

1 *Npas4a* Expression in Fear Learning

2 Title: *Npas4a* expression in the teleost forebrain is associated with stress coping style differences
3 in fear learning

4 Matthew R Baker^a and Ryan Y Wong^{a,b*}

5 ^a Department of Biology, University of Nebraska at Omaha

6 ^b Department of Psychology, University of Nebraska at Omaha

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22 *Correspondence: Ryan Y Wong, University of Nebraska at Omaha, 6001 Dodge St, Omaha, NE

23 68182 Email: rwong@unomaha.edu Phone: 402-554-4473

Npas4a Expression in Fear Learning

24 **Significance Statement:**

25 Learning to predict and cope with potentially dangerous environments is an adaptive survival
26 response. Proactive and reactive stress coping styles represent alternative strategies for coping
27 with stress and differ in a number of behavioral contexts, including learning and memory. We
28 show that reactive zebrafish display stronger conditioned fear responses to an olfactory alarm
29 cue, with associated higher expression of a neuroplasticity-related gene, *npas4a*, in the medial
30 and lateral zones of the dorsal telencephalon, and the supracommissural nucleus of the ventral
31 telencephalon. Our study suggests that *npas4a*-dependent plasticity in the teleost forebrain is
32 important for individual variation in fear learning. More broadly, plasticity in these associative
33 limbic regions may regulate alternative stress coping styles and constrain behavioral variation
34 across a number of behavioral contexts.

35

36

37

38

39

40

41

42

43

Npas4a Expression in Fear Learning

44 Abstract

45 Learning to anticipate potentially dangerous contexts is an adaptive behavioral response to
46 coping with stressors. An animal's stress coping style (e.g. proactive-reactive axis) is known to
47 influence how it encodes salient events. However, the neural and molecular mechanisms
48 underlying these stress coping style differences in learning are unknown. Further, while a
49 number of neuroplasticity-related genes have been associated with alternative stress coping
50 styles, it is unclear if these genes may bias the development of conditioned behavioral responses
51 to stressful stimuli, and if so, which brain regions are involved. Here, we trained adult zebrafish
52 to associate a naturally aversive olfactory cue with a given context. Next, we investigated if
53 expression of two neural plasticity and neurotransmission-related genes (*npas4a* and *gabbr1a*)
54 were associated with the contextual fear conditioning differences between proactive and reactive
55 stress coping styles. Reactive zebrafish developed a stronger conditioned fear response and
56 showed significantly higher *npas4a* expression in the medial and lateral zones of the dorsal
57 telencephalon (Dm, Dl), and the supracommissural nucleus of the ventral telencephalon (Vs).
58 Our findings suggest that the magnitude of expression of activity-dependent genes like *npas4a*
59 may be differentially expressed across several interconnected forebrain regions in response to
60 fearful stimuli and promote biases in fear learning among different stress coping styles.

61 **Keywords:** stress coping style, animal personality, fear learning, *npas4*, alarm substance,
62 zebrafish

63

64

65

Npas4a Expression in Fear Learning

66 Introduction

67 Animals frequently must overcome stressors and the ability to encode and recall these
68 salient experiences is essential to an individual's survival. Within individuals, behavioral and
69 physiological responses to stressors often co-vary, belonging to correlated suites of traits that are
70 consistent across contexts and time(1–4) (i.e. animal personality, stress coping styles; bold-shy
71 axis, proactive-reactive axis). In addition to boldness, aggression, and stress physiology, studies
72 demonstrate that proactive and reactive individuals also differ in learning and memory
73 processes(5–9). The more risk-prone proactive individuals tend to show faster acquisition of
74 memories that require higher levels of activity, or paradigms with positive and rewarding
75 valence(10–16). In contrast, the risk-averse reactive individuals tend to show faster acquisition of
76 aversive paradigms that require avoidance or reduced levels of activity(17–19). Despite these
77 findings, the neuromolecular mechanisms and regional brain activity underlying these stress
78 coping style differences in learning are not well understood.

79 Recent work has suggested that neural plasticity and neurogenesis may be key
80 mechanisms underlying divergent proactive-reactive responses to stress, but whether these
81 processes are associated with differences in learning and memory is not understood (20, 21).
82 While previous studies have characterized the whole-brain transcriptome of proactive and
83 reactive individuals at baseline, the contribution of specific neural plasticity- and synaptic
84 transmission-related candidate genes and their spatial expression patterns have yet to be
85 examined during a learning and memory task (22, 23). Two particularly interesting candidate
86 genes, *npas4* and *gabbr1* (*npas4a* and *gabbr1a* in teleosts) are essential in regulating neuronal
87 excitability and molecular processes related to learning and memory such as long-term
88 potentiation (24–26). *npas4* is an immediate early gene transcription factor that is predominantly

Npas4a Expression in Fear Learning

89 expressed in the brain and enriched in the limbic regions. It is expressed through calcium
90 signaling and is thought to induce primarily GABAergic inhibitory synapses in response to
91 excitation and play an important role in homeostatic plasticity(25). *gabbr1* codes for a
92 metabotropic GABA B receptor, which has also been shown to play an important role reducing
93 neuronal excitability through G-protein signaling-dependent slow, long lasting hyperpolarization
94 of postsynaptic cells. Further, deletion or altered expression of both of these genes has been
95 shown to cause abnormal synaptic plasticity, neurogenesis, and impaired learning and memory
96 abilities(27–29). Both of these genes were found to have significantly upregulated whole-brain
97 expression at baseline in selectively-bred reactive zebrafish, which separately showed faster
98 acquisition of a contextual conditioned fear response towards an aversive olfactory alarm cue
99 (alarm substance)(22, 30). However, it is unknown if expression of these genes in specific brain
100 regions are more directly associated with proactive-reactive differences in fear learning.

101 The basic neural substrates of fear learning have been well characterized, and are
102 promising candidate sites where neural plasticity-related processes may regulate variation in fear
103 learning capabilities. Traditionally, the basolateral amygdala is at the center of the fear system,
104 with the hippocampus providing relevant associative information to allow for context-specific
105 defensive responses fearful stimuli(31). More recently other brain regions such as the bed
106 nucleus of the stria terminalis (BNST), lateral septum (LS), and striatum have attracted greater
107 interest due to their functional and structural connections with the hippocampal/amygdala
108 affective forebrain, and their output to structures essential for behavioral and physiological
109 responses to potential threats. The majority of this circuitry has been characterized in rodent
110 models, with putatively homologous structures identified in the teleost forebrain which have also
111 been shown to be critical for contextual fear learning and adaptive responses to stress(32–35).

Npas4a Expression in Fear Learning

112

113 Here, we trained proactive and reactive zebrafish to associate alarm substance exposure
114 with a context in one training trial, followed by a second assessment trial in the absence of the
115 alarm substance. We then quantified *npas4a* and *gabbr1a* forebrain expression to investigate
116 their potential link with differences in conditioned fear responses between alternative stress
117 coping styles. We predict that an increased conditioned fear response in reactive zebrafish will
118 be associated with increased expression of neural plasticity-related genes in the dorsal and
119 medial portions of the dorsal telencephalon (Dm, Dl) and the dorsal, ventral, and
120 supracommissural portions of the ventral telencephalon (Vd, Vv, Vs), putative homologues of the
121 mammalian basolateral amygdala, hippocampus, striatum, lateral septum, and bed nucleus of the
122 stria terminalis, respectively(32–35).

123 **Methods**

124 *Subjects*

125 Zebrafish are utilized in a variety of laboratory studies to understand the neural, genetic,
126 and pharmacological mechanisms of learning and memory(36–38). Both wild and laboratory
127 strains of zebrafish display the proactive and reactive stress coping styles, which have distinct
128 genetic architectures and neuroendocrine responses (22, 23, 39). Here we used the high-
129 stationary behavior (HSB; reactive) and low-stationary behavior (LSB; proactive) zebrafish
130 strains to study the association between *npas4a* and *gabbr1a* expression and fear learning
131 differences between proactive and reactive stress coping styles. Starting from wild-caught
132 zebrafish, the HSB and LSB strains were generated and are maintained by artificial selection for
133 opposing amounts of stationary behavior to a novelty stressor(40). The HSB and LSB strains

Npas4a Expression in Fear Learning

134 show contrasting behavior, physiology, morphology, and neuromolecular profiles consistent with
135 the reactive and proactive coping styles, respectively(22, 40–44). Additionally, these divergent
136 behavioral profiles between the strains are consistent across contexts and over time and have
137 high repeatability (40, 45, 46). During testing, fish were individually housed in 3-liter tanks on a
138 recirculating water system (Pentair Aquatic Eco-Systems) using UV and solid filtration on a
139 14:10 L/D cycle at a temperature of 27° C. Fish were fed twice a day with Tetramin Tropical
140 Flakes (Tetra, USA).

