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Abstract 

Transcriptional and epigenetic profiling of single-cells has advanced our knowledge of the 

molecular bases of gastrulation and early organogenesis. However, current approaches rely on 

dissociating cells from tissues, thereby losing the crucial spatial context that is necessary for 

understanding cell and tissue interactions during development. Here, we apply an image-based 

single-cell transcriptomics method, seqFISH, to simultaneously and precisely detect mRNA 

molecules for 387 selected target genes in 8-12 somite stage mouse embryo tissue sections. By 

integrating spatial context and highly multiplexed transcriptional measurements with two single-

cell transcriptome atlases we accurately characterize cell types across the embryo and 

demonstrate how spatially-resolved expression of genes not profiled by seqFISH can be imputed. 

We use this high-resolution spatial map to characterize fundamental steps in the patterning of the 

midbrain-hindbrain boundary and the developing gut tube. Our spatial atlas uncovers axes of 

resolution that are not apparent from single-cell RNA sequencing data – for example, in the gut 

tube we observe early dorsal-ventral separation of esophageal and tracheal progenitor 

populations. In sum, by computationally integrating high-resolution spatially-resolved gene 

expression maps with single-cell genomics data, we provide a powerful new approach for 

studying how and when cell fate decisions are made during early mammalian development. 
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Introduction 

Lineage priming, cell fate specification and tissue patterning during early mammalian 

development are complex processes involving signals from surrounding tissues, mechanical 

constraints, and transcriptional and epigenetic changes, which together prompt the adoption of 

unique cell fates1–7. All of these factors play key roles in gastrulation, the process by which the 

three germ layers emerge, and the body axis is established. Subsequently, the germ layer 

progenitors, formed during gastrulation, will give rise to all major organs in a process known as 

organogenesis. 

 

Recently, single-cell RNA-sequencing (scRNA-seq) and other single-cell genomic approaches 

have been used to investigate how the molecular landscape of cells within the mouse embryo 

changes during early development. In particular, these methods have provided insights into how 

symmetry breaking of the epiblast population leads to commitment to different fates as the 

embryo passes through gastrulation and on to organogenesis1–3,6–14. By computationally ordering 

cells through their differentiation (“pseudotime”), an understanding of the molecular changes 

that underpin cell type development has been obtained, providing insight into the underlying 

regulatory mechanisms, including the role of the epigenome. Recently, technological advances 

have enabled scRNA-seq to be performed alongside CRISPR/Cas9 scarring, thus simultaneously 

documenting a cell’s molecular state and lineage. Such approaches have been applied to track 

zebrafish development15–17 and more recently mouse embryogenesis9,18. Together, these 

experimental strategies have enhanced our understanding of developmental lineage relationships 

and the associated molecular changes.  

 

However, to date, single-cell genomics studies of early mammalian development have focused 

on profiling dissociated populations of cells, where spatial information is lost. Although regions 

of the embryo have been micro-dissected and profiled using small cell-number RNA-sequencing 

protocols, these approaches neither scale to later stages of development, where tens of thousands 

of cells are present within an embryo, nor do they yet provide single-cell resolution, which may 

be critical given the role of local environmental cues in conditioning cell fate and patterning at 

these developmental stages13,19,20. By contrast, in situ hybridization, single-molecule RNA FISH 

and other related approaches allow gene expression levels to be measured within a defined 
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spatial context. However, these approaches are typically limited to either quantifying expression 

patterns in broad domains21,22 or to studying a limited number of genes in an experiment, thus 

precluding generation of comprehensive cell-resolution maps of expression across an entire 

embryo, which is key for understanding complex processes such as gastrulation and 

organogenesis. Recent technological advances promise to overcome these limitations: 

approaches that exploit highly-multiplexed RNA FISH23–28, sequencing on intact tissues29–31, or 

that hybridize tissue sections to spatially-barcoded microarrays32,33 promise to simultaneously 

profile the expression of hundreds or thousands of genes within single cells whose spatial 

location is preserved. 

