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Abstract 
Insertions and deletions (indels) are common molecular evolutionary events. However, 

probabilistic models for indel evolution are under-developed due to their computational 

complexity. Here we introduce several improvements to indel modeling: (1) while  previous 

models for indel evolution assumed that the rates and length distributions of insertions and 

deletions are equal, here, we propose a richer model that explicitly distinguishes between the 

two; (2) We introduce numerous summary statistics that allow Approximate Bayesian 

Computation (ABC) based parameter estimation; (3) We develop a neural-network model-

selection scheme to test whether the richer model better fits biological data compared to the 

simpler model. Our analyses suggest that both our inference scheme and the model-selection 

procedure achieve high accuracy on simulated data. We further demonstrate that our proposed 

indel model better fits a large number of empirical datasets and that, for the majority of these 

datasets, the deletion rate is higher than the insertion rate. Finally, we demonstrate that indel 

rates are negatively correlated to the effective population size across various phylogenomic 

clades. 
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Introduction 
Insertions and deletions (indels) shape genes and genomes and are fundamental in molecular 

evolution research (Cartwright, 2009). Indels are of great importance for ancestral sequence 

reconstruction (Ashkenazy et al., 2012; Vialle, Tamuri, & Goldman, 2018), and substantially 

contribute to divergence among species (Anzai et al., 2003; Britten, 2002; Britten et al., 2003; 

Wetterbom et al., 2006). Fitch (1973) was the first to observe that deletions may be more 

common than insertions, however, this observation was based on very few protein sequences. 

De Jong and Ryden (1981) analyzed a much larger set of proteins, and suggested that deletions 

are four fold more frequent than insertions, and that this phenomenon is an inherent property 

of the replication mechanism. In support for this hypothesis, Graur et al. (1989) found over 

three times more deletions than insertions in processed human and rodent pseudogenes, 

suggesting that it is mutations rather than selection that drive the excess of deletion over 

insertion events. This deletion bias was confirmed by numerous other studies (Kuo & Ochman, 

2009; Mira et al., 2001; Ogata et al., 1996; Ophir & Graur, 1997; Petrov et al., 1996; Fan et al., 

2007; Van Passel et al., 2007; Zhang & Gerstein, 2003).  

Regarding the distribution of indel length, it was repeatedly observed that in both 

proteins and DNA sequences, single-site indels are the most frequent and the occurrences of 

indels decline monotonically as a function of their length (Benner, Cohen, & Gonnet, 1993; 

Golenberg, Clegg, Durbin, Doebley, & Ma, 1993; Gu & Li, 1995; Pascarella & Argos, 1992; 

Qian & Goldstein, 2001). Two distributions were proposed for the indel length: geometric and 

Zipfian. It was previously shown that the Zipfian distribution better fit biological datasets, both 

for proteins (Benner et al., 1993) and for non-coding regions (Saitou & Ueda, 1994). Gu and 

Li (1995) found only small differences in the size distribution of deletions and insertions. When 

insertions and deletions were treated together, the parameter of the Zipfian length distribution 

varied from 1.70 in primate globin non-coding regions to 1.93 in non-coding mitochondrial 

DNA. Of note, these early studies were based on small datasets, such that only a few indel 

events were considered. In another study that analyzed coding and non-coding indels among 

18 mammalian genomes, ,differences were found both among species and between insertions 

and deletions: the Zipfian parameter ranged from 1.059 to 1.883, when modeling the length 

distribution of deletions in chimpanzee to insertions in rabbit, respectively (Fan et al., 2007). 

In all these studies, the indel parameters were inferred based on indel counts, and thus only 

indels which could be reliably aligned among the analyzed sequences were included.  
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Probabilistic-based models for indels are far less developed compared to substitution 

models. This might be the case since indel models violate the assumption of site independence, 

which complicates the computation of the likelihood function (Cartwright, 2005; Fletcher & 

Yang, 2009). More elaborate methodologies to estimate indel parameters include Cartwright’s 

lambda.pl Perl script released with the DAWG simulation package (Cartwright, 2005). It 

assumes a Poisson distribution for indel rates and estimates the distribution using the maximum 

likelihood paradigm. The method uses linear regression to find the best fitted Zipfian 

distribution for the indel length and takes the average length of the input sequences as the root 

length. Two additional methods are based on Hidden Markov Model (HMM) between pairs of 

divergent sequences (Cartwright, 2009; Lunter, 2007). In Lunter (2007), biases introduced by 

alignment programs, such as ‘gap attraction’, the tendency of alignment algorithms to merge 

two independent gaps, were explicitly accounted for and gap lengths were assumed to follow 

a mixture of geometric distributions. Cartwright (2009) used expectation maximization 

algorithm based on a pairwise HMM for the inference of model parameters. This method 

assumes independence between indel events and ignores overlapping indels. These methods 

were restricted to pairwise sequences, and thus could not distinguish between insertion and 

deletion rates. 

We have previously developed SPARTA (Karin et al., 2015), a simulation-based 

algorithm to learn indel parameters from input MSAs. SPARTA is an ad-hoc methodology that 

is not rooted in probabilistic theory. We later developed SPARTA-ABC (Karin et al., 2017), 

which is based on the Approximate Bayesian Computing (ABC) methodology, a statistically 

rigorous methodology for the inference of model parameters. The ABC framework, first 

introduced in molecular evolutionary studies for population genetics (Beaumont et al., 2002), 

has been utilized successfully to estimate parameters in complex models, in which the 

likelihood function is challenging to compute. ABC was successfully employed, for example, 

for estimation of the effective population size from a sample of microsatellite genotypes 

(Tallmon et al., 2008), estimation of divergence times and admixture by analyzing whole 

genomes of chimpanzee and bonobo populations (Kuhlwilm et al., 2019), and inference of 

relevant parameters relating to selective sweeps; that is, selection coefficient, time of selection 

onset , recombination rate and mutation rate at neutral loci (Przeworski, 2003).  

