

1 **Structural basis of resistance to lincosamide,**
2 **streptogramin A, and pleuromutilin antibiotics by ABCF**
3 **ATPases in Gram-positive pathogens**

4

5 Caillan Crowe-McAuliffe^{1, #}, Victoriia Murina^{2,3, #}, Kathryn Jane Turnbull^{2,3}, Marje Kasari⁴
6 Merianne Mohamad⁵, Christine Polte¹, Hiraku Takada^{2,3}, Karolis Vaitkevicius^{2,3},
7 Jörgen Johansson^{2,3}, Zoya Ignatova¹, Gemma C. Atkinson², Alex J. O'Neill⁵, Vasili
8 Hauryliuk^{2,3,4*}, Daniel N. Wilson^{1*}

9 ¹ Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-
10 Luther-King-Platz 6, 20146 Hamburg, Germany.

11 ² Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden.

12 ³ Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187
13 Umeå, Sweden.

14 ⁴ University of Tartu, Institute of Technology, 50411 Tartu, Estonia.

15 ⁵ Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular
16 Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.

17

18

19

20 [#] These authors contributed equally.

21 *Correspondence to: Daniel.Wilson@chemie.uni-hamburg.de, vasili.hauryliuk@umu.se.

22

23 **Abstract**

24 Target protection proteins bind to antibiotic targets and confer resistance to the host
25 organism. One class of such proteins, termed antibiotic resistance (ARE) ATP binding
26 cassette (ABC) proteins of the F-subtype (ARE ABCFs), are widely distributed throughout
27 Gram-positive bacteria and bind the ribosome to alleviate translational inhibition by
28 antibiotics that target the large ribosomal subunit. Using single-particle cryo-EM, we have
29 solved the structure of ARE ABCF–ribosome complexes from three Gram-positive
30 pathogens: *Enterococcus faecalis* LsaA, *Staphylococcus haemolyticus* VgaA_{LC} and
31 *Listeria monocytogenes* VgaL. Supported by extensive mutagenesis analysis, these
32 structures enable a comparative approach to understanding how these proteins mediate
33 antibiotic resistance on the ribosome. We present evidence of mechanistically diverse
34 allosteric relays converging on a few peptidyltransferase center (PTC) nucleotides, and
35 propose a general model of antibiotic resistance mediated by these ARE ABCFs.

36

37 Introduction

38 The bacterial ribosome is a major antibiotic target (Wilson, 2014). Despite the large size of
39 the ribosome, and the chemical diversity of ribosome-targeting small compounds, only a few
40 sites on the ribosome are known to be bound by clinically-used antibiotics. On the 50S large
41 ribosomal subunit, two of the major antibiotic binding sites are the peptidyltransferase center
42 (PTC) and the nascent peptide exit tunnel. The PTC is targeted by pleuromutilin,
43 streptogramin A, and lincosamide (PSAL) antibiotics, as well as phenicols and oxazolidinones
44 (Dunkle *et al*, 2010; Matzov *et al*, 2017; Schlünzen *et al*, 2004; Tu *et al*, 2005; Wilson *et al*,
45 2008). Representatives of macrolide and streptogramin B classes bind at adjacent sites at
46 the beginning of the nascent peptide exit tunnel (Dunkle *et al.*, 2010; Tu *et al.*, 2005).

47 Many mechanisms have evolved to overcome growth inhibition by such antibiotics in
48 bacteria, among them target protection mediated by a subset of ABC family of proteins
49 (Wilson *et al*, 2020). ATP-binding cassette (ABC) ATPases are a ubiquitous superfamily of
50 proteins found in all domains of life, best-known as components of membrane transporters
51 (Krishnan *et al*, 2020; Rees *et al*, 2009). A typical ABC transporter contains two nucleotide-
52 binding domains (NBDs), each of which contribute one of two faces to an ATP-binding
53 pocket, as well as transmembrane domains (Thomas & Tampé, 2020). Some sub-groups of
54 ABC proteins, however, lack membrane-spanning regions and have alternative cytoplasmic
55 functions, such as being involved in translation (Davidson *et al*, 2008; Fostier *et al*, 2020;
56 Gerovac & Tampé, 2019). For example, in eukaryotes Rli1/ABCE1 is a ribosome splitting
57 factor involved in recycling after translation termination, and the fungal eEF3 proteins bind
58 the ribosome to facilitate late steps of translocation and E-site tRNA release (Andersen *et al*,
59 2006; Ranjan *et al*, 2020). The F-type subfamily of ABC proteins, which are present in
60 bacteria and eukaryotes, contain at least two NBDs separated by an α -helical interdomain
61 linker and notably lack transmembrane regions (Murina *et al*, 2019; Ousalem *et al*, 2019).

62 One group of bacterial ABCFs, which are termed antibiotic resistance (ARE) ABCFs (Dorrian
63 & Kerr, 2009), confer resistance to antibiotics that bind to the 50S subunit of the bacterial
64 ribosome (Ero *et al*, 2019; Ousalem *et al.*, 2019; Sharkey & O'Neill, 2018; Wilson *et al.*,
65 2020). Characterized ARE ABCFs are found predominantly in Gram-positive bacteria,
66 including human and animal pathogens, typically have a restricted host specificity, and can
67 be further divided into eight subfamilies (Allignet *et al*, 1992; Murina *et al.*, 2019; Wilson *et*
68 *al.*, 2020). Although initially thought to act as part of efflux systems (Ross *et al*, 1990; Ross *et*
69 *al*, 1989), these proteins were subsequently shown instead to bind the ribosome, oppose
70 antibiotic binding, and to reverse antibiotic-mediated translation inhibition of translation
71 *in vitro* (Sharkey *et al*, 2016).

72 Phylogenetic analyses indicate that ARE ABCFs may have arisen multiple times through
73 convergent evolution, and that antibiotic specificity can be divergent within a related
74 subgroup (Murina *et al.*, 2019). Classified by the spectrum of conferred antibiotic resistance,
75 ARE ABCFs can be categorized into three groups (Murina *et al.*, 2019; Sharkey & O'Neill,
76 2018):

77 1. A highly polyphyletic group of ARE ABCFs that confer resistance to the PTC-
78 binding PS_{AL} antibiotics (ARE1, ARE2, ARE3, ARE5 and ARE6 subfamilies). The
79 most well-studied representatives are VmIR, VgaA, SalA, LmrC and LsaA
80 (Allignet *et al.*, 1992; Hot *et al.*, 2014; Koberska *et al.*, 2020; Ohki *et al.*, 2005;
81 Singh *et al.*, 2002). Additionally, a lincomycin-resistance ABCF that belongs to this
82 group, termed Lmo0919, has been reported in *Listeria monocytogenes*
83 (Chesneau *et al.*, 2005; Dar *et al.*, 2016; Duval *et al.*, 2018).

84 2. ARE ABCFs that confer resistance to antibiotics that bind within the nascent
85 peptide exit channel (a subset of the ARE1 subfamily, and ARE4). The most well-
86 studied representatives are Macrolide and streptogramin B resistance (Msr)
87 proteins (Reynolds & Cove, 2005; Ross *et al.*, 1990; Su *et al.*, 2018).

88 3. Poorly experimentally characterized ARE ABCF belonging to subfamilies ARE7
89 (such as Optra) and ARE8 (PoxtA). These resistance factors confer resistance to
90 phenicols and oxazolidinones that bind in the PTC overlapping with the PS_{AL}
91 binding site (Antonelli *et al.*, 2018; Wang *et al.*, 2015; Wilson *et al.*, 2020) and are
92 spreading rapidly throughout bacteria in humans and livestock by horizontal gene
93 transfer (Freitas *et al.*, 2017; Iimura *et al.*, 2020; Sadowy, 2018; Zhang *et al.*, 2020).

94 Additionally, several largely unexplored groups of predicted novel ARE ABCFs are found in
95 high-GC Gram-positive bacteria associated with antibiotic production (Murina *et al.*, 2019).

96 So far, two structures of ARE ABCFs bound to the 70S ribosome have been determined
97 (Crowe-McAuliffe *et al.*, 2018; Ero *et al.*, 2019; Su *et al.*, 2018). In each instance, the ARE
98 ABCF interdomain linker extended from the E-site-bound NBDs into the relevant antibiotic-
99 binding site in the ribosome, distorting the P-site tRNA into an unusual state in the process.
100 The tip of the interdomain linker—termed the antibiotic resistance determinant (ARD)—is not
101 well conserved among (or sometimes even within) subfamilies, and mutations in this region
102 can abolish activity as well as change antibiotic specificity. Mutagenesis indicates that both
103 steric overlap between the ARD and the antibiotic, as well as allosteric reconfiguration of the
104 rRNA and the antibiotic-binding site, may contribute to antibiotic resistance (Crowe-McAuliffe
105 *et al.*, 2018; Ero *et al.*, 2019; Lenart *et al.*, 2015; Su *et al.*, 2018). Non-ARE ribosome-
106 associated ABCFs that do not confer resistance to antibiotics—such as EttA—tend to have

107 relatively short interdomain linkers that contact and stabilize the P-site tRNA (Chen *et al.*,
108 2014). ARE ABCFs that confer resistance to PS_{AL} antibiotics (such as VmIR) have
109 extensions in the interdomain linker that allow them to reach into the antibiotic-binding site in
110 the PTC (Chen *et al.*, 2014; Crowe-McAuliffe *et al.*, 2018; Lenart *et al.*, 2015). The longest
111 interdomain linkers belong to ARE ABCFs that confer resistance to macrolides and
112 streptogramin Bs (e.g. MsrE), and such linkers can extend past the PTC into the nascent
113 peptide exit tunnel (Su *et al.*, 2018). The length of the bacterial ABCF ARD generally
114 correlates with the spectrum of conferred antibiotic resistance. Notable exceptions to this
115 pattern are OptrA and PoxtA ARE ABCF which have short interdomain linkers, yet still confer
116 resistance to some PTC-binding antibiotics (Antonelli *et al.*, 2018; Wang *et al.*, 2015), while
117 typically PTC-protecting ARE ABCFs such as VmIR, LsaA and VgaA, typically have
118 comparatively long interdomain linkers (Lenart *et al.*, 2015; Singh *et al.*, 2001).

119 The available ARE ABCF-ribosome structures were generated by *in vitro* reconstitution.
120 *Pseudomonas aeruginosa* MsrE, which confers resistance to tunnel-binding macrolides and
121 streptogramin Bs (that inhibit translation elongation) was analyzed bound to a heterologous
122 *Thermus thermophilus* initiation complex (Su *et al.*, 2018). *Bacillus subtilis* VmIR, which
123 confers resistance to PS_{AL} antibiotics that bind in the PTC (which stall translation at initiation)
124 was analyzed in complex with an *B. subtilis* 70S ribosome arrested during elongation by the
125 presence of a macrolide antibiotic (Crowe-McAuliffe *et al.*, 2018; Dornhelm & Högenauer,
126 1978; Meydan *et al.*, 2019; Ohki *et al.*, 2005; Orelle *et al.*, 2013). Structures of native
127 physiological complexes (such as those generated using pull-down approaches from the
128 native host) are currently lacking.

129 Here we have thoroughly characterized the antibiotic resistance specificity and determined
130 the structure of three native ARE ABCF-70S ribosome complexes using affinity
131 chromatography and cryo-electron microscopy (cryo-EM). We selected ARE ABCFs that
132 confer resistance to PS_{AL} antibiotics in clinically-relevant Gram-positive pathogens: ARE3
133 representative *Enterococcus faecalis* LsaA (Singh *et al.*, 2002), and ARE1 representatives
134 *Listeria monocytogenes* Lmo0919 (Chesneau *et al.*, 2005; Dar *et al.*, 2016; Duval *et al.*,
135 2018)—which we have termed VgaL—as well as the well-characterized VgaA_{LC} protein,
136 initially isolated from *Staphylococcus haemolyticus* (Allignet *et al.*, 1992; Chesneau *et al.*,
137 2005; Jacquet *et al.*, 2008; Lenart *et al.*, 2015; Novotna & Janata, 2006). *Staphylococcus* and
138 *Enterococcus* are commensal organisms that are prevalent in diverse healthcare-associated
139 infections, and antibiotic resistance is spreading through these species (Magill *et al.*, 2014;
140 Mamtora *et al.*, 2019; Mendes *et al.*, 2019; Pfaller *et al.*, 2019). *L. monocytogenes* is a
141 foodborne pathogen that poses particular risk to pregnant women and immunocompromised
142 patients (Camargo *et al.*, 2016). Our structures, supported by extensive mutagenesis

143 experiments, provide much needed insight into the mechanism by which these distinct ARE
144 ABCFs displace antibiotics from their binding site on the ribosome to confer antibiotic
145 resistance.

146 Results

147 Cryo-EM structures of native ARE ABCF-70S complexes

148 To obtain native ARE ABCF-70S complexes, we expressed C-terminally FLAG₃-tagged
149 ATPase-deficient EQ₂ variants of *E. faecalis* LsaA, *S. aureus* VgaA_{LC}, and *L. monocytogenes*
150 VgaL in their corresponding native host bacterial species. The FLAG₃ tag was used for
151 affinity purification of each protein locked on the ribosomal target. The ARE ABCFs co-
152 migrated with the 70S fraction through sucrose gradients—with the complex further stabilized
153 in the presence of ATP in the case of LsaA and VgaA_{LC}—and co-eluted with ribosomal
154 proteins after affinity purification (Figures S1–3).

155 The resulting native complexes were characterized by single-particle cryo-EM (see
156 Methods), yielding ARE–70S complexes with average resolutions of 2.9 Å for *E. faecalis*
157 LsaA, 3.1 Å for *S. aureus* VgaA_{LC}, and 2.9 Å for *L. monocytogenes* VgaL (Figure 1A–C, Table
158 S4, Figures S4–S6). In each instance, the globular nucleotide-binding domains (NBDs) of the
159 ARE ABCF bound in the E-site, and the α-helical interdomain linker extended towards the
160 peptidyl-transferase center (PTC, Figure 1A–C). Additionally, a distorted tRNA occupied the
161 P-site (Figure 1A–C), similarly to what was observed previously for *P. aeruginosa* MsrE and
162 *B. subtilis* VmIR (Crowe-McAuliffe *et al.*, 2018; Su *et al.*, 2018). For the LsaA and VgaL
163 samples, occupancy of the factor on the ribosome was high, with >95% or ~70% of picked
164 ribosomal particles containing LsaA or VgaL, respectively (Figures S4 and S6). By contrast,
165 VgaA_{LC} had lower occupancy (~60%), implying that the factor dissociated after purification
166 and/or during grid preparation (Figure S5). *In silico* 3D classification revealed that the major
167 class not containing VgaA_{LC} in the dataset was a 70S ribosome with P-tRNA, which could
168 also be refined to an average resolution of 3.1 Å (Figure S5). Generally, the 50S ribosomal
169 subunit and ARE ABCF interdomain linkers were well-resolved (Figures 1D–F and S4–S6).
170 While ARE ABCF NBDs, occupying the E site, had a lower resolution—especially in the
171 regions that contact the ribosomal L1 stalk and the 30S subunit—the density was
172 nonetheless sufficient to dock and adjust homology models in each instance (Figures 1D–F
173 and S4–S6). Densities corresponding to the 30S subunits were less clear, indicating flexibility
174 in this region, but nonetheless sufficient to build near-complete models of each ribosome.
175 Density corresponding to ATP and a coordinated magnesium ion was observed in both
176 nucleotide-binding sites for each ARE ABCF (Figure 1D–F and S7). Density for the ATP
177 bound in the peripheral nucleotide-binding site was relatively poor, with little density
178 corresponding to the nucleobase moiety, consistent with the relaxed nucleotide specificity of
179 these proteins (Figure S7) (Murina *et al.*, 2018).

180 By comparison to structures of other ABC proteins, the NBDs adopted a closed conformation
181 bound tightly to each nucleotide (Figure S8). In each ARE ABCF–70S map, the acceptor
182 stem of the P-site tRNA was distorted, as observed previously for MsrE and VmIR (Crowe-
183 McAuliffe *et al.*, 2018; Su *et al.*, 2018). The CCA 3' end was particularly disordered,
184 precluding any additional density corresponding to an amino acid or nascent chain from
185 being visualized (Figures 1A-C and S4–S6). To our knowledge, this is the first model of the
186 ribosome from the Gram-positive pathogen *L. monocytogenes* that have been described.
187 Additionally, we have used our high-resolution map to create an updated model of the
188 *S. aureus* ribosome (Khusainov *et al.*, 2016). Our models of the *E. faecalis* and *S. aureus*
189 ribosomes are generally in agreement with those recently described (Golubev *et al.*, 2020;
190 Murphy *et al.*, 2020).

191

192 **LsaA, Vga_{LC} and VgaL bind to translation initiation states**

193 In each cryo-EM map, the P-site tRNA body was sufficiently well-resolved so as to
194 unambiguously assign the density to initiator tRNA^{fMet}, on the basis of (i) general fit between
195 sequence and density, (ii) the well-resolved codon-anticodon interaction, and (iii) a
196 characteristic stretch of G:C base pairs found in the anticodon stem loop of tRNA^{fMet} (Figure
197 2A–C). Additionally, in the small subunit mRNA exit tunnel, density corresponding to a
198 putative Shine-Dalgarno–anti-Shine-Dalgarno helix was observed, consistent with the ARE
199 ABCF binding to an initiation complex containing tRNA^{fMet} (Figure 2D). LsaA–*E. faecalis* 70S
200 samples were further analyzed with a custom tRNA microarray, which confirmed tRNA^{fMet}
201 was the dominant species found in the sample (Figure 2E). Collectively, these observations
202 indicate that in our structures the majority of the ARE ABCFs are bound to 70S translation
203 initiation complexes.

204 Further examination of the LsaA–70S volume revealed weak density in the ribosomal A site
205 (Figure S4F), suggesting that some complexes had entered into the first elongation cycle.
206 This was unexpected, as the distorted P-site tRNA is predicted to overlap with an
207 accommodated A-site tRNA, although as noted would be compatible with a pre-
208 accommodated A/T-tRNA (Crowe-McAuliffe *et al.*, 2018). A mask around the A site was used
209 for partial signal subtraction, and focused 3D classification was used to further sub-sort the
210 LsaA–70S volume. One class, containing approximately one third of the particles, was shown
211 to indeed contain a tRNA in the A site (Figures S4, S9A). This tRNA was poorly resolved,
212 suggesting flexibility, and was slightly rotated compared to a canonical, fully accommodated
213 A-site tRNA, and, as for the P-site tRNA, the acceptor stem was significantly disordered and
214 displaced (Figure S9B,C). This state likely reflects an incomplete or late-intermediate

215 accommodation event, as observed previously when translation is inhibited by PTC binding
216 antibiotics hygromycin A or A201A, both of which were shown to sterically exclude the
217 acceptor stem of a canonical A-site tRNA (Polikanov *et al.*, 2015). A very weak density
218 corresponding to an A-site tRNA was also observed in VgaA_{LC} and VgaL volumes, but sub-
219 classification was unsuccessful for these datasets.

220 VgaA_{LC} and VgaL, both of which belong to the ARE1 subfamily—although not LsaA, which
221 belongs to the ARE3 subfamily—contain a short C-terminal extension predicted to form two
222 α -helices (Crowe-McAuliffe *et al.*, 2018; Murina *et al.*, 2019). Although not conserved among
223 all AREs, deletion of the CTE abolished antibiotic resistance in VmlR and reduces antibiotic
224 resistance in VgaA, implying that this extension is necessary for function in some ARE
225 ABCFs (Crowe-McAuliffe *et al.*, 2018; Jacquet *et al.*, 2008). Density for this region, which
226 emanates from NBD2 and was located between ribosomal proteins uS7 and uS11, was
227 present in the VgaA_{LC}–70S and VgaL–70S maps and was essentially consistent with the
228 position of the VmlR C-terminal extension, although was not sufficiently resolved to create a
229 model for this region. Although bound close to the mRNA exit channel, the CTEs of VgaA_{LC}
230 and VgaL did not contact the Shine-Dalgarno–anti-Shine-Dalgarno helix of the initiation
231 complexes, indicating they are not critical for substrate recognition in these ARE ABCFs
232 (Figure S10).

233 **The location and conformation of short and long ARDs on the ribosome**

234 The ARD loop, positioned between the two long α -helices that link the NBDs, is a critical
235 determinant of antibiotic resistance (Crowe-McAuliffe *et al.*, 2018; Lenart *et al.*, 2015; Murina
236 *et al.*, 2018; Sharkey *et al.*, 2016; Su *et al.*, 2018). Despite sharing a similar antibiotic
237 specificity profile, the ARDs of LsaA, VgaA_{LC}, VgaL, and VmlR are divergent in both amino
238 acid composition and length, which is consistent with the polyphyletic nature of this group but
239 precludes confident sequence alignment of this region (Figure 3A). Despite such sequence
240 divergence, the position of the ARDs on the ribosome is broadly similar in each instance
241 (Figure 3B–G). By comparison to tiamulin, which overlaps with the aminoacyl moieties of A-
242 and P-tRNAs in the PTC, VmlR, LsaA, VgaA_{LC}, and VgaL are all positioned similarly on the
243 ribosome, with the ARD backbone adjacent to the antibiotic binding site (Figure 3B–F)
244 (Polikanov *et al.*, 2015; Schlünzen *et al.*, 2004). Compared to VmlR, the additional residues
245 in the ARDs of LsaA, VgaA_{LC}, and VgaL extend away from the antibiotic binding site, towards
246 the CCA 3' end of the distorted P-tRNA (Figure 3C–F). By contrast, MsrE, which confers
247 resistance to tunnel-binding antibiotics deeper in the ribosome, has a longer ARD that
248 extends both past the PTC to approach the macrolide/streptogramin A binding site, as well
249 as towards the distorted P-tRNA (Figure 3A, G) (Dunkle *et al.*, 2010; Su *et al.*, 2018). Thus,

250 the length of the ARD does not necessarily provide insights into the extent to which the ARD
251 will extend into the ribosomal tunnel and thus one cannot easily predict whether long ARDs
252 will confer resistance to macrolide antibiotics.

253

254 **Position of the ARDs with respect to PS_{AL} antibiotic binding site**

255 We next made a careful comparison of the LsaA, VgaA_{LC}, and VgaL ARDs with the binding
256 sites of relevant antibiotics within the PTC (Figure 4A, B) (Dunkle *et al.*, 2010; Matzov *et al.*,
257 2017; Schluenzen *et al.*, 2004; Tu *et al.*, 2005). For LsaA, the side chain of Phe257
258 overlapped with the binding sites of tiamulin, virginiamycin M, and lincomycin, but was not
259 close to erythromycin (Figure 4A–C), consistent with the spectrum of antibiotic resistance
260 conferred by this protein (Table S1). In the VgaA_{LC} ARD, Val219 was situated close to
261 tiamulin and virginiamycin M, and had a modest predicted overlap with lincomycin (Figure
262 4D). Notably, in the closely related variant VgaA, which has a similar specificity with modestly
263 higher resistance to tiamulin and virginiamycin M, residue 219 is a glycine, which we predict
264 would not overlap with the PS_{AL} binding site (Lenart *et al.*, 2015). Thus, VgaA_{LC} confers
265 resistance to virginiamycin M and tiamulin despite the lack of overlap between the ARE
266 ABCF and the antibiotic binding site (Table S2). For VgaL, the closest residue to the PS_{AL}
267 binding site was Ala216, which had no predicted overlap with tiamulin, virginiamycin M, or
268 lincomycin (Figure 4E). Strikingly, VgaL therefore confers resistance to lincomycin,
269 virginiamycin M, and tiamulin without directly overlapping the binding sites of these
270 antibiotics. In summary, there was no general pattern of overlap or non-overlap with the
271 PS_{AL} binding sites among LsaA, VgaA_{LC}, and VgaL.

272

273 **Mutational analysis of LsaA and VgaA_{LC} ARDs**

274 Our models of the ARD loops allowed us to design and test mutants for capacity to confer
275 antibiotic resistance. When LsaA Phe257, which directly overlaps the PS_{AL} binding site
276 (Figure 4C), was mutated to alanine, no change in resistance was observed (Figure S11). By
277 contrast, mutation of Lys244, which is not situated close to the PS_{AL} binding sites but forms
278 a hydrogen bond with 23S rRNA G2251 and G2252 of the P-loop (*Escherichia coli*
279 numbering is used for 23S rRNA nucleotides), nearly abolished antibiotic resistance activity
280 (Figure S11 and S12A–C). Combined, these observations indicate that LsaA does not confer
281 resistance *via* simple steric occlusion, and that interactions with the P-loop may be required
282 for positioning the LsaA ARD. For VgaA_{LC}, extensive alanine mutations within the ARD were

283 explored (Table S2). As expected from the above analyses and natural variants, mutating
284 Val219—the only residue in VgaA_{LC} that sterically overlaps the LS_{AP} binding site—did not
285 affect the antibiotic resistance profile. Three residues at the beginning of α 2, directly after the
286 ARD loop, were required for resistance: Tyr223, which stacks with U2585 (part of the
287 pleuromutilin and lincomycin binding sites); Phe224, which stacks with A2602 held in the
288 center of the ARD; and Lys227, which forms a hydrogen bond with the 5' phosphate of
289 C2601 (Table S2). These residues do not overlap with the PS_{AL} binding site, but may be
290 required to position the ARD in the PTC to impede antibiotic binding, or for the folding of the
291 ARD itself (Figure S12D–F). In the naturally variable VgaA_{LC} ARD, mutation of Ser213, which
292 sits adjacent to U2506 and C2507 (Figure S12E), to alanine similarly reduced antibiotic
293 resistance (Table S2). Of note, mutating the most conserved residue among VgaA variants in
294 this region, Lys218, did not substantially affect resistance (Table S2) (Vimberg *et al*, 2020).
295 Extensive alanine substitutions in the surrounding residues that contact the 23S rRNA
296 (Figure S12D–F) either did not affect, or had only a mild influence on, the antibiotic
297 resistance conferred by this protein (Table S2). In summary, mutation of VgaA_{LC} residues
298 that interact with 23S rRNA nucleotides that form part of the LS_{AP} binding pocket affected
299 antibiotic-resistance activity.

