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Npas4a Expression in Fear Learning 

Significance Statement: 24 

Learning to predict and cope with potentially dangerous environments is an adaptive survival 25 

response. Proactive and reactive stress coping styles represent alternative strategies for coping 26 

with stress and differ in a number of behavioral contexts, including learning and memory. We 27 

show that reactive zebrafish display stronger conditioned fear responses to an olfactory alarm 28 

cue, with associated higher expression of a neuroplasticity-related gene, npas4a, in the medial 29 

and lateral zones of the dorsal telencephalon, and the supracommissural nucleus of the ventral 30 

telencephalon. Our study suggests that npas4a-dependent plasticity in the teleost forebrain is 31 

important for individual variation in fear learning. More broadly, plasticity in these associative 32 

limbic regions may regulate alternative stress coping styles and constrain behavioral variation 33 

across a number of behavioral contexts. 34 
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Abstract 44 

Learning to anticipate potentially dangerous contexts is an adaptive behavioral response to 45 

coping with stressors. An animal’s stress coping style (e.g. proactive-reactive axis) is known to 46 

influence how it encodes salient events. However, the neural and molecular mechanisms 47 

underlying these stress coping style differences in learning are unknown. Further, while a 48 

number of neuroplasticity-related genes have been associated with alternative stress coping 49 

styles, it is unclear if these genes may bias the development of conditioned behavioral responses 50 

to stressful stimuli, and if so, which brain regions are involved. Here, we trained adult zebrafish 51 

to associate a naturally aversive olfactory cue with a given context. Next, we investigated if 52 

expression of two neural plasticity and neurotransmission-related genes (npas4a and gabbr1a) 53 

were associated with the contextual fear conditioning differences between proactive and reactive 54 

stress coping styles. Reactive zebrafish developed a stronger conditioned fear response and 55 

showed significantly higher npas4a expression in the medial and lateral zones of the dorsal 56 

telencephalon (Dm, Dl), and the supracommissural nucleus of the ventral telencephalon (Vs). 57 

Our findings suggest that the magnitude of expression of activity-dependent genes like npas4a 58 

may be differentially expressed across several interconnected forebrain regions in response to 59 

fearful stimuli and promote biases in fear learning among different stress coping styles.  60 

Keywords: stress coping style, animal personality, fear learning, npas4, alarm substance, 61 

zebrafish  62 
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Introduction 66 

 Animals frequently must overcome stressors and the ability to encode and recall these 67 

salient experiences is essential to an individual’s survival. Within individuals, behavioral and 68 

physiological responses to stressors often co-vary, belonging to correlated suites of traits that are 69 

consistent across contexts and time(1–4) (i.e. animal personality, stress coping styles; bold-shy 70 

axis, proactive-reactive axis). In addition to boldness, aggression, and stress physiology, studies 71 

demonstrate that proactive and reactive individuals also differ in learning and memory 72 

processes(5–9). The more risk-prone proactive individuals tend to show faster acquisition of 73 

memories that require higher levels of activity, or paradigms with positive and rewarding 74 

valence(10–16). In contrast, the risk-averse reactive individuals tend to show faster acquisition of 75 

aversive paradigms that require avoidance or reduced levels of activity(17–19). Despite these 76 

findings, the neuromolecular mechanisms and regional brain activity underlying these stress 77 

coping style differences in learning are not well understood. 78 

 Recent work has suggested that neural plasticity and neurogenesis may be key 79 

mechanisms underlying divergent proactive-reactive responses to stress, but whether these 80 

processes are associated with differences in learning and memory is not understood (20, 21). 81 

While previous studies have characterized the whole-brain transcriptome of proactive and 82 

reactive individuals at baseline, the contribution of specific neural plasticity- and synaptic 83 

transmission-related candidate genes and their spatial expression patterns have yet to be 84 

examined during a learning and memory task (22, 23). Two particularly interesting candidate 85 

genes, npas4 and gabbr1 (npas4a and gabbr1a in teleosts) are essential in regulating neuronal 86 

excitability and molecular processes related to learning and memory such as long-term 87 

potentiation (24–26). npas4 is an immediate early gene transcription factor that is predominantly 88 
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expressed in the brain and enriched in the limbic regions. It is expressed through calcium 89 

signaling and is thought to induce primarily GABAergic inhibitory synapses in response to 90 

excitation and play an important role in homeostatic plasticity(25). gabbr1 codes for a 91 

metabotropic GABA B receptor, which has also been shown to play an important role reducing 92 

neuronal excitability through G-protein signaling-dependent slow, long lasting hyperpolarization 93 

of postsynaptic cells. Further, deletion or altered expression of both of these genes has been 94 

shown to cause abnormal synaptic plasticity, neurogenesis, and impaired learning and memory 95 

abilities(27–29). Both of these genes were found to have significantly upregulated whole-brain 96 

expression at baseline in selectively-bred reactive zebrafish, which separately showed faster 97 

acquisition of a contextual conditioned fear response towards an aversive olfactory alarm cue 98 