141 Alarm Substance

142 We created a single batch of alarm substance as previously described(30). In brief, 20
143 randomly selected donor fish (wild type) were euthanized by rapid chilling followed by light
144 abrasion of lateral skin cells on one side of each donor fish, ensuring that no blood was drawn.
145 Donor bodies were then individually soaked in 10 mL of DI water for 10 minutes. A total of 200
146 mL was filtered, diluted in half, and stored in aliquots at -20° C until use. All procedures were
147 approved by the Institutional Animal Care and Use Committee of University of Nebraska at
148 Omaha/University of Nebraska Medical Center (17-070-00-FC, 17-064-08-FC).

149 Contextual Fear Learning

150 To test learning, we utilized a validated contextual fear conditioning paradigm (30).
151 Briefly, zebrafish were tested individually in a 16 x 16 x 10 cm arena filled with 1.4 L of system
152 water. The arena was surrounded by opaque white plastic on the bottom and sides to serve as the
153 contextual stimulus. Animals were removed from group housing and placed into individual
154 housing 72 hours prior to the training session. Each learning trial was 15 minutes long and was
155 divided into three subsections. Fish acclimated to the chamber for the first five minutes, followed

Npas4a Expression in Fear Learning

156 by five minutes of recording pre-exposure behavior (conditioned fear response for second trial).
157 After these 10 minutes, 1 mL of alarm substance (AS) or distilled water (DI) was administered
158 into the water through plastic tubing that came from outside of the testing arena. Following alarm
159 substance exposure, the unconditioned fear response was recorded for five minutes. Between
160 trials, fish were placed back into their individual housing, the testing arenas were rinsed out, and
161 were refilled with 1.4 L of fresh system water. Fish underwent two training trials with 30
162 minutes between trials. The second training trial was stopped after the second five minute block
163 (conditioned response). Fish immediately had their forebrains removed or were decapitated and
164 frozen on dry ice and stored at -80°C for qPCR and ISH, respectively. We selected the second
165 trial for gene expression analyses because we previously showed that out of four training trials,
166 the second trial was both the earliest trial and one that resulted in the most prominent proactive-
167 reactive behavioral differences during fear conditioning before both lines achieved similar
168 conditioned responses. These differences during training were also associated with stronger fear
169 memory recall 96h following training (30).

170 Total sample sizes consisted of 46 LSB (N = 28 males, 18 females) and 46 HSB (N = 28
171 males, 18 females) individuals. Of this total, we used 10 HSB individuals (N = 5 AS, 5 DI, all
172 males) and 10 LSB individuals (N = 5 AS, 5 DI, all males) for qRT-PCR analysis. We used the
173 remaining fish for ISH analysis. A total of 12 LSB (N = 6 males, 6 females) and 12 HSB (N = 6
174 males, 6 females) individuals received alarm substance CS-US reinforcements as the
175 experimental group. For the DI water control group, we used 12 HSB (N = 6 males, 6 females)
176 and 12 LSB (N = 6 males, 6 females) fish. To control for possible effects of the paradigm and
177 handling, independent of treatment group, 12 HSB (N = 6 males, 6 females) and 12 LSB (N = 6

178 *Npas4a* Expression in Fear Learning

178 males, 6 females) were habituated to the same single housing as other groups, but did not
179 undergo behavioral testing.

180 *Behavioral Analysis*

181 All trials were video-recorded from above and later analyzed with Noldus Ethovision XT
182 (Noldus XT, Wageningen, Netherlands). For each trial, we quantified freezing time as an
183 indicator of the conditioned response. We examined freezing because it is one of the most
184 consistent and conserved behaviors used to assess stress-related behaviors and fear learning and
185 memory(47). Additionally, freezing was the most reliable indicator of proactive-reactive
186 differences in contextual fear conditioning in our prior study(30). The subject was considered
187 frozen if it moved less than 0.5 cm/s.

188 *qRT-PCR*

189 Preparation, execution, and analysis of the qRT-PCR of forebrain *npas4a* and *gabbr1a*
190 expression followed previously established methods(42, 43). Gene expression was normalized to
191 an endogenous housekeeping gene, *ef1a*, which has shown to be stable across sex, age, and
192 chemical treatment in zebrafish(48). See the supplemental methods for detailed parameters.

193 *ISH*

194 Brain samples were sectioned on a cryostat at 16 μ m onto four serial series. Tissue
195 fixation parameters, probe synthesis, and ISH conditions were based on established protocols(49,
196 50). We used digoxigenin (DIG)-labeled probes for *Npas4a* and *Gabbr1a* genes. All individuals
197 were processed simultaneously (one gene at a time) to avoid any potential colorimetric
198 development differences across individuals due to batch effects. Riboprobes showed specific
199 binding with high expression using the antisense probe, proportionally reduced expression in the

200 *Npas4a* Expression in Fear Learning

200 1:25 cold-competitor condition, and no expression in the sense and no probe conditions (Figure
201 S1). See supplemental methods for detailed parameters.

202 *Brain Region Analysis*

203 Brain section images were captured at 4X using a Nikon Eclipse monochrome camera
204 (Qi2). For each brain region, we used Nikon NIS Elements Version 4.6 software to measure a
205 standardized rectangular box within the borders of each brain region and measured the mean
206 intensity of *npas4a* and *gabbr1a* expression within the box. The researcher (M.R.B.) was blinded
207 to the treatment and strain conditions when collecting and analyzing images. We quantified gene
208 expression by measuring optical density (OD) of the digoxigenin labeled probes, an established
209 semi-quantitative measure of gene expression in other systems(49). For each slide, we
210 normalized the mean intensity of all measures to the background (mean intensity of slide area not
211 containing tissue), which produced a fractional transmittance value for each brain region in each
212 section. Fractional transmittance was mathematically converted to optical density by the equation
213 $OD = 2 - \log(\text{fractional transmittance})$. See supplemental methods for additional details.

214 *Statistics*

215 All statistics were performed using SPSS software (Version 24). To analyze freezing
216 behavior we used a repeated measures two-way ANOVA with strain and treatment group as
217 between-subjects factors. For analyzing qRT-PCR gene expression we used a multivariate
218 general linear model (GLM) with normalized *npas4a* and *gabbr1a* expression as dependent
219 variables, and strain and treatment as between-subject factors. For analysis of ISH OD
220 measurements we used a multivariate GLM with the OD of the five brain regions as dependent
221 variables and strain and treatment group as between-subjects factors. There were not any effects

Npas4a Expression in Fear Learning

222 of sex on learning and memory in a previous nor the current study (3-way repeated measures
223 ANOVA: $F_{\text{sex} \times \text{trial}} = 0.40$ $p = .531$; $F_{\text{sex}} = 0.57$ $p = .456$), so we removed sex as a variable to
224 simplify the model(30). Individual groups were compared with simple effects testing. To account
225 for multiple comparisons we applied the Benjamini-Hochberg correction to determine
226 significance(51). For all significant differences ($p < 0.05$) we also report the effect sizes
227 (Cohen's d (d) for t-tests and partial eta-squared (η^2) for ANOVAs (52). All effect sizes were
228 medium or large effects(52–54).

229 **Results**

230 *Contextual Fear Learning*

231 In the conditioned fear response period during acquisition testing, there was a significant
232 trial*treatment group interaction effect for freezing ($F_{1, 64} = 54.86$, $p = 3.59 \times 10^{-10}$, $\eta^2 = .46$). The
233 alarm substance group showed increased freezing between trials at a faster rate than the DI
234 control group (Figure 1). Additionally, there was a significant trial*strain*treatment group
235 interaction ($F_{1, 64} = 5.88$, $p = .018$, $\eta^2 = .08$) where treated HSB fish increased freezing behavior
236 at a faster rate than LSB fish. HSB fish exposed to alarm substance froze significantly more than
237 LSB fish at trial two ($t(32) = 4.23$, $p = 1.81 \times 10^{-4}$, $d = 1.45$), but was not significant at trial one
238 ($t(32) = 1.05$, $p = .303$). Full model results are presented in Table S2.

239 *qRT-PCR*

240 There was a significant effect of strain on both *npas4a* ($F_{1, 16} = 11.72$, $p = .003$, $\eta^2 = .42$)
241 and *gabbr1a* ($F_{1, 16} = 7.29$, $p = .016$, $\eta^2 = .31$) forebrain expression. There was a significant
242 effect of treatment for *npas4a* ($F_{1, 16} = 11.72$, $p = .003$, $\eta^2 = .42$), but not *gabbr1a* ($F_{1, 16} = 4.30$, p
243 = .055) expression. Full model results are presented in Table S3. In HSB fish, *npas4a* gene

244 *Npas4a Expression in Fear Learning*

244 expression was significantly higher in the AS group compared to the DI group ($p = .003$, $d =$
245 2.34; Figure S2). There were no effects of treatment on *npas4a* expression in LSB fish ($p = .918$).

