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Abstract

The advancements in genome editing techniques over the past years have rekindled interest
in rational metabolic engineering strategies. While Metabolic Control Analysis (MCA) is a well-
established method for quantifying the effects of metabolic engineering interventions on
flows in metabolic networks and metabolic concentrations, it fails to account for the
physiological limitations of the cellular environment and metabolic engineering design
constraints. We report here a constraint-based framework based on MCA, Network Response
Analysis (NRA), for the rational genetic strain design that incorporates biologically relevant
constraints, as well as genome editing restrictions. The NRA core constraints being similar to
the ones of Flux Balance Analysis, allow it to be used for a wide range of optimization criteria
and with various physiological constraints. We show how the parametrization and
introduction of biological constraints enhance the NRA formulation compared to the classical
MCA approach, and we demonstrate its features and its ability to generate multiple
alternative optimal strategies given several user-defined boundaries and objectives. In

summary, NRA is a sophisticated alternative to classical MCA for rational metabolic
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engineering that accommodates the incorporation of physiological data at metabolic flux,

metabolite concentration, and enzyme expression levels.
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Introduction

Recent improvements in genome editing techniques have paved the way for more
sophisticated and performant metabolic engineering designs for achieving desired
physiological states of host organisms. Two approaches for reaching the targeted states exist:
(i) integrating heterologous pathways to disruptively overcome native control patterns, and
(i) modifying the endogenous regulatory architecture by removal of the existing control loops
(Bailey, 1991). The former method can be rather arduous because it requires testing if the
integration of DNA fragments into the original genome sequence perturbs cellular regulation
in the desired fashion. The latter technique demands knowledge about cellular control so that

the DNA sequence can be modified effectively and without unwanted side effects.

Mathematical models are nowadays becoming an indispensable part of strain design.
Available gene-protein-reaction associations of various organisms provide invaluable
information about cellular metabolism and enable the elaboration of these models. The
models can be studied computationally to interrogate and analyze cellular behavior and
derive metabolic engineering strategies for improved cellular performance (Gombert and
Nielsen, 2000). Strain design requires the identification and engineering of pathways toward
the production of desired compounds (Hadadi and Hatzimanikatis, 2015), and mathematical
models can provide an invaluable insight in the process of selection of deletions, insertions,
and up- and down-regulation of genes encoding for metabolic enzymes. Reviews of the most
prominent computational tools and workflows for the strain design are provided elsewhere

(Costa et al., 2016; Long et al., 2015; Wang et al., 2017).

Metabolic control analysis (MCA) is a mathematical formalism that uses models to quantify
the distribution of control over metabolic states in a network such as fluxes and
concentrations (Kacser et al., 1995). In MCA, Control Coefficients (CCs) quantify how a given
metabolic flux or metabolite concentration would respond to perturbations of the system
parameters. This information is used in traditional rational metabolic design to identify the
rate-limiting steps of the network and select potential targets for engineering. Strain
engineering typically requires a holistic approach where one simultaneously analyzes the
effects of genetic manipulations on specific productivity of desired molecules, maximum
achievable yield, energetic and redox requirements, etc. Simultaneous analysis of these

effects is a cumbersome task using classical MCA tools, especially if the design requires
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multiple genetic alterations. Moreover, MCA does not allow including explicitly any form of

physiological or design constraints, which can lead to unrealistic predictions.

We present here Network Response Analysis (NRA), a constraint-based workflow that aims
to tackle these obstacles. NRA utilizes populations of CCs to consistently derive metabolic
engineering strategies and trace the effects of multiple parameter perturbations. The
advantage of this method is that physiologically relevant bounds and constraints can be
imposed to the system, as opposed to the classical MCA. NRA is inspired by the work by
Hatzimanikatis et al. (1996a); (1996b) who proposed a Mixed Integer Linear Programming
(MILP) formulation for querying cellular responses upon enzymatic perturbations that uses
MCA-based flux and concentration CCs. Therein, the authors applied their formulation on
simple linear and branched pathways to propose metabolic engineering strategies. Here, we
extend this formulation to allow for studying larger scale metabolic systems with guarantied

thermodynamic feasibility.

To illustrate how NRA can be used to efficiently analyze, enumerate, and propose alternative
metabolic engineering strategies, we used a large-scale thermodynamically-curated,
metabolic model of E. coli (Hameri et al., 2019c¢), which describes the central carbon pathways
in aerobic growth conditions. Using the stoichiometric model as a scaffold, we employed the
ORACLE framework (Andreozzi et al., 2016a; Chakrabarti et al., 2013; Hameri et al., 2019b;
Miskovic et al., 2017; Miskovic and Hatzimanikatis, 2010; Soh et al., 2012; Tokic et al., 2020)
to generate populations flux and concentration CCs consistent with the experimental
observations. We then used the generated CCs to formulate with NRA the design strategies
in two case studies (i) improvement of glucose uptake rate, and (ii) maximization of specific
productivity rate of pyruvate while preserving a pre-specified yield of pyruvate from glucose.
These studies clearly show the potential, flexibility, and ease of use of NRA when realistic,

multi-objective requirements for the strain design should be met.

Results and Discussion

NRA method

The first step of the NRA method is the selection and curation of a metabolic network that
captures the physiology of a studied organism (Fig. 1). Then, we calculate the relevant flux

and concentration CCs (FCCs and CCCs) that describe the network’s responses to parameter
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97  perturbations such as modifications of enzymatic activities with the ORACLE framework,
98  which makes use of Monte Carlo sampling (Miskovic and Hatzimanikatis, 2011; Wang et al.,
99  2004). Finally, we use the computed sets of CCs along with the user-defined requirements
100 and additional physiological constraints to construct a constraint-based MILP optimization
101  problem (Fig. 1). The user-defined inputs depend on the studied problem and design
102 limitations, and these typically include the number of desired gene manipulations, minimal
103 allowable specific productivity, minimum allowable vyield, etc. From experimental
104  measurements or assumptions on physiology, we can infer physiological constraints such as

105 allowable (or desired) bounds on fluxes and concentrations in the metabolic network.

