset acquired with a different scanner, imaging parameters, and preprocessing pipeline.
We have released all codes to replicate the main figures on https://github.com/MICA-
MNI/micaopen

RESULTS

Our main analyses were based on 75 unrelated participants of the Human Connectome Project
(HCP) S900 release (Van Essen et al., 2013), a large-scale open-access neuroimaging dataset
comprised of healthy young adults (HCP-Discovery; n=75; age=29.2+3.6, female=47). We also
replicated all findings in a subset of unrelated participants from HCP, (HCP-Replication; n=75;
age=28.9+4.0, female=44). For each participant, we mapped structural connectivity of each vertex
in the gray-white matter interface of the temporal lobe to the entire cortex using high resolution
tractography (see Methods, for details). To identify structural connectivity gradients, we used non-
linear dimensionality reduction techniques that identify spatial eigenvectors explaining inter-
regional variations in structural connectivity (Coifman & Lafon, 2006). To assess the
reproducibility of our findings, we repeated our analyses on the Microstructure Informed
Connectomics (MICs) dataset, a separate dataset of healthy controls who underwent 3T imaging

comparable to the HCP protocol in our center (54 controls, 30.5+7.3 years old, 20 females).

Multiple gradients of structural connectivity in the temporal lobe

In HCP-Discovery, the first three components of temporal cortical gradients collectively explained
67% of variance in temporal lobe structural (Fig. 1Error! Reference source not found.A). Findings

were similar in the left and right hemispheres. We thus present only left hemisphere results in the
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Supplementary Fig. 1). Gradient solutions were consistent across the different datasets studied,
with absolute correlations between G1-3 of HCP-Discovery with G1-3 of HCP-Replication and
MICs exceeding r>0.96.

The first structural connectivity gradient (G1) ran between the superior temporal gyrus and the
medial temporal lobe (Fig. 1Error! Reference source not found.A), the second (G2) along the
posterior-anterior axis, and the third (G3) from anterolateral to posteromedial. To determine the
connectivity patterns represented by each gradient, we mapped the connectivity of the top/bottom
10% of vertices of each gradient and assessed changes in the spatial distribution of connectivity

profiles at the anchors of each gradient. G1 connectivity changes differentiated between visual and
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parietal connectivity, G2 involved changes from temporal pole and insula to visual/parietal cortex
and lateral frontal cortex, and G3 described changes from visual/parietal to lateral temporal and

frontal (Supplementary Fig. 2).

A. Constructing structural connectivity gradients
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Fig. 1 Diffusion embedding of structural connectivity. (A) Streamlines were generated throughout the entire brain and
systematically mapped to the cortical surface using nearest neighbor interpolation. We computed the affinity matrix
of the connectivity matrix using a cosine similarity kernel and constructed gradients of structural connectivity of the
temporal lobe to ipsilateral hemisphere with diffusion embedding. The first three gradients of diffusion embedding,
sorted by variance explained of each vector, were selected for further analyses. Eccentricity in this manifold space
was high in posterior medial temporal lobe and the superior temporal gyrus. (B) The relationship of eccentricity with

connectivity distance (left) and degree centrality (right). The star denotes a significant correlation.
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In order to provide a scalar metric in multivariate gradient space and quantify connectome-level
differentiation across the cortical mantle, we calculated an eccentricity measure that captures the
distance from the origin in gradient space (Park, Bethlehem, et al., 2020). Low eccentricities were
situated in the middle temporal gyrus, while high eccentricity was present in posterior superior
temporal and medial temporal regions. To determine the connectivity patterns underlying gradient
eccentricity, we performed spatial correlation analyses between eccentricity and topological
measures of degree centrality and long-distance connectivity (Fig. 1B). Findings were corrected
for spatial autocorrelation with Moran Spectral Randomization (Wagner & Dray, 2015)
implemented in BrainSpace (Vos de Wael et al., 2020), and adjusted for multiple comparisons
using a false discovery rate procedure (Benjamini & Hochberg, 1995). Gradient eccentricity
correlated with connectivity distance in both hemispheres (left/right r=-0.76/-0.70, pmoran<0.002),
but not with degree centrality (left/right r=0.46/0.28, pmoran<0.22). Results replicated in all datasets
i.e., gradients were bilaterally associated with connectivity distance (left/right HCP-Replication:
r=-0.75/0.70, Pmoran<0.002; MICs: 1=-0.78/0.71, Pmoran<0.01), but not degree centrality (HCP-
Replication: 1=0.44/0.27, pmoran<0.23, MICs: 1=0.40/0.39, pmoran<0.19).