(alarm substance)(22, 30). However, it is unknown if expression of these genes in specific brain 99 

regions are more directly associated with proactive-reactive differences in fear learning.  100 

 The basic neural substrates of fear learning have been well characterized, and are 101 

promising candidate sites where neural plasticity-related processes may regulate variation in fear 102 

learning capabilities. Traditionally, the basolateral amygdala is at the center of the fear system, 103 

with the hippocampus providing relevant associative information to allow for context-specific 104 

defensive responses fearful stimuli(31). More recently other brain regions such as the bed 105 

nucleus of the stria terminalis (BNST), lateral septum (LS), and striatum have attracted greater 106 

interest due to their functional and structural connections with the hippocampal/amygdala 107 

affective forebrain, and their output to structures essential for behavioral and physiological 108 

responses to potential threats. The majority of this circuitry has been characterized in rodent 109 

models, with putatively homologous structures identified in the teleost forebrain which have also 110 

been shown to be critical for contextual fear learning and adaptive responses to stress(32–35). 111 
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 112 

 Here, we trained proactive and reactive zebrafish to associate alarm substance exposure 113 

with a context in one training trial, followed by a second assessment trial in the absence of the 114 

alarm substance. We then quantified npas4a and gabbr1a forebrain expression to investigate 115 

their potential link with differences in conditioned fear responses between alternative stress 116 

coping styles. We predict that an increased conditioned fear response in reactive zebrafish will 117 

be associated with increased expression of neural plasticity-related genes in the dorsal and 118 

medial portions of the dorsal telencephalon (Dm, Dl) and the dorsal, ventral, and 119 

supracomissural portions of the ventral telencephalon (Vd, Vv, Vs), putative homologues of the 120 

mammalian basolateral amygdala, hippocampus, striatum, lateral septum, and bed nucleus of the 121 

stria terminalis, respectively(32–35). 122 

Methods 123 

Subjects                                                                                                                                     124 

 Zebrafish are utilized in a variety of laboratory studies to understand the neural, genetic, 125 

and pharmacological mechanisms of learning and memory(36–38). Both wild and laboratory 126 

strains of zebrafish display the proactive and reactive stress coping styles, which have distinct 127 

genetic architectures and neuroendocrine responses (22, 23, 39). Here we used the high-128 

stationary behavior (HSB; reactive) and low-stationary behavior (LSB; proactive) zebrafish 129 

strains to study the association between npas4a and gabbr1a expression and fear learning 130 

differences between proactive and reactive stress coping styles. Starting from wild-caught 131 

zebrafish, the HSB and LSB strains were generated and are maintained by artificial selection for 132 

opposing amounts of stationary behavior to a novelty stressor(40). The HSB and LSB strains 133 
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show contrasting behavior, physiology, morphology, and neuromolecular profiles consistent with 134 

the reactive and proactive coping styles, respectively(22, 40–44). Additionally, these divergent 135 

behavioral profiles between the strains are consistent across contexts and over time and have 136 

high repeatability (40, 45, 46). During testing, fish were individually housed in 3-liter tanks on a 137 

recirculating water system (Pentair Aquatic Eco-Systems) using UV and solid filtration on a 138 

14:10 L/D cycle at a temperature of 27° C. Fish were fed twice a day with Tetramin Tropical 139 

Flakes (Tetra, USA). 140 

Alarm Substance 141 

 We created a single batch of alarm substance as previously described(30). In brief, 20 142 

randomly selected donor fish (wild type) were euthanized by rapid chilling followed by light 143 

abrasion of lateral skin cells on one side of each donor fish, ensuring that no blood was drawn. 144 

Donor bodies were then individually soaked in 10 mL of DI water for 10 minutes. A total of 200 145 

mL was filtered, diluted in half, and stored in aliquots at -20o C until use. All procedures were 146 

approved by the Institutional Animal Care and Use Committee of University of Nebraska at 147 

Omaha/University of Nebraska Medical Center (17-070-00-FC, 17-064-08-FC). 148 

Contextual Fear Learning 149 

 To test learning, we utilized a validated contextual fear conditioning paradigm (30). 150 

Briefly, zebrafish were tested individually in a 16 x 16 x 10 cm arena filled with 1.4 L of system 151 

water. The arena was surrounded by opaque white plastic on the bottom and sides to serve as the 152 

contextual stimulus. Animals were removed from group housing and placed into individual 153 

housing 72 hours prior to the training session. Each learning trial was 15 minutes long and was 154 

divided into three subsections. Fish acclimated to the chamber for the first five minutes, followed 155 
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by five minutes of recording pre-exposure behavior (conditioned fear response for second trial). 156 

After these 10 minutes, 1 mL of alarm substance (AS) or distilled water (DI) was administered 157 

into the water through plastic tubing that came from outside of the testing arena. Following alarm 158 

substance exposure, the unconditioned fear response was recorded for five minutes. Between 159 

trials, fish were placed back into their individual housing, the testing arenas were rinsed out, and 160 

were refilled with 1.4 L of fresh system water. Fish underwent two training trials with 30 161 

minutes between trials. The second training trial was stopped after the second five minute block 162 

