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Abstract 
Motivation: Whole-genome DNA sequencing (WGS) enables the discovery of non-coding variants, but tools are              
lacking to prioritize the subset that functionally impacts human phenotypes. DNA sequence variants that disrupt or                
create transcription factor binding sites (TFBS) can modulate gene expression. find-tfbs efficiently scans phased              
WGS in large cohorts to identify and count TFBSs in regulatory sequences. This information can then be used in                   
association testing to find putatively functional non-coding variants associated with complex human diseases or traits. 
 
Results: We applied find-tfbs to discover functional non-coding variants associated with hematological traits in the               
NHLBI Trans-Omics for Precision Medicine (TOPMed) WGS dataset (N ​max​=44,709). We identified >2000 associations             
at ​P​<1x10 ​-9​, implicating specific blood cell-types, transcription factors and causal genes. The vast majority of these                
associations are captured by variants identified in large genome-wide association studies (GWAS) for blood-cell              
traits. find-tfbs is computationally efficient and robust, allowing for the rapid identification of non-coding variants               
associated with multiple human phenotypes in very large sample size. 
 
Availability:​ ​https://github.com/Helkafen/find-tfbs ​ and ​https://github.com/Helkafen/find-tfbs-demo  
 
Contacts:​ ​sebastian.meric.de.bellefon@umontreal.ca ​ and ​guillaume.lettre@umontreal.ca  
 
Supplementary information:​ ​Supplementary data are available. 
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1 Introduction 

Genome-wide association studies (GWAS) have identified thousands of common genetic          
variants (hereby defined as variants with minor allele frequency (MAF) ≥5%) associated with             
complex human diseases and other quantitative traits. Functional annotation of these variants            
with maps of open chromatin regions and histone tail modifications has revealed their             
enrichment within non-coding regulatory sequences (Maurano et al., Vierstra et al.). This            
suggests that a large fraction of human phenotypic variation is modulated by common variants              
in sequences that control gene expression. Recently, this hypothesis has been confirmed            
experimentally in a few robust examples (Musunuru et al., Bauer et al., Lessard et al.,               
Claussnitzer et al.).  
 
In contrast to common variants, most rare genetic variants implicated in human phenotypes             
have been found in protein-coding exons, mostly because sequencing whole-genomes          
remained prohibitively expensive until recently. Thus, we still do not know to what extent rare               
genetic variants in the non-coding human genome can influence inter-individual phenotypic           
variation. Because rare variants are often missed by the GWAS framework, their identification             
could yield new loci and genes, or help focus on strong candidate genes at GWAS loci. 
 
Limited statistical power is an important issue for rare variants association testing because of              
the small number of carriers (by definition) and their very large number in the human genome                
(Zuk et al., 2014). To lower the multiple hypothesis burden and therefore increase the chance of                
finding significant associations, analyses of whole-exome sequencing (WES) datasets often          
collate rare coding variants by genes. For rare non-coding variants found by WGS, collapsing              
methods based on sliding windows or scanning algorithms have been proposed (e.g. SCANG)             
(Li et al., 2019; Morrison et al. 2013 and 2017; Natarajan et al., 2018). However, these methods                 
do not consider our current understanding of gene expression regulation, and in particular the              
important fact that gene expression is controlled by transcription factors (TF) that bind regulatory              
DNA sequences.  
 