106  The outcome of the NRA optimization are sets of alternative combinations of genes that
107 should be engineered to improve the cellular performance given the imposed user-defined
108 inputs and physiological constraints. A principal advantage of the MILP formulation is that it
109 allows the user to introduce constraints on metabolic states and additional relevant design
110  constraints to the system, thus simultaneously offering flexibility and tight control over the

111  rational strain design.

112
113 NRA formulation

114  The NRA core equations can be expressed in a matrix-vector form (Table 1, Eq. 7) similar to
115 the ones of Flux Balance Analysis (FBA) (Orth et al., 2010) and Thermodynamics-based Flux
116  Analysis (TFA) (Henry et al., 2007; Salvy et al., 2019). NRA accommodates a wide gamut of
117  design objectives, such as the maximization of productivity or product yield (Egs. 1-2),
118  biomass-product coupled yield (BPCY) (Eq. 3), the maximization of biomass formation (Eq. 4),
119 the minimization of required genome-editing interventions (Eg. 5), and the minimization of
120  oxygenrequirements (Eqg. 6) (Klamt et al., 2018; Patil et al., 2005; Schneider and Klamt, 2019;
121  Varma et al., 1993). Since we have defined the NRA variables in logarithmic form, we can
122 express the otherwise nonlinear objectives like yield or BPCY in a linear form, rendering the

123 solution of the mathematical problem easier to attain than with formulations such as FBA.
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125 Figure 1. The NRA workflow is organized in four main steps. In the first three steps, we formulate the
126  stoichiometry, integrate available experimental data and compute the steady-state
127 thermodynamically feasible fluxes and concentrations, and compute the flux and concentration control
128 coefficients for the studied physiological condition. In the fourth step, metabolic engineering strategies
129  are devised by solving a MILP. Criterion & and additional constraints can be chosen from a set of

130  metabolic engineering criteria such as the ones provided in Table 1. Variables F;, M; and E) are the
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logarithmic deviations in flux, metabolite concentration and parameter with respect to their respective
reference steady states (Eq. 23), and their bounds define the solution space of the optimization
problem (Egs. 8-10). The definition of the other optimization variables and parameters is given in Table

2.

Table 1. The NRA mathematical formulation together with a non-exhaustive selection of optimization objectives. The
definition of indices, parameters, and variables is provided in Table 2.

Optimize Criterion {:

FBA NRA
Max productivity max Vproduct max ﬁproduct (1)
v
. product =~ =~
Max yield max max Fproduct — Fsubstrate (2)
Usubstrate

max vp; F F
lomass max Fbiomass + Fproduct

Max BPCY N Uproduct (3)
Veubstrate - Fsubstrate
Max biomass maxX Vpiomass max F'biomass (4)
Min # interventions — min z (1 —z) (5)
kEX
Min O, requirement min vy, yptake min ﬁoz,uptake (6)
subject to constraints:
FBA NRA
K-u=0
U. —
Balance N-v0 Fi— z (CE; «E) =0 )
(Mass / Response) - o kex
Xj
M; — z (¢ + )
kex
by < F; < ubg (8)
le < M] < 'U.bM (9)
Variable bounds Ib<v;,<ub U
0 <Ey <ubg
by < Ep <ubp & D (10)
Ef +EQ +&xz, <& (11)
Binary variable E,?U + E,?U <1 (12)
usage EY —&xEJV <0 (13)
EP—¢xEPVU <0 (14)
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Thermodynamic _ 4,G] <0 A,.G/° +RT Z M, <0 (15)
feasibility e
and
FBA NRA

Production robustness ~

v >« F. > 16
(min productivity) product 0 product ﬁO ( )
Production robustness Uproduct ~ ~

. S —— ¢ 4] F, - F > (17)

(mm y|eld) Vsubstrate product substrate ﬁl
Production robustness ~

VUbiomass = [24) Fbiomass = ﬁz (18)

(min biomass)

Design parameters Z (1—12z) < B (19)
— — Zk) = P3 19

(max # interventions)

Design parameters

(max 0, Vo,, uptake = 3 FOZ,uptake < B (20)
requirement)

where

C[Ilixil olixjl CRlixk]l —CElix k]

K = . . 21
ojxil —Ijxjl Cilixkl —Ciljixkl 1)
F;li x 1]
u= MLl 22
= eV [k x 1] (22)
EP [k x 1]
[ .
Fi = 1n< Vi >\
vi,ref
Xj
{1 M; =1In > (23)
Xjref
Pr
E. =In
\ g (pk,ref>)
F'i = Fi + ln(vi,ref) (24)
M] = M] + ln(x]',ref) (25)

