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Abstract 

Imaging mass cytometry (IMC) allows the detection of multiple antigens (approximately 40 markers) 

combined with spatial information, making it a unique tool for the evaluation of complex biological 

systems. Due to its widespread availability and retained tissue morphology, formalin-fixed, paraffin-

embedded (FFPE) tissues are often a material of choice for IMC studies. However, antibody 

performance and signal-to-noise ratio can differ considerably between FFPE tissues as a consequence 

of variations in tissue processing, including fixation. We investigated the effect of immunodetection-

related signal intensity fluctuations on IMC analysis and phenotype identification in a cohort of twelve 

colorectal cancer tissues. Furthermore, we explored different normalisation strategies and propose a 

workflow to normalise IMC data by semi-automated background removal, using publicly available 

tools. This workflow can be directly applied to previously obtained datasets and considerably improves 

the quality of IMC data, thereby supporting the analysis and comparison of multiple samples.  
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Introduction  

Mass cytometry has advanced as an important technology for the characterisation of cellular 

contextures in health and disease (1-6). A major advantage of mass cytometry is its ability to 

simultaneously acquire over 40 markers. The high-level of multiplexing is made possible via the use of 

antibodies conjugated to heavy metal isotopes rather than fluorescent tags (7). Cells are labelled with 

these and led into a CyTOF (Cytometry by time-of-flight) instrument, where heavy metal abundance 

is measured, per cell, by time-of-flight mass spectrometry (8). Technological advancements in the field 

have made it possible to image tissue sections as opposed to single cells, allowing for the preservation 

of spatial information (9). Imaging mass cytometry (IMC) allows the analysis of, among others, archival 

tissue samples in the form of formalin-fixed paraffin-embedded (FFPE) or fresh frozen (FF) tissue. 

Tissue sections are labelled with metal-conjugated antibodies and ablated in small portions (typically 

1 µm2 = 1 pixel). The ablated tissue is then analysed with the CyTOF instrument. The pixel data is 

processed into an image, thereby allowing the visualization of phenotypes and incorporation of spatial 

information in subsequent analyses.  

IMC users have already contributed with a number of studies aimed at optimising the use of this 

technology, including: a strategy to address signal spill-over during heavy metal detection (10) as well 

as methodologies to aid the implementation of large antibody panels for FFPE (11) or FF (12) tissues. 
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Schulz and colleagues demonstrated the potential of combining protein and RNA in situ detection with 

IMC (13). Furthermore, IMC has been used to comprehensively study tissue architectures and cellular 

composition of breast cancers (14) and pancreatic tissues affected by type 1 diabetes (15, 16), among 

other applications. The increasingly widespread application of IMC for the characterisation of tissues 

is accompanied by the need to develop analytical tools that can handle large and complex datasets 

where, for instance, signal to noise ratio fluctuates across samples. The general pipeline for IMC 

analysis involves the creation of cell segmentation masks with ilastik (17) and CellProfiler (18), after 

which the resulting image-stacks and masks are processed by dedicated software packages like 

HistoCAT (19) or ImaCytE (20).  

The majority of current IMC studies make use of FFPE tissues, due to their widespread availability in 

tissue archives, good morphology after fixation, and the possibility to build tissue microarrays. For the 

interpretation of immunohistochemistry data on FFPE tissues, it has long been recognised that 

antibody performance and signal detection can vary considerably between specimens. This can be 

explained by the use of different fixation times, size of tissue during fixation, dehydration of the tissue 

after fixation, the age of the FFPE tissue block or how long the tissue slides have been stored before 

immunodetection (21-24). Moreover, particularly impactful and difficult to control, is the ischemia 

period that concerns the time between the collection of a tissue and its fixation. Ischemia can cause a 

number of artefacts due to autolysis, protein degradation, or the drying of the outer layer of the tissue 

(22-26). Therefore, the comparison of intensities of antibody signal between different FFPE tissues is 

not general practice in the evaluation of immunohistochemistry results.  

In this work we investigated three methods for the processing of IMC data. We first analysed an IMC 

dataset without normalisation and compared this to two normalisation strategies: background 

removal using manual thresholding or a semi-automated method. Both approaches were followed by 

per-pixel binarization of marker intensity. After comparing the three approaches we propose a 

workflow for the analysis of tissues that makes use of publicly available tools to generate processed 

IMC data. Importantly, we implemented a normalisation strategy that overcomes immunodetection 

intensity variations across samples and considerably improves the quality of IMC data.  

