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Abstract:

The immunological synapse allows antigen presenting cells (APC) to convey a wide array of
functionally distinct signals to T cells, which ultimately shape the immune response. The relative
effect of stimulatory and inhibitory signals is influenced by the activation state of the APC,
which is determined by an interplay between signal transduction and metabolic pathways. While
toll-like receptor ligation relies on glycolytic metabolism for the proper expression of
inflammatory mediators, little is known about the metabolic dependencies of other critical
signals such as interferon gamma (IFNy). Using CRISPR-Cas9, we performed a series of
genome-wide knockout screens in macrophages to identify the regulators of [IFNy-inducible T
cell stimulatory or inhibitory proteins MHCII, CD40, and PD-L1. Our multi-screen approach
enabled us to identify novel pathways that control these functionally distinct markers. Further
integration of these screening data implicated complex I of the mitochondrial respiratory chain in
the expression of all three markers, and by extension the IFNy signaling pathway. We report that
the IFNy response requires mitochondrial respiration, and APCs are unable to activate T cells
upon genetic or chemical inhibition of complex I. These findings suggest a dichotomous
metabolic dependency between IFNy and toll-like receptor signaling, implicating mitochondrial

function as a fulcrum of innate immunity.
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Introduction:

During the initiation of an adaptive immune response, the antigen presenting cell (APC) serves
as an integration point where tissue-derived signals are conveyed to T cells. Myeloid APCs, such
as macrophages and dendritic cells (DCs), are responsible for the display of specific peptides in
complex with MHC molecules, and for the expression of co-signaling factors that tune the T cell
response (1). The expression of stimulatory or inhibitory co-signaling molecules depends on the
local immune environment and activation state of the APC (2). In particular, interferon gamma
(IFNy) stimulates the surface expression of MHC proteins (3-9), co-stimulatory proteins such as
CDA40, and the secretion of cytokines like IL-12 and IL-18 (10), to promote T cell activation and
the production of IFNy-producing T-helper type 1 (Thl) effector cells (11-15). In the context of
local inflammation, pattern recognition receptor (PRR) ligands and endogenous immune
activators can collaborate with IFNy to induce the expression of co-inhibitory molecules, like
programmed death-ligand 1 (PD-L1) (16-22), which ligates T cell programmed death receptor 1

(PD1) to limit immune activation and mitigate T cell-mediated tissue damage (23-26).

IFNy mediates these complex effects via binding to a heterodimeric surface receptor (27-
30). The subunits of the complex, IFNGR1 and IFNGR2, assemble once IFNGR1 is bound by its
ligand (31, 32). Complex assembly promotes the phosphorylation of janus kinases 1 and 2 (JAK1
and JAK?2) followed by activation of the signal transducer and activation of transcription 1
(STATT1) (33). Phosphorylated STAT]1 then dimerizes and translocates to the nucleus to activate
the transcription of genes containing promoters with [IFNy-activated sequences (GAS), which
includes other transcription factors such as interferon regulatory factor 1 (/rf7) that amplify the

expression of a large regulon that includes T cell co-signaling molecules (34, 35). The
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importance of this signaling pathway is evident in a variety of diseases including cancer (36-40),
autoimmunity (41, 42), and infection (43). Individuals with inborn deficiencies in IFNy
signaling, including mutations to the receptor (44, 45), suffer from a defect in Th1 immunity that
results in an immunodeficiency termed Mendelian susceptibility to mycobacterial disease
(MSMD) (46-49). Conversely, antagonists of [FNy-inducible inhibitory molecules, such as PD-
L1, are the basis for checkpoint inhibitor therapies that effectively promote T cell-mediated
tumor destruction (26, 28, 50-55). While the obligate components of the IFNy signaling pathway
are well known, characterization of additional regulators of this response promises to identify

both additional causes of immune dysfunction and new therapeutic targets.

Recent data suggests that cellular metabolism is an important modulator of the APC-T
cell interaction. In particular, microbial stimulation of PRR receptors on the APC induces
glycolytic metabolism and this shift in catabolic activity is essential for cellular activation,
migration, and CD4+ and CD8+ T cell activation (18, 56-70). The metabolic state of the T cell is
also influenced by the local environment and determines both effector function and long-term
differentiation into memory cells (71, 72). Like PRR signaling, [FNy stimulation has been
reported to stimulate glycolysis and modulate cellular metabolism in macrophages (66, 73).
However, the effects of different metabolic states on IFNy-stimulated APC function remains

unclear.

To globally understand the cellular pathways that influence IFNy-dependent APC
function, we used a CRISPR-Cas9 knockout library (74) in macrophages to perform a series of

parallel forward-genetic screens for regulators of three [IFNy-inducible co-signaling molecules:
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MHCII, CD40, and PD-L1. We identified positive and negative regulators that controlled each
marker, underscoring the complex regulatory networks that influence the interactions between
APCs and T cells. Pooled analysis of the screens uncovered shared regulators that contribute to
the global IFNy response. Prominent among these general regulators was complex I of the
respiratory chain. We report that the activity of the IFNy receptor complex and subsequent
transcriptional activation depends on mitochondrial function in both mouse and human myeloid
cells. Experimental perturbation of respiration inhibits the capacity of both macrophages and
dendritic cells to stimulate T cells, identifying mitochondrial function as a central point where

local signals are integrated to determine APC function.

Results

Forward genetic screen identifies regulators of IFNy-inducible MHCII, CD40 and PD-L1

cell surface expression.

To investigate the diverse regulatory pathways underlying the IFNy response, we
examined the expression of three functionally distinct cell surface markers that are induced by
IFNy. Stimulation of Cas9-expressing immortalized bone marrow-derived macrophages with
IFNy for 24 hours resulted in the upregulation of T cell stimulatory molecules, major
histocompatibility complex class II (MHCII) and CD40, and the inhibitory ligand PD-L1
(Cd274), on the cell surface (Figure 1A). To identify genes that regulate the expression of these
markers, Cas9-expressing macrophages were transduced with a lentiviral genome-wide knockout

(KO) library containing four single guide RNAs (sgRNAs) per protein-coding gene and 1000


https://doi.org/10.1101/2020.11.22.393538
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.22.393538; this version posted November 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

available under aCC-BY-ND 4.0 International license.

non-targeting control (NTC) sgRNAs (74). The knockout library was then stimulated with IFNy,
and fluorescently activated cell sorting (FACS) was used to select for mutants with high or low
cell surface expression of each individual marker (Figure 1B). For each of the three surface
markers, positive and negative selections were performed in duplicate. The sgRNAs contained in
the input library and each sorted population were amplified and sequenced (Figure 1A,B).

To estimate the strength of selection on individual mutant cells, we specifically assessed
the relative abundance of cells harboring sgRNAs that target each of the surface markers that
were the basis for cell sorting. When the abundances of sgRNAs specific for H2-4b1 (encoding
the MHCII, H2-I-A beta chain), Cd40, or Cd274 (PD-L1) were compared between high- and
low-expressing cell populations, we found that each of these sgRNAs were significantly depleted
from the cell populations expressing the targeted surface molecule, while each had no consistent
effect on the expression of non-targeted genes (Figure 1C). While not all individual sgRNAs
produced an identical effect, we found that targeting the genes that served as the basis of sorting
altered the mean relative abundance 30-60 fold, demonstrating that all selections efficiently

differentiated responsive from non-responsive cells.

We next tested for statistical enrichment of sgRNAs using MAGeCK-MLE (75), which
employs a generalized linear model to identify genes, and by extension regulatory mechanisms,
controlling the expression of each surface marker. This analysis correctly identified the
differential representation of sgRNAs targeting genes for the respective surface marker in the
sorted populations in each screen, which were found in the top 20 ranked negative selection
scores (Ranks: H2-4b1 =20, Cd40 =1, Cd274 = 3; Table S1). Upon unsupervised clustering of
[ scores for the most highly enriched genes in each screen (top 5%, positive or negative) both

common and pathway-specific effects were apparent (Figure 1D; Table S2). A small number of
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157  genes assigned to Cluster 1, including the IFNy receptor components (Ifngrl and Ifngr2), were
158  strongly selected in the non-responsive population in all three selections. However, many

159  mutations appeared to preferentially affect the expression of individual surface markers,

160  including a number of known pathway-specific functions. For example, genes previously shown
161  to specifically control MHCII transcription, such as Ciita, Rfx5, Rfxap, Rfxank, and Crebl (8, 76-
162 78) were found in Cluster 4 along with several novel regulators that appear to be specifically
163 required for this pathway. MHCII-specific factors are reported in an accompanying study (79).
164 Genes specifically required for CD40 expression in Cluster 3 included the heterodimeric
165  receptor for TNF. Tnfisfla and Tnfrsf1b were the 6™ and 50" lowest B scores in the CD40

166  screen, respectively. Previous studies suggested that TNF stimulation enhances IFNy-mediated
167  CDA40 expression in hematopoietic progenitors (80), and we confirmed this observation in

168  macrophages (Figure 1E). We observed a 6-fold higher induction of CD40 in macrophages

169  stimulated with a combination of IFNy and TNF compared to IFNy alone. This synergy was

170  specific to CD40 induction, as we did not observe any enhancement of IFNy-induced MHCII
171  expression by TNF addition.

