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Abstract

Imaging mass cytometry (IMC) allows the detection of multiple antigens (approximately 40 markers)
combined with spatial information, making it a unique tool for the evaluation of complex biological
systems. Due to its widespread availability and retained tissue morphology, formalin-fixed, paraffin-
embedded (FFPE) tissues are often a material of choice for IMC studies. However, antibody
performance and signal-to-noise ratio can differ considerably between FFPE tissues as a consequence
of variations in tissue processing, including fixation. We investigated the effect of immunodetection-
related signal intensity fluctuations on IMC analysis and phenotype identification in a cohort of twelve
colorectal cancer tissues. Furthermore, we explored different normalisation strategies and propose a
workflow to normalise IMC data by semi-automated background removal, using publicly available
tools. This workflow can be directly applied to previously obtained datasets and considerably improves

the quality of IMC data, thereby supporting the analysis and comparison of multiple samples.

Keywords: Imaging mass cytometry, Multiplex immunophenotyping, CyTOF, Background removal

Introduction

Mass cytometry has advanced as an important technology for the characterisation of cellular
contextures in health and disease (1-6). A major advantage of mass cytometry is its ability to
simultaneously acquire over 40 markers. The high-level of multiplexing is made possible via the use of
antibodies conjugated to heavy metal isotopes rather than fluorescent tags (7). Cells are labelled with
these and led into a CyTOF (Cytometry by time-of-flight) instrument, where heavy metal abundance
is measured, per cell, by time-of-flight mass spectrometry (8). Technological advancements in the field
have made it possible to image tissue sections as opposed to single cells, allowing for the preservation
of spatial information (9). Imaging mass cytometry (IMC) allows the analysis of, among others, archival
tissue samples in the form of formalin-fixed paraffin-embedded (FFPE) or fresh frozen (FF) tissue.
Tissue sections are labelled with metal-conjugated antibodies and ablated in small portions (typically
1 um? = 1 pixel). The ablated tissue is then analysed with the CyTOF instrument. The pixel data is
processed into an image, thereby allowing the visualization of phenotypes and incorporation of spatial

information in subsequent analyses.

IMC users have already contributed with a number of studies aimed at optimising the use of this
technology, including: a strategy to address signal spill-over during heavy metal detection (10) as well

as methodologies to aid the implementation of large antibody panels for FFPE (11) or FF (12) tissues.
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Schulz and colleagues demonstrated the potential of combining protein and RNA in situ detection with
IMC (13). Furthermore, IMC has been used to comprehensively study tissue architectures and cellular
composition of breast cancers (14) and pancreatic tissues affected by type 1 diabetes (15, 16), among
other applications. The increasingly widespread application of IMC for the characterisation of tissues
is accompanied by the need to develop analytical tools that can handle large and complex datasets
where, for instance, signal to noise ratio fluctuates across samples. The general pipeline for IMC
analysis involves the creation of cell segmentation masks with ilastik (17) and CellProfiler (18), after
which the resulting image-stacks and masks are processed by dedicated software packages like

HistoCAT (19) or ImaCytE (20).

The majority of current IMC studies make use of FFPE tissues, due to their widespread availability in
tissue archives, good morphology after fixation, and the possibility to build tissue microarrays. For the
interpretation of immunohistochemistry data on FFPE tissues, it has long been recognised that
antibody performance and signal detection can vary considerably between specimens. This can be
explained by the use of different fixation times, size of tissue during fixation, dehydration of the tissue
after fixation, the age of the FFPE tissue block or how long the tissue slides have been stored before
immunodetection (21-24). Moreover, particularly impactful and difficult to control, is the ischemia
period that concerns the time between the collection of a tissue and its fixation. Ischemia can cause a
number of artefacts due to autolysis, protein degradation, or the drying of the outer layer of the tissue
(22-26). Therefore, the comparison of intensities of antibody signal between different FFPE tissues is

not general practice in the evaluation of immunohistochemistry results.

In this work we investigated three methods for the processing of IMC data. We first analysed an IMC
dataset without normalisation and compared this to two normalisation strategies: background
removal using manual thresholding or a semi-automated method. Both approaches were followed by
per-pixel binarization of marker intensity. After comparing the three approaches we propose a
workflow for the analysis of tissues that makes use of publicly available tools to generate processed
IMC data. Importantly, we implemented a normalisation strategy that overcomes immunodetection

intensity variations across samples and considerably improves the quality of IMC data.