 

Here, using an existing scRNA-seq atlas covering stages of mouse development from 

gastrulation to early organogenesis6 (‘Gastrulation atlas’), we designed probes against a panel of 

387 genes and spatially localized their expression in multiple 8-12 somite stage embryo sections 

using a version of the seqFISH (sequential fluorescence in situ hybridization) method modified 

to allow highly-effective cell segmentation. Assigning each cell in the seqFISH-profiled embryos 

a distinct cell type identity revealed different patterns of co-localization of cells within and 

between cell types. Integrating scRNA-seq and seqFISH data enabled the genome-wide 

imputation of expression, thus generating a complete quantitative and spatially-resolved map of 

gene expression at single-cell resolution across the entire embryo. To illustrate the power of this 

resource, we used these imputed data to perform a virtual dissection of the mid- and hind-brain 

region of the embryo, uncovering spatially resolved patterns of expression associated with both 

the dorsal-ventral and rostral-caudal axes. Finally, by integrating a second, independent scRNA-

seq dataset that characterized cell types within the developing gut tube2, we resolved the position 

of two clusters of cells that were both previously assigned a lung precursor identity using the 

scRNA-seq data2. Our spatial data revealed that these two clusters were exclusively located on 

either the dorsal or ventral side of the gut tube, with corresponding transcriptional differences 

indicating that the dorsal cells give rise to the esophagus, while the ventral cells give rise to the 

lung and trachea.  
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Results 

 

A single-cell spatial expression profiling of mouse organogenesis 

 

We performed seqFISH10,11 on sagittal sections from three mouse embryos at the 8-12 somite 

stage, corresponding to embryonic day (E)8.5-8.75 (Figure 1A-C). The sections analyzed were 

chosen to correspond as close as possible to the midline of the embryo, albeit some variation 

along the left-right axis could be observed due to embryo tilt (Figure 1B). In each section we 

probed the expression of 351 barcoded genes specifically chosen to distinguish distinct cell types 

at these developmental stages (Supplementary Figure 1; Supplementary Table 1-2). To do this, 

we exploited a recently published single-cell molecular map of mouse gastrulation and early 

organogenesis6, and determined computationally a set of lowly- to moderately-expressed genes 

that were best able to recover the cell type identities (Methods; Supplementary Figure 1). Low- 

to moderately-expressed genes were selected since low overall expression of the library is 

needed to reduce the optical density of detected transcripts in a cell so that crowding does not 

prevent single mRNA spots from being resolved reliably. 

 

To obtain a good signal-to-noise ratio for the mRNA spots, we performed tissue clearing to 

reduce the tissue background signal, as introduced before26,34. Briefly, the tissue sections were 

embedded into a hydrogel scaffold, RNA molecules cross linked into the hydrogel, and lipid and 

protein removed to achieve optimal tissue transparency for seqFISH (Methods). One 

consequence of depleting proteins is that delineating the cell membrane, and hence cell 

segmentation, becomes challenging. To address this, prior to tissue embedding we performed 

immunodetection for selected surface antigens, Pan-cadherin, N-cadherin, β-Catenin, and E-

cadherin, which could in turn be recognized by a secondary antibody conjugated to a unique 

DNA sequence. We then hybridized a tertiary probe to the DNA sequence of the secondary 

antibody, which had a unique single-molecular FISH (smFISH) readout sequence and an acrydite 

group. The acrydite group becomes cross-linked into the hydrogel scaffold and remains in 

position, even after protein degradation35. The unique smFISH readout sequence can 

subsequently be hybridized with a read-out probe conjugated to a fluorophore, allowing the cell 

membrane to be visualized (Figure 1D) and enabling segmentation using the interactive learning 
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and cell segmentation tool Ilastik36. To validate this strategy, we applied it to a 10 µm thick 

transverse section of an E8.5 mouse embryo, which confirmed labeling of the cell membrane 

(Figure 1E; Supplementary Figure 2). Before imaging samples for seqFISH, overall RNA 

integrity was examined by ensuring co-localization of two Eef2 probe sets, each detected by a 

unique read-out probe conjugated to a different fluorophore (Supplementary Figure 2; 

Supplementary Tables 1 and 3). 