172 Several recent studies identified genes that control PD-L1 expression in cancer cell

173 lines(28, 53, 55, 81-86), and we validated the PD-L1-associated clusters using these candidates.
174  Our analysis found the previously-described negative regulators, Irf2 (87), Keapl, and Cul3 (88-
175 90) in the PD-L1-related Cluster 7, along with novel putative negative regulators such as the

176  oligosaccharlytransferase complex subunit Ostc and the transcriptional regulator, Cnbp. We

177  generated knockout macrophages for each of these novel candidates and confirmed that mutation

178  of these genes enhances the [FNy-dependent induction of PD-L1 surface levels (Figure 1F).
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179  Cumulatively, these data delineate the complex regulatory networks that shape the I[FNy

180  response.

181

182  Mitochondrial complex I is a positive regulator of the IFNy response.

183 To identify global regulators of the IFNy response, we performed a combined analysis,
184  reasoning that treating each independent selection as a replicate measurement would increase our
185  power to identify novel pathways. We used MAGeCK to calculate a selection coefficient (p) for
186  each gene by maximum likelihood estimation (75). By combining the 24 available measurements
187  for each gene (three different markers, each selection in duplicate, and four sgRNAs per gene),
188  we found that the resulting selection coefficient reflected the global importance of a gene for the
189  IFNy response (Table S3). The most important positive regulators corresponded to the proximal
190  IFNy signaling complex (Figure 2A). Similarly, we identified known negative regulators of IFNy
191  signaling, including the protein inhibitor of activated Statl (Piasl) (91), protein tyrosine

192 phosphatase non-receptor type 2 (Ptpn2) (84), Mitogen activate protein kinase 1 (Mapkl), and
193 suppressor of cytokine signaling 1 (Socs/) and 3 (Socs3).

194 We performed gene set enrichment analysis (GSEA) using a ranked list of positive

195  regulators from the combined analysis (Table S4) (92). Among the top enriched pathways was a
196  gene set associated with type II interferon (e.g., IFNY) signaling (normalized enrichment score =
197  2.45, g-value = 7.98e-5), validating the approach. GSEA identified a similarly robust enrichment
198  for gene sets related to mitochondrial respiration and oxidative phosphorylation (Figure 2B). In
199  particular, we found a significant enrichment of gene sets dedicated to the assembly and function
200  of the NADH:ubiquinone oxidoreductose (hereafter, “complex I”’) of the mitochondrial

201  respiratory chain. Complex I couples electron transport with NADH oxidation and is one of four
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protein complexes that comprise the electron transport chain (ETC) that generates the
electrochemical gradient for ATP biosynthesis. To confirm the GSEA results, we examined the
combined dataset for individual genes that make up each complex of the ETC (Figure 2C). This
analysis demonstrated that sgRNAs targeting components of complexes II, III or IV had minimal
effects on the expression of the IFNy-inducible surface markers tested. In contrast, the disruption
of almost every subunit of complex I impaired the response to IFNy, with the notable exception
of Ndufabl. As this gene is essential for viability (93), we assume that cells carrying Ndufabl
sgRNAs retain functional target protein.

To investigate the contribution of specific complex I components to different IFNy-
stimulated phenotypes, we reviewed the surface marker-specific enrichment scores for genes that
contribute to the complex assembly, the electron-accepting N-module, or the electron-donating Q
module (93-98). Of the 48 individual assembly factors or structural subunits of complex I present
in our mutant library, 29 were significantly enriched as positive regulators in the global analysis
and were generally required for the induction of all IFNy-inducible markers (Fig. 2D). The
enrichment for each functional module in non-responsive cells was statistically significant.
However, not all individual complex I components were equally enriched, which could reflect
either differential editing efficiency or distinct impacts on function. To investigate the latter
hypothesis, we compared our genetic data with a previous proteomic study that quantified the
effect of individual complex I subunits on the stability of the largest subcomplex, the N-module
(93). For a given subunit, we found a significant correlation between the magnitude of
enrichment in our genetic screen and its effect on the structural stability of the module (Fig. 2E),

specifically implicating the activity of complex I in the IFNy response.
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To directly test the predictions of the screening data, we used CRISPR to generate
individual macrophage lines that were deficient for complex I subunits. We first validated the
expected metabolic effects of complex I disruption by comparing the intracellular ATP levels in
macrophages carrying non-targeting control sgRNA (sgNTC) with sgNdufal and sgNdufa?2 lines.
When cultured in media containing the glycolytic substrate, glucose, all cell lines produced
equivalent amounts of ATP (Figure 3A). However, when pyruvate was provided as the sole
carbon source, and ATP generation depends entirely upon flux through ETC and oxidative
phosphorylation (OXPHOS), both sgNdufal and sgNdufa2 macrophages contained decreased
ATP levels compared to sgNTC cells (Figure 3B). To confirm the glycolytic dependency of
complex I mutant macrophages, we grew cells in complete media with glucose and treated with
the ATP synthase (complex V) inhibitor, oligomycin, which blocks ATP generation by
OXPHOS. While oligomycin reduced ATP levels in sgNTC macrophages, this treatment had no
effect in sgNdufal and sgNdufa?2 cells (Supplementary Figure 1A), confirming that these
complex I-deficient cells rely on glycolysis for energy generation. IFNy treatment slightly
reduced ATP levels in glucose containing media but did not differentially affect cell lines (Figure
3A). Throughout these experiments we found that the sgNdufal mutant showed a greater
OXPHOS deficiency than the sgNdufa? line.

We next compared the response to IFNy in macrophages lacking Ndufal and Ndufa2 with
those carrying CRISPR-edited alleles of Ifngr/ or the negative regulator of signaling, Ptpn2. As
CD40 was found to rely on more complex inputs for expression, which include TNF (Figure 1E),
we relied on MHCII and PD-L1 as markers of the IFNy response for subsequent studies. As
expected, and consistent with the genetic screen, we found that the loss of Ifngrl or Ptpn2 either

abrogated or enhanced the response to IFNy, respectively. Also consistent with predictions,
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mutation of complex I genes significantly reduced the IFNy-dependent induction of MHCII and
PD-L1 compared to sgNTC (Figure 3C-F). The Ndufal mutation that abrogates OXPHOS,
reduced MHCII induction to the same level as Ifingri-deficient cells. To confirm these results
using an orthologous method we treated cells with the complex I inhibitor, rotenone (99). This
treatment caused a dose-dependent inhibition of the IFNy-induced MHCII expression in sgNTC
macrophages (Figure 3G) and had a similar inhibitory effect on the residual IFNy response in
Ndufa2-deficient cells. Together these results confirm that complex I is required for the induction
of immunomodulatory surface molecules in response to IFNy.

To investigate what aspect of mitochondrial respiration contributes to the IFNy response,
we inhibited different components of the ETC. All inhibitors were used at a concentration that
abrogated OXPHOS-dependent ATP generation (Supplementary Figure 1B). The complex V
inhibitor, oligomycin, inhibited the IFNy-induced MHCII expression, albeit to a lesser extent
than direct complex I inhibition with rotenone (Figure 3H). This partial effect could reflect an
inability to dissipate the proton motive force (PMF), which inhibits electron flux throughout the
ETC, including through complex I (100). Carbonyl cyanide m-chlorophenyl hydrazone (CCCP)
disrupts mitochondrial membrane potential and OXPHOS while preserving electron flux. CCCP
had no effect on the IFNy response, indicating that ATP generation is dispensable for
IFNy responsiveness and highlighting a specific role for complex I activity.

We then altered the media composition to test the sufficiency of mitochondrial respiration
to drive IFNy responses independently from aerobic glycolysis. IFNy was found to stimulate
MHCII expression to a similar degree in macrophages cultured in complete media with glucose
as in media containing only pyruvate or citrate, which must be catabolized via mitochondrial

respiration (Figure 3H). Inhibition of mitochondrial pyruvate import with the chemical inhibitor,
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UK5099 (101), abrogated MHCII induction in cultures grown in pyruvate, but not in citrate,
which is imported via a UK5099-independent mechanism. Taken together these results suggest
that cellular respiration is both necessary and sufficient for maximal expression of the IFNy-

inducible surface markers MHCII and PD-L1.