Methodology

Tissue Material

FFPE blocks from 12 colorectal cancers were obtained from the department of Pathology of the Leiden
University Medical Centre (Leiden, The Netherlands). Samples were anonymised and handled

according to the medical ethical guidelines described in the Code of Conduct for Proper Secondary
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Use of Human Tissue of the Dutch Federation of Biomedical Scientific Societies. Colorectal cancer

tissues were cut into 4 um sections and placed on silane-coated glass slides (VWR, Radnor, PA, USA).

Imaging mass cytometry immunodetection and acquisition

Antibodies employed in this study were conjugated to purified lanthanide metals using the Maxpar
antibody labelling kit and protocol (Fluidigm, San Francisco, CA, USA). Antibodies were eluted in 50 pl
antibody stabilizer solution (Candor Bioscience, Wangen im Allgdu, Germany) supplemented with 0,05
% sodium azide and 50 pl W-buffer (Fluidigm). After conjugation, all antibodies were tested by IHC on
4 um tonsil tissue to confirm that the labelling process did not affect antibody performance. IMC
immunodetection was performed following the methodology published previously by our lab (11)
using the antibodies and conditions described in supplementary table 1. Tissue sections were ablated
within a week after immunodetection by using the Hyperion mass cytometry imaging system
(Fluidigm). The Hyperion was autotuned using a 3-element tuning slide (Fluidigm) as described in the
Hyperion imaging system user guide. An extra minimum threshold of 1500 mean duals of °Lu was
used. Four 1000x1000 um regions of interest per sample were selected based on haematoxylin and
eosin (H&E) stains on consecutive slides and ablated at 200 Hz. Data was exported as .MCD files and
.txt files and visualised using the Fluidigm MCD viewer. For downstream analysis, the .MCD files were

transformed to either 32-bit multi-tiff or single-marker tiff images in the MCD viewer.

Creation of single cell masks

For each sample, one tiff image was exported from the MCD viewer, combining the keratin and
vimentin expression as well as DNA detection. ilastik ((17) v1.3.3) was used to create masks for nuclei
(based on the DNA signal), cytoplasm/membrane (based on keratin and vimentin expression) and
background (based on the absence of signal in the DNA, keratin and vimentin image). ilastik’s random
forest classifier was trained using manually assigned pixels that underwent Gaussian smoothing (ilastik
feature settings: 0.3, 0.7 and 1.0 sigma for colour/intensity, edge and texture). Training was performed
on 12 images (one representative image per sample) after which the classifier was applied to all
images in the dataset and data was exported as probability maps indicating the likelihood of each pixel
corresponding to nucleus, cytoplasm/membrane or background. In CellProfiler ((18) v2.2.0) the
probability maps were used to create single cell masks for all samples. All masks were compared to

the original IMC images to validate the cell segmentation procedure.

Background removal and data normalisation

To address variations in immunodetection signal intensity between samples, two normalisation
approaches were applied: 1) manual thresholding to remove background noise in MCD viewer or 2)

semi-automated background removal in ilastik, both followed by binarization of pixel values.
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1) Manual thresholding was done using the MCD viewer by inspecting each marker and setting
a minimum intensity/mean duals threshold to remove background noise. The threshold was
identified by visual inspection, based on the user’s knowledge of the expected
immunodetection pattern and corresponding IHCs of the protein in question. After setting a
threshold for each marker, the data was saved as .txt files containing all previously defined
thresholds. This process was repeated for all images. The threshold .txt files were loaded into
ImaCytE with the, in the MCD viewer, created multi-tiff images and cell segmentation masks.
In ImaCytE, the thresholds were applied to the images and pixel intensity values were
binarized (i.e., all pixels below the threshold were set to 0 and all pixels above threshold were
set to 1). Normalised cell intensities were then defined as the frequency of positive pixels, per
cell.