(conditioned response). Fish immediately had their forebrains removed or were decapitated and 163 

frozen on dry ice and stored at -80oC for qPCR and ISH, respectively. We selected the second 164 

trial for gene expression analyses because we previously showed that out of four training trials, 165 

the second trial was both the earliest trial and one that resulted in the most prominent proactive-166 

reactive behavioral differences during fear conditioning before both lines achieved similar 167 

conditioned responses. These differences during training were also associated with stronger fear 168 

memory recall 96h following training (30).  169 

Total sample sizes consisted of 46 LSB (N = 28 males, 18 females) and 46 HSB (N = 28 170 

males, 18 females) individuals. Of this total, we used 10 HSB individuals (N = 5 AS, 5 DI, all 171 

males) and 10 LSB individuals (N = 5 AS, 5 DI, all males) for qRT-PCR analysis. We used the 172 

remaining fish for ISH analysis. A total of 12 LSB (N = 6 males, 6 females) and 12 HSB (N = 6 173 

males, 6 females) individuals received alarm substance CS-US reinforcements as the 174 

experimental group. For the DI water control group, we used 12 HSB (N = 6 males, 6 females) 175 

and 12 LSB (N = 6 males, 6 females) fish. To control for possible effects of the paradigm and 176 

handling, independent of treatment group, 12 HSB (N = 6 males, 6 females) and 12 LSB (N = 6 177 
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males, 6 females) were habituated to the same single housing as other groups, but did not 178 

undergo behavioral testing. 179 

Behavioral Analysis 180 

 All trials were video-recorded from above and later analyzed with Noldus Ethovision XT 181 

(Noldus XT, Wageningen, Netherlands). For each trial, we quantified freezing time as an 182 

indicator of the conditioned response. We examined freezing because it is one of the most 183 

consistent and conserved behaviors used to assess stress-related behaviors and fear learning and 184 

memory(47). Additionally, freezing was the most reliable indicator of proactive-reactive 185 

differences in contextual fear conditioning in our prior study(30). The subject was considered 186 

frozen if it moved less than 0.5 cm/s. 187 

qRT-PCR 188 

 Preparation, execution, and analysis of the qRT-PCR of forebrain npas4a and gabbr1a 189 

expression followed previously established methods(42, 43). Gene expression was normalized to 190 

an endogenous housekeeping gene, ef1a, which has shown to be stable across sex, age, and 191 

chemical treatment in zebrafish(48). See the supplemental methods for detailed parameters.  192 

ISH 193 

 Brain samples were sectioned on a cryostat at 16 µm onto four serial series. Tissue 194 

fixation parameters, probe synthesis, and ISH conditions were based on established protocols(49, 195 

50). We used digoxigenin (DIG)-labeled probes for Npas4a and Gabbr1a genes. All individuals 196 

were processed simultaneously (one gene at a time) to avoid any potential colorimetric 197 

development differences across individuals due to batch effects. Riboprobes showed specific 198 

binding with high expression using the antisense probe, proportionally reduced expression in the 199 
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1:25 cold-competitor condition, and no expression in the sense and no probe conditions (Figure 200 

S1). See supplemental methods for detailed parameters. 201 

Brain Region Analysis 202 

 Brain section images were captured at 4X using a Nikon Eclipse monochrome camera 203 

(Qi2). For each brain region, we used Nikon NIS Elements Version 4.6 software to measure a 204 

standardized rectangular box within the borders of each brain region and measured the mean 205 

intensity of npas4a and gabbr1a expression within the box. The researcher (M.R.B.) was blinded 206 

to the treatment and strain conditions when collecting and analyzing images. We quantified gene 207 

expression by measuring optical density (OD) of the digoxigenin labeled probes, an established 208 

semi-quantitative measure of gene expression in other systems(49). For each slide, we 209 

normalized the mean intensity of all measures to the background (mean intensity of slide area not 210 

containing tissue), which produced a fractional transmittance value for each brain region in each 211 

section. Fractional transmittance was mathematically converted to optical density by the equation 212 

OD = 2-log(fractional transmittance). See supplemental methods for additional details. 213 

Statistics 214 

 All statistics were performed using SPSS software (Version 24). To analyze freezing 215 

behavior we used a repeated measures two-way ANOVA with strain and treatment group as 216 

between-subjects factors. For analyzing qRT-PCR gene expression we used a multivariate 217 

general linear model (GLM) with normalized npas4a and gabbr1a expression as dependent 218 

variables, and strain and treatment as between-subject factors. For analysis of ISH OD 219 

measurements we used a multivariate GLM with the OD of the five brain regions as dependent 220 

variables and strain and treatment group as between-subjects factors. There were not any effects 221 
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of sex on learning and memory in a previous nor the current study (3-way repeated measures 222 

