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Npas4a Expression in Fear Learning

Significance Statement:

Learning to predict and cope with potentially dangerous environments is an adaptive survival
response. Proactive and reactive stress coping styles represent alternative strategies for coping
with stress and differ in a number of behavioral contexts, including learning and memory. We
show that reactive zebrafish display stronger conditioned fear responses to an olfactory alarm
cue, with associated higher expression of a neuroplasticity-related gene, npas4a, in the medial
and lateral zones of the dorsal telencephalon, and the supracommissural nucleus of the ventral
telencephalon. Our study suggests that npas4a-dependent plasticity in the teleost forebrain is
important for individual variation in fear learning. More broadly, plasticity in these associative
limbic regions may regulate alternative stress coping styles and constrain behavioral variation

across a number of behavioral contexts.
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Npas4a Expression in Fear Learning

Abstract

Learning to anticipate potentially dangerous contexts is an adaptive behavioral response to
coping with stressors. An animal’s stress coping style (e.g. proactive-reactive axis) is known to
influence how it encodes salient events. However, the neural and molecular mechanisms
underlying these stress coping style differences in learning are unknown. Further, while a
number of neuroplasticity-related genes have been associated with alternative stress coping
styles, it is unclear if these genes may bias the development of conditioned behavioral responses
to stressful stimuli, and if so, which brain regions are involved. Here, we trained adult zebrafish
to associate a naturally aversive olfactory cue with a given context. Next, we investigated if
expression of two neural plasticity and neurotransmission-related genes (npas4a and gabbrla)
were associated with the contextual fear conditioning differences between proactive and reactive
stress coping styles. Reactive zebrafish developed a stronger conditioned fear response and
showed significantly higher npas4a expression in the medial and lateral zones of the dorsal
telencephalon (Dm, DI), and the supracommissural nucleus of the ventral telencephalon (Vs).
Our findings suggest that the magnitude of expression of activity-dependent genes like npas4a
may be differentially expressed across several interconnected forebrain regions in response to

fearful stimuli and promote biases in fear learning among different stress coping styles.

Keywords: stress coping style, animal personality, fear learning, npas4, alarm substance,

zebrafish
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Npas4a Expression in Fear Learning

Introduction

Animals frequently must overcome stressors and the ability to encode and recall these
salient experiences is essential to an individual’s survival. Within individuals, behavioral and
physiological responses to stressors often co-vary, belonging to correlated suites of traits that are
consistent across contexts and time(1—4) (i.e. animal personality, stress coping styles; bold-shy
axis, proactive-reactive axis). In addition to boldness, aggression, and stress physiology, studies
demonstrate that proactive and reactive individuals also differ in learning and memory
processes(5—9). The more risk-prone proactive individuals tend to show faster acquisition of
memories that require higher levels of activity, or paradigms with positive and rewarding
valence(10-16). In contrast, the risk-averse reactive individuals tend to show faster acquisition of
aversive paradigms that require avoidance or reduced levels of activity(17—19). Despite these
findings, the neuromolecular mechanisms and regional brain activity underlying these stress

coping style differences in learning are not well understood.

Recent work has suggested that neural plasticity and neurogenesis may be key
mechanisms underlying divergent proactive-reactive responses to stress, but whether these
processes are associated with differences in learning and memory is not understood (20, 21).
While previous studies have characterized the whole-brain transcriptome of proactive and
reactive individuals at baseline, the contribution of specific neural plasticity- and synaptic
transmission-related candidate genes and their spatial expression patterns have yet to be
examined during a learning and memory task (22, 23). Two particularly interesting candidate
genes, npas4 and gabbrl (npas4a and gabbrla in teleosts) are essential in regulating neuronal
excitability and molecular processes related to learning and memory such as long-term

potentiation (24-26). npas4 is an immediate early gene transcription factor that is predominantly


https://doi.org/10.1101/2020.11.24.396887
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.24.396887; this version posted November 25, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Npas4a Expression in Fear Learning
89  expressed in the brain and enriched in the limbic regions. It is expressed through calcium
90 signaling and is thought to induce primarily GABAergic inhibitory synapses in response to
91  excitation and play an important role in homeostatic plasticity(25). gabbrl codes for a
92  metabotropic GABA B receptor, which has also been shown to play an important role reducing
93  neuronal excitability through G-protein signaling-dependent slow, long lasting hyperpolarization
94  of postsynaptic cells. Further, deletion or altered expression of both of these genes has been
95  shown to cause abnormal synaptic plasticity, neurogenesis, and impaired learning and memory
96  abilities(27-29). Both of these genes were found to have significantly upregulated whole-brain
97  expression at baseline in selectively-bred reactive zebrafish, which separately showed faster
98  acquisition of a contextual conditioned fear response towards an aversive olfactory alarm cue
99 (alarm substance)(22, 30). However, it is unknown if expression of these genes in specific brain

100  regions are more directly associated with proactive-reactive differences in fear learning.