Mitochondrial function is specifically required IFNy-dependent responses.

The mitochondrial-dependency of the IFNy response contrasted with the known
glycolytic-dependency of Toll-like receptor (TLR) signaling, suggesting that TLR responses
would remain intact when complex I was inhibited. Indeed, not only were TLR responses intact
in sgNdufal and sgNdufa2 mutant macrophages, these cells secreted larger amounts of TNF or
IL-6 than sgNTC cells in response to the TLR2 ligand, Pam3CSK4. (Figure 4A). Thus, the
glycolytic dependency of these cells enhanced the TLR2 response, indicating opposing metabolic
dependencies for IFNy and TLR signaling.

Whether the effects of complex I on macrophage responsiveness was the result of
reduced mitochondrial respiratory function or secondary to cellular stress responses, such as
radical generation, remained unclear. To more directly relate mitochondrial function to these
signaling pathways, we created cell lines with reduced mitochondrial mass. Macrophages were
continuously cultured in linezolid (LZD), an oxazolidinone antibiotic that inhibits the
mitochondrial ribosome (102-104). This treatment produced a cell line with ~50% fewer
mitochondrial genomes per nuclear genome and a corresponding decrease in OXPHOS capacity,
compared to control cells grown in the absence of LZD (Figure 4B,C). Cells were cultured
without LZD for 16 hours and then stimulated with either [IFNy or Pam3CSK4. Consistent with

our complex I inhibition studies, we found this reduction in mitochondrial mass nearly abrogated
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293  the IFNy-dependent induction of MHCII (Figure 4D), while the TLR2-dependent secretion of
294  TNF and IL-6 was preserved or enhanced (Figure 4E and 4F). Thus, mitochondrial activity,

295  itself, is necessary for a robust IFNy response.

296 To further address potential secondary effects of mitochondrial inhibition on the

297  IFNy response, we investigated the role of known oxygen or nitrogen radical-dependent

298  regulators (Supplementary Figure 1C-G). Inhibition of ROS generation by replacing glucose
299  with galactose (66, 100, 105) had no effect on IFNy-induced MHCII induction. Similarly,

300 neutralization of cytosolic or mitochondrial radicals with N-acetylcysteine or MitoTempo,

301  respectively, had no effect on MHCII induction either alone or in combination with ETC

302  inhibition. The role of the cytosolic redox sensor, HIF'/ o (106, 107) was addressed by

303  chemically stabilizing this factor with dimethyloxalylglycine (DMOG). A potential role for nitric
304  oxide production was addressed with the specific NOS2 inhibitor 1400W (60, 66, 108). Neither
305  of these treatments affected IFNy-induced MHCII cell surface expression in the presence or

306  absence of simultaneous Pam3CSK4, further supporting a direct relationship between

307  mitochondrial respiratory capacity and the IFNy response.

308

309  Complex I is specifically required for IFNy signaling in human cells.

310 To understand the function of complex I during IFNy-stimulation in human cells, we used
311  monocyte-derived macrophages (MDM) from peripheral blood of healthy donors. As in our

312 mouse studies, we assessed the response of these cells to IFNy or Pam3CSK4 by quantifying the
313  abundance of IFNy-inducible surface markers or cytokines that were optimized for human cells.
314  Since HLA-DR is not strongly induced by IFNy, we included ICAM1 in addition to CD40 and

315  PD-LI1 as surface markers. As seen in the murine model, rotenone inhibited the IFNy-mediated
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induction of all three markers (Figure 5A). TLR2 responses were assessed by the production of
TNF and IL-1B. Upon Pam3CSK4 stimulation, rotenone significantly enhanced the secretion of
IL-1P and TNF (Figure 5B). While simultaneous treatment with both IFNy and Pam3CSK4
produced the previously described inhibition of IL-13 (109), rotenone still did not decrease the
production of these TLR2 dependent cytokines. Thus, as we observed in mouse cells, complex |

is specifically required for IFNy signaling in human macrophages.

Complex I inhibition reduces IFNy receptor activity.

To understand how complex I activity was shaping the IFNy response, we first
determined whether its effect was transcriptional or post-transcriptional by simultaneously
monitoring mRNA and protein abundance over time. Surface expression of PD-L1 was
compared with the gene’s mRNA abundance, while the surface expression of MHCII was
compared with the mRNA abundance of Ciita, the activator of MHCII expression that is initially
induced by IFNy (Figure 6 A,B). In both cases, mRNA induction preceded surface expression of
the respective protein. More importantly, both mRNA and protein expression of each marker was
diminished to a similar degree in sgNdufal and sgNdufa2, compared to sgNTC cells. Thus, a
deficit in transcriptional induction could account for the subsequent decrease in surface
expression observed in complex I deficient cells.

IFNy rapidly induces the transcription of a large number of STAT1 target genes,
including IRF1, which amplifies the response. The relative impact of complex I inhibition on the
immediate transcriptional response versus the subsequent IRF1-dependent amplification was
initially assessed by altering the timing of complex I inhibition. As the addition of rotenone was

delayed relative to IFNy stimulation, the ultimate effect on MHCII expression was diminished
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(Figure 6C). If rotenone was added more than 4 hours after IFNy, negligible inhibition was
observed by 24 hours, indicating that early events were preferentially impacted by rotenone. To
more formally test the role of IRF1, this study was performed in macrophages harboring a
CRISPR-edited Irf1 gene. While the level of MHCII induction was reduced in the absence of
IRF1, the relative effect of rotenone addition over time was nearly identical in sg/rf1 and sgNTC
cells. Thus, mitochondrial function appeared to preferentially impact the initial transcriptional
response to [IFNy upstream of IRF1.

Ligand induced assembly of the IFENGR1-IFNGR?2 receptor complex results in the
phosphorylation and transactivation of janus kinases 1 and 2 (JAK1, JAK?2).
Autophosphorylation of JAK?2 at tyrosine residues 1007/1008 positively regulates this cascade
and serves as a marker of JAK?2 activation. These activating events at the cytoplasmic domains
of the IFNGR receptor complex facilitate STAT1 docking and phosphorylation at tyrsone-701
(Y701), a prerequisite for the IFNy response. Additional STAT1 phosphorylation at serine-727
can amplify signaling. To determine if complex I is required for these early signal transduction
events, we examined the activation kinetics by immunoblot (Figure 6D). The total abundances of
IFNGRI1, STATI, and JAK2, were constant in sgNTC and sgNdufal cells in the presence and
absence [FNy-stimulation. While we detected robust phosphorylation of JAK2 Y1007/8, STAT1-
Y701, and STAT1-S727 over time following IFNy treatment in sgNTC cells, phosphorylation at
all three sites was both delayed and reduced across the time-course in sgNdufal cells. We
conclude that the loss of complex I function inhibits receptor proximal signal transduction

events.
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Mitochondrial respiration in antigen presenting cells is required IFNy-dependent T cell
activation.

As respiration affected both stimulatory and inhibitory antigen presenting cell (APC)
functions, we sought to understand the ultimate effect of mitochondrial function on T cell
activation. To this end, we generated myeloid progenitor cell lines from Cas9-expressing
transgenic mice that can be used for genome-edited and differentiated into either macrophages or
dendritic cells using M-CSF or FLT3L, respectively (110, 111). Macrophages differentiated from
these myeloid progenitors demonstrated robust induction of all three markers that were the basis
for the IFNy stimulation screens (Supplementary Figure 2A-C). Further, both the IFNy-mediated
upregulation of these markers and the inhibitory effect of rotenone or oligomycin on their
induction were indistinguishable from wild-type primary bone marrow-derived macrophages
(Supplementary Figure 2D-F). In both macrophages and in dendritic cells (DCs), the induction of
MHCII by IFNy was inhibited by rotenone and oligomycin (Figure 7A). Unlike macrophages,
murine DCs basally express MHCII and these inhibitors only repressed the further induction by
IFNy (Figure 7A,B).

Both macrophages and DCs were used to determine if the inhibition of complex I in
APCs reduces T cell activation. Both types of APCs were stimulated with IFNy overnight with or
without rotenone before washing cells to remove rotenone and ensure T cell metabolism was
unperturbed. APCs were then pulsed with a peptide derived from the Mycobacterium
tuberculosis protein ESAT-6, and co-cultured with ESAT-6-specific CD4+ T cells from a TCR
transgenic mouse (112). T cell activation was assayed by intracellular cytokine staining for IFNy.

In macrophages, T cell stimulation relied on pretreatment of the APC with IFNy, as a
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383  macrophage line lacking the Ifngrl gene was unable to support T cell activation. Similarly,

384  inhibition of complex I in macrophages completely abolished antigen-specific T cell stimulation
385  (Figure 7C). DCs did not absolutely require IFNy pretreatment to stimulate T cells, likely due to
386  the basal expression of MHCII by these cells. Regardless, rotenone treatment of DC abrogated
387  the IFNy-dependent increase in T cell stimulation (Figure 7C).