To contextualize the gradients in their cognitive underpinnings, we decoded the structural
gradients and eccentricity map using Neurosynth, an ad hoc meta-analysis of previous fMRI
studies (Yarkoni et al., 2011) (Supplementary Fig. 3). Both G1, G3, and eccentricity represent
axes of sensory functions to self-generated cognitive processes (G1: auditory vs
memory/navigation terms, G3: cognitive vs auditory terms, eccentricity: cognitive vs perception
terms). G2 differentiated stress/affect related terms from visual/word related terms (e.g., “visual”

2 ¢

and “word form” vs “stress”, “pain” and “regulation”).

Microstructural underpinnings

Prior research in non-human animals has shown inter-regional connectivity is predicted by
cytoarchitectural similarity (Barbas, 2015), and recent functional MRI work showed
correspondence between functional gradients and proxies for intracortical myelin (Huntenburg et
al., 2017; Lariviere et al., 2019; Paquola et al., 2019; Vos de Wael et al., 2018). Here, we examined
the relationship between structural connectivity gradients and in-vivo measures of cortical

microstructure. Specifically, we tested for associations of gradient eccentricity and intracortical
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T1w/T2w intensity, a proxy for myelin (Glasser & Essen, 2011), and observed a strong association
(Fig. 2A; left/right =0.69/0.78, Ppmoran<0.012). Associations to cortical thickness were only
moderate (left/right r=-0.43/-0.44, pmoran<0.024) and those to curvature did not reach statistical
significance (left/right 1=-0.07/-0.11,It Pmoran<0.65). Similar findings were seen in HCP-
Replication (left/right T1w/T2w r=0.68/0.78, Pmon<0.012; cortical thickness r=-0.45/-
0.44, Puorn<0.020; curvature r=-0.07/0.12, puon<0.637) and in the MICs dataset, which used
quantitative T1 relaxometry as a myelin proxy (left/right qT1 r=-0.36/-0.66 Puon<<0.062; cortical
thickness r=-0.33/-0.31, Puoran<0.08; curvature r=0.01/0.03, Puon<0.91).

A. Structural gradients and in-vivo cortical architecture
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Fig. 2 Microstructural basis of the structural gradients. (A) We tested for linear relations between eccentricity and
curvature, cortical thickness, as well as T1w/T2w intensity. Stars denote significant correlations. (B) We tested for an
association between microstructural profile covariance derived previously from the BigBrain atlas (Amunts et al.,
2013; Paquola et al., 2019), and eccentricity. Eccentricity was projected to the same parcellation scheme as

microstructural profile covariance by taking the mean within each parcel.

Next, we evaluated the association between gradients and cortical cytoarchitecture (Error!
Reference source not found.B), capitalizing on the BigBrain dataset, an ultra-high resolution 3D
histological reconstruction of a post-mortem human brain (Amunts et al., 2013). We adopted a
previously established approach to identify cytoarchitectural gradients (Paquola et al., 2019) and

compared the principal cytoarchitectural gradient, which runs from primary sensory to limbic
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areas, to our in vivo structural connectivity gradients. We found strong associations in both
hemispheres (left/right =-0.65/-0.73, Pmoran<0.002). Again, results were replicated in both HCP-
replication (left/right 1=-0.64/-0.73, Pmoran<0.002) and MICs (left/right 1=-0.60/-0.71,
Pmoran<0.028).