 

Following imaging, the resulting data were segmented as detailed above and individual mRNA 

molecules were detected by decoding barcodes over the multiple rounds of imaging. To 

guarantee high sample quality, the first round of hybridization was repeated following all 

intervening hybridization rounds, allowing for consistency of mRNA signal intensity to be 

assessed (Supplementary Figure 3). In total, following cell-level quality control, we identified 

57,536 cells across three embryos with a combined total of 11,004,298 individual mRNA 

molecules detected. In the embryo tissue sections, each cell contained on average 196 ± 19.3 

(mean ± s.e.) mRNA transcripts from 93.2 ± 6.6 (mean ± s.e.) genes (Supplementary Figure 4), 

corresponding to an average of 26.6% of all gene’s profiled. The set of genes expressed was not 

biased towards a specific germ layer, with an average of 21.0% ± 1.1% (mean ± se) genes most 

associated with a mesoderm identity in the E8.5 Gastrulation atlas being expressed per seqFISH 

cell, through to 31.6% ± 3.3% (mean ± se) of ectoderm genes.  

 

Next, to confirm the quality of our data, we examined the expression of twelve genes (Figure 1F) 

with well-characterized expression patterns. As expected, the cardiomyocyte markers Ttn37 and 

Popdc238 showed the highest expression in the region of the developing heart tube, while 

Hand139,40 and Gata541 showed expression in the heart, as well as the more posterior lateral plate 

mesoderm. Similarly, the expression of four known brain markers, Six342, Lhx243, Otx244–46 and 

Pou3f147 confirmed the strongest expression of these genes in the developing brain. Turning to 

genes that mark broader territories within the embryo, the neural tube marker Sox2 showed 

strong expression in the brain and along the dorsal side of the embryo48,49. Additionally, 

expression of the mesoderm marker Foxf1 was localized to mesodermal cells outlining the 

developing gut tube, the lateral plate mesoderm and extraembryonic mesoderm of the allantois50. 

Lastly, two gut endoderm markers Foxa151 and Cldn452,53 marked the developing gut tube along 
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the anterior-posterior axis of the embryo. The tissue-specific expression profile of these genes 

was consistent with both the Gastrulation atlas6 (Supplementary Figure 4) as well as the broad 

expression territories defined in the EMAGE database21. As a further confirmation of the quality 

of our data, we confirmed the positional expression profiles of the measured Hox gene family 

members, which followed the described ‘Hox code’ along the anterior-posterior axis54,55 

(Supplementary Figure 5). Finally, the high-resolution of seqFISH allows visualization of 

mRNA molecules at sub-cellular resolution, enabling the generation of high quality digital in 

situs (Figure 1G). Taken together, these analyses demonstrate that we can reliably record the 

expression profiles of hundreds of genes across an entire embryo cross-section at single-cell 

resolution. 

 

Cell type identity and spatial transcriptional heterogeneity 

 

Thus far we have focused on the expression of individual genes. However, the real power of the 

data derives from the ability to study co-expression of hundreds of genes within their spatial 

context. To develop this potential, as a first step, we assigned each cell within the seqFISH-

profiled embryos a distinct cell type identity using cell type mapping. To make this assignment 

we integrated each cell’s expression profile from seqFISH with the E8.5 cells from the 

Gastrulation atlas6 using batch-aware dimension reduction and Mutual Nearest Neighbours 

(MNN) batch correction56 (Supplementary Figure 6), before annotating seqFISH cells based on 

their nearest neighbors in the Gastrulation atlas (Figure 2A; Supplementary Figure 6). We further 

refined this automated cell type classification by performing joint clustering of both datasets and 

comparing their relative cell type contribution and gene expression profiles (Supplementary 

Figure 6; Methods). We observed that the assigned cell type identities were consistent with 

known anatomy as well as with the expression of distinct marker genes (Figure 1F; Figure 2B-C; 

Supplementary Figure 7-9).  

 

As an alternative, we performed direct clustering of the seqFISH data, which revealed similar 

groupings of cells (Supplementary Figure 10), indicating that a small number of carefully-chosen 

genes can provide enough information to accurately group cells. However, we note that 
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assigning cell type identity using only a small number of marker genes is likely to be less reliable 

than imputing identity through reference to the Gastrulation atlas.  