300

301 **Modulation of the ribosomal antibiotic binding site by ARE ABCFs**

302 We next sought to explore how the ARDs of LsaA, VgaA_{LC}, and VgaL affect the conformation
303 of the ribosomal PTC. The 23S rRNA A2602, which is flexible in the absence of tRNAs and
304 positioned between the P- and A-tRNAs during peptidyl transfer, is bound and stabilized by
305 all structurally characterized ARE ABCFs. In LsaA and VmIR, a tryptophan stacks and
306 stabilizes A2602 in a flipped position (Figure S13) (Crowe-McAuliffe *et al.*, 2018). In VgaA_{LC},
307 VgaL, and MsrE, A2602 is instead positioned within the ARD loop, interacting with multiple
308 residues from the ARE (Figure S13) (Su *et al.*, 2018). We have labelled five regions of
309 domain V of the 23S rRNA, which form the PTC, PTC loops (PLs) 1–5 (Figure 5A) (Polacek
310 & Mankin, 2005). There was a significant overlap between nucleotides that form the PS_{AL}
311 binding pockets, nucleotides that were shifted when LsaA, VgaA_{LC}, or VgaL bound the 70S,
312 and nucleotides known to be mutated or modified in antibiotic-resistant strains of bacteria
313 (summarized in Figure 5A). Broadly, changes to the PTC were similar between the VgaA_{LC}-
314 and VgaL-bound 70S structures, consistent with the grouping of these proteins together in
315 the ARE1 subfamily (Figures 5E–G, S14, S15) (Murina *et al.*, 2019). Loop PL3, which
316 contains nucleotides A2503 to U2506, was shifted upon binding of each ARE ABCF (Figure
317 5B–G). However, no residues from VgaA_{LC} or VgaL directly contact PL3 (Figures 5E–G, S14

318 and S15). Rather, these ARE ABCFs directly displace PL2, which ordinarily positions PL3,
319 perhaps thereby facilitating the distorted conformation of PL3 that is incompatible with
320 antibiotic binding. In the VgaA_{LC}-bound state, U2585, which was poorly ordered in the LsaA-
321 and VgaL-bound 70S, stacks with Tyr223 and would not be available to interact with tiamulin
322 or virginiamycin M (Figure S14D–F). Substituting VgaA_{LC} Tyr223 to alanine diminished
323 antibiotic resistance, indicating that the reposition of U2585 contributes to antibiotic
324 resistance conferred by this ARE ABCF (Table S2 and Figure S12F). 23S rRNA U2506 is
325 additionally displaced in the VgaA_{LC}- and VgaL-bound 70S compared to the tiamulin- or
326 lincomycin-bound 70S, potentially disrupting the binding site of these antibiotics (Figures
327 S14A–C, S15A–C). By contrast, LsaA induced the most dramatic rearrangements in the
328 PTC, with U2504 and G2505 in the LsaA-bound state predicted to strongly clash with each
329 relevant antibiotic bound to the ribosome (Figure S5E–G and S16A–C). In the LsaA-bound
330 ribosome, A2453 is shifted slightly away from the PTC and pairs with G2499 instead of
331 U2500. This allows C2452, which normally pairs with U2504 to form part of the PS_{AL} binding
332 pocket, to instead hydrogen-bond with U2500, thereby freeing U2504, and PL3 more
333 generally, to reposition when LsaA is bound (Figure S16D, E).

334

335 Discussion

336 Model of antibiotic resistance mediated by LsaA, VgaA_{LC}, and VgaL

337 These observations allow us to propose a model for how ARE ABCFs confer antibiotic
338 resistance to the host organism (Figure 6). PS_{AL} antibiotics have binding sites overlapping
339 with the nascent polypeptide chain, and inhibit translation at, or soon after, initiation (Figure
340 6A) (Dornhelm & Högenauer, 1978; Meydan *et al.*, 2019; Orelle *et al.*, 2013). The incoming
341 ARE ABCF binds in the E-site, triggering closure of the L1 stalk and inducing a distorted
342 conformation of the P-tRNA. The ARD disrupts the antibiotic binding pocket in the PTC,
343 causing drug release (Figure 6B). An incoming ternary complex delivers a tRNA to the A-site,
344 which upon ARE ABCF egress and successful accommodation ‘sweeps’ the 3’ end of the P-
345 tRNA into the PTC (Figure 6C, D). The trigger for nucleotide hydrolysis and exit of the ARE
346 ABCF from the E site is unknown. We propose that rapid peptidyl transfer then creates a
347 short nascent chain that overlaps with the antibiotic binding site, preventing re-binding of the
348 PS_{AL} drug until the next round of translation (Figure 6D). Alternatively, an A-tRNA may
349 partially accommodate on the stalled initiation complex prior to ARE ABCF binding, and
350 become distorted as part of a ‘knock-on’ effect of P-tRNA disruption, consistent with the
351 ability of ARE ABCFs to ‘reset’ the P-tRNA independently of additional accommodation
352 events (Murina *et al.*, 2018). In this model, potentially only one round of ATP hydrolysis per
353 translation cycle is necessary to confer resistance.

354 ARE ABCFs such as LsaA, VgaA_{LC}, VgaL, and VmIR confer resistance to PS_{AL} antibiotics
355 but not phenicols or oxazolidinones (Sharkey & O’Neill, 2018). This observation has been
356 puzzling, as both groups of antibiotics have overlapping binding sites (Dunkle *et al.*, 2010;
357 Matzov *et al.*, 2017; Schlünzen *et al.*, 2004; Tu *et al.*, 2005; Wilson *et al.*, 2008). However,
358 phenicols and oxazolidinones inhibit translation during elongation at specific motifs (Marks *et*
359 *al.*, 2016; Orelle *et al.*, 2013), while PS_{AL} antibiotics instead inhibit translation at the initiation
360 stage (Dornhelm & Högenauer, 1978; Meydan *et al.*, 2019; Orelle *et al.*, 2013). The apparent
361 specificity of LsaA, VgaA_{LC}, and VgaL for initiation complexes in our immunoprecipitations
362 (Figure 2) matches the specificity of the antibiotics to which they confer resistance.

363 Do EQ₂-substituted ATPase-deficient variants of ARE ABCF, like the ones used in this study,
364 bind the ribosome in the pre- or post-antibiotic-dissociation state (Figure 6B)? Although direct
365 evidence is lacking, three reasons lead us to propose that these proteins are bound in the
366 post-antibiotic-release state:

367 1) In the case of VgaA_{LC} and VmIR the position of the ARD directly overlaps with the
368 antibiotic binding site. Although the side chain of the overlapping amino acid is not

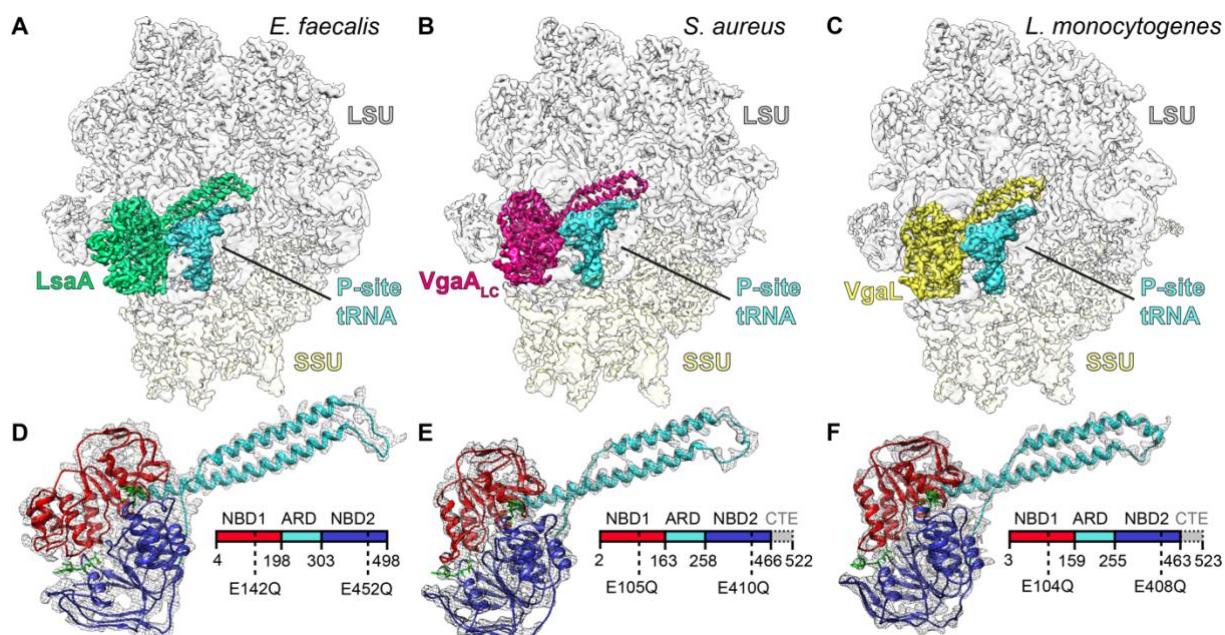
369 critical for antibiotic resistance in most instances, the overlap nonetheless implies
370 mutually exclusive binding.

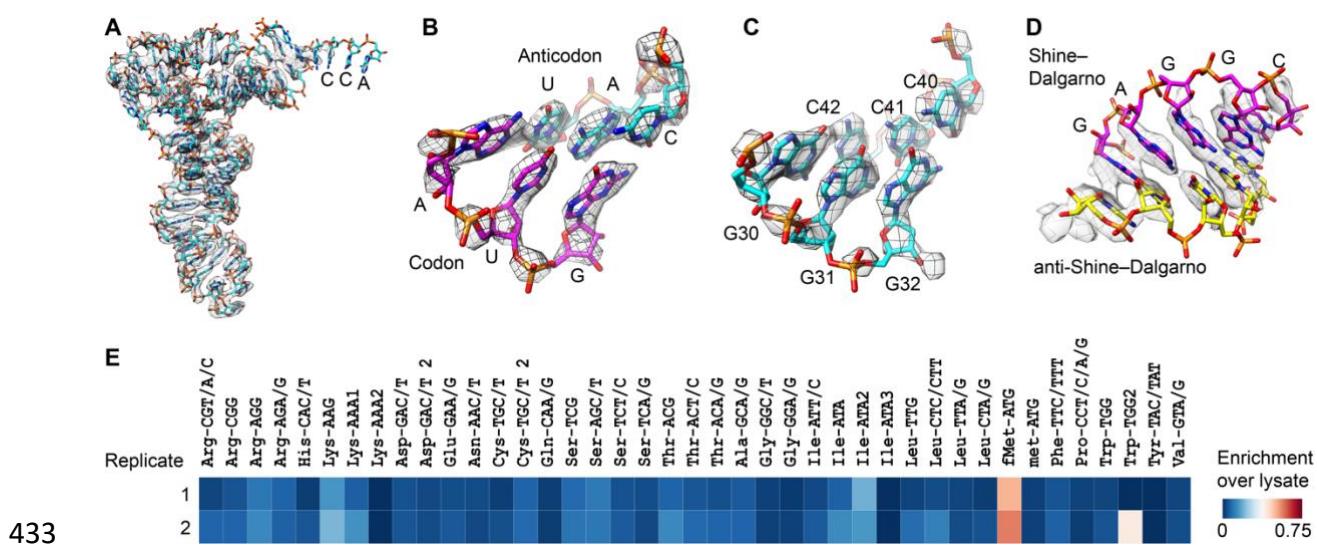
371 2) MsrE-EQ₂ stimulates dissociation of azithromycin from the ribosome (Su *et al.*, 2018).

372 3) Our attempts to form complexes containing both antibiotic and ARE ABCF have been
373 unsuccessful, resulting in exclusive binding of either the ARE ABCF or the antibiotic,
374 similarly to what we observed for TetM, a tetracycline-resistance ribosome protection
375 protein (Arenz *et al.*, 2015).

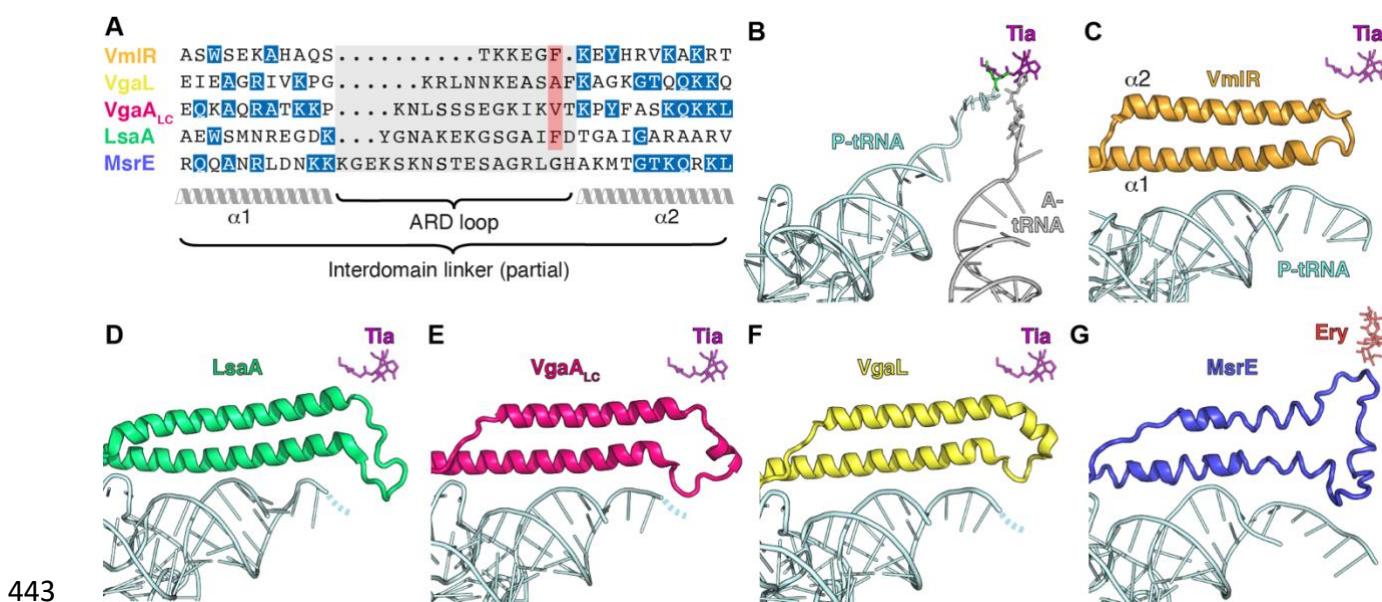
376 How does the ARE ABCF ARD mediate antibiotic resistance (Figure 6B, C)? In one model,
377 by analogy to the TetM tetracycline resistance protein (Arenz *et al.*, 2015; Wilson *et al.*,
378 2020), the ARD may induce antibiotic dissociation by a direct steric overlap with the
379 antibiotic. In the case of VmlR, substitutions of the Phe237 residue that overlaps the binding
380 site of PS_{AL} antibiotics affect resistance to one of three relevant antibiotics, indicating that
381 both direct steric overlap and an indirect, allosteric mechanism can contribute to resistance
382 (Crowe-McAuliffe *et al.*, 2018). In the case of MsrE substitution of Leu242, which overlaps
383 with the erythromycin binding site, as well as adjacent residues abolished or severely
384 reduced the antibiotic resistance activity of this protein (Su *et al.*, 2018). In both cases, a
385 mixture of direct steric overlap and allostery is consistent with the available data (Ero *et al.*,
386 2019). The ARDs of LsaA, VgaA_{LC}, and VgaL either do not directly overlap with the PS_{AL}
387 binding site, or where there is an overlap, as with LsaA Phe257 and VgaA_{LC} Val219, the side
388 chains are not essential for resistance, implicating an allosteric mechanism for these proteins
389 (Figures 4–5, S11, S12, Table S2). Alanine mutagenesis instead indicates that the side
390 chains of residues surrounding the amino acid closest to the antibiotic-binding pocket, as well
391 as those that contact the 23S rRNA, are necessary for resistance (Figures S11, S12 and
392 Table S2). These residues may position the ARD in the PTC. No single set of 23S rRNA
393 rearrangements was identical among LsaA, VgaA_{LC}, and VgaL, although displacement of
394 PTC loop PL3, especially residue U2504, was ultimately observed in each ARE ABCF–70S
395 structure (Figure 5).

396 In summary, we present three new structures of ARE ABCFs bound to 70S ribosomes from
397 relevant Gram-positive pathogenic bacteria and present the first model of the ribosome from
398 *Listeria monocytogenes*. Our structures and mutagenesis experiments support an allosteric
399 mechanism of ARE ABCF action, and hint at a rationalization for the specificity of LsaA,
400 VgaA_{LC}, and VgaL for PS_{AL} antibiotics. Each ARE ABCF binds the 70S similarly as observed
401 for other bacterial ABCF proteins, but alters the geometry of the PTC distinctively, consistent
402 with the convergent evolution—and divergent sequences—of this class of ABCF proteins.


403

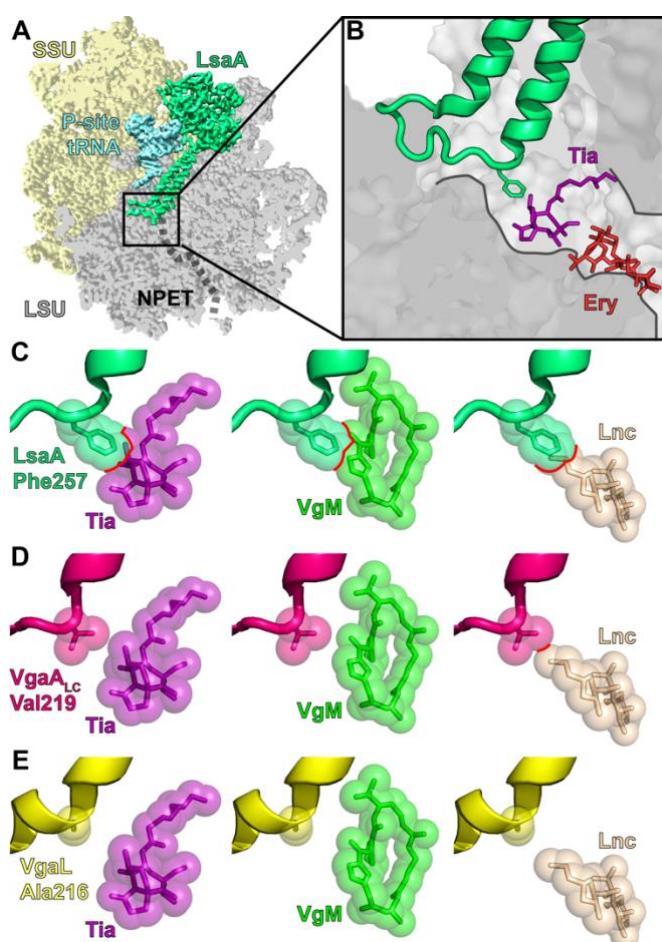

404 Acknowledgments

405 We are grateful to Barbara E. Murray for sharing *E. faecalis* Δ l_{sa}A (l_{sa}::Kan) strain TX5332
406 (Singh *et al.*, 2002), Jose A. Lemos for sharing pCIE_{cam} plasmid vector (Weaver *et al*, 2017).
407 We thank Michael Hall for help with cryo-EM data collection. The electron microscopy data
408 was collected at the Umeå Core Facility for Electron Microscopy, a node of the Cryo-EM
409 Swedish National Facility, funded by the Knut and Alice Wallenberg, Family Erling Persson
410 and Kempe Foundations, SciLifeLab, Stockholm University and Umeå University. This work
411 was supported by the Deutsche Forschungsgemeinschaft (DFG) (grant WI3285/8-1 to
412 D.N.W), the Swedish Research Council (Vetenskapsrådet) grants (2017-03783 to V.H. and
413 2019-01085 to G.C.A.), Ragnar Söderbergs Stiftelse (to V.H.), postdoctoral grant from the
414 Umeå Centre for Microbial Research, UCMR (to H.T.), the European Union from the
415 European Regional Development Fund through the Centre of Excellence in Molecular Cell
416 Engineering (2014-2020.4.01.15-0013 to V.H.); and the Estonian Research Council
417 (PRG335 to V.H.). D.N.W. and V.H. groups are also supported by the Deutsche Zentrum für
418 Luft- und Raumfahrt (DLR01KI1820 to D.N.W.) and the Swedish Research Council (2018-
419 00956 to V.H.) within the RIBOTARGET consortium under the framework of JPIAMR.


420

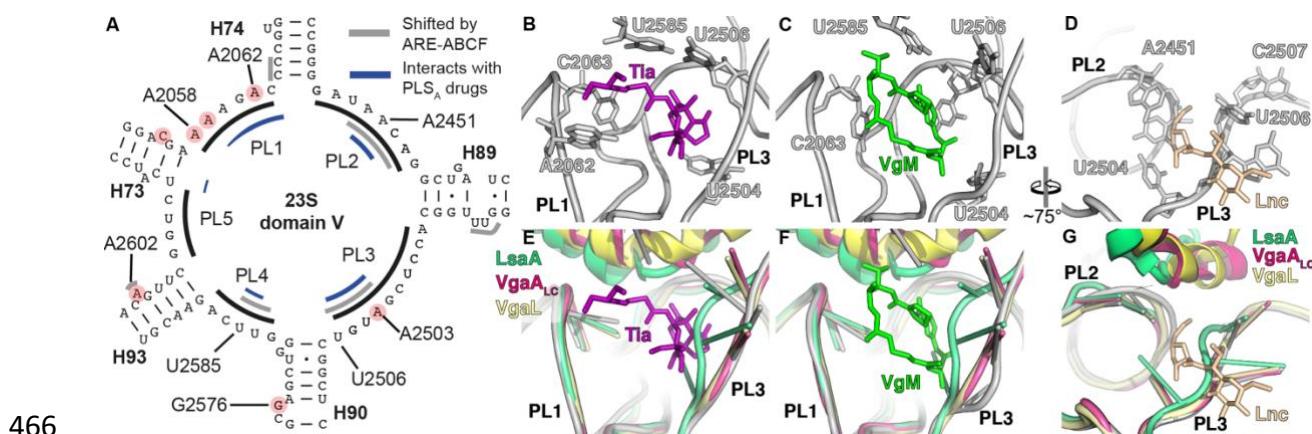
421 **Figures**

434 **Figure 2. The LsaA–70S complex contains an initiator tRNA and SD-helix. (A–D)**
435 Isolated density (grey mesh) with molecular models (sticks) for **(A)** initiator tRNA^{fMet} (cyan),
436 **(B)** interaction between AUG start codon of the mRNA (magenta) and anticodon of initiator
437 tRNA^{fMet} (cyan) in the P-site, **(C)** three G–C base pairs specific to the initiator tRNA^{fMet} (cyan),
438 and **(D)** helix formed between Shine–Dalgarno (SD) sequence of the mRNA (magenta) and
439 anti-SD of the 16S rRNA (yellow). **(E)** Replicate tRNA microarray analysis of the LsaA–70S
440 complex, illustrating the enrichment of initiator tRNA^{fMet} in the LsaA–70S complex over the
441 lysate. Confidence intervals between replicates were 92%.

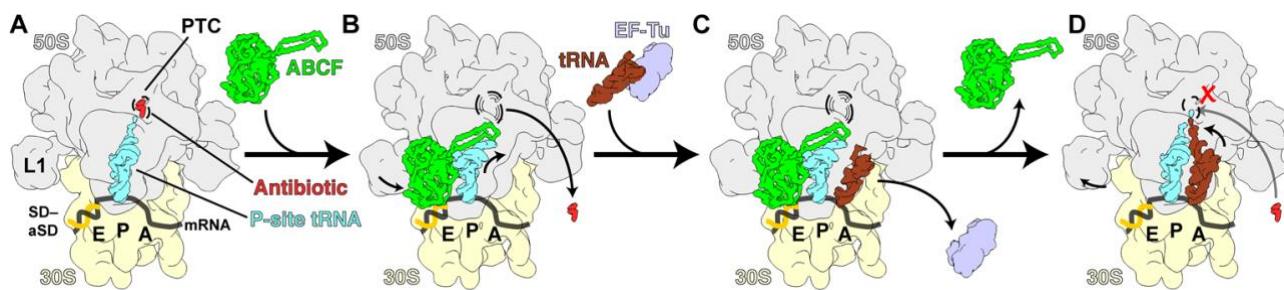


443

444


Fig. 3. Comparison of the ARD loops of different ARE ABCFs. (A) The sequence length of the ARD loops differs significantly for VmIR, VgaL, VgaA_{LC}, LsaA and MsrE. Although the lack of sequence homology precludes accurate sequence alignment of the ARD loops, the red highlighted residues can be aligned structurally. (B–G) Comparison of the positions of (B) A-site tRNA (grey) and P-site tRNA (cyan) from pre-attack state (PDB 1VY4) (Polikanov *et al.*, 2014), with shifted P-site tRNA (cyan) and ABCF ARD from ribosome complexes containing (C) VmIR (orange, PDB 6HA8) (Crowe-McAuliffe *et al.*, 2018), (D) LsaA (green), (E) VgaA_{LC} (magenta), (F) VgaL (yellow), and (G) MsrE (blue, PDB 5ZLU) (Su *et al.*, 2018). In (B–G), the relative position of either tiamulin (Tia, magenta, PDB 1XBP) (Schlünzen *et al.*, 2004) or erythromycin (Ery, red, PDB 4V7U) (Dunkle *et al.*, 2010) has been superimposed.

455



456

457 **Fig. 4 Interaction of LsaA, VgaA_{LC} and VgaL at the peptidyltransferase centre. (A–B)**
458 LsaA and distorted P-site tRNA superimposed on a transverse section of the large subunit
459 (LSU, grey) to reveal (A) the ARD of LsaA extending into the nascent polypeptide exit tunnel
460 (NPET) and (B) the relative position of Phe257 of LsaA to tiamulin (Tia, purple, PDB 1XBP)
461 (Schlünzen *et al.*, 2004) and erythromycin (Ery, red, PDB 4V7U) (Dunkle *et al.*, 2010). (C–E)
462 Relative position of LsaA (green, row C), VgaA_{LC} (pink, row D) and VgaL (yellow, row E) to
463 tiamulin (Tia, purple, PDB 1XBP), virginiamycin M (VgM, lime, PDB 1YIT) (Tu *et al.*, 2005),
464 lincomycin (Lnc, tan, PDB 5HKV) (Matzov *et al.*, 2017). Clashes in C–E are shown with red
465 outlines.