Functional associations

Structural connectivity is ultimately assumed to give rise to functional connectivity (Deco et al.,
2017; Honey et al., 2009; Suarez et al., 2020; Wang et al., 2019). As such, we hypothesized that
axes of structural connectivity would capture the organization of large-scale functional
connectivity. We related the structural connectivity gradients to intrinsic functional community
organization, a predominant motif of macroscale neural function (Fig. A) (Yeo etal., 2011). Using
a 5-fold cross validation, we computed group-level structural gradients for the training and testing
group. We derived beta values from the training sets with a group-level multinomial logistic
regression and used those to predict the layout of the Yeo-Krienen intrinsic functional communities
from the group-level testing set. Predictions were accurate and stable (Cohen’s kappa mean+SD
left/right: 0.77+0.01/0.81+0.01). Beta values derived from HCP-Discovery gradients also could
accurately predict macroscale functional communities from the HCP-Replication (Cohen’s kappa

left/right: 0.77/ 0.82) as well as the MICs (Cohen’s kappa left/right: 0.69/0.70).

To further assess the capacity of gradient features to predict regional functional connectivity, we
leveraged decision tree regression with Euclidean distances between vertices in gradient space as
predictors and edgewise functional connectivity within the temporal lobe as outcome variable. In
a 5-fold cross validation trained on group-level folds of HCP-Discovery, gradient space distances
were predictive of functional connectivity of held-out subjects at the single subject level (Fig. 3B;
mean+SD left/right: r=0.50+0.04/0.46+0.05). A decision tree regression trained on the entire
HCP-Discovery dataset accurately predicted single subject functional connectivity in both HCP-
Replication (Fig. 3B; left/right r=0.49+0.05/0.4340.05) and MICs (left/right r=0.50+0.03/
r=0.46+0.04). In all datasets prediction quality was excellent in the lateral temporal lobe but less
favorable in the medial temporal lobe (Fig. 3C), possibly due to lower signal-to-noise ratio in this

region.

10
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A. Predicting Functional Networks Fig. 3 Functional markers of the structural gradients. (A)
Yoo Networks bredicted Networks Based on a canonical network parcellation (Yeo et al.,
; 2011), we attempted to predict the functional networks.
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Fig 4. Relationship between the structural gradients and phylogenetic markers. Both functional homology and areal

expansion are significantly associated with eccentricity of the first three structural gradients.

DISCUSSION

The temporal lobe hosts a diverse array of functional processes implicated in sensory processing,
memory, and language abilities, and is among the macroscopic structures most frequently
compromised in neurological and neuropsychiatric disorders, including Alzheimer’s disease
(Braak & Braak, 1991) and drug-resistant epilepsy (Dam, 1982). To provide a comprehensive
account of its substructural organization in humans, our study harnessed manifold learning
operating on high resolution diffusion MRI tractography data of the temporal lobe to identify
separate, yet partially overlapping axes of its structural connectome embedding. These axes were
found to relate to MRI-based measures of intracortical myelination as well as post-mortem
histology, supporting potential microcircuit underpinnings of these spatial trends in structural
connectivity variations. Supervised learning experiments indicated that structural gradients can
serve as sensitive, low-dimensional predictors of the functional organization of the temporal lobe.
Notably, structural connectivity gradients also related to established markers of functional
reconfiguration and areal expansion between humans and non-human primates, supporting the
potential of connectome gradients in shaping evolutionary changes. Results were reproducible
across multiple datasets, indicating generalizability. Collectively, our findings provide robust
evidence for an association between tissue microstructure, structural connectivity, and functional
motifs of the temporal lobe, which suggests their potential to serve as major organizational axis

bridging between its microcircuit and macroscale layout.

Diffusion MRI is the only non-invasive method to approximate the course of white matter