246 *In situ Hybridization*

247 *Treatment Effects on npas4a OD*

248 There was a significant effect of treatment condition on *npas4a* OD in the Dm ($F_{2,66} =$
249 6.20, $p = .003$, $\eta^2 = .16$), Dl ($F_{2,66} = 7.13$, $p = .002$, $\eta^2 = .18$), Vv ($F_{2,66} = 3.38$, $p = .040$, $\eta^2 =$
250 .09), and Vs ($F_{2,66} = 3.93$, $p = .024$, $\eta^2 = .11$). In the Dm, *npas4a* OD was significantly lower in
251 DI water treatment group compared to both the baseline ($p = .030$, $d = 0.67$) and alarm substance
252 group ($p = .003$, $d = 1.04$; Figure 2A). In the Dl, *npas4a* OD was significantly higher in the AS
253 group compared to both the baseline ($p = .042$, $d = 0.63$) and DI water treatment group ($p = .003$,
254 $d = 1.05$; Figure 2B). In the Vv, the AS group initially had a significantly higher OD compared
255 to the baseline ($p = .048$, $d = 0.59$) and DI groups ($p = .018$, $d = 0.71$), however this was not
256 significant after BH correction ($p = .072$, $.054$ respectively; Figure S3). In the Vs, *npas4a* OD
257 was significantly lower in the DI group compared to both the baseline ($p = .039$, $d = 0.62$) and AS
258 treatment group ($p = .033$, $d = 0.74$; Figure 2C). In the Vd, *npas4a* OD was significantly higher in
259 the AS group compared to the DI group for LSB fish only ($p = .002$, $d = 1.00$; Figure S3).

260 *Strain Effects on Npas4a OD*

261 There was a significant main effect of strain on the OD of *npas4a* in the Dm ($F_{1,66} =$
262 7.66, $p = .007$, $\eta^2 = .10$), Dl ($F_{1,66} = 8.82$, $p = .004$, $\eta^2 = .12$), and Vv ($F_{1,66} = 5.16$, $p = .026$,
263 $\eta^2 = .07$). HSB fish overall had higher OD of *npas4a* in each of the three brain regions.
264 Additionally, HSB fish exposed to AS had significantly higher *npas4a* OD compared to LSB fish

Npas4a Expression in Fear Learning

265 exposed to AS in the Dm ($p = .001$, $d = 1.25$), Dl ($p = .001$, $d = 1.65$), and Vs ($p = .039$, $d = 0.65$;
266 Figures 2A-C). Full model results are presented in Table S4.

267 *Strain Specific Treatment Effects on gabbr1a OD*

268 For *gabbr1a* OD, there were significant strain*treatment group interaction effects in the
269 Dm ($F_{1, 66} = 3.31$, $p = .043$, $\eta^2 = .09$), Vv ($F_{1, 66} = 7.70$, $p = .001$, $\eta^2 = .19$), Vd ($F_{1, 66} = 6.95$, $p =$
270 $.002$, $\eta^2 = .17$), and Vs ($F_{1, 66} = 3.89$, $p = .025$, $\eta^2 = .11$). For each of those regions, there were no
271 significant differences between any treatment groups for HSB fish. However, for LSB fish the DI
272 group had significantly lower *gabbr1a* OD compared to the BL ($p = .003$, $d = 1.37$) and AS (p
273 $= .024$, $d = 1.00$) groups in the Dm, BL ($p = .023$, $d = 1.02$) and AS ($p = .003$, $d = 1.60$) groups in
274 the Vv, and the BL ($p = .015$, $d = 1.06$) and AS ($p = .003$, $d = 1.37$) groups in the Vd (Figure S4).
275 The BL group had a significantly higher *gabbr1a* OD compared to the DI ($p = .003$, $d = 1.71$) and
276 AS ($p = .030$, $d = 0.99$) groups in the Vs. Full model results are presented in Table S5.

277 **Discussion**

278 Expression of neural plasticity-related genes (e.g. *npas4*, *gabbr1a*) has been broadly
279 implicated as a key process underlying alternative stress coping styles, but has not been
280 investigated related to proactive-reactive differences in learning and memory (20–22, 26, 27, 55,
281 56). Consistent with previous findings, we found that reactive (HSB) zebrafish showed an
282 increased conditioned fear response relative to proactive (LSB) individuals (Figure 1)(30).
283 Further, we found that *npas4a* expression was significantly higher in several key forebrain
284 regions of reactive zebrafish. Altogether, our findings suggest that *npas4a* plays a similar role in
285 learning and memory as its mammalian homolog, and may be an important regulator of
286 proactive-reactive differences in learning and memory.

Npas4a Expression in Fear Learning

287 ISH analysis showed that *npas4a* expression was significantly higher in reactive fish in
288 the Dm, Dl, and Vs (Figures 2A-C). The Dm (BLA), Dl (HIP), and Vs (BNST) are key sites of
289 experience-dependent plasticity and integral to fear learning and memory across species(32–35).
290 Similar to rodents, lesioning the teleost Dm and Dl impairs the formation of new fear and
291 contextual memories (33, 57–59). Our findings suggest that *npas4a*-dependent plasticity within
292 these brain regions may be a key underlying mechanism regulating differences in fear learning
293 and memory capabilities between stress coping styles. In a prior study using the same
294 conditioning paradigm, we showed that reactive zebrafish acquired a conditioned fear response
295 faster than proactive zebrafish (cite). The higher activity-dependent expression of *npas4a* in
296 reactive individuals observed in this study may promote higher levels of neural plasticity,
297 resulting in salient and fearful experiences to be encoded into memory more quickly(28, 60). We
298 predict that *npas4a* knockout experiments would produce similar learning and memory deficits
299 as in rodents, and are needed to establish a direct causal role in zebrafish. More recently, specific
300 glutamatergic populations of Dm cells have been shown to be required for fear conditioning (32).
301 Our study is not able to distinguish between cell types expressing *npas4a* and would be needed
302 to better characterize the specific circuits regulating proactive-reactive differences in learning. In
303 selectively bred proactive and reactive trout, these telencephalic forebrain regions have also been
304 shown to display differing monoaminergic and cortisol responses to acute stress(61, 62). This
305 suggests that higher expression of *npas4a* in these brain regions may play important roles in
306 constraining variation across a number of behavioral contexts.

307 While the BNST has been shown to be important for aversive learning in rodents(63, 64),
308 the function of the Vs and specifically of *npas4a* expression in the Vs is not well understood in
309 regards to learning and memory. We found that similar to the Dm and Dl, *npas4a* expression

Npas4a Expression in Fear Learning

310 within the Vs is likely important for fear learning, and is associated with differences between
311 proactive and reactive stress coping styles. Supporting this, a previous study found that increased
312 activity and *npas4* expression in a population of corticotropin-releasing factor neurons in the
313 BNST was associated with increased stress resiliency and prevention of a post-traumatic stress
314 disorder-like phenotype in rodents(65). This suggests that *npas4a* expression in the Vs may play
315 an important role in how individuals experience and cope with stress differently. Interestingly,
316 the Vs has been shown to have connections with both the Dm and Dl, and to the hypothalamus
317 and other brainstem areas that are essential for eliciting behavioral and endocrine stress
318 responses. While this study only assessed gene expression across select forebrain structures,
319 future studies should investigate other downstream structures and consider the role of
320 glucocorticoids and the hypothalamus-pituitary-adrenal axis (hypothalamus-pituitary-interrenal
321 in teleosts). This is particularly promising as glucocorticoid differences have been well-
322 characterized between proactive and reactive stress coping styles(3, 66–68), though to a lesser
323 extent related to learning and memory.

324 The DI treatment groups showed significantly lower *npas4a* expression compared to the
325 AS treatment group in the Dm, Dl, and Vs (Figure 2a, 2c). This suggests *npas4a* is expressed in a
326 treatment-specific manner associated with the learned conditioned fear response in the AS group.
327 Unexpectedly, *npas4a* expression in the DI group was significantly lower than the BL group in
328 the Dm and Vs. Other studies have found that acute injection of corticosterone or chronic
329 restraint and social isolation stressors can decrease *npas4* expression in the rodent prefrontal
330 cortex and hippocampus and lead to a variety of behavioral deficits including learning and
331 memory(69–71). It is unclear whether this decrease in expression is maladaptive, or whether it is
332 an adaptive homeostatic response to stress(72). It is unlikely that our results can be explained by

Npas4a Expression in Fear Learning

333 physical isolation, as the baseline group was also socially isolated for the same duration.
334 However, it is possible that handling stress could explain the reduction in *npas4a* expression for
335 the DI group.

336 While qRT-PCR findings showed strain effects in *gabbr1a* expression, there were no
337 strain differences in any of the analyzed brain regions for the ISH analysis. This suggests that the
338 strain differences in forebrain *gabbr1a* expression are driven by other brain regions not
339 investigated in this study. Therefore, *gabbr1a* expression within the Dm, Dl, Vv, Vs, and Vd
340 does not appear to be associated with development of a conditioned fear response. Other studies
341 have suggested that GABAergic signaling may be more important for consolidation,
342 reconsolidation, or extinction of fear memories(73). Future studies should assess how GABA B
343 receptor expression may influence other phases of fear conditioning, or other paradigms using
344 positive reinforcement.