2) Semi-automated background removal was done on single marker tiff images, exported from
MCD viewer. The images corresponding to a single marker across the entire cohort were
loaded into ilastik and a small amount (i.e., approximately 1%) of pixels were assigned to
either ‘signal’ or ‘background’ in 12 images (one representative image per sample). To
facilitate the pixel annotation, the images were first sharpened in MATLAB. More specifically,
outliers were removed through saturation of all pixels with values lower than the 1° and
higher than the 99" percentile. Then, after Gaussian smoothing (ilastik feature settings: 0.7,
1.0 and 1.6 sigma for colour/intensity, edge and texture), the random forest classifier
automatically classified signal and background pixels. After training on at least 12 images (1
for each sample), the classifier was applied to all images in the dataset and the data was
exported as binary expression maps with the ‘background’ pixels set to 0 and the ‘signal’ pixels
set to 1. This approach was repeated for each marker. A folder was created for each image
containing the binary expression maps of all markers and the previously created cell
segmentation masks. These were loaded into ImaCytE and normalised marker expression was

defined by the relative frequency of positive pixels, per cell.

Single cell clustering and phenotype calling

Marker expression per cell was obtained by processing cell segmentation masks with their
corresponding pixel intensity files in ImaCytE, for the generation of FCS files. For the analyses without
normalisation or with manual thresholding, multi-tiff images and their corresponding cell
segmentation masks were employed. For the analysis with semi-automated normalisation,
segmentation files were loaded together with binary expression maps. Single-cell FCS files containing

mean pixel values per cell (non-normalised) or relative frequency of positive pixels (normalised) were
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then exported from ImaCytE and analysed by t-SNE ((27) t-distributed stochastic neighbourhood
embedding) in Cytosplore. (28) Cells forming visual neighbourhoods in the t-SNE embedding were
grouped using Mean-shift clustering and exported as separate FCS files. The resulting subsets were
imported back in ImaCytE for visualisation of the subsets in the segmentation masks. All subsets were

visually inspected by comparing their localisation in the segmentation masks to the original images.

Results

Variation in signal to noise ratio between FFPE samples influences unsupervised image analysis

Immunodetection in FFPE tissues is complicated by variations in antigen availability and accessibility
across samples due to tissue processing and fixation procedures. To understand its implications to the
quality of IMC data, we analysed 48 images generated from 12 colorectal cancer samples. FFPE tissues
were labelled with a 36 antibody panel and four regions of interest (ROI) of 1 mm? were ablated, per
tumour, by the Hyperion imaging mass cytometer. Visual inspection of the images using the MCD
viewer showed that large differences exist in immunodetection intensity of the same antigen between
tissues, which cannot be always explained by biological variation (Figure 1a). To determine the impact
of these fluctuations on downstream analyses, the added-value of two normalisation approaches was
investigated in comparison to the IMC analysis pipeline without normalisation (Figure 1b). In short,
cell masks were created using ilastik and CellProfiler and were loaded into ImaCytE combined with the
raw or normalised images in order to define relative antigen expression per cell. FCS files were
produced, and clustering of cells was performed by t-SNE to identify cell subsets, using Cytosplore.
Next, the phenotypes were projected back onto the cell masks in ImaCytE for visualisation and spatial

analysis.

First, we visualised immunodetection signal intensities, without normalisation, per antibody, on all
cell mask overlays where antibody signal was displayed as mean pixel intensity (Figure 2a and 2b,
lower panel). Where differences were observed, the original IMC images were inspected, showing that
fluctuations in intensity on the cell masks generally corresponded to variations in signal-to-noise
ratios. This resulted in either overestimation (Figure 2a) or underestimation (Figure 2b) of cells positive
for a marker with variable signal-to-noise between samples. Furthermore, similarimmune cell subsets
could be assigned to distinct immune cell populations as a consequence of high variability in signal

intensity for some markers between samples.

To test this, a t-SNE embedding was computed using the single cell maker expression data extracted
from 48 images. The embedding contained 393727 cells and was then visualised in a two-dimensional

scatterplot with sample IDs and expression of each marker shown by colour coding. It was observed
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that cells belonging to the same sample were localised in close proximity suggesting sample-inherent
bias (Figure 2c, Supplementary Figure 1, 2a). Furthermore, cells with a similar marker profile were
scattered throughout the t-SNE embedding rather than clustering together, suggesting that the
intensity range and signal-to-noise variation between samples overshadowed cell type differences and
similarities. Finally, cells positive for FOXP3, CD20 or CD103, markers with a low signal-to-noise ratio,

did not cluster in the t-SNE analysis (Supplementary Figure 1).