Several algorithms have been developed to predict how DNA sequence variants identified by             
GWAS can impact the binding of TFs to their corresponding motifs. Tools like atSNP (Zuo et al.,                 
2015 ​; ​Shin et al., 2019), SNP2TFBS (Kumar et al., 2017) or RSAT (Santana-Garcia et al., 2019)                
represent powerful computational approaches to calculate TF affinity scores for both alleles at             
potential regulatory single nucleotide polymorphisms (SNPs). However, these methods were not           
designed to process WGS data from >100,000s individuals while considering haplotype           
configurations in order to prioritize regulatory variants for association testing. To address this             
need, we developed a new tool, find-tfbs, that can efficiently scan a large number of phased                
WGS and identify genetic variants that create or disrupt transcription factor-binding sites (TFBS)             
within pre-specified regulatory elements. find-tfbs uses position weight matrices (PWM) to           
identify and count the number of TFBS occurrences found in each regulatory element of each               
individual. This information can then be used in standard association testing pipelines. To             
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demonstrate its utility and robustness, we used find-tfbs to analyze associations between TFBS             
and 15 blood-cell traits in WGS data from 44,709 participants sequenced by the NHLBI              
TOPMed Project. 

2 Methods 

2.1 Scanning phased WGS data to find TFBS 
find-tfbs (​Figure 1 ​) takes three files as inputs: (1) phased WGS data in the BCF format, (2)                 
genomic coordinates of regions of interest, and (3) PWM of prioritized transcription factors. The              
genomic coordinates file can contain regions identified by open chromatin experiments (e.g.            
ATAC-seq, DNase1 hypersensitivity), histone tail marks profiling/segmentation or genomic         
annotation (e.g. gene promoters). It can come from a single cell type or complex tissue. It is also                  
possible to submit multiple coordinates files at once. Since some of these regions overlap,              
processing time is reduced by merging the overlapping regions, which allows find-tfbs to extract              
each genetic variant and scan the merged regions only once. At the end of the analyses,                
find-tfbs dispatches the TFBS it has found and counted in each region to the corresponding cell                
type/tissue and TF. 
 
Each merged locus is scanned independently. First, find-tfbs creates a hash table of differences              
from the reference genome (single nucleotide variants (SNVs) and small insertions-deletions           
(indels)) in the locus. find-tfbs indexes these differences by haplotype identifiers, where a             
haplotype identifier represents one strand of one participant. The genetic variants are read from              
the indexed BCF file. Then, find-tfbs reverses the keys and values of this hash table and uses                 
the reference genome to build the sequence of each unique haplotype: each unique haplotype              
sequence is associated with a list of haplotype identifiers. This representation is memory             
efficient: for instance, the haplotype sequence CGGTAACGTGA would exist as a single copy in              
memory, and it would point to the identifiers (Person5934, Allele2) and (Person4983, Allele1).             
Using the TF PWMs, find-tfbs scans the unique haplotype sequences for TF motifs on both the                
forward and reverse strand (Lis et al., 2016; Dai et al., 2007), and the TFBS are associated with                  
a list of haplotype identifiers. Since most variants are rare, the number of distinct haplotypes for                
a given locus is usually much smaller than 2N (N=cohort size). Scanning unique haplotypes              
reduces the amount of redundant computing. 
 
Finally, find-tfbs counts the number of TFBS in each cell-/tissue-specific locus for all TFs.              
find-tfbs uses PWMs and a cutoff scores that are computationally estimated from natural             
dinucleotide frequencies. In order to minimize the number of false positives, we recommend             
using the cutoff score corresponding to the most stringent HOCOMOCO standard P-value            
(0.0001)​. The result is serialized using the VCF format, and one line is created for each cell                 
type/tissue and transcription factor. find-tfbs discards the lines where the TFBS count frequency             
(MTCF, defined below) is lower than the threshold (default threshold=0).  
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2.2. Recoding TFBS counts for association testing 

First, find-tfbs counts in each participant the number of TFBS found on both alleles for a given                 
region and adds them together. If every individual in the cohort has the same number of TFBS,                 
find-tfbs ignores this region since it is not polymorphic in terms of TFBS count. find-tfbs encodes                
polymorphic region using the dosage (DS) and genotype (GT) fields of the VCF file format               
(Danecek et al., 2011). While some association testing pipelines (e.g EPACTS) accept both             
fields, others only accept the GT field. The DS field accepts any number between 0.0 and 2.0.                 
For our purposes, 0.0 represents the lowest number of TFBS found in a region in the cohort and                  
2.0 represents the highest number. We interpolate the intermediate TFBS counts and lose no              
accuracy. The possible values of the GT field are '0|0', '0|1' and '1|1'. The lowest and highest                 
numbers of TFBS are encoded as '0|0' and '1|1'. The average of the lowest and highest values                 
is encoded as '0|1'. Every other value is encoded as the closest encoded neighbour, which               
makes the GT field less accurate than the DS field for some regions. 