466 **Fig. 5 ARE ABCF binding induces allosteric conformational changes at the PTC. (A)**
467 Secondary structure of peptidyltransferase ring within domain V of the 23S rRNA,
468 highlighting residues within PTC loops 1–4 (PL1–4) that (i) comprise the binding site of PS_{AL}
469 antibiotics (blue), (ii) undergo conformational changes upon ARE ABCF binding (grey) and
470 (iii) confer resistance to PS_{AL} antibiotics (red circles). (B–D) Binding site of (B) tiamulin (Tia),
471 magenta, PDB 1XPB; (Schlünen *et al.*, 2004), (C) virginiamycin M (VgM, lime, PDB YIT; (Tu
472 *et al.*, 2005) and (D) lincomycin (Lnc, tan, PDB 5HKV) (Matzov *et al.*, 2017) on the ribosome.
473 (E–G) Comparison of conformations of rRNA nucleotides comprising the (E) Tia, (F) VgM
474 and (G) Lnc binding site (shown as grey cartoon ladder representation), with rRNA
475 conformations when LsaA (green), VgaA_{LC} (magenta) or VgaL (yellow) are bound.
476

478 **Fig. 6 Model for ribosome protection by ARE ABCFs VmIR, LsaA, VgaA_{LC} and VgaL.**
479 (A) PS_{AL}-stalled ribosomes containing an initiator-tRNA in the P-site are recognized by the
480 ARE ABCFs such as VmIR, LsaA, VgaA_{LC} and VgaL, which bind to the E-site of the
481 ribosome with a closed ATP-bound conformation. (B) Binding of the ARE ABCF induces a
482 shifted P-site tRNA conformation in the ribosome allowing the ARD of the ARE ABCF to
483 access the peptidyl-transferase center (PTC). The ARD induces conformational changes
484 within the 23S rRNA at the PTC that promotes dissociation of the drug from its binding site
485 (shown as dashed lines). (C) aminoacyl- tRNAs can still bind to the ARE ABCF-bound
486 ribosomal complex, but cannot accommodate at the PTC due to the presence of the ABCF
487 and shifted P-site tRNA conformation. (D) Hydrolysis of ATP to ADP leads to dissociation of
488 ARE ABCF from the ribosome, which may allow the peptidyl-tRNA as well as the incoming
489 aminoacyl- tRNA to simultaneously accommodate at the PTC. Peptide bond formation can
490 then ensue, converting the ribosome from an initiation to an elongation (pre-translocation)
491 state, which is resistant to the action of initiation inhibitors, such as PS_{AL} antibiotics.

492

493 **References**

494 Allignet J, Loncle V, El Solh N (1992) Sequence of a staphylococcal plasmid gene, *vga*,
495 encoding a putative ATP-binding protein involved in resistance to virginiamycin A-like
496 antibiotics. *Gene* 117: 45-51

497 Andersen CBF, Becker T, Blau M, Anand M, Halic M, Balar B, Mielke T, Boesen T, Pedersen
498 JS, Spahn CMT *et al* (2006) Structure of eEF3 and the mechanism of transfer RNA release
499 from the E-site. *Nature* 443: 663-668

500 Antonelli A, D'Andrea MM, Brenciani A, Galeotti CL, Morroni G, Pollini S, Varaldo PE,
501 Rossolini GM (2018) Characterization of *poxtA*, a novel phenicol–oxazolidinone–tetracycline
502 resistance gene from an MRSA of clinical origin. *J Antimicrob Chemother* 73: 1763-1769

503 Arenz S, Nguyen F, Beckmann R, Wilson DN (2015) Cryo-EM structure of the tetracycline
504 resistance protein TetM in complex with a translating ribosome at 3.9-Å resolution. *Proc Natl
505 Acad Sci U S A* 112: 5401-5406

506 Arnaud M, Chastanet A, Débarbouillé M (2004) New vector for efficient allelic replacement in
507 naturally nontransformable, low-GC-content, gram-positive bacteria. *Appl Environ Microbiol*
508 70: 6887-6891

509 Becker T, Franckenberg S, Wickles S, Shoemaker CJ, Anger AM, Armache J-P, Sieber H,
510 Ungewickell C, Berninghausen O, Daberkow I (2012) Structural basis of highly conserved
511 ribosome recycling in eukaryotes and archaea. *Nature* 482: 501-506

512 Bhardwaj P, Ziegler E, Palmer KL (2016) Chlorhexidine induces VanA-type vancomycin
513 resistance genes in enterococci. *Antimicrobial agents and chemotherapy* 60: 2209-2221

514 Camargo AC, Woodward JJ, Nero LA (2016) The continuous challenge of characterizing the
515 foodborne pathogen *Listeria monocytogenes*. *Foodborne Pathog Dis* 13: 405-416

516 Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P,
517 Zardi L, Righetti PG (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining
518 for proteome analysis. *Electrophoresis* 25: 1327-1333

519 Casañal A, Lohkamp B, Emsley P (2020) Current developments in Coot for macromolecular
520 model building of electron cryo-microscopy and crystallographic data. *Protein Sci* 29: 1069-
521 1078

522 Chen B, Boël G, Hashem Y, Ning W, Fei J, Wang C, Gonzalez RL, Hunt JF, Frank J (2014)
523 EttA regulates translation by binding the ribosomal E site and restricting ribosome-tRNA
524 dynamics. *Nat Struct Mol Biol* 21: 152-159

525 Chesneau O, Ligeret H, Hosan-Aghaie N, Morvan A, Dassa E (2005) Molecular analysis of
526 resistance to streptogramin A compounds conferred by the Vga proteins of Staphylococci.
527 *Antimicrob Agents Chemother* 49: 973-980

528 Corrigan RM, Foster TJ (2009) An improved tetracycline-inducible expression vector for
529 *Staphylococcus aureus*. *Plasmid* 61: 126-129

530 Crowe-McAuliffe C, Graf M, Huter P, Takada H, Abdelshahid M, Nováček J, Murina V,
531 Atkinson GC, Hauryliuk V, Wilson DN (2018) Structural basis for antibiotic resistance
532 mediated by the *Bacillus subtilis* ABCF ATPase VmIR. *Proc Natl Acad Sci U S A* 115: 8978-
533 8983

534 Dar D, Shamir M, Mellin JR, Koutero M, Stern-Ginossar N, Cossart P, Sorek R (2016) Term-
535 seq reveals abundant ribo-regulation of antibiotics resistance in bacteria. *Science* 352: 9822-
536 9822

537 Davidson AL, Dassa E, Orelle C, Chen J (2008) Structure, function, and evolution of bacterial
538 ATP-binding cassette systems. *Microbiol Mol Biol Rev* 72: 317-364

539 Davis Dv, McAlpine JB, Pazoles CJ, Talbot MK, Alder EA, White AC, Jonas BM, Murray BE,
540 Weinstock GM, Rogers BL (2001) *Enterococcus faecalis* multi-drug resistance transporters:
541 application for antibiotic discovery. *J Mol Microbiol Biotechnol* 3: 179-184

542 Dornhelm P, Högenauer G (1978) The effects of tiamulin, a semisynthetic pleuromutilin
543 derivative, on bacterial polypeptide chain initiation. *Eur J Biochem* 91: 465-473

544 Dorrian J, Kerr I (2009) *Can ABC proteins confer drug resistance in micro-organisms without*
545 *being export pumps?* Caister Academic Press

546 Dunkle JA, Xiong L, Mankin AS, Cate JH (2010) Structures of the *Escherichia coli* ribosome
547 with antibiotics bound near the peptidyl transferase center explain spectra of drug action.
548 *Proc Natl Acad Sci U S A* 107: 17152-17157

549 Duval M, Dar D, Carvalho F, Rocha EP, Sorek R, Cossart P (2018) HflXr, a homolog of a
550 ribosome-splitting factor, mediates antibiotic resistance. *Proc Natl Acad Sci U S A* 115:
551 13359-13364

552 Ero R, Kumar V, Su W, Gao YG (2019) Ribosome protection by ABC-F proteins—Molecular
553 mechanism and potential drug design. *Protein Sci* 28: 684-693

554 Fairweather N, Kennedy S, Foster T, Kehoe M, Dougan G (1983) Expression of a cloned
555 *Staphylococcus aureus* α-hemolysin determinant in *Bacillus subtilis* and *Staphylococcus*
556 *aureus*. *Infect Immun* 41: 1112-1117

557 Fischer N, Neumann P, Konevega AL, Bock LV, Ficner R, Rodnina MV, Stark H (2015)
558 Structure of the *E. coli* ribosome-EF-Tu complex at < 3 Å resolution by Cs-corrected cryo-
559 EM. *Nature* 520: 567-570

560 Fostier CR, Monlezun L, Ousalem F, Singh S, Hunt JF, Boël G (2020) ABC-F translation
561 factors: from antibiotic resistance to immune response. *FEBS Lett*

562 Freitas AR, Elghaieb H, León-Sampedro R, Abbassi MS, Novais C, Coque TM, Hassen A,
563 Peixe L (2017) Detection of *optrA* in the African continent (Tunisia) within a mosaic
564 *Enterococcus faecalis* plasmid from urban wastewaters. *J Antimicrob Chemother* 72: 3245-
565 3251

566 Gabdulkhakov A, Tishchenko S, Mikhaylina A, Garber M, Nevskaya N, Nikonov S (2017)
567 Crystal Structure of the 23S rRNA Fragment Specific to r-Protein L1 and Designed Model of
568 the Ribosomal L1 Stalk from *Haloarcula marismortui*. *Crystals* 7: 37
569 Gerovac M, Tampé R (2019) Control of mRNA translation by versatile ATP-driven machines.
570 *Trends Biochem Sci* 44: 167-180
571 Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A, Baquero F, Berche P, Bloecker H,
572 Brandt P, Chakraborty T (2001) Comparative genomics of *Listeria* species. *Science* 294:
573 849-852
574 Golubev A, Fatkhullin B, Khusainov I, Jenner L, Gabdulkhakov A, Validov S, Yusupova G,
575 Yusupov M, Usachev K (2020) Cryo-EM structure of the ribosome functional complex of the
576 human pathogen *Staphylococcus aureus* at 3.2 Å resolution. *FEBS letters*
577 Henderson R, Sali A, Baker ML, Carragher B, Devkota B, Downing KH, Egelman EH, Feng
578 Z, Frank J, Grigorieff N (2012) Outcome of the first electron microscopy validation task force
579 meeting. *Structure* 20: 205-214
580 Heuer A, Gerovac M, Schmidt C, Trowitzsch S, Preis A, Kötter P, Berninghausen O, Becker
581 T, Beckmann R, Tampe R (2017) Structure of the 40S-ABCE1 post-splitting complex in
582 ribosome recycling and translation initiation. *Nat Struct Mol Biol* 24: 453-460
583 Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR (1989) Site-directed mutagenesis by
584 overlap extension using the polymerase chain reaction. *Gene* 77: 51-59
585 Horsburgh MJ, Aish JL, White IJ, Shaw L, Lithgow JK, Foster SJ (2002) σB modulates
586 virulence determinant expression and stress resistance: characterization of a functional rsbU
587 strain derived from *Staphylococcus aureus* 8325-4. *J Bacteriol* 184: 5457-5467
588 Hot C, Berthet N, Chesneau O (2014) Characterization of *sal*(A), a novel gene responsible
589 for lincosamide and streptogramin A resistance in *Staphylococcus sciuri*. *Antimicrob Agents*
590 *Chemother* 58: 3335-3341
591 Iimura M, Hayashi W, Arai E, Natori T, Horiuchi K, Matsumoto G, Tanaka H, Soga E, Nagano
592 Y, Arakawa Y (2020) Identification of a multiresistant mosaic plasmid carrying a new
593 segment of *IS1216E*-flanked *optrA* with integrated *Tn551-ermB* element in linezolid-resistant
594 *Enterococcus faecalis* human isolate. *J Glob Antimicrob Res* 22: 679-699
595 Jacquet E, Girard JM, Ramaen O, Pamlard O, Lévaique H, Betton JM, Dassa E, Chesneau
596 O (2008) ATP hydrolysis and pristinamycin IIA inhibition of the *Staphylococcus aureus*
597 Vga(A), a dual ABC protein involved in streptogramin A resistance. *J Biol Chem* 283: 25332-
598 25339
599 James NR, Brown A, Gordiyenko Y, Ramakrishnan V (2016) Translational termination
600 without a stop codon. *Science* 354: 1437-1440
601 Johnson ZL, Chen J (2018) ATP binding enables substrate release from Multidrug
602 Resistance Protein 1. *Cell* 172: 81-89

603 Khusainov I, Vicens Q, Bochler A, Grosse F, Myasnikov A, Ménétret J-F, Chicher J, Marzi S,
604 Romby P, Yusupova G (2016) Structure of the 70S ribosome from human pathogen
605 *Staphylococcus aureus*. *Nucleic Acids Res* 44: 10491-10504
606 Koberska M, Vesela L, Vimberg V, Lenart J, Vesela J, Kamenik Z, Janata J, Novotna GB
607 (2020) Beyond self-resistance: ABCF ATPase LmrC is a signal-transducing component of an
608 antibiotic-driven signaling cascade hastening the onset of lincomycin biosynthesis. *bioRxiv*:
609 2020.2010.2016.343517
610 Krishnan A, Burroughs AM, Iyer LM, Aravind L (2020) Comprehensive classification of ABC
611 ATPases and their functional radiation in nucleoprotein dynamics and biological conflict
612 systems. *Nucleic Acids Res* 48: 10045–10075
613 Kucukelbir A, Sigworth FJ, Tagare HD (2014) Quantifying the local resolution of cryo-EM
614 density maps. *Nat Methods* 11: 63-65
615 Lenart J, Vimberg V, Vesela L, Janata J, Novotna GB (2015) Detailed mutational analysis of
616 Vga(A) interdomain linker: Implication for antibiotic resistance specificity and mechanism.
617 *Antimicrob Agents Chemother* 59: 1360-1364
618 Liebschner D, Afonine PV, Baker ML, Bunkóczki G, Chen VB, Croll TI, Hintze B, Hung L-W,
619 Jain S, McCoy AJ (2019) Macromolecular structure determination using X-rays, neutrons and
620 electrons: recent developments in Phenix. *Acta Crystallogr D Struct Biol* 75: 861-877
621 Loveland AB, Demo G, Grigorieff N, Korostelev AA (2017) Ensemble cryo-EM elucidates the
622 mechanism of translation fidelity. *Nature* 546: 113-117
623 Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, Lynfield R,
624 Maloney M, McAllister-Hollob L, Nadle J (2014) Multistate point-prevalence survey of health
625 care-associated infections. *N Engl J Med* 370: 1198-1208
626 Mamtora D, Saseedharan S, Bhalekar P, Katakdhond S (2019) Microbiological profile and
627 antibiotic susceptibility pattern of Gram-positive isolates at a tertiary care hospital. *J Lab
628 Physicians* 11: 144-148
629 Marks J, Kannan K, Roncase EJ, Klepacki D, Kefi A, Orelle C, Vazquez-Laslop N, Mankin
630 AS (2016) Context-specific inhibition of translation by ribosomal antibiotics targeting the
631 peptidyl transferase center. *Proc Natl Acad Sci U S A* 113: 12150-12155
632 Matzov D, Eyal Z, Benhamou RI, Shalev-Benami M, Halfon Y, Krupkin M, Zimmerman E,
633 Rozenberg H, Bashan A, Fridman M (2017) Structural insights of lincosamides targeting the
634 ribosome of *Staphylococcus aureus*. *Nucleic Acids Res* 45: 10284-10292
635 Mendes RE, Paukner S, Doyle TB, Gelone SP, Flamm RK, Sader HS (2019) Low
636 Prevalence of Gram-positive isolates showing elevated lefamulin MIC results during the
637 SENTRY Surveillance Program for 2015–2016 and characterization of resistance
638 mechanisms. *Antimicrob Agents Chemother* 63: e02158-02118

639 Meydan S, Marks J, Klepacki D, Sharma V, Baranov PV, Firth AE, Margus T, Kefi A,
640 Vázquez-Laslop N, Mankin AS (2019) Retapamulin-assisted ribosome profiling reveals the
641 alternative bacterial proteome. *Mol Cell* 74: 481-493
642 Monk IR, Gahan CG, Hill C (2008) Tools for functional postgenomic analysis of *Listeria*
643 *monocytogenes*. *Appl Environ Microbiol* 74: 3921-3934
644 Moriya T, Saur M, Stabrin M, Merino F, Voicu H, Huang Z, Penczek PA, Raunser S,
645 Gatsogiannis C (2017) High-resolution single particle analysis from electron cryo-microscopy
646 images using SPHIRE. *J Vis Exp*: e55448
647 Murina V, Kasari M, Hauryliuk V, Atkinson GC (2018) Antibiotic resistance ABCF proteins
648 reset the peptidyl transferase centre of the ribosome to counter translational arrest. *Nucleic*
649 *Acids Res*: 1-11
650 Murina V, Kasari M, Takada H, Hinnu M, Saha CK, Grimshaw JW, Seki T, Reith M, Putrinš
651 M, Tenson T (2019) ABCF ATPases involved in protein synthesis, ribosome assembly and
652 antibiotic resistance: structural and functional diversification across the tree of life. *J Mol Biol*
653 431: 3568-3590
654 Murphy EL, Singh KV, Avila B, Kleffmann T, Gregory ST, Murray BE, Krause KL, Khayat R,
655 Jogi G (2020) Cryo-electron microscopy structure of the 70S ribosome from *Enterococcus*
656 *faecalis*. *Sci Rep* 10: 16301
657 Noeske J, Wasserman MR, Terry DS, Altman RB, Blanchard SC, Cate JH (2015) High-
658 resolution structure of the *Escherichia coli* ribosome. *Nat Struct Mol Biol* 22: 336-341
659 Novotna G, Janata J (2006) A new evolutionary variant of the streptogramin A resistance
660 protein, Vga(A)_{LC}, from *Staphylococcus haemolyticus* with shifted substrate specificity
661 towards lincosamides. *Antimicrob Agent Chemother* 50: 4070-4076
662 Ohki R, Tateno K, Takizawa T, Also T, Murata M (2005) Transcriptional termination control of
663 a novel ABC transporter gene involved in antibiotic resistance in *Bacillus subtilis*. *J Bacteriol*
664 187: 5946-5954
665 Orelle C, Carlson S, Kaushal B, Almutairi MM, Liu H, Ochabowicz A, Quan S, Pham VC,
666 Squires CL, Murphy BT (2013) Tools for characterizing bacterial protein synthesis inhibitors.
667 *Antimicrob Agent Chemother* 57: 5994-6004
668 Ousalem F, Singh S, Chesneau O, Hunt JF, Boël G (2019) ABC-F proteins in mRNA
669 translation and antibiotic resistance. *Res Microbiol* 170: 435-447
670 O'Neill A (2010) *Staphylococcus aureus* SH1000 and 8325-4: comparative genome
671 sequences of key laboratory strains in staphylococcal research. *Letters in applied*
672 *microbiology* 51: 358-361
673 Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE
674 (2004) UCSF Chimera—a visualization system for exploratory research and analysis. *J*
675 *Comp Chem* 25: 1605-1612

676 Pfaller MA, Cormican M, Flamm RK, Mendes RE, Jones RN, 2019. Temporal and
677 geographic variation in antimicrobial susceptibility and resistance patterns of enterococci:
678 results from the SENTRY Antimicrobial Surveillance Program, 1997-2016, Open Forum
679 Infect Dis. Oxford University Press US, pp. S54-S62.

680 Polacek N, Mankin AS (2005) The ribosomal peptidyl transferase center: structure, function,
681 evolution, inhibition. *Crit Rev Biochem Mol Biol* 40: 285-311

682 Polikanov YS, Starosta AL, Juette MF, Altman RB, Terry DS, Lu W, Burnett BJ, Dinos G,
683 Reynolds KA, Blanchard SC *et al* (2015) Distinct tRNA accommodation intermediates
684 observed on the ribosome with the antibiotics Hygromycin A and A201A. *Mol Cell* 58: 832-
685 844

686 Polikanov YS, Steitz TA, Innis CA (2014) A proton wire to couple aminoacyl-tRNA
687 accommodation and peptide-bond formation on the ribosome. *Nat Struct Mol Biol* 21: 787-
688 793

689 Pulk A, Cate JH (2013) Control of ribosomal subunit rotation by elongation factor G. *Science*
690 340: 1-7

691 Ranjan N, Pochopien AA, Wu CC-C, Beckert B, Blanchet S, Green R, Rodnina MV, Wilson
692 DN (2020) eEF3 promotes late stages of tRNA translocation on the ribosome. *bioRxiv*

693 Rees DC, Johnson E, Lewinson O (2009) ABC transporters: the power to change. *Nat Rev
694 Mol Cell Biol* 10: 218-227

695 Reynolds ED, Cove JH (2005) Resistance to telithromycin is conferred by *msr*(A), *msr*C and
696 *msr*(D) in *Staphylococcus aureus*. *J Antimicrob Chemother* 56: 1179-1180

697 Rohou A, Grigorieff N (2015) CTFFIND4: Fast and accurate defocus estimation from electron
698 micrographs. *J Struct Biol* 192: 216-221

699 Ross JI, Eady EA, Cove JH, Cunliffe WJ, Baumberg S, Wootton JC (1990) Inducible
700 erythromycin resistance in staphylococci is encoded by a member of the ATP-binding
701 transport super-gene family. *Mol Microbiol* 4: 1207-1214

702 Ross JI, Farrell AM, Eady EA, Cove JH, Cunliffe WJ (1989) Characterisation and molecular
703 cloning of the novel macrolide-streptogramin B resistance determinant from *Staphylococcus*
704 *epidermidis*. *J Antimicrob Chemother* 24: 851-862

705 Rozov A, Khusainov I, El Omari K, Duman R, Mykhaylyk V, Yusupov M, Westhof E, Wagner
706 A, Yusupova G (2019) Importance of potassium ions for ribosome structure and function
707 revealed by long-wavelength X-ray diffraction. *Nat Commun* 10: 1-12

708 Sadowy E (2018) Linezolid resistance genes and genetic elements enhancing their
709 dissemination in enterococci and streptococci. *Plasmid* 99: 89-98

710 Schenk S, Laddaga RA (1992) Improved method for electroporation of *Staphylococcus*
711 *aureus*. *FEMS Microbiol Lett* 94: 133-138

712 Scheres SH, Chen S (2012) Prevention of overfitting in cryo-EM structure determination. *Nat Methods* 9: 853-854

713 Schlünzen F, Pyetan E, Fucini P, Yonath A, Harms JM (2004) Inhibition of peptide bond formation by pleuromutilins: the structure of the 50S ribosomal subunit from *Deinococcus radiodurans* in complex with tiamulin. *Mol Microbiol* 54: 1287-1294

714 Sharkey LK, Edwards TA, O'Neill AJ (2016) ABC-F proteins mediate antibiotic resistance through ribosomal protection. *mBio* 7: e01975

715 Sharkey LK, O'Neill AJ (2018) Antibiotic resistance ABC-F proteins: bringing target protection into the limelight. *ACS Infect Dis* 4: 239-246

716 Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for *in vivo* genetic engineering: transposon mutagenesis in Gram negative bacteria. *Bio/technology* 1: 784-791

717 Singh KV, Malathum K, Murray BE (2001) Disruption of an *Enterococcus faecium* species-specific gene, a homologue of acquired macrolide resistance genes of staphylococci, is associated with an increase in macrolide susceptibility. *Antimicrob Agents Chemother* 45: 263-266

718 Singh KV, Weinstock GM, Murray BE (2002) An *Enterococcus faecalis* ABC homologue (Lsa) is required for the resistance of this species to clindamycin and quinupristin-dalfopristin. *Antimicrob Agents Chemother* 46: 1845-1850

719 Su W, Kumar V, Ding Y, Ero R, Serra A, Lee BST, Wong ASW, Shi J, Sze SK, Yang L (2018) Ribosome protection by antibiotic resistance ATP-binding cassette protein. *Proc Natl Acad Sci U S A* 115: 5157-5162

720 Takada H, Roghanian M, Murina V, Dzhiggyr I, Murayama R, Akanuma G, Atkinson GC, Garcia-Pino A, Hauryliuk V (2020) The C-terminal RRM/ACT domain is crucial for fine-tuning the activation of 'long' RelA-SpoT Homolog enzymes by ribosomal complexes. *Front Microbiol* 11: 277

721 Thomas C, Tampé R (2020) Structural and mechanistic principles of ABC transporters. *Ann Rev Biochem* 89: 605-636

722 Tishchenko S, Gabdulkhakov A, Nevskaia N, Sarskikh A, Kostareva O, Nikonova E, Sycheva A, Moshkovskii S, Garber M, Nikonov S (2012) High-resolution crystal structure of the isolated ribosomal L1 stalk. *Acta Crystallogr D Biol Crystallogr* 68: 1051-1057

723 Tu D, Blaha G, Moore PB, Steitz TA (2005) Structures of MLS_BK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. *Cell* 121: 257-270

724 Vimberg V, Cavanagh JP, Novotna M, Lenart J, Nguyen Thi Ngoc B, Vesela J, Pain M, Koberska M, Balikova Novotna G (2020) Ribosome-mediated attenuation of vga(A)

748 expression is shaped by the antibiotic resistance specificity of Vga(A) protein variants.

749 *Antimicrob Agent Chemother* 64: e00666-00620

750 Voorhees RM, Schmeing TM, Kelley AC, Ramakrishnan V (2010) The mechanism for

751 activation of GTP hydrolysis on the ribosome. *Science* 330: 835-838

752 Wang Y, Lv Y, Cai J, Schwarz S, Cui L, Hu Z, Zhang R, Li J, Zhao Q, He T (2015) A novel

753 gene, *optrA*, that confers transferable resistance to oxazolidinones and phenicols and its

754 presence in *Enterococcus faecalis* and *Enterococcus faecium* of human and animal origin. *J*

755 *Antimicrob Chemother* 70: 2182-2190

756 Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer

757 TAP, Rempfer C, Bordoli L (2018) SWISS-MODEL: homology modelling of protein structures

758 and complexes. *Nucleic Acids Res* 46: W296-W303

759 Weaver KE, Chen Y, Miiller EM, Johnson JN, Dangler AA, Manias DA, Clem AM, Schjodt DJ,

760 Dunny GM (2017) Examination of *Enterococcus faecalis* toxin-antitoxin system toxin Fst

761 function utilizing a pheromone-inducible expression vector with tight repression and broad

762 dynamic range. *J Bacteriol* 199: e00065-00017

763 Wilson DN (2014) Ribosome-targeting antibiotics and mechanisms of bacterial resistance.

764 *Nat Rev Microbiol* 12: 35-48

765 Wilson DN, Hauryliuk V, Atkinson GC, O'Neill AJ (2020) Target protection as a key antibiotic

766 resistance mechanism. *Nature Rev Microbiol* 18: 637-648

767 Wilson DN, Schluerzen F, Harms JM, Starosta AL, Connell SR, Fucini P (2008) The

768 oxazolidinone antibiotics perturb the ribosomal peptidyl-transferase center and effect tRNA

769 positioning. *Proc Natl Acad Sci U S A* 105: 13339-13344

770 Zhang C, Zhang P, Wang Y, Liu L, Xu D, Ho Y, Li Y, Fu M, Wang X, Wang S (2020)

771 Capsular serotypes, antimicrobial susceptibility, and the presence of transferable

772 oxazolidinone resistance genes in *Streptococcus suis* isolated from healthy pigs in China.