345 Learning to predict and cope with potentially dangerous environments is essential to an
346 individual's survival. Proactive and reactive stress coping styles represent alternative strategies
347 for coping with stress and differ in a number of behavioral contexts, including learning and
348 memory. Our study suggests that brain-region specific expression patterns of *npas4a* may
349 underlie differences in fear learning between proactive and reactive stress coping styles. These
350 findings advance our understanding of the neuromolecular mechanisms underlying stress-coping
351 style differences in cognition and highlight neuroplasticity's key role in regulating alternative
352 adaptive behavioral responses to stress. Additionally, as proactive and reactive individuals share
353 potentially conserved mechanisms underlying other stress coping behaviors, this suggests that
354 these brain regions may also constrain behavioral variation in a number of disparate contexts.

355 **Acknowledgements**

Npas4a Expression in Fear Learning

356 We are grateful to D. Revers, S. Roundtree, A. Parks, and N. Mohamed for zebrafish husbandry.
357 Thank you to A. Goodman for assisting in collecting samples and K. Rushlau for assisting with
358 molecular experiments. We are grateful to members of the Wong lab for comments on a prior
359 version of this manuscript.

360 **Declarations**

361 - The manuscript has been reviewed and approved by all listed authors for publication.
362 - All procedures were approved by the Institutional Animal Care and Use Committee of
363 University of Nebraska at Omaha/University of Nebraska Medical Center (17-070-00-FC,
364 17-064-08-FC).
365 - This study was supported by funds from NSF (IOS-1942202), Nebraska EPSCoR First
366 Award (OIA-1557417), Nebraska Research Initiative, and University of Nebraska Omaha
367 (UNO) start-up grants to RYW. Funds were also provided by the UNO Biology Department,
368 Rhoden Summer Graduate Fellowship, and the Graduate Research and Creative Activities
369 Grants to MRB.
370 - The authors declare no competing interests
371 - MRB and RYW conceived and designed the experiments, and wrote the manuscript. MRB
372 collected and analyzed the data.

373 **References**

- 374 1. Baker MR, Hofmann HA, Wong RY Neurogenomics of Behavioural Plasticity in
375 Socioecological Contexts. doi:10.1002/9780470015902.a0026839.
- 376 2. Koolhaas JM, et al. (1999) Coping styles in animals: Current status in behavior and stress-
377 physiology. *Neurosci Biobehav Rev* 23(7):925–935.
- 378 3. Koolhaas JM, de Boer SF, Coppens CM, Buwalda B (2010) Neuroendocrinology of
379 coping styles: Towards understanding the biology of individual variation. *Front
380 Neuroendocrinol* 31(3):307–321.

Npas4a Expression in Fear Learning

381 4. Øverli Ø, et al. (2007) Evolutionary background for stress-coping styles: Relationships
382 between physiological, behavioral, and cognitive traits in non-mammalian vertebrates.
383 *Neurosci Biobehav Rev* 31(3):396–412.

384 5. Brown GE, et al. (2013) Retention of acquired predator recognition among shy versus
385 bold juvenile rainbow trout. *Behav Ecol Sociobiol* 67(1):43–51.

386 6. Dougherty LR, Guillette LM (2018) Linking personality and cognition: a meta-analysis.
387 *Philos Trans R Soc B Biol Sci.* doi:10.1098/rstb.2017.0282.

388 7. Lucon-Xiccato T, Bisazza A (2017) Individual differences in cognition among teleost
389 fishes. *Behav Processes* 141:184–195.

390 8. Miller N (2017) Cognition in fishes. *Behav Processes.* doi:10.1016/j.beproc.2017.03.013.

391 9. Sih A, Del Giudice M (2012) Linking behavioural syndromes and cognition: a
392 behavioural ecology perspective. *Philos Trans R Soc B Biol Sci* 367(1603):2762–2772.

393 10. Amy M, van Oers K, Naguib M (2012) Worms under cover: Relationships between
394 performance in learning tasks and personality in great tits (*Parus major*). *Anim Cogn.*
395 doi:10.1007/s10071-012-0500-3.

396 11. Bolhuis JE, Schouten WGP, Leeuw JA De, Schrama JW, Wiegant VM (2004) Individual
397 coping characteristics, rearing conditions and behavioural flexibility in pigs. *Behav Brain
398 Res* 152(2):351–360.

399 12. DePasquale C, Wagner T, Archard GA, Ferguson B, Braithwaite VA (2014) Learning rate
400 and temperament in a high predation risk environment. *Oecologia* 176(3):661–667.

401 13. Dugatkin LA, Alfieri MS (2003) Boldness, behavioral inhibition and learning. *Ethol Ecol
402 Evol* 15(1):43–49.

403 14. Mazza V, Eccard JA, Zaccaroni M, Jacob J, Dammhahn M (2018) The fast and the
404 flexible: cognitive style drives individual variation in cognition in a small mammal. *Anim
405 Behav.* doi:10.1016/j.anbehav.2018.01.011.

406 15. Mesquita FO, Borcato FL, Huntingford FA (2015) Cue-based and algorithmic learning in
407 common carp: A possible link to stress coping style. *Behav Processes* 115:25–29.

408 16. Trompf L, Brown C (2014) Personality affects learning and trade-offs between private and
409 social information in guppies, *poecilia reticulata*. *Anim Behav* 88:99–106.

410 17. Budaev S V., Zhuikov AY (1998) Avoidance learning and “personality” in the guppy
411 (*Poecilia reticulata*). *J Comp Psychol* 112(1):92–94.

412 18. Exnerová A, Svádová KH, Fučíková E, Drent P, Štys P (2010) Personality matters:
413 Individual variation in reactions of naive bird predators to aposematic prey. *Proc R Soc B
414 Biol Sci.* doi:10.1098/rspb.2009.1673.

415 19. Miller KA, Garner JP, Mench JA (2006) Is fearfulness a trait that can be measured with
416 behavioural tests? A validation of four fear tests for Japanese quail. *Anim Behav.*
417 doi:10.1016/j.anbehav.2005.08.018.

Npas4a Expression in Fear Learning

418 20. Øverli Ø, Sørensen C (2016) On the role of neurogenesis and neural plasticity in the
419 evolution of animal personalities and stress coping styles. *Brain Behav Evol.*
420 doi:10.1159/000447085.

421 21. Sørensen C, Johansen IB, Øverli Ø (2013) Neural plasticity and stress coping in teleost
422 fishes. *Gen Comp Endocrinol.* doi:10.1016/j.ygcn.2012.12.003.

423 22. Wong RY, Lamm MS, Godwin J (2015) Characterizing the neurotranscriptomic states in
424 alternative stress coping styles. *BMC Genomics* 16(1):425.

425 23. Oswald ME, Singer M, Robison BD (2013) The Quantitative Genetic Architecture of the
426 Bold-Shy Continuum in Zebrafish, *Danio rerio*. *PLoS One* 8(7).
427 doi:10.1371/journal.pone.0068828.

428 24. Kfir A., et al. (2014) Learning-induced modulation of the GABAB-mediated inhibitory
429 synaptic transmission: Mechanisms and functional significance. *J Neurophysiol.*
430 doi:10.1152/jn.00004.2014.

431 25. Lin Y, et al. (2008) Activity-dependent regulation of inhibitory synapse development by
432 *Npas4*. *Nature*. doi:10.1038/nature07319.

433 26. Maya-Vetencourt JF, et al. (2012) Experience-dependent expression of NPAS4 regulates
434 plasticity in adult visual cortex. *J Physiol.* doi:10.1113/jphysiol.2012.234237.

435 27. Heaney CF, Kinney JW (2016) Role of GABABreceptors in learning and memory and
436 neurological disorders. *Neurosci Biobehav Rev.* doi:10.1016/j.neubiorev.2016.01.007.

437 28. Ploski JE, Monsey MS, Nguyen T, DiLeone RJ, Schafe GE (2011) The neuronal PAS
438 domain protein 4 (Npas4) is required for new and reactivated fear memories. *PLoS One*.
439 doi:10.1371/journal.pone.0023760.

440 29. Ramamoorthi K, et al. (2011) Npas4 regulates a transcriptional program in CA3 required
441 for contextual memory formation. *Science* (80-). doi:10.1126/science.1208049.

442 30. Baker MR, Wong RY (2019) Contextual fear learning and memory differ between stress
443 coping styles in zebrafish. *Sci Rep.* doi:10.1038/s41598-019-46319-0.

444 31. Maren S, Phan KL, Liberzon I (2013) The contextual brain: Implications for fear
445 conditioning, extinction and psychopathology. *Nat Rev Neurosci.* doi:10.1038/nrn3492.

446 32. Lal P, et al. (2018) Identification of a neuronal population in the telencephalon essential
447 for fear conditioning in zebrafish. *BMC Biol.* doi:10.1186/s12915-018-0502-y.

448 33. Ganz J, et al. (2015) Subdivisions of the adult zebrafish pallium based on molecular
449 marker analysis. *F1000Research*. doi:10.12688/f1000research.5595.2.