 

Next, to study when boundaries between emerging tissue compartments are established in the 

developing embryo, we statistically quantified whether cells assigned to the same type were 

spatially coherent within the embryo, as well as determining the extent to which pairs of cell 

types were co-located (Figure 2D-E, Methods). We used a permutation strategy to evaluate the 

relative enrichment or depletion of direct cell-cell contact events between each cell type 

(compared to a random distribution of cell types) resulting in a cell-cell contact map (Figure 2D, 

Supplementary Figure 11). Certain cell types, such as cardiomyocytes and the gut tube were 

spatially and morphologically distinct within the embryo, while others, like the endothelium, 

were interspersed and spread across the entire embryo space. 

 

More generally, while most cell types are characterized using prior knowledge of expression 

markers and lineage inference, other populations such as the mixed mesenchymal mesoderm 

represent a cell state rather than a defined cell type. Mesenchyme represents a state in which 

cells express markers characteristic of migratory cells loosely dispersed within an extra-cellular 

matrix57. This strong overriding transcriptional signature of mesenchyme, irrespective of 

location, makes it challenging to distinguish which cell types this mixed mesenchymal 

mesoderm population represents using classical scRNA-seq data. In contrast, our integrated 

spatial expression map allowed us to resolve five transcriptionally distinct subpopulations 

(cluster 1-5) that were spatially defined (Supplementary Figure 12; Methods).  

 

Based on its anatomical position overlaying the developing heart, we infer that cluster 1 reflects 

cells with a cardiac mesoderm and pericardium identity. Clusters 2 and 3 are located in the 

septum transversum, in the region of the forming hepatic plate and proepicardium. At this 

developmental stage BMP signaling from the developing heart and FGF signaling from the 

septum transversum mesenchyme is critical for the induction of hepatic fate specification in the 

foregut58,59. Consistent with this we observed enrichment for BMP signaling in cluster 1 

(Supplementary Figure 12). Additionally, in cluster 3 we observed the co-expression of 

proepicardial markers Tbx18 and Wt160,61 whose deletion results in heart62 and liver63 defects 
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(Supplementary Figure 12). Our ability to spatially map cluster 3 revealed its position caudal to 

the forming heart, corresponding with the known location of the proepicardium, thereby allowing 

us to characterize this cluster. Together, their location and expression profiles indicate that the 

cells from cluster 2 and 3 will contribute to the hepatic mesenchyme (important for hepatoblast 

specification) and the proepicardium, respectively. Lastly, cluster 4 and 5 are located toward the 

body wall, suggesting a somatic mesoderm identity that will contribute to the dermis64. 

 

To assess additional, more subtle, spatially-driven transcriptional heterogeneity, we used a linear 

model to identify genes that show a strong spatial expression pattern within each cell type 

(Figure 2E; Supplementary Table 4; Methods). This indicated that residual transcriptional 

heterogeneity in the Forebrain/Midbrain/Hindbrain cluster can be explained by localized patterns 

of expression, most likely resulting from the presence of regionally-specific developing brain 

subtypes (Supplementary Table 5). To investigate this further, we performed a focused re-

clustering of Forebrain/Midbrain/Hindbrain cells, recovering four major brain subregions and 

seven subclusters (Figure 2F-G). Cross-referencing spatial location and underlying gene 

expression signature allowed us to identify subclusters associated with the prosencephalon, 

mesencephalon, rhombencephalon and the tegmentum (Figure 2G-H; Supplementary Figure 11). 

 

A single- cell 10,000-plex spatial map of inferred gene expression in the mouse embryo  

 

By design, our seqFISH library allowed us to probe the expression of specific genes associated 

with cell type identity. Additionally, we directly measured the expression of a number of genes 

associated with key signaling cascades e.g. Notch65 and Wnt66. Nevertheless, a full, unbiased, 

view of the interplay between a cell’s spatial location and its molecular profile, and how this 

influences development would benefit from measuring expression of the entire transcriptome, 

something that is not straightforward with existing highly-multiplexed RNA FISH protocols.  