773 *Vet Microbiol* 247: 108750

774 Zhang K (2016) Gctf: Real-time CTF determination and correction. *J Struct Biol* 193: 1-12

775 Zheng SQ, Palovcak E, Armache J-P, Verba KA, Cheng Y, Agard DA (2017) MotionCor2:

776 anisotropic correction of beam-induced motion for improved cryo-electron microscopy. *Nat*

777 *Methods* 14: 331-332

778 Zivanov J, Nakane T, Forsberg BO, Kimanius D, Hagen WJ, Lindahl E, Scheres SH (2018)

779 New tools for automated high-resolution cryo-EM structure determination in RELION-3. *Elife*

780 7: e42166

781 Allignet J, Loncle V, El Solh N (1992) Sequence of a staphylococcal plasmid gene, *vga*,

782 encoding a putative ATP-binding protein involved in resistance to virginiamycin A-like

783 antibiotics. *Gene* 117: 45-51

784 Andersen CBF, Becker T, Blau M, Anand M, Halic M, Balar B, Mielke T, Boesen T, Pedersen
785 JS, Spahn CMT *et al* (2006) Structure of eEF3 and the mechanism of transfer RNA release
786 from the E-site. *Nature* 443: 663-668

787 Antonelli A, D'Andrea MM, Brenciani A, Galeotti CL, Morroni G, Pollini S, Varaldo PE,
788 Rossolini GM (2018) Characterization of poxtA, a novel phenicol-oxazolidinone-tetracycline
789 resistance gene from an MRSA of clinical origin. *J Antimicrob Chemother* 73: 1763-1769

790 Arenz S, Nguyen F, Beckmann R, Wilson DN (2015) Cryo-EM structure of the tetracycline
791 resistance protein TetM in complex with a translating ribosome at 3.9-Å resolution. *Proc Natl
792 Acad Sci U S A* 112: 5401-5406

793 Arnaud M, Chastanet A, Débarbouillé M (2004) New vector for efficient allelic replacement in
794 naturally nontransformable, low-GC-content, gram-positive bacteria. *Appl Environ Microbiol*
795 70: 6887-6891

796 Becker T, Franckenberg S, Wickles S, Shoemaker CJ, Anger AM, Armache J-P, Sieber H,
797 Ungewickell C, Berninghausen O, Daberkow I (2012) Structural basis of highly conserved
798 ribosome recycling in eukaryotes and archaea. *Nature* 482: 501-506

799 Bhardwaj P, Ziegler E, Palmer KL (2016) Chlorhexidine induces VanA-type vancomycin
800 resistance genes in enterococci. *Antimicrobial agents and chemotherapy* 60: 2209-2221

801 Camargo AC, Woodward JJ, Nero LA (2016) The continuous challenge of characterizing the
802 foodborne pathogen *Listeria monocytogenes*. *Foodborne Pathog Dis* 13: 405-416

803 Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P,
804 Zardi L, Righetti PG (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining
805 for proteome analysis. *Electrophoresis* 25: 1327-1333

806 Casañal A, Lohkamp B, Emsley P (2020) Current developments in Coot for macromolecular
807 model building of electron cryo-microscopy and crystallographic data. *Protein Sci* 29: 1069-
808 1078

809 Chen B, Boël G, Hashem Y, Ning W, Fei J, Wang C, Gonzalez RL, Hunt JF, Frank J (2014)
810 EttA regulates translation by binding the ribosomal E site and restricting ribosome-tRNA
811 dynamics. *Nat Struct Mol Biol* 21: 152-159

812 Chesneau O, Ligeret H, Hosan-Aghaie N, Morvan A, Dassa E (2005) Molecular analysis of
813 resistance to streptogramin A compounds conferred by the Vga proteins of Staphylococci.
814 *Antimicrob Agents Chemother* 49: 973-980

815 Corrigan RM, Foster TJ (2009) An improved tetracycline-inducible expression vector for
816 *Staphylococcus aureus*. *Plasmid* 61: 126-129

817 Crowe-McAuliffe C, Graf M, Huter P, Takada H, Abdelshahid M, Nováček J, Murina V,
818 Atkinson GC, Hauryliuk V, Wilson DN (2018) Structural basis for antibiotic resistance
819 mediated by the *Bacillus subtilis* ABCF ATPase VmlR. *Proc Natl Acad Sci U S A* 115: 8978-
820 8983

821 Dar D, Shamir M, Mellin JR, Koutero M, Stern-Ginossar N, Cossart P, Sorek R (2016) Term-
822 seq reveals abundant ribo-regulation of antibiotics resistance in bacteria. *Science* 352: 9822-
823 9822

824 Davidson AL, Dassa E, Orelle C, Chen J (2008) Structure, function, and evolution of bacterial
825 ATP-binding cassette systems. *Microbiol Mol Biol Rev* 72: 317-364

826 Davis Dv, McAlpine JB, Pazoles CJ, Talbot MK, Alder EA, White AC, Jonas BM, Murray BE,
827 Weinstock GM, Rogers BL (2001) *Enterococcus faecalis* multi-drug resistance transporters:
828 application for antibiotic discovery. *J Mol Microbiol Biotechnol* 3: 179-184

829 Dornhelm P, Högenauer G (1978) The effects of tiamulin, a semisynthetic pleuromutilin
830 derivative, on bacterial polypeptide chain initiation. *Eur J Biochem* 91: 465-473

831 Dorrian J, Kerr I (2009) *Can ABC proteins confer drug resistance in micro-organisms without*
832 *being export pumps?* Caister Academic Press

833 Dunkle JA, Xiong L, Mankin AS, Cate JH (2010) Structures of the *Escherichia coli* ribosome
834 with antibiotics bound near the peptidyl transferase center explain spectra of drug action.
835 *Proc Natl Acad Sci U S A* 107: 17152-17157

836 Duval M, Dar D, Carvalho F, Rocha EP, Sorek R, Cossart P (2018) HflXr, a homolog of a
837 ribosome-splitting factor, mediates antibiotic resistance. *Proc Natl Acad Sci U S A* 115:
838 13359-13364

839 Ero R, Kumar V, Su W, Gao YG (2019) Ribosome protection by ABC-F proteins—Molecular
840 mechanism and potential drug design. *Protein Sci* 28: 684-693

841 Fairweather N, Kennedy S, Foster T, Kehoe M, Dougan G (1983) Expression of a cloned
842 *Staphylococcus aureus* α -hemolysin determinant in *Bacillus subtilis* and *Staphylococcus*
843 *aureus*. *Infect Immun* 41: 1112-1117

844 Fischer N, Neumann P, Konevega AL, Bock LV, Ficner R, Rodnina MV, Stark H (2015)
845 Structure of the *E. coli* ribosome–EF-Tu complex at < 3 Å resolution by Cs-corrected cryo-
846 EM. *Nature* 520: 567-570

847 Fostier CR, Monlezun L, Ousalem F, Singh S, Hunt JF, Boël G (2020) ABC-F translation
848 factors: from antibiotic resistance to immune response. *FEBS Lett*

849 Freitas AR, Elghaieb H, León-Sampedro R, Abbassi MS, Novais C, Coque TM, Hassen A,
850 Peixe L (2017) Detection of *optrA* in the African continent (Tunisia) within a mosaic
851 *Enterococcus faecalis* plasmid from urban wastewaters. *J Antimicrob Chemother* 72: 3245-
852 3251

853 Gabdulkhakov A, Tishchenko S, Mikhaylina A, Garber M, Nevskaya N, Nikonov S (2017)
854 Crystal Structure of the 23S rRNA Fragment Specific to r-Protein L1 and Designed Model of
855 the Ribosomal L1 Stalk from *Haloarcula marismortui*. *Crystals* 7: 37

856 Gerovac M, Tampé R (2019) Control of mRNA translation by versatile ATP-driven machines.
857 *Trends Biochem Sci* 44: 167-180

858 Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A, Baquero F, Berche P, Bloecker H,
859 Brandt P, Chakraborty T (2001) Comparative genomics of *Listeria* species. *Science* 294:
860 849-852

861 Golubev A, Fatkhullin B, Khusainov I, Jenner L, Gabdulkhakov A, Validov S, Yusupova G,
862 Yusupov M, Usachev K (2020) Cryo-EM structure of the ribosome functional complex of the
863 human pathogen *Staphylococcus aureus* at 3.2 Å resolution. *FEBS letters*

864 Henderson R, Sali A, Baker ML, Carragher B, Devkota B, Downing KH, Egelman EH, Feng
865 Z, Frank J, Grigorieff N (2012) Outcome of the first electron microscopy validation task force
866 meeting. *Structure* 20: 205-214

867 Heuer A, Gerovac M, Schmidt C, Trowitzsch S, Preis A, Kötter P, Berninghausen O, Becker
868 T, Beckmann R, Tampe R (2017) Structure of the 40S-ABCE1 post-splitting complex in
869 ribosome recycling and translation initiation. *Nat Struct Mol Biol* 24: 453-460

870 Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR (1989) Site-directed mutagenesis by
871 overlap extension using the polymerase chain reaction. *Gene* 77: 51-59

872 Horsburgh MJ, Aish JL, White IJ, Shaw L, Lithgow JK, Foster SJ (2002) σB modulates
873 virulence determinant expression and stress resistance: characterization of a functional rsbU
874 strain derived from *Staphylococcus aureus* 8325-4. *J Bacteriol* 184: 5457-5467

875 Hot C, Berthet N, Chesneau O (2014) Characterization of *sal*(A), a novel gene responsible
876 for lincosamide and streptogramin A resistance in *Staphylococcus sciuri*. *Antimicrob Agents
877 Chemother* 58: 3335-3341

878 Iimura M, Hayashi W, Arai E, Natori T, Horiuchi K, Matsumoto G, Tanaka H, Soga E, Nagano
879 Y, Arakawa Y (2020) Identification of a multiresistant mosaic plasmid carrying a new
880 segment of *IS1216E*-flanked *optrA* with integrated *Tn551-ermB* element in linezolid-resistant
881 *Enterococcus faecalis* human isolate. *J Glob Antimicrob Res* 22: 679-699

882 Jacquet E, Girard JM, Ramaen O, Pamlard O, Lévaique H, Betton JM, Dassa E, Chesneau
883 O (2008) ATP hydrolysis and pristinamycin IIA inhibition of the *Staphylococcus aureus*
884 Vga(A), a dual ABC protein involved in streptogramin A resistance. *J Biol Chem* 283: 25332-
885 25339

886 James NR, Brown A, Gordiyenko Y, Ramakrishnan V (2016) Translational termination
887 without a stop codon. *Science* 354: 1437-1440

888 Johnson ZL, Chen J (2018) ATP binding enables substrate release from Multidrug
889 Resistance Protein 1. *Cell* 172: 81-89

890 Khusainov I, Vicens Q, Bochler A, Grosse F, Myasnikov A, Ménétret J-F, Chicher J, Marzi S,
891 Romby P, Yusupova G (2016) Structure of the 70S ribosome from human pathogen
892 *Staphylococcus aureus*. *Nucleic Acids Res* 44: 10491-10504

893 Kirchner S, Rauscher R, Czech A, Ignatova Z (2017) Microarray-based quantification of
894 cellular tRNAs. *Protocols*

895 Koberska M, Vesela L, Vimberg V, Lenart J, Vesela J, Kamenik Z, Janata J, Novotna GB
896 (2020) Beyond self-resistance: ABCF ATPase LmrC is a signal-transducing component of an
897 antibiotic-driven signaling cascade hastening the onset of lincomycin biosynthesis. *bioRxiv*:
898 2020.2010.2016.343517

899 Krishnan A, Burroughs AM, Iyer LM, Aravind L (2020) Comprehensive classification of ABC
900 ATPases and their functional radiation in nucleoprotein dynamics and biological conflict
901 systems. *Nucleic Acids Res* 48: 10045–10075

902 Kucukelbir A, Sigworth FJ, Tagare HD (2014) Quantifying the local resolution of cryo-EM
903 density maps. *Nat Methods* 11: 63-65

904 Lenart J, Vimberg V, Vesela L, Janata J, Novotna GB (2015) Detailed mutational analysis of
905 Vga(A) interdomain linker: Implication for antibiotic resistance specificity and mechanism.
906 *Antimicrob Agents Chemother* 59: 1360-1364

907 Liebschner D, Afonine PV, Baker ML, Bunkóczki G, Chen VB, Croll TI, Hintze B, Hung L-W,
908 Jain S, McCoy AJ (2019) Macromolecular structure determination using X-rays, neutrons and
909 electrons: recent developments in Phenix. *Acta Crystallogr D Struct Biol* 75: 861-877

910 Loveland AB, Demo G, Grigorieff N, Korostelev AA (2017) Ensemble cryo-EM elucidates the
911 mechanism of translation fidelity. *Nature* 546: 113-117

912 Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, Lynfield R,
913 Maloney M, McAllister-Hollob L, Nadle J (2014) Multistate point-prevalence survey of health
914 care-associated infections. *N Engl J Med* 370: 1198-1208

915 Mamtor D, Saseedharan S, Bhalekar P, Katakdhond S (2019) Microbiological profile and
916 antibiotic susceptibility pattern of Gram-positive isolates at a tertiary care hospital. *J Lab
917 Physicians* 11: 144-148

918 Marks J, Kannan K, Roncase EJ, Klepacki D, Kefi A, Orelle C, Vazquez-Laslop N, Mankin
919 AS (2016) Context-specific inhibition of translation by ribosomal antibiotics targeting the
920 peptidyl transferase center. *Proc Natl Acad Sci U S A* 113: 12150-12155

921 Matzov D, Eyal Z, Benhamou RI, Shalev-Benami M, Halfon Y, Krupkin M, Zimmerman E,
922 Rozenberg H, Bashan A, Fridman M (2017) Structural insights of lincosamides targeting the
923 ribosome of *Staphylococcus aureus*. *Nucleic Acids Res* 45: 10284-10292

924 Mendes RE, Paukner S, Doyle TB, Gelone SP, Flamm RK, Sader HS (2019) Low
925 Prevalence of Gram-positive isolates showing elevated lefamulin MIC results during the
926 SENTRY Surveillance Program for 2015–2016 and characterization of resistance
927 mechanisms. *Antimicrob Agents Chemother* 63: e02158-02118

928 Meydan S, Marks J, Klepacki D, Sharma V, Baranov PV, Firth AE, Margus T, Kefi A,
929 Vázquez-Laslop N, Mankin AS (2019) Retapamulin-assisted ribosome profiling reveals the
930 alternative bacterial proteome. *Mol Cell* 74: 481-493

931 Monk IR, Gahan CG, Hill C (2008) Tools for functional postgenomic analysis of *Listeria*
932 *monocytogenes*. *Appl Environ Microbiol* 74: 3921-3934

933 Moriya T, Saur M, Stabrin M, Merino F, Voicu H, Huang Z, Penczek PA, Raunser S,
934 Gatsogiannis C (2017) High-resolution single particle analysis from electron cryo-microscopy
935 images using SPHIRE. *J Vis Exp*: e55448

936 Murina V, Kasari M, Hauryliuk V, Atkinson GC (2018) Antibiotic resistance ABCF proteins
937 reset the peptidyl transferase centre of the ribosome to counter translational arrest. *Nucleic*
938 *Acids Res*: 1-11

939 Murina V, Kasari M, Takada H, Hinnu M, Saha CK, Grimshaw JW, Seki T, Reith M, Putrinš
940 M, Tenson T (2019) ABCF ATPases involved in protein synthesis, ribosome assembly and
941 antibiotic resistance: structural and functional diversification across the tree of life. *J Mol Biol*
942 431: 3568-3590

943 Murphy EL, Singh KV, Avila B, Kleffmann T, Gregory ST, Murray BE, Krause KL, Khayat R,
944 Jogi G (2020) Cryo-electron microscopy structure of the 70S ribosome from *Enterococcus*
945 *faecalis*. *Sci Rep* 10: 16301

946 Noeske J, Wasserman MR, Terry DS, Altman RB, Blanchard SC, Cate JH (2015) High-
947 resolution structure of the *Escherichia coli* ribosome. *Nat Struct Mol Biol* 22: 336-341

948 Novotna G, Janata J (2006) A new evolutionary variant of the streptogramin A resistance
949 protein, Vga(A)_{LC}, from *Staphylococcus haemolyticus* with shifted substrate specificity
950 towards lincosamides. *Antimicrob Agent Chemother* 50: 4070-4076

951 Ohki R, Tateno K, Takizawa T, Also T, Murata M (2005) Transcriptional termination control of
952 a novel ABC transporter gene involved in antibiotic resistance in *Bacillus subtilis*. *J Bacteriol*
953 187: 5946-5954

954 Orelle C, Carlson S, Kaushal B, Almutairi MM, Liu H, Ochabowicz A, Quan S, Pham VC,
955 Squires CL, Murphy BT (2013) Tools for characterizing bacterial protein synthesis inhibitors.
956 *Antimicrob Agent Chemother* 57: 5994-6004

957 Ousalem F, Singh S, Chesneau O, Hunt JF, Boël G (2019) ABC-F proteins in mRNA
958 translation and antibiotic resistance. *Res Microbiol* 170: 435-447

959 O'Neill A (2010) *Staphylococcus aureus* SH1000 and 8325-4: comparative genome
960 sequences of key laboratory strains in staphylococcal research. *Letters in applied*
961 *microbiology* 51: 358-361

962 Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE
963 (2004) UCSF Chimera—a visualization system for exploratory research and analysis. *J*
964 *Comp Chem* 25: 1605-1612

965 Pfaller MA, Cormican M, Flamm RK, Mendes RE, Jones RN, 2019. Temporal and
966 geographic variation in antimicrobial susceptibility and resistance patterns of enterococci:

967 results from the SENTRY Antimicrobial Surveillance Program, 1997-2016, Open Forum
968 Infect Dis. Oxford University Press US, pp. S54-S62.

969 Polacek N, Mankin AS (2005) The ribosomal peptidyl transferase center: structure, function,
970 evolution, inhibition. *Crit Rev Biochem Mol Biol* 40: 285-311

971 Polikanov YS, Starosta AL, Juette MF, Altman RB, Terry DS, Lu W, Burnett BJ, Dinos G,
972 Reynolds KA, Blanchard SC *et al* (2015) Distinct tRNA accommodation intermediates
973 observed on the ribosome with the antibiotics Hygromycin A and A201A. *Mol Cell* 58: 832-
974 844

975 Polikanov YS, Steitz TA, Innis CA (2014) A proton wire to couple aminoacyl-tRNA
976 accommodation and peptide-bond formation on the ribosome. *Nat Struct Mol Biol* 21: 787-
977 793

978 Pulk A, Cate JH (2013) Control of ribosomal subunit rotation by elongation factor G. *Science*
979 340: 1-7

980 Ranjan N, Pochopien AA, Wu CC-C, Beckert B, Blanchet S, Green R, Rodnina MV, Wilson
981 DN (2020) eEF3 promotes late stages of tRNA translocation on the ribosome. *bioRxiv*

982 Rees DC, Johnson E, Lewinson O (2009) ABC transporters: the power to change. *Nat Rev
983 Mol Cell Biol* 10: 218-227

984 Reynolds ED, Cove JH (2005) Resistance to telithromycin is conferred by *msr(A)*, *msrC* and
985 *msr(D)* in *Staphylococcus aureus*. *J Antimicrob Chemother* 56: 1179-1180

986 Rohou A, Grigorieff N (2015) CTFFIND4: Fast and accurate defocus estimation from electron
987 micrographs. *J Struct Biol* 192: 216-221

988 Ross JI, Eady EA, Cove JH, Cunliffe WJ, Baumberg S, Wootton JC (1990) Inducible
989 erythromycin resistance in staphylococci is encoded by a member of the ATP-binding
990 transport super-gene family. *Mol Microbiol* 4: 1207-1214

991 Ross JI, Farrell AM, Eady EA, Cove JH, Cunliffe WJ (1989) Characterisation and molecular
992 cloning of the novel macrolide-streptogramin B resistance determinant from *Staphylococcus
993 epidermidis*. *J Antimicrob Chemother* 24: 851-862

994 Rozov A, Khusainov I, El Omari K, Duman R, Mykhaylyk V, Yusupov M, Westhof E, Wagner
995 A, Yusupova G (2019) Importance of potassium ions for ribosome structure and function
996 revealed by long-wavelength X-ray diffraction. *Nat Commun* 10: 1-12

997 Sadowy E (2018) Linezolid resistance genes and genetic elements enhancing their
998 dissemination in enterococci and streptococci. *Plasmid* 99: 89-98

999 Schenk S, Laddaga RA (1992) Improved method for electroporation of *Staphylococcus
1000 aureus*. *FEMS Microbiol Lett* 94: 133-138

1001 Scheres SH, Chen S (2012) Prevention of overfitting in cryo-EM structure determination. *Nat
1002 Methods* 9: 853-854

1003 Schlünzen F, Pyetan E, Fucini P, Yonath A, Harms JM (2004) Inhibition of peptide bond
1004 formation by pleuromutilins: the structure of the 50S ribosomal subunit from *Deinococcus*
1005 *radiodurans* in complex with tiamulin. *Mol Microbiol* 54: 1287-1294
1006 Sharkey LK, Edwards TA, O'Neill AJ (2016) ABC-F proteins mediate antibiotic resistance
1007 through ribosomal protection. *mBio* 7: e01975
1008 Sharkey LK, O'Neill AJ (2018) Antibiotic resistance ABC-F proteins: bringing target protection
1009 into the limelight. *ACS Infect Dis* 4: 239-246
1010 Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for *in vivo*
1011 genetic engineering: transposon mutagenesis in Gram negative bacteria. *Bio/technology* 1:
1012 784-791
1013 Singh KV, Malathum K, Murray BE (2001) Disruption of an *Enterococcus faecium* species-
1014 specific gene, a homologue of acquired macrolide resistance genes of staphylococci, is
1015 associated with an increase in macrolide susceptibility. *Antimicrob Agent Chemother* 45:
1016 263-266
1017 Singh KV, Weinstock GM, Murray BE (2002) An *Enterococcus faecalis* ABC homologue
1018 (Lsa) is required for the resistance of this species to clindamycin and quinupristin-dalfopristin.
1019 *Antimicrob Agents Chemother* 46: 1845-1850
1020 Su W, Kumar V, Ding Y, Ero R, Serra A, Lee BST, Wong ASW, Shi J, Sze SK, Yang L
1021 (2018) Ribosome protection by antibiotic resistance ATP-binding cassette protein. *Proc Natl
1022 Acad Sci U S A* 115: 5157-5162
1023 Takada H, Roghanian M, Murina V, Dzhygyr I, Murayama R, Akanuma G, Atkinson GC,
1024 Garcia-Pino A, Hauryliuk V (2020) The C-terminal RRM/ACT domain is crucial for fine-tuning
1025 the activation of 'long' RelA-SpoT Homolog enzymes by ribosomal complexes. *Front
1026 Microbiol* 11: 277
1027 Thomas C, Tampé R (2020) Structural and mechanistic principles of ABC transporters. *Ann
1028 Rev Biochem* 89: 605-636
1029 Tishchenko S, Gabdulkhakov A, Nevskaia N, Sarskikh A, Kostareva O, Nikonova E,
1030 Sycheva A, Moshkovskii S, Garber M, Nikonov S (2012) High-resolution crystal structure of
1031 the isolated ribosomal L1 stalk. *Acta Crystallogr D Biol Crystallogr* 68: 1051-1057
1032 Tu D, Blaha G, Moore PB, Steitz TA (2005) Structures of MLS_BK antibiotics bound to
1033 mutated large ribosomal subunits provide a structural explanation for resistance. *Cell* 121:
1034 257-270
1035 Vimberg V, Cavanagh JP, Novotna M, Lenart J, Nguyen Thi Ngoc B, Vesela J, Pain M,
1036 Koberska M, Balikova Novotna G (2020) Ribosome-mediated attenuation of vga(A)
1037 expression is shaped by the antibiotic resistance specificity of Vga(A) protein variants.
1038 *Antimicrob Agent Chemother* 64: e00666-00620

1039 Voorhees RM, Schmeing TM, Kelley AC, Ramakrishnan V (2010) The mechanism for
1040 activation of GTP hydrolysis on the ribosome. *Science* 330: 835-838

1041 Wang Y, Lv Y, Cai J, Schwarz S, Cui L, Hu Z, Zhang R, Li J, Zhao Q, He T (2015) A novel
1042 gene, *optrA*, that confers transferable resistance to oxazolidinones and phenicols and its
1043 presence in *Enterococcus faecalis* and *Enterococcus faecium* of human and animal origin. *J*
1044 *Antimicrob Chemother* 70: 2182-2190

1045 Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer
1046 TAP, Rempfer C, Bordoli L (2018) SWISS-MODEL: homology modelling of protein structures
1047 and complexes. *Nucleic Acids Res* 46: W296-W303

1048 Weaver KE, Chen Y, Miiller EM, Johnson JN, Dangler AA, Manias DA, Clem AM, Schjodt DJ,
1049 Dunny GM (2017) Examination of *Enterococcus faecalis* toxin-antitoxin system toxin Fst
1050 function utilizing a pheromone-inducible expression vector with tight repression and broad
1051 dynamic range. *J Bacteriol* 199: e00065-00017

1052 Wilson DN (2014) Ribosome-targeting antibiotics and mechanisms of bacterial resistance.
1053 *Nat Rev Microbiol* 12: 35-48

1054 Wilson DN, Hauryliuk V, Atkinson GC, O'Neill AJ (2020) Target protection as a key antibiotic
1055 resistance mechanism. *Nature Rev Microbiol* 18: 637-648

1056 Wilson DN, Schluenzen F, Harms JM, Starosta AL, Connell SR, Fucini P (2008) The
1057 oxazolidinone antibiotics perturb the ribosomal peptidyl-transferase center and effect tRNA
1058 positioning. *Proc Natl Acad Sci U S A* 105: 13339-13344

1059 Zhang C, Zhang P, Wang Y, Liu L, Xu D, Ho Y, Li Y, Fu M, Wang X, Wang S (2020)
1060 Capsular serotypes, antimicrobial susceptibility, and the presence of transferable
1061 oxazolidinone resistance genes in *Streptococcus suis* isolated from healthy pigs in China.
1062 *Vet Microbiol* 247: 108750

1063 Zhang K (2016) Gctf: Real-time CTF determination and correction. *J Struct Biol* 193: 1-12

1064 Zheng SQ, Palovcak E, Armache J-P, Verba KA, Cheng Y, Agard DA (2017) MotionCor2:
1065 anisotropic correction of beam-induced motion for improved cryo-electron microscopy. *Nat*
1066 *Methods* 14: 331-332

1067 Zivanov J, Nakane T, Forsberg BO, Kimanis D, Hagen WJ, Lindahl E, Scheres SH (2018)
1068 New tools for automated high-resolution cryo-EM structure determination in RELION-3. *Elife*
1069 7: e42166

1070
1071

1072 **Materials and methods**

1073 **Strains and plasmids**

1074 All strains and plasmids used in this work are listed in Table S5.

1075 ***E. faecalis*** OG1RF and TX5332, a LsaA disruption mutant of OG1RF (Singh *et al.*, 2002),
1076 were kindly provided by Dr. Barbara E. Murray (Health Science Center, University of Texas).
1077 All cloning was performed by Protein Expertise Platform at Umeå University. *E. faecalis* LsaA
1078 ORF was PCR amplified from pTEX5333 plasmid and cloned into either pCIE_{cam} (Weaver *et*
1079 *al.*, 2017) (used for preparation of LsaA-70S complexes) or pCIE_{cam} (pCIE_{cam} derivative with
1080 the Cm^r gene swapped to the spectinomycin resistance Sc^r gene; used for MIC testing) vector
1081 for cCF10-inducible expression. To allow detection by immunoblotting and preparation of
1082 LsaA-70S complexes, the LsaA ORF was supplemented with C-terminal His₆-TEV-FLAG₃-tag
1083 (HTF tag) and the ribosome binding site was optimized for high expression yield. Point
1084 mutations E₁₄₂Q and E₄₅₂Q were introduced to LsaA resulting in pCIE_LsaA-EQ₂-HTF.