ANOVA: Fsex*trial= 0.40 p = .531; Fsex= 0.57 p = .456), so we removed sex as a variable to 223 

simplify the model(30). Individual groups were compared with simple effects testing. To account 224 

for multiple comparisons we applied the Benjamini-Hochberg correction to determine 225 

significance(51). For all significant differences (p < 0.05) we also report the effect sizes 226 

(Cohen’s d (d) for t-tests and partial eta-squared (ηp²) for ANOVAs (52). All effect sizes were 227 

medium or large effects(52–54). 228 

Results 229 

Contextual Fear Learning 230 

 In the conditioned fear response period during acquisition testing, there was a significant 231 

trial*treatment group interaction effect for freezing (F1, 64 = 54.86, p = 3.59*10-10, ηp²= .46). The 232 

alarm substance group showed increased freezing between trials at a faster rate than the DI 233 

control group (Figure 1). Additionally, there was a significant trial*strain*treatment group 234 

interaction (F1, 64 = 5.88, p = .018, ηp²= .08) where treated HSB fish increased freezing behavior 235 

at a faster rate than LSB fish. HSB fish exposed to alarm substance froze significantly more than 236 

LSB fish at trial two (t(32) = 4.23, p = 1.81*10-4, d = 1.45), but was not significant at trial one 237 

(t(32) = 1.05, p = .303). Full model results are presented in Table S2.  238 

qRT-PCR 239 

 There was a significant effect of strain on both npas4a (F1, 16 = 11.72, p = .003, ηp²= .42) 240 

and gabbr1a (F1, 16 = 7.29, p = .016, ηp²= .31) forebrain expression. There was a significant 241 

effect of treatment for npas4a (F1, 16 = 11.72, p = .003, ηp²= .42), but not gabbr1a (F1, 16 = 4.30, p 242 

= .055) expression. Full model results are presented in Table S3. In HSB fish, npas4a gene 243 
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expression was significantly higher in the AS group compared to the DI group (p =.003, d = 244 

2.34; Figure S2). There were no effects of treatment on npas4a expression in LSB fish (p=.918). 245 

In situ Hybridization 246 

 Treatment Effects on npas4a OD 247 

 There was a significant effect of treatment condition on npas4a OD in the Dm (F2, 66 = 248 

6.20, p = .003, ηp²= .16), Dl (F2, 66 = 7.13, p = .002, ηp²= .18), Vv (F2, 66 = 3.38, p = .040, ηp²= 249 

.09), and Vs (F2, 66 = 3.93, p = .024, ηp²= .11). In the Dm, npas4a OD was significantly lower in 250 

DI water treatment group compared to both the baseline (p =.030, d = 0.67) and alarm substance 251 

group (p =.003, d = 1.04; Figure 2A). In the Dl, npas4a OD was significantly higher in the AS 252 

group compared to both the baseline (p =.042, d = 0.63) and DI water treatment group (p =.003, 253 

d = 1.05; Figure 2B). In the Vv, the AS group initially had a significantly higher OD compared 254 

to the baseline (p =.048, d = 0.59) and DI groups (p =.018, d = 0.71), however this was not 255 

significant after BH correction (p = .072, .054 respectively; Figure S3). In the Vs, npas4a OD 256 

was significantly lower in the DI group compared to both the baseline (p =.039, d =0.62) and AS 257 

treatment group (p =.033, d = 0.74; Figure 2C). In the Vd, npas4a OD was significantly higher in 258 

the AS group compared to the DI group for LSB fish only (p =.002, d = 1.00; Figure S3). 259 

 Strain Effects on Npas4a OD 260 

 There was a significant main effect of strain on the OD of npas4a in the Dm (F1, 66 = 261 

7.66, p = .007, ηp²= .10), Dl (F1, 66 = 8.82, p = .004, ηp²= .12), and Vv (F1, 66 = 5.16, p = .026, 262 

ηp²= .07). HSB fish overall had higher OD of npas4a in each of the three brain regions.  263 

Additionally, HSB fish exposed to AS had significantly higher npas4a OD compared to LSB fish 264 
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exposed to AS in the Dm (p =.001, d = 1.25), Dl (p =.001, d = 1.65), and Vs (p =.039, d = 0.65; 265 

Figures 2A-C). Full model results are presented in Table S4. 266 

 Strain Specific Treatment Effects on gabbr1a OD 267 

 For gabbr1a OD, there were significant strain*treatment group interaction effects in the 268 

Dm (F1, 66 = 3.31, p = .043, ηp²= .09), Vv (F1, 66 = 7.70, p = .001, ηp²= .19), Vd (F1, 66 = 6.95, p = 269 

.002, ηp²= .17), and Vs (F1, 66 = 3.89, p = .025, ηp²= .11). For each of those regions, there were no 270 

significant differences between any treatment groups for HSB fish. However, for LSB fish the DI 271 

group had significantly lower gabbr1a OD compared to the BL (p =.003, d = 1.37) and AS (p 272 

=.024, d = 1.00) groups in the Dm, BL (p =.023, d = 1.02) and AS (p =.003, d = 1.60) groups in 273 

the Vv, and the BL (p =.015, d = 1.06) and AS (p =.003, d = 1.37) groups in the Vd (Figure S4). 274 