 

Methodology 

Tissue Material 

FFPE blocks from 12 colorectal cancers were obtained from the department of Pathology of the Leiden 

University Medical Centre (Leiden, The Netherlands). Samples were anonymised and handled 

according to the medical ethical guidelines described in the Code of Conduct for Proper Secondary 
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Use of Human Tissue of the Dutch Federation of Biomedical Scientific Societies. Colorectal cancer 

tissues were cut into 4 μm sections and placed on silane-coated glass slides (VWR, Radnor, PA, USA). 

Imaging mass cytometry immunodetection and acquisition 

Antibodies employed in this study were conjugated to purified lanthanide metals using the Maxpar 

antibody labelling kit and protocol (Fluidigm, San Francisco, CA, USA). Antibodies were eluted in 50 µl 

antibody stabilizer solution (Candor Bioscience, Wangen im Allgäu, Germany) supplemented with 0,05 

% sodium azide and 50 µl W-buffer (Fluidigm). After conjugation, all antibodies were tested by IHC on 

4 µm tonsil tissue to confirm that the labelling process did not affect antibody performance. IMC 

immunodetection was performed following the methodology published previously by our lab (11) 

using the antibodies and conditions described in supplementary table 1. Tissue sections were ablated 

within a week after immunodetection by using the Hyperion mass cytometry imaging system 

(Fluidigm). The Hyperion was autotuned using a 3-element tuning slide (Fluidigm) as described in the 

Hyperion imaging system user guide. An extra minimum threshold of 1500 mean duals of 175Lu was 

used. Four 1000x1000 µm regions of interest per sample were selected based on haematoxylin and 

eosin (H&E) stains on consecutive slides and ablated at 200 Hz. Data was exported as .MCD files and 

.txt files and visualised using the Fluidigm MCD viewer. For downstream analysis, the .MCD files were 

transformed to either 32-bit multi-tiff or single-marker tiff images in the MCD viewer.  

Creation of single cell masks 

For each sample, one tiff image was exported from the MCD viewer, combining the keratin and 

vimentin expression as well as DNA detection. ilastik ((17) v1.3.3) was used to create masks for nuclei 

(based on the DNA signal), cytoplasm/membrane (based on keratin and vimentin expression) and 

background (based on the absence of signal in the DNA, keratin and vimentin image). ilastik’s random 

forest classifier was trained using manually assigned pixels that underwent Gaussian smoothing (ilastik 

feature settings: 0.3, 0.7 and 1.0 sigma for colour/intensity, edge and texture). Training was performed 

on 12 images (one representative image per sample) after which the classifier was applied to all 

images in the dataset and data was exported as probability maps indicating the likelihood of each pixel 

corresponding to nucleus, cytoplasm/membrane or background. In CellProfiler ((18) v2.2.0) the 

probability maps were used to create single cell masks for all samples. All masks were compared to 

the original IMC images to validate the cell segmentation procedure.  

Background removal and data normalisation 

To address variations in immunodetection signal intensity between samples, two normalisation 

approaches were applied: 1) manual thresholding to remove background noise in MCD viewer or 2) 

semi-automated background removal in ilastik, both followed by binarization of pixel values.  
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1) Manual thresholding was done using the MCD viewer by inspecting each marker and setting 

a minimum intensity/mean duals threshold to remove background noise. The threshold was 

identified by visual inspection, based on the user’s knowledge of the expected 

immunodetection pattern and corresponding IHCs of the protein in question. After setting a 

threshold for each marker, the data was saved as .txt files containing all previously defined 

thresholds. This process was repeated for all images. The threshold .txt files were loaded into 

ImaCytE with the, in the MCD viewer, created multi-tiff images and cell segmentation masks. 

In ImaCytE, the thresholds were applied to the images and pixel intensity values were 

binarized (i.e., all pixels below the threshold were set to 0 and all pixels above threshold were 

set to 1). Normalised cell intensities were then defined as the frequency of positive pixels, per 

cell. 