2.3 Minor TFBS count frequency (MTCF) 
For each scanned region and TF, find-tfbs calculates a frequency of TFBS count variations. This               
allows for simple filtering of regions with too few alternate TFBS counts for association testing.               
For example, in a cohort of N=100 persons, if 95 individuals have two TFBS in a given region,                  
three participants have one TFBS and two participants have none, then MTCF=(2+3)/N=5%.            
find-tfbs sums all the groups but the most frequent one. If several groups share the highest                
frequency, only one of them is taken out of the sum. 

2.4 Parallelism and performance 
Since the merged loci do not overlap (by definition), they can be analyzed separately by any                
number of worker threads. First, the coordinates of all the loci are sent to a synchronized                
channel. Each worker thread works in a loop: at the beginning of an iteration, the worker reads                 
the coordinates of one locus, then analyzes it, generates a VCF-formatted result and sends the               
result to another synchronized channel. The writer thread receives the VCF-formatted strings            
and writes them sequentially to the result VCF file. Upon completion, the output file handle is                
flushed and closed by the writer thread. This workflow keeps all the worker threads busy, even if                 
some loci require more processing time than others, and the writer thread guarantees that file               
writes are sequential. However, the output order is undefined. We save about 200ms of              
processing time per locus by opening the reference genome file (an indexed FASTA) and the               
input genotype file (an indexed BCF) at the creation of each worker thread and by keeping the                 
file handles open. 
 
In find-tfbs, the largest data structures are flat arrays. To minimize the number of CPU cache                
misses and improve performance, they follow the order of the individuals from the input BCF file.                
These data structures include the ordered list of participants in the input BCF file, the list of                 
participants who share a TFBS or a haplotype sequence, and the number of matches per               
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participant in a locus. None of these data structures are written on disk, in order to increase                 
performance. 

2.5 Implementation language 
find-tfbs is implemented in Rust (Matsakis and Klock, 2014), a programming language that is              
increasingly used for high performance computing. The explicit memory management of Rust            
helps the programmer minimize memory allocations and total memory usage, thereby           
increasing overall performance. Rust provides tools to share data safely in multi-threaded            
programs, for instance synchronized queues and channels. The language guarantees that any            
piece of data that is seen by more than one thread can only be accessed safely, which protects                  
the programmer from subtle but common mistakes. 
 
The language also enforces sound error management during compilation. The Rust compiler            
refuses to compile programs that fail to address several classes of potential runtime errors (e.g               
memory safety errors, null pointers and uninitialized variables). It has no undefined behavior,             
unlike C and C++. Rust provides a growing set of bioinformatics libraries. Rust-bio (Köster,              
2016) manages FASTA and BED files while rust-htslib (Köster, 2020) manages indexed BCF             
files. 

2.6 Application to hematologic traits 
A large number of TFs play a role during the proliferation and differentiation of blood cells.                
However, in many cases, the downstream target genes of these TFs remain unknown. As an               
example to test find-tfbs, we explored how variation in TFBS counts for 97 TFs modulate 15                
blood-cell phenotypes. Phased WGS data and complete blood count (CBC) came from 44,709             
participants sequenced by the NHLBI Trans-Omics for Precision Medicine (TOPMed)          
whole-genome sequencing project, freeze 8 (Taliun et al.). 9870 and 9757 participants have             
African and Hispanic ancestry, and 25,569 have European ancestry (​Supplementary Table 1​).            
The TOPMed WGS dataset (freeze 8) is 781 gigabytes after compression. 
 