1085 ***S. haemolyticus*** *vga(A)_{LC}* gene was PCR-amplified from a *S. haemolyticus* isolate held in the
1086 O'Neill strain collection at the University of Leeds, using oligonucleotide primers *vgaALC*-F (5'-
1087 GGTGGTGGTACCAGGATGAGGAAATATGAAAA-3') and *vgaA_{LC}*-R (5'-
1088 GGTGGTGAATTCGGTATTATTTATCTAAATTCTT-3') (engineered restriction sites
1089 shown underlined). The protein encoded by this gene is identical to that previously reported
1090 (Novotna & Janata, 2006) (accession number DQ823382). The fragment was digested with
1091 *Kpn*I and *Eco*RI and ligated into the tetracycline-inducible expression vector pRMC2 (Corrigan
1092 & Foster, 2009). Constructs encoding the *VgaA_{LC}* protein fused with a C-terminal FLAG₃ tag
1093 were obtained by synthesis (Genewiz), with E₁₀₅Q, E₄₁₀Q and EQ₂ mutants subsequently
1094 created by site-directed mutagenesis. Generation of other point mutants of untagged *Vga(A)_{LC}*
1095 was performed by NBS Biologicals, again using chemical synthesis to generate the original
1096 *vga(A)_{LC}* template, followed by site-directed mutagenesis.

1097 ***L. monocytogenes*** *VgaL* (Lmo0919). In order to construct *L. monocytogenes*
1098 EDGe::Δ*lmo0919*, regions corresponding to the upstream and downstream flanking regions of
1099 *lmo0919*, present on the EDGe genome were amplified with primer pairs VKT35 (5'-
1100 GGGGGATCCATCACTAGCCGAATCCAAAC-3'), VKT36 (5'-
1101 GGGGAATTCAAAAAATAACCTCCTGAATATTTCAGAG-3') and VHKT37 (5'-
1102 GGGGAATTCAATTGTTGTCTTTATTCAAGCTAAATAAAAAA-3'), VHKT38 (5'-
1103 GGGGCCATGGCGTGCTGTACGGTATGC-3') respectively. Fragments were then cloned in
1104 tandem into the pMAD vector using *Bam*HI, *Eco*RI and *Nco*RI restriction sites. The resulting
1105 vector, VH_p689, was then sequenced to ensure wild-type sequences of clones. Gene deletion
1106 was then performed as per Arnaud *et. al.* (Arnaud *et al.*, 2004).

1107 *lmo0919* was amplified from EDGe genomic DNA using primers VHKT12 (5'-
1108 CCCCCCATGGCATCTACAATCGAAATAAAC-3') and VHKT39 (5'-
1109 GGGGCTGCAGTTAACTAAATTGCTGTCTTTG-3'), and cloned into pIMK3 using *Ncol* and
1110 *PstI* restriction sites, resulting in plasmid VH_p690.

1111 Overlap extension PCR was used in order to introduce a HTF tag at the C-terminus of *lmo0919*
1112 (Ho *et al*, 1989). The *lmo0919* locus and HTF tag were amplified with primer pairs VHKT12,
1113 VHKT15 (5'-ATGATGATGGCCGCCACTAAATTGCTGTCTTTG-3') and VHKT14 (5'-
1114 AGACAGCAATTAGTGGCGGCCATCATCATC-3'), VHKT13 (5'-
1115 GGGGCTGCAGTTAGCCTTGTCACTCGTC-3') using EDGe genomic DNA and VH_p100
1116 template DNA respectively, producing fragments with overlapping ends. VHKT12 and VHKT13
1117 were then used to fuse the fragments and the resulting PCR product was cloned into pIMK3
1118 using *Ncol* and *PstI* sites resulting in VH_p692.

1119 To introduce EQ2 mutations (E104Q and E408Q) simultaneously into the VH_p692 plasmid,
1120 primers VHT266 (5'-TCTTGATCAACCAACCAACTATTGGATATCTACGCAATGGAA-3')
1121 and VHT267 (5'-TTGTTGGTTGGTCTGCTAGGAGAACACTTGGATTTGGCGCA-3')
1122 containing both mutations were used to extend out from *lmo0919*^{HTF} to amplify the VH_p692
1123 backbone. Primers VHT264 (5'-AGCAGACCAACCAACAGCAATCTGATGTCG-3') and
1124 VHT265 (5'-TGGTTGGTTGATCAAGAATCAAGAAATTGGCGT-3') also containing
1125 *lmo0919*^{EQ2} mutations were used to amplify a fragment with overlapping sequence to the
1126 backbone fragment. Both PCR products were then assembled using NEBuilder® HiFi DNA
1127 Assembly Master Mix (NEB), resulting in VH_p693.

1128 ***B. subtilis*:** To construct the VHB109 [*trpC2* Δ *vmr*/*R* *thrC*::*P*_{hy-spnak}-*lساA* *kmR*] strain untagged
1129 *lساA* under the control of an IPTG-inducible *P*_{hy-spnak} promotor, a PCR product encoding *lساA*(A)
1130 was PCR-amplified from pTEX5333 using the primers VHT127 (5'-
1131 CGACGAAGGAGAGAGCGATAATGTCGAAAATTGAACCTAAACAACTATC-3') and VHT128
1132 (5'-CACCGAATTAGCTTGCATGCTTATGATTCAAGACAATTTTTATCTGTTA-3'). The second PCR fragment encoding a kanamycin-resistance marker, a polylinker downstream of
1133 the Phy-spak promoter and the lac repressor ORF – all inserted in the middle of the *thrC* gene
1134 – was PCR-amplified from pHT009 plasmid using primers VHT123 (5'-
1136 CATTATCGCTCTCCTCGTCGACTAAGCTAATTG-3') and VHT125 (5'-
1137 TAAGCATGCAAGCTAATTGGTGGAAACGAGG-3'). The two fragments were ligated using
1138 the NEBuilder HiFi DNA Assembly master mix (New England BioLabs, Ipswich, MA) yielding
1139 the pHT009-*lساA* plasmid (VH_p369) which was used to transform the VHB5 [*trpC2* Δ *vmr*/*R*]
1140 strain. Selection for kanamycin resistance yielded the desired VHB109 strain. To construct
1141 the VHB168 [*trpC2* Δ *vmr*/*R* *thrC*::*P*_{hy-spnak}-*lساA**K244A* *kmR*] strain, VH_p369 plasmid was
1142 subjected to site-directed mutagenesis using primer VHP303 (5'-
1143 GCATCACCTTCACGGTTCATCGACCATTCCGCT-3') and VHP304 (5'-

1144 GTACGGCAACGCTAAGGAAAAAGGGAGCGGGCGA-3'), according to directions of
1145 Phusion Site-Directed Mutagenesis Kit (Thermo Fisher Scientific), yielding, yielding VH_p526
1146 (pHT009-*IsaAK244A*) plasmid which was used to transform the VHB5 [*trpC2 ΔvmlR*] strain.
1147 Selection for kanamycin resistance yielded the desired VHB168 strain. To construct the
1148 VHB169 [*trpC2 ΔvmlR thrC::P_{hy-spnak}-IsaAF257A kmR*] strain, VH_p369 plasmid was subjected
1149 to site-directed mutagenesis using primer VHP305 (5'-
1150 CAATCGCCCCGCTCCCTTTCTAGCGT-3') and VHP306 (5'-
1151 CGGATACAGGAGCCATTGGTGCCCCGGCA-3') , according to directions of Phusion Site-
1152 Directed Mutagenesis Kit (Thermo Fisher Scientific), yielding, yielding VH_p527 (pHT009-
1153 *IsaAF257A*) plasmid which was used to transform the VHB5 [*trpC2 ΔvmlR*] strain. Selection
1154 for kanamycin resistance yielded the desired VHB169 strain.

1155

1156 **Bacterial transformation**

1157 ***E. faecalis***: Electrocompetent cells were prepared as per Bhardwaj and colleagues (Bhardwaj
1158 *et al*, 2016). Shortly, an over-night culture grown in the presence of appropriate antibiotics was
1159 diluted to OD₆₀₀ of 0.05 in 50 mL of BHI media (supplemented with 2 mg/mL kanamycin in case
1160 of TX5332), grown to OD₆₀₀ of 0.6-0.7 at 37 °C with moderate shaking (160 rpm). Cells were
1161 collected by centrifugation at 4,000 rpm at 4 °C for 10 min. Cells were resuspended in 0.5 mL
1162 of sterile lysozyme buffer (10 mM Tris-HCl pH 8; 50 mM NaCl, 10 mM EDTA, 35 µg/mL
1163 lysozyme), transferred to 1.5 mL Eppendorf tube and incubated at 37 °C for 30 minutes. Cells
1164 were pelleted at 10,000 rpm at 4 °C for 10 min and washed three times with 1.5 mL of ice-cold
1165 electroporation buffer (0.5M sucrose, 10% glycerol(w/v)). After last wash the cells were
1166 resuspended in 500 µL of ice-cold electroporation buffer and aliquoted and stored at -80°C.
1167 For electroporation 35 µL of electrocompetent cells were supplemented with 1 µg of plasmid
1168 DNA, transferred to ice-cold 1 mm electroporation cuvette and electroporated at 1.8 keV.
1169 Immediately after electroporation 1 mL of ice-cold BHI was added to the cells, the content of
1170 the cuvette was transferred to 1.5 mL Eppendorf tubes and the cells were recovered at 37 °C
1171 for 2.5 hours and plated to BHI plates containing appropriate antibiotics (10 µg/mL
1172 chloramphenicol and 2 mg/mL kanamycin).

1173 ***S. aureus***: the preparation and transformation of *S. aureus* electrocompetent cells followed
1174 the method of Schenk & Laddaga (Schenk & Laddaga, 1992), though used Tryptone soya
1175 broth (Oxoid) containing 2.5% yeast extract in place of B2 medium. Sequence-verified
1176 constructs established in *E. coli* were transferred into the restriction deficient *S. aureus*
1177 RN4220 strain (Fairweather *et al*, 1983), before recovery and introduction into *S. aureus*
1178 SH1000 (Horsburgh *et al*, 2002; O'Neill, 2010).

1179 ***L. monocytogenes***: pIMK3 integrative plasmids were transformed into *L. monocytogenes* via
1180 conjugation. *E. coli* S17.1 harbouring pIMK3 and its derivatives, was grown at 37 °C overnight
1181 in LB media supplemented with 50 µg/mL Kanamycin, 1 mL of culture was washed three times
1182 with sterile BHI media to remove antibiotics. 200 µL of washed *E. coli* culture was mixed with
1183 an equal volume of *L. monocytogenes* overnight culture grown at 37 °C in BHI media. 200 µL
1184 of mixed bacterial suspension was then dropped onto a conjugation filter (Millipore
1185 #HAEP047S0) placed onto a BHI agar plate containing 0.2 µg/mL penicillin-G. After overnight
1186 incubation at 37 °C, bacterial growth from the filter was re-suspended in 1 ml of BHI and 100-
1187 300 µL plated onto BHI-agar plates supplemented with 50 µg/mL Kanamycin (to select for
1188 pIMK3), 50 µg/mL Nalidixic acid and 10 µg/mL Colistin sulfate (Sigma-Aldrich C4461-100MG).
1189 Resulting colonies were checked for correct integration via PCR and subsequent sequencing
1190 using primers VHKT42 and VHKT43.

1191

1192 **Antibiotic susceptibility testing**

1193 Minimum Inhibitory Concentrations (MIC) were determined based on guidelines from the
1194 European Committee on Antimicrobial Susceptibility Testing (EUCAST)
1195 (http://www.eucast.org/ast_of_bacteria/mic_determination).

1196 ***E. faecalis***: bacteria were grown in BHI media supplemented with 2 mg/mL kanamycin (to
1197 prevent *lسا* revertants), either 0.1 mg/mL spectinomycin (to maintain the pCIE_{spec} plasmid),)
1198 or 20 µg/mL of chloramphenicol (to maintain the pCIE_{cam} plasmid used to validate the
1199 functionality of the HTF-tagged LsaA variant), 100 ng/mL of cCF10 peptide (to induce
1200 expression of LsaA protein) as well as increasing concentrations of antibiotics was inoculated
1201 with 5×10^5 CFU/mL (OD₆₀₀ of approximately 0.0005) of *E. faecalis* Δ *lساA* (*lسا::Kan*) strain
1202 TX5332 transformed either with empty pCIE_{spec} plasmid, or with pCIE_{spec} encoding LsaA. After
1203 16-20 hours at 37 °C without shaking, the presence or absence of bacterial growth was scored
1204 by eye.

1205 ***S. aureus***: bacteria were grown in cation-adjusted Mueller-Hinton Broth (MHB) at 37 °C with
1206 vigorous aeration, supplemented with 10 mg/L chloramphenicol to maintain the pRMC2
1207 plasmid. Upon reaching an absorbance of OD₆₂₅ of 0.6, anhydrotetracycline (ATC) (Sigma-
1208 Aldrich, UK) was added at a final concentration of 100 ng/mL to induce expression from
1209 pRMC2, and incubated for a further 3 hours. Cultures were then diluted to 5×10^5 CFU/mL
1210 using MHB supplemented with ATC (100 ng/mL) and used in MIC determinations essentially
1211 as described above (though cultures were shaken).

1212 ***L. monocytogenes***: bacteria were grown in BHI media supplemented with 50 µg/mL
1213 kanamycin (to prevent loss of the integrated pIMK3 plasmid), 1 mM of IPTG (to induce
1214 expression of VgaL protein) as well as increasing concentrations of antibiotics was inoculated

1215 with 5×10^5 CFU/mL (OD₆₀₀ of approximately 0.0003) of *L. monocytogenes* EDG-e wildtype
1216 strain or EDG-e::Δ*lmo0919* strain transformed either with empty pIMK3 plasmid, or with pIMK3
1217 encoding VgaL variants. After 16–20 hours at 37 °C without shaking, the presence or absence
1218 of bacterial growth was scored by eye.

1219 ***B. subtilis*** (for LsaA mutants): *B. subtilis* strains were pre-grown on LB plates either
1220 supplemented with 1 mM IPTG overnight at 30 °C. Fresh individual colonies were used to
1221 inoculate filtered LB medium in the presence of 1 mM IPTG, and OD₆₀₀ adjusted to 0.01. The
1222 cultures were seeded on a 100-well honeycomb plate (Oy Growth Curves AB Ltd, Helsinki,
1223 Finland), and plates incubated in a Bioscreen C (Labsystems, Helsinki, Finland) at 37°C with
1224 continuous medium shaking. After 90 min (OD₆₀₀ ≈ 0.1), antibiotics were added and growth
1225 was followed for an additional 6 hours.

1226

1227 **Preparation of bacterial lysates**

1228 *Preparation of bacterial biomass*

1229 ***E. faecalis***: *E. faecalis* TX5332 transformed with pCIE plasmids (either empty vector and
1230 expressing either wild-type or EQ₂ variants of C-terminally HTF-tagged LsaA) were grown
1231 overnight from single colony in BHI supplemented with 2 mg/mL kanamycin and 10 µg/mL of
1232 chloramphenicol. Next day overnight cultures were diluted to starting OD₆₀₀ of 0.05 in 160 mL
1233 BHI supplemented with 0.5 mg/mL kanamycin and 10 µg/mL of chloramphenicol. Cells were
1234 grown with intensive shaking at 37 °C till OD₆₀₀ of 0.6 and were induced with 300 ng/mL of
1235 cCF10 peptide for 30 minutes prior harvesting by centrifugation at 10,000 ×g for 15 minutes at
1236 4 °C.

1237 ***S. aureus***: *S. aureus* SH1000 transformed with pRMC2 plasmids (empty vector, wild-type and
1238 EQ₂ VgaA_{LC}-FLAG₃) were grown in LB supplemented with 25 µg/mL of chloramphenicol.
1239 Saturated cultures were diluted to an OD₆₀₀ of 0.1 in 400 mL LB supplemented with 20 µg/mL
1240 of chloramphenicol and grown at 37 °C with vigorous aeration to an OD₆₀₀ of 0.6. Protein
1241 expression was induced with 100 ng/mL of anhydro-tetracycline for 30 minutes prior to
1242 harvesting by centrifugation at 10 000 ×g for 15 minutes at 4 °C.

1243 ***L. monocytogenes***: *L. monocytogenes* EDG-e was transformed with pIMK3 plasmids (empty
1244 vector, wild-type and EQ₂ VgaL-HTF) were grown overnight from single colony in LB
1245 supplemented with 50 µg/mL of kanamycin. Next day overnight cultures were diluted till starting
1246 OD₆₀₀ of 0.005 in 200 mL BHI supplemented with 50 µg/mL of Kanamycin. Cells were grown
1247 at 37 °C with shaking at 160 rpm till OD₆₀₀ of 0.6 and were induced with 1 mM IPTG for 60
1248 minutes prior harvesting by centrifugation at 10,000 ×g for 15 minutes at 4 °C.

1249

1250 *Preparation of clarified lysates*

1251 Cell pellets were resuspended in 1.5 mL of cell lysis buffer (95 mM KCl, 5 mM NH₄Cl, 20 mM
1252 HEPES pH 7.5, 1 mM DTT, 5 mM Mg(OAc)₂, 0.5 mM CaCl₂, 8 mM putrescine, 1 mM
1253 spermidine, 1 tablet of cOmplete™ EDTA-free Protease Inhibitor Cocktail (Roche) per 10 mL
1254 of buffer and in the absence or presence of either 0.5 or 0.75 mM ATP), resuspended cells
1255 were opened by FastPrep homogeniser (MP Biomedicals) with 0.1 mm Zirconium beads
1256 (Techtum) in 4 cycles by 20 seconds with 1 minute chill on ice. Cell debris was removed after
1257 centrifugation at 14,800 $\times g$ for 15 minutes at 4 °C. Total protein concentration in supernatant
1258 was measured by Bradford assay (BioRad), supernatant was aliquoted and frozen in liquid
1259 nitrogen.

1260

1261 **Polysome fractionation and immunoblotting**

1262 *Sucrose density gradient centrifugation*

1263 After melting the frozen lysates on ice, 2 A₂₆₀ units of each extract was aliquoted into three
1264 tubes and supplemented with or without 0.5-0.75 mM ATP and was loaded onto 5–25% or 7–
1265 35% (w/v) sucrose density gradients in HEPES:Polymix buffer (Takada *et al*, 2020), 5 mM
1266 Mg(OAc)₂ and supplemented or not with 0.5–0.75 mM ATP. Gradients were resolved at 35,000
1267 rpm for 2.5 hours at 4 °C in SW41 rotor (Beckman) and analysed and fractionated using
1268 Biocomp Gradient Station (BioComp Instruments) with A₂₈₀ as a readout.

1269

1270 *Immunoblotting*

1271 **LsaA and VgaA_{LC}**: Schleicher & Schuell Minifold II Slot Blot System SRC072/0 44-27570
1272 Manifold was used for transferring samples from sucrose gradient fractions to PVDF
1273 membranes (Immobilon PSQ, Merk Millipore). Shortly, 15-100 μ L of each sucrose gradient
1274 fraction was added to 200 μ L of Slot-blotting Buffer (20 mM HEPES:KOH pH 7.5, 95 mM KCl,
1275 5 mM NH₄Cl, 5 mM Mg(OAc)₂) in slots and blotted onto PVDF membrane that had been
1276 activated with methanol for one minute, wetted in MilliQ water and equilibrated with Slot-
1277 blotting Buffer (1x PM 5 mM Mg²⁺ without putrescine and spermidine) for 10 minutes. After
1278 blotting of the samples each slot was washed twice with 200 μ L of Slot-blotting Buffer. The
1279 membrane was removed from the blotter, transferred to hybridization bottle, equilibrated for 10
1280 minutes in PBS-T (1x PBS supplemented with 0.05% Tween-20) and blocked in PBS-T
1281 supplemented with 5% w/v nonfat dry milk for one hour. Antibody incubations were performed
1282 for one hour in 1% nonfat dry milk in PBS-T with five 5-minute washes in fresh PBS-T between
1283 and after antibody incubations. HTF-tagged LsaA and FLAG₃-tagged VgaA_{LC} proteins were
1284 detected using anti-Flag M2 primary (Sigma-Aldrich, F1804; 1:10,000 dilution) antibodies

1285 combined with anti-mouse-HRP secondary (Rockland; 610-103-040; 1:10,000 dilution)
1286 antibodies. An ECL detection was performed on ImageQuant LAS 4000 (GE Healthcare)
1287 imaging system using Pierce® ECL Western blotting substrate (Thermo Scientific). The
1288 blotting and all incubations were performed at room temperature in hybridization oven.

1289 **VgaL (Lmo0919):** Western blotting of lysates on sucrose gradient fractionation was performed
1290 as previously described (Takada *et al.*, 2020). VgaL-HTF was detected using anti-Flag M2
1291 primary (Sigma-Aldrich, F1804; 1:10,000 dilution) antibodies combined with anti-mouse-HRP
1292 secondary (Rockland; 610-103-040; 1:10,000 dilution) antibodies.

1293

1294 **Affinity purification on anti-FLAG M2 affinity gel**

1295 100 µL of well mixed anti-FLAG M2 Affinity Gel aliquots were loaded on columns (Micro Bio-
1296 Spin Columns, Bio-Rad) and washed two times with 1 mL of cell lysis buffer by gravity flow. All
1297 incubations, washings and elutions were done at 4 °C.

1298 The total protein concentration of each lysate was adjusted to 2 mg/mL with cell lysis buffer
1299 and 1 mL of each lysate was loaded on columns and incubated for two hours with end-over-
1300 end mixing for binding. The columns were washed 5 times by 1 mL of cell lysis buffer by gravity
1301 flow. For elution of FLAG-tagged proteins and their complexes 100-300 µL of 0.1 mg/mL
1302 FLAG₃ peptide (Sigma) was added to samples, the solutions were incubated at 4 °C for 20
1303 minutes with end-over-end mixing. Elutions were collected by centrifugation at 2,000 ×g for 2
1304 minutes at 4 °C.

1305 20 µL aliquots of collected samples (flow-through, washes and elutions) were mixed with 5 µL
1306 of 5x SDS loading buffer and heated up at 95 °C for 15 minutes. The beads remaining in the
1307 column were washed twice with 1 mL of cell lysis buffer and resuspended in 100 µL of 1x SDS
1308 loading buffer. Denatured samples were resolved on 12-15% SDS-PAGE. SDS-gels were
1309 stained by “Blue-Silver” Coomassie Staining (Candiano *et al*, 2004) and washed with water for
1310 6 hours or overnight before imaging with LAS4000 (GE Healthcare).

1311

1312 **tRNA microarrays**

1313 To fully deacylate tRNAs, eluates and input lysate samples from two biological replicates were
1314 mixed with 80 µL 250 mM Tris-HCl, pH 9.0, 10 µL 0.2 M EDTA, 10 µL 1% SDS, and incubated
1315 for 45 min, and neutralised with 200 µL 1 M NaOAc, pH 5.5, before mixing 1:1 with acidic
1316 phenol:chloroform alcohol 5:1. The supernatant was precipitated with ethanol and dissolved in
1317 ddH₂O.

1318

1319 tRNA microarrays were performed as described (Kirchner *et al*, 2017). Briefly, using the unique
1320 invariant single stranded 3'-NCCA-ends of intact tRNA a Cy3-labelled or Atto647-labelled
1321 RNA/DNA hybrid oligonucleotide was ligated to the tRNA extracted from the RqcH-50S
1322 samples and total *E. faecalis* tRNA (from the lysate), respectively. Labeled tRNA was purified
1323 by phenol:chloroform extraction and loaded on a microarray containing 24 replicates of full-
1324 length tDNA probes recognizing *E. faecalis* tRNA isoacceptors. Florescence signals were
1325 normalized to three *in vitro* transcribed human tRNAs, spiked in to each sample. Microarrays
1326 were statistically analysed with in-house scripts written in Python 3.7.0.