2) Semi-automated background removal was done on single marker tiff images, exported from 

MCD viewer. The images corresponding to a single marker across the entire cohort were 

loaded into ilastik and a small amount (i.e., approximately 1%) of pixels were assigned to 

either ‘signal’ or ‘background’ in 12 images (one representative image per sample). To 

facilitate the pixel annotation, the images were first sharpened in MATLAB. More specifically, 

outliers were removed through saturation of all pixels with values lower than the 1st and 

higher than the 99th percentile. Then, after Gaussian smoothing (ilastik feature settings: 0.7, 

1.0 and 1.6 sigma for colour/intensity, edge and texture), the random forest classifier 

automatically classified signal and background pixels. After training on at least 12 images (1 

for each sample), the classifier was applied to all images in the dataset and the data was 

exported as binary expression maps with the ‘background’ pixels set to 0 and the ‘signal’ pixels 

set to 1. This approach was repeated for each marker. A folder was created for each image 

containing the binary expression maps of all markers and the previously created cell 

segmentation masks. These were loaded into ImaCytE and normalised marker expression was 

defined by the relative frequency of positive pixels, per cell. 

 

Single cell clustering and phenotype calling  

Marker expression per cell was obtained by processing cell segmentation masks with their 

corresponding pixel intensity files in ImaCytE, for the generation of FCS files. For the analyses without 

normalisation or with manual thresholding, multi-tiff images and their corresponding cell 

segmentation masks were employed. For the analysis with semi-automated normalisation, 

segmentation files were loaded together with binary expression maps. Single-cell FCS files containing 

mean pixel values per cell (non-normalised) or relative frequency of positive pixels (normalised) were 
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then exported from ImaCytE and analysed by t-SNE ((27) t-distributed stochastic neighbourhood 

embedding) in Cytosplore. (28) Cells forming visual neighbourhoods in the t-SNE embedding were 

grouped using Mean-shift clustering and exported as separate FCS files. The resulting subsets were 

imported back in ImaCytE for visualisation of the subsets in the segmentation masks. All subsets were 

visually inspected by comparing their localisation in the segmentation masks to the original images.  

 

Results  

Variation in signal to noise ratio between FFPE samples influences unsupervised image analysis 

Immunodetection in FFPE tissues is complicated by variations in antigen availability and accessibility 

across samples due to tissue processing and fixation procedures. To understand its implications to the 

quality of IMC data, we analysed 48 images generated from 12 colorectal cancer samples. FFPE tissues 

were labelled with a 36 antibody panel and four regions of interest (ROI) of 1 mm2 were ablated, per 

tumour, by the Hyperion imaging mass cytometer. Visual inspection of the images using the MCD 

viewer showed that large differences exist in immunodetection intensity of the same antigen between 

tissues, which cannot be always explained by biological variation (Figure 1a). To determine the impact 

of these fluctuations on downstream analyses, the added-value of two normalisation approaches was 

investigated in comparison to the IMC analysis pipeline without normalisation (Figure 1b). In short, 

cell masks were created using ilastik and CellProfiler and were loaded into ImaCytE combined with the 

raw or normalised images in order to define relative antigen expression per cell. FCS files were 

produced, and clustering of cells was performed by t-SNE to identify cell subsets, using Cytosplore. 

Next, the phenotypes were projected back onto the cell masks in ImaCytE for visualisation and spatial 

analysis.  

First, we visualised immunodetection signal intensities, without normalisation, per antibody, on all 

cell mask overlays where antibody signal was displayed as mean pixel intensity (Figure 2a and 2b, 

lower panel). Where differences were observed, the original IMC images were inspected, showing that 

fluctuations in intensity on the cell masks generally corresponded to variations in signal-to-noise 

ratios. This resulted in either overestimation (Figure 2a) or underestimation (Figure 2b) of cells positive 

for a marker with variable signal-to-noise between samples. Furthermore, similar immune cell subsets 

could be assigned to distinct immune cell populations as a consequence of high variability in signal 

intensity for some markers between samples.  

To test this, a t-SNE embedding was computed using the single cell maker expression data extracted 

from 48 images. The embedding contained 393727 cells and was then visualised in a two-dimensional 

scatterplot with sample IDs and expression of each marker shown by colour coding. It was observed 
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that cells belonging to the same sample were localised in close proximity suggesting sample-inherent 

bias (Figure 2c, Supplementary Figure 1, 2a). Furthermore, cells with a similar marker profile were 

scattered throughout the t-SNE embedding rather than clustering together, suggesting that the 

intensity range and signal-to-noise variation between samples overshadowed cell type differences and 

similarities. Finally, cells positive for FOXP3, CD20 or CD103, markers with a low signal-to-noise ratio, 

did not cluster in the t-SNE analysis (Supplementary Figure 1). 