 

To overcome these limitations, we built upon the MNN mapping approach described earlier 

(Figure 2, Supplementary Figure 6) and inferred the full transcriptome of each seqFISH cell by 

considering the weighted expression profile of the cells to which it is most transcriptionally 

similar in the Gastrulation atlas (Figure 3A; Supplementary Figure 13; Methods). To test the 
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integrity of this strategy, for each gene probed in our seqFISH experiment (excluding Xist, as it is 

sex specific), we used the remaining 349 measured genes to map all cells to the Gastrulation 

atlas and imputed the expression of the withheld gene. To evaluate performance, we calculated, 

for each gene and across all cells, the Pearson correlation (‘performance score’) between the 

imputed expression counts and the measured seqFISH expression levels. To estimate an upper 

bound on the performance score (i.e., the maximum correlation we might expect to observe) we 

exploited the four independent batches of E8.5 cells that were processed in the scRNA-seq 

Gastrulation atlas. We treated one of the four batches as the query set and used the leave-one-out 

approach described above to impute the expression of the 350 genes of interest by mapping cells 

onto a reference composed of the remaining three batches, before computing the Pearson 

correlation between the imputed and true expression counts (‘prediction score’; Methods). 

Computing the ratio of the Performance (seqFISH – scRNA-seq) and Prediction (scRNA-seq – 

scRNA-seq) scores yields a normalized performance score. Across genes, we observed a median 

normalized performance score of 0.73 (lower quartile 0.32, upper quartile 1.09) (Supplementary 

Figure 13), suggesting that our ability to infer gene expression is comparable to what might be 

expected when combining independent scRNA-seq datasets and providing confidence in our 

approach. 

 

To further validate our imputation strategy, we used non-barcoded sequential smFISH to 

measure the expression of 36 additional genes in the embryo sections probed by seqFISH and 

contrasted the true expression profile with the imputed values (Figure 3B). This independent 

validation – these smFISH genes were not used in the MNN mapping – confirmed that 

imputation reliably recovered gene expression profiles (Figure 3B; Supplementary Figure 14-

18). For example, we observed a strong overlap between measured and imputed expression for 

Dlx567, an essential and spatially-restricted regulator of craniofacial structures, in the anterior 

surface ectoderm and first branchial arch. Additionally, we noted that Tmem54 was inferred to be 

specifically expressed in the anterior surface ectoderm and along the gut tube, Nkx2-568,69 was 

inferred to be expressed in the developing heart, and Mesp1 was inferred to be expressed in the 

posterior presomitic mesoderm (PSM; 70,71). Finally, the ubiquitous expression profile of Basp1 

and the absence of expression of the germ line marker Utf172 was also recapitulated in the 

imputed expression maps.  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2020. ; https://doi.org/10.1101/2020.11.20.391896doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.20.391896
http://creativecommons.org/licenses/by-nc/4.0/


 12 

A whole-genome spatial map allows reconstruction of midbrain-hindbrain boundary 

formation 

 

To illustrate the utility of the imputed data, we focused on a well-described developmental 

process that takes place at this embryonic stage – the formation of the midbrain-hindbrain 

boundary (MHB), also known as the isthmus organizer. The MHB acts as a signaling hub that is 

essential for patterning of the adjacent midbrain and hindbrain regions by inducing two distinct 

transcriptional programs via defined signaling cascades (reviewed in 73–75). Thus, the MHB 

presents an important dividing point in the developing brain, functioning both as a signaling 

center and as a physical barrier of the developing brain ventricles76. We observed expression of 

the mesencephalon and prosencephalon marker Otx244,77 and the rhombencephalon marker 

Gbx277,78 in the brain region of all three embryos, albeit the sagittal section for embryo 2 

appeared to capture this region most comprehensively (Supplementary Figure 19). Focusing on 

this region of embryo 2, we used expression of Gbx2 and Otx2 to identify the precise boundary 

between the two subclusters (Figure 3C-D). Subsequently, we virtually dissected the Otx2 

positive midbrain region and the Gbx2 positive hindbrain region (Supplementary Figure 19) and 

performed a differential expression analysis (using the imputed expression profiles) to identify 

additional genes that distinguish the two regions (Figure 3E). This identified 66 genes (FDR-

adjusted P-value < 0.05; Absolute log fold change > 0.2) with spatially distinct expression 

profiles between the two regions (Supplementary Table 6). 