1327

1328 **Grid preparation, cryo-electron microscopy and single-particle reconstruction**

1329 *Preparation of cryo-EM grids and data collection*

1330 Elutions from LsaA and VgaL pull-downs were loaded on grids within two hours after obtaining
1331 them without freezing, samples were kept on ice. The VgaA_{LC} sample was frozen in liquid
1332 nitrogen after pull-down, defrosted and loaded later. After glow-discharging of grids, 3.5 mL of
1333 sample was loaded on grids in Vitrobot (FEI) in conditions of 100% humidity at 4 °C, blotted
1334 for 5 seconds and vitrified by plunge-freezing in liquid ethane. Samples were imaged on a Titan
1335 Krios (FEI) operated at 300 kV at a nominal magnification of 165 k \times (0.86 Å/pixel, later
1336 estimated to be 0.82 Å/pixel by comparing refined maps to structures with known
1337 magnification) with a Gatan K2 Summit camera at an exposure rate of 5.80 electrons/pixel/s
1338 with a 4 seconds exposure and 20 frames using the EPU software. Quantifoil 1.2/1.3 Cu₂₀₀
1339 grids were used for LsaA and VgaA_{LC} and Quantifoil 2/2 Cu₂₀₀ grids were used for VgaL.

1340 *Single-particle reconstruction*

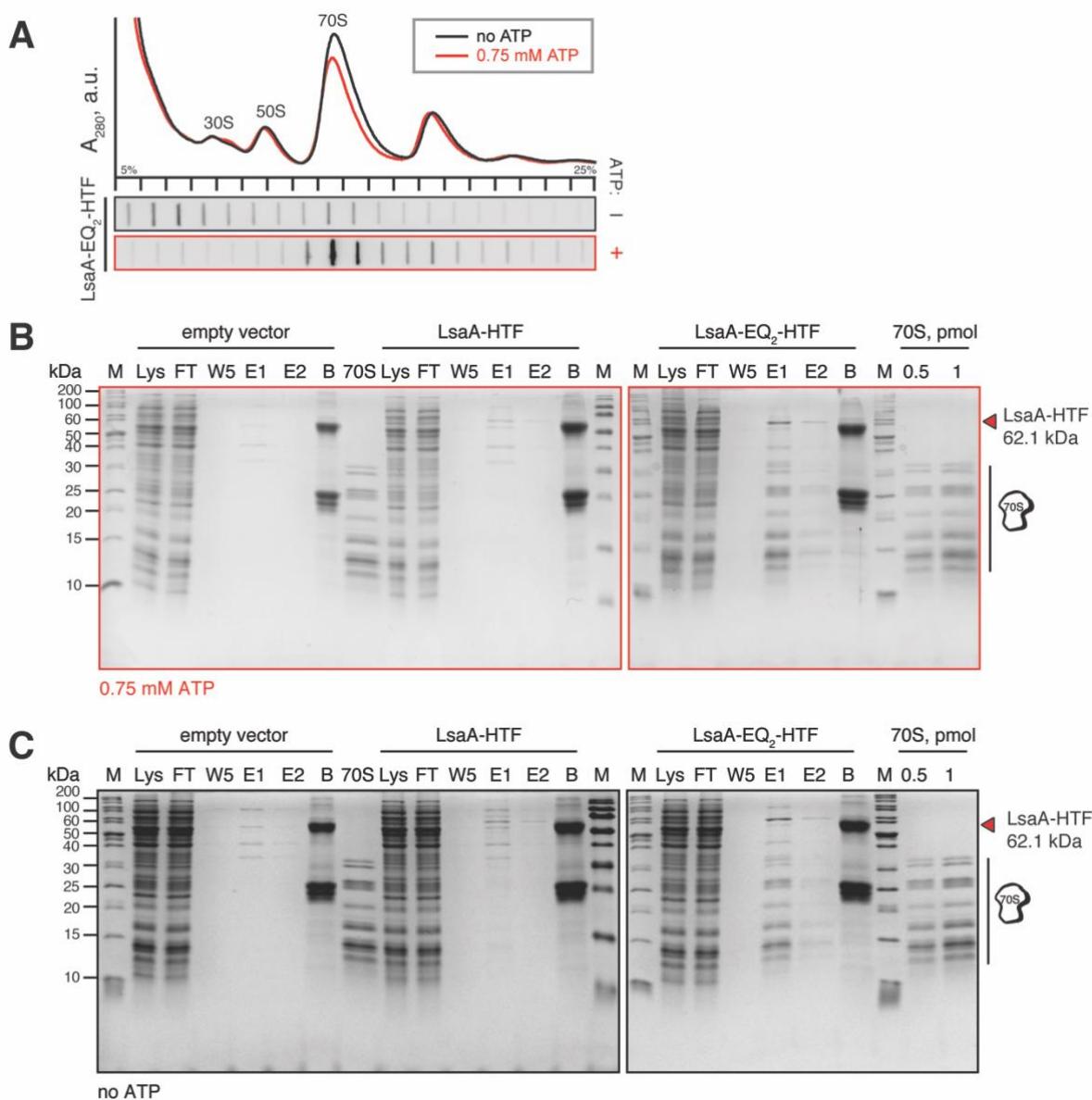
1341 Motion correction was performed with MotionCor2 with 5 \times 5 patches (Zheng *et al*, 2017). Relion
1342 3.0 or 3.1 was used for further processing unless otherwise stated and resolutions are reported
1343 according to the so-called 'gold standard' criteria (Henderson *et al*, 2012; Scheres & Chen,
1344 2012; Zivanov *et al*, 2018). CTFFIND4 (LsaA dataset) or Gctf v1.06 (VgaA_{LC} and VgaL
1345 datasets) was used for CTF estimation (Rohou & Grigorieff, 2015; Zhang, 2016). Particles
1346 were picked with Gautomatch (<https://www2.mrc-lmb.cam.ac.uk/research/locally-developed-software/zhang-software/#gauto>, developed by K. Zhang) without supplying a reference, and
1347 in the case of LsaA, re-picked using RELION autopicker after templates were generated by 2D
1348 classification. Particles were initially extracted at 2.46 Å/pixel and subjected to 2D
1349 classification. Classes that resembled ribosomes were used for 3D refinement, with a 60 Å
1350 low-pass filter applied to initial references. For 3D refinement of LsaA-70S, the initial reference
1351 was EMDB-0176, a *B. subtilis* 70S ribosome with no factor bound in the E-site (Crowe-
1352 McAuliffe *et al.*, 2018); for VgaA_{LC}-70S and VgaL-70S 3D refinements the RELION initial

1354 model job type was used to create a reference from particles selected after 2D classification.
1355 3D classification was performed without angular sampling, and classes of interest were re-
1356 extracted at 0.82 Å/pixel for further refinement.

1357 In the case of LsaA, after initial 3D classification, a soft mask around the A-site was used for
1358 partial signal subtraction followed by focussed classification. The classes with the strongest
1359 and weakest A-site density were selected for signal restoration and refinement. In the case of
1360 the VgaA_{LC} dataset, initial 3D classification yielded a class with apparent sub-stoichiometric
1361 density in the E-site corresponding to VgaA_{LC}. Micrographs with poor values from CTF
1362 estimation were discarded, particles were re-extracted, subjected to an additional 2D
1363 classification and 3D refinement, followed by Bayesian polishing and CTF refinement. An
1364 additional 3D classification yielded a class with strong E-site density corresponding to the
1365 factor. Refer to Figures S4–S6 for details.

1366 For multibody refinements, soft masks around the small subunit body, small subunit head, and
1367 large subunit/ARD were applied. In the case of the VgaA_{LC} dataset, particles were first re-
1368 extracted in a smaller box (360×360 pixels) and subjected to 3D refinement prior to multibody
1369 refinement.

1370 ResMap was used to estimate local resolution (Kucukelbir *et al*, 2014). Maps were locally
1371 filtered using SPHIRE (Moriya *et al*, 2017).

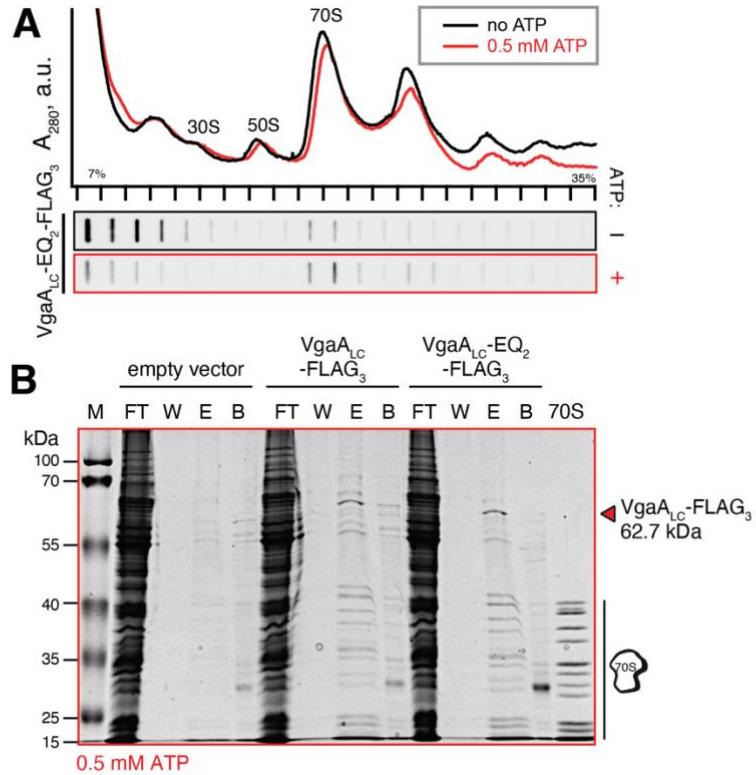

1372 *Molecular modelling*

1373 For the *E. faecalis* and *L. monocytogenes* ribosomes, homology models were generated with
1374 SWISS-MODEL (Waterhouse *et al*, 2018), mostly from PDB 6HA1/6HA8 (Crowe-McAuliffe *et*
1375 *al.*, 2018). PDBs 4YBB (Noeske *et al*, 2015) 5MDV (James *et al*, 2016) were used as additional
1376 templates and references where necessary, 4V9O (Pulk & Cate, 2013) was used for bS21,
1377 5ML7 (Gabdulkhakov *et al*, 2017) and 3U4M (Tishchenko *et al*, 2012) were used for the L1
1378 stalk region, 5AF1 (Fischer *et al*, 2015) and 5UYQ (Loveland *et al*, 2017) were used for tRNAs,
1379 and 6QNZ was used to help placing metal ions (Rozov *et al*, 2019). PDB 5LI0 (Khusainov *et*
1380 *al.*, 2016) was used as a starting model for the *S. aureus* ribosome. Where appropriate,
1381 individual components of multibody refinements were fitted into density from the corresponding
1382 locally filtered map to help modelling. Models were adjusted with Coot (Casañal *et al*, 2020)
1383 and refined using locally filtered maps in Phenix version 1.14 3260 (Liebschner *et al*, 2019).

1384 Figures were created with PyMOL 2.0 (Schrödinger, LLC), UCSF Chimera (Pettersen *et al*,
1385 2004), RELION (Zivanov *et al.*, 2018), and Igor Pro (WaveMetrics, Inc.). Structures were
1386 aligned in PyMOL using the 23S rRNA unless otherwise noted.

1387 Figures were assembled with Adobe Illustrator (Adobe Inc.).

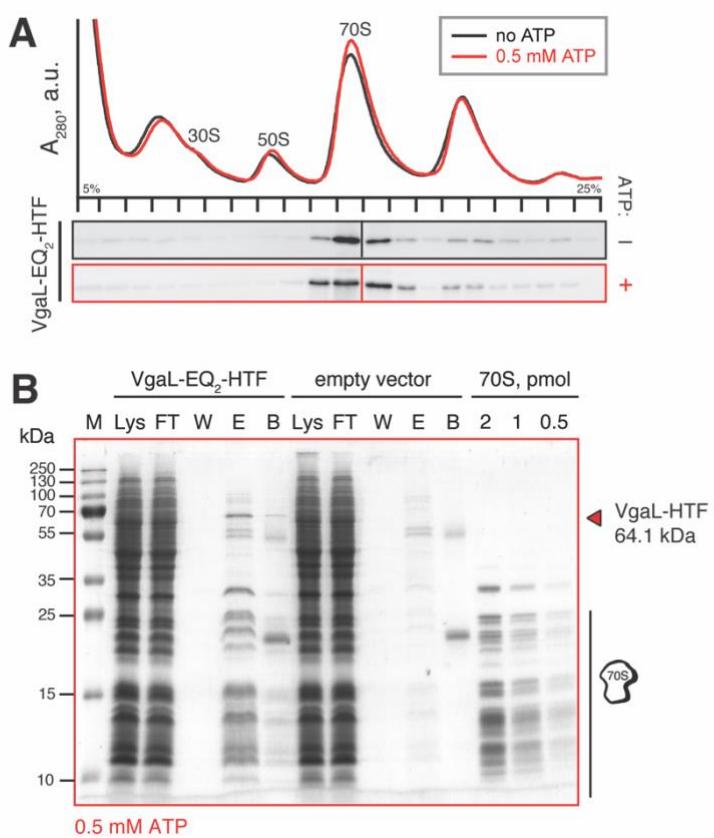
1388 Supplementary Material



1389

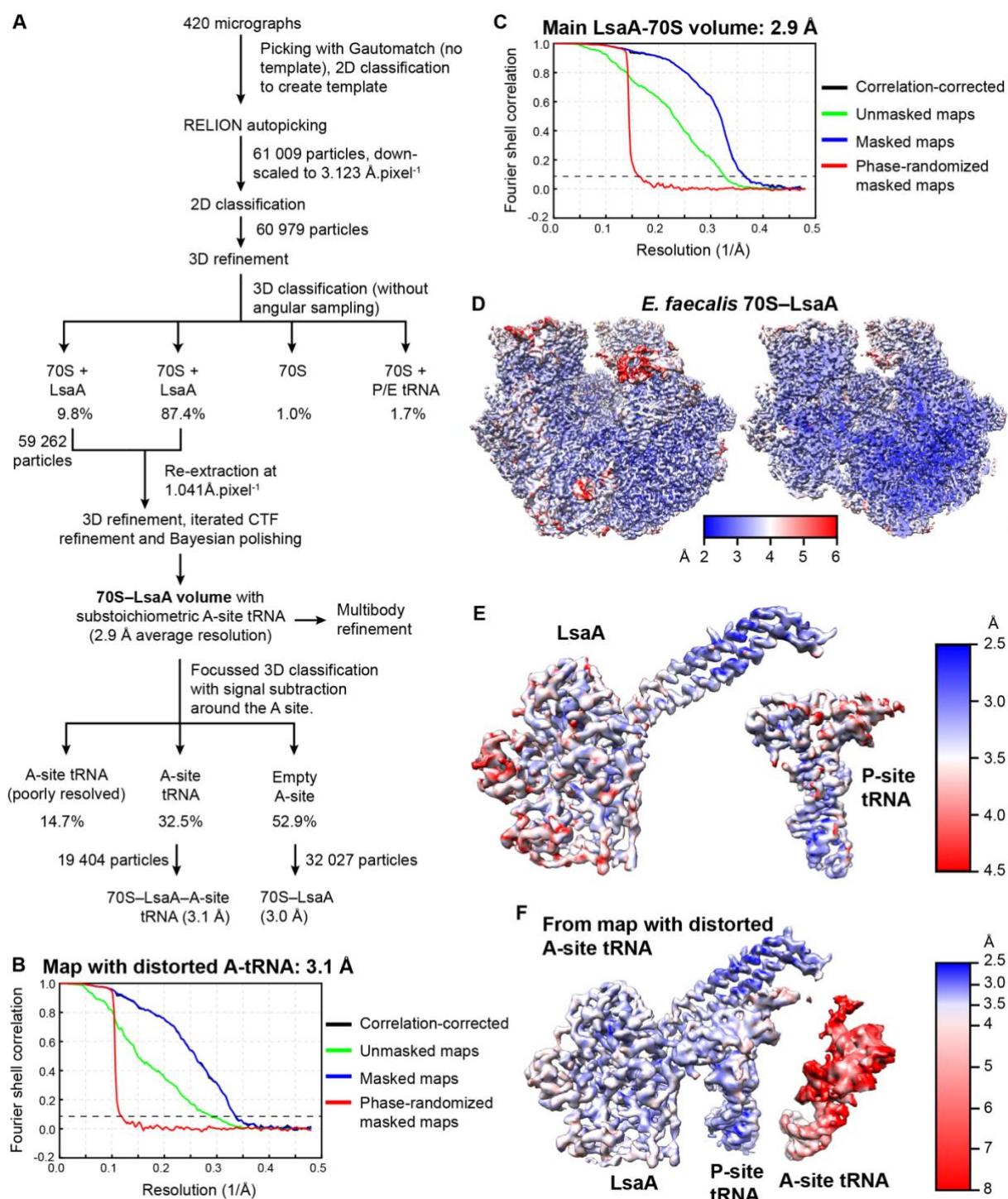
1390 **Figure S1. Characterization of *E. faecalis* LsaA interactions with ribosomes and**
1391 **preparation of samples for cryo-EM. (A)** Polysome profiles and immunoblot analyses of C-
1392 terminally His₆-TEV-FLAG₃-tagged (HTF) ATPase-deficient (EQ₂) LsaA-EQ₂ ectopically
1393 expressed in Δ lساA *E. faecalis* TX5332. Experiments were performed both in the presence or
1394 absence of 0.75 mM ATP in gradients. **(B, C)** Affinity purification of wild-type and EQ₂
1395 *E. faecalis* LsaA-HTF ectopically expressed in TX5332 *E. faecalis*. Pull-down experiments
1396 were performed either in the presence **(B)** or absence **(C)** of 0.75 mM ATP using clarified
1397 lysates of *E. faecalis* either transformed with empty pCIE vector (background control),
1398 expressing *E. faecalis* LsaA-HTF (VHp100) or expressing *E. faecalis* LsaA-EQ₂-HTF
1399 (VHp149). Samples: M: molecular weight marker; Lys: 2 μ L of clarified lysate, FT: 2 μ L of

1400 flow-through; W5: 10 μ L of last wash before specific elution; E1: 10 μ L of the first elution with
1401 FLAG₃ peptide; E2: 10 μ L of the second elution with FLAG₃ peptide; B: 10 μ L of SDS-treated
1402 post-elution anti-FLAG beads; 70S: purified *E. faecalis* 70S ribosomes. The samples were
1403 resolved on 15% SDS-PAGE gel. The 0.75 mM ATP *E. faecalis* LsaA-EQ₂-HTF pulldown
1404 sample was used for further cryo-EM and tRNA array analysis.

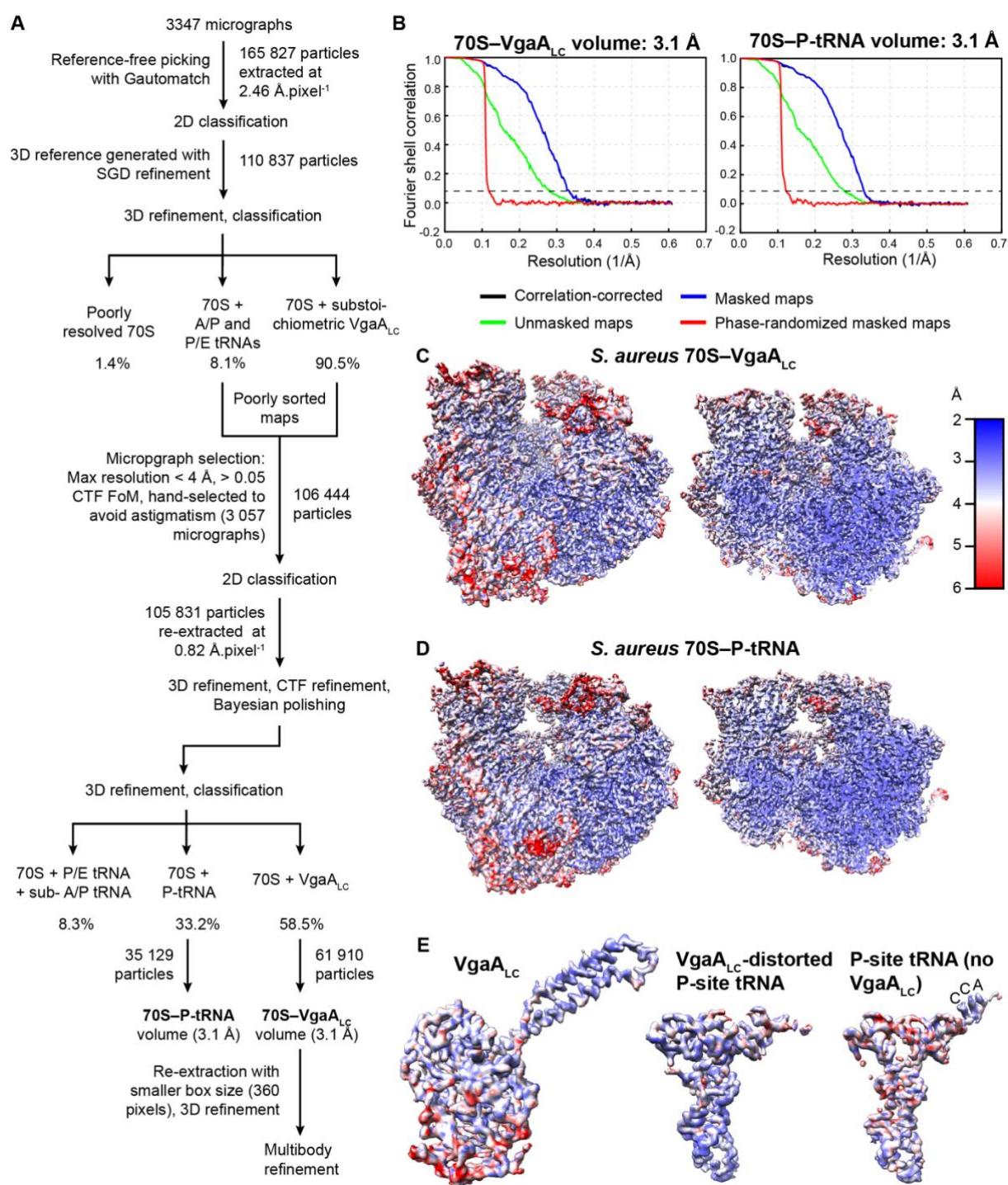

1405

1406

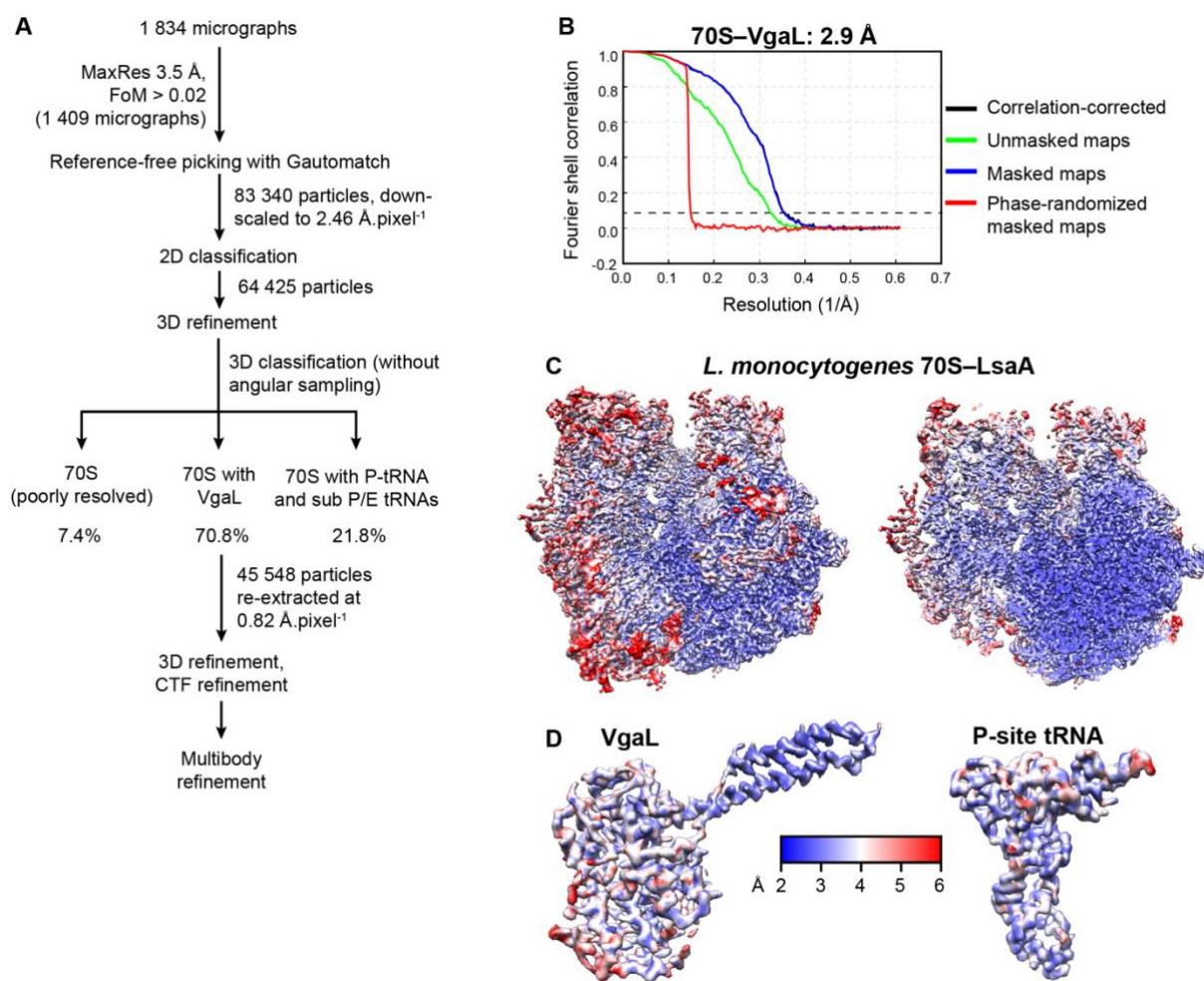
1407 **Figure S2. Characterization of *S. haemolyticus* VgaA_{LC} interactions with ribosomes**
1408 **and reparation of samples for cryo-EM reconstructions. (A)** Polysome profiles and
1409 immunoblot analyses of FLAG₃-tagged *S. haemolyticus* VgaA_{LC}-EQ₂ ectopically expressed in
1410 wild-type SH-1000 *S. aureus*. Experiments were performed both in the presence or absence
1411 of 0.5 mM ATP in gradients. **(B)** Affinity purification of wild-type and EQ₂ *S. haemolyticus*
1412 VgaA_{LC}-FLAG₃ ectopically expressed in SH-1000 *S. aureus*. Immunoprecipitations were
1413 performed in the presence of 0.5 mM ATP and the samples were resolved on a 15%
1414 polyacrylamide gel by SDS-PAGE. Samples: M: 2 μ L of molecular weight marker; FT: 2 μ L of
1415 flow-through, W: 10 μ L of last wash before specific elution; E: 10 μ L of elution with FLAG₃
1416 peptide; B: 2 μ L of SDS-treated post-elution anti-FLAG beads; 70S: 1 pmol of purified *S.*
1417 *aureus* 70S ribosomes. The 0.5 mM ATP *S. haemolyticus* VgaA_{LC}-EQ₂-HTF pulldown sample
1418 was used for cryo-EM reconstructions.