 

Manual thresholding and binarization normalises IMC inter-sample variation for automated 

downstream analysis 

A methodology was devised to test whether the observed immunodetection variation could be 

overcome by normalising the IMC data, while minimising data loss, for downstream analysis. This 

approach utilised a user-defined minimum signal threshold for each marker and then pixel binarization 

of the dataset. To confirm whether this approach was sufficient for reliable downstream analysis, we 

visualised the normalised marker expression on the cell masks. Indeed, setting a minimum signal 

threshold resulted in comparable marker detection between samples (Figure 3a and 3b) However, for 

several markers, it was observed that the number of positive cells in the cell mask was considerably 

lower than in the original images, suggesting that setting a manual threshold to remove noise also 

leads to loss of true positives. 

To further assess the effect of thresholding and binarization on downstream analysis, t-SNE 

embedding, as described in the previous section, was performed on the single cell data obtained from 

the thresholded and binarized images (Figure 3c, supplementary figure 1). In contrast to the analysis 

of the dataset without normalisation, the majority of cells clustered based on their phenotypes but 

some sample-specific clustering remained (Figure 3c, Supplementary figure 2b-d). Further inspection 

of the t-SNE embedding showed that the cells in those clusters were keratin-positive (a marker for 

epithelial cells) with varying combinations of HLA-DR, Ki-67 and CD15 expression, markers that are 

often differentially expressed between cancer cells which provides a biological basis for their sample-

specific clustering. In contrast to the TSNE embedding of data without normalisation, cells with a 

similar marker profile clustered together (as observed for CD8, Supplementary figure 1) Furthermore, 

the distinction between positive and negative cells for a specific marker was more clear (as observed 

for CD163, Supplementary figure 1). However, in line with the observations made during visual 

inspection, the number of cells positive for dim markers was low compared to the original MCD 

images. Albeit higher than the number of positive cells observed in the analysis without normalisation. 

(Figures 2c, 3c and Supplementary figure 1) Thus, thresholding and binarization of pixel intensity 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.26.399717doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.26.399717
http://creativecommons.org/licenses/by-nc-nd/4.0/


largely resolved sample-specific clustering and allowed for comparison between samples, but does 

not resolve the presence of false negatives. 

Although manual thresholding was found to overcome some of the challenges of analysing FFPE IMC 

data, its major disadvantages are that it is time consuming and subjective to errors as it requires vast 

knowledge of the expected labelling patterns of each marker and high inter-user variability is 

inevitable. Furthermore, while thresholding removes background noise, a portion of specific signal can 

be lost particularly when the signal-to-noise ratio is low, resulting in false-negatives. Therefore, we set 

out to investigate if an automated and unbiased approach could replace manual thresholding. We first 

visualised the pixel data in histograms for each marker to assess if pixel intensity was bimodally 

distributed in order to set an automatic threshold between negative and positive pixels. However, no 

bimodal distribution but a negative correlation between number of pixels and signal intensity was 

observed (Supplementary figure 3a). We then investigated the possibility to define a threshold based 

on intensity distribution at the cell level after applying cell masks onto the images. Initially, we set the 

threshold value at 1, regarding all pixels with higher intensities values as positive. Then, we visualised 

the data on cell level by plotting the mean of all pixels within a cell (supplementary figure 3b, g-h). 

Also, at cell level, no clear bimodal distribution was observed. Similarly, cut-off thresholds values 

between 2 and 5 resulted in similar distributions (supplementary figure 3c-f). Moreover, a threshold 

of 2,9 mean duals was comparable to the cut-off chosen during manual thresholding but this could 

not be deduced from the single-cell value distribution (supplementary figure 3d, i). Thus, an 

automated approach to determine a precise cut off value could not be established. Furthermore, 

setting a single-value threshold, as was also observed with manual thresholding, causes a trade-off 

between the removal of background noise and low intensity true signal and does not overcome case-

specific background signal as was observed for some images and markers (e.g. CD45ro, Figure 2a).  