388 To confirm the effects of complex I inhibition on T cell activation using a genetic

389  approach and confirm that complex I inhibition acted in a cell-autonomous mechanism, we

390  generated Ndufal knockout myeloid progenitors (Hox-sgNdufal). Following differentiation into
391  macrophages, Hox-sgNdufal demonstrated glycolytic dependence and the inability to generate
392 ATP by OXPHOS compared to control Hox-sgNTC macrophages (Supplementary Figure 2G).
393  Having confirmed the expected metabolic effects of Ndufal loss, Hox-sgNdufal and Hox-

394  sgNTC macrophages were mixed at various ratios. Mixed cultures were then stimulated with
395  IFNy, peptide pulsed, and co-cultured with antigen-specific CD4+ T cells. In agreement with our
396  chemical inhibition studies, we found strong correlation between complex I activity in the APC
397  population and T cell stimulatory activity (Figure 7D-E). Together, these data confirm that the
398  IFNy-dependent augmentation of T cell stimulatory activity depends on complex I function in
399  both macrophages and DCs.

400

401  Discussion

402 IFNy-mediated control of APC function is central to shaping a protective immune

403  response, and the canonical IFNy signal transduction pathway has been elucidated in exquisite
404  detail (113). Our study demonstrates that unbiased genetic analyses can reveal a multitude of

405  unexpected cellular regulators, even for a well-characterized process such as IFNy signaling. By
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independently assessing genetic determinants of stimulatory and inhibitory molecule expression,
we discovered mechanisms of regulation that preferentially affect the induction of different cell
surface proteins. These results begin to explain how a single cytokine can induce functionally
distinct downstream responses in different contexts. These data also suggest new strategies to
modulate individual co-receptors to either stimulate or inhibit T cell activation. Another strength
of our parallel screen approach was the increased power to identify shared mechanisms that
control IFNy-mediated regulation across all screens. Our pooled analysis identified
mitochondrial respiration, and in particular complex I, as essential for IFNy-responses in APCs.
We determined that complex I is required for the IFNy-mediated induction of key immune
molecules and is necessary for antigen presentation and T cell activation. These findings uncover
a new dependency between cellular metabolism and the immune response.

Our genetic and chemical inhibition data demonstrated that mitochondrial respiration is
necessary for early events in signal transduction from the IFNy receptor complex, and complex I
of the respiratory chain is specifically required. While IFNy stimulation has been reported to
mediate a reduction in oxygen consumption and a shift to aerobic glycolysis over time (66), the
requirement of mitochondrial respiration in IFNy responses has not been assessed previously.
Our results indicate that complex I is required for IFNy signaling regardless of these metabolic
shifts. Complex I is a metabolic hub with several core functions that cumulatively recycle
nicotinamide adenine dinucleotide (NAD+), reduce ubiquinol, and initiate the PMF for ATP
generation. While any or all of these physiologic processes could contribute to IFNy signaling,
the differential effects of chemical inhibitors narrow the possibilities. Both rotenone and
oligomycin inhibit the IFNy response, and block electron flux through complex I either directly

or indirectly. In contrast, the ionophore CCCP disrupts the PMF and ATP generation without
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429  inhibiting electron transfer, and does not affect IFNy signaling. These data indicate that the

430  reduction state of the quinone pool and ATP generation do not regulate IFNy responses in our
431  system. Instead, complex I-dependent regeneration of NAD+ is the most likely regulator of IFNy
432  signaling. Indeed, NAD+ synthesis via either the de novo or salvage pathway is necessary for a
433  variety of macrophage functions (114-116). Very recent work demonstrates an important role for
434  NAD+ in STAT1 activation and PD-L1 induction by IFNy in hepatocellular carcinoma cells

435  (117). In this setting, inhibition of NAD+ synthesis reduces the abundance of phospho-STAT1
436 by disrupting a direct interaction with the Ten-eleven translocation methylcytosine dioxygenase
437 1 (TET1). It remains unclear if a similar interaction occurs in the myeloid cells that are the focus
438  of our work, as TET1 is expressed at very low levels in macrophages and splenic DC (118).

439  Regardless, these observations indicate that both NAD+ synthesis and its regeneration via

440  mitochondrial respiration contribute to the IFNy response in diverse cell types. This recently

441  revealed interaction between metabolism and immunity could contribute to the observed

442  association between NAD+ homeostasis and inflammatory diseases (116), as well as the efficacy
443  of checkpoint inhibitor therapy for cancer (117).

444 In the APC setting, we found that T cell activation required mitochondrial respiration.
445  While complex I function, MHCII and CD40 expression all largely correlate with T cell

446  stimulation, our data indicate that additional IFNy-inducible pathways also contribute to this

447  activity. For example, unstimulated DCs basally express similar levels of MHCII as IFNy-

448  stimulated macrophages but are unable to productively present antigen to T cells. This

449  observation suggests that additional aspects of antigen processing, presentation, or co-stimulation

450  are IFNy- and complex I-dependent. Similarly, MHCI presentation machinery is transcriptionally

451  induced upon IFNy stimulation (7, 119) and the induction of molecules recognized by donor
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452  unrestricted T cells, such as MR1 and CD1, might also require additional signals to function. The
453  specific effects of mitochondrial respiration on the type and quality of the T cell response will
454  depend on how these diverse antigen-presenting and co-signaling molecules are influenced by
455  cellular metabolic state.

456 The observation that IFNy signaling depends on mitochondrial respiration provides a

457  stark contrast to the well-established glycolytic dependency of many phagocyte functions, such
458 as TLR signaling. This metabolic dichotomy between proinflammatory TLR signals and the

459  IFNy response mirrors known regulatory interactions between these pathways. For example,

460  TLR stimulation has been shown to inhibit subsequent IFNy responses, via a number of target
461  gene-specific mechanisms (120-124). However, TLR stimulation also results in the disassembly
462  of the ETC (123, 124), which our observations predict to inhibit STAT1 phosphorylation and
463  IFNy signaling at the level of the receptor complex. More generally, our work suggests

464  fundamental metabolic programs contribute to the integration of activation signals by APC and
465 influence the ultimate priming of an immune response.

466

467  Materials and Methods

468  Cell culture

469  Cells were cultured in Dulbecco’s Modified Eagle Medium (Gibco 11965118) supplemented
470  with 10% fetal bovine serum (Sigma F4135), sodium pyruvate (Gibco 11360119), and HEPES
471  (15630080). Primary bone marrow-derived macrophages (BMDMs) were generated by culturing
472  bone marrow in the presence of media supplemented with 20% L1929 supernatant for 7 days.

473
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Immortalized macrophage cell lines in C57B16/J and Cas9-EGFP were established in using J2
retrovirus from supernatant of CREJ2 cells as previously described(125). Briefly, isolated bone
marrow was cultured in the presence of media enriched with 20% 1929 supernatant. On day 3,
Cells were transduced with virus and cultured with virus for 2 days. Over the next 8 weeks, L929

media was gradually reduced to establish growth factor independence.

Conditionally immortalized myeloid progenitor cell lines were generated by retroviral
transduction using an estrogen-dependent Hoxb8 transgene as previously described(110).
Briefly, mononuclear cells were purified from murine bone marrow using Ficoll-Paque Plus (GE
Healthcare 17144002) and cultured in RPMI (Gibco 11875119) containing 10% fetal bovine
serum (Sigma F4135), sodium pyruvate (Gibco 11360119), and HEPES (15630080), IL-6
(10ng/mL; Peprotech #216-16), IL-3 (10ng/mL; Peprotech #213-13), and SCF (10ng/mL;
Peprotech #250-03) for 48 hours. Non-adherent bone marrow cells from C57B16/J (Jax 000664),
Cas9-EGFP knockin (Jax 026179), or Ifngrl knockout (Jax 003288) mice were transduced with
ER-Hoxb8 retrovirus. After transduction cells were cultured in with media supplemented with
supernatant from B16 cells expressing GM-CSF and 10uM estradiol (Sigma E8875) to generate
macrophage progenitor cell lines or in media supplemented with supernatant from B16 cells
expressing FLT3L and 10uM estradiol (Sigma E8875) to generate dendritic cell progenitor lines.
To differentiate macrophages, progenitors were harvested and washed twice with PBS to remove
residual estradiol and cultured in L929 supplemented media as above. To differentiate dendritic
cells(111), progenitors were harvested, washed 2x with PBS, and cultured in FLT3-enriched

complete RPMI for 8-10 days.
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Human monocyte-derived macrophages (MDM) were differentiated from mononuclear cells of
healthy donors. Briefly, peripheral blood mononuclear cells (PBMCs) were isolated from whole
blood using Ficoll-Paque-PLUS (GE Healthcare 17144002). CD14+ monocytes were purified
using MojoSort™ Human CD14 Nanobeads (Biolegend 480093) according to the manufacturer's
protocol. Cells were cultured in RPMI with 10% FBS, sodium pyruvate, and HEPES and
supplemented with recombinant GM-CSF (50ng/mL, Peprotech 300-03) for 6 days. Thaws were

harvested using Accutase (Gibco A1110501).