101 The basic neural substrates of fear learning have been well characterized, and are

102  promising candidate sites where neural plasticity-related processes may regulate variation in fear
103  learning capabilities. Traditionally, the basolateral amygdala is at the center of the fear system,
104  with the hippocampus providing relevant associative information to allow for context-specific
105  defensive responses fearful stimuli(31). More recently other brain regions such as the bed

106  nucleus of the stria terminalis (BNST), lateral septum (LS), and striatum have attracted greater
107  interest due to their functional and structural connections with the hippocampal/amygdala

108  affective forebrain, and their output to structures essential for behavioral and physiological

109  responses to potential threats. The majority of this circuitry has been characterized in rodent

110  models, with putatively homologous structures identified in the teleost forebrain which have also

111 been shown to be critical for contextual fear learning and adaptive responses to stress(32—35).
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112

113 Here, we trained proactive and reactive zebrafish to associate alarm substance exposure
114  with a context in one training trial, followed by a second assessment trial in the absence of the
115  alarm substance. We then quantified npas4a and gabbrla forebrain expression to investigate
116 their potential link with differences in conditioned fear responses between alternative stress

117  coping styles. We predict that an increased conditioned fear response in reactive zebrafish will
118  be associated with increased expression of neural plasticity-related genes in the dorsal and

119  medial portions of the dorsal telencephalon (Dm, DI) and the dorsal, ventral, and

120  supracomissural portions of the ventral telencephalon (Vd, Vv, Vs), putative homologues of the
121  mammalian basolateral amygdala, hippocampus, striatum, lateral septum, and bed nucleus of the

122 stria terminalis, respectively(32-35).

123 Methods

124 Subjects

125 Zebrafish are utilized in a variety of laboratory studies to understand the neural, genetic,
126  and pharmacological mechanisms of learning and memory(36—38). Both wild and laboratory
127  strains of zebrafish display the proactive and reactive stress coping styles, which have distinct
128  genetic architectures and neuroendocrine responses (22, 23, 39). Here we used the high-

129  stationary behavior (HSB; reactive) and low-stationary behavior (LSB; proactive) zebrafish

130  strains to study the association between npas4a and gabbria expression and fear learning

131 differences between proactive and reactive stress coping styles. Starting from wild-caught

132 zebrafish, the HSB and LSB strains were generated and are maintained by artificial selection for

133 opposing amounts of stationary behavior to a novelty stressor(40). The HSB and LSB strains
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134  show contrasting behavior, physiology, morphology, and neuromolecular profiles consistent with
135 the reactive and proactive coping styles, respectively(22, 40—44). Additionally, these divergent
136  behavioral profiles between the strains are consistent across contexts and over time and have
137  high repeatability (40, 45, 46). During testing, fish were individually housed in 3-liter tanks on a
138  recirculating water system (Pentair Aquatic Eco-Systems) using UV and solid filtration on a
139  14:10 L/D cycle at a temperature of 27° C. Fish were fed twice a day with Tetramin Tropical

140  Flakes (Tetra, USA).

141  Alarm Substance

142 We created a single batch of alarm substance as previously described(30). In brief, 20
143  randomly selected donor fish (wild type) were euthanized by rapid chilling followed by light
144  abrasion of lateral skin cells on one side of each donor fish, ensuring that no blood was drawn.
145  Donor bodies were then individually soaked in 10 mL of DI water for 10 minutes. A total of 200
146  mL was filtered, diluted in half, and stored in aliquots at -20° C until use. All procedures were
147  approved by the Institutional Animal Care and Use Committee of University of Nebraska at

148  Omaha/University of Nebraska Medical Center (17-070-00-FC, 17-064-08-FC).

149  Contextual Fear Learning

150 To test learning, we utilized a validated contextual fear conditioning paradigm (30).

151  Briefly, zebrafish were tested individually in a 16 x 16 x 10 cm arena filled with 1.4 L of system
152  water. The arena was surrounded by opaque white plastic on the bottom and sides to serve as the
153  contextual stimulus. Animals were removed from group housing and placed into individual

154  housing 72 hours prior to the training session. Each learning trial was 15 minutes long and was

