

1 **Title: Shaking hands is a putative terminal selector and controls axon
2 outgrowth of central complex neurons in the insect model *Tribolium***

3 Natalia Carolina Garcia-Perez, Gregor Bucher* and Marita Buescher*

4
5 Johann Friedrich Blumenbach Institute of Zoology, GZMB, University of Goettingen,
6 Goettingen, Germany
7
8

9 *For correspondence: marita.buescher@biologie.uni-goettingen.de and gbucher1@uni-goettingen.de

10

11 **Abstract**

12 Individual cell types are specified by transcriptional programs which act during development.
13 Gene regulatory mechanisms which specify subtype identity of central complex (CX)
14 neurons are the subject of intense investigation. The CX is a compartment within the brain
15 common to all insect species. The CX functions as a “command center” by initiating motor
16 actions in response to incoming information. The CX is made up of several thousand neurons
17 with more than 60 morphologically distinct identities. Accordingly, transcriptional programs
18 must effect the specification of at least as many neuronal subtypes. Here we demonstrate a
19 role for the transcription factor Shaking hands (Skh) in the specification of embryonic CX
20 neurons in *Tribolium*. The developmental dynamics of *Tc-skh* expression are characteristic
21 for terminal selectors of neuronal subtype identity. In the embryonic brain *Tc-skh* expression
22 is restricted to a subset of neurons, many of which survive to adulthood and contribute to the
23 mature CX. *Tc-skh* expression is maintained throughout the lifetime of the respective CX
24 neurons. *Tc-skh* knock-down results in severe axon outgrowth defects thus preventing the
25 formation of an embryonic CX primordium. The as yet unstudied *Drosophila skh* shows a
26 similar embryonic expression pattern suggesting that subtype specification of CX neurons
27 may be conserved.

28

29 **Introduction**

30 The insect brain contains a large number of neurons with distinct identities. Cell identity is
31 manifest in specific structural and functional features which together define a neuronal
32 subtype. Subtype identity is determined in the early postmitotic neuron and during
33 development it effects proper axon pathfinding thus facilitating the formation of specific
34 neural connections. Neuronal subtypes express distinct sets of differentiation genes which
35 together bring about all the characteristic features of the cell. Transcription factors that
36 regulate the expression of differentiation genes are the endpoint of hierarchical gene
37 regulatory cascades that act earlier during development. (Hobert, 2008; Hobert, 2011; Allan
38 and Thor, 2015; Hobert and Kratsios, 2019). The early regulatory cascades which govern
39 neuronal subtype specification have been intensively investigated in the insect model
40 *Drosophila melanogaster*, reviewed in (Skeath and Thor, 2003; Lin and Lee, 2012; Crews,
41 2019). All cells of the *Drosophila* brain derive from embryonically born stem cells, called
42 neuroblasts (NBs). Each NB gives rise to a stereotyped and invariant lineage of neurons and
43 glia. Each NB has a unique identity that is manifested in the expression of a unique
44 combination of transcription factors (Urbach and Technau, 2003). NB identity is determined
45 by overlapping spatial information in the procephalic neuroectoderm. Additional neuronal
46 diversity is generated by a temporal cascade: each NB expresses distinct transcription factors
47 in an invariant temporal series. Temporal factors are inherited by the NB progeny and
48 establish neuronal cell fates characteristic for a given temporal window (Kohwi and Doe,
49 2013; Lin and Lee, 2012; Rossi et al., 2017; Doe, 2017). The expression of temporal
50 transcription factors can be transient, thus making them unlikely regulators of differentiation
51 genes which need to be expressed throughout the life of a neuron (Sullivan et al., 2019). In
52 addition, Notch-signaling generates subtype diversity: sibling neurons take on different cell
53 fates and form hemi-lineages in a Notch-ON/Notch-OFF dependent manner (Buescher et al.,

54 1998; Truman et al., 2010). In the *Drosophila* ventral nerve cord (VNC), spatial and temporal
55 factors converge to activate the expression of transcription factors that function as terminal
56 selectors of neuronal subtype identity: these factors regulate the lifelong expression of
57 effector genes that together bring about the structural and molecular features of the
58 differentiated cell type (Allan and Thor, 2015; Hobert and Kratsios, 2019). A role for
59 terminal selectors in the *Drosophila* brain has not been demonstrated as yet.

60 Current interest in the specification of subtype identity is focused on neurons whose
61 trajectories build up the central complex (CX) (Boyan and Reichert, 2011; Sullivan et al.,
62 2019; Hartenstein et al., 2020). The CX is a prominent compartment in the center of the brain
63 that is common to all insect species. It functions as a multi-modal information processing
64 center which commands locomotor behaviors in response to visual stimuli (Strauss and
65 Heisenberg, 1993; Pfeiffer and Homberg, 2014; Heinze, 2017; Franconville et al., 2018).

66 Anatomically, the adult CX is an ensemble of interconnected paired and unpaired neuropils
67 (Hanesch et al., 1989; Strausfeld, 1999). CX anatomy is particularly well described in
68 *Drosophila*. The core components of the CX are the protocerebral bridge (PB), the fan-
69 shaped body (FB), the ellipsoid body (EB) and the noduli (NO) (for a schematic depiction of
70 the CX, refer to Figure1E). The PB is located at the dorsoposterior cell body-neuropil
71 interface wedged between the two calyces of the mushroom bodies (MB). The PB consists of
72 16 glomeruli arranged in the shape of a handlebar with its tips bent to a posterior-ventral
73 position. The FB is located anterior-ventrally and forms the largest neuropil of the CX.

74 Within the FB, neuronal trajectories are organized to form an intricate substructure of
75 horizontal strata and vertical slices. Just anteriorly to the FB lies the EB, a ring-shaped
76 neuropil that is structured into radial sectors and concentric zones. While the PB, the FB and
77 the EB are midline spanning neuropils, the ventral most module of the CX, the NO, are

78 paired. Two further, paired, modules are closely associated with the CX: the bulbs (BU) and
79 the lateral accessory lobes (LAL).

80 Neurons whose projections make up the neuropils of the CX are classified as either small-
81 field or large- field neurons (Young and Armstrong, 2010; Yang et al., 2013; Wolff et al.,
82 2015). The best studied group of small-field neurons are the columnar neurons. They form
83 eight sets of isomorphic cells within each brain hemisphere whose somata reside within the
84 pars intercerebralis (PI). The projections of a subgroup of columnar neurons form dendritic
85 tufts giving rise to the 16 glomeruli of the PB. Further anterior-ventrally, columnar neurons
86 project four prominent bilateral pairs of fiber bundles (w, x, y and z tracts). These tracts
87 connect the PB to the FB by an intricate pattern of inter-hemispheric crossings before they
88 extend further anterior-ventrally to establish the columnar structure of the FB. Large-field
89 neurons provide input from other brain areas into the core of the CX. Some large-field
90 neurons project perpendicular to the columnar neuron tracts and effect the horizontal
91 stratification of the FB. For example, such a projection pattern is characteristic for a subset of
92 neurons of the anterior optic tubercle (AOTU): they project first medially and then ventrally
93 to innervate the uppermost stratum of the FB. Another well-studied group of large-field
94 neurons are the ring neurons whose somata reside ventrolaterally to the CX and whose
95 trajectories innervate the EB.

96 The architecture of the adult CX and its internal connectivity are well documented in many
97 insect species (Loesel et al., 2002). By contrast, little is known about the regulatory
98 mechanisms which specify subtypes of CX neurons. A few studies have addressed the roles
99 of spatial and temporal factors in the specification of *Drosophila* CX neurons. For example,
100 ring neurons arise from within a spot of *engrailed* expressing procephalic neuroectoderm and
101 loss of Engrailed results in the loss of embryonic ring neurons (Bridi et al., 2019). Recently,

102 the temporal transcription factor Eyeless and its target Twin of Eyeless were shown to specify
103 features of a subset of columnar CX neurons (Sullivan et al., 2019).

104 While the overall architecture of the CX is well conserved across different insect species, the
105 size and shape of its neuropils vary greatly reflecting an evolutionary adaptation to different
106 habitats (Loesel et al., 2002; Strausfeld, 1999; Koniszewski et al., 2016). Moreover, the
107 assembly of individual CX neuropils occurs at different stages of development, a
108 phenomenon referred to as heterochrony (Panov, 1959). We study the regulatory mechanisms
109 that underlie CX development in the red flour beetle *Tribolium castaneum* (He et al., 2019;
110 Farnsworth et al., 2020). *Tribolium* is an insect model well suited to the study of gene
111 regulatory pathways: its genome is fully sequenced (Herndon et al., 2020) and *Tribolium* is
112 amenable to genetic manipulation, including enhancer trapping (Trauner et al., 2009).
113 Additionally, “parental RNA interference” (RNAi) is well established as a means to study
114 gene function (Bucher et al., 2002; Schmitt-Engel et al., 2015). General features of
115 embryonic neurogenesis are remarkably well conserved between *Tribolium* and *Drosophila*
116 (Wheeler, 2003; Biffar and Stollewerk, 2014).

117 Here we report a role for the transcription factor Tc-Skh, the *Tribolium* ortholog of *C.*
118 *elegans* Unc-42, in the specification of a subset of CX neurons. The developmental dynamics
119 of *Tc-skh* expression are characteristic for terminal selectors of neuronal subtype identity. *Tc-*
120 *skh* is not expressed in neural progenitors or glia but is expressed in neurons of 14 to 16
121 embryonic lineages. Many of these neurons survive to adulthood and a subset contributes to
122 the adult CX. Expression of *Tc-skh* in CX neurons is maintained into adulthood. Notably, *Tc-*
123 *skh* is absent from neurons which make up other major compartments of the brain, e.g. the
124 mushroom bodies and the antennal lobes. *Tc-skh* RNAi results in severe axon outgrowth
125 defects thus preventing the formation of an embryonic CX primordium. In addition, we
126 observe a moderate reduction of *Tc-skh* expression. The *Drosophila* ortholog *Dm-skh* shows

127 a highly similar expression pattern in the embryo suggesting a conserved role in the
128 specification of CX neurons.

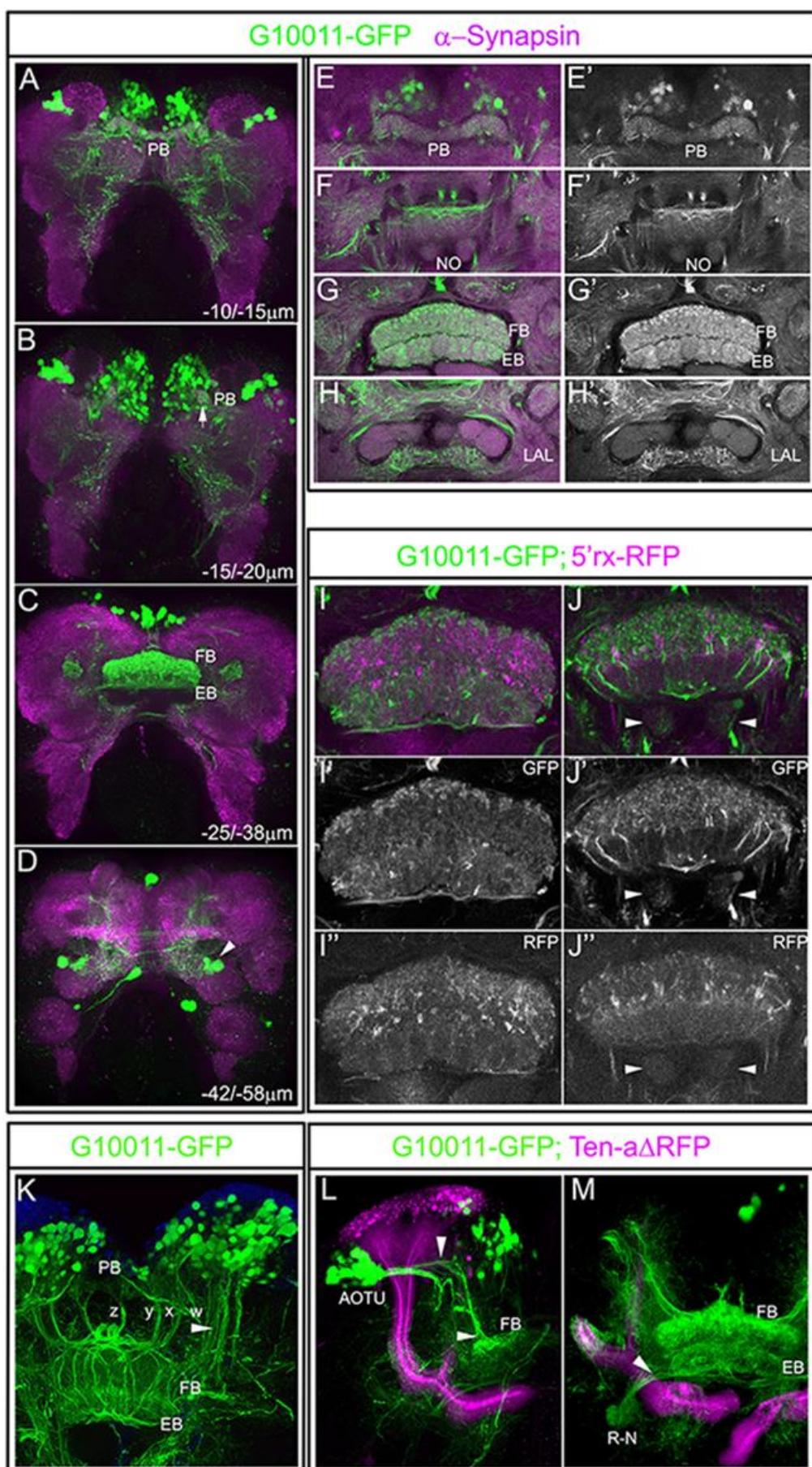
129

130 **Results**

131 **The enhancer trap line G10011 labels several neuropils of the *Tribolium* adult CX**