Cell stimulations
Murine [FNy (Peprotech 315-05) and human IFNy (Peprotech 300-02) were used at 10ng/mL
unless otherwise indicated in the figure legends. Murine TNF (315-01A) was used at 25ng/mL.

Pam3CSK4 (Invivogen tlrl-pms) was used at 200ng/mL.

CRISPR screens

A clonal macrophage cell line stably expressing Cas9 (L3) was established as described
elsewhere(79). A plasmid library of sgRNAs targeting all protein coding genes in the mouse
genome (Brie Knockout library, Addgene 73633) was packaged into lentivirus using HEK293T
cells. HEK293T supernatants were collected and clarified, and virus was titered by quantitative
real-time PCR and by colony counting after transduction of NIH3T3. L3 cells were transduced at
a multiplicity of infection (MOI) of ~0.2 and selected with puromycin 48 hours after
transduction (2.5ug/mL). The library was minimally expanded to avoid skewing mutant

representation and then frozen in aliquots in freezing media (90% FBS 10% DMSO).
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Two replicate screens for MHCII, CD40, and PD-L1 were performed as follows:

2e8 cells of the knockout (KO) library was stimulated with IFNy (10ng/mL; Peprotech 315-05)
for 24 hours after which cells were harvested by scraping to ensure integrity of cell surface
proteins. Cell were stained with TruStain FcX anti-mouse CD16/32 (Biolegend 101319) and
LIVE/DEAD Fixable Aqua (Invitrogen L34957) per the manufacturer's instructions. For each of
the respective screens, stimulated library was stained for its respective marker with the following
antibody: MHCII (APC anti-mouse [-A/I-E Antibody, Clone M5/114.15.2 Biolegend 107613),
CD40 (APC anti-mouse CD40 Antibody, Clone 3/23 Biolegend 124611), or PD-L1 (APC anti-
mouse CD274 (B7-H1, PD-L1) Antibody, Clone 10F.9G2 Biolegend 124311). Each antibody
was titrated for optimal staining using the isogenic L3 macrophage cell line. Following staining,
cells were fixed in 4% paraformaldehyde. High and low expressing populations were isolated by
fluorescence activated cell sorting (FACS) using a BD FACS Aria II Cell Sorter. Bin size was
guided by control cells which were unstimulated and to ensure sufficient library coverage (>25x
unselected library, or >2e6 cells per bin). Following isolation of sorted populations,
paraformaldehyde crosslinks were reversed by incubation in proteinase K (Qiagen) at 55 degrees
for 6-8 hours. Subsequently, genomic DNA was isolated using DNeasy Blood and Tissue Kit
(Qiagen 69504) according to the manufacturer's instructions. Amplification of sgRNAs by PCR
was performed as previously described(74, 126) using Illumina compatible primers from IDT,
and amplicons were sequenced on an Illumina NextSeq500. Sequence reads were trimmed to
remove adapter sequence and to adjust for staggered forward (p5) primer using Cutadapt v2.9.
Raw sgRNA counts for each sorted and unsorted (input library) population was quantified using
bowtie2 via MAGeCK to map reads to the sgRNA library index (no mismatch allowed); a

sgRNAindex was modified to reflect genes transcribed by our macrophage cell line either basally
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543  or upon stimulation with IFNy as previously published(79). Counts for sgRNAs were median
544  normalized to account for variable sequencing depth.

545

546 MAGeCK-MLE

547  We used MAGeCK-MLE to test for gene enrichment. Two separate analyses were performed in
548  order to: (1) identify regulators of the IFNy response, and (2) identify specific regulators of each
549  of the screen targets. For both analyses, the baseline samples were the input libraries from each
550  of the replicate screens in order to account for slight variabilities in library distribution for each
551  screen. For (1), the generalized linear model was based on a design matrix that was "marker-
552 blind" and only considered the bin of origin (i.e. MHCII-low, CD40-low, PD-L1-low v. MHCII-
553 high, CD40-high, PD-L1-high). For (2), the design matrix was "marker-aware and bin-specific"
554  to test for marker-specific differences (i.e. MHCII-low v. CD40-low v. PD-L1-low); the analysis
555  was performed separately for each bin, low or high expressing mutants, to identify marker-

556  specific positive and negative regulators, respectively. For each analysis, [ scores (selection co-
557  efficient) for each gene were summed across conditions to allow for simultaneous assessment of
558  positive and negative regulators across conditions. Data are provided in Supplementary Tables.
559

560  Gene-set enrichment analysis (GSEA) was performed using a ranked gene list as calculated from
561 MAGeCK-MLE beta scores and false discovery rate (FDR). To facilitate the identification of
562  positively and negatively enriched gene sets from the high and low expressing populations, the
563  positive (“pos | beta”) and negative (“neg | beta”) beta scores for each gene were summed as

564  described above (“beta_sum”). To generate a ranked gene list for GSEA, we employed

565  Stouffer’s method to sum positive (“pos | z”’) and negative (“neg | z”°) selection z-scores, which
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were used to re-calculate p-values (“p_sum”) as has been previously described (127-129). Using
these summative metrics, we calculated a gene score as: loglO(p_sum) * (beta_sum). Genes were
ranked in descending order and GSEA was performed with standard settings including
“weighted” enrichment statistic and “meandiv” normalization mode. Analysis was inclusive of
gene sets comprising of 10-500 genes that were compiled and made available online by the

Bader lab (130, 131).

Plasmids and sgRNA cloning

Lentivirus was generated using HEK293T cells using packaging vector psPAX2
(Addgene#12260) and envelope plasmid encoding VSV-G. Transfections used TransIT-293
(MirusBio MIR 2704) and plasmid ratios according to the manufacturer's instructions. For the
generation of retrovirus, pCL-Eco in place of separate packaging and envelope plasmid.

Retrovirus encoding the ER-Hoxb8 transgene was kindly provided by David Sykes.

sgOpti was a gift from Eric Lander & David Sabatini (Addgene plasmid #85681)(132).
Individual sgRNAs were cloned as previously described. Briefly, annealed oligos containing the
sgRNA targeting sequence were phosphorylated and cloned into a dephosphorylated and BsmBI
(New England Biolabs) digested SgOpti (Addgene#85681) which contains a modified sgRNA
scaffold for improved sgRNA-Cas9 complexing. Use of sgOpti derivatives for delivery of
multiple sgRNAs was performed as detailed elsewhere(79). The sgRNA targeting sequences

used for cloning were as follows:

Name/Target sgRNA sequence

sglfngrl 1 TATGTGGAGCATAACCGGAG
sglfngrl 2 GGTATTCCCAGCATACGACA
sglrfl_1 CTGTAGGTTATACAGATCAG
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sgirfl_2 CGGAGCTGGGCCATTCACAC
sgPtpn2_1 AAGAAGTTACATCTTAACAC
sgPtpn2_2 TGCAGTGATCCATTGCAGTG
sgNdufal_1  TGTACGCAGTGGACACCCCG
sgNdufal_2  CGCGTTCCATCAGATACCAC
sgNdufa2_1  GCAGGGATTTCATCGTGCAA
sgNdufa2_2  ATTCGCGGATCAGAATGGGC

sgStatl_1 GGATAGACGCCCAGCCACTG
sgStatl_2 TGTGATGTTAGATAAACAGA
sgOstc_1 GCGTACACCGTCATAGCCGA
sgOstc_2 TCTTACTTCCTCATTACCGG

sgCnbp_1 AGGTAAAACCACCTCTGCCG

sgCnbp_2 GTTGAAGCCTGCTATAACTG
587

588  Flow cytometry

589  Cells were harvested at the indicated times post-IFNy stimulation by scrapping to ensure intact
590  surface proteins. Cells were pelleted and washed with PBS before staining with TruStain FcX
591  anti-mouse CD16/32 (Biolegend 101319) or TruStain FcX anti-human (Biolegend 422301) and
592  LIVE/DEAD Fixable Aqua (Invitrogen L34957) per the manufacturer's instructions. The

593  following antibodies were used as indicated in the figure legends:

594  APC-Fire750 anti-mouse [-A/I-E Antibody, Clone M5/114.15.2 Biolegend 107651

595  PE anti-mouse CD40 Antibody, Clone 3/23 Biolegend 124609

596  Brilliant Violet 421™ anti-mouse CD274 (B7-H1, PD-L1) Antibody, Clone 10F.9G2 Biolegend
597 124315

598  Alexa Fluor® 647 anti-human CD54 Antibody, Clone HCD54, Biolegned 322718

599  PE anti-human CD40 Antibody, Clone 5C3, Biolegned 334307

600  Brilliant Violet 421™ anti-human CD274 (B7-H1, PD-L1) Antibody, Clone 29E.2A3, Biolegend
601 329713

602  APC/Fire™ 750 anti-human HLA-DR Antibody, Clone L.243, Biolegend 307657
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603

604  For intracellular cytokine staining, cells were treated with brefeldin A (Biolegend 420601) for 5
605  hours before harvesting. Following staining and fixation, cells were permeabilized (Biolegend
606  421002) and stained according to the manufacturer's protocol using the following antibodies:
607  PE anti-mouse IFN-y Antibody, Biolegend 505807

608

609  Surface protein expression was analyzed on either a MacsQuant Analyzer or Cytek Aurora. All
610 flow cytometry analysis was done in FlowJo V10 (TreeStar).