To prioritize regions more likely to control gene expression, we analyzed open chromatin             
regions identified in 16 hematopoietic cell types by ATAC-seq (Corces et al., 2016). In our               
experiments, the list of TFs was based on a literature review, but alternatively it would be                
possible to perform an exhaustive search with all known TF motifs. When the literature was               
imprecise, we tested all the relevant progenitor and blood-cell types. For instance, when a              
source indicated that knockout of a TF was associated with erythrocyte count, we tested this TF                
in open chromatin regions of erythroblasts and all their available progenitors. When a more              
precise mechanism was known, we only tested the specific cell type. We restricted the list to the                 
97 TFs that have a known DNA binding motif in the HOCOMOCO database, version 11               
(Kulakovskiy et al., 2018). 
 
We corrected blood-cell traits for age, sex and smoker status by ethnicity and cohort, and then                
normalized the residuals using inverse normal transformation. We then corrected the normalized            
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phenotypes for population structure within each ethnicity, using the first 10 principal components             
calculated using 149,454 variants in linkage equilibrium. We used EPACTS for association            
testing, separately for each ethnicity, using the ​q.emmax algorithm which accounts for cryptic             
relatedness. Since the variant frequency was already controlled by find-tfbs, we removed the             
frequency filter in EPACTS, and kept the default values for all other parameters. 
 
Some of the supplementary materials for this experiment can be found in the ​find-tfbs-demo              
repository. In particular, the list of relevant transcription factors per cell type and the list of                
phenotypes per cell type are provided. Genomic coordinates for the open chromatin regions             
from the different blood cell-types (Corces et al., 2016) are included in the repository for               
convenience. 

2.7 Performance 

Our experiment was run on a Compute Canada cluster equipped with Intel Xeon Gold 6148               
processors. The genotype files occupied a total of 1.006 terabyte for all chromosomes. find-tfbs              
analyzed 0.41 merged peaks per second on average, using two cores. We used the Linux               
profiling tool ​perf and observed that loading and decompressing the genotype files was the most               
resource-intensive task. Building and scanning the unique haplotypes used a relatively small            
amount of resources. 
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3 Results 
3.1 Blood-cell trait association results 
In this study, we used blood-cell traits to test the implementation of find-tfbs. We arbitrarily               
defined statistical significance as nominal P-value <1x10 ​-9​. We acknowledge that this threshold            
does not rigorously take into account the large number of hypotheses tested and emphasize              
that association results presented here need to be further replicated. All results that meet this               
statistical significance threshold are available in ​Supplementary Table 2​. The vast majority of             
the significant associations map to the Duffy/​DARC​, HLA and α-globin loci. Because these loci              
are already known and genetically complex due to their respective linkage disequilibrium            
patterns, we did not consider them further in our downstream analyses.  
 
Outside of these three regions, we found 90 combinations of “blood-cell traits/open chromatin             
regions/TFBS” associated at ​P​<1x10 ​-9 (​Supplementary Table 2​). This list includes a few highly             
plausible associations, such as an ATAC-seq peak found in the gene ​TAOK1 in             
megakaryocyte-erythroid progenitor (MEP) cells, which is polymorphic for GATA3 and ETS2           
TFBS and associated with mean platelet volume (MPV) in African-ancestry participants. Another            
interesting association signal, found in European-ancestry individuals, highlights an open          
chromatin region found in the gene ​JMJD1C in multipotential progenitor (MPP) cells that is              
associated with platelet counts and include a variable number of binding sites for the TF               
TWST1, TFE2 and ITF2.  
 