The underlying indel probabilistic model in SpartaABC assumes that the insertion rate 

(number of insertions events per substitution event) equals the deletion rate. It further assumes 

that the length of an insertion event (number of newly introduced nucleotides or amino acids) 
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has the exact same distribution as the length of a deletion event. As stated above, these 

assumptions are known to be an oversimplification of indel dynamics. In this study, we develop 

a more realistic alternative by assigning different parameters for insertions and deletions. We 

also compare two model-selection schemes to determine whether the richer model better 

describes indel evolutionary dynamics compared to the simple model: a classic ABC approach 

in which the estimated posterior distribution of each model is approximated by the relative 

frequency of simulations generated from each model (Pritchard et al., 1999), as opposed to a 

newly developed neural-network-based-approach, which was previously developed in the field 

of population genetics (Mondal et al., 2019). We show that the latter model selection scheme 

is more accurate than the previous one. Comparing these two model-selection schemes enabled 

us to demonstrate that the richer model fits a large number of empirical biological datasets, 

lending further statistical support for the hypothesis that deletion dynamics are more rampant 

than those of insertions. Finally, we studied how indel evolutionary dynamics varies among 

different phylogenetic groups. This analysis allowed us to confirm previous results from Sung 

et al. (2016), who demonstrated a negative correlation between indel rate and effective 

population size. This negative correlation corroborates the drift barrier hypothesis, i.e., natural 

selection is limited by the extent of drift, whose intensity is inversely proportional to the 

effective population size (Sung et al., 2016; Sung et al., 2012). 

Results 

Indel models 

We describe two indel models, a simple indel model (SIM) and a rich indel model (RIM), 

which alleviates some of the assumptions made in SIM. The parameters of both models are 

summarized in table 1. In SIM, insertions and deletions are assumed to have the same rates and 

length distributions. Thus, SIM has three parameters: (1) Indel-to-substitution-rate ratio 

(𝑅_𝐼𝐷), note that this parameter quantifies the sum of the insertion and the deletion rates, which 

are assumed to be equal in this model; (2) The insertion length distribution parameter (𝐴_𝐼𝐷), 

which dictates the distribution of the lengths of newly inserted or deleted segments. Qian & 

Goldstein (2001) showed that the frequencies of indels that are several dozens of amino acid 

long are lower than their expected frequencies, when the expectation is computed based on the 

length distribution of shorter indels. Thus, in our models, it is assumed that this length is 

distributed as truncated Zipfian (power-law) with maximum indel size of 50 amino acids and 

a rate parameter 𝐴_𝐼𝐷 (𝐴_𝐼𝐷 stands for the “a” parameter of the Zipfian distribution for 
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insertion/deletion length). (3) The sequence length at the root of the tree (𝑅𝐿). In RIM, different 

indel parameters are assigned to insertions and deletions, resulting in five free parameters. In 

addition to the root length, two parameters dictate the indel rates, one for insertions (𝑅_𝐼) and 

one for deletions (𝑅_𝐷). Similarly, two "a" parameters are assumed, one dictating size 

distribution for insertions (𝐴_𝐼)  and one for deletions (𝐴_𝐷). 

Prior distributions of model parameters 

Model parameters are inferred using ABC. In this Bayesian inference scheme, prior 

distributions over model parameters have to be chosen. We assume the following prior 

distribution: (1) The indel to substitution rates are assumed to be uniformly distributed in the 

range [0, 0.1] for R_ID (SIM) and [0, 0.05] for R_I and R_D (RIM). (2) The parameters that 

dictate the indel length distribution (𝐴_𝐼𝐷 for SIM, and 𝐴_𝐼 and 𝐴_𝐷 for RIM), are assumed to 

be uniformly distributed in the range [1.001, 2]. (3) The 𝑅𝐿 parameter range is determined 

according to the input sequences, as follows: let 𝑙𝑠, 𝑙𝑙, be the length or the shortest and longest 

sequences, respectively, of the unaligned sequences, then the range of 𝑅𝐿 is assumed to be 

uniformly distributed in the range [0.8𝑙𝑠,1.1𝑙𝑙]. We note that increasing the range of the prior 

distributions had little effect on the results (not shown). 

 

Inference outline 

The ABC inference scheme relies on several components/steps: (1) Generating simulations; 

(2) Computing summary statistics; (3) Assigning summary statistics weights; (4) Accepting a 

subset of the simulations; and (5) Inferring the posterior distributions and point estimates. 

These components are described in detail below. Here, we first present a general outline of the 

algorithm. The input required to infer the model parameters for a dataset in question is a set of 

multiple sequence alignment (MSA) and its associated (rooted) phylogenetic tree, including 

the topology and its associated branch lengths. Next, a large set of simulated MSAs is generated 

based on model parameters sampled from the prior along the input phylogenetic tree. Next, 

summary statistics are computed for both the input MSA and each of the simulated MSAs. 

Summary statistics weights are next computed from a subset of these simulations and are then 

used to compute distances between the summary statistics of the input MSA and each of the 

simulated MSAs. A small subset of simulations, for which the distance is very small, is kept. 