138
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139 Table 2. Indices, variables, and parameters used in the NRA formulation.
:2:;’: Type Refers to Set or unit
i Index Reaction i€ed
j Index Metabolite jeJ
k Index Enzyme kex
m Index Metabolite participating in reaction i memM
v; Variable Flux of reaction i mmol - gDW=1-h~t
Xj Variable Concentration of metabolite j M
Pk Variable Catalytic activity of enzyme k mmol - h~1
F; Variable Scaled flux deviation of reaction i FeR
F; Variable Flux deviation of reaction i F; € RN [lbg,ubg]
IW]- Variable Scaled concentration deviation of metabolite j Mj €ER
M; Variable Concentration deviation of metabolite j M; € R N [lby, uby]
E, Variable Catalytic activity deviation of enzyme k Ex € RN [lbg, ubg]
E,l" Variable Upregulation of catalytic activity of enzyme k EY € Rn [0, ubg]
EQ Variable Downregulation of catalytic activity of enzyme k EP € RN [0, —lbg]
A,G; Variable Gibbs free energy change of reaction i A,.G{ ER
A4,GY Variable Standard Gibbs free energy change of reaction i 4,G{° € RN [4,G{%,
u Variable Vector of NRA variables u € RU+I+250
E,'{U Variable Binary upregulation of catalytic activity of enzyme k EVU € {0,1}
EQU Variable Binary downregulation of catalytic activity of enzyme k EPY € {0,1}
z; Variable Deregulation of enzyme k z, € {0,1}
(4 Parameter Flux control coefficient Cy ER
C,’g Parameter Concentration control coefficient CyER
Viref Parameter Reference flux of reaction i mmol- gDW=1-h~t
Xjref Parameter Reference concentration of metabolite j M
Prref Parameter Reference catalytic activity of enzyme k mmol - h~1
N Parameter Stoichiometric matrix N € RI¥
K Parameter NRA matrix K € RU+ID*E+J+25)
lbg Parameter Flux deviation lower bound lbr €R
ubg Parameter Flux deviation upper bound ubr ER
lby Parameter Concentration deviation lower bound by ER
uby, Parameter Concentration deviation upper bound uby ER
lbg Parameter Catalytic activity deviation lower bound lb; ER
ubg Parameter Catalytic activity deviation upper bound ubg € R
ArG,i,oest Parameter IiEstimated standard Gibbs free energy change of reaction ArGi,,Zst ER
err Parameter Associated error on the. est.imated standard Gibbs free err €R
energy change of reaction i
Parameter Gas constant R=19872x 10‘3kcal;{(_1
mol

Parameter Temperature K
'3 Parameter User-defined large constant & € N: & > max{|ubg|, |lbg|}
a, Parameter Minimum user-defined productivity mmol - gDW=1-h~t
a, Parameter Minimum user-defined yield a, ER
a, Parameter Minimum user-defined growth rate h?t
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a; Parameter Maximum user-defined O, requirement mmol - gDW™* - o1
Bo Parameter Minimum user-defined productivity Bo € RN [lbg, ubg]
P1 Parameter Minimum user-defined yield BiER

B2 Parameter Minimum user-defined growth rate B, € RN [lbg, ubg]
B3 Parameter Maximum user-defined number of interventions B3 €N

Ba Parameter Maximum user-defined O, requirement Bs € RN [lbg, ubg]

140

141  Importantly, the NRA formulation allows us to prevent thermodynamically infeasible designs
142  because it naturally includes thermodynamic constraints regarding the Gibbs free energy
143 change (4,G;) of each reaction (eq. 15). Furthermore, the proposed formulation allows
144  imposing additional design criteria such as production robustness and operational
145  parameters (Egs. 16-19). The NRA optimization problems can be solved with the TFA toolbox
146  (Salvy et al., 2019). We provide more details about the NRA formulation in Methods.

147

148  Strain design with physiological and design constraints for improved glucose uptake

149  Metabolic engineering interventions on pathways inevitably result in altered reaction rates
150 as well as metabolite concentration levels. NRA, being a constraint-based method, allows for
151  setting appropriate constraints on these quantities. Both fluxes and concentrations need to
152  be constrained within realistic physiological bounds, conditional to each case study. For
153 instance, severe changes in metabolic concentrations upon metabolic engineering
154  interventions could significantly influence the organism’s growth or even lead to an excess of
155  toxic byproducts. The strain design should likewise consider that enzyme expression levels
156 cannot increase beyond the currently reported experimentally achievable levels, and it
157  cannot allow an infinite increase of reaction fluxes in the network. In contrast, the design
158 should also be able to model gene knockouts by allowing both enzyme activities and reaction

159 fluxes to decrease close to zero.

160 Here, we examined the effects of the imposed physiological and design constraints on the
161  strain design for improved glucose uptake. To this end, we analyzed the achievable glucose
162  uptake rates with 2-fold, 5-fold, and 10-fold maximum allowable deviation of enzyme
163  activities from the reference level for a set of designs ranging from 1 to 25 gene manipulations
164  (Figure 2a). The metabolite concentrations were subject to the thermodynamic feasibility
165  constraints (Methods), and within the predefined physiological ranges (10nM - 0.1M) for each

166  cellular compartment. We allowed the fluxes to increase up to 10-fold of their reference level,

10
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167  and both fluxes and enzyme activities could reduce to zero. The latter means that solutions
168 can include potential gene knockouts. As a mean to investigate the sensitivity of obtained
169  solutions, we repeated the study for one reference and 18 extreme sets of control coefficients

170  (Methods).

171  As the allowable enzyme activity change (Egs. 10 and 23) increased from 2- to 10-fold, the
172  predicted attainable glucose uptake rate was about the same for up to 10 gene
173  manipulations, indicating that for a small number of gene manipulations the upper limits on
174  enzyme activity were not a limiting factor (Figure 2a). However, starting from 13 gene
175 manipulations, the difference between the predictions increased considerably. As expected,
176  the higher limits on enzyme activity, the larger predicted improvement of glucose uptake was
177  observed. For example, NRA predicted for 25 gene manipulations that glucose uptake rate
178 would increase by 26%, 39%, and 46% for 2-, 5-, and 10-fold change in enzyme activity,
179  respectively. Interestingly, the predicted fold change of the glucose uptake across the
180 nineteen studied reference and extreme CC-sets varied similarly for the designs with 13 or
181 more gene manipulations (Figure 2a whiskers). This rather constant variability as we go
182  toward a higher number of gene manipulations suggests that variability among 19 sets is
183  primarily determined by the activity of a relatively small number of enzymes, which
184  predominantly have control over the glucose uptake rate. This finding is in line with previous
185  studies of metabolic systems demonstrating that just a few enzymes in the network (or
186  corresponding parameters) determine the key metabolic properties such as system stability
187  (Andreozzi et al., 2016b) or control over production fluxes (Miskovic et al., 2019a). A similar
188  observation was reported in a more general context of biological systems (Daniels et al., 2008;