 

Semi-automated background removal limits loss of data and normalises the images for downstream 
analysis of IMC data 
To correct for both technical noise and sample-specific background signal, a semi-automated 

background removal approach based on ilastik’s pixel classification algorithm was employed. For each 

marker, pixels corresponding to either ‘background’ or ‘signal’ were labelled and used to train a 

random forest classifier in ilastik. After training on 12 images per marker (or 1 image per sample) the 

algorithm was applied to all images in the dataset, to create binary signal masks for each marker. Of 

note, the algorithm takes into account pixel intensity but also patterns of neighbouring pixels, which 

could aid the removal of background without losing true signal. Comparison of the images without 
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normalisation, after manual thresholding and the semi-automated background removal, showed that 

the latter approach could be successfully applied to retain true signal while removing a substantial 

amount of background noise (Supplementary figure 4). To further confirm the validity of this 

approach, a t-SNE embedding was computed from the single cell data extracted from the binary signal 

masks (Figure 3d, supplementary figure 5). Inspection of sample and marker overlays on the t-SNE 

embedding, using colour-coding, showed cells grouped by marker expression rather than per sample, 

similar to the manual thresholding (Figure 3c). Furthermore, the signal to noise ratio was higher and 

cells that were positive for low intensity markers, such as FOXP3 and CD103, were identified by the 

semi-automated background removal in contrast to manual thresholding (supplementary figure 1, 5). 

 

Background removal and binarization combined with the proposed downstream analysis pipeline 

allows phenotyping of the tumour immune microenvironment  

To demonstrate the added value of performing background removal and binarization of pixel intensity 

for the identification of immune-phenotypes, clusters of cells with a comparable marker profile were 

identified, by applying Gaussian mean shift clustering on the t-SNE embedding, computed in the 

previous section. Next, clusters were mapped back onto the segmentation masks in ImaCytE. A 

proliferating and non-proliferating tumour cluster was identified through the expression of keratin 

and distinguished by Ki-67 (Figure 4a). Five myeloid clusters were identified by their CD68 expression 

and differentiated by CD204, CD163 and HLA-DR expression. Furthermore, five lymphoid-cell clusters 

could be identified where two clusters were CD8 positive, thus, corresponding to cytotoxic T cells. Of 

note, one of these clusters also showed positive signal for keratin indicating that these cells were 

located on top of epithelial cancer cells. Three clusters were CD8 negative and considered to be mostly 

composed of CD4 T cells. One of the clusters corresponded to regulatory T cells (FOXP3+) and the other 

two clusters were differentiated by Ki-67 expression. The tumour, myeloid and lymphoid clusters were 

each mapped back onto the images and compared to the original MCD images in the MCD viewer 

(Figure 4b). Indeed, the number and location of positive cells for each phenotype was comparable 

between the images overlaid with phenotype masks and the original MCD images. Thus, background 

removal using ilastik combined with binarization is applicable to normalise IMC datasets derived from 

archival samples and allows for the identification and localisation of biologically relevant phenotypes.  

 

Discussion 
With the rise of mass cytometry for the characterisation of cellular contextures in health and disease, 

IMC has surfaced as a valuable tool to investigate immunophenotypes while preserving spatial 
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information. IMC allows the simultaneous investigation of over 40 markers thereby generating 

complex datasets that require analysis tools that combine deep immunophenotyping with spatial 

localisation and neighbourhood analysis. However, before the interpretation of relevant data, non-

biological variation of signal intensities between tissues should be addressed. Technical noise is 

consistent in each image and will therefore not influence downstream analysis as long as the signal-

to-noise ratio is high, and can be addressed by optimising the antibodies and performing the antibody 

labelling of tissues in a single experiment. However, sample-specific noise, related to tissue processing 

procedures, is impossible to address during the staining procedures. FFPE tissue is often the tissue of 

choice for IMC due to its accessibility and good morphology. Differences in ischemia time, tissue 

fixation and age occur between tissues and this causes the labelling intensity or tissue-derived noise 

to vary as well, prompting the need to normalise the data before analysis. Direct phenotyping of IMC 

data, without normalisation, can lead to cells clustering per sample rather than phenotypes as the 

variation in overall signal intensity overshadows the differences between cell types. Furthermore, the 

signal range of the more abundant structural markers (e.g. keratin, vimentin) is much wider compared 

to scarcer, but important targets of investigation (e.g. co-receptors on T cells). This difference 

influences downstream computational methods such as clustering or dimensionality reduction 

algorithms and hinders the detection of specific cell subsets. 

In this work, we enable the analysis of large IMC datasets and improve the detection of cells expressing 

lowly abundant proteins by removing background noise and binarizing each sample’s pixel values. 