Intuitively, the kept simulations resemble the input data in terms of indel dynamics and can be 
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used to get a point estimate of the model parameters of the dataset in question. The distribution 

of model parameters used to generate this subset is a good approximation for their posterior 

distribution (Sisson, 2018). Thus, the last step of the algorithm is to infer posterior distribution 

and point estimate for all model parameters. 

 

Simulator 

Existing tools for simulating sequences such as DAWG 2.0 (Cartwright, 2005) and INDELible 

(Fletcher & Yang, 2009) account for both substitution and indel events. For the purpose of 

inferring the relevant summary statistics, the information regarding substitutions can be 

ignored. Thus, simulations can be performed without substitutions, thereby reducing 

simulation running times, which are a major component of the ABC inference scheme. To this 

end, we developed an indel simulator for SIM and RIM that ignores substitution events.  

 

Summary statistics 

The 27 summary statistics calculated in the inference scheme are described in table 2. This list 

extends the 11 summary statistics previously used by Karin et al. (2017) and also includes 

summary statistics that can help to differentiate insertion from deletion events. For example, 

the 13th summary statistic, i.e., number of MSA columns that contain a single gap, provides 

information on deletion rates, as a column with a single gap typically reflects a single deletion 

event. Another example is the 17th summary statistic, which counts the number of MSA 

columns in which a single residue gap is found in all but one sequence. Such a column, most 

likely, reflects an insertion of a single residue in a branch leading to a leaf of the tree. Notably, 

such a column may result from a deletion event as well. The ABC approach does not assume 

that this is certainly an insertion event, but rather, all summary statistics are considered together 

and their values provide information regarding the posterior probability of the model 

parameters. 

 

Computing weights for the summary statistics 

Let 𝐷𝑖 and 𝐷𝑠 denote an input MSA and a simulated MSA, respectively. Let 𝑆(𝐷𝑖) and 𝑆(𝐷𝑠) 

be summary statistic vectors associated with 𝐷𝑖 and 𝐷𝑠, respectively. In order to decide whether 
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or not to keep a simulation, a weighted Euclidean distance is computed between 𝑆(𝐷𝑖) and 

𝑆(𝐷𝑠) as follows:  

𝑑(𝑆(𝐷𝑖), 𝑆(𝐷𝑠)) = √∑ (𝜔𝑗(𝑆(𝐷𝑖)𝑗 − 𝑆(𝐷𝑠)𝑗))
2

27

𝑗=1

 

where the subscript 𝑗 is the summary statistic index and 𝜔𝑗 denotes the weight of the 𝑗𝑡ℎ 

summary statistic. The various summary statistics differ in their magnitude, so different 

weights are required to ensure that all the summary statistics contribute approximately equally 

to the distance. Hence, the weight of each summary statistic is set as 𝜔𝑗 =
1

𝜎𝑗̂
, where 𝜎𝑗̂ is the 

estimated standard deviation of the 𝑗𝑡ℎ summary statistic across 𝐵 burn-in simulations with 

indel parameter values drawn at random from the prior. We set 𝐵 = 10,000 because for this 

value, the vector of weights practically converged in all cases (not shown). 

 

Acceptance/rejection criterion 

The weighted Euclidian distance is calculated for Ns simulations. By default, Ns = 100,000 

(using 1,000,000 simulations did not significantly improve the performance; not shown). The 

set of accepted simulations are chosen such that the rate of accepted simulations is p of the total 

simulations (Beaumont et al., 2002). In this study the p parameter was set to 0.1% 

(100/100,000) of the simulations (0.1% yielded the best performance in a small-scale 

simulation study, not shown). 

 

Inference of posterior distributions and point estimates 

The posterior distribution is approximated by the distribution of the parameter values of the 

accepted simulations. In the classic ABC framework, point estimates for model parameters are 

obtained by averaging the parameters of the accepted simulations (Tavaré et al., 1997). It was 

previously shown that alternative methodologies, such as regression, can yield more accurate 

point estimates (Beaumont et al., 2002; Bertorelle et al., 2010). Blum et al. (2013) have 

previously suggested to combine machine-learning algorithms and ABC for the accurate 

inference of model parameters. In this work, we test the applicability of machine-learning 
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regression models for inferring indel parameters. To this end, we compared three approaches: 

a classic ABC approach in which the parameters of the accepted simulations are averaged 

(Beaumont et al., 2002); and two machine-learning algorithms named Ridge regression (Hoerl 

& Kennard, 1970) and Lasso regression (Tibshirani, 1996). In the machine-learning 

approaches, we train a regression model for each model parameter. The training data are the 

accepted simulations and each training data point is a vector of summary statistics (normalized 

to have zero mean and standard deviation of one) and its associated known parameter, i.e., the 

parameter that was used to simulate the training data. The regularization parameter for the 

machine-learning algorithms is tuned per indel parameter by a 10-fold cross validation 

procedure. To infer each model parameter of an empirical data, the vector of summary statistics 

is given as input to the corresponding trained regression model. 