Manual thresholding and binarization normalises IMC inter-sample variation for automated

downstream analysis

A methodology was devised to test whether the observed immunodetection variation could be
overcome by normalising the IMC data, while minimising data loss, for downstream analysis. This
approach utilised a user-defined minimum signal threshold for each marker and then pixel binarization
of the dataset. To confirm whether this approach was sufficient for reliable downstream analysis, we
visualised the normalised marker expression on the cell masks. Indeed, setting a minimum signal
threshold resulted in comparable marker detection between samples (Figure 3a and 3b) However, for
several markers, it was observed that the number of positive cells in the cell mask was considerably
lower than in the original images, suggesting that setting a manual threshold to remove noise also

leads to loss of true positives.

To further assess the effect of thresholding and binarization on downstream analysis, t-SNE
embedding, as described in the previous section, was performed on the single cell data obtained from
the thresholded and binarized images (Figure 3¢, supplementary figure 1). In contrast to the analysis
of the dataset without normalisation, the majority of cells clustered based on their phenotypes but
some sample-specific clustering remained (Figure 3¢, Supplementary figure 2b-d). Further inspection
of the t-SNE embedding showed that the cells in those clusters were keratin-positive (a marker for
epithelial cells) with varying combinations of HLA-DR, Ki-67 and CD15 expression, markers that are
often differentially expressed between cancer cells which provides a biological basis for their sample-
specific clustering. In contrast to the TSNE embedding of data without normalisation, cells with a
similar marker profile clustered together (as observed for CD8, Supplementary figure 1) Furthermore,
the distinction between positive and negative cells for a specific marker was more clear (as observed
for CD163, Supplementary figure 1). However, in line with the observations made during visual
inspection, the number of cells positive for dim markers was low compared to the original MCD
images. Albeit higher than the number of positive cells observed in the analysis without normalisation.

(Figures 2c, 3c and Supplementary figure 1) Thus, thresholding and binarization of pixel intensity
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largely resolved sample-specific clustering and allowed for comparison between samples, but does

not resolve the presence of false negatives.

Although manual thresholding was found to overcome some of the challenges of analysing FFPE IMC
data, its major disadvantages are that it is time consuming and subjective to errors as it requires vast
knowledge of the expected labelling patterns of each marker and high inter-user variability is
inevitable. Furthermore, while thresholding removes background noise, a portion of specific signal can
be lost particularly when the signal-to-noise ratio is low, resulting in false-negatives. Therefore, we set
out to investigate if an automated and unbiased approach could replace manual thresholding. We first
visualised the pixel data in histograms for each marker to assess if pixel intensity was bimodally
distributed in order to set an automatic threshold between negative and positive pixels. However, no
bimodal distribution but a negative correlation between number of pixels and signal intensity was
observed (Supplementary figure 3a). We then investigated the possibility to define a threshold based
on intensity distribution at the cell level after applying cell masks onto the images. Initially, we set the
threshold value at 1, regarding all pixels with higher intensities values as positive. Then, we visualised
the data on cell level by plotting the mean of all pixels within a cell (supplementary figure 3b, g-h).
Also, at cell level, no clear bimodal distribution was observed. Similarly, cut-off thresholds values
between 2 and 5 resulted in similar distributions (supplementary figure 3c-f). Moreover, a threshold
of 2,9 mean duals was comparable to the cut-off chosen during manual thresholding but this could
not be deduced from the single-cell value distribution (supplementary figure 3d, i). Thus, an
automated approach to determine a precise cut off value could not be established. Furthermore,
setting a single-value threshold, as was also observed with manual thresholding, causes a trade-off
between the removal of background noise and low intensity true signal and does not overcome case-

specific background signal as was observed for some images and markers (e.g. CD45ro, Figure 2a).