450 34. do Carmo Silva RX, Lima-Maximino MG, Maximino C (2018) The aversive brain system
451 of teleosts: Implications for neuroscience and biological psychiatry. *Neurosci Biobehav
452 Rev.* doi:10.1016/j.neubiorev.2018.10.001.

453 35. Panula P, et al. (2010) The comparative neuroanatomy and neurochemistry of zebrafish
454 CNS systems of relevance to human neuropsychiatric diseases. *Neurobiol Dis.*
455 doi:10.1016/j.nbd.2010.05.010.

Npas4a Expression in Fear Learning

456 36. Gerlai R (2016) Learning and memory in zebrafish (*Danio rerio*). *Methods in Cell Biology*
457 doi:10.1016/bs.mcb.2016.02.005.

458 37. Norton W. b, Bally-Cuif L. b (2010) Adult zebrafish as a model organism for behavioural
459 genetics. *BMC Neurosci.* doi:10.1186/1471-2202-11-90.

460 38. Oliveira RF (2013) Mind the fish: zebrafish as a model in cognitive social neuroscience.
461 *Front Neural Circuits.* doi:10.3389/fncir.2013.00131.

462 39. Wong RY, French J, Russ JB (2019) Differences in stress reactivity between zebrafish
463 with alternative stress coping styles. *R Soc Open Sci.* doi:10.1098/rsos.181797.

464 40. Wong RY, et al. (2012) Comparing behavioral responses across multiple assays of stress
465 and anxiety in zebrafish (*Danio rerio*). *Behaviour* 149(10–12):1205–1240.

466 41. Kern EMA, Robinson D, Gass E, Godwin J, Langerhans RB (2016) Correlated evolution
467 of personality, morphology and performance. *Anim Behav* 117:79–86.

468 42. Wong RY, McLeod MM, Godwin J (2014) Limited sex-biased neural gene expression
469 patterns across strains in Zebrafish (*Danio rerio*). *BMC Genomics* 15(1).
470 doi:10.1186/1471-2164-15-905.

471 43. Wong RY, Oxendine SE, Godwin J (2013) Behavioral and neurogenomic transcriptome
472 changes in wild-derived zebrafish with fluoxetine treatment. *BMC Genomics* 14(1):348.

473 44. Goodman AC, Wong RY (2020) Differential effects of ethanol on behavior and GABA_A
474 receptor expression in adult zebrafish (*Danio rerio*) with alternative stress coping styles.
475 *Sci Rep.* doi:10.1038/s41598-020-69980-2.

476 45. Baker MR, Goodman AC, Santo JB, Wong RY (2018) Repeatability and reliability of
477 exploratory behavior in proactive and reactive zebrafish, *Danio rerio*. *Sci Rep.*
478 doi:10.1038/s41598-018-30630-3.

479 46. Johnson Z V., et al. (2020) Exploratory behaviour is associated with microhabitat and
480 evolutionary radiation in Lake Malawi cichlids. *Anim Behav*.
481 doi:10.1016/j.anbehav.2019.11.006.

482 47. Maren S (2001) Neurobiology of Pavlovian fear conditioning. *Annu Rev Neurosci.*
483 doi:10.1146/annurev.neuro.24.1.897.

484 48. McCurley AT, Callard G V. (2008) Characterization of housekeeping genes in zebrafish:
485 Male-female differences and effects of tissue type, developmental stage and chemical
486 treatment. *BMC Mol Biol.* doi:10.1186/1471-2199-9-102.

487 49. Wong RY, Ramsey ME, Cummings ME (2012) Localizing Brain Regions Associated with
488 Female Mate Preference Behavior in a Swordtail. *PLoS One*.
489 doi:10.1371/journal.pone.0050355.

490 50. Wong RY, Cummings ME (2014) Expression patterns of Neuroligin-3 and tyrosine
491 hydroxylase across the brain in mate choice contexts in female swordtails. *Brain Behav
492 Evol.* doi:10.1159/000360071.

493 51. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I (2001) Controlling the false discovery

Npas4a Expression in Fear Learning

494 rate in behavior genetics research. *Behav Brain Res* 125(1–2):279–284.

495 52. Wassertheil S, Cohen J (1970) Statistical Power Analysis for the Behavioral Sciences.
496 *Biometrics*. doi:10.2307/2529115.

497 53. Starkings S (2012) IBM SPSS Statistics 19 Made Simple by Colin D. Gray and Paul R.
498 Kinnear. *Int Stat Rev*. doi:10.1111/j.1751-5823.2012.00187_13.x.

499 54. Richardson JTE (2011) Eta squared and partial eta squared as measures of effect size in
500 educational research. *Educ Res Rev*. doi:10.1016/j.edurev.2010.12.001.

501 55. Benito E, Barco A (2015) The Neuronal Activity-Driven Transcriptome. *Mol Neurobiol*.
502 doi:10.1007/s12035-014-8772-z.

503 56. Vertkin I, et al. (2015) GABA_B receptor deficiency causes failure of neuronal
504 homeostasis in hippocampal networks. *Proc Natl Acad Sci*.
505 doi:10.1073/pnas.1424810112.

506 57. von Trotha JW, Vernier P, Bally-Cuif L (2014) Emotions and motivated behavior
507 converge on an amygdala-like structure in the zebrafish. *Eur J Neurosci*.
508 doi:10.1111/ejn.12692.

509 58. Ganz J, et al. (2012) Subdivisions of the adult zebrafish subpallium by molecular marker
510 analysis. *J Comp Neurol*. doi:10.1002/cne.22757.

511 59. Perathoner S, Cordero-Maldonado ML, Crawford AD (2016) Potential of zebrafish as a
512 model for exploring the role of the amygdala in emotional memory and motivational
513 behavior. *J Neurosci Res*. doi:10.1002/jnr.23712.

514 60. Qiu J, et al. (2016) Decreased Npas4 and Arc mRNA Levels in the Hippocampus of Aged
515 Memory-Impaired Wild-Type But Not Memory Preserved 11 β -HSD1 Deficient Mice. *J
516 Neuroendocrinol*. doi:10.1111/jne.12339.

517 61. Vindas MA, et al. (2017) How do individuals cope with stress? Behavioural, physiological
518 and neuronal differences between proactive and reactive coping styles in fish. *J Exp Biol*.
519 doi:10.1242/jeb.153213.

520 62. Øverli Ø, Pottinger TG, Carrick TR, Øverli E, Winberg S (2001) Brain monoaminergic
521 activity in rainbow trout selected for high and low stress responsiveness. *Brain Behav
522 Evol*. doi:10.1159/000047238.

523 63. Walker DL, Toufexis DJ, Davis M (2003) Role of the bed nucleus of the stria terminalis
524 versus the amygdala in fear, stress, and anxiety. *Eur J Pharmacol*. doi:10.1016/S0014-
525 2999(03)01282-2.

526 64. Goode TD, Maren S (2017) Role of the bed nucleus of the stria terminalis in aversive
527 learning and memory. *Learn Mem*. doi:10.1101/lm.044206.116.

528 65. Henckens MJAG, et al. (2017) CRF receptor type 2 neurons in the posterior bed nucleus
529 of the stria terminalis critically contribute to stress recovery. *Mol Psychiatry*.
530 doi:10.1038/mp.2016.133.

531 66. Boulton K, et al. (2015) How integrated are behavioral and endocrine stress response

Npas4a Expression in Fear Learning

532 traits? A repeated measures approach to testing the stress-coping style model. *Ecol Evol*
533 5(3):618–633.

534 67. Baugh AT, et al. (2012) Corticosterone responses differ between lines of great tits (*Parus*
535 *major*) selected for divergent personalities. *Gen Comp Endocrinol* 175(3):488–494.

536 68. Wong RY, French J, Russ JB (2018) Differences in stress reactivity between zebrafish
537 with alternative stress coping styles. Dissertation (University of Nebraska at Omaha).

538 69. Furukawa-Hibi Y, Yun J, Nagai T, Yamada K (2012) Transcriptional suppression of the
539 neuronal PAS domain 4 (*Npas4*) gene by stress via the binding of agonist-bound
540 glucocorticoid receptor to its promoter. *J Neurochem*. doi:10.1111/jnc.12034.

541 70. Ibi D, et al. (2008) Social isolation rearing-induced impairment of the hippocampal
542 neurogenesis is associated with deficits in spatial memory and emotion-related behaviors
543 in juvenile mice. *J Neurochem*. doi:10.1111/j.1471-4159.2007.05207.x.

544 71. Yun J, et al. (2010) Chronic restraint stress impairs neurogenesis and hippocampus-
545 dependent fear memory in mice: Possible involvement of a brain-specific transcription
546 factor *Npas4*. *J Neurochem*. doi:10.1111/j.1471-4159.2010.06893.x.

547 72. Sun X, Lin Y (2016) *Npas4*: Linking Neuronal Activity to Memory. *Trends Neurosci*.
548 doi:10.1016/j.tins.2016.02.003.