Inference accuracy on simulated data  

We tested the accuracy of SpartaABC in inferring model parameters by simulating datasets 

with model parameters sampled from the prior, based on a specific tree topology and an MSA 

sampled from the EggNOG database (Huerta-Cepas et al., 2019). The MSA contains seven 

sequences, with a mean sequence length of 1,384 amino acids. As described in the section 

'inference of posterior distributions and point estimates', we tested three different inference 

procedures. To quantify inference accuracy, we computed the 𝑅2 values between the true 

parameters and the inferred ones, over 200 random different parameter combinations sampled 

from the prior distribution. The obtained 𝑅2 values for the Lasso regression were 0.92, 0.97, 

0.96, 0.81, and 0.83 for 𝑅𝐿, 𝑅_𝐼, 𝑅_𝐷, 𝐴_𝐼, and 𝐴_𝐷, respectively (fig. 1). Similar results were 

obtained with Ridge regression and lower 𝑅2 values were obtained for the averaging-based 

inference (supplementary table S1, Supplementary Material online). We extended this 

simulation analysis, repeating the simulation scheme for 12 additional datasets that differ from 

the one presented in figure 1 with respect to tree topologies, total branch lengths, number of 

species, and sequence length (supplementary table S2, Supplementary Material online). These 

simulations demonstrate that the estimates of the parameters controlling the indel rates and root 

length (𝑅_𝐼, 𝑅_𝐷 and 𝑅𝐿) are more accurate than those dictating the length distribution of indels 

(𝐴_𝐼 and 𝐴_𝐷). As expected, the inference accuracy strongly depends on total branch lengths 

(supplementary fig. S1, Supplementary Material online). Our results further suggest that 

SpartaABC provides relatively unbiased estimates for all model parameters, as the slope of the 

regression fit was not significantly different from 1.0 (supplementary table S2, Supplementary 

Material online). We conclude that SpartaABC provides accurate estimates of model 
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parameters, most notably for the indel rates and the root length, as long as sufficient indels 

have accumulated to allow reliable inference. 

 

Feature importance 

We use the terms “features” and “summary statistics” interchangeably. The impact of each 

summary statistic on the inference accuracy of SpartaABC was examined using simulations. 

SpartaABC computes 27 summary statistics for the input MSA and for each simulated MSA 

(table 2). The importance of each summary statistics for the inference accuracy of each of the 

five inferred parameters can be obtained from the Lasso regression coefficients. In Lasso 

regression, different features are assigned different weights, with greater penalty to high 

weights. This penalty prevents overfitting the data, practically reducing the number of features 

in each regression analysis (Tibshirani, 1996). Thus, the weight of each feature indicates its 

importance. A certain feature may be important for the inference of one parameter, but 

unimportant (zero weight) for another parameter. Moreover, some variability of feature 

importance is expected, to a certain degree, among datasets.  

We computed a feature-importance score for each summary statistics for each of the 

five RIM parameters (supplementary fig. S2, Supplementary Material online). As expected, the 

most important feature for root length estimate was the alignment length. The second and third 

most important features were the lengths of the longest and the shortest sequences, respectively. 

For the insertion and deletion rate parameters, the most important summary statistics were 

those related to the number of gaps and alignment length. For example, the most important 

summary statistic for the 𝑅_𝐼 parameter was the total number of gaps in the alignment, while 

the most important summary statistic for the 𝑅_𝐷 parameter was the number of unique gaps 

(when counting unique gaps, those starting and ending at the same alignment position in more 

than one sequence, are only counted once). For the 𝐴_𝐼 parameter, which dictates the size 

distribution of newly inserted sequences, the most important summary statistic was the average 

gap size, and the second most important summary statistic was the number of gaps of length 

one. For the 𝐴_𝐷 parameter, which dictates the size distribution of new deletion events, the 

most important summary statistic was the number of gaps of length one in a single sequence. 

The feature importance analysis demonstrates the benefit of using multiple features for the 

accurate inference of parameters used in indel models. Furthermore, the regularization property 

of the Lasso regression methodology, may partially explain the improved accuracy of the 
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Lasso-based inference compared to averaging over the posterior samples (supplementary table 

S1, Supplementary Material online). 

 

Model selection using neural networks 

To compare the fit of different models, such as the SIM and RIM described above, to an 

empirical dataset, model selection procedures are needed. The most straightforward ABC 

model selection is to sample uniformly from the models (which is equivalent to assuming 

uniform prior over the models), pool all the simulations and select those that are closest to the 

empirical data, as defined by the distance threshold. The estimated posterior probability of each 

model is approximated by the relative frequency of retained simulations generated from each 

model (Pritchard et al., 1999). Alternative, more complex model selection procedures were 

previously developed (Bertorelle et al., 2010). However, it was previously shown that ABC 

model selection can be problematic under some scenarios (Roberta et al., 2011), and hence the 

performance of model selection procedures must be extensively tested using simulations. We 

compared two different model-selection schemes using simulations: the classic approach, and 

a neural-network-based classifier, which was recently developed in the field of population 

genetics (Mondal et al., 2019) and we implemented for indel-based models. 

We first studied the power of both model selection procedures using simulations. To 

this end, for a given tree topology, we simulated 100 MSAs under various SIM parameters, as 

well as 100 MSAs under various RIM parameters. The classification confusion matrices for 

the dataset with seven sequences and mean sequence length of 1,384 amino acids, sampled 

from the EggNOG database, is shown in table 3. For this dataset, when the true model was 

SIM, both model-selection tests had similar high classification accuracy (above 97%). The 

differences between the two tests is shown when the dataset was simulated under RIM: the 

correct identification of the generating model was 82% for the neural-network based test and 

only 69% for the classic approach. These simulation results indicate that both model-

selection tests slightly favor SIM over RIM, making the inference of RIM conservative. Of 

note, when simulating under RIM, the extent of the differences between the insertion and 

deletion parameters highly influenced the selected model. Indeed, the model-selection error 

was strongly dependent on the difference between 𝑅_𝐼 and 𝑅_𝐷 and to a lesser extent on the 

difference between 𝐴_𝐼 and 𝐴_𝐷 (fig. 3). The mean absolute difference between the 𝑅_𝐼 and 

𝑅_𝐷 parameters for RIM simulations that were correctly classified as RIM was 0.018, while 
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when the RIM simulations were misclassified as SIM it was 0.0034 (t-test P < 1e-16).  The 

mean absolute difference between the 𝐴_𝐼 and 𝐴_𝐷 parameters for correctly classified RIM 

simulations was 0.36, while for RIM simulations misclassified as SIM it was 0.21 (t-test P < 

0.02).  