1419

1420


1421 **Figure S3. Characterization of *L. monocytogenes* VgaL (Lmo0919) interactions with**
1422 **ribosomes and reparation of samples for cryo-EM reconstructions. (A)** Polysome
1423 profiles and immunoblot analyses of HTF-tagged *L. monocytogenes* VgaL-EQ₂ (Lmo0919-
1424 EQ₂) ectopically expressed in wild-type EDG-e *L. monocytogenes*. Experiments were
1425 performed both in the presence or absence of 0.5 mM ATP in gradients. **(B)** Affinity
1426 purification of *L. monocytogenes* VgaL-EQ₂ ectopically expressed in EDG-e
1427 *L. monocytogenes*. Pull-down experiments were performed in the presence of 0.5 mM ATP
1428 using clarified lysates of *L. monocytogenes* transformed with empty integrative pIMK3 vector
1429 (background control), expressing VgaL-HTF (VHp692) or expressing VgaL-EQ₂-HTF
1430 (VHp149). Samples: M: 2 μ L of molecular weight marker; FT: 2 μ L of flow-through; W: 10 μ L
1431 of last wash before specific elution; E: 10 μ L of elution with FLAG₃ peptide; B: 2 μ L of SDS-
1432 treated post-elution anti-FLAG beads; 70S: purified *B. subtilis* 70S ribosomes, the samples
1433 were resolved on 15 % SDS-PAGE gel. The 0.5 mM ATP *L. monocytogenes* VgaL-EQ₂-HTF
1434 pulldown sample was used for cryo-EM reconstructions.

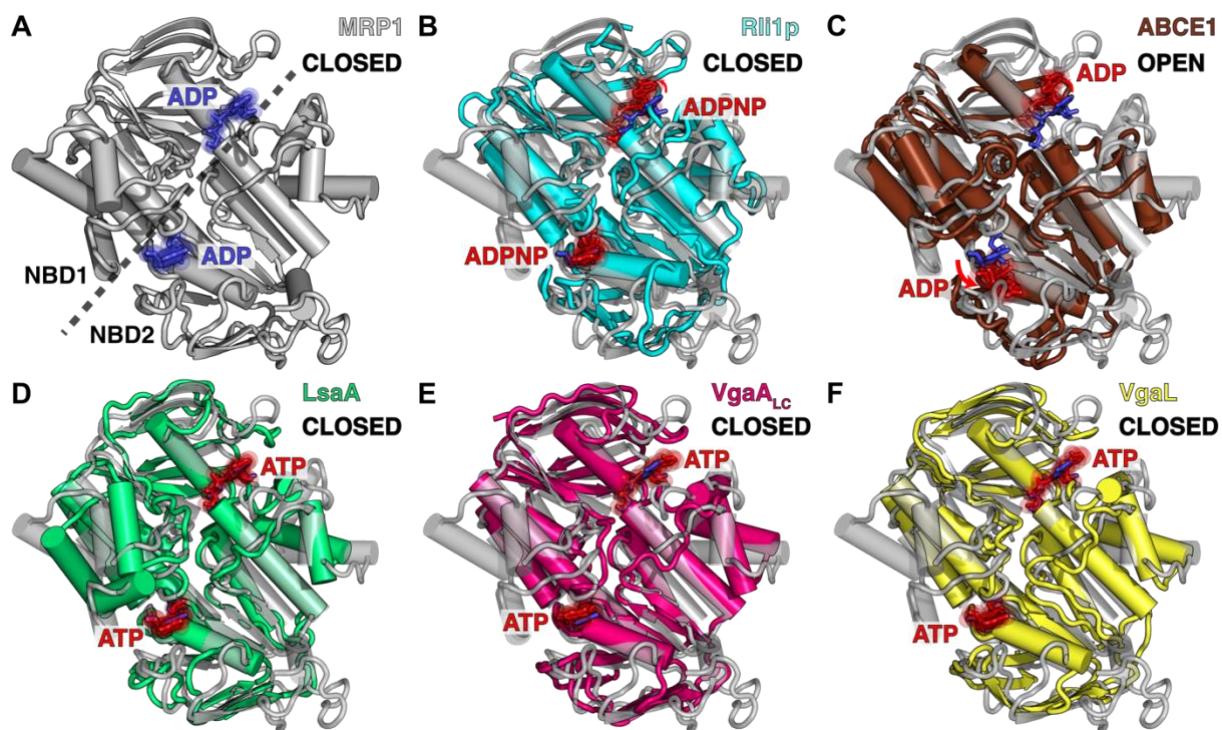
1435


1436

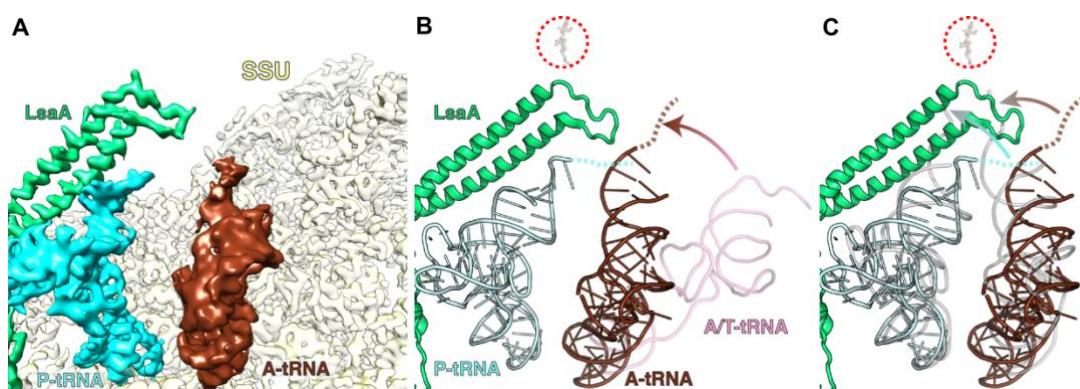
1437 **Figure S4. Processing of the cryo-EM data of LsaA-70S complex. (A)** Processing
 1438 scheme for the LsaA-70S complex, yielding two subpopulations of LsaA-70S complexes with
 1439 and without A-site tRNA. **(B, C)** Fourier Shell Correlation (FSC) curves of the LsaA-70S **(B)**
 1440 with A-tRNA and **(C)** without A-tRNA with a dashed line at 0.143 indicating average
 1441 resolutions of 3.1 Å and 2.9 Å, respectively. **(D)** Overview (left) and transverse section (right)
 1442 of the cryo-EM map of the LsaA-70S (without A-tRNA) coloured according to local resolution.
 1443 **(E)** Isolated density of LsaA (left) and P-site tRNA (right) from **(D)**. **(F)** Isolated density of
 1444 LsaA, P-site and A-site tRNA from the LsaA-70S map (with A-tRNA) coloured according to
 1445 local resolution.

1446

1447 **Figure S5. Processing of the cryo-EM data of VgaA_{LC}-70S complex. (A)** Processing
 1448 scheme for the LsaA-70S complex, yielding a VgaA_{LC}-70S and 70S-P-tRNA complex
 1449 without VgaA_{LC}. **(B)** Fourier Shell Correlation (FSC) curves of the VgaA_{LC}-70S and 70S-P-
 1450 tRNA complexes with a dashed line at 0.143 indicating average resolutions of 3.1 Å. **(C, D)**
 1451 Overview (left) and transverse section (right) of the cryo-EM map of the **(C)** VgaA_{LC}-70S and
 1452 **(D)** 70S-P-tRNA complexes coloured according to local resolution. **(E)** Isolated density of
 1453 VgaA_{LC} (left) and P-site tRNA (right) from the VgaA_{LC}-70S complex, and the P-site-tRNA
 1454 from the 70S-P-tRNA complex, coloured according to local resolution.


1455

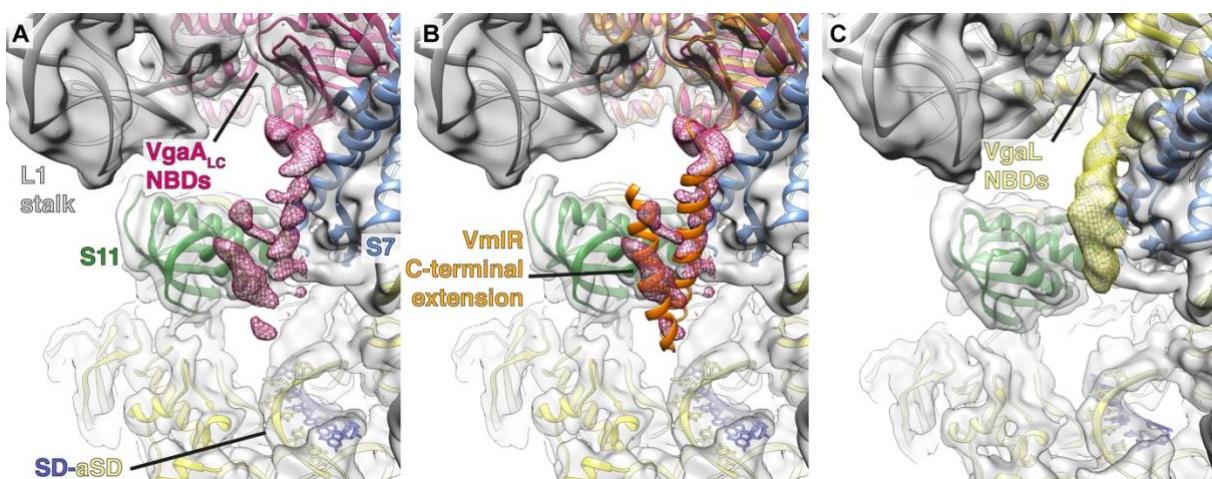
1456 **Figure S6. Processing of the cryo-EM data of VgaL–70S complex. (A)** Processing
 1457 scheme for the VgaL–70S complex. **(B)** Fourier Shell Correlation (FSC) curves of the VgaL–
 1458 70S complex with a dashed line at 0.143 indicating average resolutions of 2.9 Å. **(C)**
 1459 Overview (left) and transverse section (right) of the cryo-EM map of the VgaL–70S complex
 1460 coloured according to local resolution. **(D)** Isolated density of VgaL (left) and P-site tRNA
 1461 (right) from the VgaL–70S complex coloured according to local resolution.


1462
1463 **Figure S7. ATP in the ARE-bound 70S structures.** Model and density surrounding the
1464 innermost ATP bound by LsaA (A), VgaA_{LC} (B), and VgaL (C) viewed from the direction of
1465 the signature sequence of NBD2 (model and density not shown). A black outline highlights a
1466 magnesium ion. D–F, as for A–C except for the peripheral nucleotide-binding site viewed
1467 from the direction of the signature sequence of NBD1 (model and density not shown).
1468 Density from post-processed maps is shown.

1469

1470 **Figure S8 LsaA, VgaA_{LC} and VgaL NBDs exhibit a closed conformation.** **(A)** The closed
1471 conformation of the multidrug transporter MRP1 (grey) with bound ADP molecules (blue,
1472 PDB 6BHU) (Johnson & Chen, 2018). **(B, C)** Alignment (based on NBD1) and
1473 superimposition of the closed conformation of MRP1 from **(A)** with the ABC domains of **(B)**
1474 RII1p (cyan) in closed conformation with bound ADPNP (red, PDB 5LL6) (Heuer *et al*, 2017),
1475 **(C)** ABCE1 (brown) in open conformation with bound ADP (red, PDB 3J15) (Becker *et al*,
1476 2012), and with **(D-F)** closed ARE ABCF NBD conformations with bound ATP (red) for **(D)**
1477 LsaA (green), **(E)** VgaA_{LC} (magenta) and **(F)** VgaL (yellow).

1478

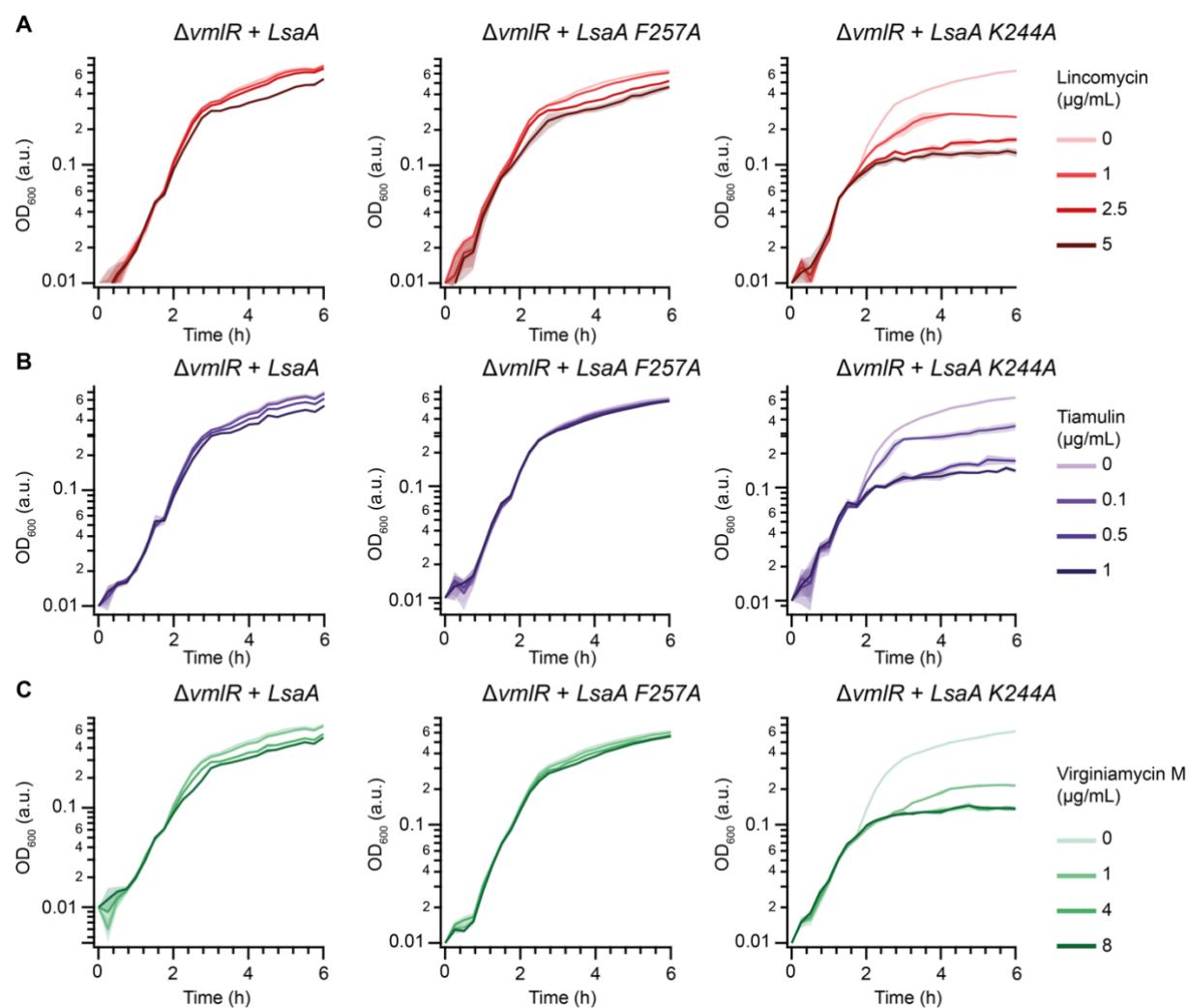


1479

1480 **Figure S9. Presence of A-site tRNA in the LsaA-70S complex. (A)** Cryo-EM map density
1481 for LsaA (green), P-site tRNA (cyan) and A-site tRNA (brown) in the LsaA–70S complex with
1482 A-site tRNA. Density for small subunit (yellow) is shown for reference. Density for the large
1483 subunit is not shown. **(B)** The same view as A, except with molecular models. The brown
1484 dashed line indicates a likely path for the 3' CCA end of the distorted A-tRNA. A pre-
1485 accommodation A/T tRNA (pink, PDB 4V5L) (Voorhees *et al.*, 2010) is superimposed. The
1486 position of the lincomycin binding site (red dotted circle) is shown for comparison (PDB
1487 5HKV) (Matzov *et al.*, 2017). **(C)** Similar to **(B)** except with classical accommodated A- and
1488 P-site tRNAs from pre-attack state superimposed (both grey, PDB 1VY4) (Polikanov *et al.*,
1489 2014).

1490

1491

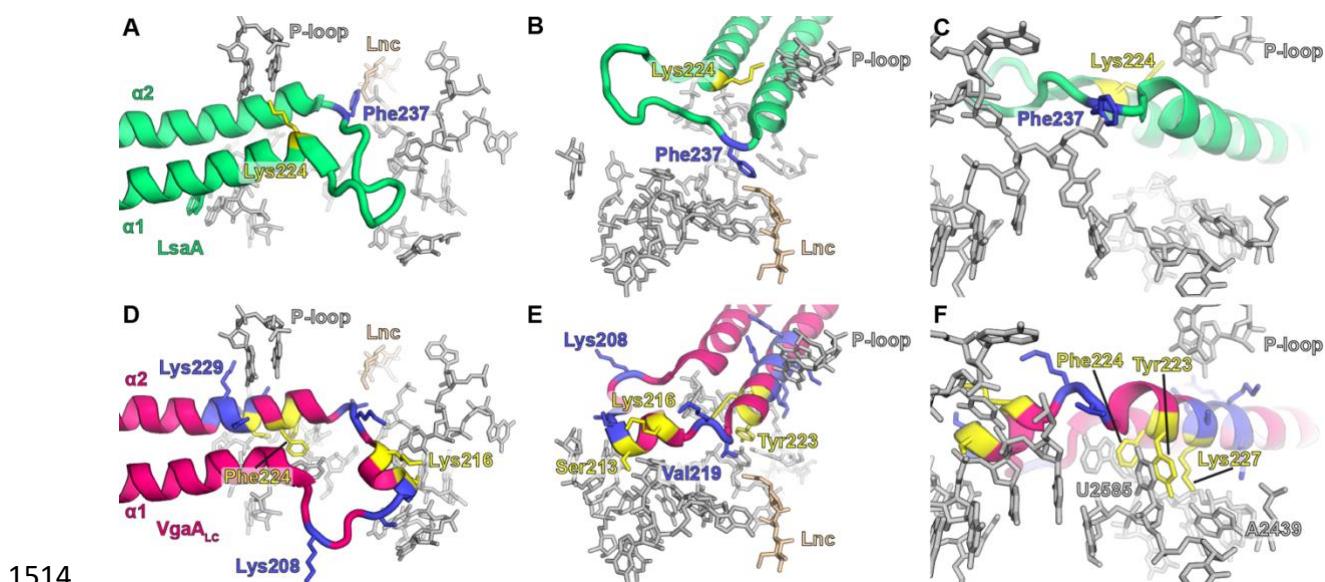


1493 **Figure S10. C-terminal extensions of VgaA_{LC} and VgaL on the small subunit. (A-C)**

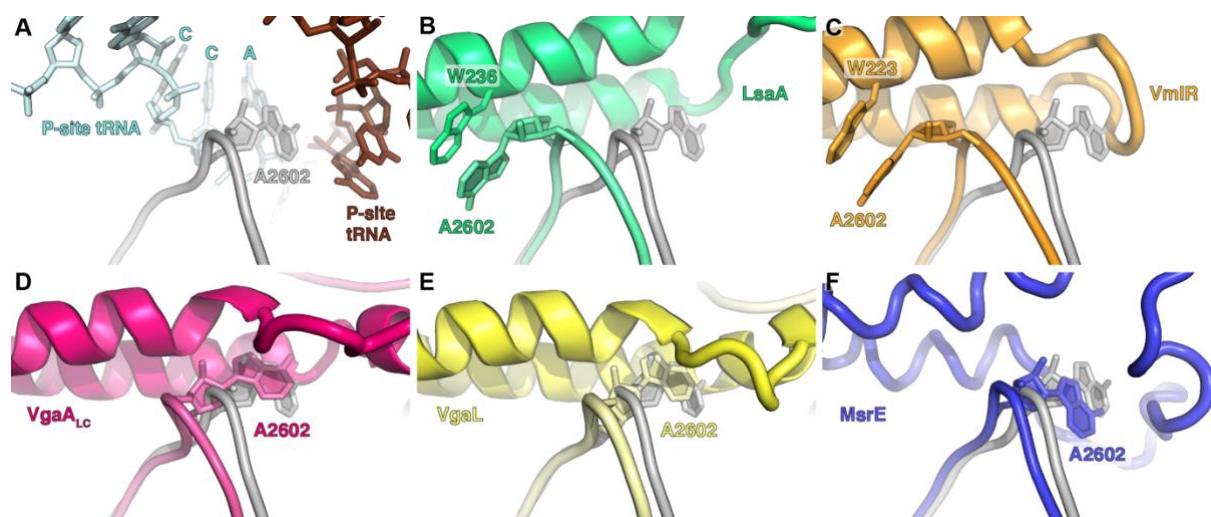
1494 Cryo-EM map (grey) with molecular model for (B-C) VgaA_{LC}-70S complex, and (C) VgaL-
1495 70S complex, showing density for L1 stalk (grey) on the large subunit, and ribosomal
1496 proteins S7 (blue), S11 (green) as well as the SD-anti-SD helix on the small subunit (yellow).
1497 In (A) and (B), density for the C-terminal extension (CTE) of VgaA_{LC} (magenta mesh) is
1498 fragmented, and in (B) fitted with the model of the CTE from VmIR (orange, PDB 6HA8)
1499 (Crowe-McAuliffe *et al.*, 2018) based on alignment of the NBDs. In (C), density for the C-
1500 terminal extension (CTE) of VgaL (yellow mesh) also reaches between the S7-S11 cleft and
1501 is consistent with an α -helical conformation, but appears to be distinct from VmIR and
1502 VgaA_{LC} and could not be modelled at this resolution.