155  divided into three subsections. Fish acclimated to the chamber for the first five minutes, followed
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156 by five minutes of recording pre-exposure behavior (conditioned fear response for second trial).
157  After these 10 minutes, 1 mL of alarm substance (AS) or distilled water (DI) was administered
158  into the water through plastic tubing that came from outside of the testing arena. Following alarm
159  substance exposure, the unconditioned fear response was recorded for five minutes. Between
160 trials, fish were placed back into their individual housing, the testing arenas were rinsed out, and
161  were refilled with 1.4 L of fresh system water. Fish underwent two training trials with 30
162  minutes between trials. The second training trial was stopped after the second five minute block
163  (conditioned response). Fish immediately had their forebrains removed or were decapitated and
164  frozen on dry ice and stored at -80°C for qPCR and ISH, respectively. We selected the second
165 trial for gene expression analyses because we previously showed that out of four training trials,
166  the second trial was both the earliest trial and one that resulted in the most prominent proactive-
167  reactive behavioral differences during fear conditioning before both lines achieved similar
168  conditioned responses. These differences during training were also associated with stronger fear

169  memory recall 96h following training (30).

170 Total sample sizes consisted of 46 LSB (N = 28 males, 18 females) and 46 HSB (N = 28
171  males, 18 females) individuals. Of this total, we used 10 HSB individuals (N =5 AS, 5 DI, all
172 males) and 10 LSB individuals (N =5 AS, 5 DI, all males) for qRT-PCR analysis. We used the
173 remaining fish for ISH analysis. A total of 12 LSB (N = 6 males, 6 females) and 12 HSB (N =6
174  males, 6 females) individuals received alarm substance CS-US reinforcements as the

175  experimental group. For the DI water control group, we used 12 HSB (N = 6 males, 6 females)
176  and 12 LSB (N = 6 males, 6 females) fish. To control for possible effects of the paradigm and

177  handling, independent of treatment group, 12 HSB (N = 6 males, 6 females) and 12 LSB (N =6
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178  males, 6 females) were habituated to the same single housing as other groups, but did not

179  undergo behavioral testing.

180  Behavioral Analysis

181 All trials were video-recorded from above and later analyzed with Noldus Ethovision XT
182  (Noldus XT, Wageningen, Netherlands). For each trial, we quantified freezing time as an

183  indicator of the conditioned response. We examined freezing because it is one of the most

184  consistent and conserved behaviors used to assess stress-related behaviors and fear learning and
185  memory(47). Additionally, freezing was the most reliable indicator of proactive-reactive

186  differences in contextual fear conditioning in our prior study(30). The subject was considered

187  frozen if it moved less than 0.5 cm/s.

188  gRT-PCR

189 Preparation, execution, and analysis of the qRT-PCR of forebrain npas4a and gabbria
190  expression followed previously established methods(42, 43). Gene expression was normalized to
191  an endogenous housekeeping gene, ef/a, which has shown to be stable across sex, age, and

192  chemical treatment in zebrafish(48). See the supplemental methods for detailed parameters.

193 ISH

194 Brain samples were sectioned on a cryostat at 16 pm onto four serial series. Tissue

195 fixation parameters, probe synthesis, and ISH conditions were based on established protocols(49,
196  50). We used digoxigenin (DIG)-labeled probes for Npas4a and Gabbria genes. All individuals
197  were processed simultaneously (one gene at a time) to avoid any potential colorimetric

198  development differences across individuals due to batch effects. Riboprobes showed specific

199  binding with high expression using the antisense probe, proportionally reduced expression in the
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200  1:25 cold-competitor condition, and no expression in the sense and no probe conditions (Figure

201 S1). See supplemental methods for detailed parameters.

202  Brain Region Analysis

203 Brain section images were captured at 4X using a Nikon Eclipse monochrome camera
204  (Qi2). For each brain region, we used Nikon NIS Elements Version 4.6 software to measure a
205  standardized rectangular box within the borders of each brain region and measured the mean

206 intensity of npas4a and gabbrla expression within the box. The researcher (M.R.B.) was blinded
207  to the treatment and strain conditions when collecting and analyzing images. We quantified gene
208  expression by measuring optical density (OD) of the digoxigenin labeled probes, an established
209  semi-quantitative measure of gene expression in other systems(49). For each slide, we

210  normalized the mean intensity of all measures to the background (mean intensity of slide area not
211  containing tissue), which produced a fractional transmittance value for each brain region in each
212 section. Fractional transmittance was mathematically converted to optical density by the equation