We repeated this analysis for 12 additional datasets with various sequence lengths and 

total branch lengths. This yielded similar results regarding the classification errors: for the vast 

majority of the datasets the accuracy of the neutral-network and the classic procedures had 

similar accuracy in correctly identifying the SIM model.  However, the neutral-network based 

model selection scheme had higher accuracy than the classic model in correctly identifying the 

RIM model (supplementary table S3, Supplementary Material online). Similar to the parameter 

inference accuracy, the model-selection test accuracy also depends on the total branch lengths 

(supplementary fig. S3, Supplementary Material online). 

Running times 

The average running time for an empirical dataset was around 10 minutes on a single processor, 

including all simulations, extraction of features, and model selection between SIM and RIM. 

The running times for typical datasets are correlated to the total branch lengths of the examined 

phylogeny (𝑅2 = 0.88, P < 2e-6): the running time in minutes is about five times the total 

branch length, when the branch lengths are measured in number of substitutions per site 

(supplementary fig. S4, Supplementary Material online).   

Empirical data analysis 

We applied the model selection and inference algorithm on 2,649 biological datasets. These 

datasets included phylogenetic trees and protein MSAs of various phylogenetic groups, 

including bacteria, plants, insects, fungi, and mammals. Table 4 details the model-selection 

classifications for the various groups. Our method classified the model as RIM for 46% of the 

examined datasets. A large difference was observed between prokaryotic and eukaryotic 

organisms: for 62% of the eukaryotic datasets, RIM was selected over SIM, while for 

prokaryotic datasets, RIM was only selected in 33% of the cases. From the studied prokaryotes, 

the model was classified as RIM for the majority of the datasets only for Tenericutes. For most 

of the eukaryotic clades, the number of datasets for which SIM and RIM were selected was 

relatively equal; with the exceptions of Drosophilidea and Saccharomycetaceae for which the 

model was classified as RIM for the vast majority of the datasets. We note that it is likely that 
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some of these differences do not reflect genuine differences between the two domains, but 

rather, differences in the data attributes (supplementary table S4, Supplementary Material 

online). For example, eukaryotic MSAs tend to be longer: the average length over all 

prokaryotic and eukaryotic datasets was 727.5 and 1101.7 amino acids, respectively (The 

average levels of tree divergence were relatively similar: the average sum of branch lengths 

over all prokaryotic and eukaryotic datasets was 8.2 and 7.2 amino-acid replacements per site, 

respectively).  

The mean values of the various model parameters, per taxonomic group, for the RIM 

and SIM selected datasets are shown in table 5a and table 5b, respectively. For brevity, the 

mean insertion and deletion lengths are given instead of the power law parameters. 𝑅_𝐷 was 

higher than 𝑅_𝐼 for all examined taxonomic groups (table 5a). Staphylococcaceae, Tenericutes, 

Drosophilidea, and Saccharomycetaceae were found to have the highest deletion-insertion 

ratio, i.e., 𝑅_𝐷 𝑅_𝐼⁄ . As expected, most of the datasets for these four groups were classified as 

RIM.  

Figure 3 shows scatter plots of 𝑅_𝐷 vs. 𝑅_𝐼 and mean deletion length vs. mean insertion 

length for the datasets classified as RIM. In most of these datasets (1,156 out of 1,232), the 

deletion rate was higher than the insertion rate. The mean deletion length tended to be higher 

than the insertion lengths, however, this trend is quite insubstantial.  

Sung et al. (2016) showed that the effective population size is highly correlated to the 

indel rate. Hence, we aimed to test if such dependence is observed when using our probabilistic 

indel-based models. For our analysis, we selected taxonomic groups from the EggNOG 

database (Huerta-Cepas et al., 2019) that are as similar as possible to the ones in the Sung et 

al. (2016) study. We note that in the current analysis, indel rates were inferred for proteins 

rather than for neutrally evolving regions. Another difference is that the inferred rates, 𝑅_𝐼 and 

𝑅_𝐷, are relative to the protein substitution rate. Despite these differences, we observed a high 

correlation (𝑅2 = 0.61) between the total indel rate (𝑅_𝐼 + 𝑅_𝐷) and the effective population 

size (fig. 4, left panel).  

In a different study, Sung et al. (2012) showed a correlation between the substitution 

rate and the effective population size. In addition, a high correlation was inferred between the 

indel and substitution rates (Sung et al., 2016). In our probabilistic models, the indel rates are 

computed relative to the substitution rate. To evaluate the correlation between effective 

population sizes and indel rates, without normalizing the substitution rate, we repeated the 
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correlation analysis, this time contrasting the effective population size against the total indel 

rate multiplied by the substitution rate (fig. 4, right panel). Substitution rates were taken from 

Sung et al. (2012). We note that the substitution rates reported in Sung et al. (2012) are for 

nucleotide sequences, and the substitution rates in our analysis are in number of amino-acid 

replacements per site, yet this should not affect the correlation analysis as long as these two 

values are proportional. The observed correlation in this case was even higher, 𝑅2 =  0.83, 

compared to the case when indel rate is normalized to the substitution rate.  