132 To identify genes which play a role in CX development, we screened a collection of enhancer
133 trap lines that express an untagged version of eGFP (Trauner et al., 2009). Analysis of GFP
134 fluorescence in *Tribolium* adult brains led to the identification of the line G10011 in which
135 the CX is heavily labeled (for a 3-D overview see Figure S1). G10011 beetles are
136 homozygous viable, fertile and their lifespan is comparable to that of the *Tribolium* wild type
137 strain SB. We did not detect obvious differences in the fluorescence patterns of male and
138 female and young and old adult brains. To gain an overview of G10011-GFP expression, we
139 crossed G10011 to Ten-a-Δ-RFP expressing beetles and examined the adult brains of the
140 resulting progeny. Ten-a-Δ-RFP is a derivative of the enhancer trap line Tenascin-a (also
141 called Teneurin-a)-GFP (He et al., 2019).

142


143 **Figure 1.** The enhancer trap line G10011-GFP labels a subset of CX neuropils in the adult *Tribolium*
144 brain. Brain of an animal with the genotype G10011-GFP;Ten-aΔ-RFP (GFP auto-fluorescence green,
145 and RFP auto-fluorescence magenta). Note that Ten-aΔ-RFP expression is restricted to the mushroom
146 bodies (MB; magenta). Serial confocal sections were combined and visualized as maximum intensity

147 projections to display distinct anatomical features. Scan direction is from the n-dorsal (n-D) to the n-
148 ventral (n-V) surface of the brain (coordinates of the neuraxes are shown in **(G)**). Depth along the Z-
149 axis is given in μm . **(A)** GFP-positive cell bodies in the posterior brain. GFP-expression is absent
150 from the Kenyon cells (KC) of the MB. Arrowhead indicates the protocerebral bridge (PB) which is
151 only partially visible (for a clearer view of the PB, refer to Figure 2 A). Arrows indicate descending
152 axon projections which extend longitudinal connectives into the ventral nerve cord (VNC). **(B)** The
153 fan-shaped body (FB) and the ellipsoid body (EB) are heavily labelled by GFP. Clusters of laterally
154 located cells send their axon trajectories toward the upper layer of the FB body (arrowheads; compare
155 with Figure 2 L). Small clusters of large cells are located in the pars intercerebralis (PI). Based on
156 location and axon projections, they are likely to be neurosecretory cells. GFP-fluorescence is also
157 seen in the optic lobes (OL). **(C)** The arrowhead marks a single cell cluster of 4-6 GFP-positive cells
158 in the anterior brain (arrowhead). Individual large cells within the Tritocerebrum project anteriorally
159 towards the PI and are likely to be homologous to the “hugin expressing” cells which have been
160 identified in several other insect species (arrow). **(D)** First thoracic segment (T1) of the VNC:
161 multiple axon projections which originate in the brain form longitudinal connectives in the VNC
162 (arrowheads mark the limits of the first thoracic segment T1). Note the absence of GFP-positive
163 somata in the VNC. White line marks the ventral midline. **(E)** Schematic illustration of CX small-field
164 and large-field neurons. Two types of small-field neurons, pb-fb-eb (green) and pb-fb (blue) are
165 shown. Two types of large-field neurons, a ring neuron (red) and an AOTU neuron (purple) are
166 shown. **(F)** The average number of G10011-GFP-positive cells in 2-3 day old animals is 320 per brain
167 lobe (n=4). **(G)** Coordinates according to the neuraxes.

168 In Ten-a- Δ adult brains, RFP expression is restricted to the MBs which provide an internal
169 landmark (Figure 1A-C). Double-labeled brains show GFP fluorescence in the PB
170 (arrowhead in Figure 1A), the FB and the EB (Figure 1B; for a schematic depiction of CX
171 neuropils and coordinates of the axes refer to panels E and G, respectively). G10011-GFP
172 positive somata reside nearly exclusively in the n-dorsal brain. The majority of GFP-positive
173 cell bodies are located in the n-antero-medial region where they form several large clusters
174 within the PI and also more n-posterior areas. Small clusters of large cells are located in the
175 anterior most region of the PI (Figure 1A,B). These cells project descending axons which
176 form a chiasma and then extend further posterior to enter the VNC. Based on cell body
177 location and axonal projections, they are likely to be neurosecretory cells. In the dorsolateral

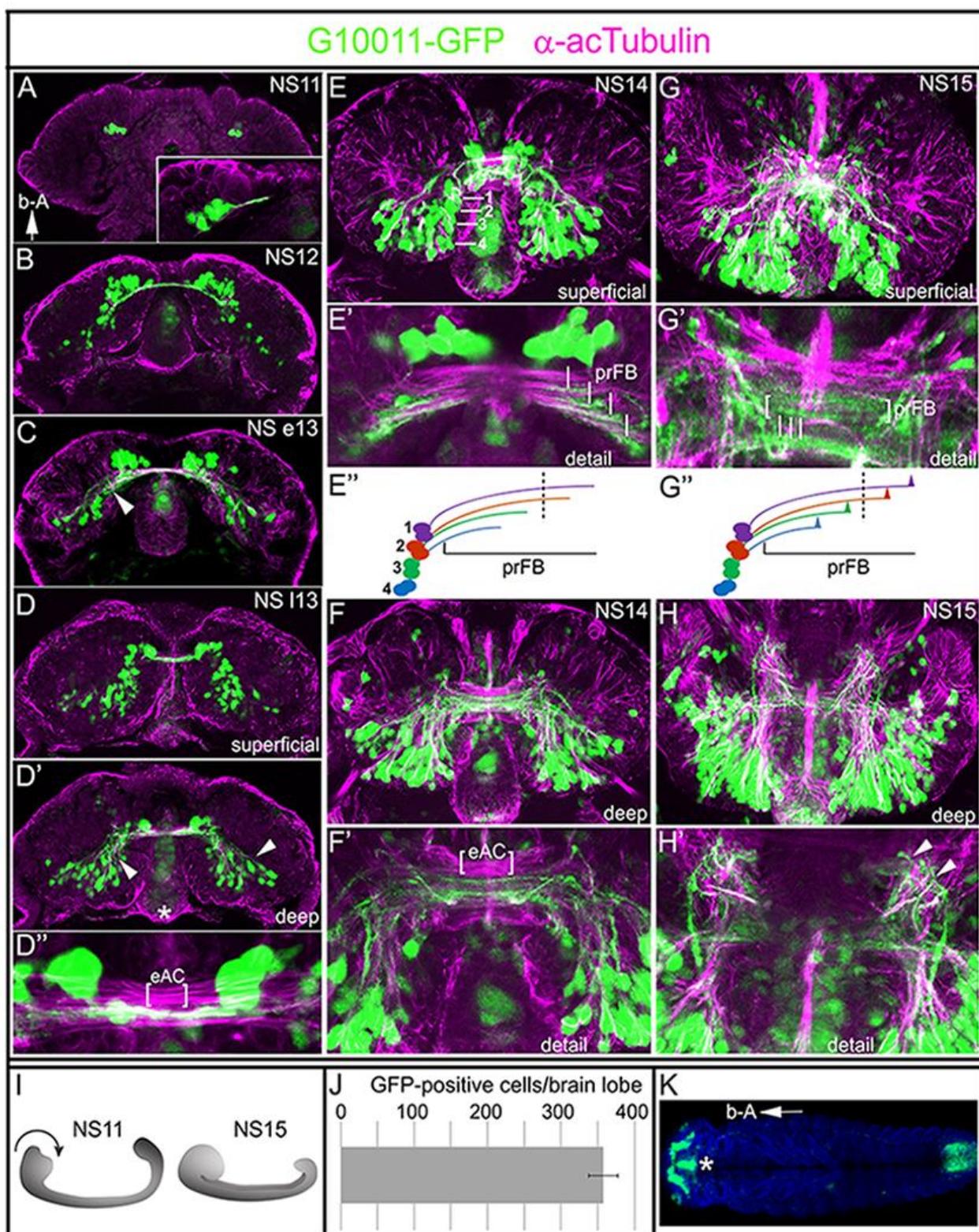
178 brain large clusters of cells reside lateral to the Kenyon cells (KC) of the MBs (Figure 1B,
179 arrowhead). In addition, a small number of GFP-positive cells is scattered throughout the
180 lateral regions of the n-dorsal brain. The ventral cortex of the brain contains only a single
181 GFP-positive cluster comprising 6-8 cells which is located ventrolaterally to the EB
182 (arrowhead in Figure 1C). Finally, a few large cells within the tritocerebrum project towards
183 the PI and are likely to be “hugin expressing” cells, a type of neurosecretory cells identified
184 in several insect species (arrow in Figure 1C) (Melcher and Pankratz, 2005). We determined
185 an average number of 320 GFP-positive cells per brain lobe (n=4; Figure 1F). Notably,
186 G10011-GFP is not expressed in the Kenyon cells of the MBs and the antennal lobes. We do
187 not know whether GFP expression in the optic lobes is attributable to the G10011 insertion
188 since the transformation marker 3xP3 itself directs GFP expression in the optic lobes
189 (Berghammer et al., 1999). The VNC shows no GFP-positive somata but contains multiple
190 GFP-positive longitudinal connectives which originate in the brain (Figure 1D).

191 To examine GFP-fluorescence in CX neuropils in more detail, G10011 adult brains were
192 stained with α -Synapsin which facilitates the visualization of individual brain neuropils
193 (Figure 2A-D and E-H').