549 73. Makkar SR, Zhang SQ, Cranney J (2010) Behavioral and neural analysis of GABA in the
550 acquisition, consolidation, reconsolidation, and extinction of fear memory.
551 *Neuropsychopharmacology*. doi:10.1038/npp.2010.53.

552

553

554

555

556

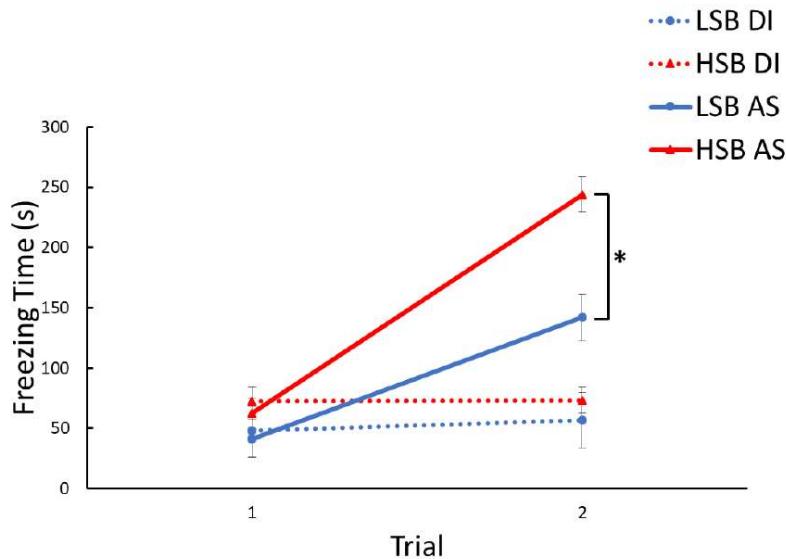
557

558

559

560

561


562

563

564

Npas4a Expression in Fear Learning

565 **Figures**

566

567 **Figure 1.** Acquisition of fear memory over two training trials. Freezing time was measured for
568 high stationary behavior (HSB) and low stationary behavior (LSB) fish exposed to distilled water
569 (DI) or alarm substance (AS). Points represent mean \pm 1 standard error. * indicates $p < .05$ for
570 within-treatment group comparison

571

572

573

574

575

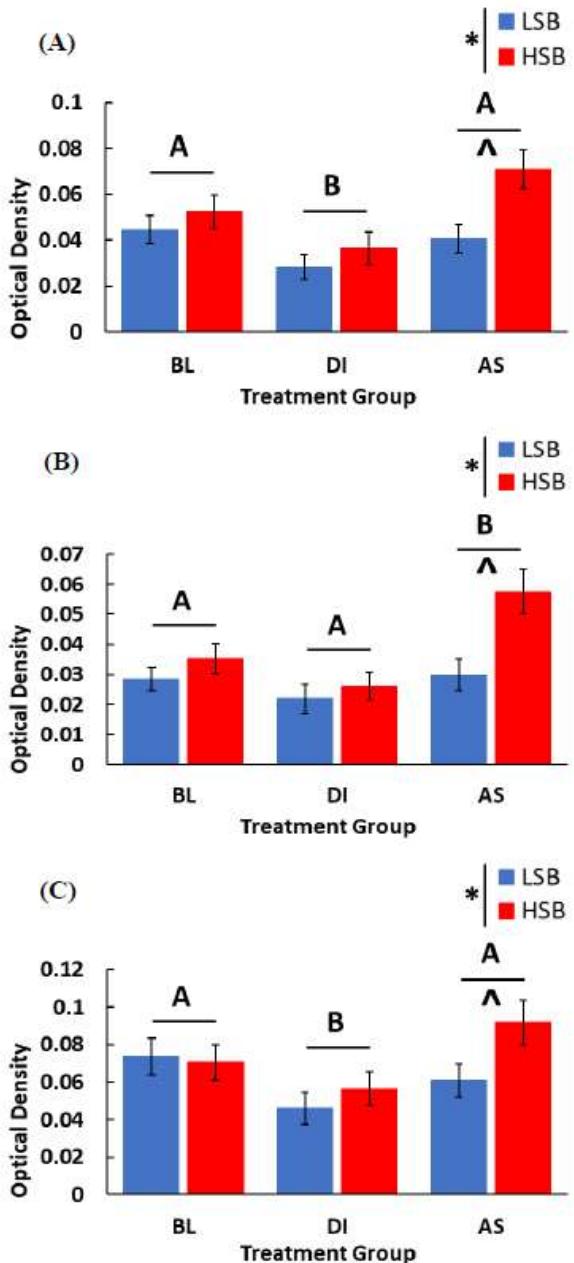
576

577

578

579

580


581

582

583

584

Npas4a Expression in Fear Learning

585

586 **Figure 2.** Expression of *npas4a* in the Dm (A), Dl (B), and Vs (C). We measured expression of
587 high stationary behavior (HSB) and low stationary behavior (LSB) fish at baseline (BL) or
588 exposed to either alarm substance (AS) or distilled water (DI) during training. Bars represent
589 mean ± 1 SE. Bars labeled with different letters indicate $p < .05$. * indicates a significant strain
590 main effect. ^ indicates a significant within-treatment group strain difference.

591

592

593

Npas4a Expression in Fear Learning

594 **Supplementary Information**

595 **Methods**

596 *qRT-PCR*

597 We homogenized the tissue in Tri reagent (Sigma) and zirconium oxide beads in a Bullet
598 Blender (NextAdvance) and extracted the RNA through column filtration (RNeasy Micro Plus
599 Kit, Qiagen). RNA was subsequently converted to cDNA (Superscript IV First-Strand Synthesis
600 System, Invitrogen) and purified (Millipore Amicon Ultra -0.5 mL 30 K Centrifugal Filters
601 Devices). We ran qRT-PCR reactions on a QuantStudio 7 Flex Real-Time PCR system (Applied
602 Biosystems) using PowerUp SYBR Green Master Mix (Applied Biosystems). A 131 base pair
603 *npas4a* amplicon was created using 5'-CACCTCGGACACTCAATGGT-3' (F) and 5'-
604 ACAAGCGATCTGTGTCAGGT-3' (R) as primers. A 198 base pair *gabbr1a* amplicon was
605 created using 5'-CCCAGAGACGGAGGGATACG-3' (F) and 5'-
606 CGGGCACATCATCAAGCATCT-3' (R) as primers. The parameters for both genes were as
607 follows: 2 minutes at 50°C, 2 minutes at 95°C, followed by 40 cycles of 15 seconds of 95°C and
608 1 minute of 60°C. Primer concentration was 5 pmole/μl for both genes.

609 *Tissue Section Processing*

610 All series were simultaneously post-fixed in cold 4% paraformaldehyde/PBS solution, washed in
611 PBS and acetylated in 0.25% acetic anhydride/triethanolamine. Then, slides were washed in 2X
612 standard saline citrate, dehydrated in increasing ethanol series and stored at -80 °C.

613 *Probe Synthesis*

614 To quantify *npas4a* and *gabbr1a* we used digoxigenin (DIG)-labeled RNA probes. A 402
615 base pair *npas4a* DIG probe template was subcloned by using primer pair 5'-
616 TTCTGTAGCGTCCAATCGGC -3' and 5' - ACTTCCACTCCCATCTTGCG -3'. The 390

Npas4a Expression in Fear Learning

617 base pair *gabbr1a* probe template was subcloned by using primer pair 5'-
618 AAGGATGAGCGCAATGTAGA -3' and 5'- CTGTTCCCTGAGTCAGTCCTC -3'. Riboprobes
619 were generated using a 1:3 ratio of UTP and DIG-UTP (Roche). After probe synthesis, we
620 removed unincorporated nucleotides via column filtration according to manufacturer's protocol
621 (Megaclear, Ambion).

622 *In situ Hybridization*

623 Slides were prehybridized with a solution containing 50% formamide, 5X SSC, 5X
624 Denhardt's solution, 250 µg/ml yeast tRNA, and 500 µg/ml herring sperm DNA for 5 hours at
625 60°C in a hybridization chamber containing chamber buffer solution (50% formamide, 2X SSC).
626 Then we hybridized the slides overnight at 67°C with fresh prehybridization solution containing
627 340 ng of *npas4a* antisense or 380 ng of *gabbr1a* riboprobe per slide. Following hybridization
628 we performed two washes in 2X SSC at room temperature for *npas4a* (one wash in 2X SSC at
629 60°C, one wash in 2X SSC at room temperature for *gabbr1a*), then RNase A treated the slides
630 (0.5M NaCl, 10 mM Tris pH 8.0, 2.25 mM EDTA, 0.2 µg/ml RNase A), followed by
631 increasingly stringent washes (2X, 1X, 0.5X, 0.25X SSC) and then a final wash in Buffer B1
632 (100 mM Tris pH 7.5, 150 mM NaCl). Sections were then incubated overnight at 4°C with Anti-
633 Digoxigenin AP antibody (Roche). After antibody incubation we washed sections twice in
634 Buffer B1 and then blocked endogenous alkaline phosphatase activity with a 30 minute wash in
635 Buffer B3 (100mM Tris pH 9.5, 100 mM NaCl, 50 mM MgCl₂, 5 mM levamisole) in the dark.
636 We used colorimetric detection using NBT/BCIP stock solution (Roche). The colorimetric
637 reaction was stopped (80 minutes for *Npas4a* and 12 hours for *Gabbr1a*) by rinsing sections
638 three times in ultrapure type 1 water and then progressively dehydrating sections in ethanol
639 (25%, 50%, 70%, 95%).