Discussion 
In this work we developed an indel model that accounts for differences between insertion and 

deletion evolutionary dynamics. Furthermore, we developed an ABC inference scheme to 

estimate model parameters as well as a model-selection test, using a neural-network classifier, 

that is able to determine which model (RIM or SIM) better fits a given empirical dataset. In our 

simulations, both the model selection and the inference steps were shown to be accurate. 

Applying the developed inference scheme on a variety of empirical datasets allowed us to gain 

further insights on indel dynamics. First, for 46% of the examined datasets, the inferred 

insertions and deletions rates and length distributions were different. Interestingly, this fraction 

was larger for eukaryotic than prokaryotic organisms. Second, the deletion rate is typically 

larger than the insertion rate (and to a much lesser extent, the deletion length is larger than the 

insertion length). Third, we compared the indel rates of various organisms to the effective 

population size and showed that they were negatively correlated.  

The RIM model established in this study is more elaborate than our previous model 

(SIM) that assumed equal attributes of insertions and deletions (Karin et al., 2017). It was 

previously shown for both prokaryotes and eukaryotes that there is a deletion bias on sites 

which are assumed to evolve under neutral selection (Kuo & Ochman, 2009; Mira et al., 2001; 

Ophir & Graur, 1997; Petrov et al., 1996; Van Passel et al., 2007; Zhang & Gerstein, 2003). 

Here, we showed that for a large variety of phylogenetic clades there is a deletion bias also for 

coding protein sequences, which generally evolve under strong purifying selection and that this 

bias is mainly due to high deletion rates, rather than due to longer deletion events. Of note, in 

our models the estimated deletion rates are normalized by the substitution rate. Often, when 

comparing two organisms, one is inferred to have both higher deletion to substitution rate and 

higher substitution rate. Together these two factors result in markedly different deletion 

dynamics, which may have impact on genome sizes (Petrov et al., 2000). 
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The indel models developed here have several limitations and there is still much room 

for more realistic modeling extensions. For example, both SIM and RIM assume that the indel 

parameters are uniform across the whole input sequence. However, it was shown that the 

composition of amino acids in and around indels is significantly different from their 

composition across the entire sequence length, with enrichment for amino acids ADQEGPS 

and depletion of FMILYVWC (Chang & Benner, 2004). Other studies also demonstrated that 

indel rates depend on the amino acid context (De La Chaux, Messer, & Arndt, 2007; Kvikstad, 

Chiaromonte, & Makova, 2009; Kvikstad & Duret, 2014; Messer & Arndt, 2007; Tanay & 

Siggia, 2008). Ideally, empirical context-dependent indel models should be developed, in 

which the rate of insertions and the rate of deletions should each depend on the amino acid 

composition surrounding the indel site. Such models are expected to have a large number of 

free parameters, and thus resemble empirical amino acid replacement matrices such as JTT 

(Jones, Taylor, & Thornton, 1992), WAG (Whelan & Goldman, 2001), and LG (Le & Gascuel, 

2008). Accurate inference of the model parameters would require simultaneous analysis of a 

large amount of data, e.g., the entire set of mammalian MSAs. High quality genomic data 

become increasingly available, and provide fertile ground for the development of such models. 

Of note, the ABC inference scheme described above relies on efficient simulators. To 

accelerate parameter inference we implemented a simulator that generates indel events only 

and does not include substitution events. The above context dependent models will necessitate 

simulating indel and substitution events simultaneously.  

Another direction for future advance is to develop indel models that account for 

structural features of protein-coding genes. It is expected that different structural attributes do 

not share the same indel dynamics. For example, it was recently shown that for enhanced green 

fluorescent protein (eGFP), the packing density of a residue, as measured by the weighted 

contact number (Lin et al., 2008), considerably affects the probability that a single-residue 

deletion disrupts the protein's function (Jackson et al., 2017). Relative surface accessibility and 

secondary structure attributes were also found to affect this probability. Future indel models 

can explicitly account for such factors and should prove particularly useful, providing that the 

secondary or tertiary structures of a protein are available or can be accurately predicted.   

Most commonly used alignment algorithms maximize a specific score and do not 

explicitly assume a stochastic Markov process. Recently, advances have been made in the 

development of statistical alignment methods, allowing simultaneous model parameter 

inference and alignment (Suchard & Redelings, 2006; Novák et al., 2008; Bradley et al., 2009; 
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Nute et al., 2019). Miklós et al. (2004) and Levy-Karin et al. (2019) have developed the long-

indel model, in which both indels and substitutions evolve along a phylogenetic tree assuming 

a joint continuous time Markov process. The rate of indels in this model depends on the indel 

length. Such a model was shown to better fit empirical data compared to previous models such 

as TKF91 (Thorne et al., 1991). However, it requires extensive computational time and is 

currently limited to pairwise sequences. This model also assumes that deletion and insertion 

events have the same dynamics. The results of this study corroborate previous studies showing 

that for a large number of empirical datasets, insertion and deletion events are characterized by 

different evolutionary dynamics. Such considerations should be included in future statistical 

alignment methodologies. 

The applicability of our methodology was demonstrated here by corroborating a 

previously observed correlation between effective population sizes and indel rates. Of note, in 

this study the indel rates are computationally inferred from a known set of protein coding genes, 

while Sung et al. (2016)  inferred it using whole genome sequencing of mutation-accumulation 

experiments. An additional possible application of our methodology would be to characterize 

how indel dynamics vary among different proteins and protein domains, e.g., it was previously 

suggested that ancient protein domains (Wolf et al., 2007) and highly conserved proteins 

(Ajawatanawong & Baldauf, 2013) have a bias towards insertions and that essential proteins 

in bacteria and yeast experience more indel events than non-essential proteins (Chan et al., 

2007). Finally, our methodology can be applied at the DNA level to quantify and test 

hypotheses regarding indel dynamics in introns, promotors, enhancers, regions with high or 

low recombination rates, etc., and should provide statistical-sound means to compare indel 

dynamics among genes and genomes across the tree of life.  