195 **Figure 2.** GFP-labeled CX neuropils in the adult G10011 brain. Serial confocal sections were
196 combined and visualized as maximum intensity projections to display individual anatomical features.
197 **(A-H')** Adult G10011 brains (green, GFP auto-fluorescence) stained with α -Synapsin antibody
198 (magenta). **(A-D)** Whole brain imaged at low magnification. Scan direction is from the n-dorsal to the
199 n-ventral surface of the brain. Depth along the Z-axis is given in μ m. **(A-B)** GFP-label within the PB.
200 Arrow in **(B)** indicates the most lateral glomerulus of the PB. **(C)** GFP-label within the FB and the
201 EB. **(D)** GFP-label of a subset of ring neurons (arrowhead). **(E-H')** Close-ups of CX neuropils. **(E)**
202 PB, **(F)** NO, **(G)** FB and EB, **(H)** We interpret triangular compartments which are located postero-
203 lateral to the EB as the lateral-accessory-lobes (LALs). **(E'-H')** GFP auto-fluorescence only. Note that
204 the NO and the putative LALs are only weakly labelled by GFP. **(I-J'')** CX of an animal with the
205 genotype G10011-GFP;5'rx-RFP. **(I-I'')** and **(J-J'')** depict two different planes of the CX along the
206 D/V axis. **(I', J')** GFP auto-fluorescence only. **(I'', J'')** RFP only. Note that there is little overlap of
207 GFP- and RFP-fluorescence. Arrowheads indicate the NO. **(K-M)** identified sets of neurons with
208 projections into the FB and/or the EB. **(K)** small-field, columnar neurons arborize within the PB, form
209 the characteristic z, y, x and w fascicles, decussate in the upper part of the FB and establish the
210 columnar organization of the FB. Blue stain is DAPI. **(L-M)** Adult brain of an animal with the
211 genotype G10011-GFP;Ten-a Δ -RFP. **(L)** AOTU large-field neurons and their projections into the FB
212 (arrowheads). **(M)** Large-field ring neurons (R-N) projection into the EB body (arrowhead).

213 Image analysis at both low (Figure 2C) and high magnification (Figure 2G,G') confirmed that
214 the FB and the EB are strongly labelled by GFP. Within the FB, GFP-fluorescence is
215 observed in all columns and strata with a particularly heavy label of the uppermost stratum.
216 Within the EB, GFP labels all radial segments (Figure 2G,G'). In addition, all 16 glomeruli of
217 the PB are labelled by GFP (Figure 2A,B and E,E'). In contrast to the strong GFP-label
218 within the midline-spanning neuropils, GFP-fluorescence within the paired NO is very weak
219 (Figure 2F,F'). The CX modules are associated with additional neuropils such as the BUs and
220 the LALs. In *Tribolium* both of these compartments have not been described as yet. We
221 observed a bilaterally symmetric brain area located posterior-ventrally to the FB/EB which
222 we interpret as the LALs. G10011-GFP fluorescence within the putative LALs is weak
223 (Figure 2H,H'). We were not able to identify a structure which may represent the BU.

224 Strong GFP-fluorescence in the FB and the EB raises the question as to whether G10011-
225 GFP labels all neuronal projections that make up these neuropils. To address this question,
226 we crossed G10011 beetles to the imaging line 5'rx (*retinal homeobox gene*) in which the FB
227 and the EB are intensely labelled by RFP (He et al., 2019). Image analysis of the respective
228 progeny revealed that G10011-GFP and 5'rx-RFP fluorescence are largely non-overlapping,
229 indicating G10011-GFP labels only a subset of structures within the FB and the EB (Figure
230 2I-J'').


231 Anatomical studies in a variety of insects have led to the characterization of small- and large-
232 field neurons whose projections make up the neuropils of the CX (Hanesch et al., 1989;
233 Young and Armstrong, 2010; Yang et al., 2013). Cell body location, morphology and
234 projections of many CX neurons are conserved among different insect species (Pfeiffer and
235 Homberg, 2014). Based on these criteria, we were able to identify one type of small- and two
236 types of large-field neurons that express G10011-GFP. Firstly, sets of neurons whose cell
237 bodies reside within the PI show all properties indicative of columnar neurons (Figure 2K):
238 their trajectories contribute to the dendritic tufts within the glomeruli of the PB and then
239 extend more posterior to form four characteristic fiber tracts commonly named z, y, x and w
240 tracts. These tracts connect the PB to the FB by interhemispheric chiasmata before they
241 extend further posterior to establish the columnar structure of the FB (Figure 1K). Secondly,
242 in the dorsolateral brain two large clusters of neurons adjacent to the MB calyces project two
243 major fiber bundles, one of which extends first medially and then posterior before it enters
244 the uppermost stratum of the FB (Figure 2L). We interpret these CX neurons as a subset of
245 the AOTU neurons. Thirdly, we identified the ring neurons (R-N) whose somata reside
246 posterior-laterally to the EB and whose projections innervate the EB (Figure 2M). There are
247 likely to be more G10011-GFP positive neurons contributing to the neuropils of the CX.

248 However, the large number of GFP-positive cells precludes the identification of additional
249 CX neurons and their individual trajectories.

250

251 **G10011-GFP positive neurons establish the FB primordium**

252 CX neurons of holometabolous insects are born during embryonic and larval stages while
253 much of the CX connectivity is established in the pupa. We examined the appearance of
254 G10011-GFP labelled cells and the establishment of early CX connectivity at embryonic,
255 larval and pupal stages. Firstly, we addressed G10011-GFP expression during
256 embryogenesis. We observe the embryo staging nomenclature as suggested by Stollewerk
257 which distinguishes 15 stages of neurogenesis: NS1(0%) to NS15 (100% neurogenesis)
258 (Biffar and Stollewerk, 2014) for details refer to Figure S2). (Embryonic are given
259 coordinations according to the body axis).

260
261 **Figure 3.** Embryonic expression of G10011 and formation of the embryonic commissural system. (A-
262 H') Developmental series of G10011-GFP brains beginning from stage NS11 (~65% embryogenesis)
263 up to stage NS15 (100% embryogenesis). (For details of embryogenesis and staging see Figure S2)
264 Coordinates are given according to the body axes (b-A arrow in A indicates "anterior up"). (A-H)
265 Double immuno-staining with α -GFP (green) and α -acetylated Tubulin (magenta) antibodies. (A-C)

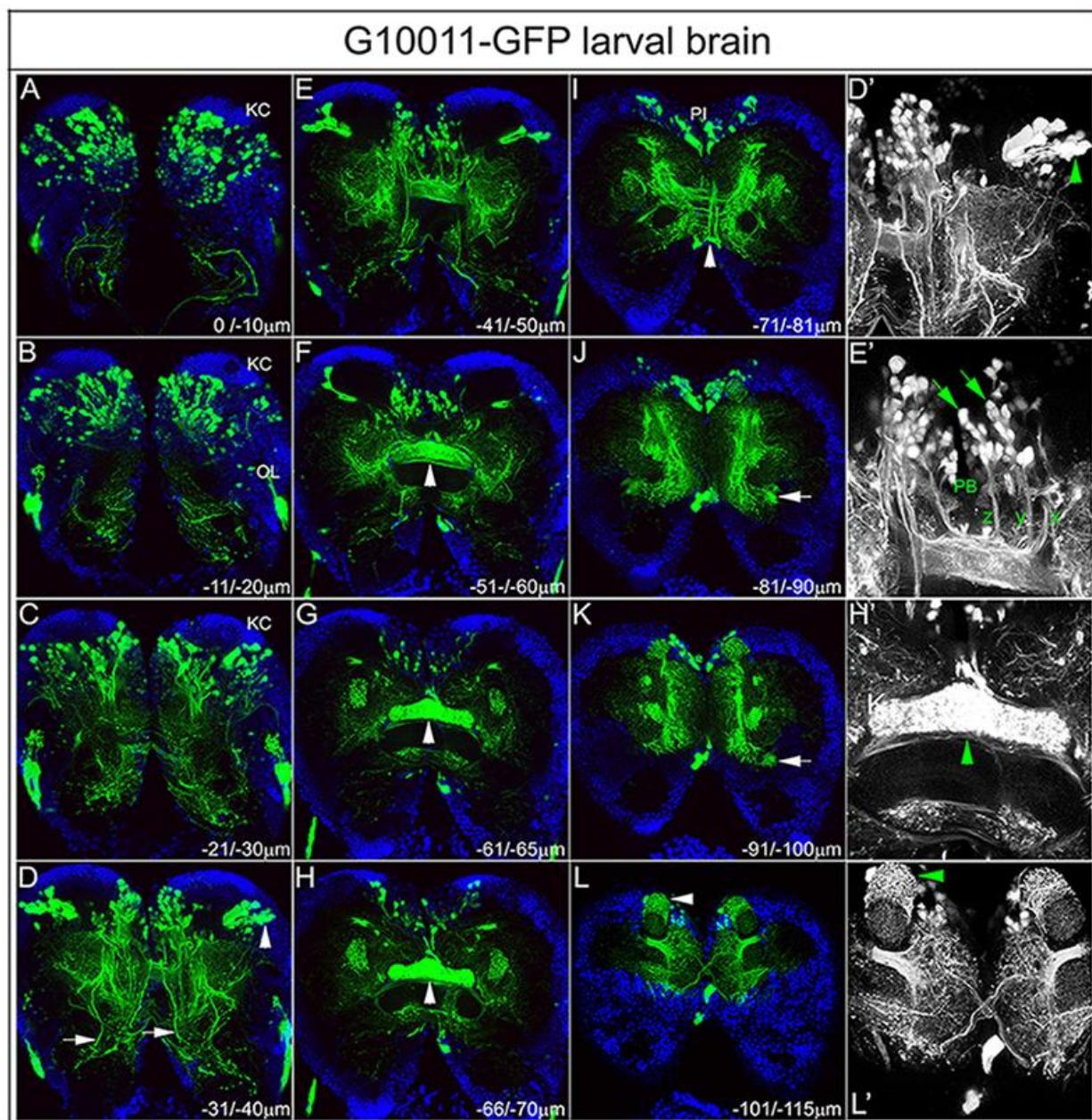
266 depict single confocal planes; anterior is up with respect to the body axis (arrow “b-A”). (A, **inset**)
267 The first continuous commissural fascicle which links both hemispheres of the protocerebrum is
268 established at late NS11. This primary commissural fascicle is strongly labelled by α -GFP. (C) Note
269 that multiple GFP-positive cell clusters project their axons from posterior dorsomedial regions
270 towards the primary brain commissure (arrow). (D-D') Serial confocal sections were combined and
271 visualized as maximum intensity projections to depict either superficial (D) or deep lying (D') regions
272 of a late NS13 brain. (D') Multiple GFP-positive cell clusters project axons from posterior
273 dorsomedial and dorsolateral regions towards the primary brain commissure (arrows). GFP also labels
274 the stomodeum (asterisk). (D'') Close-up of (D') Multiple commissural fascicles have formed; only a
275 subset is GFP-positive (eAC: embryonic anterior commissure). (E-H') Serial confocal sections were
276 combined and visualized as maximum intensity projections to depict superficial (E-E') or deep (F-F')
277 lying regions of a stage NS14 brain. Note that nearly all GFP-positive cell bodies are located in the
278 dorsoposterior brain. (E) White lines indicate four clusters of cells. We interpret these cells as the
279 progeny of DM1-DM4 which differentiate into the columnar neurons. (E') the four clusters of
280 neurons produce four parallel running GFP-positive fascicles enter the commissural fiber system
281 (white lines). We interpret these fibers as the precursors of the w, x, y, z tracts and hence as the prFB.
282 (E'') Schematic illustration: the trajectories of 4 cell clusters generate the prFB; dashed line indicates
283 the ventral midline. (F, F') GFP-positive input into the primary commissure stems largely from cells
284 located in posterior dorsomedial and dorsolateral regions of the brain (arrowhead). (G,G') superficial
285 and (H,H') deep lying regions of the NS15 brain. (G) Note the beginning defasciculation of GFP-
286 positive commissural fiber tracts (white lines). (G'') Schematic representation of the beginning
287 defasciculation. (H,H') Multiple GFP-positive fibers exist the brain and project towards the VNC
288 (arrowheads). (I) Schematic representation of morphogenetic head movements during
289 embryogenesis. (J) The average number of G10011-GFP-positive cells in late stage NS15 brain lobes
290 is 362 (n=4). (K) Dorsal view of a whole-mount NS14 animal. Note that embryonic G10011-GFP
291 expression is restricted to the brain, the stomodeum (asterisk) and the hindgut. Blue stain is DAPI. “b-
292 A” arrow: anterior is left.