1503

1504

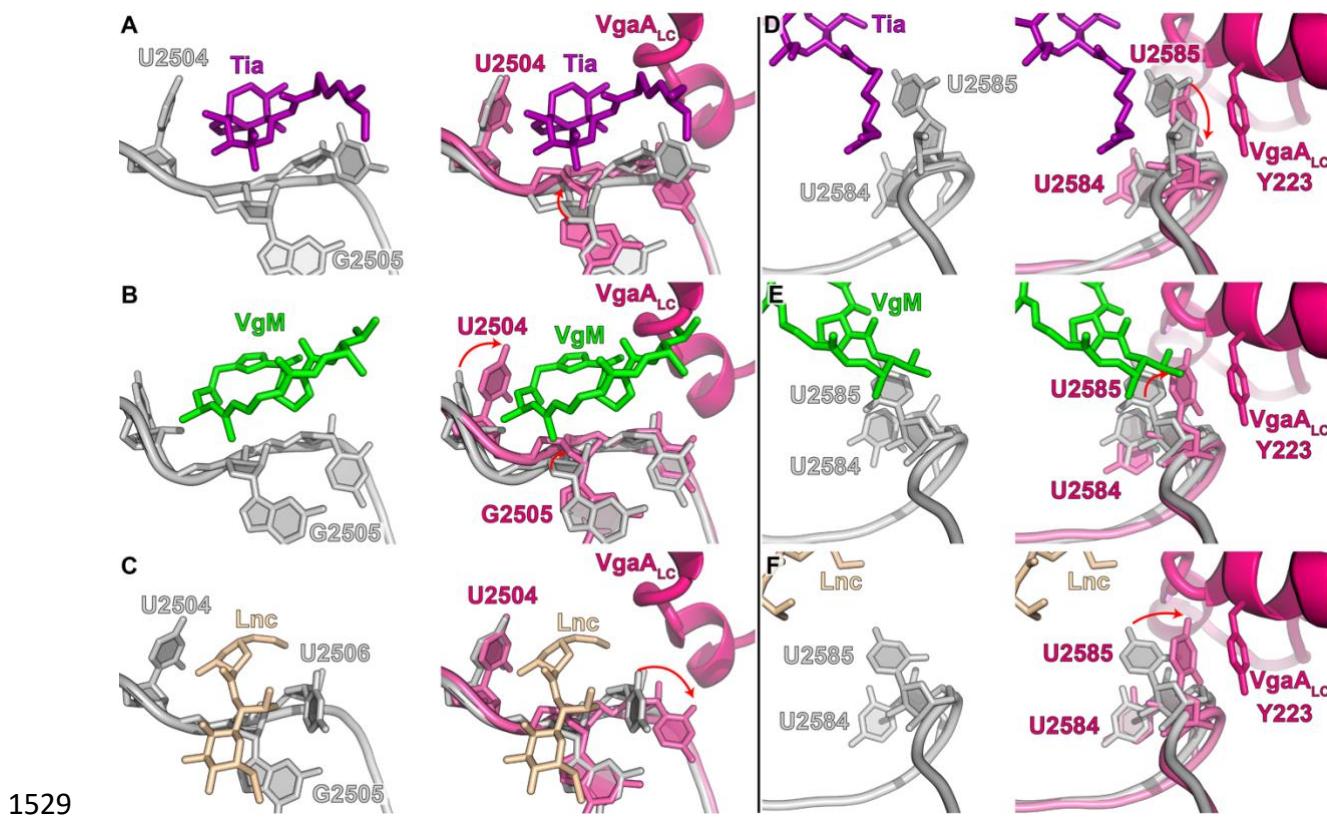


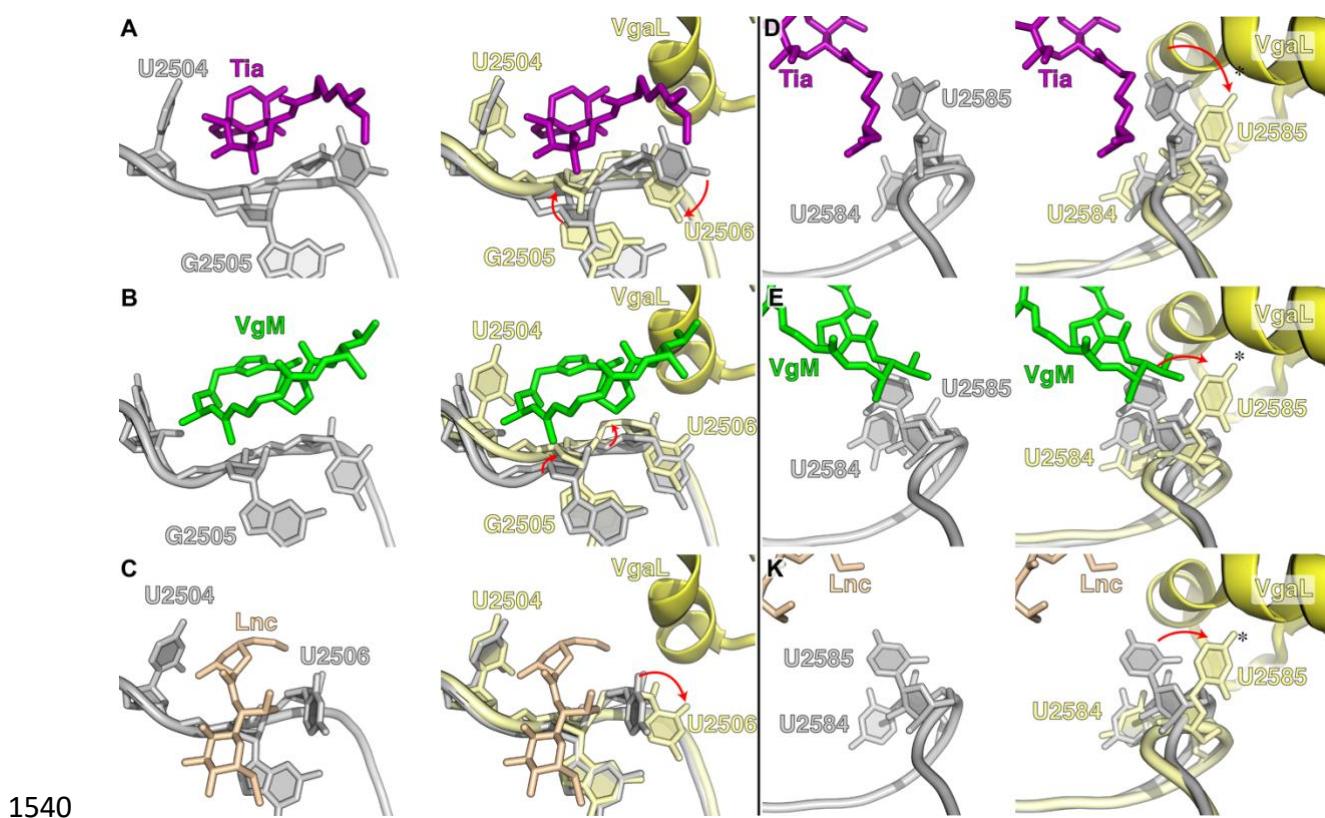
1505


1506

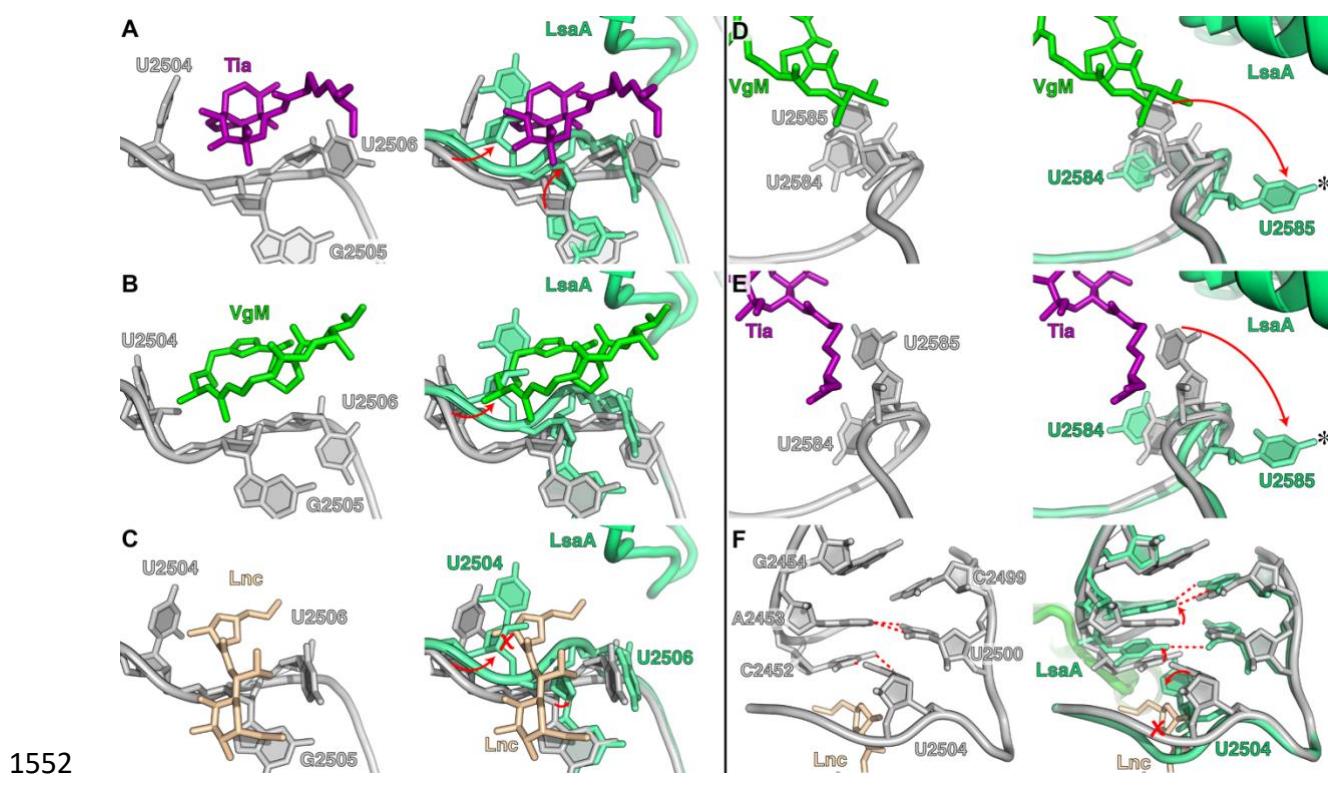
1507 **Figure S11. Effect of amino acid substitutions in ARD on antibiotic resistance in LsaA.**

1508 Growth of *B. subtilis* $\Delta vmlR$ expressing the indicated LsaA variants over time in the presence
1509 of lincomycin (A), tiamulin (B), and virginiamycin M (C). *B. subtilis* strains (VHB109, 168 and
1510 169) were grown in LB media with 1 mM IPTG at 37 °C with medium shaking. At the 90
1511 minutes time point ($OD_{600} \approx 0.1$) antibiotics were added to the final concentrations as
1512 indicated on the figure. The SD of three biological replicates is indicated with pale shading.
1513


Figure S12. Visualisation of tested mutations in $VgaA_{LC}$ and $LsaA$. Residues in blue did not affect antibiotic resistance when mutated to alanine, and residues in yellow reduced antibiotic resistance when mutated to alanine. **A–C**, three views of the $LsaA$ ARD with selected *E. faecalis* 23S 23S rRNA nucleotides shown. **D–F**, three views of the $VgaA_{LC}$ ARD with selected *S. aureus* 23S 23S rRNA nucleotides shown. See also Tables S1 and S2.



1522


1523 **Figure S13. Comparison of A2602 position between ribosomes with and without**
1524 **bound AREs. (A)** A2602 with accommodated A- and P-site tRNAs in the 'pre-attack' state
1525 (PDB 1VY4) (Polikanov *et al.*, 2014) **(B)** Conformation of A2602 with bound LsaA with 23S
1526 rRNA from **(A)**. **(C-F)** Similar to **(B)**, except for VmIR, VgaA_{LC}, VgaL, and MsrE (Crowe-
1527 McAuliffe *et al.*, 2018; Su *et al.*, 2018).

1528

1540
1541
1542 **Figure S15. Conformation of the PTC in the presence of VgaL and antibiotics.** The
1543 conformation of selected 23S rRNA nucleotides at the PTC in the presence of either (A)
1544 tiamulin (Tia, purple, PDB 1XBP) (Schlünzen *et al.*, 2004), (B) virginiamycin M (VgM, green,
1545 PDB 1YIT) (Tu *et al.*, 2005), or (C) lincomycin (Lnc, tan, PDB 5HKV) (Matzov *et al.*, 2017).
1546 Left panels show the antibiotic-bound structures only, right panels have superimposed
1547 nucleotides and protein from the VgaL-bound ribosome (yellow). (D–F) As for A–C, except
1548 with focus on U2585. Red arrows indicate significant shifts in nucleotide positions from the
1549 antibiotic-bound to VgaL-bound ribosome. An asterisk indicates low confidence in the
1550 position of U2585 due to weak density.
1551

1552 **Figure S16. Conformation of the PTC in the presence of LsaA and antibiotics. (A–C)**
1553 The conformation of selected 23S rRNA nucleotides at the PTC in the presence of either (A)
1554 tiamulin (Tia, purple, PDB 1XBP) (Schlünzen *et al.*, 2004), (B) virginiamycin M (VgM, green,
1555 PDB 1YIT) (Tu *et al.*, 2005), or (C) lincomycin (Lnc, tan, PDB 5HKV) (Matzov *et al.*, 2017).
1556 Left panels show the antibiotic-bound structures only, right panels have superimposed
1557 nucleotides and protein from the LsaA-bound ribosome (green). (D–F) As for A–C, except
1558 with focus on U2585 (D, E) or U2504 (F). Red arrows indicate significant shifts in nucleotide
1559 positions from antibiotic-bound to LsaA-bound ribosomes, and red crosses indicate
1560 significant overlap between the lincomycin-binding site and U2504 in the LsaA-bound
1561 ribosome. An asterisk indicates low confidence in the position of U2585 due to weak density.
1562
1563
1564

1565 **Table S1. Minimum inhibitory concentrations (MICs) of ribosome-targeting antibiotics**
1566 **against *E. faecalis* expressing LsaA.** 5×10^5 CFU/mL (OD₆₀₀ approximately 0.0005) of either
1567 *E. faecalis* OG1RF, Δ *lساA* (*lساA::Kan*) strain TX5332 transformed with empty pCIE_{spec} plasmid,
1568 or with pCIE_{spec} derivative for expression of LsaA was used to inoculate BHI media
1569 supplemented with 2 mg/mL kanamycin to prevent *lساA* revertants, 0.1 mg/mL spectinomycin to
1570 maintain the pCIE_{spec} plasmid, 100 ng/mL of cCF10 peptide to induce expression of LsaA as
1571 well as increasing concentrations of antibiotics. After 16-20 hours at 37 °C without shaking,
1572 the presence or absence of bacterial growth was scored by eye. The MIC values that exceed
1573 the empty vector control are shown in bold.

		MIC, µg/mL			
antibiotic class	antibiotic	<i>E. faecalis</i> OG1RF	<i>E. faecalis</i> TX5332 pCIE _{spec} (VHp426)	<i>E. faecalis</i> TX5332 pCIE _{spec} <i>lساA</i> (VHp431)	<i>E. faecalis</i> TX5332 pCIE <i>lساA</i> - HTF
phenicols	chloramphenicol	2-4	2-4	2-4	
	thiamphenicol	4	4	4	
	florfénicol	1	1-2	1-2	
oxazolidinones	linezolid	1	1	1	1
macrolides	erythromycin	1	0.5-1	0.5	0.5
	azithromycin	1-2	0.5-1	0.5-1	
	leucomycin	0.5-1	0.5	0.5-1	
lincosamides	lincomycin	32	0.125	16-32	8-16
	clindamycin	16-32	0.0156	16	4-8
pleuromutilins	tiamulin	128	0.0625	128	32-64
	retapamulin	>64	0.0156	>64	
streptogramins	virginiamycin M1	>64	4	>128	
	virginiamycin S1	8	8	8	
tetracyclines	tetracycline	0.5	0.25	0.25	

1574

1575 **Table S2. Minimum inhibitory concentrations (MICs) of ribosome-targeting antibiotics**
1576 **against *S. aureus* expressing VgaA_{LC}** *S. aureus* strain SH1000, harbouring empty vector
1577 pRMC2 or pRMC2 expressing wild-type *vgaA_{LC}* or its mutants.

Construct (mutation)	MIC, μ g/mL				
	lincomycin	clindamycin	tiamulin	retapamulin	virginiamycin M1
pRMC2	0.5	0.06	0.5	0.06	2
pRMC2: <i>vgaA_{LC}</i>	16	2	8	4	4
pRMC2: <i>vgaA_{LC}</i> (K ₂₀₈ A)	16	2	16	8	4
pRMC2: <i>vgaA_{LC}</i> (S ₂₁₁ A)	16	2	16	4	4
pRMC2: <i>vgaA_{LC}</i> (S ₂₁₂ A)	8	2	16	8	4
pRMC2: <i>vgaA_{LC}</i> (S ₂₁₃ A)	2	0.125	1	0.125	1
pRMC2: <i>vgaA_{LC}</i> (K ₂₁₆ A)	8	0.5	4	1	4
pRMC2: <i>vgaA_{LC}</i> (K ₂₁₈ A)	16	1	16	4	4
pRMC2: <i>vgaA_{LC}</i> (V ₂₁₉ A)	16	1	16	8	2
pRMC2: <i>vgaA_{LC}</i> (W ₂₂₃ A)	2	0.125	1	0.125	1
pRMC2: <i>vgaA_{LC}</i> (F ₂₂₄ A)	0.5	0.06	0.25	0.06	1
pRMC2: <i>vgaA_{LC}</i> (S ₂₂₆ A)	16	2	16	8	4
pRMC2: <i>vgaA_{LC}</i> (K ₂₂₇ A)	4	0.25	1	0.125	2
pRMC2: <i>vgaA_{LC}</i> (G ₂₂₈ A)	8	2	8	2	2
pRMC2: <i>vgaA_{LC}</i> (K ₂₂₉ A)	16	2	8	4	4
pRMC2: <i>vgaA_{LC}</i> (K ₂₃₀ A)	16	2	8	4	4
pRMC2: <i>vgaA_{LC}</i> (R ₂₃₂ A)	16	2	8	2	4

1578

1579 **Table S3. Minimum inhibitory concentrations (MICs) of ribosome-targeting antibiotics**
1580 **against *L. monocytogenes* EDG-e expressing VgaL (Lmo0919).** 5×10^5 CFU/mL
1581 (approximately OD₆₀₀ 0.0003) of *L. monocytogenes* EDGe, Δ *lmo0919* (markerless) strain with
1582 integrated empty pIMK3 plasmid, or with pIMK3 encoding VgaL or VgaL-HTF was used to
1583 inoculate BHI media supplemented with 50 μ g/mL kanamycin to maintain the integrative pIMK3
1584 plasmid, 1 mM IPTG to induce expression of VgaL as well as increasing concentrations of
1585 antibiotics. After 16-20 hours at 37 °C without shaking, the presence or absence of bacterial
1586 growth was scored by eye. The MIC values that exceed the empty vector control lacking
1587 chromosomal *lmo0919* are shown in bold.

1588

antibiotic class	antibiotic	MIC, μ g/mL			
		<i>L. monocytogenes</i> EDGe::pIMK3	<i>L. monocytogenes</i> EDGe:: Δ <i>lmo0919</i> pIMK3	<i>L. monocytogenes</i> EDGe:: Δ <i>lmo0919</i> pIMK3 <i>vgaL</i>	<i>L. monocytogenes</i> EDGe:: Δ <i>lmo0919</i> pIMK3 <i>vgaL</i> ^{HTF}
phenicols	chloramphenicol	4	4	4	4
oxazolidinones	linezolid	1	1	1	
macrolides	erythromycin	< 0.125	< 0.125	< 0.125	< 0.125
lincosamides	lincomycin	2	0.5	4	4
pleuromutilins	tiamulin	16-32	0.125	32	16-32
streptogramins	virginiamycin M1	32	4-8	64	32
	virginiamycin S1	1	1	1	1
tetracyclines	tetracycline	0.25	0.25	0.25	0.25

1589

1590

Table S4. Cryo-EM data collection, modelling and refinement statistics.

	<i>E. faecalis</i> 70S–LsaA	<i>S. aureus</i> 70S–P-tRNA	<i>S. aureus</i> 70S–VgaA _{LC}	<i>L. monocytogenes</i> 70S–VgaL
Data collection				
Magnification (x)	130 000	165 000	165 000	165 000
Electron dose (e/Å ²)	38.0	26.3	26.3	28.28
Defocus range (μm)	–0.7–2.2	–0.7–1.9	–0.7–1.9	–0.8–2.0
Pixel size (Å)	1.041	0.82	0.82	0.82
Initial particles	61 009	165 827	165 827	83 340
Final particles	59 262	61 910	35 129	45 548
Average resolution (Å)	2.9	3.1	3.1	2.9
Model composition				
Atoms	144 982	139 909	145 651	144 492
Protein residues	5 753	5 330	5 783	5 715
RNA bases	4 627	4554*	4 647	4617
Refinement				
Map CC around atoms	0.85	0.89	0.88	0.86
Map CC whole unit cell	0.85	0.88	0.87	0.85
Map sharpening B	–35.42	–56.43	–62.31	–68.16
R.M.S. deviations				
Bond lengths (Å)	0.008	0.010	0.009	0.014
Bond angles (°)	0.906	0.947	0.933	1.082
Validation				
MolProbity score	1.74	1.73	1.76	1.75
Clash score	4.19	3.87	4.24	4.41
Poor rotamers (%)	0.02	0.07	0.06	0.04
Ramachandran				
Favoured (%)	90.48	89.88	89.64	90.76
Outlier (%)	0.16	0.02	0.05	0.02

1591

1592 *23S rRNA helices H76–H78 of the L1 stalk were flexible and not modelled.

1593

1594 **Table S5. Strains and Plasmids used in this study.** Plasmid and strain construction is
 1595 described in detail in supplemental text. *Denotes a plasmid constructed by the PEP facility at
 1596 Umeå University.

Strain	Description	Source
<i>L. monocytogenes</i> EDGe	Wild-type serotype 1/2a strain	(Glaser <i>et al.</i> , 2001)
<i>L. monocytogenes</i> EGDe::pIMK3	EGDe with empty pIMK3 plasmid containing P _{help} promoter integrated at tRNA ^{Arg} locus	This work
<i>L. monocytogenes</i> EDGe::pIMK3/ <i>mo0919</i> ^{HTF}	EGDe with VgaL-HTF overexpressed from the P _{help} promoter integrated at tRNA ^{Arg} locus	This work
<i>L. monocytogenes</i> EDGe::pIMK3/ <i>mo0919</i> ^{EQ2-HTF}	EGDe with VgaL EQ2-HTF overexpressed from the P _{help} promoter integrated at tRNA ^{Arg} locus	This work
<i>L. monocytogenes</i> EDGe:: Δ <i>mo0919</i>	EGDe harboring a <i>mo0919</i> marker less deletion lacking VgaL	This work
<i>L. monocytogenes</i> EDGe:: Δ <i>mo0919</i> ::pIMK3	EGDe:: Δ <i>mo0919</i> with empty pIMK3 plasmid containing P _{help} promoter integrated at tRNA ^{Arg} locus	This work
<i>L. monocytogenes</i> EDGe:: Δ <i>mo0919</i> ::pIMK3/ <i>mo0919</i>	EGDe:: Δ <i>mo0919</i> with VgaL overexpressed from the P _{help} promoter integrated at tRNA ^{Arg} locus	This work
<i>L. monocytogenes</i> EDGe:: Δ <i>mo0919</i> ::pIMK3/ <i>mo0919</i> ^{HTF}	EGDe:: Δ <i>mo0919</i> with VgaL-HTF overexpressed from the P _{help} promoter integrated at tRNA ^{Arg} locus	This work
<i>L. monocytogenes</i> EDGe:: Δ <i>mo0919</i> ::pIMK3/ <i>mo0919</i> ^{HTF-EQ2}	EGDe:: Δ <i>mo0919</i> with VgaL-EQ2-HTF overexpressed from the P _{help} promoter integrated at tRNA ^{Arg} locus	This work
<i>E. faecalis</i> OG1RF	Rif ^r Fus ^r ; WT <i>E. faecalis</i>	(Singh <i>et al.</i> , 2002)
<i>E. faecalis</i> TX5332	Rif ^r Fus ^r Kan ^r ; <i>Isa</i> gene disruption mutant (OG1RF <i>Isa</i> ::pTEX4577)	(Davis <i>et al.</i> , 2001)
<i>S. aureus</i> SH1000	Functional <i>rsbU</i> ^r derivative of <i>S. aureus</i> 8325-4	(Horsburgh <i>et al.</i> , 2002; O'Neill, 2010)
<i>E. coli</i> S17.1	<i>E. coli</i> strain used for conjugative plasmid transfer to <i>L. monocytogenes</i>	(Simon <i>et al.</i> , 1983)

1597

Plasmid	Description	Reference
pIMK3	Kan ^r ; Listerial tRNA ^{Arg} locus specific integrative vector for high-level IPTG-induced protein expression from the P _{help} promoter	(Monk <i>et al.</i> , 2008)
pMAD	Amp ^r , Ery ^r ; lacZ; thermosensitive shuttle vector used for allelic exchange in <i>L. monocytogenes</i>	(Arnaud <i>et al.</i> , 2004)
pHT009	Amp ^r , Km ^r ; thrC locus specific integrative vector for high-level IPTG-induced protein expression from the P _{hy-spnak} promoter	(Crowe-McAuliffe <i>et al.</i> , 2018)
VHp689	pMAD $\Delta lmo0919$	This work
VHp690	pIMK3: <i>lmo0919</i>	This work
VHp692	pIMK3: <i>lmo0919-HTF</i>	This work
VHp693	pIMK3: <i>lmo0919-EQ2-HTF</i>	This work
pTX5333	Cm ^r ; <i>E. faecalis</i> - <i>E. coli</i> shuttle plasmid expressing LsaA from native promoter	(Singh <i>et al.</i> , 2002)
pCIE	Cm ^r ; <i>E. faecalis</i> - <i>E. coli</i> shuttle plasmid for cCF10 induced expression of proteins	(Weaver <i>et al.</i> , 2017)
VHp100	pCIE: <i>lsaA-HTF</i>	This work*
VHp149	pCIE: <i>lsaA-EQ2-HTF</i>	This work*
VHp369	pHT009- <i>lsaA</i>	This work
VHp426	pCIE, Sc ^r ; Cm ^r gene swapped to spectinomycin resistance (Sc ^r) gene	This work*
VHp431	VHp426: <i>lsa</i>	This work*
VHp526	pHT009- <i>lsaAK244A</i>	This work
VHp526	pHT009- <i>lsaAK244A</i>	This work
pRMC2	Amp ^r , Cm ^r ; <i>E. coli</i> - <i>S. aureus</i> shuttle plasmid for tetracycline-regulable expression of proteins in the latter host.	(Corrigan & Foster, 2009)
pRMC2:<i>vgaA</i>-<i>FLAG</i>₃	pRMC2 expressing C-terminally FLAG ₃ tagged VgaA _{LC}	This work
pRMC2:<i>vgaA</i>-<i>EQ2</i>-<i>FLAG</i>₃	pRMC2 expressing C-terminally FLAG ₃ tagged VgaA _{LC} -E ₁₀₅ Q, E ₄₁₀ Q	This work
pRMC2:<i>vgaA</i>_{LC}	pRMC2 expressing wild-type VgaA _{LC}	This work
pRMC2:<i>vgaA</i>_{LC} (K₂₀₈A)	pRMC2 expressing VgaA _{LC} ^{K208A}	This work
pRMC2:<i>vgaA</i>_{LC} (S₂₁₁A)	pRMC2 expressing VgaA _{LC} ^{S211A}	This work
pRMC2:<i>vgaA</i>_{LC} (S₂₁₂A)	pRMC2 expressing VgaA _{LC} ^{S212A}	This work
pRMC2:<i>vgaA</i>_{LC} (S₂₁₃A)	pRMC2 expressing VgaA _{LC} ^{S213A}	This work
pRMC2:<i>vgaA</i>_{LC} (K₂₁₆A)	pRMC2 expressing VgaA _{LC} ^{K216A}	This work
pRMC2:<i>vgaA</i>_{LC} (K₂₁₈A)	pRMC2 expressing VgaA _{LC} ^{K218A}	This work
pRMC2:<i>vgaA</i>_{LC} (V₂₁₉A)	pRMC2 expressing VgaA _{LC} ^{V219A}	This work
pRMC2:<i>vgaA</i>_{LC} (W₂₂₃A)	pRMC2 expressing VgaA _{LC} ^{W223A}	This work
pRMC2:<i>vgaA</i>_{LC} (F₂₂₄A)	pRMC2 expressing VgaA _{LC} ^{F224A}	This work
pRMC2:<i>vgaA</i>_{LC} (S₂₂₆A)	pRMC2 expressing VgaA _{LC} ^{S226A}	This work
pRMC2:<i>vgaA</i>_{LC} (K₂₂₇A)	pRMC2 expressing VgaA _{LC} ^{K227A}	This work
pRMC2:<i>vgaA</i>_{LC} (G₂₂₈A)	pRMC2 expressing VgaA _{LC} ^{G228A}	This work

pRMC2:vgaA_{LC}(K₂₂₉A)	pRMC2 expressing VgaA _{LC} ^{K229A}	This work
pRMC2:vgaA_{LC}(K₂₃₀A)	pRMC2 expressing VgaA _{LC} ^{K230A}	This work
pRMC2:vgaA_{LC}(A₂₃₂A)	pRMC2 expressing VgaA _{LC} ^{A232A}	This work

1598