connections in humans. Based on multi-shell diffusion acquisitions of the HCP and MICs datasets,
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we applied constrained spherical deconvolution (Jeurissen et al., 2014) and spherical-
deconvolution informed filtering of tractograms (R. E. Smith et al., 2015a) to estimate streamline
weights interconnecting cortical areas. These techniques provide biologically meaningful weights
of the modelled streamlines (R. E. Smith et al., 2015b), and reduce fiber tracking biases (Yeh et
al., 2016) as well as partial volume effects (Jeurissen et al., 2014). By propagating each streamline
to cortical surface points, rather than to macroscopic parcels, we were able to resolve fine grained
changes in temporal lobe connectivity and thus account for heterogeneity of subregional
connectivity. We enhanced this vertex-wise approach with manifold learning techniques that allow
for the low-dimensional representation of spatial variations in temporal lobe structural
connectivity. Already established by previous neuroimaging studies (Bajada et al., 2019; Blazquez
Freches et al., 2020; Haak et al., 2018; Huntenburg et al., 2017; Margulies et al., 2016; Paquola et
al., 2019), these techniques are able to model both gradual and overlapping modes of connectivity
without reliance on a priori boundaries (Haak & Beckmann, 2020). Recapitulating prior work, we
found that the temporal lobe is best described by three gradients (Bajada et al., 2019; Blazquez
Freches et al., 2020), spanning medio-lateral (G1), anterior-posterior (G2) and anterolateral-
posteromedial (G3) axes. Although there have been several reports of asymmetry of the white
matter tracts of the temporal lobe, such as greater fiber density and tract volume in the left arcuate
fasciculus than the right [for review see (Ocklenburg et al., 2016)], the symmetry of the structural
gradients indicates gross similarity between large scale network embedding of left and right
temporal lobes. We then tested for associations with MRI-based measures of curvature, cortical
thickness, and intracortical microstructure. In line with our hypotheses and prior work suggesting
a close link between internal cortical architecture and structural connectivity (Beul et al., 2017;
Garcia-Cabezas et al., 2019; Scannell et al., 1995; Young, 1992), we found strong associations
between connectome gradients and MRI proxies of cortical myelin. The relationship with cortical
thickness and curvature was weaker, suggesting that our cortical connectivity gradients closely
reflect intracortical factors and only to a lesser extent macroscopic morphological variations and/or
potential biases from sulco-gyral folding (Schilling et al., 2018). A closer link to microstructure
was also suggested by harnessing BigBrain derived cytoarchitecture gradients (Amunts et al.,
2013; Paquola et al., 2019). Collectively, these findings highlight the close relationship between

microstructure and structural connectivity, supporting the extension of the structural model of
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connectivity to humans in the temporal lobes (Beul et al., 2017; Garcia-Cabezas et al., 2019;

Scannell et al., 1995; Young, 1992).

Many studies found that structural connectivity may predict functional connectivity by assuming
that the strength of functional interactions depends, in part, on the density and efficacy of both
direct and indirect structural connections (Deco et al., 2017; Honey et al., 2009; Wang et al., 2019).
We hypothesized that the structural gradients, despite their low dimensionality, would still
accurately describe functional interactions. Supervised learning approaches with cross-validation
could show that gradient-informed models predicted the spatial layout of previously described
intrinsic functional communities in the human brain (Yeo et al., 2011). At a more local scale,
gradients could also predict patterns of inter-regional functional connectivity, even when trained
and tested on datasets acquired from different scanners. Overall, our results support that low-
dimensional eigenmode representations of structural connectivity may potentially underpin
intrinsic functional architecture of the human connectome. Such a conclusion is in line with several
prior studies in healthy individuals showing that whole-brain structural connectivity gradients
shape dynamic signaling at rest (Park et al., 2021) as well as dynamic brain reconfigurations during
tasks (C. Murphy et al., 2019). In the study of brain diseases associated with macroscale
dysfunction, connectivity gradients have furthermore been used to contextualize changes in brain
network architecture (Lariviére et al., 2020; Li et al., 2020), supporting their utility to serve as

coordinate systems of macroscale functional interactions in healthy and diseased brains.