293 The earliest expression of G10011-GFP occurs at NS11 (65% of embryogenesis) in two small
294 clusters of cells in anterior-medial positions of the brain (Figure 3A). Subsequently, cell
295 numbers within these clusters increase and additional clusters form adjacently in more lateral
296 positions (NS12, Figure 3B). In addition, small clusters GFP-positive cells appear in
297 posterior-medial regions. Post-NS12, no significant increase of GFP-positive cells in the
298 anterior-medial region takes place. By contrast, in posterior-medial and posterior-lateral
299 regions multiple new GFP-positive cell clusters arise and early-born clusters gain in cell
300 numbers (Figure 3C-D', E,F and G,H). The strongest increase in GFP-positive cells is

301 observed during stage NS15. At the end of embryogenesis each brain lobe contains an
302 average number of 362 GFP-positive cells (n=4; Figure 2J), the vast majority of which reside
303 in the medial area of the dorsoposterior brain. The stem cells of the brain generate their
304 neural progeny in a stereotyped orientation towards the inside of the brain. Sequentially
305 generated neurons remain close together such that lineage-related neurons appear like pearls
306 on a string. GFP RNA in situ in stage NS15 G10011 embryos allows us to identify 14-16
307 “strings” of GFP-positive cells (Figure 6B’’). Taking into consideration that each embryonic
308 brain hemisphere contains around 100 NBs (Biffar and Stollewerk, 2014), G10011-GFP is
309 expressed in the progeny of about 15% of all NB lineages. Embryonic expression of G10011
310 outside of the brain is restricted to the stomodeum and the hindgut and GFP-expressing cell
311 bodies are absent from the VNC (Figure 3K).

312 In the adult G10011 brain the columnar neurons of the FB are heavily labeled by GFP (Figure
313 2K). We asked whether these cells are of embryonic origin and establish the FB primordium
314 (prFB) of the embryonic *Tribolium* brain. The prFB is formed by four contralaterally
315 projecting fiber tracts which emanate from each brain hemisphere and constitute a part of the
316 early commissural system (schematic illustration in Figure 3E’’). These fiber tracts are
317 produced by four distinct neuronal neuroblasts (DM1-DM4) located in the posterior-medial
318 brain (Andrade et al., 2019; Farnworth et al., 2020). To visualize the development of the
319 commissural system, we co-stained G10011 embryos with α -acetylated Tubulin (acTub),
320 currently the only available marker for *Tribolium* cell membranes. At late stage NS11 the
321 first acTub-positive fascicle extends towards the midline. This fascicle is also labelled by
322 G10011-GFP (Figure 3A, inset). From NS12 onwards, GFP-positive fiber tracts make
323 numerous contributions to the commissural system (Figure 3B-D’’ and E-F). At stage NS14
324 GFP-positive fiber tracts form that are indicative of the prFB: four contralaterally projecting
325 fiber tracts enter the commissural system as parallel tracts and fuse with the corresponding
326 tracts of the opposing brain hemisphere (Figure 3E’,F). At late stage NS15 these fibers show
327 the characteristic pattern of defasciculation which initiates the development of the columnar
328 architecture of the FB (Figure 3G’, schematic illustration: G’’). In *Drosophila* it has been

329 shown that the contralaterally projecting fibers which constitute the prFB pass through a
330 channel formed by glial membranes (Andrade et al., 2019). We observed a similar
331 arrangement in the *Tribolium* embryonic brain (Figure S3 A-A''). Recently, we have shown
332 that a subset of embryonically-born columnar neurons express the Retinal homeobox protein
333 (Rx) (Farnworth et al., 2019). Double-staining with anti-GFP and anti-Rx revealed a partial
334 overlap of Rx- and G10011-GFP expressing neurons (Figure S3 B-B'''). Taken together, we
335 conclude that G10011-GFP labels embryonically-born columnar neurons which establish the
336 prFB.


337 In addition to columnar neurons, we identified subsets of AOTU- and ring neurons in the
338 G10011-GFP adult brain that contribute to the CX. Studies in *Drosophila* have shown that
339 some of these neurons are born in the embryo and persist to adulthood (Lovick et al., 2017;
340 Bridi et al., 2019). Due to lack of specific markers we are unable to identify these cells
341 unambiguously in the *Tribolium* embryo. However, in the late NS15 brain we observed GFP-
342 positive cells which –based on cell number, morphology and location - we interpret as the
343 AOTU cells (arrow) Figure S3 C), as well as the putative “hugging” expressing cells
344 (arrowhead) and the neurosecretory cells of the prospective PI (arrow) (Figure S3 D).

345 The adult VNC contains numerous GFP-positive longitudinal connectives which originate in
346 the brain (Figure 1D; S1). We observed that longitudinal connectives arise during embryonic
347 stages: several dorsomedially located cell clusters project axon tracts towards the VNC
348 (Figure 3 H,H'). For a more detailed display of the major axon tracts in the late NS15 brain
349 refer to Figure S4.

350

351 **G10011-GFP labels immature CX neuropils in the late *Tribolium* larva**

352 During larval development, the brain strongly increases in size and undergoes major
353 morphogenetic movements which together make it impossible to trace all embryonically-born
354 G10011-GFP positive neurons to late larval stages. The number and distribution of GFP-
355 positive cell bodies in the late larval brain (80-90% larval development) much resembles that
356 of the adult brain (Figure 4A-L).

357
358 **Figure 4.** GFP expression in the late G10011 larva. (A-L) GFP auto-fluorescence (green) and DAPI
359 (blue) staining. (D', E', H' and L') GFP only. Serial confocal sections were combined and visualized
360 as maximum intensity projections to display individual anatomical features. Scan direction is from the
361 n-dorsal (A) towards the n-ventral (L) surface of the brain. Depth along the Z-axis is given in μm. (A-
L)

362 C) GFP-positive cell bodies in the posterior brain. Note that the Kenyon cells (KC) of the MBs do not
363 express GFP. GFP fluorescence within the optic lobes (OL) may reflect the expression of the
364 transfection marker 3xP3-GFP. (D,D') Multiple axon tracts originating in the n-antero-medial and –
365 lateral protocerebrum descend towards the VNC (arrows). Arrowheads indicate the dorsal and ventral
366 clusters of AOTU neurons. (E, E') A subset of columnar neurons (arrows) with their arborizations
367 within the PB and their characteristic z, y, and x axon tracts (the w tract is not in focus). (F-H, H')
368 The FB is strongly labelled by GFP (arrowheads). Note that distinct elements of the EB are not yet
369 present. (I) Ascending axon tracts originating from the putative “hugin-expressing” cells (arrowhead)
370 project towards the PI. (J-K) GFP-positive ring neurons (arrows). (L,L') GFP-expressing cells form
371 multiple dendritic arborizations which enwrap distinct parts of the MBs (arrowheads).GFP-positive
372 neurons reside nearly exclusively in the dorsoanterior brain. Most GFP-positive cells are located in
373 the medial brain with exception of two large cell clusters which laterally abut the Kenyon cells
374 (Figure 4D, D'). As in the adult, G10011-GFP expression is absent from the Kenyon cells of the MBs.
375 Location, morphology and, in part, axon trajectories allow us to recognize sets of cells which we can
376 also identify in the adult brain: notably, columnar neurons and a subset of AOTU neurons (Figure 4D-
377 F,D',E'), putative neurosecretory neurons of the PI (I,J), a subset of ring neurons (J,K) and the
378 putative “hugin expressing” cells (K,L,L').

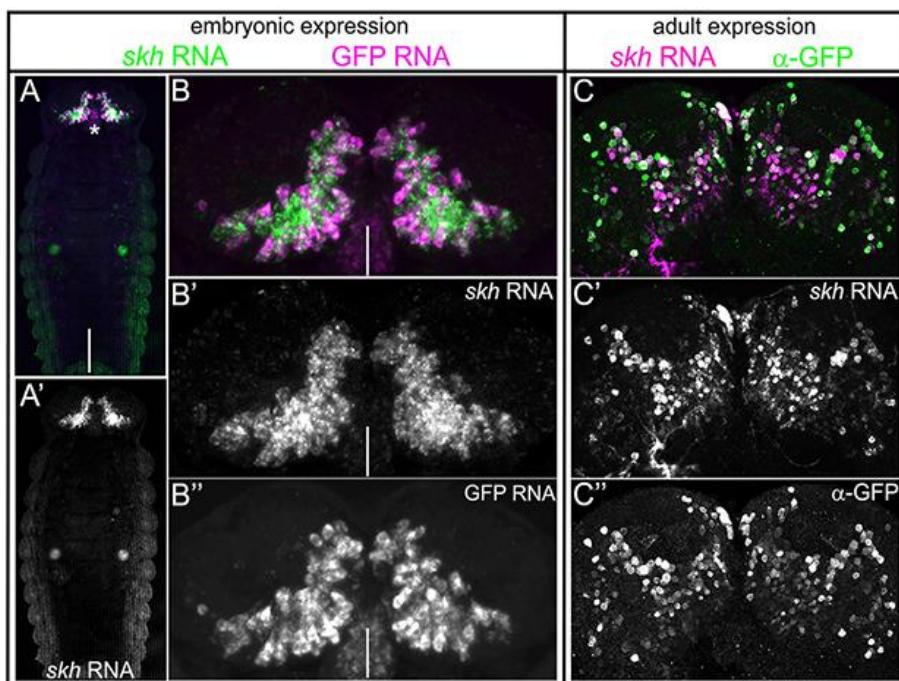
379 In the late larva, the PB and the FB are clearly labeled by GFP. Fiber tracts emanating from
380 the columnar neurons pass through individual glomeruli of the PB and then extend more
381 ventrally to form characteristic tracts with multiple interhemispheric chiasmata before they
382 extend further ventrally to build an immature FB within which a columnar structure is not yet
383 obvious (Figure 4E'). The overall shape of the FB already resembles that of the adult FB but
384 GFP fluorescence shows no obvious dorsoventral stratification at this stage (Figure 4G,H,H').

385 In the late larva, the EB is not yet detectable with G10011-GFP. In the late larval brain each
386 hemisphere contains 384 GFP-positive cells (n=4). From larval stages onwards, we observe
387 GFP fluorescence in several non-neural tissues (data not shown). Since these tissues are not
388 easily accessible by RNA in situ hybridization, we currently do not know whether
389 fluorescence reflects the bona fide expression of *TC007335* (see below) or is due to cryptic
390 regulatory elements within our plasmid.

391 **G10011-GFP labels the PB, FB and EB in the late *Tribolium* pupa.**

392 In the late pupal brain the number and distribution of GFP-positive cell bodies is essentially
393 the same as in the embryonic, larval and the adult brain (Figure 5A-C). The overall
394 architecture of the pupal CX neuropils closely resembles that of their adult counterparts. The
395 glomeruli of the PB are pronounced but fusion at the midline has not taken place as yet
396 (Figure 5B). Within the FB, the columnar structure is well established (Figure 5A,B). In
397 marked contrast to the late larval brain is the appearance of the EB with its characteristic
398 radial segmentation (Figure 5C).

399


400 **Figure 5.** GFP-expression in the late (90% development) G10011 pupal brain. (A-C) GFP
401 autofluorescence (in A combined with DAPI staining, blue). (A) Confocal stack is
402 visualized as maximum intensity projection. The columnar organization of the FB is well established.
403 Note the ring neurons (R-N) and their projection towards the EB (arrowhead). (B) Columnar neurons,
404 their arborizations within the glomeruli of the PB and their axon trajectories z, y, x (the w tract is not
405 in focus). The PB is not yet fused at the midline. (C) The EB is well developed in the late pupa.