189  Gutenkunst et al., 2007).

190  Next, we investigated how constraints on concentration deviations (Egs. 9 and 23) affect the
191  attainable glucose uptake. This is a salient aspect of strain design because metabolic
192  engineers have to ensure that metabolite concentrations remain within physiological bounds.
193  Forinstance, it is vital not to exceed toxicity levels for some compounds. The studies on the
194  effects of metabolite concentration constraints have also to consider thermodynamics
195 because it is well known that the standard free Gibbs energy change of reactions couples the
196 reaction directionalities and the metabolite concentrations (Ataman and Hatzimanikatis,

197  2015). For this analysis, we have performed several studies by imposing different

11
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198  concentration bounds together with and without thermodynamic constraints (Figure 2b). In
199 general, our results suggest that NRA without thermodynamic constraints tends to
200 overpredict the increase in glucose uptake (Figure 2b), meaning that thermodynamic
201  constraints are limiting factors of strain design. The notable exception was that, starting from
202 19 gene manipulations, the 2-fold constraints on concentrations are more limiting than the
203  thermodynamic ones (Figure 2b blue & orange lines). As expected, our results also show that
204  thetighter the concentration deviation bounds we impose, the less important improvements
205  of glucose uptake could be attained (Figure 2b). For example, the attainable increase of
206  glucose uptake rate with the thermodynamic and additional 2-fold and 10-fold constraints for
207 25 gene manipulations were 17% and 24%, respectively (Figure 2b, green and violet). We also
208 observed that the variance of glucose uptake increase was smaller as the concentration
209  bounds became more constrained. Similarly, we observed a trend that the variance in the
210 studies with the thermodynamic constraints was smaller than in the ones without

211 thermodynamic constraints.
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214  Figure 2. Effects of the physiological and design constraints on glucose uptake rate for a set of designs
215 with different number of gene manipulations. Effects of: (a) allowed 2-fold (blue), 5-fold (orange), and
216  10-fold (yellow) changes in enzyme perturbation magnitude, and (b) different imposed metabolite
217 concentration bounds. The study was performed for one reference and 18 extreme sets of CCs selected
218  using PCA (Methods). In all cases, the fluxes were allowed to increase 10-fold and decrease to zero.
219  The whiskers and the respective symbols indicate the interquartile ranges and the means of the
220  considered CC-sets, respectively, as adjusted by the Bonferroni correction (Methods). Blue lines
221  correspond in both graphs.

222

223  Metabolite concentrations limiting the glucose uptake

224  Having demonstrated that limits on metabolite concentrations, either thermodynamic
225  constraints or physiological limitations, significantly affect the attainable glucose uptake, we
226  investigated how many and which metabolite concentrations should violate the
227  thermodynamic constraints to achieve a higher glucose uptake. For simplicity and clarity of

228  exposition, we allowed designs with one, two, four, and seven gene manipulations (Figure 3).

229 In the cases of one and two gene manipulations, the flux through glucose uptake could not
230  be modified with the thermodynamically feasible concentrations (zero violations). For a larger
231  number of gene manipulations, a small increase in glucose uptake could be achieved even
232 without violating the thermodynamics. For example, the manipulation of seven genes would
233 yield ~2% of glucose uptake increase for zero violations. However, when we allowed some
234  concentration deviations to exceed their bounds, the potential violations pushed the
235  attainable glucose uptake to higher values (Figure 3). For instance, the seven gene
236  manipulations design with ten concentration violations would result in 5.5% increase in

237  glucose uptake.
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239 Figure 3. Maximal attainable increase in glucose uptake as a function of a different number of
240  metabolite concentration violations for one, two, four, and seven gene modifications. The fluxes were
241 allowed to increase 10-fold and decrease to zero, the non-violated concentration bounds were subject
242 to the thermodynamic constraints, and the enzymatic bounds were set to 2-fold. The reference model
243 was used for all cases.

244  Next, we focused on finding which were the metabolites whose concentration constraints
245  should be violated to improve glucose uptake. To this end, we studied the case of four
246  violations and two, four, and seven gene manipulations. For each gene manipulation study,
247  we obtained the unique sets of four metabolite concentrations violating constraints (Table
248  3a). The three gene manipulation studies involved, in total, seven species with concentrations
249  violating the thermodynamic constraints. Among the seven species, peroxisomal protons
250 appeared in all three studies. Moreover, irrespectively of the study, to achieve a higher
251  glucose uptake, the concentrations of protons (both cytosolic and peroxisomal), AMP, and
252  phenylalanine needed to be increased, while the ones for CTP, dCTP and glutamine needed
253  to be decreased. The violations ranged from 2% for the case of cytosolic hydrogen to 57% for

254  the case of CTP (Supplementary Table S1).

255  This analysis provides an opportunity to focus on each of the identified molecules, draw
256  hypothesis about their role in the system limitations, and investigate these interplays and
257  ways to overcome them in vitro. For example, it suggested that the pH value in compartments

258  can be a limiting factor for metabolic design.

259

260 Table 3. Sets of four metabolite species with concentrations violating thermodynamic constraints for
261 designs with two, four, and seven gene manipulations. The arrows indicate should a metabolite
262 concentration be increased or decreased to improve glucose uptake. c: cytosol, p: periplasm.
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263

264  NRA design for Pyruvate production considers together specific production rate and yield

265  Pyruvate (pyruvic acid) is widely used in the food, chemical, and pharmaceutical industries. It
266 is a precursor for the synthesis of various amino acids, and has been used for the production
267  of antioxidants, food additives and supplements, pharmaceutical precursors, and biofuels
268  (Atsumi et al., 2008; Kalman et al., 1999; Li et al., 2001; Zhang et al., 2010). The microbial
269  production of pyruvate has been largely explored, and has involved both strain and process
270 engineering and development (Maleki and Eiteman, 2017). In E. coli, pyruvate has been
271  identified as one of the main hubs for the production of non-native commercial products
272  (Zhang et al.,, 2016). The most common approach in microbial engineering for the
273  overproduction of pyruvate is through deletions of the downstream utilization of pyruvate
274  towards byproducts such as acetate, acetyl-CoA, and ethanol among others (Akita et al., 2016;