The BL group had a significantly higher gabbr1a OD compared to the DI (p =.003, d = 1.71) and 275 

AS (p =.030, d = 0.99) groups in the Vs. Full model results are presented in Table S5. 276 

Discussion 277 

 Expression of neural plasticity-related genes (e.g. npas4, gabbr1a) has been broadly 278 

implicated as a key process underlying alternative stress coping styles, but has not been 279 

investigated related to proactive-reactive differences in learning and memory (20–22, 26, 27, 55, 280 

56). Consistent with previous findings, we found that reactive (HSB) zebrafish showed an 281 

increased conditioned fear response relative to proactive (LSB) individuals (Figure 1)(30). 282 

Further, we found that npas4a expression was significantly higher in several key forebrain 283 

regions of reactive zebrafish. Altogether, our findings suggest that npas4a plays a similar role in 284 

learning and memory as its mammalian homolog, and may be an important regulator of 285 

proactive-reactive differences in learning and memory.  286 
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 ISH analysis showed that npas4a expression was significantly higher in reactive fish in 287 

the Dm, Dl, and Vs (Figures 2A-C). The Dm (BLA), Dl (HIP), and Vs (BNST) are key sites of 288 

experience-dependent plasticity and integral to fear learning and memory across species(32–35). 289 

Similar to rodents, lesioning the teleost Dm and Dl impairs the formation of new fear and 290 

contextual memories (33, 57–59). Our findings suggest that npas4a-dependent plasticity within 291 

these brain regions may be a key underlying mechanism regulating differences in fear learning 292 

and memory capabilities between stress coping styles. In a prior study using the same 293 

conditioning paradigm, we showed that reactive zebrafish acquired a conditioned fear response 294 

faster than proactive zebrafish (cite). The higher activity-dependent expression of npas4a in 295 

reactive individuals observed in this study may promote higher levels of neural plasticity, 296 

resulting in salient and fearful experiences to be encoded into memory more quickly(28, 60). We 297 

predict that npas4a knockout experiments would produce similar learning and memory deficits 298 

as in rodents, and are needed to establish a direct causal role in zebrafish. More recently, specific 299 

glutamatergic populations of Dm cells have been shown to be required for fear conditioning (32). 300 

Our study is not able to distinguish between cell types expressing npas4a and would be needed 301 

to better characterize the specific circuits regulating proactive-reactive differences in learning. In 302 

selectively bred proactive and reactive trout, these telencephalic forebrain regions have also been 303 

shown to display differing monoaminergic and cortisol responses to acute stress(61, 62). This 304 

suggests that higher expression of npas4a in these brain regions may play important roles in 305 

constraining variation across a number of behavioral contexts. 306 

 While the BNST has been shown to be important for aversive learning in rodents(63, 64), 307 

the function of the Vs and specifically of npas4a expression in the Vs is not well understood in 308 

regards to learning and memory. We found that similar to the Dm and Dl, npas4a expression 309 
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within the Vs is likely important for fear learning, and is associated with differences between 310 

proactive and reactive stress coping styles. Supporting this, a previous study found that increased 311 

activity and npas4 expression in a population of corticotropin-releasing factor neurons in the 312 

BNST was associated with increased stress resiliency and prevention of a post-traumatic stress 313 

disorder-like phenotype in rodents(65). This suggests that npas4a expression in the Vs may play 314 

an important role in how individuals experience and cope with stress differently. Interestingly, 315 

the Vs has been shown to have connections with both the Dm and Dl, and to the hypothalamus 316 

and other brainstem areas that are essential for eliciting behavioral and endocrine stress 317 

responses. While this study only assessed gene expression across select forebrain structures, 318 

future studies should investigate other downstream structures and consider the role of 319 

glucocorticoids and the hypothalamus-pituitary-adrenal axis (hypothalamus-pituitary-interrenal 320 

in teleosts). This is particularly promising as glucocorticoid differences have been well-321 

characterized between proactive and reactive stress coping styles(3, 66–68), though to a lesser 322 

extent related to learning and memory. 323 

 The DI treatment groups showed significantly lower npas4a expression compared to the 324 

AS treatment group in the Dm, Dl, and Vs (Figure 2a, 2c). This suggests npas4a is expressed in a 325 

treatment-specific manner associated with the learned conditioned fear response in the AS group. 326 

Unexpectedly, npas4a expression in the DI group was significantly lower than the BL group in 327 

the Dm and Vs. Other studies have found that acute injection of corticosterone or chronic 328 

restraint and social isolation stressors can decrease npas4 expression in the rodent prefrontal 329 

cortex and hippocampus and lead to a variety of behavioral deficits including learning and 330 

memory(69–71). It is unclear whether this decrease in expression is maladaptive, or whether it is 331 

an adaptive homeostatic response to stress(72). It is unlikely that our results can be explained by 332 
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physical isolation, as the baseline group was also socially isolated for the same duration. 333 