406

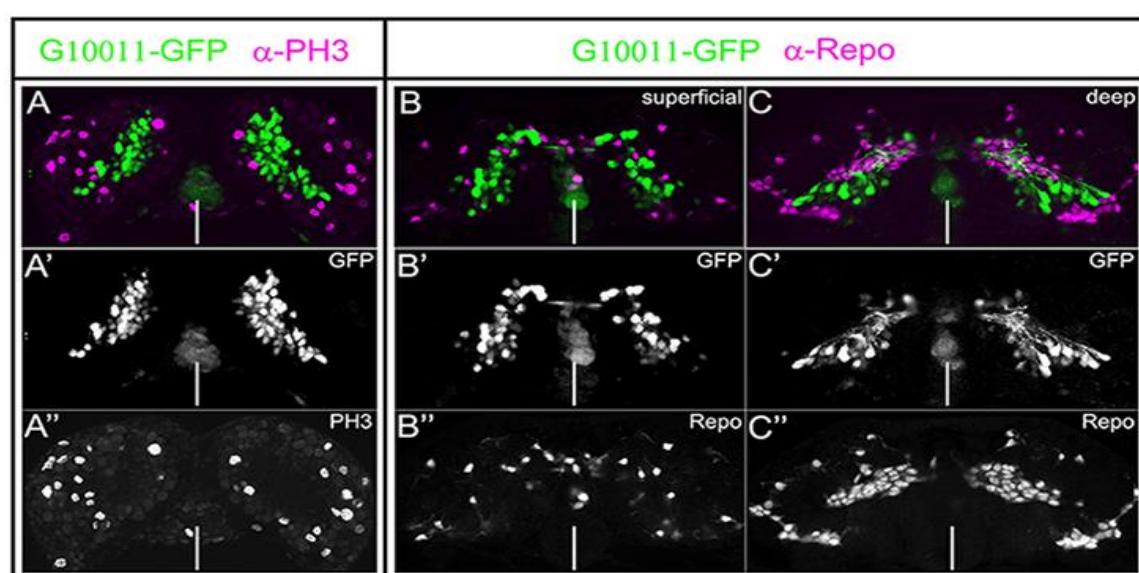
407 **G10011-GFP fluorescence reflects the RNA expression of the transcription factor TC-
408 UNC-42**

409 We mapped the plasmid insertion site of G10011 to the genomic position 6024777 within the
410 first intron of *TC008169* (for mapping details see Figure S5). However, the expression of this

411 gene did not match the one reported by G10011. Another candidate gene in this region is
412 *TC007335* whose putative transcriptional start site is located 18.5kb upstream of the insertion
413 site. To examine whether G10011-GFP reflects the expression of *TC007335* in the embryo,
414 we performed fluorescent double-in-situ hybridization with a GFP and a *TC007335* RNA
415 probe.

416

417 **Figure 6.** G10011-GFP reflects the RNA expression of *Tc-shaking hands (skh)* (TC007335). Double
418 fluorescent in situ with a GFP (magenta) and a *skh* (green) RNA probe in a stage NS14 embryo. (A-
419 A') Dorsal view of a whole-mount embryo. Note that the expression of GFP and *skh* are restricted to
420 the brain and stomodeum (asterisk). (B-B'') GFP and *skh* RNA expression co-localize in the
421 embryonic brain. White lines indicate the midline. (C-C'') *skh* RNA in situ (magenta) combined with
422 α-GFP antibody staining (green) in an adult G10011 brain. Serial confocal sections were combined
423 and visualized as maximum intensity projections. Note the co-localization of *skh* RNA and GFP
424 protein.

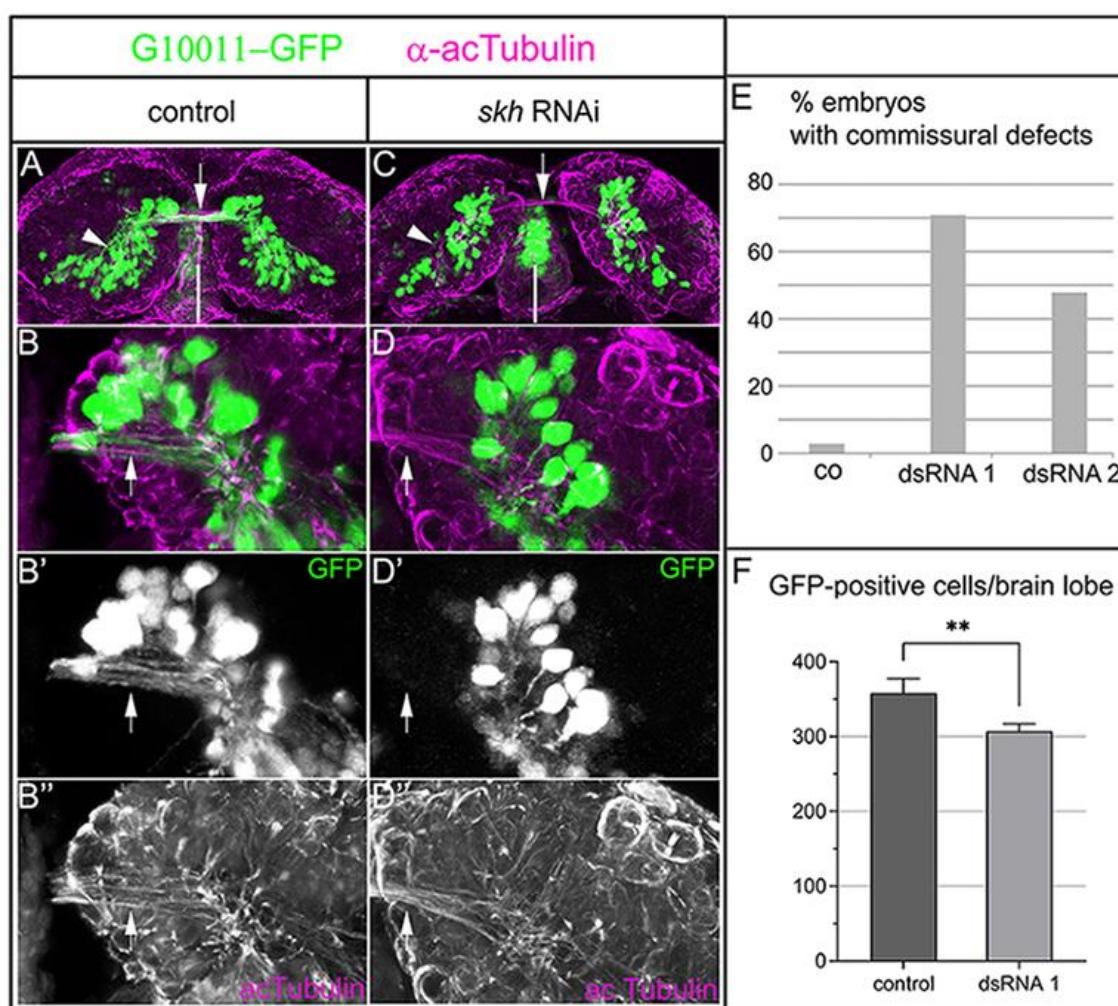

425 The GFP and *TC007335* signals colocalize at all embryonic stages, indicating that G10011-
426 GFP faithfully reports *TC007335* expression (Figure 6A-B'' and data not shown). Furthermore,
427 *TC007335* RNA in situ confirms that expression is restricted to the brain and stomodeum. We
428 name *TC007335 shaking hands (skh)* to highlight the chiasma formed by cells of the PI

429 (Figure 1B). *skh* encodes the ortholog of the *C.elegans* transcription factor UNC-42, a PRD-
430 like homeodomain protein (Baran et al., 1999) (for a phylogenetic tree refer to Figure S6).

431 G10011-GFP fluorescence is still strong in the adult brain. To investigate whether this
432 reflects GFP perdurance or the continued expression of *Tc-skh*, we performed *skh* whole-
433 mount RNA in situ combined with α -GFP staining in the adult brain. All GFP-positive cells
434 are also *skh* RNA positive, demonstrating the continued expression of *skh* (Figure 6C-C’’).

435 ***Tc-skh* expression is restricted to neurons**

436 Embryonic and larval brains contain mitotically active and postmitotic cells. Mitotically
437 active cells are NBs and their immediate progeny. To determine whether *Tc-skh* is expressed
438 in mitotically active cells, we double-stained embryos and larval brains with α -GFP and the
439 mitosis marker α -Phospho-histone-3 (PH-3).


440
441 **Figure 7.** G10011-GFP expression is restricted to non-dividing, non-glial cells. Embryonic G10011
442 brains were stained with α -GFP (green) and α -PH3 (A-A’’) or α -Repo (B-C’’) (magenta). Serial
443 confocal sections were combined and visualized as maximum intensity projections. (A-A’’) NS13 and
444 (B-C’’) NS14. Note that there is no overlap of GFP- and PH3- or Repo- expressing cells. White lines
445 indicate the midline.

446 Co-localization of α -GFP and α -PH-3 signals is never observed, indicating that *Tc-skh*
447 expression is restricted to postmitotic cells (Figure 7 A-A'' and data not shown). This
448 conclusion is supported by the observation that GFP-fluorescence is absent from the
449 superficial, neuroblast, layer of the brain. To examine whether *Tc-skh* is expressed in glia, we
450 double-stained embryos and adult brains with α -GFP and the glial marker α -Repo. α -GFP
451 and α -Repo signals do not co-localize (Figure 7B-C'' and data not shown). We conclude that
452 *Tc-skh* expression is restricted to neurons.

453

454 ***Tc-skh* knock-down results in axon outgrowth defects and a reduction of GFP-positive
455 cells.**

456 To explore the effects of reduced Tc-Skh function in the embryo, we performed parental
457 RNAi in G10011 animals using two non-overlapping dsRNA fragments (“frag1” and
458 “frag2”). Knock-down phenotypes were examined by double staining with α -GFP and α -
459 acTubulin.

460
461 **Figure 8.** parental RNAi of *skh* leads to severe axon outgrowth defects in the embryonic brain.
462 G10011-GFP stage NS14 brains double-stained with α -GFP (green) and α -acTubulin (magenta);
463 dorsal views. (A-B'') Control brain (progeny of buffer-injected pupae). (A) whole brain at low
464 magnification; GFP-positive axon tracts join the commissural system linking both hemispheres of the
465 protocerebrum (arrow). The arrowhead indicates GFP-positive cell clusters in the posterior brain. (B-
466 B'') close-ups; GFP-positive axons project towards the midline (arrows). GFP-positive input into the
467 primary commissure stems largely from cells located in posterior dorsomedial and dorsolateral
468 regions of the brain (arrow). (C-D'') *skh* RNAi brain. (C) whole brain at low magnification; GFP-
469 positive axons fail to join the commissural system. Arrowhead indicates the loss of GFP-positive cell
470 clusters. (D-D'') Close-ups; (D') GFP-positive axons stall while most acTubulin-positive axons are
471 unaffected (D''). White lines indicate the midline. (E,F) Quantification of *skh* RNAi phenotypes. (E)
472 commissural defects were scored at stages NS14 and NS15. Buffer-injected control (co) n=80 (2
473 biological replicates) 3% defects, dsRNA frag1 n=85 (2 biological replicates) 71% defects, dsRNA
474 frag2 n=35, 48% defects. (F) Loss of GFP-positive cells in *skh* RNAi embryos were scored at NS15.
475 Buffer-injected control (co): 362 GFP-positive cells (n=4), dsRNA frag1: 308 GFP-positive cells
476 (n=4). Statistical significance was determined by one way ANOVA, ** = $P < 0.05$.

477 Loss of Tc-Skh has drastic consequences for the outgrowth of all G10011-GFP positive
478 axons: in severely affected embryos, no contra-laterally projecting axons enter the
479 commissural system and hence, no prFB is formed (Figure 8A-D''). Axon outgrowth defects
480 occur with high penetrance: RNAi with “frag1” and “frag2” results in severe defects in 71%
481 and 48% of the embryos, respectively. Examination of GFP-fluorescent cells shows that some
482 axon outgrowth still takes place but axons terminate prematurely close to the respective cell
483 bodies (Figure 7C). Axon extension defects are restricted to GFP-positive trajectories:
484 acTubulin positive but GFP negative axon trajectories form normally (Figure 7C,D''). We
485 conclude that the requirement of Tc-Skh for axon extension is cell-autonomous.
486 In addition to axonal defects, we observe a moderate reduction of GFP-positive cells in
487 knock-down embryos (compare Figure 8A with C; quantification in 8F). Due to the lack of
488 specific markers for G10011-GFP positive cells, we are unable to determine whether loss of
489 Skh is due to apoptosis or reflects an auto-regulatory feedback loop in the maintenance of
490 Skh expression.

491 **The embryonic expression patterns of *Tribolium* and *Drosophila*- *skh* are conserved.**

492 The *Drosophila* ortholog of *Tribolium skh* is encoded by CG32532 (see Figure S6). Its gene
493 product is one of the few homeodomain proteins which have remained uncharacterized. We
494 examined the embryonic expression pattern of *Dm-skh* by RNA in situ hybridization (Figure
495 9A-E').