213 OD = 2-log(fractional transmittance). See supplemental methods for additional details.

214  Statistics

215 All statistics were performed using SPSS software (Version 24). To analyze freezing
216  behavior we used a repeated measures two-way ANOV A with strain and treatment group as
217  between-subjects factors. For analyzing qRT-PCR gene expression we used a multivariate

218  general linear model (GLM) with normalized npas4a and gabbria expression as dependent
219  variables, and strain and treatment as between-subject factors. For analysis of ISH OD

220 measurements we used a multivariate GLM with the OD of the five brain regions as dependent

221  variables and strain and treatment group as between-subjects factors. There were not any effects
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222 of sex on learning and memory in a previous nor the current study (3-way repeated measures
223 ANOVA: Fsexttria= 0.40 p = .531; Fsex= 0.57 p = .456), so we removed sex as a variable to
224 simplify the model(30). Individual groups were compared with simple effects testing. To account
225  for multiple comparisons we applied the Benjamini-Hochberg correction to determine
226  significance(51). For all significant differences (p < 0.05) we also report the effect sizes
227  (Cohen’s d (d) for t-tests and partial eta-squared (np?) for ANOVAs (52). All effect sizes were

228  medium or large effects(52—54).

229  Results

230  Contextual Fear Learning

231 In the conditioned fear response period during acquisition testing, there was a significant
232 trial*treatment group interaction effect for freezing (Fi1, ¢4 = 54.86, p = 3.59*%107'%, np>= 46). The

233 alarm substance group showed increased freezing between trials at a faster rate than the DI

234 control group (Figure 1). Additionally, there was a significant trial*strain*treatment group

235  interaction (F1,64 = 5.88, p = .018, np*= .08) where treated HSB fish increased freezing behavior

236  ata faster rate than LSB fish. HSB fish exposed to alarm substance froze significantly more than
237  LSB fish at trial two (#(32) = 4.23, p = 1.81*10*, d = 1.45), but was not significant at trial one

238 (#32)=1.05, p =.303). Full model results are presented in Table S2.
239 qRT-PCR

240 There was a significant effect of strain on both npas4a (F1,16=11.72, p = .003, np*= .42)
241 and gabbria (F1,16=7.29, p = .016,np*= .31) forebrain expression. There was a significant
242  effect of treatment for npas4a (F1,16=11.72, p = .003, np*= .42), but not gabbria (F1,16=4.30, p

243  =.055) expression. Full model results are presented in Table S3. In HSB fish, npas4a gene
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244  expression was significantly higher in the AS group compared to the DI group (p =.003, d =

245  2.34; Figure S2). There were no effects of treatment on npas4a expression in LSB fish (p=.918).

246  In situ Hybridization

247 Treatment Effects on npas4a OD

248 There was a significant effect of treatment condition on npas4a OD in the Dm (F?2, 66 =
249 6.20, p =.003,np?=.16), D1 (F2,66=7.13, p = .002,np*= .18), Vv (F2,66 = 3.38, p = .040, np*=
250 .09), and Vs (F2,66=3.93, p =.024, np*=.11). In the Dm, npas4a OD was significantly lower in
251 DI water treatment group compared to both the baseline (p =.030, d = 0.67) and alarm substance
252 group (p =.003, d = 1.04; Figure 2A). In the DI, npas4a OD was significantly higher in the AS
253  group compared to both the baseline (p =.042, d = 0.63) and DI water treatment group (p =.003,
254  d=1.05; Figure 2B). In the Vv, the AS group initially had a significantly higher OD compared
255  to the baseline (p =.048, d = 0.59) and DI groups (p =.018, d = 0.71), however this was not

256  significant after BH correction (p =.072, .054 respectively; Figure S3). In the Vs, npas4a OD
257  was significantly lower in the DI group compared to both the baseline (p =.039, d =0.62) and AS
258  treatment group (p =.033, d = 0.74; Figure 2C). In the Vd, npas4a OD was significantly higher in

259  the AS group compared to the DI group for LSB fish only (p =.002, d = 1.00; Figure S3).

260 Strain Effects on Npas4a OD

261 There was a significant main effect of strain on the OD of npas4a in the Dm (F'1, 6=
262 7.66, p=.007,np?>=.10), DI (F1,66= 8.82, p =.004,np*= .12), and Vv (F1,66=5.16, p = .026,
263 mp*=.07). HSB fish overall had higher OD of npas4a in each of the three brain regions.

264  Additionally, HSB fish exposed to AS had significantly higher npas4a OD compared to LSB fish
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exposed to AS in the Dm (p =.001, d = 1.25), DI (p =.001, d = 1.65), and Vs (p =.039, d = 0.65;

Figures 2A-C). Full model results are presented in Table S4.