However, it is possible that handling stress could explain the reduction in npas4a expression for 334 

the DI group. 335 

 While qRT-PCR findings showed strain effects in gabbr1a expression, there were no 336 

strain differences in any of the analyzed brain regions for the ISH analysis. This suggests that the 337 

strain differences in forebrain gabbr1a expression are driven by other brain regions not 338 

investigated in this study. Therefore, gabbr1a expression within the Dm, Dl, Vv, Vs, and Vd 339 

does not appear to be associated with development of a conditioned fear response. Other studies 340 

have suggested that GABAergic signaling may be more important for consolidation, 341 

reconsolidation, or extinction of fear memories(73).  Future studies should assess how GABA B 342 

receptor expression may influence other phases of fear conditioning, or other paradigms using 343 

positive reinforcement. 344 

 Learning to predict and cope with potentially dangerous environments is essential to an 345 

individual’s survival. Proactive and reactive stress coping styles represent alternative strategies 346 

for coping with stress and differ in a number of behavioral contexts, including learning and 347 

memory. Our study suggests that brain-region specific expression patterns of npas4a may 348 

underlie differences in fear learning between proactive and reactive stress coping styles. These 349 

findings advance our understanding of the neuromolecular mechanisms underlying stress-coping 350 

style differences in cognition and highlight neuroplasticity’s key role in regulating alternative 351 

adaptive behavioral responses to stress. Additionally, as proactive and reactive individuals share 352 

potentially conserved mechanisms underlying other stress coping behaviors, this suggests that 353 

these brain regions may also constrain behavioral variation in a number of disparate contexts. 354 
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Figures 565 

 566 

Figure 1. Acquisition of fear memory over two training trials. Freezing time was measured for 567 
high stationary behavior (HSB) and low stationary behavior (LSB) fish exposed to distilled water 568 
(DI) or alarm substance (AS). Points represent mean ± 1 standard error. * indicates p < .05 for 569 
within-treatment group comparison 570 
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 585 

Figure 2. Expression of npas4a in the Dm (A), Dl (B), and Vs (C). We measured expression of 586 
high stationary behavior (HSB) and low stationary behavior (LSB) fish at baseline (BL) or 587 
exposed to either alarm substance (AS) or distilled water (DI) during training. Bars represent 588 
mean ± 1 SE. Bars labeled with different letters indicate p < .05. * indicates a significant strain 589 
main effect. ^ indicates a significant within-treatment group strain difference. 590 
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Supplementary Information 594 

Methods 595 

qRT-PCR 596 

 We homogenized the tissue in Tri reagent (Sigma) and zirconium oxide beads in a Bullet 597 

Blender (NextAdvance) and extracted the RNA through column filtration (RNeasy Micro Plus 598 

Kit, Qiagen). RNA was subsequently converted to cDNA (Superscript IV First-Strand Synthesis 599 

System, Invitrogen) and purified (Millipore Amicon Ultra -0.5 mL 30 K Centrifugal Filters 600 

Devices). We ran qRT-PCR reactions on a QuantStudio 7 Flex Real-Time PCR system (Applied 601 

Biosystems) using PowerUp SYBR Green Master Mix (Applied Biosystems). A 131 base pair 602 

npas4a amplicon was created using 5’-CACCTCGGACACTCAATGGT-3’ (F) and 5’-603 

AACAAGCGATCTGTGTCAGGT-3’ (R) as primers. A 198 base pair gabbr1a amplicon was 604 

created using 5’-CCCAGAGACGGAGGGATACG-3’ (F) and 5’-605 

CGGGCACATCATCAAGCATCT-3’ (R) as primers. The parameters for both genes were as 606 

follows: 2 minutes at 50oC, 2 minutes at 95oC, followed by 40 cycles of 15 seconds of 95oC and 607 

1 minute of 60oC. Primer concentration was 5 pmole/µl for both genes. 608 

Tissue Section Processing 609 

All series were simultaneously post-fixed in cold 4% paraformaldehyde/PBS solution, washed in 610 

PBS and acetylated in 0.25% acetic anhydride/triethanolamine. Then, slides were washed in 2X 611 

standard saline citrate, dehydrated in increasing ethanol series and stored at -80 oC. 612 

Probe Synthesis 613 

 To quantify npas4a and gabbr1a we used digoxigenin (DIG)-labeled RNA probes. A 402 614 

base pair npas4a DIG probe template was subcloned by using primer pair 5’- 615 

TTCTGTAGCGTCCAATCGGC -3’and 5’- ACTTCCACTCCCATCTTTGCG -3’. The 390 616 
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base pair gabbr1a probe template was subcloned by using primer pair 5’- 617 

AAGGATGAGCGCAATGTAGA -3’and 5’- CTGTTCCTGAGTCAGTCCTC -3’. Riboprobes 618 

were generated using a 1:3 ratio of UTP and DIG-UTP (Roche). After probe synthesis, we 619 

removed unincorporated nucleotides via column filtration according to manufacturer’s protocol 620 