497 **Figure 9.** Embryonic expression of Dm *skh*. (A,A') *skh* RNA in situ (red) and DAPI staining (blue).
498 (A,A') stage 16 whole-mount embryo; anterior is up. (A) dorsal view; (A') ventral view. Note that
499 Dm *skh* RNA is restricted to the brain. Red fluorescence in the trachea is an in situ artefact (arrow).
500 (B) Spatial organization of *skh* RNA expressing cells and major axon tracts; *skh* RNA in situ
501 (magenta) combined with an α-acetylated Tubulin (green) staining. (B') *skh* RNA only. Compare
502 with Figure 6B: embryonic *skh*-expressing cells are similarly distributed in *Tribolium* and *Drosophila*.
503 (B'') α-acetylated Tubulin only. White lines indicate the dorsal midline in all panels except (A')
504 where it marks the ventral midline.
505 As its *Tribolium* ortholog, *Dm-skh* is expressed in the brain but is absent from the VNC and
506 non-neural tissues (Figure 9A,A'). To compare the spatial arrangement of *Drosophila* and
507 *Tribolium* *skh* positive cells, we double-labeled *Drosophila* embryos with *skh* RNA and α-
508 acTubulin and examined the positions of cell bodies relative to the commissural system. At
509 the end of embryogenesis, the spatial arrangement appears highly similar in both organisms
510 (compare Figure 9B-B'' with Figure 6B'): small clusters of *skh* positive cells are located just

511 anteriorly to the commissural system while the vast majority of cells reside posteriorly to the
512 commissural system in the dorsomedial brain. In a few cases we are able to follow the
513 trajectories of *skh* positive cells and find that some of them enter the commissural system
514 (Figure 9B-B'').

515

516 **Discussion**

517 **G10011-GFP is a useful tool for the study of the dynamics of CX development.**

518 Although the anatomy of the adult CX is well described in many insect species, the CX is
519 vastly understudied from a comparative developmental perspective. Beside a large body of
520 work addressing CX development in *Drosophila*, only the grasshopper has been thoroughly
521 investigated as an alternative insect model (Boyan and Williams, 2011; Boyan and Reichert,
522 2011; Boyan et al., 2017). Developmental studies in non-*Drosophila* models are hampered by
523 a lack of anatomical information at the single cell level but also by a near complete lack of
524 molecular and genetic tools. We seek to establish *Tribolium* as an alternative insect model to
525 study CX development (He et al., 2019; Farnworth et al., 2020). The line G10011-GFP labels
526 several neuropils of the adult CX but does not label other major neuropils, e.g. the mushroom
527 bodies and the antennal lobes. Our results suggest that many GFP-positive CX neurons are
528 born early in development, making G10011-GFP a useful tool for the study of the dynamics
529 of CX formation: indeed, G10011-GFP expression confirms and extends earlier findings that
530 the *Tribolium* FB is largely assembled in the larva, while a distinct EB forms later in the pupa
531 (Panov, 1959; Koniszewski et al., 2016; Farnworth et al., 2020). In combination with
532 additional markers, G10011-GFP will be a valuable tool to identify and characterize a subset
533 of CX neurons at the single cell level, thereby contributing to a much needed *Tribolium* brain
534 atlas.

535 The *Drosophila* ortholog of *Tc-skh* shows an RNA pattern in the embryo that is highly
536 similar to that of *Tc-skh* suggesting that early expression is conserved. The generation of a
537 corresponding imaging line should provide a means for a comparative study of *Drosophila*
538 and *Tribolium* CX development at the anatomical and the molecular level.

539

540 **Tc-Skh is a putative terminal selector of neuronal subtype identity.**

541 Terminal selector expression in neurons is continuous from cell birth to cell death. Therefore,
542 such factors provide excellent markers for specific subsets of neurons for developmental,
543 molecular and evolutionary studies. With this work, we identify Skh as the first putative
544 terminal selector in neurons that contribute to the CX. Tc-Skh is the ortholog of *C. elegans*
545 Unc-42 whose role in the specification of neuronal subtypes is well described (Wightman et
546 al., 1997). *unc-42* (*uncoordinated -42*) was first discovered by Brenner in his classic screen
547 of mutants which show abnormal locomotion (Brenner, 1974). A later study showed that
548 Unc-42 is required for axon pathfinding in a subset of neurons which facilitate a specific
549 locomotor routine (Baran et al., 1999). Studies of *C. elegans* Unc-42 and other transcription
550 factors have led to the concept of terminal selectors as regulators of neuronal subtype identity
551 (Hobert, 2008). In contrast to developmental genes that are expressed early in the gene
552 regulatory cascade, terminal selectors are the final targets of the cascade. Maintenance of
553 terminal selector expression is accomplished by positive auto-regulatory feed-back loops;
554 accordingly, loss of terminal selector activity results in the loss of terminal selector gene
555 expression at later stages. The lifelong expression of terminal selectors facilitates the
556 regulation of early aspects of subtype differentiation, such as axon pathfinding, as well as late
557 aspects like the maintenance of structural and molecular features of the mature neuron.

558 Our study shows that *Tribolium skh* expression is characteristic for terminal selector genes.
559 *Tc-sk* is not expressed in progenitor cells but is restricted to postmitotic neurons. We
560 hypothesize that the adult expression of *Tc-sk* reflects the lifelong expression in many
561 embryonically-born neurons; however, due to the lack of genetic tools for permanent cell
562 marking, we can demonstrate this only for embryonically-born columnar neurons and
563 neurons of the PI which can be traced to adulthood. An early aspect of columnar neuron
564 identity is their axonal projection which leads to the establishment of the prFB. Knock-down
565 of Tc-Skh abolishes columnar (and other) neuron axon extensions indicating that a
566 requirement of Skh for the development of proper connectivity is conserved between
567 *Tribolium* and *C. elegans*. In late *Tribolium* knock-down embryos we observe a moderate
568 loss of G10011-GFP fluorescence suggesting that maintenance of *Tc-sk* expression by an
569 auto-regulatory feed-back loop may be another conserved feature.

570 The term terminal selector derives from studies in *C. elegans* where certain transcription
571 factors directly co-regulate differentiation genes which together bring about all the specific
572 features of a distinct neuronal subtype. The target genes of *Tc-sk* are currently unknown. In
573 early development they are likely to include differentiation genes required for axon
574 outgrowth/pathfinding like cell adhesion molecules and receptors for guidance cues. The
575 question of whether *Tc-sk* coordinately directs the expression of a battery of effector genes
576 at any stage during the life of a neuron remains to be investigated.

577 *Tc-sk* expression is not restricted to one particular neuronal subtype but found in many
578 neurons with different morphological features. Therefore, we expect additional transcription
579 factors to act in parallel to or in combination with Tc-Skh to specify distinct identities.
580 Combinatorial action in the regulation of effector genes is a common theme in *Drosophila*
581 neurons (Allan and Thor, 2015). Recently identified transcription factors that are expressed in

582 embryonic *Tribolium* CX neurons, Tc-FoxQ2 and Tc-RX, are good candidates for factors
583 acting in combination with Tc-Skh (He et al., 2019; Farnworth et al., 2020).

584 The activation of terminal selector gene expression is the final step of hierarchical gene
585 regulatory cascades which provide early spatial and temporal information for the
586 specification of subtypes. Our observation that most *Tc-skh* expressing cells arise in the
587 posterior dorsomedial brain suggests that relevant spatial cues mark this region. A good
588 candidate is SIX3/OPTIX: SIX3 is expressed in the neuroectoderm from which a large part of
589 the dorsomedial brain derives. Moreover, knock-down of *six3* results in severe defects in the
590 embryonic CX (Posnien et al., 2011). By contrast, a role for a temporal cascade in neuronal
591 subtype specification in *Tribolium* has not been shown as yet.

592 *C. elegans unc-42* expression is not restricted to interneurons, called command neurons, but
593 also occurs in sensory neurons which provide incoming information and motorneurons which
594 facilitate the output. Together a subset of UNC-42-positive neurons forms a distinct circuit
595 which facilitates a specific locomotor routine. At present, we do not know whether *Tc-skh* is
596 expressed in sensory neurons which could provide incoming information to the CX. G10011-
597 GFP fluorescence is absent from the VNC suggesting that *skh* is not expressed in motor
598 neurons. A study of Tc-Skh expression in sensory and motor neurons will have to await the
599 generation of a specific antibody.

600 In addition to *skh*, a number of other transcription factors have been shown to act as terminal
601 selectors in *C. elegans* neuronal subtype specification (Hobert, 2016). Determining their
602 expression patterns and their target genes in *Tribolium* and *Drosophila* CX neurons will
603 contribute to a better understanding of CX formation and may uncover a molecular basis for
604 anatomical differences of the CX in these species.

605

606 **Material and Methods**

607 **Key resources table**

608

Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
genetic reagent (<i>Tribolium</i> <i>castaneum</i>)	San Bernadino		SB	Wild type
genetic reagent (<i>Tribolium</i> <i>castaneum</i>)	5'-rx-RFP	He et al., 2019		RFP-expression under control of <i>rx</i> - upstream region
genetic reagent (<i>Tribolium</i> <i>castaneum</i>)	Ten-a-Δ-RFP	He et al., 2019 This study		RFP-expression in MB under the control of <i>Ten-a</i>
genetic reagent (<i>Tribolium</i> <i>castaneum</i>)	G10011-GFP	This study		GFP-expression under the control of <i>skh</i>
genetic reagent (<i>Drosophila</i> <i>melanogaster</i>)	Oregon R	Bloomington Drosophila Stock Center	RRID:BDSC.5	Wild type
Antibody	anti-GFP (chicken, polyclonal)	Abcam	RRID:AB_300798	IF (1:1000)
Antibody	anti-PH3 (rabbit, polyclonal)	Upstate	RRID:AB_310177	IF (1:100)
Antibody	anti-Repo (rabbit, polyclonal)	von Hilchen et al., 2010		IF (1:1000)
Antibody	anti-Rx (guinea pig, polyclonal)	Farnworth et al., 2020		IF (1:700)
Antibody	anti-Synapsin (mouse, monoclonal)	DSHB	RRID:AB_528479	IF (1:50)
Antibody	anti-acetylated Tubulin (mouse, monoclonal)	Sigma	RRID:AB_609894	IF (1:50)
Antibody, secondary	Goat anti- chicken AlexaFluor 488	ThermoFisher	RRID:AB_2534096	IF (1:1000)
Antibody, secondary	Goat anti-rabbit AlexaFluor 555	ThermoFisher	RRID:AB_2535851	IF (1:1000)
Antibody, secondary	Goat anti-mouse AlexaFluor 555	ThermoFisher	RRID:AB_2535846	IF (1:1000)
Antibody, secondary	Goat anti-guinea pig AlexaFluor 555	ThermoFisher	RRID:AB_2534117	IF (1:1000)

609

610

611 **Genetic reagents used in each experiment**

***Tribolium castaneum* genotypes**

G10011-GFP;Ten-aΔ-RFP	Figure 1A-D, Figure 2L,M
G10011-GFP,5'-rxRFP	Figure 2I-J''
<i>San Bernadino</i>	Figure S2
G10011-GFP	all other figures except Figure 9

***Drosophila melanogaster* line**

<i>Oregon R</i>	Figure 9
-----------------	----------

612 **Sequence-based reagents**

Name	Sequence
TC007335 RNA in situ probe	Forward primer: CTGTGAAGTATTGGACAAAGTACAAG Reverse primer: GGATGATGCGTTGTGTTCATCCTTAGG
TC007335 dsRNA fragment1	Forward primer: GCTGAAACCGGAGCCAACGACGACGGGCAG Reverse primer: CTTGCTTCGGTACTTGGCTCTTCGC
TC007335 dsRNA fragment2	Forward primer: CTGCAACGGGCCATGATGCGT Reverse primer: GGATGATGCGTTGTGTTCATCCTTAGG
CG32532 RNA in situ probe	Forward primer: CACCAACAGATGCTCACACGCAGG Reverse primer: GGGAGCCGCTGCAGCACTATGGC

613

614 **Animal husbandry**

615 *Tribolium castaneum* (NCBI:txid7070) beetles were maintained on standard wholemeal
616 wheat flour (type 1050) at 28°C. To obtain embryos, the beetles were transferred to fine
617 wheat flour (type 405) and kept at 32°C. Egg lay was allowed for 24hrs. Subsequently, the
618 embryos were separated from the beetles, aged for an additional 24-48hrs at 32°C and then
619 collected for fixation. The *San Bernadino* strain was used as wild type.