Strain Specific Treatment Effects on gabbria OD

For gabbria OD, there were significant strain*treatment group interaction effects in the

Dm (F1,66=3.31, p =.043,np*>=.09), Vv (F1,66= 7.70, p = .001,np?>= .19), Vd (F1,66= 6.95, p =
.002,Mp*=.17), and Vs (F1,66= 3.89, p = .025,p?*=.11). For each of those regions, there were no
significant differences between any treatment groups for HSB fish. However, for LSB fish the DI
group had significantly lower gabbria OD compared to the BL (p =.003, d =1.37) and AS (p
=.024, d = 1.00) groups in the Dm, BL (p =.023, d = 1.02) and AS (p =.003, d = 1.60) groups in
the Vv, and the BL (p =.015, d =1.06) and AS (p =.003, d = 1.37) groups in the Vd (Figure S4).
The BL group had a significantly higher gabbria OD compared to the DI (p =.003,d=1.71) and

AS (p =.030, d = 0.99) groups in the Vs. Full model results are presented in Table S5.

Discussion

Expression of neural plasticity-related genes (e.g. npas4, gabbrla) has been broadly
implicated as a key process underlying alternative stress coping styles, but has not been
investigated related to proactive-reactive differences in learning and memory (20-22, 26, 27, 55,
56). Consistent with previous findings, we found that reactive (HSB) zebrafish showed an
increased conditioned fear response relative to proactive (LSB) individuals (Figure 1)(30).
Further, we found that npas4a expression was significantly higher in several key forebrain
regions of reactive zebrafish. Altogether, our findings suggest that npas4a plays a similar role in
learning and memory as its mammalian homolog, and may be an important regulator of

proactive-reactive differences in learning and memory.
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287 ISH analysis showed that npas4a expression was significantly higher in reactive fish in
288  the Dm, DI, and Vs (Figures 2A-C). The Dm (BLA), DI (HIP), and Vs (BNST) are key sites of
289  experience-dependent plasticity and integral to fear learning and memory across species(32-35).
290  Similar to rodents, lesioning the teleost Dm and DI impairs the formation of new fear and
291  contextual memories (33, 57-59). Our findings suggest that npas4a-dependent plasticity within
292  these brain regions may be a key underlying mechanism regulating differences in fear learning
293  and memory capabilities between stress coping styles. In a prior study using the same
294  conditioning paradigm, we showed that reactive zebrafish acquired a conditioned fear response
295  faster than proactive zebrafish (cite). The higher activity-dependent expression of npas4a in
296  reactive individuals observed in this study may promote higher levels of neural plasticity,
297  resulting in salient and fearful experiences to be encoded into memory more quickly(28, 60). We
298  predict that npas4a knockout experiments would produce similar learning and memory deficits
299 asinrodents, and are needed to establish a direct causal role in zebrafish. More recently, specific
300 glutamatergic populations of Dm cells have been shown to be required for fear conditioning (32).
301  Our study is not able to distinguish between cell types expressing npas4a and would be needed
302  to better characterize the specific circuits regulating proactive-reactive differences in learning. In
303  selectively bred proactive and reactive trout, these telencephalic forebrain regions have also been
304  shown to display differing monoaminergic and cortisol responses to acute stress(61, 62). This
305  suggests that higher expression of npas4a in these brain regions may play important roles in

306  constraining variation across a number of behavioral contexts.

307 While the BNST has been shown to be important for aversive learning in rodents(63, 64),
308 the function of the Vs and specifically of npas4a expression in the Vs is not well understood in

309  regards to learning and memory. We found that similar to the Dm and DI, npas4a expression
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310  within the Vs is likely important for fear learning, and is associated with differences between
311  proactive and reactive stress coping styles. Supporting this, a previous study found that increased
312 activity and npas4 expression in a population of corticotropin-releasing factor neurons in the
313 BNST was associated with increased stress resiliency and prevention of a post-traumatic stress
314  disorder-like phenotype in rodents(65). This suggests that npas4a expression in the Vs may play
315  an important role in how individuals experience and cope with stress differently. Interestingly,
316  the Vs has been shown to have connections with both the Dm and DI, and to the hypothalamus
317  and other brainstem areas that are essential for eliciting behavioral and endocrine stress
318 responses. While this study only assessed gene expression across select forebrain structures,
319  future studies should investigate other downstream structures and consider the role of
320  glucocorticoids and the hypothalamus-pituitary-adrenal axis (hypothalamus-pituitary-interrenal
321  inteleosts). This is particularly promising as glucocorticoid differences have been well-
322  characterized between proactive and reactive stress coping styles(3, 66—68), though to a lesser

323  extent related to learning and memory.