611

612  Chemical inhibitors

613  All chemical inhibitors were used for the duration of cell stimulation unless otherwise stated.
614  Rotenone (Sigma R8875) was resuspended in DMSO and used at 10uM unless indicated

615  otherwise in the figure legend. Oligomycin (Cayman 11342) was resuspended in DMSO and
616  used at 2.5uM unless otherwise indicated. CCCP (Cayman 25458) was resuspended in DMSO
617  and used at 1.5uM unless indicated otherwise. 1400W hydrochloride (Cayman 81520) was

618  resuspended in culture media, filter sterilized and used immediately at 25uM unless otherwise
619 indicated. N-acetyl-L-Cysteine (NAC, Cayman 20261) was resuspended in culture media, filter
620  sterilized and used immediately at 10mM. DMOG (Cayman 71210) was resuspended in DMSO
621  and used at 200uM. UK5099 (Cayman 16980) was resuspended in DMSO and used at 20uM. 2-
622  deoxy-D-Glucose (2DG, Cayman 14325) was resuspended in culture media, filter sterilized and
623  used at ImM or at the indicated concentrations immediately. MitoTEMPO hydrate (Cayman
624  16621) was resuspended in DMSO and used at the indicated concentrations.

625
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For experiments that used defined minimal media with carbon supplementation, D-galactose,
sodium pyruvate, and D-glucose were used at 10mM in DMEM without any carbon (Gibco
A1443001). For establishment of macrophage cell line with diminished mitochondrial mass,
cells were continuously cultured in linezolid (LZD) (Kind gift from Clifton Barry) for 4 weeks at
50 pg/mL or DMSO control. Both LZD-conditioned and DMSO control lines were
supplemented with uridine at 50 pg/mL. Prior to experimentation, cells were washed with PBS

and cultured without linezolid for at least 12 hours.

ELISA and nitric oxide quantification

The following kits were purchased from R and D Systems or Biolegend for quantifying protein
for cell supernatants:

Mouse IL-6 DuoSet ELISA (DY406) or Biolegend ELISAmax (431301)

Mouse TNF-alpha DuoSet ELISA (DY410) or Biolegend ELISAmax (430901)

Mouse IFN-gamma DuoSet ELISA (DY485)

Human IL-1 beta/IL-1F2 DuoSet ELISA (DY201)

Human TNF-alpha DuoSet ELISA (DY210)

Nitric oxide was quantified from cell supernatants using the Griess Reagent System according to
the manufacturer’s instructions (Promega G2930). For these experiments, cell culture media

without phenol red (Gibco A1443001 or Gibco 31053028).

RNA isolation and quantitative real-time PCR
To isolate RNA, cells were lysed in TRIzol (15596026) according to manufacturer's instructions.

Chloroform was added to lysis at ratio of 200uL chloroform per ImL TRIzol and centrifuged at
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12,000 x g for 20 minutes at 4C. The aqueous layer was separated and added to equal volume of
100% ethanol. RNA was isolated using the Zymo Research Direct-zol RNA extraction Kkit.
Quantity and purity of the RNA was checked using a NanoDrop and diluted to Sng/uL in
nuclease-free water before use. Quantitative real-time PCR was performed using NEB Luna®
Universal One-Step RT-qPCR Kit (E3005) or the Quantitect SYBR green RT-PCR kit (204243)
according to the manufacturer's protocol and run on a Viia7 thermocycler or StepOne Plus
Theromocycler. Relative gene expression was determined with ddCT method with beta-Actin

transcript as the reference.

Primer Sequence

RT Actb-1F GGCTGTATTCCCCTCCATCG

RT Actb-1R CCAGTTGGTAACAATGCCATGT
RT Cd274-1F  GCTCCAAAGGACTTGTACGTG
RT Cd274-1R  TGATCTGAAGGGCAGCATTTC
RT-Ciita-1F AGACCTGGATCGTCTCGT
RT-Ciita-1R AGTGCATGATTTGAGCGTCTC
RT-Gapdh-1F TGGCCTTCCGTGTTCCTAC
RT-Gapdh-1R  GAGTTGCTGTTGAAGTCGCA

Quantification of mitochondrial genomes

Genomic DNA was isolated from cell pellets using the DNeasy Blood and Tissue Kit (Qiagen
69504). Quantitative PCR was run using NEB Luna® Universal One-Step RT-qPCR without the
RT enzyme mix and run on a Viia7 thermocycler. Relative quantification of mitochondrial
genomes was determined by measuring the relative abundance of mitochondrially encoded gene
Ndl1 to the abundance of nuclear encoded Hk2 as has been described elsewhere(133). All primers

are detailed in attached table.
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Name/Target Sequence

Mm-NdI1-1F  CTAGCAGAAACAAACCGGGC
Mm-NdI-1R  CCGGCTGCGTATTCTACGTT
Mm-Hk2-1F  GCCAGCCTCTCCTGATTTTAGTGT

Mm-Hk2-1R  GGGAACACAAAAGACCTCTTCTGG
666

667 Immunoblot

668 At the indicated times following stimulation, cells were washed with PBS once and lysed in on
669 ice using the following buffer: 1% Triton X-100, 150mM NaCl, 5mM KCI, 2mM MgCI12, ImM
670  EDTA, 0.1% SDS, 0.5% DOC, 25mM Tris-HCI, pH 7.4, with protease and phosphatase inhibitor
671  (Sigma #11873580001 and Sigma P5726). Lysates were further homogenized using a 25g needle
672  and cleared by centrifugation before quantification (Pierce™ BCA Protein Assay Kit, 23225).
673  Parallel blots were run with the same samples, 15ug per well. The following antibodies were

674  used according to the manufacturer's instructions:

675  Purified anti-STAT1 Antibody Biolegend Clone A15158C

676  Purified anti-STAT1 Phospho (Ser727) Antibody, Biolegend Clone A15158B

677  Phospho-Statl (Tyr701) Rabbit mAb, Cell Signaling Technology Clone 58D6

678  Jak2 XP® Rabbit mAb, Cell Signaling Technology Clone D2E12

679  Phospho-Jak2 (Tyr1007/1008) Antibody, Cell Signaling Technology #3771S

680  Anti-mouse B-Actin Antibody, Santa Cruz Biotechnology Clone C4

681  Biotin anti-mouse CD119 (IFN-y R a chain) Antibody, Biolegend Clone 2E2

682  Goat anti-Rabbit IgG (H+L) Secondary Antibody, HRP, Invitrogen 31460

683  Goat anti-Mouse IgG (H+L) Secondary Antibody, HRP, Invitrogen 31430

684  HRP-Conjugated Streptavidin, Thermo Scientific N100

685
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Bioenergetics Assay

Relative glycolytic and respiratory capacity were determined as has previously been
demonstrated(134). Briefly, cellular ATP levels were determined using CellTiter-Glo® 2.0 Cell
Viability Assay (Promega G9241) according to the manufacturer's protocol. Cells were grown in
the conditions indicated in the figure legends for 4 hours unless stated otherwise. ATP levels

were normalized according to the figure legend.

T cell activation assay

We used a previously established co-culture system to assess antigen presentation to Ag-specific
T cells. Briefly, C7 CD4+ T cells were isolated from transgenic C7 mice, respectively and
stimulated in vitro with irradiated splenocytes pulsed with the ESAT-61-15 peptide, in complete
media (RPMI with 10% FBS) containing IL-2 and IL-7. After the initial stimulation, the T cells
were split every two days for 3-4 divisions and rested for two to three weeks. After the initial
stimulation, the cells were cultured in complete media containing IL-2 and IL-7. The following
synthetic peptide epitopes were used as antigens from New England Peptide (Gardener, MA):
ESAT-61-15 (MTEQQWNFAGIEAAA).