Cross-species comparisons provide a potential window into human uniqueness by studying brain
reconfigurations between humans and non-human primates (Buckner & Krienen, 2013; Krubitzer,
2007). Whilst a remarkable conservation of macroscale organizational principles between
macaques and humans is evident (Glasser et al., 2014; Margulies et al., 2016; Valk et al., 2020),
association cortices have specifically undergone a striking expansion in relative surface and
potential participation in distributed functional networks (Buckner & Krienen, 2013; Hill et al.,
2010; Mars et al., 2017; Mueller et al., 2013; Patel et al., 2015). Here, we showed that structural
connectivity gradients spatially align with the pattern of evolutionarily diverging brain areas and
areal expansion, an index for relative areal size differences across species (Xu et al., 2020). Areas
near the center of the structural manifold were less functionally homologous and have undergone
more expansion relative to macaques. This may indicate that evolutionary changes have

preferentially occurred along particular fiber tracts including, for example, the arcuate fasciculus
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which has undergone critical anatomical modifications between non-human and human primates
(Ardesch et al., 2019; Eichert et al., 2019, 2020; Mars, Eichert, et al., 2018; Mars et al., 2013;
Rilling et al., 2008). When taken together with the cognitive terms from the Neurosynth meta-
analysis, these results indicate that phylogenetic differences in the temporal lobe are primarily

situated along those tracts associated with self-generated cognitive processes.

Theoretical accounts, empirical findings, and gradual changes in research culture have increased
the scientific value of replications in neuroscience (loannidis, 2005; Moonesinghe et al., 2007,
Open Science Collaboration, 2015). Here, we replicated our findings in two datasets: 1) a set of
unrelated young adults derived from the same dataset as the discovery set (HCP-Replication) as
well as 2) a separate dataset acquired at the Montreal Neurological Institute (MICs). Even after
stringent corrections for both spatial autocorrelation (Wagner & Dray, 2015) and multiple
comparisons (Benjamini & Hochberg, 1995), most findings held across all datasets indicating good
reproducibility. We have released all utilized feature data and associated analysis scripts
(https://github.com/MICA-MNI/micaopen), for independent verification of our results and follow-
up analysis. We hope that these data and associated findings continue to pave the way into studying
the important relationship between the microstructure, connectivity, and evolutionary

development of the temporal lobe.

METHODS

Participants
We selected 150 unrelated participants from the Human Connectome Project dataset for whom all

resting-state, diffusion weighted imaging and structural scans were available and completed in full
(Van Essen et al., 2013). These participants were split into HCP-Discovery (n=75; age=29.2+3.6,
female=47) and HCP-Replication (n=75; age=28.9+4.0, female=44) datasets. For the MICs
dataset, all data were collected in a single testing session per participant between April 2018 and
March 2020. Participants (n=54; 30.5+7.3, female=20) all provided informed consent. Participants
reported no history of neurological illness. The study was approved by the Ethics Committee of

the Montreal Neurological Institute and Hospital.
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Image Acquisition

a) HCP. Images were acquired on the customized Siemens 3T “Connectome Skyra”. Two T1w
images were acquired with a 3D MPRAGE sequence with the following parameters: TR=2400 ms,
TE=2.14 ms, flip angle=8 deg, FOV=224x224mm?, voxel size=0.7mm isotropic. Two T2w images
were acquired with identical parameters except for the following: TR=3200ms, TE=565ms,
variable flip angle. Four resting-state fMRI images were acquired with a gradient-echo echo-planar
imaging (EPI) sequence (TR=720ms, TE=33.1ms, flip angle=52 deg, FOV=208x180 mm, 2 mm
isotropic voxels, and 1200 volumes per run). Diffusion images were acquired with a spin-echo EPI
sequence (TR=5520 ms, TE=89.5 ms, flip angle=78 deg, FOV=210x180 mm, 1.25mm isotropic
voxels, b-values 1000, 2000, and 3000 s/mm?, 90 diffusion weighting directions). Six diffusion
image scans were acquired each lasting 9 minutes and 50 seconds. Half the runs were acquired

with left-to-right phase encoding and the other half with right-to-left.