Npas4a Expression in Fear Learning

640 *Brain Region Analysis*

641 The light settings were set to the maximum, and two 1/16 filters were placed over the
642 light source to keep consistency across days. The measuring box was always placed in the
643 middle of the brain region on the dorsal-ventral plane, excluding the midline. We measured the
644 mean intensity bilaterally if available, and averaged all of the intensities for each individual for
645 each brain region. Depending on the size of the brain region, the number of sections averaged per
646 individual ranged from two to six consecutive sections. Consecutive sections were 48 μm apart.

647 The anterior commissure was identified as a landmark for each of the brain regions. We
648 measured the Dm (13003.92 μm^2) and Dl (13003.92 μm^2) for 1-2 sections prior to and 3-4
649 sections following the anterior commissure. We measured the Vv (9907.28 μm^2) and Vd
650 (9907.28 μm^2) for 3-4 sections preceding the anterior commissure. We measured the Vs
651 (9907.28 μm^2) for the slice containing the anterior commissure and 1-2 following it.

652

653

654

655

656

657

658

659

660

Npas4a Expression in Fear Learning

661 **Tables**

662 **Table S1.** Brain region terminology, abbreviations, and putative tetrapod homologue regions.

Teleost Region	Abbreviation	Putative Tetrapod Homologue
Area dorsomedialis telencephali	Dm	Basolateral amygdala
Area dorsolateralis telencephali	Dl	Pallial hippocampus
Area ventroventralis telencephali	Vv	Lateral septum
Area dorsoventralis telencephali	Vd	Striatum
Ventralis supracommissuralis telencephali	Vs	Bed nucleus of the stria terminalis

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

Npas4a Expression in Fear Learning

684 **Table S2.** Results of repeated measures GLM for the acquisition learning phase for freezing
685 time.

Freezing Time	
	$F(p, \eta p^2)$
Within-Subjects Effects (df = 1, 64)	
Trial	62.82 (4.36×10^{-11} , .50)
Trial*Strain	3.89 (.053)
Trial*Treatment	54.86 (3.59×10^{-10} , .46)
Trial*Strain*Treatment	5.88 (.018, .08)
Between Subjects Effects (df = 1, 64)	
Intercept	179.53 (3.08×10^{-20} , .74)
Strain	8.92 (.004, .12)
Treatment	18.78 (5.30×10^{-5} , .23)
Strain*Treatment	2.18 (.144)

686 Bold text indicates $p < 0.05$

687

688

689

690

691

692

693

694

695

696

697

698

699

Npas4a Expression in Fear Learning

700 **Table S3.** Results of multivariate GLM for forebrain expression of *npas4a* and *gabbr1a* from
701 qPCR.

	<i>npas4a</i>	<i>gabbr1a</i>
	$F_{(p, np^2)}$	$F_{(p, np^2)}$
Intercept	393.93 $(1.08*10^{-12}, .96)$	364.98 $(1.94*10^{-12}, .96)$
Strain	11.72 $(.003, .42)$	7.29 $(.016, .31)$
Treatment	11.72 $(.003, .42)$	4.30 $(.055)$
Strain*Treatment	2.32 $(.147)$	3.88 $(.066)$

702 Bold text indicates $p < 0.05$

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

Npas4a Expression in Fear Learning

722 **Table S4.** Results of multivariate GLM of *npas4a* optical density across the five forebrain
723 regions.

	Dm	Dl	Vv	Vd	Vs
	$F_{(p, \eta p^2)}$				
	266.15 (4.36×10^{-4} , .80)	236.22 (4.36×10^{-4} , .78)	295.70 (4.36×10^{-4} , .82)	282.12 (4.36×10^{-4} , .81)	286.57 (4.36×10^{-4} , .81)
Intercept					
Strain	7.66 (.007, .10)	8.82 (.004, .12)	5.16 (.026, .07)	0.77 (.383)	2.64 (.109)
Treatment	6.20 (.003, .16)	7.13 (.002, .18)	3.38 (.040, .09)	1.61 (.208)	3.93 (.024, .11)
Strain*Treatment	1.78 (.177)	3.02 (.055)	0.91 (.406)	4.51 (.015, .12)	1.59 (.212)

724 Bold text indicates $p < 0.05$

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

Npas4a Expression in Fear Learning

744 **Table S5.** Results of multivariate GLM of gabbr1a optical density across the five forebrain
745 regions.

	Dm	Dl	Vv	Vd	Vs
	$F_{(p, \eta p^2)}$				
Intercept	121.69 (1.27×10^{-16} , .65)	107.89 (1.61×10^{-15} , .62)	147.75 (1.68×10^{-18} , .69)	153.60 (6.87×10^{-19} , .70)	134.16 (1.49×10^{-17} , .67)
Strain	0.44 (.509)	2.91 (.093)	0.166 (.685)	0.59 (.444)	0.12 (.736)
Treatment	3.28 (.044, .09)	2.69 (.076)	1.52 (.227)	0.91 (.410)	5.88 (.004, .15)
Strain*Treatment	3.31 (.043, .09)	1.51 (.229)	7.70 (.001, .19)	6.95 (.002, .17)	3.89 (.025, .11)