Focusing on associations that map to promoters as annotated in the Ensembl Regulatory Build              
(Zerbino et al., 2015), we identified signals in the promoters of several genes (​Table 1​). By                
conditional analyses, we tested if these promoter-based signals were statistically independent           
from the variants at the same loci that were identified by previous large-scale GWAS for               
blood-cell traits (Vuckovic et al., Chen et al.). For all but one gene, conditional results were not                 
significant (​Table 1​), suggesting that genetic variants that create or disrupt TFBS in these              
promoters might explain, at least in part, the GWAS signals. For an ATAC-seq peak in the                
promoter of ​RENBP located on chromosome X, the association signal remained significant            
(​Table 1 and ​Figure 2 ​). ​RENBP is an inhibitor in the renin–angiotensin–aldosterone system that              
regulates arterial blood pressure and it plays an undefined role in early life immune systems               
(van Bilsen et al.). ​RENBP also serves a catabolic role in sialic acid metabolism (Luchansky et                
al.). This association signal is present in individuals of African and Hispanic ethnicity and is               
associated with several red blood cell (RBC) indices (RBC count, RBC distribution width, mean              
corpuscular volume). This 705-bp open chromatin peak was identified in MEP and            
encompasses a genetically complex locus: we found 50 distinct haplotypes in the            
African-ancestry population due to 46 variants (SNPs, indels) and the reference haplotype            
contains two binding sites for CTCFL, a transcriptional repressor with a similar binding motif to               
CTCF and that is expressed during spermatogenesis and in certain cancer types (Bergmaier et              
al.). Out of these 46 variants, two of them disrupt a CTCFL TFBS (X:153946252_G_A,              
X:153946429_C_T) and one of them creates a CTCFL TFBS (rs7889328)(​Figure 2​). While            
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other variants overlap with the putative binding sites, their individual effects on the PWM scores               
do not change our model predictions. Further conditional analyses indicated that alleles at             
rs7889328 accounted for the remaining association signal after controlling for the known GWAS             
variants at the locus (​Supplementary Table 3​).  
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4 Conclusion 
We developed find-tfbs, a robust algorithm to scan phased WGS data to identify and count               
TFBS. We tested our tool on the large TOPMed dataset, with an initial focus on hematological                
traits. We identified many open chromatin regions that harbor genetic variants that create or              
disrupt TFBS, and that are associated with blood-cell phenotypes. By conditional analyses, we             
showed that the majority of these associations capture previously identified GWAS loci.            
Because of our experimental design, such results are interesting because they highlight a             
possible molecular mechanism. Indeed, find-tfbs combined with association testing tools (e.g.           
EPACTS) outputs the location of the open chromatin region, the cell-type in which the region               
was found, and the TF involved, allowing for guided functional characterization of promising             
GWAS loci. 
 
find-tfbs was purposely designed to be flexible. It will consider all types of genetic variants,               
including rare variants, and simple plugins can be added to customize the find-tfbs output for               
other association testing tools. Because of its optimization, find-tfbs can test many phenotypes             
and regulatory sequence data types in parallel in very large WGS datasets. In the future,               
considering alternatives to standard PWMs could further improve find-tfbs. For instance,           
dinucleotide PWMs (Kulakovskiy et al., 2016) and Bayesian Markov models (Siebert and            
Söding, 2016) outperform mononucleotide PWMs over a variety of datasets by encoding            
nucleotide correlations. More recently, a promising convolutional neural network called BPNet           
was able to discover spacing information between motifs, in agreement with known TF-TF             
interactions (Avsec et al., 2020). As the number and ethnic diversity of WGS data available               
increase, we expect that find-tfbs will become an extremely useful bioinformatic tool to explore              
the non-coding regulatory genome implicated in human phenotypic variation. 
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Table 1. Polymorphic transcription factor binding sites (TFBSs) in gene promoters           
associate with blood-cell traits. ​ATAC-seq peaks from different blood-cell types that overlap            
with ENSEMBL-annotated gene promoters and that include a polymorphic number of TFBS            
associated with hematological traits. We calculated P-values as described in the ​Methods            
section; for conditional analyses, we controlled for all genetic variants identified by large             
blood-cell traits genome-wide association studies located in a 1-Mb window. MPV, mean            
platelet volume; WBC, white blood cell count; MCV, mean corpuscular volume; MCH, mean             
corpuscular hemoglobin; RBC, red blood cell count; RDW, RBC distribution width; HSC,            
hematopoietic stem cell; CD8, CD8+ T lymphocyte; Mono, monocyte; MPP, multipotent           
progenitor; Erythro, erythroid; CMP, common myeloid progenitor; MEP,        
megakaryocyte-erythroid progenitor. 
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Population Trait CellType 
ATAC 