Semi-automated background removal limits loss of data and normalises the images for downstream

analysis of IMC data

To correct for both technical noise and sample-specific background signal, a semi-automated
background removal approach based on ilastik’s pixel classification algorithm was employed. For each
marker, pixels corresponding to either ‘background’ or ‘signal’ were labelled and used to train a
random forest classifier in ilastik. After training on 12 images per marker (or 1 image per sample) the
algorithm was applied to all images in the dataset, to create binary signal masks for each marker. Of
note, the algorithm takes into account pixel intensity but also patterns of neighbouring pixels, which

could aid the removal of background without losing true signal. Comparison of the images without
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normalisation, after manual thresholding and the semi-automated background removal, showed that
the latter approach could be successfully applied to retain true signal while removing a substantial
amount of background noise (Supplementary figure 4). To further confirm the validity of this
approach, a t-SNE embedding was computed from the single cell data extracted from the binary signal
masks (Figure 3d, supplementary figure 5). Inspection of sample and marker overlays on the t-SNE
embedding, using colour-coding, showed cells grouped by marker expression rather than per sample,
similar to the manual thresholding (Figure 3c). Furthermore, the signal to noise ratio was higher and
cells that were positive for low intensity markers, such as FOXP3 and CD103, were identified by the

semi-automated background removal in contrast to manual thresholding (supplementary figure 1, 5).

Background removal and binarization combined with the proposed downstream analysis pipeline

allows phenotyping of the tumour immune microenvironment

To demonstrate the added value of performing background removal and binarization of pixel intensity
for the identification of immune-phenotypes, clusters of cells with a comparable marker profile were
identified, by applying Gaussian mean shift clustering on the t-SNE embedding, computed in the
previous section. Next, clusters were mapped back onto the segmentation masks in ImaCytE. A
proliferating and non-proliferating tumour cluster was identified through the expression of keratin
and distinguished by Ki-67 (Figure 4a). Five myeloid clusters were identified by their CD68 expression
and differentiated by CD204, CD163 and HLA-DR expression. Furthermore, five lymphoid-cell clusters
could be identified where two clusters were CD8 positive, thus, corresponding to cytotoxic T cells. Of
note, one of these clusters also showed positive signal for keratin indicating that these cells were
located on top of epithelial cancer cells. Three clusters were CD8 negative and considered to be mostly
composed of CD4 T cells. One of the clusters corresponded to regulatory T cells (FOXP3*) and the other
two clusters were differentiated by Ki-67 expression. The tumour, myeloid and lymphoid clusters were
each mapped back onto the images and compared to the original MCD images in the MCD viewer
(Figure 4b). Indeed, the number and location of positive cells for each phenotype was comparable
between the images overlaid with phenotype masks and the original MCD images. Thus, background
removal using ilastik combined with binarization is applicable to normalise IMC datasets derived from

archival samples and allows for the identification and localisation of biologically relevant phenotypes.

Discussion
With the rise of mass cytometry for the characterisation of cellular contextures in health and disease,

IMC has surfaced as a valuable tool to investigate immunophenotypes while preserving spatial
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information. IMC allows the simultaneous investigation of over 40 markers thereby generating
complex datasets that require analysis tools that combine deep immunophenotyping with spatial
localisation and neighbourhood analysis. However, before the interpretation of relevant data, non-
biological variation of signal intensities between tissues should be addressed. Technical noise is
consistent in each image and will therefore not influence downstream analysis as long as the signal-
to-noise ratio is high, and can be addressed by optimising the antibodies and performing the antibody
labelling of tissues in a single experiment. However, sample-specific noise, related to tissue processing
procedures, is impossible to address during the staining procedures. FFPE tissue is often the tissue of
choice for IMC due to its accessibility and good morphology. Differences in ischemia time, tissue
fixation and age occur between tissues and this causes the labelling intensity or tissue-derived noise
to vary as well, prompting the need to normalise the data before analysis. Direct phenotyping of IMC
data, without normalisation, can lead to cells clustering per sample rather than phenotypes as the
variation in overall signal intensity overshadows the differences between cell types. Furthermore, the
signal range of the more abundant structural markers (e.g. keratin, vimentin) is much wider compared
to scarcer, but important targets of investigation (e.g. co-receptors on T cells). This difference
influences downstream computational methods such as clustering or dimensionality reduction

algorithms and hinders the detection of specific cell subsets.