275  Causey et al., 2004; Zhu et al., 2008).

276  To illustrate the features and flexibility of the NRA method, we showcase design for the
277  improved specific productivity rate of pyruvate while taking into account the yield of pyruvate
278  from glucose, design constraints, and thermodynamic feasibility. We imposed the following
279  design and physiology constraints: (i) up to five gene/enzyme activity manipulations, (ii) the

280 genes encoding for metabolic enzymes could either be upregulated up to 50-fold or
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281  downregulated down to a knockout, (iii) the fluxes could increase up to 100-fold for
282  upregulation and decrease down to zero for knockouts, and (iv) the concentration values
283  were subject to the thermodynamic feasibility constraints and the physiological ranges (10nM
284 - 0.1M). Given these constraints, we first performed an optimization to determine the
285  maximum yield of pyruvate from glucose. Then, we added the pyruvate yield to be at least
286  90% of this value to the set of constraints and maximized the specific pyruvate productivity
287  rate. In this manner, we were able to implicitly account for the potential tradeoffs of yield

288  and productivity that can occur in such designs.

289  We generated 51 alternative designs with five gene manipulations providing at least 99% of
290 the maximum specific productivity rate of pyruvate and fulfilling the imposed constraints. The
291  alternative designs involved the manipulation of genes corresponding to 48 distinct enzymes
292  (Supplementary Table S2). All cases provided over a 22-fold increase in both the pyruvate
293  yield and specific productivity rate compared to the reference state. To understand better
294  the mechanisms and identify metabolic patterns behind improved pyruvate production and
295  yield, we performed clustering analysis over 51 designs with respect to (i) the 48 enzyme
296  activity manipulations (Figure 4), and (ii) predicted change in metabolic fluxes upon changes
297  in enzyme activities (Figure 5). For the clustering based on the absolute change in fluxes, we

298 usedthe set of 67 reactions that had an absolute flux change of more than 0.01 mmol/gDW/h.

299 The transport of pyruvate from the cytosol to the periplasm (PYRt2rpp) appeared as a target
300 in all designs with 50-fold upregulation of the PYRt2rpp encoding gene (Figure 4). The
301 upregulation of glycolytic enzymes and enzymes leading to pyruvate synthesis would also
302 improve pyruvate production, with the most prominent target being glycerate kinase
303 (GLYCK2). We also observed knockouts (or significant downregulations) with the majority of
304 downregulated genes involving the consumption of pyruvate towards the formation of
305 byproducts. Among these, the periplasmic transport of glycerate (GLYCAt2rpp) was present
306 in most generated sets, being replaced by the extracellular transport of citrate (CITtex) in a
307 few cases (Figure 4). We also observed the knockout of PPS (Phosphoenolpyruvate synthase),

308 which is associated with the conversion of pyruvate to phosphoenolpyruvate.

16


https://doi.org/10.1101/2020.11.26.399576
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.26.399576; this version posted November 26, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

[o——

PYRt2rpp
GLYCK2
NADH9
GLCNtex
FUM
GLYCK
ACALD
PYK
TRSARr
DHORD5
ASPO6
PFK
CYTBD2pp
POX

PGK

CS
GLXCL
PDH
FE2tpp
GAPD
NADPPPS
GLCptspp
Pltex
O2tex
O2tpp
ATPS4rpp
NADK
NH4tex
FLDR2
G6PP
GLCt2pp
DHORDfum
ALDD2y
HEX1
PGM
Plt2rpp
ALDD2x
ENO

FBA
GLYCTO4
MDH
GLCDpp
DHORD2
F6PA
GLYCLTt2rpp
PPS

GLYCAt2rpp
CiTtex

-1

-2

QN MNP OONON0ON I O OO T N T I AR ONBONNH YNNI ALIRON
<l‘-i-'q--o--o-aFFFFPNNNNNO’)Q‘FMNﬂ(’)C‘J(")v(’)"ﬂ NNV.......-(OFNN"’Q MEMEEEN '-Ov.o <FI

= =
309 < <<<q<<<<<<<<<<<<<<<<<<<<<<<<<<< <<<<<<<<< <<<<<<

310  Figure 4. Hierarchical clustering of the 51 alternative designs for the increase of pyruvate productivity,
311  based on the suggested deregulation of individual enzymes.

312

313  Aclosercross-inspection of the two figures together with the Supplementary Table S2 reveals
314 that there are five groups of alternative ways to satisfy design specifications. Alternatives 1-
315 4,20, 32, 34, 35, 37, 38, 44, and 49 (Figures 4 and 5, Supplementary Table S2) constituted the
316 first group that improves pyruvate production while maintaining at least 90% of the yield by:
317 (i) a strong upregulation of pyruvate transport PYRt2rpp; (ii) a strong downregulation of
318  GLYCAt2rpp; and (iii) a slight upregulation of glycolysis either via enolase (ENO) for Alternative

319 49 or via fructose 6-phosphate aldolase (F6PA) for other alternatives in this group
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320 (Supplementary Table S2); (iv) a knockout of PPS for alternatives 1-4, 49 or a slight
321 downregulation of fructose-bisphosphate aldolase (FBA) for alternatives 20, 32, 34, 35, 37,
322 38, and 44.
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324  Figure 5. Hierarchical clustering of the 51 alternative designs for the increase of pyruvate productivity,
325 based on the absolute change in flux value of the 67 most affected reactions in the network.

326

327  Asaresult of these manipulations, the carbon flow was re-directed from the secretion of (R)-
328 glycerate toward the production of phosphoenolpyruvate through glycerate kinase (GLYCK),
329 phosphoglycerate mutase (PGM), and ENO (Figure 6 and Supplementary Figure S1).