b) MICs. Images were acquired on a 3T Siemens Magnetom Prisma-Fit equipped with a 64-
channel head coil. Two T1w scans were acquired with a 3D-MPRAGE sequence (0.8mm isotropic
voxels, matrix=320x320, 224 sagittal slices, TR=2300ms, TE=3.14ms, TI=900ms, flip angle=9°,
iPAT=2). Quantitative T1 (qT1) relaxometry data was acquired using a 3D-MP2RAGE sequence
(0.8mm isotropic voxels, 240 sagittal slices, TR=5000ms, TE=2.9ms, TI 1=940ms, T1 2=2830ms,
flip angle 1=4°, flip angle 2=5°, iPAT=3, bandwidth=270 Hz/px, echo spacing=7.2ms, partial
Fourier=6/8). We combined two inversion images for qT1 mapping to minimise sensitivity to Bl
inhomogeneities and optimize intra- and inter-subject reliability (Haast et al., 2016; Marques et
al., 2010). DWI images were obtain with spin-echo EPI, including three shells with b-values 300,
700, and 2000s/mm? and 10, 40, and 90 diffusion weighting directions per shell, respectively
(TR=3500ms, TE=64.40ms, 1.6mm isotropic voxels, flip angle=90°, refocusing flip angle=180°,
FOV=224x224 mm?, slice thickness=1.6mm, multiband factor=3, echo spacing=0.76ms, number
of b0 images=3). One 7 min rs-fMRI scan was acquired using multiband accelerated 2D-BOLD
EPI (TR=600ms, TE=30ms, 3mm isotropic voxels, flip angle=52°, FOV=240x240mm?, slice
thickness=3mm, multiband factor=6, echo spacing=0.54ms). Participants were instructed to keep
their eyes open, look at a fixation cross, and not fall asleep. Two spin-echo images with reverse
phase encoding were acquired for distortion correction of the rsfMRI scans (phase
encoding=AP/PA, 3mm isotropic voxels, FOV=240x240mm?, slice thickness=3mm,
TR=4029 ms, TE=48ms, flip angle=90°, echo spacing=0.54 ms, bandwidth=2084Hz/Px).
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Structural Preprocessing

a) HCP. Structural images underwent standard HCP preprocessing (Glasser et al., 2013). In short,
T1lw images were corrected for gradient nonlinearity. Repeated scans were co-registered and
averaged. After brain extraction and readout distortion correction, T1w and T2w images were co-
registered using rigid body transformations. Non-uniformity correction based on the T1w and T2w
contrasts was applied. Preprocessed images were nonlinearly registered to MNI152 space. Cortical
surfaces were extracted using FreeSurfer 5.3.0-HCP (Dale et al., 1999; Fischl, Sereno, & Dale,
1999; Fischl, Sereno, Tootell, et al., 1999), with minor modifications to incorporate information
from both Tlw and T2w scans. Cortical surfaces were aligned using MSMALII to the Conte69
template (Robinson et al., 2014).

b) MICs. Data were preprocessed with a Freesurfer 6.0 recon_all pipeline. Both native T1w scans
were provided as input and combined through this pipeline. Manual corrections of the pial and
white matter surfaces were performed for all subjects. Curvature and cortical thickness estimates
were generated by the recon all pipeline. To acquire tissue segmentations for anatomically
constrained tractography, the same images underwent a separate pipeline which included linear
alignment of both T1w scans, non-uniformity correction, and intensity normalization. Corrected
images were segmented into tissue types using MRtrix3’s Sttgen (R. E. Smith et al., 2012). qT1
images were linearly aligned to the cortical surface using boundary based registration (Greve &
Fischl, 2009). qT1 values were interpolated to the surface by taking the average of seven trilinear
interpolations evenly interspersed between the 20" and 80™ percentile distances from the pial to

white matter surfaces using Freesurfer’s mri_vol2surf command.

Resting-State Preprocessing

a) HCP. Data underwent standard HCP preprocessing (Glasser et al., 2013). In short, the timeseries
were corrected for gradient non-linearity and head-motion. The R-L/L-R scan pairs we used to
correct for geometric distortions. Resulting images were warped to the structural image using rigid
body and boundary-based registrations. This warp was concatenated with the warp from Tlw
image space to MNI152 space to transform functional images to MNI152 space. Further
processing removed the bias field, removed the skull, and normalized whole brain intensity. A
high pass filter (>2000s FWHM) was used to correct for scanner drift, and additional noise was