For use in co-culture assay, T cells were added to peptide-pulsed macrophages as described in
figure legends at an effector to target ratio of 1:1. Following 1 hours of co-culture, brefeldin A

was added for 5 hours before assessing intracellular cytokine production by ICS.

Quantification of subunit effects on N-module
We used publicly available proteomics data in which the protein abundance of all complex I

subunit was measured when each subunit was genetically deleted(93). As determined empirically
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709 by the authors, the N-module components included: NDUFA1, NDUFA2, NDUFS1, NDUFV2,
710 NDUFA6, NDUFS6, NDUFA7, NDUFS4, and NDUFV3. The relative effect of each subunit
711  (using a knockout of that subunit) on N-module protein stability was calculated as the sum of the
712 median log2 ratio of each of the above mentioned subunits, minus the median log2 ratio of itself
713 (since it is knocked out).

714

715  Statistical Analysis and Figures

716  Statistical analysis was done using Prism Version 8 (GraphPad) as indicated in the figure

717  legends. Data are presented, unless otherwise indicated, as the mean +/- the standard deviation.
718  Figures were created in Prism V8 or R (Version 3.6.2). MAGeCK-MLE was used as part of

719  MAGeCK-FLUTE package v1.8.0.

720
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Figure Legends:

Figure 1. Forward genetic screen to identify regulators of the IFNy response. A)
Representative histograms of the three selected cell surface markers targeted in macrophage
CRISPR screens: MHCII, CD40, and PD-L1. Blue histograms indicate expression of each
marker in unstimulated macrophages and alternatively colored histograms show expression
following 24 hour stimulation with recombinant murine IFNy (10ng/mL). Gates used for sorting
“high” and “low” populations are shown. B) Schematic of CRISPR screens. C) Relative
enrichment of select positive control (points) and all 1000 non-targeting control sgRNAs (gray
distribution) are plotted as a function of their log2 fold enrichment (“high” vs “low” bins). Data
are from both replicate selections for each sgRNA (sgRNA denoted by shape). D) Heatmap of 3
scores from CRISPR analysis, ordered according to k-means clustering (k=8) of the 5% most
enriched or depleted genes in each screen. E) Macrophages were stimulated for 24 hours with
TNF (25ng/mL), IFNy (10ng/mL) or both TNF and IFNy. Mean fluorescence intensity (MFI) of
CD40 and MHCII were quantified by flow cytometry. Data are mean + the standard deviation for
3 biological replicates. Representative scatter plot from two independent experiments is
provided. F) Macrophages transduced with sgRNA targeting Statl, Ostc, Cnbp, or a NTC control
were cultured with or without IFNy for 24 hours and cell surface expression of PD-L1 (MFI) was
quantified by flow cytometry. For each genotype, data are the mean of cell lines with two
independent sgRNAs + the standard deviation. Data are representative of three independent
experiments. Statistical testing in panel C was performed with Tukey’s multiple comparisons
test. Within each screen, the sgRNA effects for each gene were compared to the distribution non-

targeting control sgRNAs. Statistical testing in panels E and F was performed by one-way
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756  ANOVA with Holm-Sidak multiple comparisons correction. p values of 0.05, 0.01, 0.001, and
757  0.001are indicated by *, ** *** and ****

758

759  Figure 2. Global analysis of knockout libraries implicates mitochondrial complex I'is a

760  positive regulator of the IFNy response. A) Rank plot of the combined analysis for all genome-
761  wide knockout screens. Gene ranks (x-axis) were determined by maximal likelihood estimation
762  (MLE). Known positive (left) and negative (right) regulators of IFNy-mediated signaling are

763  highlighted. The g-value (false discovery rate) for each gene is indicated by dot size (-Logio

764  FDR). B). Gene set enrichment analysis (GSEA) is based on the ranked list of positive

765  regulators. Non-redundant pathways with a normalized enrichment score (NES) exceeding 2.0
766  and a false discovery rate (FDR) below 0.025 are labeled. C) Relative enrichment (log2 fold

767  change between “high” and “low” bins) of genes which comprise the mitochondrial respirasome
768  (GeneOntology 0005746) and were targeted in the CRISPR KO library. Respirasome

769  components are grouped by ETC complex. FDR is based on MAGeCK-MLE. D) Screen-specific
770  enrichment score is plotted for Complex I structural subunits and assembly factors. The

771  statistical enrichment of a gene (e.g. Ndufal) or module (e.g. N) was calculated using a binomial
772  distribution function to calculate the probability that observed sgRNAs under examination would
773 be depleted or enriched given the expected median probability. P values of 0.05, 0.01, 0.001, and
774 0.001are indicated by *, **, *** and **** E) Correlation between the relative effect of each
775  complex I subunit on the structural integrity of the N-module (x-axis) with the relative

776  requirement of each complex I subunit for the IFNy-response (y-axis; 3 score, as in Panel D).
777  The Pearson correlation coefficient (r) was calculated to be 0.6452 (95% confidence interval

778  0.3584 to 0.8207; p-value = 0.0002. As Ndufabl (empty square) is an essential gene, its
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779  detection in the library indicates editing did not eliminate function; therefore, it was excluded
780  from correlation analysis.

781

782  Figure 3. Complex I is necessary for IFNy-induced MHCII and PD-L1 expression.

783  Metabolic phenotypes in macrophage mutants were confirmed using ATP abundance following
784  culture in media containing only (A) glucose or (B) pyruvate. Values are normalized to the

785  average respiratory capacity of non-targeting control macrophages (NTC) and are the mean * the
786  standard deviation for 4 biological replicates. Statistical testing within each condition (with or
787  without IFNy for 24h) was performed by one-way ANOVA with Dunnett’s multiple comparisons
788  correction. (C-F) Non-targeting control (NTC), positive control (sglfngr! and sgPtpn2) and

789  complex I mutant (sgNdufal and sgNdufa2) macrophages were stimulated for 24 hours with
790  recombinant murine IFNy. Plotted values in C and E are the geometric mean fluorescence

791  intensity (MFI) for a given mutant normalized to an internal control present in each well; for
792  each gene, the data are the mean for two independent sgRNAs = the standard deviation.

793  Representative histograms are provided in D and F. Data are representative of >5 independent
794  experiments. G) MHCII MFI of macrophages stimulated with IFNy and treated with rotenone at
795  the indicated concentrations for 24 hours. Mean =* the standard deviation for 2 biological

796  replicates are shown. Data are representative of four independent experiments. H) Left: MHCII
797  MFI on macrophages cultured in complete media (CM) and stimulated with IFNy and the

798  indicated inhibitors for 24 hours. Right: MHCII MFI on macrophages cultured in CM or media
799  containing only pyruvate (Pyr) or citrate (Cit) with or without UK5099 and stimulated with

800  IFNy for 24 hours. Mean = standard deviation for 2 or 3 biological replicates is indicated. Data

801 are representative of four independent experiments. Statistical testing was performed by one-way
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ANOVA with Tukey correction for multiple hypothesis testing. p values of 0.05, 0.01, 0.001,

and 0.001are indicated by *, **, *** and ****,

Figure 4. Diminished mitochondrial function specifically limits IFNy-dependent responses.
A) TNF and IL-6 production by NTC or complex I mutant macrophages stimulated with
Pam3CSK4 for 24 hours was determined by ELISA. Statistical testing between mutant and NTC
macrophages from triplicate samples was performed by ANOVA with Dunnett’s correction for
multiple comparisons. Data are representative of two independent experiments. B) qPCR
determination of relative mitochondrial genomes present per nuclear genome in macrophages
cultured in vehicle (WT) or 50 ug/mL linezolid (LZD). C; values were normalized to reference
nuclear gene hexokinase 2 (Hk2) and plotted as abundance relative to WT. Data were analyzed
by two-way unpaired t-test. C) ATP abundance in control or LZD-conditioned macrophages
cultured in 10mM glucose, galactose or pyruvate. ATP values normalized to mean of 10mM
glucose and plotted as percent. Mean + the standard deviation for 2 biological replicates of each
condition. Differences were tested by two-way ANOVA using the Sidak method to correct for
multiple hypothesis testing. D) MFI of MHCII was determined by flow cytometry on control or
LZD-conditioned macrophages following 24 hour stimulation with IFNy. Mean = the standard
deviation for 2 biological replicates of each condition and representative of two independent
experiments. Differences were tested by two-way ANOVA using the Tukey method to correct
for multiple hypothesis testing. E and F) Secretion of TNF and IL-6 in WT and LZD-conditioned
macrophages following Pam3CSK4 stimulation for 6 hours was quantified by ELISA. Mean +

the standard deviation for 3 biological replicates of each condition and two independent


https://doi.org/10.1101/2020.11.22.393538
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.22.393538; this version posted November 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