330 Downstream, phosphoenolpyruvate is converted to pyruvate through dihydroxyacetone
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331 phosphotransferase (DHAPT), whose activity was also increased. This group is further
332  characterized by a slight increase in acetate production and CO2 secretion, and a deregulation
333  of the ATP metabolism such as an increase of the ATP non-growth associated maintenance
334  (ATPM)or a decrease in activity of adenylate kinase (ADK1) for alternatives 1-4, 49. Moreover,
335 the conversion of fructose-6-phosphate to glyceraldehyde-3-phosphate instead through FBA
336 and phosphofructokinase (PFK) was diverted through F6PA.

337 The second group consisting of alternatives 8, 13, 15, 16, 18, 19, 25-27, and 29 shared the
338 manipulations (i) and (ii) with the first group. In addition, this group involved: (iii) an
339  upregulation of glycerate kinase GLYCK2; and (iv) a slight upregulation of pyruvate kinase
340 (PYK). The observed effects of these manipulations were similar to the ones of the first group
341  withtheincreased activity of lower glycolysis and acetate secretion pathway (Figures 5, 6 and
342  Supplementary figure S2). The notable difference was that the carbon diverted from glycerate
343  secretion was channeled through GLYCK2, ENO, and PYK to pyruvate. Furthermore, we
344  observed a slight increase in activity of the TCA cycle and pyruvate dehydrogenase (PDH),
345  whereas the ATP metabolism remained mostly unchanged.

346  The third group formed by alternatives 46-48, 50, and 51 was distinct from the other groups
347  because it involved strategy to knockout citrate transport CITtex instead of GLYCAt2rpp
348  (Figure 4). Additional manipulations in these group were a slight downregulation of citrate
349  synthase (CS) and a slight upregulation of glycolytic enzymes PGM (Alternatives 46, 47, 50,
350 51)or ENO (Alternative 48). Overall, these manipulations resulted in increased activity of the
351 upper and lower glycolysis, pentose phosphate pathway, and the TCA cycle (Figure 6 and
352  Supplementary Figure S3). This was the only group with increased activity of the upper
353  glycolysis. We have also observed a decrease in activity of PDH (Figures 5 and Supplementary
354  Figure S3).

355  The fourth group constituted by alternatives 14, 17, 36, 39-42 had a distinct pattern in the
356 network flux distributions while sharing manipulations (i)-(iii) with the first group (Figure 5, 6
357 and Supplementary Figure S4). A slight downregulation of PFK together with manipulations
358 (i)-(iii) had a considerable impact by reducing the activity of the reactions in the upper
359 glycolysis (PFK, FBA, triose-phosphate isomerase (TPl), glyceraldehyde-3-phosphate
360 dehydrogenase (GAPD), phosphoglycerate kinase(PGK)), the ETC chain (NADH dehydrogenase
361 (NADH18pp), Cytochrome oxidase bo3 (CYTBO3_4pp) and the ATP metabolism (ATPM and
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362  ATP synthase (ATPS4rpp)). We have also observed, in contrast to other groups, a reduced

363  activity in CO2 and acetate secretion pathways.
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365 Figure 6. Overview of metabolic engineering strategies devised using NRA for the improved specific
366 production rate of pyruvate while preserving the prespecified yield of pyruvate from glucose. 51
367 strategies devised with NRA were categorized in 5 distinct groups. The thick arrows on the graph
368 denote the principal ways of carbon re-direction from the wild-type strain steady-state fluxes. The
369 arrows in the colored boxes denote if the activity of the corresponding metabolic subsystem
370  (glycolysis, pentose phosphate pathway (PPP), TCA cycle, acetate production, and CO; production) or
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371 reaction (PDH) was increased (arrow up), decreased (arrow down), or remained unchanged (dash).
372  The thicker arrow in the colored boxes, the higher change in the activity occurred.

373

374  The fifth group, composed of alternatives 5-7, 9-12, 21-24, 28, 30, 31, 33, 43, 45, and the
375 second group have in common manipulations (i), (ii), and (iv) (Figure 4 and Supplementary
376  Table S2). Additionally, the fifth group involved either a very slight upregulation of glycolytic
377 enzymes PGM, ENO, and PGK (alternatives 11, 12, 21-24, 31, 43, and 45) or a very slight
378 downregulation of PDH (alternatives 5-7, 10, 28, and 30). As expected, the resulting flux
379  distribution was similar to the one of the second group (Supplementary Figure S5). The
380 difference was that in this group the carbon from (R)-glycerate was diverted to 2-
381 phosphoglycolate through GLYCK and PGM instead through GLYCK2 as it was done in the
382 second group. Overall, compared to other groups, the manipulations of this group have
383 changed the least the network flux distribution (Figure 5).

384  Once the principal strategies are determined, the final decision is made by experts based on
385 the comparative analysis of the proposed alternative groups and on considerations about the

386  practical implementation of the designs.

387
388 Comparison with targets determined by looking only at unconstrained specific productivity

389 We proceeded by examining how different are the targets obtained with the NRA design from
390 the ones determined by looking only the specific productivity rate of pyruvate. This
391 comparison will reveal how the physiology and design constraints affect our design decisions.
392 To this end, we computed the mean values of the control coefficient of the specific
393  productivity rate of pyruvate with respect to network enzyme activities, and then ranked
394 them according to their absolute value. Most of the top 15 enzymes represent either
395  extracellular transports such as oxygen uptake and ammonium secretion, as well as glycolysis
396 reactions leading to the synthesis of pyruvate (Table 4). Interestingly, the majority of these
397 enzymes do not appear as targets in any of the NRA alternatives (Table 4 and Supplementary
398 Table S2). Some of these enzymes exhibit a large control over multiple fluxes and
399 concentrations across the metabolic network. These are, therefore, severely constrained by
400 the imposed specifications in the constrained NRA design. This suggests that the NRA
401 formulation will favor parameters that have less control over the network, ensuring that

402  cellular balance will not be excessively perturbed.
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403

404 Table 4. Top ranked parameters based on their control over pyruvate production flux PYRtex. Ranking
405 was computed based on the mean values of 50°000 sets of Control Coefficients.