(Megaclear, Ambion).  621 

In situ Hybridization 622 

 Slides were prehybridized with a solution containing 50% formamide, 5X SSC, 5X 623 

Denhardt’s solution, 250 µg/ml yeast tRNA, and 500 µg/ml herring sperm DNA for 5 hours at 624 

60°C in a hybridization chamber containing chamber buffer solution (50% formamide, 2X SSC). 625 

Then we hybridized the slides overnight at 67°C with fresh prehybridization solution containing 626 

340 ng of npas4a antisense or 380 ng of gabbr1a riboprobe per slide. Following hybridization 627 

we performed two washes in 2X SSC at room temperature for npas4a (one wash in 2X SSC at 628 

60oC, one wash in 2X SSC at room temperature for gabbr1a), then RNase A treated the slides 629 

(0.5M NaCl, 10 mM Tris pH 8.0, 2.25 mM EDTA, 0.2 µg/ml RNase A), followed by 630 

increasingly stringent washes (2X, 1X, 0.5X, 0.25X SSC) and then a final wash in Buffer B1 631 

(100 mM Tris pH 7.5, 150 mM NaCl). Sections were then incubated overnight at 4°C with Anti-632 

Digoxigenin AP antibody (Roche). After antibody incubation we washed sections twice in 633 

Buffer B1 and then blocked endogenous alkaline phosphatase activity with a 30 minute wash in 634 

Buffer B3 (100mM Tris pH 9.5, 100 mM NaCl, 50 mM MgCl2, 5 mM levamisole) in the dark. 635 

We used colorimetric detection using NBT/BCIP stock solution (Roche). The colorimetric 636 

reaction was stopped (80 minutes for Npas4a and 12 hours for Gabbr1a) by rinsing sections 637 

three times in ultrapure type 1 water and then progressively dehydrating sections in ethanol 638 

(25%, 50%, 70%, 95%). 639 
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Brain Region Analysis 640 

 The light settings were set to the maximum, and two 1/16 filters were placed over the 641 

light source to keep consistency across days. The measuring box was always placed in the 642 

middle of the brain region on the dorsal-ventral plane, excluding the midline. We measured the 643 

mean intensity bilaterally if available, and averaged all of the intensities for each individual for 644 

each brain region. Depending on the size of the brain region, the number of sections averaged per 645 

individual ranged from two to six consecutive sections. Consecutive sections were 48 µm apart. 646 

The anterior commissure was identified as a landmark for each of the brain regions. We 647 

measured the Dm (13003.92 µm2) and Dl (13003.92 µm2) for 1-2 sections prior to and 3-4 648 

sections following the anterior commissure. We measured the Vv (9907.28 µm2) and Vd 649 

(9907.28 µm2) for 3-4 sections preceding the anterior commissure. We measured the Vs 650 

(9907.28 µm2) for the slice containing the anterior commissure and 1-2 following it.  651 

 652 

 653 

 654 

 655 

 656 

 657 

 658 

 659 

 660 
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Tables 661 

Table S1. Brain region terminology, abbreviations, and putative tetrapod homologue regions. 662 

 663 

 664 

 665 

 666 

 667 

 668 

 669 

 670 

 671 

 672 

 673 

 674 

 675 

 676 

 677 

 678 

 679 

 680 

 681 

 682 

 683 

Teleost Region Abbreviation Putative Tetrapod Homologue 

Area dorsomedialis telencephali Dm Basolateral amygdala 

Area dorsolateralis telencephali Dl Pallial hippocampus 

Area ventroventralis telencephali Vv Lateral septum 

Area dorsoventralis telencephali Vd Striatum 

Ventralis supracommissuralis telencephali Vs Bed nucleus of the stria terminalis 
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Table S2. Results of repeated measures GLM for the acquisition learning phase for freezing 684 
time. 685 

Bold text indicates p < 0.05 686 

 687 

 688 

 689 

 690 

 691 

 692 

 693 

 694 

 695 

 696 

 697 

 698 

 699 

 Freezing Time 

 F(p, ηp²) 

Within-Subjects Effects (df = 1, 64)  

 Trial 62.82 (4.36*10
-11

, .50) 

 Trial*Strain 3.89 (.053) 

 Trial*Treatment 54.86 (3.59*10
-10

, .46) 

 Trial*Strain*Treatment 5.88 (.018, .08) 

Between Subjects Effects (df = 1, 64)  

 Intercept  179.53 (3.08*10
-20

, .74) 

 Strain  8.92 (.004, .12) 

 Treatment 18.78 (5.30*10
-5

, .23) 

 Strain*Treatment 2.18 (.144) 
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Table S3. Results of multivariate GLM for forebrain expression of npas4a and gabbr1a from 700 
qPCR. 701 

Bold text indicates p < 0.05 702 

 703 

 704 

 705 

 706 

 707 

 708 

 709 

 710 

 711 

 712 

 713 

 714 

 715 

 716 

 717 

 718 

 719 

 720 

 721 

 npas4a gabbr1a 

 F(p, ηp²) F( p, ηp²) 