620 *Drosophila melanogaster* *Oregon R* flies were maintained at 18°C on standard cornmeal agar
621 supplemented with dry yeast flakes. To obtain embryos, flies were placed in collection cages
622 with apple juice-agar plates smeared with fresh yeast paste and placed at 25°C. Egg lay was
623 allowed for 4hrs. Then, the apple juice plates were removed from the cages, aged for an
624 additional 16hrs at 25°C and then collected for fixation.

625 **Fixation**

626 *Tribolium* embryos were collected, fixed and stored as described (Buescher et al., 2020).

627 *Tribolium* larval, pupal and adult brains were dissected in ice-cold 1x phosphate-buffered

628 saline (PBS) for up to 30 min. Then methanol-free formaldehyde was added to a final

629 concentration of 4% (v/v). Fixation was performed for 30 (larval-), 45 (pupal-) or 60 (adult-)

630 brains) min on ice. Subsequently, the brains were washed 3x for 20 min each with ice-cold 1x

631 PBST (PBS including 0.1% Triton-X100). In the second wash, DAPI was added to a final

632 concentration of 1ng/μl. Brains not dedicated to immunohistochemistry were mounted in

633 VectaShield H-100 and imaged immediately. Brains dedicated to immunohistochemistry

634 were placed into blocking solution containing 3% (w/v) bovine serum albumin (BSA) and

635 0.05% sodium azide. Adult brains dedicated to RNA in situ hybridization were dehydrated by

636 putting them through an ethanol series: 25% ETOH:75% PBS, 50% ETOH:50% PBS, 75%

637 ETOH:25% PBS for 5 min incubation each. Finally, the brains were placed in 100% ETOH

638 and kept at -20°C for several days prior to in situ hybridization.

639 **Immunohistochemistry**

640 *Tribolium* and *Drosophila* embryos: Methanol was discarded from the fixed embryo

641 collections. Subsequently, the embryos were washed 3x with 1x PBST for 20 min each at RT.

642 Embryos were blocked for 1-2hrs in 3% BSA (w/v) (containing 0.05% sodium azide) at RT.

643 Primary antibodies were added at the indicated concentrations and incubation was performed

644 overnight on a rotating wheel at 4°C. Then the primary antibodies were removed and the

645 embryos were washed 3x with 1x PBST for 30 min each at RT. Secondary antibodies were

646 added at a dilution of 1:1000 and incubation was performed on a rotating wheel for 90 min at

647 RT. Subsequently, the embryos were washed 3x for 20 min each with 1x PBST (PBS

648 containing 0.1% Triton-X100). In the first wash, DAPI was added to a final concentration of

649 1ng/μl. Finally as much liquid as possible was removed and VectaShield was added.

650 *Tribolium* germ bands were freed of yolk with the help of a fine brush, mounted with the
651 dorsal side up and imaged. *Drosophila* embryos were pipetted onto microscope slides and
652 imaged as whole-mounts.

653 Immunohistochemistry with adult brains was performed essentially as with embryos except
654 for the following modifications: the concentration of Triton X-100 was raised to 0.5%, the
655 incubation period with the primary antibody was extended to about 40hrs and incubation with
656 the secondary antibody was performed overnight at 4°C.

657 See Table 1 for a list of all primary and secondary antibodies used in this study.

658 FISH

659 Single- and double-fluorescent RNA *in situ* hybridization and RNA *in situ* hybridization
660 followed by antibody staining of *Tribolium/Drosophila* embryos was performed as described
661 (Buescher et al., 2020). To generate a *skh* specific RNA *in situ* probe, a DNA fragment was
662 generated by PCR using wildtype embryonic cDNA (*Tribolium/Drosophila*) as templates (for
663 details see list of reagents). The PCR products were cleaned up by gel-electrophoresis,
664 extracted and used as template for an additional round of amplification using the same gene-
665 specific primer pairs but with the modification of an added T7 RNA transcriptase binding site
666 at the 5'end of the reverse primer. Dioxigenin- or fluorescein- labeled RNA probes were
667 produced using the Roche RNA labelling kit. For RNA *in situ* hybridizations, the probes were
668 used at a concentration of 4ng/µl (total hybridization volume: 50-100 µl).

669 RNA *in situ* hybridization in *Tribolium* adult brains was performed essentially as in embryos,
670 except for the following modifications: the concentration of Triton X-100 was raised to 0.5%,
671 the RNA hybridization period was prolonged to 48hrs and incubation with the respective
672 antibodies was performed for 48hrs at 4°C.

673 **Image acquisition**

674 Confocal serial scanning images were acquired at 1.5-2 μ m intervals using a LSM 510
675 microscope (Carl Zeiss) using either a 20x 0.5 Plan-Neofluar or a 40x 1.4 Plan-Neofluar
676 objective (Carl Zeiss). Stacks were processed using the Zeiss LSM Browser software and
677 whole or parts of stacks were visualized as maximum intensity projections. Brightness,
678 contrast, size and resolution of the images were processed in Adobe Photoshop CS. The video
679 image of the G10011 adult brain was generated with the ImageJ software (Figure S1).

680 **Nomenclature used in anatomical analysis**

681 For *Tribolium* and *Drosophila* embryos the axes used for anatomical analysis in this study are
682 the body axes (in Figure 3A and K “b-A” indicates anterior with respect to the body axis).
683 For *Tribolium* postembryonic stages (larva, pupa, adult) the axes used for anatomical studies
684 are neuraxes. According to the neuraxes, the protocerebral bridge and the fan-shaped body
685 are located n-dorsal of the ellipsoid body. For a detailed description of the body and the
686 neuraxes in *Tribolium* and *Drosophila* refer to Farnworth et al., 2020.

687 **Insertion site mapping of the enhancer trap line G10011**

688 The genomic location of the plasmid insertion was determined by inverse PCR (Thibault et
689 al., 2004). Genomic DNA was extracted from 3 beetles following a standard protocol. The
690 genomic DNA was digested with the restriction enzyme Sau3A, highly diluted and ligated
691 under conditions which facilitate an intramolecular circularization. Subsequently, the ligation
692 products were amplified by PCR using plasmid-specific primers. The PCR product was
693 cleaned up by gel-electrophoresis, extracted and sequenced. Blasting of the sequence against
694 the *Tribolium* genome (genome release 3.0) indicated the insertion of the plasmid on
695 chromosome 4 at the genomic position 6024777, which is 18.5 kb upstream of the predicted

696 gene *TC007335* (transcription start site 6006266). Using double-fluorescent in situ
697 hybridization, we confirmed that the GFP-expression of G10011 faithfully reflects the RNA
698 expression of *TC007335* in the embryo and the adult brain. Sequence analysis of the
699 predicted coding region indicates that *TC007335* encodes a paired-like homeodomain
700 transcription factor and is the ortholog of *C. elegans unc-42* and *Drosophila CG32532*. We
701 name *TC007335* and *CG32532* *Tc-* and *Dm-shaking hands (skh)*, respectively.

702 ***skh* knock-down**

703 parental RNAi in *Tribolium*: 300-400 female G10011 pupae (at 70-80% pupal development)
704 were injected with dsRNA (2µg /µl) or injection buffer only (control) using a FemtoJet
705 Express (Eppendorf). Injected pupae were placed on fine wheat flour (type 405) for 24hrs at
706 28°C. Eclosed beetles were added to approx. 200 male G10011 beetles and maintained for
707 another 24hrs at 28°C. Then all beetles were collected, placed on fresh fine wheat flour and
708 shifted to 32°C. Eggs were collected for 24hrs, aged for an additional 48hrs and then fixated
709 for immunostaining. Eggs were collected for 8 consecutive days. Pupal injections were
710 performed twice with fragment 1 and once with fragment 2.

711 **Generation of gene-specific dsRNA fragments**

712 Embryonic cDNA (0-72hrs), prepared from the *San Bernardino* wildtype strain, was used as
713 template for the generation of gene-specific fragments within the predicted *TC007335*
714 transcribed region. Two primer pairs were used to generate two non-overlapping fragments
715 (fragment 1: 287bp, fragment 2: 261bp) by PCR (for details: see list of reagents). The
716 products were cleaned up by gel-electrophoresis, extracted and used as templates for an
717 additional round of amplification using the same gene-specific primer pairs but with the
718 modification of added T7 RNA transcriptase binding sites at both 5'ends. The PCR products
719 were used as templates for large scale RNA synthesis using the MEGAscript T7

720 Transcription Kit (Invitrogen). The dsRNA was precipitated with LiCl, washed with 70%
721 ethanol, dried and dissolved in injection buffer (1.4mM NaCl, 0.07mM Na₂HPO₄ 0.03mM
722 KH₂PO₄, 4mM KCl, pH6.8) to a concentration of 2µg/µl.

723 **Statistics**

724 Data represent mean +/- standard deviation. Sample size in each experiment =4. In Figure 8,
725 *skhRNAi*, the sample size n= 35-85. Figure 8F: statistical significance was determined with
726 one-way-Anova. **=P<0.05.

727 **Acknowledgements.**

728 We thank Elke Kuester for excellent technical assistance, Dr. Gerd Vorbrueggen for his
729 continued interest in the project and critical reading of the manuscript and Dr. Benjamin
730 Altenhein for providing the α-Repo antibody. The monoclonal antibody α-SYNORF1 was
731 obtained from the Developmental Studies Hybridoma Bank, created by the NICHD of the
732 NIH and maintained at The University of Iowa, Department of Biology, Iowa City, IA 52242.

733 We acknowledge support by the Open Access Publication Funds of the University of
734 Goettingen.

735 **Contributions.** Concept: MB. Investigation: MB, NGP. Methodology: MB. Formal analysis:
736 MB, NGP. Validation: MB, NGP. Resources: MB, GB. Writing, original draft: MB. Writing,
737 review and editing: MB, NGP, GB. Supervision: MB, GB. Funding: GB.

738 The authors declare that no competing interests exist.

739

740

741 **References**

742

743 Allan DW, Thor S. 2015. Transcriptional selectors, masters, and combinatorial codes: regulatory
744 principles of neural subtype specification. *Wiley Interdiscip Rev Dev Biol* 4:505–528.
745 doi:10.1002/wdev.191

746 Andrade IV, Riebli N, Nguyen B-CM, Omoto JJ, Cardona A, Hartenstein V. 2019. Developmentally
747 Arrested Precursors of Pontine Neurons Establish an Embryonic Blueprint of the Drosophila
748 Central Complex. *Curr Biol* **29**:412-425.e3. doi:10.1016/j.cub.2018.12.012

749 Baran R, Aronoff R, Garriga G. 1999. The *C. elegans* homeodomain gene unc-42 regulates
750 chemosensory and glutamate receptor expression. *Development* **126**:2241–2251.