Rank | Parameter Name | Control over PYRtex
1 NH4tex negative
2 O2tpp negative
3 NH4tpp negative
4 ATPS4rpp positive
5 GLCtex positive
6 O2tex negative
7 TPI positive
8 PGI positive
9 PFK positive
10 | RPI negative
11 | Pltex positive
12 | PGM positive
13 | GLCptspp positive
14 | RPE positive
15 | PYRt2rpp positive

406

407 Materials and Methods
408 Metabolic Control Analysis notions

409 In MCA, the CCCs, Cg, and the FCCs, C;,’, are defined as the fractional change of metabolite
410 concentrations x and metabolic fluxes v, respectively, in response to a fractional change of
411  system parameters p (Hatzimanikatis and Bailey, 1996; Kacser et al., 1995). These CCs serve
412  as measurable outputs that provide information about the levels of control that system
413  parameters have on the studied biological system and physiology. From the log(linear)
414  formalism (Hatzimanikatis et al., 1996a; Reder, 1988), C; and C; can be derived through the

415  following expressions:
416 Cy = —(NVE)"INVII

417 Cy=EC}+1
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418

419 where Nis the stoichiometric matrix, Vis the diagonal matrix whose elements are the steady-
420  state fluxes, E is the elasticity matrix with respect to metabolites and II is the matrix of

421  elasticities with respect to parameters.

422  Hence, flux and concentration control coefficients are computed for each reaction flux i and

423  metabolite concentration j with respect to the system parameter k as:

v dlnyg  pgdy;

" ve = Tinp, ~ vidpy
125 xj _ d lnxj _ Dk dxj

Pk dlinp, xjdpyg
426

427  Model description and calculation of control coefficients

428  The stoichiometric model that was used in this study (Hameri et al., 2019c) was systematically
429  reduced from the E. coliiJ01366 genome-scale model (Orth et al., 2011) around the originally
430 defined reaction subsystems of glycolysis, pentose phosphate pathway (PPP), tricarboxylic
431  acid (TCA) cycle, glyoxylate cycle, pyruvate metabolism and the electron transport chain
432  (ETC), and describes the aerobically grown physiology of E. coli (Supplementary Table S3). The
433  reduction was performed through the redGEM and the lumpGEM algorithms (Ataman et al.,
434  2017; Ataman and Hatzimanikatis, 2017), thus ensuring preservation of as much information
435  as possible as well as that thermodynamic feasibility constraints are respected. This model
436  constitutes of 337 metabolites participating in 647 reactions, which are in turn associated
437  with 271 enzymes that serve as parameters in the NRA formulation. The model was curated
438  with thermodynamic feasibility constraints using TFA (Henry et al., 2007; Salvy et al., 2019)
439  andrelevant fluxomics data (McCloskey et al., 2014). The representative steady state profiles
440 of the metabolite concentrations and metabolic fluxes were chosen with Principal
441  Component Analysis (PCA) as detailed in (Hameri et al., 2019b). Then, the populations of
442  control coefficients were built using the ORACLE workflow (Andreozzi et al., 2016a; Miskovic

443 et al., 2017; Miskovic and Hatzimanikatis, 2010; Tokic et al., 2020).

444  The CCs of the analyzed quantities (glycose uptake, pyruvate production, yield of pyruvate

445  from glucose) with respect to the lumped reactions, exchange reactions, individual biomass
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446  building block contributions, and moieties were not considered in any study (Supplementary

447  Table S3).
448

449  Addressing variability in control coefficients

450 A commonissue in MCA and in kinetic modeling is the uncertainty stemming from the scarcity
451  of knowledge concerning the kinetic properties of enzymes (Miskovic and Hatzimanikatis,
452  2011; Miskovic et al., 2015; Miskovic et al., 2019b; Wang et al., 2004). The usual approach in
453  addressing thisissue involves the generation of a population of the CCs, and statistical analysis
454  thereof. To form the NRA models, we need to select sets of CCs that will be representative of

455  the generated population.

456  To select a representative set of CCs for our analysis, we took the population of 50’000 sets
457  of FCCs and CCCs computed with ORACLE for the aerobically grown E. coli in (Hameri et al.,
458  2019c). We first identified the vector of FCCs that was closest to the mean of the FCC
459  distribution with respect to glucose uptake and selected it as the representative set. Four
460 glucose uptake reactions in the model of E. coli exist with GLCptspp being responsible for
461  91.21% of the total flux through these reactions. We enforced this ratio in all performed NRA

462 studies.

463  Since the model is constrained to grow on minimal media with glucose as its sole carbon
464  source, the choice of the representative set will have a strong impact on the design criteria
465  we wish to explore. To investigate the variability in results that this choice can induce, we

I “"

466  additionally selected several “extreme” CC-sets through the use of PCA. We used nine
467  principal components to describe the space of CCs with respect to glucose uptake, which lead
468 to a coverage of 96.63% of the space variance. We selected the minimum and maximum
469 corresponding CC-sets for each component (2 x 9), leading to a total of 19 sets. We then

470  constructed 19 NRA models with these CC-sets and used them in the performed studies.

471

472 Confidence Intervals and Bonferroni correction

473  For the computation of confidence intervals in Figure 2, we have used the Bonferroni
474  correction in order to account for the multivariate nature of our study. In univariate studies,

475  to account for the variability in samples, confidence intervals that contain the population
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476  mean with the probability 1 — a (typically, a = 5%) are added around each sample mean
477  (Hameri et al., 2019a). However, univariate confidence intervals cannot be used when
478  multivariate problems are studied, instead the Bonferroni’s correction of confidence intervals
479 is frequently applied. In Bonferroni’s correction, for a problem with p variables, to ensure the
480 level 1 — a for all variables simultaneously, we need to choose level 1 — a/p for each of
481 individual variables. For instance, if we want to form confidence intervals for 10 variables with

482  an overall 95% confidence level, then we need to use individual 99.5% confidence intervals.