Materials and methods 

Source code and implementation details 

The implementation of the algorithm presented here is called SpartaABC. It is implemented in 

C++ and Python. The source code is freely available in https://github.com/gilloe/SpartaABC. 

The following Python packages were used for machine learning: scikit-learn and keras. The 

SIM and RIM models, including the model selection schemes were added to the SPARTA ABC 

webserver: https://spartaabc.tau.ac.il/ (Ashkenazy et al., 2017). 
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Empirical datasets  

The data used to generate figures 1 and 2 are based on the tree and MSA available from 

EggNOG (Huerta-Cepas et al., 2019) entry Drosophilidea ENOG410HUGV. Supplementary 

table S1 is based on the analysis of 12 additional EggNOG datasets (supplementary table S1, 

Supplementary Material online). The data used for the feature importance analyses are based 

on six EggNOG datasets (supplementary fig. S2, Supplementary Material online). The data 

used to generate table 3 and figure 2 are based on the tree and MSA EggNOG entry 

Drosophilidea ENOG410HUGV. The biological datasets, i.e. the empirical phylogenetic trees 

and MSAs, were also downloaded from EggNOG. Due to computational limitations, and in 

order that each taxonomic group will contain similar number of datasets, inclusion criteria were 

applied. Specifically, we determined a minimal MSA length and a minimal number of species 

for each taxonomic group (supplementary table S4, Supplementary Material online). In 

addition, we filtered datasets in which the total branch lengths of the tree was smaller than 1 

(supplementary fig. S1, Supplementary Material online). We also filtered out datasets in which 

the inference results fell outside the prior. 

  

A neural-network classifier for model selection 

A neural-network classifier, similar to Mondal et al. (2019), was used in order to determine 

whether RIM, in which the rate and length distribution are allowed to differ between insertions 

and deletions, is more suitable for a particular dataset than SIM, in which the insertion and 

deletion rates, as well as insertions and deletions length distributions, are equal (Karin et al., 

2017). The classifier was trained for a specific phylogenetic tree and MSA using 100,000 

simulations from each model (the same simulations were used for parameter inference and 

model selection). The normalized summary statistics were the input for the classifier and the 

output was the probability per model, such that the model with the highest probability was 

selected. The architecture of this classifier is shown in supplementary fig. S5, Supplementary 

Material online.  

  

Model-selection accuracy 

For assessing the model-selection accuracy for a specific phylogenetic tree and MSA (note that 

the MSA is used only for setting the 𝑅𝐿 prior), we simulated 200 datasets per model (400 in 
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total) by randomly drawing combinations of parameters from the prior distributions of these 

models. Then, we used the model-selection scheme to infer the parameters of the simulated 

datasets and calculated the confusion matrix using the inference results and the known model 

from which the samples were drawn.  
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Table 1. 

The Simple Indel Model (SIM) and Rich Indel Model (RIM) parameters and their description. 

Model Parameter name Description 

SIM, RIM RL  The sequence length at the root of the tree 

SIM R_ID Indel-to-substitution-rate ratio 

 A_ID Indel length distribution parameter 

RIM R_I Insertion-to-substitution-rate ratio 

 R_D Deletion-to-substitution-rate ratio 

 A_I Insertion length distribution parameter 

 A_D Deletion length distribution parameter 
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Table 2. 

The 27 summary statistics used in the ABC scheme. 

# Summary statistic 

1 Total number of gap blocks in the alignment 

2 Total number of unique gap blocks in the alignment 

3 Average gap block length 

4 Average unique gap block length 

5 Number gap blocks of length one 

6 Number gap blocks of length two 

7 Number gap blocks of length three 

8 Number gap blocks of length four or more 

9 Alignment length 

10 Minimum length of sequence in the alignment 

11 Maximum length of sequence in the alignment 

12 Number of MSA columns with zero gaps 

13 Number of MSA columns with one gap 

14 Number of MSA columns with two gaps 

15 Number of MSA columns with 𝑛 − 1 gaps 

16 Number of gaps of length one in one sequence 

17 Number of gaps of length one in two sequences 

18 Number of gaps of length one in 𝑛 − 1 sequences 

19 Number of gaps of length two in one sequence 

20 Number of gaps of length two in two sequences 

21 Number of gaps of length two in 𝑛 − 1 sequences 

22 Number of gaps of length three in one sequence 

23 Number of gaps of length three in two sequences 

24 Number of gaps of length three in 𝑛 − 1 sequences 

25 Number of gaps of length at least four in one sequence 

26 Number of gaps of length at least four in two sequences 

27 Number of gaps of length at least four in 𝑛 − 1 sequences 
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Table 3. 

Confusion matrices for model selection. Accuracy is computed based on 100 simulations, for 

each indel model. For example, out of 100 MSAs simulated under RIM, the classic model 

selection approach correctly identified 69 as RIM, while the neural network approach correctly 

identified 82. 

Classification method Simulated model Accuracy 

Classic SIM 0.98 
Classic RIM 0.69 

Neural network SIM 0.97 
Neural network RIM 0.82 
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Table 4. 

Model selection for various taxonomical groups. Pro/Euk: Prokaryotes/Eukaryotes. 