coordinates 
(hg38) 

TFBS P-value 
Conditional 

P-value 
Gene 

promoter 

European MPV HSC chr12:1217891
19-121790240 

ZEB1 1.33E-29 0.5036 LINC01089, 
RHOF 

European WBC CD8 chr17:3986383
4-39864579 

STAT6 3.06E-10 0.4858 IKZF3, ZPBP2 

European WBC Mono chr17:4006271
1-40063806 

CTCF 2.43E-15 0.8519 THRA 

European 

MCV 

MPP 
chr7:10062640
7-100627165 CTCFL 

8.63E-14 0.09284 

TFR2 MCH 1.14E-13 0.04977 

RBC 2.23E-12 0.4069 

European 

MCH 

Erythro 
chr7:10064244
2-100642911 FLI1 

3.79E-15 0.01461 

TFR2 MCV 4.47E-15 0.9462 

RBC 4.09E-13 0.2606 

European WBC CMP chr7:28684549
-28685114 

STAT1 1.39E-13 0.2477 CREB5 

African 

RBC 

MEP 
chrX:15394590
9-153946614 CTCFL 

1.47E-18 8.91E-05 

RENBP 

RDW 2.12E-14 1.45E-07 

MCV 2.77E-12 0.0001713 

Hispanic 

RBC 5.56E-10 3.27E-05 

RDW 9.65E-14 0.0001542 

MCV 8.08E-11 2.51E-06 
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Figure legends 
 
Figure 1. Main processing sequence and data types of find-tfbs. ​“(X,Y)” is a pair of X and Y:                  
for instance, (Person, Allele) identifies one of the haplotypes of one person. “[X]” is a list of X:                  
for instance, [Variant] contains a list of variants. “X -> Y” represents a hash table with keys of                  
type X and values of type Y, and “TFBS -> [(Person, Allele)]” classifies haplotypes by the                
binding sites they contain. The keys of a hash table are unique by definition. The sequence                
within the grey area can be processed independently and in parallel for each locus. 
 
Figure 2. Three genetic variants located in the promoter of ​RENBP and included in an open                
chromatin region found in megakaryocyte-erythroid progenitor (MEP) cells change the number           
of CTCFL binding sites and associate with red blood cell (RBC) traits. (​A​) The top panel shows                 
gene annotations at the locus as well as ATAC-seq peaks in MEP. In the bottom panel, we                 
zoom-in two sub-regions in the ​RENBP promoter. The region on the left includes a variant               
(X:153946252_G_A) where the alternative allele disrupts a CTCFL binding site in the reference             
sequence (PWM scores: G=-0.188, A=-2.06). The region on the right includes two variants:             
X:153946428_C_T disrupts a CTCFL motif (PWM scores: C=0.04, T=-0.96) whereas rs7889328           
creates a TFBS (PWM scores G=-1.13, A=-0.65). (​B​) Normalized RBC count (y-axis) per             
number of CTCFL motifs (x-axis) found in the promoter of ​RENBP ​in women. We summed the                
number of CTCFL binding sites found in both haplotypes. (​C​) As in (B) but in men. The number                  
of CTCFL motifs is lower in men as RENBP is located on the X-chromosome. 
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Figure 1 
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Figure 2 
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