746 Bold text indicates $p < 0.05$

747

748

749

750

751

752

753

754

755

756

757

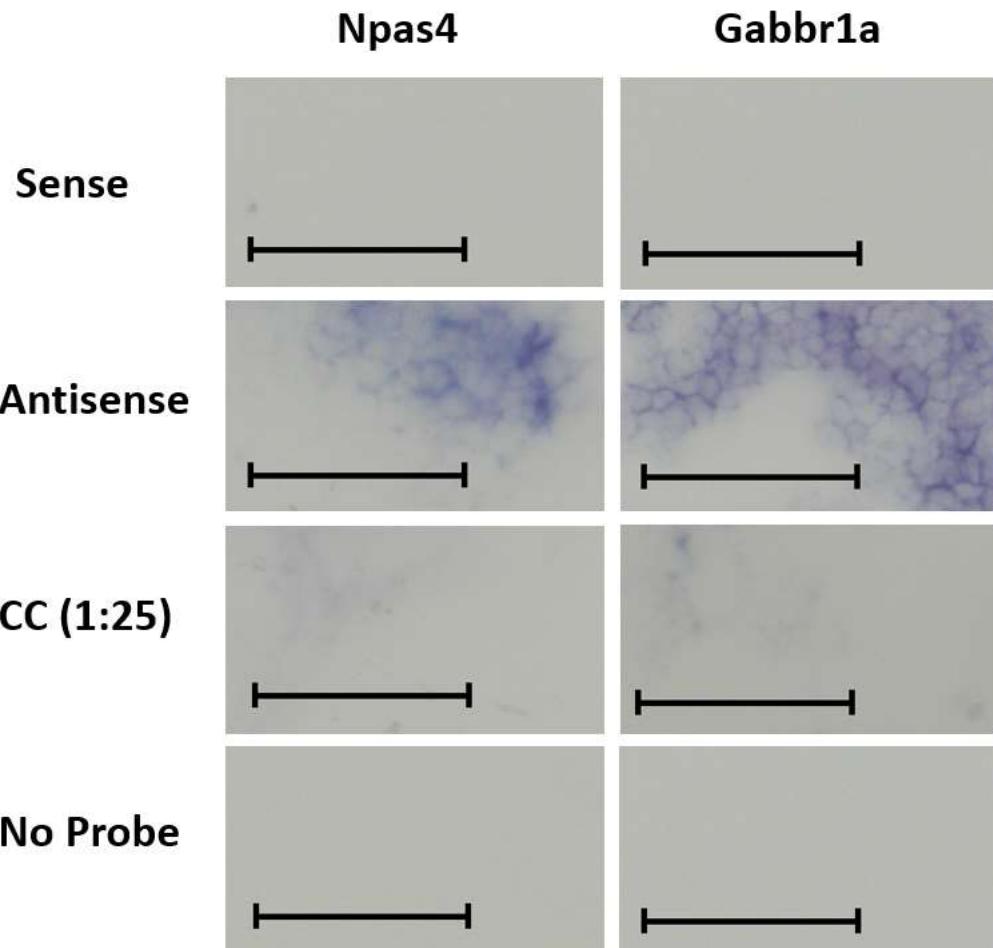
758

759

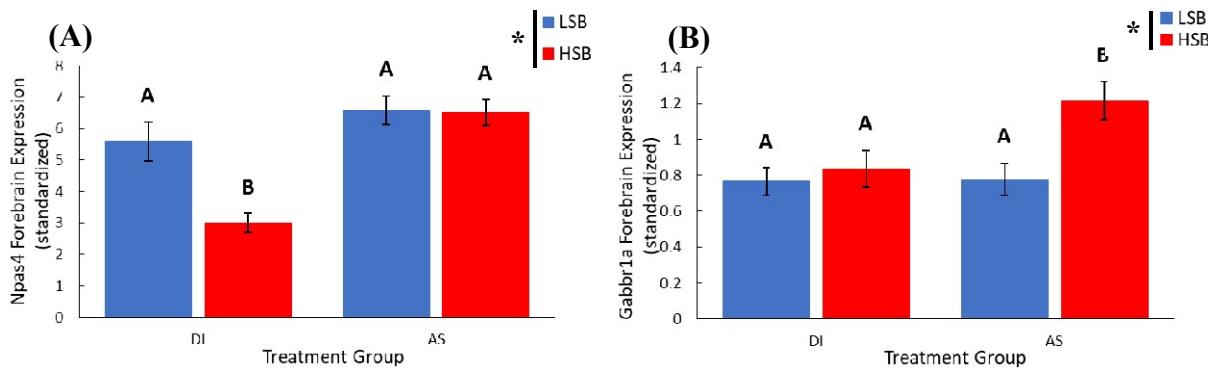
760

761

762


763

764


765

Npas4a Expression in Fear Learning

766 **Figures**

Npas4a Expression in Fear Learning

780

781 **Figure S2.** *npas4a* (A) and *gabbr1a* (B) forebrain expression standardized to *efl1a*. We measured
782 expression of high stationary behavior (HSB) and low stationary behavior (LSB) fish that were
783 exposed to either alarm substance (AS) or distilled water (DI) during training. Bars represent
784 mean ± 1 SE. Bars labeled with different letters indicate $p < .05$. * indicates a significant strain
785 main effect.

786

787

788

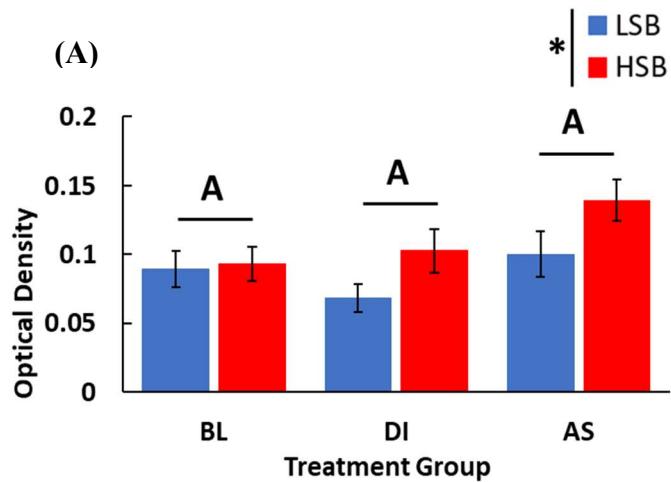
789

790

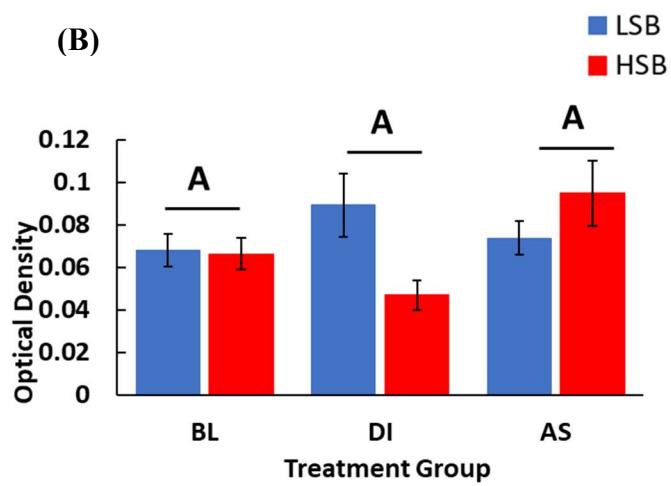
791

792

793


794

795


796

797

Npas4a Expression in Fear Learning

798

799

800 **Figure S3.** Expression of *npas4a* in the Vv (A) and Vd (B). We measured expression of high
801 stationary behavior (HSB) and low stationary behavior (LSB) fish at baseline (BL) or exposed to
802 either alarm substance (AS) or distilled water (DI) during training. Bars represent mean \pm 1 SE.
803 Bars labeled with different letters indicate $p < .05$. * indicates a significant strain main effect.

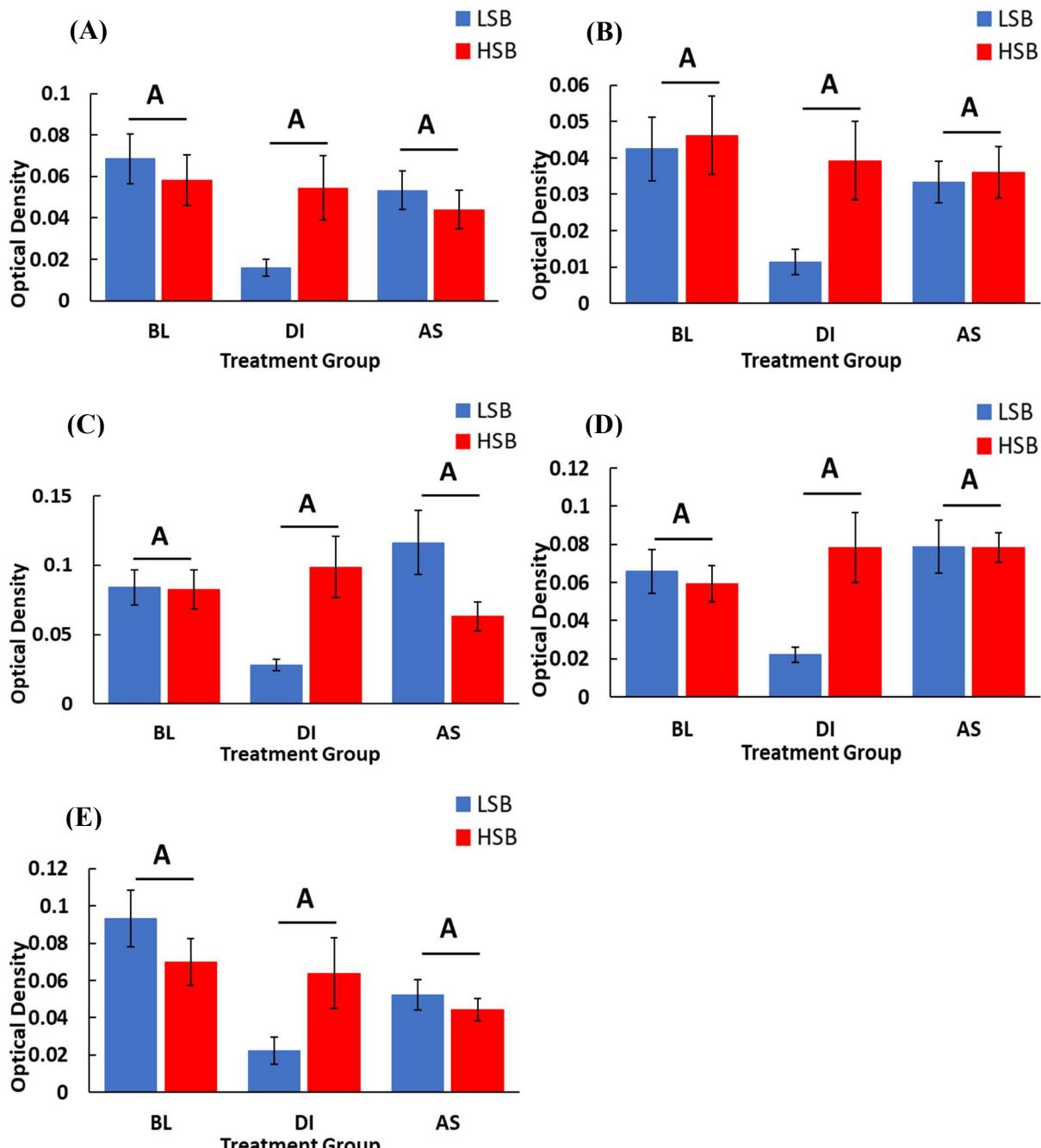
804

805

806

807

808


809

810

811

812

Npas4a Expression in Fear Learning

813

814

815

822

816 **Figure S4** Expression of *gabbr1a* in the Dm (A), Dl (B), Vv (C), Vd (D), Vs (E). We measured
817 expression of high stationary behavior (HSB; B) and low stationary behavior (LSB; A) fish at
818 baseline (BL) or exposed to either alarm substance (AS) or distilled water (DI) during training.
819 Bars represent mean \pm 1 SE. Bars labeled with different letters indicate $p < .05$. When split by
820 strain, LSB fish exposed to DI water had significantly lower *gabbr1a* OD compared to the
821 baseline and AS groups. There were no treatment group differences in the HSB group.