In this work, we enable the analysis of large IMC datasets and improve the detection of cells expressing
lowly abundant proteins by removing background noise and binarizing each sample’s pixel values.
Binarizing was done by assigning the value of 1 to the pixels that express a marker, regardless of the
sample or markers noise and the value of 0 to all the other pixels. More specifically, we tested two
different normalisation approaches. First, a manual method was utilised where a lower threshold was
set for each marker in all images. All pixels below threshold were set to 0 and all pixels above were set
to 1. Then the marker expression per cell was defined as the mean of all pixels in a cell. This approach
indeed overcame variation between tissues and allowed for t-SNE-guided phenotype identification.
However, manual thresholding is labour intensive and relies on vast knowledge of the expected
labelling patterns for each antibody, leading to potentially biased results. In general, thresholding is a
trade-off between the removal of background and loss of true signal and therefore can result in the
frequent designation of false negatives. An automated approach could overcome these challenges but
large variations between samples and markers make fully automated unsupervised methods
infeasible and the lack of labelled datasets is prohibitive for supervised machine learning approaches.
Therefore, we proposed a, semi-automated, methodology using ilastik where we first annotate
representative pixels either as actual signal or background noise and then a random forest classifier is

run to categorise the whole dataset, based on these categories. This approach is faster, less subjective
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and results in data comparable to manual thresholding. Furthermore, loss of true signal is less
frequently observed, and dim markers are more clearly reflected after semi-automated background

removal and pixel intensity binarization.

In recent years, great advancements have been made on the analysis and interpretation of single cell
mass cytometry data and corresponding tools also prove invaluable for the analysis of IMC data.
However, these should be combined with the knowledge of the immunohistochemistry field on tissue
specific artefacts and variations, such as intensity differences and sticking of antibodies to necrotic
regions. Recent publications have improved the labelling and imaging methodologies and
simultaneously new tools for the interpretation of IMC data have emerged. As IMC becomes more
accessible, many studies will utilise FFPE tissues of different subjects, and will thus have to overcome
the tissue specific variations this brings. The here described normalisation methodology enables the
analysis of datasets consisting of different tissues and the easier detection of lowly abundant proteins
allowing the use of IMC phenotyping and interpretation tools. Furthermore, the methodology does
not call for changes in the antibody labelling procedure but can be directly applied on previously
obtained datasets. Thus, this work has the potential to directly aid research groups in their analysis

and interpretation of imaging mass cytometry data.
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Figures

Figure 1| (a) CD163 expression pattern in three samples. A signal range of 3-20 mean duals was set
for all images in the MCD viewer, but differences in signal intensity and noise are observed between
images. (b) Workflow for IMC FFPE imaging and data processing, including the three tested data
processing approaches where either no normalisation was performed, binarization by manual

thresholding or binarization by semi-automated background removal.

Figure 2| (a) correlation between original MCD image and cell expression after mask overlay. Variation
between images occurs due to differences in background as seen for CD45R0 between sample 1 and
2 and (b) variation in signal intensity as observed for CD8 between sample 3 and 4. Signal in the cell
mask ranged from 0 — 10 mean duals. (c) t-SNE analysis embedding of single cell data from all 48
images in which cells were coloured by sample of origin in the -t-SNE embedding. CD45R0O and CD8

examplify the spread of positive cells throughout the t-SNE embedding.

Figure 3| (a & b) correlation of CD45R0 and CD8 between two thresholded MCD images and the mask
overlay after manual thresholding and pixel binarization. Signal intensity ranges between 0 and 1 due
to the visualisation as frequency of positive pixels per cell. (c) t-SNE embedding of the single cell data
from all 48 images after manual thresholding and binarization. Cells were coloured by sample of origin
in the t-SNE embedding. CD45R0 and FOXP3 were shown to highlight the distribution of positive cells
in the t-SNE embedding (d) t-SNE embedding of single cell data after semi-automated background

removal and binarization. Cells were coloured by sample of origin in the t-SNE embedding.

Figure 4] (a) Lymphoid, myeloid and tumour (tum) clusters identified in the t-SNE analysis from figure
3b. (b) the clusters were mapped back onto a representative image and compared to their
corresponding cell types in the mcd files. The images contain the following markers: for tumour keratin
(red) and Ki67 (white), for myeloid cells CD68 (red) and CD163 (blue) and for lymphoid cells CD3 (red),

CD8 (blue) and FOXP3 (cyan). To improve visibility a lower threshold of 1 dual counts was set.
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