324 The DI treatment groups showed significantly lower npas4a expression compared to the
325  AS treatment group in the Dm, DI, and Vs (Figure 2a, 2c). This suggests npas4a is expressed in a
326  treatment-specific manner associated with the learned conditioned fear response in the AS group.
327  Unexpectedly, npas4a expression in the DI group was significantly lower than the BL group in
328 the Dm and Vs. Other studies have found that acute injection of corticosterone or chronic

329  restraint and social isolation stressors can decrease npas4 expression in the rodent prefrontal

330 cortex and hippocampus and lead to a variety of behavioral deficits including learning and

331  memory(69-71). It is unclear whether this decrease in expression is maladaptive, or whether it is

332  an adaptive homeostatic response to stress(72). It is unlikely that our results can be explained by
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333  physical isolation, as the baseline group was also socially isolated for the same duration.
334  However, it is possible that handling stress could explain the reduction in npas4a expression for

335  the DI group.

336 While qRT-PCR findings showed strain effects in gabbrla expression, there were no

337  strain differences in any of the analyzed brain regions for the ISH analysis. This suggests that the
338  strain differences in forebrain gabbrla expression are driven by other brain regions not

339  investigated in this study. Therefore, gabbria expression within the Dm, DI, Vv, Vs, and Vd

340  does not appear to be associated with development of a conditioned fear response. Other studies
341  have suggested that GABAergic signaling may be more important for consolidation,

342  reconsolidation, or extinction of fear memories(73). Future studies should assess how GABA B
343  receptor expression may influence other phases of fear conditioning, or other paradigms using

344  positive reinforcement.

345 Learning to predict and cope with potentially dangerous environments is essential to an
346  individual’s survival. Proactive and reactive stress coping styles represent alternative strategies
347  for coping with stress and differ in a number of behavioral contexts, including learning and

348  memory. Our study suggests that brain-region specific expression patterns of npas4a may

349  underlie differences in fear learning between proactive and reactive stress coping styles. These
350 findings advance our understanding of the neuromolecular mechanisms underlying stress-coping
351  style differences in cognition and highlight neuroplasticity’s key role in regulating alternative
352  adaptive behavioral responses to stress. Additionally, as proactive and reactive individuals share
353  potentially conserved mechanisms underlying other stress coping behaviors, this suggests that

354  these brain regions may also constrain behavioral variation in a number of disparate contexts.
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Figure 1. Acquisition of fear memory over two training trials. Freezing time was measured for
high stationary behavior (HSB) and low stationary behavior (LSB) fish exposed to distilled water
(DI) or alarm substance (AS). Points represent mean + 1 standard error. * indicates p < .05 for
within-treatment group comparison
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586  Figure 2. Expression of npas4a in the Dm (A), DI (B), and Vs (C). We measured expression of
587  high stationary behavior (HSB) and low stationary behavior (LSB) fish at baseline (BL) or

588  exposed to either alarm substance (AS) or distilled water (DI) during training. Bars represent
589 mean + 1 SE. Bars labeled with different letters indicate p <.05. * indicates a significant strain
590 main effect. " indicates a significant within-treatment group strain difference.

591
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Supplementary Information
Methods
qRT-PCR

We homogenized the tissue in Tri reagent (Sigma) and zirconium oxide beads in a Bullet
Blender (NextAdvance) and extracted the RNA through column filtration (RNeasy Micro Plus
Kit, Qiagen). RNA was subsequently converted to cDNA (Superscript IV First-Strand Synthesis
System, Invitrogen) and purified (Millipore Amicon Ultra -0.5 mL 30 K Centrifugal Filters
Devices). We ran qRT-PCR reactions on a QuantStudio 7 Flex Real-Time PCR system (Applied
Biosystems) using PowerUp SYBR Green Master Mix (Applied Biosystems). A 131 base pair
npas4a amplicon was created using 5’-CACCTCGGACACTCAATGGT-3’ (F) and 5°-
AACAAGCGATCTGTGTCAGGT-3’ (R) as primers. A 198 base pair gabbrila amplicon was
created using 5’-CCCAGAGACGGAGGGATACG-3’ (F) and 5°-
CGGGCACATCATCAAGCATCT-3’ (R) as primers. The parameters for both genes were as
follows: 2 minutes at 50°C, 2 minutes at 95°C, followed by 40 cycles of 15 seconds of 95°C and

1 minute of 60°C. Primer concentration was 5 pmole/ul for both genes.