removed using ICA-FIX (Salimi-Khorshidi et al., 2014).
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b) MICs. The first five volumes were discarded to allow for magnetic field saturation. Images were
then reoriented, and motion and distortion corrected. Nuisance variable signal was removed using
an ICA-FIX classifier trained on this dataset and subsequent spike regression (Salimi-Khorshidi et
al., 2014). Further tissue-specific signal regression was not performed (K. Murphy & Fox, 2017;
Vos de Wael et al., 2017). A warp to the Freesurfer T1w image was computed by averaging
volumetric timeseries across the time dimension and registering this image using boundary-based
registration. Timeseries were sampled to the surface by taking the average of seven trilinear
interpolations evenly interspersed between the 20" and 80™ percentile distances from the pial to

white matter surfaces.

Diffusion Preprocessing

a) HCP. Images underwent standard HCP preprocessing (Glasser et al., 2013). In short, image
intensity was normalized across scans. The topup and eddy algorithms were used to correct for
EPI distortions, eddy currents, and motion. A gradient nonlinearity correction was performed, and
the deviation of the b-values and b-vectors was computed. Mean b0 images were registered to the
T1w image with boundary-based registration (Greve & Fischl, 2009), and this registration was
used to transform DWI images to Tlw space. The brain was masked based on a Freesurfer

segmentation.

b) MICs. Data were preprocessed and denoised with MRTrix3’s dwipreproc, which is based on
FSL’s eddy correction and topup, and dwidenoise (Andersson et al., 2003; S. M. Smith et al., 2004;
Tournier et al., 2012). Freesurfer segmentations were registered to the subject’s DWI space using

boundary-based registration (Greve & Fischl, 2009).

High resolution diffusion tractography and gradient mapping

Tractography was performed identically for the HCP and MICs dataset with MrTrix3 (Tournier et
al., 2012). Response functions for each tissue type were estimated using the dhollander algorithm
(Dhollander et al., 2016). Fiber orientation distributions were modelled with multi-shell multi-
tissue spherical deconvolution (Jeurissen et al., 2014) and subsequently underwent multi-tissue
informed log-domain intensity normalization. The structural T1w image was segmented into five
tissue types (R. E. Smith et al., 2012). Anatomically constrained tractography was performed
systematically for each temporal lobe voxel in the gray-white matter interface by generating

streamlines using second order integration over fiber orientation distributions (Tournier et al.,
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2010). Streamlines were seeded dynamically from the white matter using the SIFT model (R. E.
Smith et al., 2015a). Streamline generation was aborted when 40 million streamlines had been
accepted. Each streamline was assigned a weight by optimizing a cross-section multiplier derived
with the SIFT2 algorithm (R. E. Smith et al., 2015a). Streamline termini were assigned to their
nearest vertex on the surface of the gray-white matter interface. Streamlines of which either
terminus was further than 3mm from its nearest vertex were discarded. Connectomes were

smoothed on the surface using a 20mm full width at half maximum Gaussian smoothing kernel.

To describe the largest axes of variance in connectivity we used diffusion map embedding
(Coifman & Lafon, 2006), a non-linear dimensionality reduction techniques technique used
previously to identify neocortical, hippocampal, and cerebellar functional gradients (Guell et al.,
2018; Margulies et al., 2016; Vos de Wael et al., 2018). Gradients were computed and aligned
using the BrainSpace toolbox (https://github.com/MICA-MNI/BrainSpace) (Vos de Wael et al.,
2020), with the following settings: sparsity thresholding at the 75" percentile, a cosine affinity
kernel, diffusion map embedding dimensionality reduction with a=0.5, and automated diffusion
time estimation. Gradient computations were performed separately on left and right temporal
lobes. Interhemispheric connections were not included in the gradient computation. Left and right
gradients were aligned with Procrustes alignment (Langs et al., 2015) as implemented in
BrainSpace. Eccentricity was computed from the aligned gradients by computing the Euclidean

distance to the origin of the manifold space spanned by the first three gradients.