Binarizing was done by assigning the value of 1 to the pixels that express a marker, regardless of the 

sample or markers noise and the value of 0 to all the other pixels. More specifically, we tested two 

different normalisation approaches. First, a manual method was utilised where a lower threshold was 

set for each marker in all images. All pixels below threshold were set to 0 and all pixels above were set 

to 1. Then the marker expression per cell was defined as the mean of all pixels in a cell. This approach 

indeed overcame variation between tissues and allowed for t-SNE-guided phenotype identification. 

However, manual thresholding is labour intensive and relies on vast knowledge of the expected 

labelling patterns for each antibody, leading to potentially biased results. In general, thresholding is a 

trade-off between the removal of background and loss of true signal and therefore can result in the 

frequent designation of false negatives. An automated approach could overcome these challenges but 

large variations between samples and markers make fully automated unsupervised methods 

infeasible and the lack of labelled datasets is prohibitive for supervised machine learning approaches. 

Therefore, we proposed a, semi-automated, methodology using ilastik where we first annotate 

representative pixels either as actual signal or background noise and then a random forest classifier is 

run to categorise the whole dataset, based on these categories. This approach is faster, less subjective 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.26.399717doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.26.399717
http://creativecommons.org/licenses/by-nc-nd/4.0/


and results in data comparable to manual thresholding. Furthermore, loss of true signal is less 

frequently observed, and dim markers are more clearly reflected after semi-automated background 

removal and pixel intensity binarization. 

In recent years, great advancements have been made on the analysis and interpretation of single cell 

mass cytometry data and corresponding tools also prove invaluable for the analysis of IMC data. 

However, these should be combined with the knowledge of the immunohistochemistry field on tissue 

specific artefacts and variations, such as intensity differences and sticking of antibodies to necrotic 

regions. Recent publications have improved the labelling and imaging methodologies and 

simultaneously new tools for the interpretation of IMC data have emerged. As IMC becomes more 

accessible, many studies will utilise FFPE tissues of different subjects, and will thus have to overcome 

the tissue specific variations this brings. The here described normalisation methodology enables the 

analysis of datasets consisting of different tissues and the easier detection of lowly abundant proteins 

allowing the use of IMC phenotyping and interpretation tools. Furthermore, the methodology does 

not call for changes in the antibody labelling procedure but can be directly applied on previously 

obtained datasets. Thus, this work has the potential to directly aid research groups in their analysis 

and interpretation of imaging mass cytometry data.  
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Figures 

Figure 1| (a) CD163 expression pattern in three samples. A signal range of 3-20 mean duals was set 

for all images in the MCD viewer, but differences in signal intensity and noise are observed between 

images. (b) Workflow for IMC FFPE imaging and data processing, including the three tested data 

processing approaches where either no normalisation was performed, binarization by manual 

thresholding or binarization by semi-automated background removal. 

 

Figure 2| (a) correlation between original MCD image and cell expression after mask overlay. Variation 

between images occurs due to differences in background as seen for CD45RO between sample 1 and 

2 and (b) variation in signal intensity as observed for CD8 between sample 3 and 4. Signal in the cell 

mask ranged from 0 – 10 mean duals. (c) t-SNE analysis embedding of single cell data from all 48 

images in which cells were coloured by sample of origin in the -t-SNE embedding. CD45RO and CD8 

examplify the spread of positive cells throughout the t-SNE embedding.  

 

Figure 3|(a & b) correlation of CD45RO and CD8 between two thresholded MCD images and the mask 

overlay after manual thresholding and pixel binarization. Signal intensity ranges between 0 and 1 due 

to the visualisation as frequency of positive pixels per cell. (c) t-SNE embedding of the single cell data 

from all 48 images after manual thresholding and binarization. Cells were coloured by sample of origin 

in the t-SNE embedding. CD45RO and FOXP3 were shown to highlight the distribution of positive cells 

in the t-SNE embedding (d) t-SNE embedding of single cell data after semi-automated background 

removal and binarization. Cells were coloured by sample of origin in the t-SNE embedding.  

 

Figure 4| (a) Lymphoid, myeloid and tumour (tum) clusters identified in the t-SNE analysis from figure 

3b. (b) the clusters were mapped back onto a representative image and compared to their 

corresponding cell types in the mcd files. The images contain the following markers: for tumour keratin 

(red) and Ki67 (white), for myeloid cells CD68 (red) and CD163 (blue) and for lymphoid cells CD3 (red), 

CD8 (blue) and FOXP3 (cyan). To improve visibility a lower threshold of 1 dual counts was set.  
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