 Intercept  393.93 (1.08*10
-12

, .96) 364.98 (1.94*10
-12

, .96) 

 Strain  11.72 (.003, .42) 7.29 (.016, .31) 

 Treatment 11.72 (.003, .42) 4.30 (.055) 

 Strain*Treatment 2.32 (.147) 3.88 (.066) 
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Table S4. Results of multivariate GLM of npas4a optical density across the five forebrain 722 
regions. 723 

Bold text indicates p < 0.05 724 

 725 

 726 

 727 

 728 

 729 

 730 

 731 

 732 

 733 

 734 

 735 

 736 

 737 

 738 

 739 

 740 

 741 

 742 

 743 

 Dm Dl Vv Vd Vs 

 F(p, ηp²) F(p, ηp²) F(p, ηp²) F(p, ηp²) F(p, ηp²) 

Intercept 
266.15        

(4.36*10
-4 , .80) 

236.22       
(4.36*10

-4, .78) 
295.70      

(4.36*10
-4, .82) 

282.12      
(4.36*10

-4, .81) 
286.57      

(4.36*10
-4, .81) 

Strain 7.66 (.007, .10) 8.82 (.004, .12) 5.16 (.026, .07) 0.77 (.383) 2.64 (.109) 

Treatment 6.20 (.003, .16) 7.13 (.002, .18) 3.38 (.040, .09) 1.61 (.208) 3.93 (.024, .11) 

Strain*Treatment 1.78 (.177) 3.02 (.055) 0.91 (.406) 4.51 (.015, .12) 1.59 (.212) 
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Table S5. Results of multivariate GLM of gabbr1a optical density across the five forebrain 744 
regions. 745 

Bold text indicates p < 0.05 746 

 747 

 748 

 749 

 750 

 751 

 752 

 753 

 754 

 755 

 756 

 757 

 758 

 759 

 760 

 761 

 762 

 763 

 764 

 765 

 Dm Dl Vv Vd Vs 

 F(p, ηp²) F(p, ηp²) F(p, ηp²) F(p, ηp²) F(p, ηp²) 

Intercept 
121.69            

(1.27*10
-16, .65) 

107.89           
(1.61*10

-15, .62) 
147.75          

(1.68*10
-18, .69) 

153.60           
(6.87*10

-19, .70) 
134.16          

(1.49*10
-17, .67) 

Strain 0.44 (.509) 2.91 (.093) 0.166 (.685) 0.59 (.444) 0.12 (.736) 

Treatment 3.28 (.044, .09) 2.69 (.076) 1.52 (.227) 0.91 (.410) 5.88 (.004, .15) 

Strain*Treatment 3.31 (.043, .09) 1.51 (.229) 7.70 (.001, .19) 6.95 (.002, .17) 3.89 (.025, .11) 
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Figures 766 

 767 

Figure S1. Pilot in situ hybridization results for the Npas4a and Gabbr1a genes. There was 768 
strong signal in the antisense, proportionally reduced signal in the cold-competitor (1:25 ratio of 769 
DIG-labeled to unlabeled riboprobe), and negligible signal in the sense and no probe 770 
permutations. Scale bars represent 50 um. 771 

 772 

 773 

 774 

 775 

 776 

 777 

 778 

 779 
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 780 

Figure S2. npas4a (A) and gabbr1a (B) forebrain expression standardized to ef1a. We measured 781 
expression of high stationary behavior (HSB) and low stationary behavior (LSB) fish that were 782 
exposed to either alarm substance (AS) or distilled water (DI) during training. Bars represent 783 
mean ± 1 SE. Bars labeled with different letters indicate p < .05. * indicates a significant strain 784 
main effect. 785 

 786 

 787 

 788 

 789 

 790 

 791 

 792 

 793 

 794 

 795 

 796 

 797 

* * (A) (B) 
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 798 

 799 

Figure S3. Expression of npas4a in the Vv (A) and Vd (B). We measured expression of high 800 
stationary behavior (HSB) and low stationary behavior (LSB) fish at baseline (BL) or exposed to 801 
either alarm substance (AS) or distilled water (DI) during training. Bars represent mean ± 1 SE. 802 
Bars labeled with different letters indicate p < .05. * indicates a significant strain main effect. 803 

 804 

 805 

 806 

 807 

 808 

 809 

 810 

 811 

 812 

(B)

(A) 
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 813 

 814 

 815 

Figure S4 Expression of gabbr1a in the Dm (A), Dl (B), Vv (C), Vd (D), Vs (E). We measured 816 
expression of high stationary behavior (HSB; B) and low stationary behavior (LSB; A) fish at 817 
baseline (BL) or exposed to either alarm substance (AS) or distilled water (DI) during training. 818 
Bars represent mean ± 1 SE. Bars labeled with different letters indicate p < .05. When split by 819 
strain, LSB fish exposed to DI water had significantly lower gabbr1a OD compared to the 820 
baseline and AS groups. There were no treatment group differences in the HSB group. 821 

 822 

(A) (B) 

(E) 

(C) (D) 
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