824  experiments. Data were analyzed by two-way unpaired t-test. p values of 0.05, 0.01, 0.001, and
825  0.001are indicated by *, **, *** and ****,

826
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Figure 5. Complex 1 is specifically required for IFNy signaling in human cells. A) CD14+
monocytes from healthy human donors were differentiated into macrophages. MFI of cell
surface markers PD-L1, ICAM1, CD40 and HLA-DR was determined by flow cytometry
following stimulation with IFNy and/or inhibition of complex I with rotenone (10uM) for 24
hours. Data are representative of two independent experiments and values are normalized to
donor-specific unstimulated/vehicle control. Mean =+ the standard deviation for 6 biological
replicates of each condition. Differences were tested by two-way ANOVA using the Sidak-Holm
method to correct for multiple hypothesis testing. B and C) Quantification of IL-1B and TNF
production from primary human macrophages, measured by ELISA from cell supernatants
following stimulation. Lines connect values for individual donors treated with vehicle (DMSO,
black squares) or rotenone (empty squares). Differences were tested by repeat-measure two-way
ANOVA using the Sidak-Holm method to correct for multiple hypothesis testing. p values of

0.05,0.01, 0.001, and 0.001are indicated by *, **, #**_ and ****
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Figure 6. Complex I inhibition reduces IFNy receptor activity. A) PD-L1 transcript was
quantified by qRT-PCR using AACt relative to f-Actin in macrophages of the indicated genotype
after stimulation with 10ng/mL IFNy. PD-L1 MFI was determined at the same time points by
flow cytometry. B) Ciita transcript was quantified by qRT-PCR using AACt relative to f-Actin
Gapdh in macrophages of the indicated genotype after stimulation with 10ng/mL IFNy. MHCII
MFI was determined at the same time points by flow cytometry. Data shown are from biological
triplicate samples with technical replicates for RT-PCR experiments and are representative of
two independent experiments. C) sgNTC (left) or sglrfI (right) macrophages were cultured for
24 hours with or without IFNy stimulation. At 2 hour intervals post-IFNy stimulation, rotenone
was added. After 24 hours of stimulation, cells were harvested and surface expression of MHCII
(MFI) was quantified by flow cytometry. Data are mean + the standard deviation for 3 biological
replicates and are representative of two independent experiments. Statistical testing was
performed by one-way ANOVA with Tukey correction for multiple hypothesis testing. D)
Control (NTC) or sgNdufal macrophages were stimulated with IFNy for the indicated times, and
cell lysates analyzed by immunoblot for STAT1 abundance and phosphorylation (Y701 and
S727), JAK2 abundance and phosphorylation (Y1007/8), and IFNGR1. Beta-Actin was used as a
loading control. Data are representative of three independent experiments. Results shown are

from a single experiment analyzed on three parallel blots. p values of 0.05, 0.01, 0.001, and

0.001are indicated by *, **, *** and ****,

Figure 7. Mitochondrial respiration in antigen presenting cells is required IFNy-dependent
T cell activation. A) Cell surface expression of MHCII (MFI) in macrophages (MF) or dendritic

cells (DC) derived from conditionally immortalized progenitor lines. IFNy was added for 24
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863  hours where indicated. Cells were treated with vehicle (DMSO), rotenone (10uM), oligomycin
864  (OM, 2.5uM), or CCCP concurrent with IFNy. Data are three biological replicates and are

865  representative of at least two independent experiments. B) Contour plot of macrophage (top row)
866  or dendritic cell (bottom row) MHCII expression in the absence of (left column) or following
867  (right column) stimulation with IFNy for 24 hours. Representative samples were selected from
868  (A). The percent MHCII positive are indicated for each of the conditions. C) CD4+ T cell

869  activation as measured by the percent of live cells positive for IFNy by intracellular cytokine
870  staining. Prior to co-culture with T cells, APCs were stimulated with the indicated combinations
871  of IFNy (10ng/mL), and/or rotenone (10uM) for 24 hours. After washing and pulsing with

872  ESAT-61-15 at the indicated concentrations (nm.), T cells were added to APCs at an effector to
873  target (E:T) ratio of 1:1, and co-cultured for a total of 5 hours. Data are representative of two
874  independent experiments. Data are mean + the standard deviation for 3 biological replicates.
875  Statistical testing was performed by one-way ANOVA with Tukey correction for multiple

876  hypothesis testing. D and E) sgNdufal or NTC macrophages were differentiated from

877  immortalized progenitors, and mixed at the ratios indicated (labeled as percent of KO cells).
878  Mixed cultures were stimulated with IFNy for 24 hours, peptide loaded, and co-cultured with
879  CD4+ T cells (E:T 1:1). Production of IFNy was measured by ICS and quantified as the percent
880  of cells positive for staining by flow cytometry. Representative contour plots (D) and

881  quantification (E) of the experiment are shown. Data shown are for biological triplicate samples
882  and are representative of two independent experiments. p values of 0.05, 0.01, 0.001, and

883  0.001are indicated by *, **, *** and ****,

884
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885

886  Supplementary Figure Legends:

887  Figure S1, Related to Figure 3. A) sgNTC, sgNdufal, sgNdufa?2 cells cultured in complete

888  media and treated with or without oligomycin (2.5uM) for 4 hours. Relative ATP levels were
889  determined as in Figure 2A B) Intracellular ATP levels quantified as relative light units (RLU)
890  using CellTiterGlo2.0 (Promega) for macrophages in specified growth conditions for 4 hours.
891  Concentrations of carbon source and inhibitors are indicated in Materials and Methods. C)

892  Macrophages were cultured in either glucose or galactose and stimulated with IFNy for 24 hours.
893  Following stimulation, the proportion of cells with MHCII expression was determined by flow
894  cytometry. D) Macrophages were cultured in conditions as described in Figure 4H. For each

895  condition, cells were stimulated with IFNy or IFNy and N-acetylcysteine (NAC) for 24 hours
896  after which cell surface levels of MHCII were quantified. E) Control or complex I mutant

897  (sgNdufa2) macrophages were stimulated with IFNy for 24 hours with increasing doses of

898  mitochondrial reactive oxygen species scavenger MitoTempo. For each concentration, values are
899  plotted as a fold change relative to no scavenger; Mean + the standard deviation for 2 biological
900 replicates of each condition. F) Control or complex I deficient macrophages were stimulated

901  with IFNy for 24 hours with or without the addition of DMOG or 1400W. Following stimulation,
902 the proportion of cells with MHCII expression was determined by flow cytometry. G) Nitric

903  oxide was measured using Griess Reagent System (Promega) from cell supernatants following
904  stimulation with IFNy and Pam3CSK4 for 24 hours with or without the addition of DMOG or
905  1400W. Relative nitric oxide levels were calculated as a percent relative to control (IFNy and

906  Pam3CSK4 with DMSO). All data are representative of at least two independent experiments.
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Statistical testing was performed using one-way ANOVA with Holm-Sidak multiple comparison

correction. p values of 0.05, 0.01, 0.001, and 0.001are indicated by *, **, *** and ****,

Figure S2, Related to Figure 7. A-C) Myeloid progenitors cells were conditionally
immortalized by transducing murine bone marrow with an estrogen-dependent Hoxb8 transgene
which maintains stem-like properties. Following differentiation of progenitors into macrophages
using M-CSF enriched conditioned media, macrophages were stimulated with IFNy with or
without rotenone. 24 hours after stimulation, cell surface levels of (A) MHCII, (B) CD40, (C)
and PD-L1 were quantified by flow cytometry. Data are representative of 3 independent
experiments and are the mean * the standard deviation for 2 biological replicates. Statistical
testing was performed by one-way ANOVA with Tukey correction for multiple hypothesis
testing. D-F) As in panels A-C, macrophages from either immortalized macrophage progenitors
or primary bone marrow were stimulated with IFNy with or without rotenone or oligomycin. 24
hours after stimulation, cell surface levels of (D) MHCII, (E) CD40, (F) and PD-L1 were
quantified by flow cytometry. G). Wild-type or ANdufal macrophages derived from Hoxb§8-
immortalized bone marrow progenitors were cultured in the specified media and inhibitor
condition before total intracellular ATP was quantified by CellTiterGlo2.0. For each genotype,
values are relative to “glucose” control. Mean = the standard deviation for 2 biological replicates

of each condition. p values of 0.05, 0.01, 0.001, and 0.001are indicated by *, **, *** and ****,
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