Tissue Section Processing

All series were simultaneously post-fixed in cold 4% paraformaldehyde/PBS solution, washed in
PBS and acetylated in 0.25% acetic anhydride/triethanolamine. Then, slides were washed in 2X

standard saline citrate, dehydrated in increasing ethanol series and stored at -80 °C.

Probe Synthesis
To quantify npas4a and gabbrila we used digoxigenin (DIG)-labeled RNA probes. A 402

base pair npas4a DIG probe template was subcloned by using primer pair 5°-

TTCTGTAGCGTCCAATCGGC -3’and 5’- ACTTCCACTCCCATCTTTGCG -3°. The 390
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617  base pair gabbrla probe template was subcloned by using primer pair 5’°-
618 AAGGATGAGCGCAATGTAGA -3’and 5’- CTGTTCCTGAGTCAGTCCTC -3°. Riboprobes
619  were generated using a 1:3 ratio of UTP and DIG-UTP (Roche). After probe synthesis, we
620 removed unincorporated nucleotides via column filtration according to manufacturer’s protocol

621  (Megaclear, Ambion).

622  In situ Hybridization

623 Slides were prehybridized with a solution containing 50% formamide, 5X SSC, 5X

624  Denhardt’s solution, 250 pg/ml yeast tRNA, and 500 pg/ml herring sperm DNA for 5 hours at
625  60°C in a hybridization chamber containing chamber buffer solution (50% formamide, 2X SSC).
626  Then we hybridized the slides overnight at 67°C with fresh prehybridization solution containing
627 340 ng of npas4a antisense or 380 ng of gabbrla riboprobe per slide. Following hybridization
628  we performed two washes in 2X SSC at room temperature for npas4a (one wash in 2X SSC at
629  60°C, one wash in 2X SSC at room temperature for gabbrla), then RNase A treated the slides
630  (0.5M NaCl, 10 mM Tris pH 8.0, 2.25 mM EDTA, 0.2 pg/ml RNase A), followed by

631  increasingly stringent washes (2X, 1X, 0.5X, 0.25X SSC) and then a final wash in Buffer B1
632 (100 mM Tris pH 7.5, 150 mM NaCl). Sections were then incubated overnight at 4°C with Anti-
633  Digoxigenin AP antibody (Roche). After antibody incubation we washed sections twice in

634  Buffer Bl and then blocked endogenous alkaline phosphatase activity with a 30 minute wash in
635  Buffer B3 (100mM Tris pH 9.5, 100 mM NacCl, 50 mM MgCl2, 5 mM levamisole) in the dark.
636  We used colorimetric detection using NBT/BCIP stock solution (Roche). The colorimetric

637  reaction was stopped (80 minutes for Npas4a and 12 hours for Gabbria) by rinsing sections

638  three times in ultrapure type 1 water and then progressively dehydrating sections in ethanol

639 (25%, 50%, 70%, 95%).
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640  Brain Region Analysis

641 The light settings were set to the maximum, and two 1/16 filters were placed over the

642  light source to keep consistency across days. The measuring box was always placed in the

643  middle of the brain region on the dorsal-ventral plane, excluding the midline. We measured the
644  mean intensity bilaterally if available, and averaged all of the intensities for each individual for
645  each brain region. Depending on the size of the brain region, the number of sections averaged per
646  individual ranged from two to six consecutive sections. Consecutive sections were 48 um apart.
647  The anterior commissure was identified as a landmark for each of the brain regions. We

648  measured the Dm (13003.92 um?) and DI (13003.92 pm?) for 1-2 sections prior to and 3-4

649  sections following the anterior commissure. We measured the Vv (9907.28 pm?) and Vd

650  (9907.28 um?) for 3-4 sections preceding the anterior commissure. We measured the Vs

651  (9907.28 um?) for the slice containing the anterior commissure and 1-2 following it.
652
653
654
655
656
657
658
659

660
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661 Tables

662  Table S1. Brain region terminology, abbreviations, and putative tetrapod homologue regions.

Teleost Region Abbreviation Putative Tetrapod Homologue

Area dorsomedialis telencephali Dm Basolateral amygdala
Area dorsolateralis telencephali Dl Pallial hippocampus
Area ventroventralis telencephali Vv Lateral septum
Area dorsoventralis telencephali vd Striatum

Ventralis supracommissuralis telencephali Vs Bed nucleus of the stria terminalis

663
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684  Table S2. Results of repeated measures GLM for the acquisition learning phase for freezing
685  time.