Group # SIM # RIM Pro/Euk 

Bacillus 62 56 Pro 

Escherichia 103 20 Pro 

P. aeruginosa 178 53 Pro 

Rhizobiaceae 132 54 Pro 

Staphylococcaceae 227 60 Pro 

Tenericutes 83 123 Pro 

Vibrionales 145 88 Pro 

Brassicales 53 40 Euk 

Chlorophyta 93 100 Euk 

Ciliophora 87 82 Euk 

Drosophilidea 39 202 Euk 

Primates 17 9 Euk 

Rhabditida 93 36 Euk 

Rodentia 45 48 Euk 

Saccharomycetaceae 60 261 Euk 
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Table 5. 

Model parameters across various taxonomical groups for datasets classified as RIM (A) and 

SIM (B). 

A. 

Group 𝑹𝑳 𝑹_𝑰 𝑹_𝑫 
Mean 

insertion 
length 

Mean 
deletion 
length 

Bacillus 808.6 0.0071 0.0146 6.83 8.24 

Escherichia 491.8 0.0111 0.0192 6.67 7.54 

P. aeruginosa 803.1 0.0059 0.0154 6.31 7.22 

Rhizobiaceae 844.5 0.0043 0.0116 6.30 7.53 

Staphylococcaceae 645.7 0.0038 0.0139 6.39 7.33 

Tenericutes 914.5 0.0039 0.0154 6.59 6.97 

Vibrionales 797.4 0.0057 0.0133 6.33 8.28 

Brassicales 1406.8 0.0120 0.0324 6.57 8.83 

Chlorophyta 1043.5 0.0073 0.0206 7.84 9.36 

Ciliophora 1022.4 0.0078 0.0202 7.28 8.79 

Drosophilidea 1745.5 0.0099 0.0361 6.13 7.64 

Primates 1598.1 0.0147 0.0240 6.45 8.56 

Rhabditida 1053.0 0.0128 0.0259 7.33 9.10 

Rodentia 1084.1 0.0097 0.0284 6.10 8.72 

Saccharomycetaceae 1193.7 0.0027 0.0110 6.56 6.11 

 

B. 

Group 𝑹𝑳 𝑹_𝑰𝑫 
Mean 
indel 

length 
Bacillus 667.3 0.0266 9.14 

Escherichia 443.3 0.0190 6.56 
P. aeruginosa 810.1 0.0154 7.20 
Rhizobiaceae 873.1 0.0118 7.34 

Staphylococcaceae 572.0 0.0094 6.37 
Tenericutes 673.9 0.0178 7.76 
Vibrionales 677.7 0.0156 7.67 
Brassicales 1025.8 0.0514 8.88 

Chlorophyta 717.7 0.0352 9.63 
Ciliophora 618.5 0.0362 9.75 

Drosophilidea 1198.3 0.0532 8.25 
Primates 970.0 0.0636 8.48 

Rhabditida 679.4 0.0540 9.24 
Rodentia 717.6 0.0500 8.93 

Saccharomycetaceae 1181.9 0.0088 6.35 
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FIG. 1. 

 

Model accuracy in simulations: inferred parameters (𝑹_𝑰, 𝑹_𝑫, 𝑨_𝑰, 𝑨_𝑫, and 𝑹𝑳) are 

correlated to the parameters used for simulation. Each point represents a single simulation 

inference for the corresponding parameter against the real value. Each graph is based on 200 

independent simulations. The red dashed line is the identity 𝑦 = 𝑥 line. The obtained 𝑅2 values 

are 0.97, 0.96, 0.81, 0.83, and 0.92 for 𝑅_𝐼, 𝑅_𝐷, 𝐴_𝐼, 𝐴_𝐷, and 𝑅𝐿, respectively. 
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FIG. 2. 

 

Misclassification rates depend on the similarity between insertion and deletion 

parameters. The errors depend on the absolute difference between 𝑅_𝐼 and 𝑅_𝐷 and the 

differences between 𝐴_𝐼 and 𝐴_𝐷. All simulations were under the RIM model. In blue, 

simulations that were correctly classified as RIM and in orange, cases which were misclassified 

as SIM. Model selection was performed based on the neural-network classifier. 
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FIG. 3. 

Deletion rates are mostly higher than insertion rates, while no significant trend is found 

for the length distribution. Left panel: a scatter plot of insertion rate (𝑅_𝐼) versus deletion 

rate (𝑅_𝐷). Right panel: a scatter plot of mean insertion length versus mean deletion rate. 1,232 

datasets across 16 taxonomic groups for which the RIM model was selected are included in the 

analysis. The black dashed line is the identity line, 𝑦 = 𝑥, in both panels. 
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FIG. 4. 

 

Indel rate as a function of effective population size. Effective population size (𝐸𝐹𝑃) vs. 

Indel-to-substitution rate (left panel) and effective population size vs. Indel-to-substitution rate 

× Substitution rate (right panel). For each taxonomic group, the total indel rate reflects the 

average over all datasets for this group. The substitution rates and effective population sizes 

are taken from Sung et al. (2016). The dotted regression lines are:  

(a) Indel-to-substitution rate  = −0.0091 ×  𝑙𝑜𝑔10𝐸𝐹𝑃 + 0.093, (𝑅2 = 0.61, P = 6E-4); 

(b) 𝑙𝑜𝑔10[Indel-to-substitution rate  × Substitution rate] = −0.69 × 𝑙𝑜𝑔10𝐸𝐹𝑃 −  5.90, (𝑅2 = 

0.83, P = 3E-6). 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2020. ; https://doi.org/10.1101/2020.11.22.393108doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.22.393108
http://creativecommons.org/licenses/by/4.0/