751 Berghammer AJ, Klingler M, Wimmer EA. 1999. A universal marker for transgenic insects. *Nature*
752 **402**:370–371. doi:10.1038/46463

753 Biffar L, Stollewerk A. 2014. Conservation and evolutionary modifications of neuroblast expression
754 patterns in insects. *Dev Biol* **388**:103–116. doi:10.1016/j.ydbio.2014.01.028

755 Boyan G, Liu Y, Khalsa SK, Hartenstein V. 2017. A conserved plan for wiring up the fan-shaped body
756 in the grasshopper and Drosophila. *Dev Genes Evol* **227**:253–269. doi:10.1007/s00427-017-
757 0587-2

758 Boyan G, Williams L. 2011. Embryonic development of the insect central complex: insights from
759 lineages in the grasshopper and Drosophila. *Arthropod Struct Dev* **40**:334–348.
760 doi:10.1016/j.asd.2011.02.005

761 Boyan GS, Reichert H. 2011. Mechanisms for complexity in the brain: generating the insect central
762 complex. *Trends Neurosci* **34**:247–257. doi:10.1016/j.tins.2011.02.002

763 Brenner S. 1974. The genetics of *Caenorhabditis elegans*. *Genetics* **77**:71–94.

764 Bridi JC, Ludlow ZN, Hirth F. 2019. Lineage-specific determination of ring neuron circuitry in the
765 central complex of Drosophila. *Biol Open* **8**. doi:10.1242/bio.045062

766 Bucher G, Scholten J, Klingler M. 2002. Parental RNAi in *Tribolium* (Coleoptera). *Curr Biol* **12**:R85-86.
767 doi:10.1016/s0960-9822(02)00666-8

768 Buescher M, Oberhofer G, Garcia-Perez NC, Bucher G. 2020. A Protocol for Double Fluorescent In
769 Situ Hybridization and Immunohistochemistry for the Study of Embryonic Brain
770 Development in *Tribolium castaneum*. *Methods Mol Biol* **2047**:219–232. doi:10.1007/978-1-
771 4939-9732-9_12

772 Buescher M, Yeo SL, Udolph G, Zavortink M, Yang X, Tear G, Chia W. 1998. Binary sibling neuronal
773 cell fate decisions in the Drosophila embryonic central nervous system are nonstochastic and
774 require inscuteable-mediated asymmetry of ganglion mother cells. *Genes & Development*
775 **12**:1858–1870. doi:10.1101/gad.12.12.1858

776 Crews ST. 2019. Drosophila Embryonic CNS Development: Neurogenesis, Gliogenesis, Cell Fate, and
777 Differentiation. *Genetics* **213**:1111–1144. doi:10.1534/genetics.119.300974

778 Doe CQ. 2017. Temporal Patterning in the Drosophila CNS. *Annu Rev Cell Dev Biol* **33**:219–240.
779 doi:10.1146/annurev-cellbio-111315-125210

780 Farnworth MS, Eckermann KN, Bucher G. 2019. Sequence heterochrony led to a gain of functionality
781 in an immature stage of the central complex: a fly-beetle insight. 2020 *Plos Biol.*
782 **18**(10):e3000881. doi:10.1371/journal.pbio.3000881.

783 Franconville R, Beron C, Jayaraman V. 2018. Building a functional connectome of the Drosophila
784 central complex. *eLife* **7**. doi:10.7554/eLife.37017

785 Hanesch U, Fischbach K-F, Heisenberg M. 1989. Neuronal architecture of the central complex in
786 *Drosophila melanogaster*. *Cell and Tissue Research* **257**:343–366. doi:10.1007/BF00261838

787 Hartenstein V, Omoto JJ, Lovick JK. 2020. The role of cell lineage in the development of neuronal
788 circuitry and function. *Dev Biol.* doi:10.1016/j.ydbio.2020.01.012

789 He B, Buescher M, Farnworth MS, Strobl F, Stelzer EH, Koniszewski ND, Muehlen D, Bucher G. 2019.
790 An ancestral apical brain region contributes to the central complex under the control of
791 *foxQ2* in the beetle *Tribolium*. *eLife* **8**. doi:10.7554/eLife.49065

792 Heinze S. 2017. Unraveling the neural basis of insect navigation. *Curr Opin Insect Sci* **24**:58–67.
793 doi:10.1016/j.cois.2017.09.001

794 Herndon N, Shelton J, Gerischer L, Ioannidis P, Ninova M, Dönitz J, Waterhouse RM, Liang C, Damm
795 C, Siemanowski J, Kitzmann P, Ulrich J, Dippel S, Oberhofer G, Hu Y, Schwirz J, Schacht M,
796 Lehmann S, Montino A, Posnien N, Gurska D, Horn T, Seibert J, Vargas Jentzsch IM, Panfilio

797 KA, Li J, Wimmer EA, Stappert D, Roth S, Schröder R, Park Y, Schoppmeier M, Chung H-R,
798 Klingler M, Kittelmann S, Friedrich M, Chen R, Altincicek B, Vilcinskas A, Zdobnov E, Griffiths-
799 Jones S, Ronshaugen M, Stanke M, Brown SJ, Bucher G. 2020. Enhanced genome assembly
800 and a new official gene set for *Tribolium castaneum*. *BMC Genomics* **21**.
801 doi:10.1186/s12864-019-6394-6

802 Hobert O. 2016. A map of terminal regulators of neuronal identity in *Caenorhabditis elegans*. *Wiley*
803 *Interdiscip Rev Dev Biol* **5**:474–498. doi:10.1002/wdev.233

804 Hobert O. 2011. Regulation of Terminal Differentiation Programs in the Nervous System. *Annual*
805 *Review of Cell and Developmental Biology* **27**:681–696. doi:10.1146/annurev-cellbio-092910-
806 154226

807 Hobert O. 2008. Regulatory logic of neuronal diversity: Terminal selector genes and selector motifs.
808 *Proceedings of the National Academy of Sciences* **105**:20067–20071.
809 doi:10.1073/pnas.0806070105

810 Hobert O, Kratsios P. 2019. Neuronal identity control by terminal selectors in worms, flies, and
811 chordates. *Curr Opin Neurobiol* **56**:97–105. doi:10.1016/j.conb.2018.12.006

812 Kohwi M, Doe CQ. 2013. Temporal fate specification and neural progenitor competence during
813 development. *Nat Rev Neurosci* **14**:823–838. doi:10.1038/nrn3618

814 Koniszewski NDB, Kollmann M, Bigham M, Farnsworth M, He B, Büscher M, Hütteroth W, Binzer M,
815 Schachtner J, Bucher G. 2016. The insect central complex as model for heterochronic brain
816 development-background, concepts, and tools. *Dev Genes Evol* **226**:209–219.
817 doi:10.1007/s00427-016-0542-7

818 Lin S, Lee T. 2012. Generating neuronal diversity in the *Drosophila* central nervous system: Neuronal
819 Diversity in *Drosophila*. *Developmental Dynamics* **241**:57–68. doi:10.1002/dvdy.22739

820 Loesel R, Nässel DR, Strausfeld NJ. 2002. Common design in a unique midline neuropil in the brains
821 of arthropods. *Arthropod Struct Dev* **31**:77–91. doi:10.1016/S1467-8039(02)00017-8

822 Lovick JK, Omoto JJ, Ngo KT, Hartenstein V. 2017. Development of the anterior visual input pathway
823 to the *Drosophila* central complex. *J Comp Neurol* **525**:3458–3475. doi:10.1002/cne.24277

824 Melcher C, Pankratz MJ. 2005. Candidate gustatory interneurons modulating feeding behavior in the
825 *Drosophila* brain. *PLoS Biol* **3**:e305. doi:10.1371/journal.pbio.0030305

826 Panov AA. 1959. Structure of the insect brain at successive stages of postembryonic development II.
827 the central body. *Entomological Review*. p. 276/283.

828 Pfeiffer K, Homberg U. 2014. Organization and functional roles of the central complex in the insect
829 brain. *Annu Rev Entomol* **59**:165–184. doi:10.1146/annurev-ento-011613-162031

830 Posnien N, Koniszewski NDB, Hein HJ, Bucher G. 2011. Candidate gene screen in the red flour beetle
831 *Tribolium* reveals *six3* as ancient regulator of anterior median head and central complex
832 development. *PLoS Genet* **7**:e1002416. doi:10.1371/journal.pgen.1002416

833 Rossi AM, Fernandes VM, Desplan C. 2017. Timing temporal transitions during brain development.
834 *Curr Opin Neurobiol* **42**:84–92. doi:10.1016/j.conb.2016.11.010

835 Schmitt-Engel C, Schultheis D, Schwirz J, Ströhlein N, Troelenberg N, Majumdar U, Dao VA,
836 Grossmann D, Richter T, Tech M, Dönitz J, Gerischer L, Theis M, Schild I, Trauner J,
837 Koniszewski NDB, Küster E, Kittelmann S, Hu Y, Lehmann S, Siemanowski J, Ulrich J, Panfilio
838 KA, Schröder R, Morgenstern B, Stanke M, Buchholz F, Frasch M, Roth S, Wimmer EA,
839 Schoppmeier M, Klingler M, Bucher G. 2015. The iBeetle large-scale RNAi screen reveals
840 gene functions for insect development and physiology. *Nat Commun* **6**:7822.
841 doi:10.1038/ncomms8822

842 Skeath JB, Thor S. 2003. Genetic control of *Drosophila* nerve cord development. *Current Opinion in*
843 *Neurobiology* **13**:8–15. doi:10.1016/S0959-4388(03)00007-2

844 Strausfeld NJ. 1999. A brain region in insects that supervises walking. *Prog Brain Res* **123**:273–284.
845 doi:10.1016/s0079-6123(08)62863-0

846 Strauss R, Heisenberg M. 1993. A higher control center of locomotor behavior in the *Drosophila*
847 brain. *J Neurosci* **13**:1852–1861.

848 Sullivan LF, Warren TL, Doe CQ. 2019. Temporal identity establishes columnar neuron morphology,
849 connectivity, and function in a *Drosophila* navigation circuit. *Elife* **8**. doi:10.7554/eLife.43482

850 Thibault ST, Singer MA, Miyazaki WY, Milash B, Dompe NA, Singh CM, Buchholz R, Demsky M,
851 Fawcett R, Francis-Lang HL, Ryner L, Cheung LM, Chong A, Erickson C, Fisher WW, Greer K,
852 Hartouni SR, Howie E, Jakkula L, Joo D, Killpack K, Laufer A, Mazzotta J, Smith RD, Stevens
853 LM, Stuber C, Tan LR, Ventura R, Woo A, Zakrajsek I, Zhao L, Chen F, Swimmer C, Kopczynski
854 C, Duyk G, Winberg ML, Margolis J. 2004. A complementary transposon tool kit for
855 *Drosophila melanogaster* using P and piggyBac. *Nat Genet* **36**:283–287. doi:10.1038/ng1314

856 Trauner J, Schinko J, Lorenzen MD, Shippy TD, Wimmer EA, Beeman RW, Klingler M, Bucher G,
857 Brown SJ. 2009. Large-scale insertional mutagenesis of a coleopteran stored grain pest, the
858 red flour beetle *Tribolium castaneum*, identifies embryonic lethal mutations and enhancer
859 traps. *BMC Biol* **7**:73. doi:10.1186/1741-7007-7-73

860 Truman JW, Moats W, Altman J, Marin EC, Williams DW. 2010. Role of Notch signaling in establishing
861 the hemilineages of secondary neurons in *Drosophila melanogaster*. *Development* **137**:53–
862 61. doi:10.1242/dev.041749

863 Urbach R, Technau GM. 2003. Molecular markers for identified neuroblasts in the developing brain
864 of *Drosophila*. *Development* **130**:3621–3637. doi:10.1242/dev.00533

865 Wheeler SR. 2003. The expression and function of the achaete-scute genes in *Tribolium castaneum*
866 reveals conservation and variation in neural pattern formation and cell fate specification.
867 *Development* **130**:4373–4381. doi:10.1242/dev.00646

868 Wightman B, Baran R, Garriga G. 1997. Genes that guide growth cones along the *C. elegans* ventral
869 nerve cord. *Development* **124**:2571–2580.

870 Wolff T, Iyer NA, Rubin GM. 2015. Neuroarchitecture and neuroanatomy of the *Drosophila* central
871 complex: A GAL4-based dissection of protocerebral bridge neurons and circuits. *J Comp
872 Neurol* **523**:997–1037. doi:10.1002/cne.23705

873 Yang JS, Awasaki T, Yu HH, He Y, Peng-Ding, Kao JC, Lee T. 2013. Diverse neuronal lineages make
874 stereotyped contributions to the *Drosophila* locomotor control center, the central complex. *J
875 Comp Neurol* **521**:2645–2662 doi:10.1002/cne.23339

876 Young JM, Armstrong JD. 2010. Structure of the adult central complex in *Drosophila*: organization of
877 distinct neuronal subsets. *J Comp Neurol* **518**:1500–1524. doi:10.1002/cne.22284

878

879

880