483

484  Thermodynamic constraints

485 To integrate thermodynamic constraints, we assumed that reactions operate in the
486  directionality determined by the computed reference steady state. Thus, the concentrations
487  of each metabolite in the respective cellular compartment need to be such as the 4,.G; of
488  each reaction remains negative. These constraints are written as a function of the standard
489  Gibbs free energy change of the reaction (4,G;°) and the logarithmic concentrations of the
490 participating metabolites, as introduced by (Henry et al., 2007). The 4,.G;° of each reaction is
491 computed using the Group Contribution Method (Mavrovouniotis, 1990; Mavrovouniotis,
492  1991). These values are further adjusted to take into account the thermodynamic properties
493  of the relevant cellular compartments; the pH gradient and electrochemical potential for
494  transport reactions, and ionic strength of dissociated metabolites (Henry et al., 2006).

495

496  Constraints on enzyme activities

497  Since the activity of an enzyme in the metabolic network could either be increased or
498  decreased, but not both at the same time, we made use of integer variables in the
499 formulation. Therefore, we split the catalytic activity deviations of our system, E}, into the
500 continuous variables EY and EP, which denote the upregulation and downregulation of the
501 gene encoding for enzyme k, respectively (Egs. 11-14). As these should not have nonzero
502 values simultaneously, we define the integer binary variables E/Y and EPU. EYU equals one
503 if the gene catalyzing the enzyme k is upregulated and equals zero otherwise. In contrast,
504 EPYequals zero in the case of upregulation, and it is one for downregulation. As expressed in
505 Eg. 12, only one of these variables can be active at a time, since deregulation cannot occur in

506  both directions simultaneously, or they can both be inactive for the case of no change in the
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507 respective enzyme’s catalytic activity. To complete the formulation, these variables are
508 further coupled to the above defined split enzymatic deviation variables through Egs. 13 and
509 14.Theinteger binary variable z;, is equal to zero if the activity of enzyme k is modified in the
510 solution, and it equals to one otherwise (Eq. 11). § is a constant selected to be larger than the
511  absolute value of the largest enzymatic deviation constraints, lbg and ubg, defined in Eq. 10.

512

513  Software and optimization parameters

514  The computations were made on a Mac Pro workstation running Mac OS X version 10.11.6,
515 equipped with a 2.7 GHz 12-Core Intel Xeon E5 processor and 32GB DDR3 memory, using
516  MATLAB version R2016a and the IBM CPLEX solver version 12.5.1. Time limits for the solver
517 were set as following: in Figure 2(a), for 2-fold (blue line) to 10 minutes, for 5-fold (orange
518 line) to 30 minutes, and for 10-fold (yellow line) to 3 hours; in Figure 2(b), for all cases to 10
519  mins; in Figure 3, for all cases to 30 minutes; in Table 2, for all cases to 30 minutes; in the

520 pyruvate case study (Figures 4-7), for all cases 3 hours.

521
522  Conclusions

523  The NRA framework enables the consistent and sophisticated design of metabolic engineering
524  strategies using MCA-based control coefficients. NRA is computationally faster and simpler
525 than other approaches since the derivation of control coefficients does not require the
526  numerical integration of non-linear kinetic models, and offers the implementation of a wide
527  variety of metabolic engineering criteria. To our knowledge, this type of approach has never
528 been applied to large or genome scale kinetic models of metabolism. Using a previously
529  published large-scale kinetic model of E. coli, we demonstrated that the NRA formulation can
530 be applied to large-scale metabolic networks. We used the PCA method to select a number
531 of representative sets of kinetic parameters among their population, in order to effectively
532  represent the uncertainty and flexibility of the kinetic model in respect to parametrization.
533  One of the main advantages of NRA is that, being a constraint-based modeling method, it can
534  accommodate the integration of biologically relevant bounds and constraints, which ensure
535 thatthe proposed strategies are consistent with the entire system capabilities and limitations

536 thereof. Since the NRA model predictions can be sensitive to the user-defined bounds on the
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537 allowable reaction flux, metabolite concentration and enzymatic expression deviations, the
538 importance of including relevant physiological constraints, such as thermodynamic feasibility
539  constraints, was discussed extensively. Focusing on the case of pyruvate production, a
540 compound of great industrial interest, viable metabolic engineering strategies were shown to
541  be readily derived using this formulation. Alternative solutions could also be generated and
542  evaluated on their efficiency and potential implementation. We believe that this formulation
543  will provide a refined alternative to computational genetic design, due to its simplicity and
544  modularity, and that it will continue to be enhanced through the introduction of ever-growing

545  omics data, and additional specialized constraints and objectives.
546
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555 Table S1: Metabolite concentration violation magnitudes for designs with two, four, and
556  seven gene manipulations.

557  Table S2: List of the 51 generated alternative designs with the corresponding manipulations
558 and magnitudes of manipulations, pyruvate productivity, and yield.

559 Table S3: List of aerobically grown E.coli model reactions, metabolites, and parameters
560 considered in the study.

561  Figure S1: Absolute differences of fluxes in the network for the Alternative 1 design (Group
562  1). Blue/pink arrows and numbers denote an up-/down-regulation of the genes encoding for
563 the respective enzyme and the corresponding fold-change value.

564  Figure S2: Absolute differences of fluxes in the network for the Alternative 25 design (Group
565  2). Blue/pink arrows and numbers denote an up-/down-regulation of the genes encoding for
566 the respective enzyme and the corresponding fold-change value.
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Figure S3: Absolute differences of fluxes in the network for the Alternative 51 design (Group
3). Blue/pink arrows and numbers denote an up-/down-regulation of the genes encoding for
the respective enzyme and the corresponding fold-change value.

Figure S4: Absolute differences of fluxes in the network for the Alternative 40 design (Group
4). Blue/pink arrows and numbers denote an up-/down-regulation of the genes encoding for
the respective enzyme and the corresponding fold-change value.

Figure S5: Absolute differences of fluxes in the network for the Alternative 45 design (Group
5). Blue/pink arrows and numbers denote an up-/down-regulation of the genes encoding for

the respective enzyme and the corresponding fold-change value.
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