Freezing Time

Fep. npr)

Within-Subjects Effects (r-1, 64

Trial 62.82 (436+10™", .50

Trial*Strain 3.89 (0s3)

Trial*Treatment 54.86 (3.5910™, .46)

Trial*Strain*Treatment 5.88 (o1s, .08)
Between Subjects Effects ar=1, 64)

Intercept 179.53 3.08+10™, .74)

Strain 8.92 (004,.12)

Treatment 18.78 (530107, 23)

Strain*Treatment 2.18 (144

686  Bold text indicates p < 0.05
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700  Table S3. Results of multivariate GLM for forebrain expression of npas4a and gabbrla from
701 gPCR.

npas4a gabbrla

Fp, np2) Fp, np)
Intercept 393.93 (1.08+10™, .96) 364.98 (1.9410™, .96)
Strain 11.72 (003, .42) 7.29 (016, 31)
Treatment 11.72 (003, .42) 4.30 (0s5)
Strain*Treatment 2.32 (147 3.88 (.066)

702  Bold text indicates p < 0.05
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Table S4. Results of multivariate GLM of npas4a optical density across the five forebrain
regions.
Dm D1 Vv vd Vs

Feo,np) Feo,np) Feo,np Feo,np Feo,np)

266.15 236.22 295.70 282.12 286.57
Intercept (4.36*10™, .80) (4.36*107, .78) (4.36*107, .82) (4.36+107, .81) (4.36+107, .81)
Strain 7.66 (.007,.10)  8.82(.004,.12)  5.16 (.026,.07) 0.77 (.383) 2.64 (.109)
Treatment 6.20 (.003,.16)  7.13 (.002,.18)  3.38 (.040, .09) 1.61 (.208) 3.93 (.024, .11)
Strain*Treatment 1.78 (.177) 3.02 (.055) 0.91 (.406) 4.51 (.015,.12) 1.59 (:212)

Bold text indicates p < 0.05
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744  Table S5. Results of multivariate GLM of gabbrla optical density across the five forebrain
745  regions.

Dm DI Vv vd Vs
Fp. np) Fop. np) Fp, npo) Fp, npo) Fp. np)
121.69 107.89 147.75 153.60 134.16
Intercept (1271019, .65) (16110715, .62) (16810713, .69) (68741077, .70) (149107, .67)
Strain 0.44 (.509) 2.91 (.093) 0.166 (.685) 0.59 (.444) 0.12 (.736)
Treatment 3.28 (.044, .09) 2.69 (.076) 1.52 (.227) 0.91 (.410) 5.88 (.004, .15)
Strain*Treatment ~ 3.31 (.043, .09) 1.51(.229) 770 (001,.19)  6.95(.002,.17)  3.89 (.025,.11)

746 Bold text indicates p < 0.05
747
748
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766  Figures

Npas4 Gabbrla

Sense

Antisense

CC (1:25)

No Probe

767

768  Figure S1. Pilot in situ hybridization results for the Npas4a and Gabbrla genes. There was

769  strong signal in the antisense, proportionally reduced signal in the cold-competitor (1:25 ratio of
770  DIG-labeled to unlabeled riboprobe), and negligible signal in the sense and no probe

771  permutations. Scale bars represent 50 um.
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781  Figure S2. npas4a (A) and gabbrla (B) forebrain expression standardized to ef/a. We measured
782  expression of high stationary behavior (HSB) and low stationary behavior (LSB) fish that were
783  exposed to either alarm substance (AS) or distilled water (DI) during training. Bars represent

784  mean £ 1 SE. Bars labeled with different letters indicate p < .05. * indicates a significant strain
785  main effect.
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800  Figure S3. Expression of npas4a in the Vv (A) and Vd (B). We measured expression of high
801  stationary behavior (HSB) and low stationary behavior (LSB) fish at baseline (BL) or exposed to
802 either alarm substance (AS) or distilled water (DI) during training. Bars represent mean + 1 SE.
803  Bars labeled with different letters indicate p < .05. * indicates a significant strain main effect.
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Figure S4 Expression of gabbria in the Dm (A), D1 (B), Vv (C), Vd (D), Vs (E). We measured
expression of high stationary behavior (HSB; B) and low stationary behavior (LSB; A) fish at
baseline (BL) or exposed to either alarm substance (AS) or distilled water (DI) during training.
Bars represent mean & 1 SE. Bars labeled with different letters indicate p <.05. When split by
strain, LSB fish exposed to DI water had significantly lower gabbria OD compared to the
baseline and AS groups. There were no treatment group differences in the HSB group.
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