Statistical testing

Testing for linear associations between cortical markers and gradients likely leads to biased test
statistics due to the spatial autocorrelation of MRI data violating the independence of observations
assumption (Alexander-Bloch et al., 2018). Instead, for each statistical test we generated random
datasets with comparable spatial properties. Specifically, we generated random datasets with
equivalent spatial autocorrelation as the response variable using Moran spectral randomization
with the singleton procedure (Wagner & Dray, 2015) as implemented in BrainSpace (Vos de Wael
et al., 2020). All linear models were fitted for the original data as well as 1000 corresponding
simulated datasets. Presented p-values were derived from the percentile rank of the true F-statistic
in the distribution of F-statistics in the simulated data. Multiple comparison were corrected for

false discovery rate with the Benjamini-Hochberg procedure (Benjamini & Hochberg, 1995).
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Tractography analyses

Connectivity distance, a measure that characterizes the relationship between physical distance and
connectivity (Lariviére et al., 2020), was computed by thresholding the structural connectivity
matrix at the 80" percentile, multiplying each connection by the geodesic distance between their
nodes, and averaging all connections for each node. Degree centrality was computed as the
column-wise sum of the connectivity matrix. Statistical significance of the association between
both degree centrality as well as connectivity distance with the gradients was assessed with Moran

spectral randomization (Wagner & Dray, 2015).

BigBrain Gradient

To assess histological properties of the brain we used BigBrain, an ultrahigh resolution atlas of a
single post-mortem brain stained for cell bodies (Amunts et al., 2013). Gradients of microstructural
profile covariance were computed as described previously (Paquola et al., 2019). In short, 18
equivolumetric surfaces were constructed between the outer and inner cortical surfaces. To reduce
partial volume effects, the inner cortical surface was removed. A linear model implemented in
SurfStat (Worsley et al., 2009) was used to correct for anterior-to-posterior increases in intensity
values (Amunts et al., 2013). Surface vertices were grouped into 1012 parcels which respected the
boundaries of the Desikan-Killiany atlas (Desikan et al., 2006; Hong et al., 2017). A
microstructural profile covariance matrix was constructed by computing the Pearson correlation
of every pair of vectors whilst controlling for the average whole-cortex intensity profile. Gradients
were constructed from this matrix using BrainSpace default parameters (90% sparsity, normalized
angle kernel, diffusion map embedding, a=0.5, automated diffusion time estimation). To compare
structural connectivity gradients to BigBrain gradients, the structural gradients were parcellated
using the same parcellation scheme. Moran spectral randomization (Wagner & Dray, 2015) was

used to test for associations between BigBrain gradient 1 and the structural gradients.

Functional Predictions

Structural gradients were used to predict canonical resting-state networks published previously

[(Yeo et al.,, 2011); https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation _Yeo2011].

HCP-Discovery was split into five folds of 15 subjects each; for each fold we performed a
multinomial logistic regression with the first three gradients as predictor variables and networks

as outcome variables. Beta values derived from the training set were used to predict probabilities
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of each network in the testing set. Each vertex was assigned to the network with the highest
probability. Additionally, we derived beta values from the entire HCP-Discovery dataset and used
these to predict functional networks from HCP-Replication and MICs gradients.

To further assess the relationship between structural gradients and edgewise functional
connectivity, we used a decision tree with binary splits for regression. Similar to the network
prediction, training and testing was performed both with 5-fold cross validation as well as training
on HCP-Discovery and testing on the other datasets. Model training was performed with the
fitrtree function as implemented in MATLAB R2019b with a minimum leaf size of 20, a maximum

number of splits of 20, and otherwise default parameters.

Evolutionary Analyses

We tested for associations between our gradients and two markers of evolutionary change between
humans and macaques: functional homology and areal expansion. Both measures were presented
in a prior paper (Xu et al., 2020), hence we only provide a short overview here. Functional
homology is a measure for the functional similarity of a human brain area with its macaque
counterpart. It is computed based on the maximum cosine similarity of functional gradient profiles
within a 12mm search light around the corresponding human/macaque vertices. An areal
expansion map shows the relative expansion of human cortex compared to macaques. It is
computed by dividing the local area of human cortex by the corresponding area of macaque cortex
where correspondence was defined based on functional homology. We tested for associations
between these two markers and the structural gradients using Moran spectral randomization

(Wagner & Dray, 2015).
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