 

To further understand the spatial distribution of gene expression at the MHB, we investigated 

whether further local differences in spatial expression patterns were present. Using a diffusion-

based transcriptional embedding79, we observed smoothness of the estimated diffusion 

components in physical space, with an extreme corresponding to the MHB itself (Figure 3F-G; 

Methods). Using a spatial vector field to capture local magnitude and direction of changes in 

diffusion component 1 in space, we observed an outward radiation of signaling gradients from 

the MHB region, corresponding to the rostral-caudal axis (Figure 3G), with strong enrichment 

for Lmo180 in the midbrain and Pax881 in the hindbrain (Figure 3I). Additionally, we observed 

that diffusion component 2 corresponds to an emerging dorsal-ventral axis (Figure 3H), 

demonstrating that the coordinate space of the brain is established at this stage of development. 
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To identify genes contributing towards to the emergence of this coordinate space, we performed 

unbiased detection of spatially variable genes (Methods82; Supplementary Figure 20; 

Supplementary Table 7), uncovering distinct spatial expression patterns, especially along the 

dorsal-ventral axis within the hindbrain (Supplementary Figure 20). Among spatially variable 

genes, several are known regulators of cell fate commitment including Fgf8, Fgf17, Wnt1, and 

En1, all of which displayed their highest level of expression at the MHB (Figure 3I). Fgf8 is a 

known MHB organizer, whose posterior expression relative to the boundary is necessary for 

repressing the expression of Otx2 in the rhombencephalon83. Consistent with this, we inferred 

that the imputed expression of Fgf8 was negatively correlated with Otx2. By contrast, Wnt1, 

whose imputed expression is restricted rostral of the MHB, is known to up-regulate Otx2 

expression in the midbrain84,85. En1 (Engrailed 1) expression was observed across the MHB with 

no rostral or caudal bias86–88 (Figure 3I). Interestingly, in Wnt1-/- embryos the expression of En1 

is absent, consistent with the importance of WNT1 signaling for En1 expression89,90. This is 

supported by the observation that the deletion of En1 results in a midbrain-hindbrain deletion, 

with a phenotype that closely resembles the Wnt1-/- mutant mice86. We also observed spatially-

distinct expression of Foxa2 and Shh in the floor plate, another important midbrain organizer 

(Figure 3I), consistent with the observation that both genes are critical for the specification of the 

floor plate91. Additionally, we observed a cluster of cells, characterized by the highly restricted 

inferred expression of Msx3, in the dorsal developing neuronal tube92. Finally, we observed that 

Ezr (Ezrin), Efna2 (Ephrin A2) and Efnb1 (Ephrin B1) were among the genes with the most 

spatially variable patterns of expression. The Ephrin signaling pathway is a known regulator of 

cell sorting and plays an important role in the formation of a sharp MHB that compartmentalizes 

the brain93. Consistent with this, Efna2 and Efnb1 are inferred to occupy distinct territories of 

gene expression on each side of the MHB. Taken together, this analysis demonstrates how the 

imputed data can be used to reliably recapitulate and enhance our understanding of important 

developmental process, such as MHB formation. In particular, it captures the early 

transcriptional effects of neural tube rostro-caudal and dorso-ventral regionalization (Figure 3G-

H) concomitant with the establishment of the MHB and floor plate signaling hubs. 
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Spatial patterning of cells within the gut tube is associated with cell type identity 

 

Finally, we examined the emergence of organ precursor cells along the anterior-posterior axis in 

the developing gut tube. Recently, Nowotschin et al. inferred the pseudo-spatial ordering of 

E8.75 (13 somite stage(ss)) gut tube cells along the anterior-posterior axis2. However, despite 

validation of the anterior-posterior patterning using targeted in situ hybridizations, the ability to 

finely determine the boundary between cell types and to precisely demarcate the locations of cell 

types along complex tissues like the gut tube is challenging when using single gene in situ 

stainings. To explore whether our data could shed new light on this problem, we performed a 

joint mapping of the seqFISH data with cells from dissected E8.75 (13ss) gut tubes that were 

profiled using scRNA-seq2 (Figure 4A; Supplementary Figure 21). Incorporating this additional 

scRNA-seq dataset allowed us to further refine the cellular annotations for the developing gut 

tube and nearby relevant cell types – in particular, it allowed us to associate cells with the organs 

that they would likely contribute to in the adult animal, including thyroid, thymus, lung, liver, 

pancreas, small intestine, large intestine/colon. Notably, the seqFISH profiled embryos, in 

comparison to the Nowotschin dataset, lack cells associated with the large intestine, likely due to 

the area of the large intestine not being represented in the tissue sections profiled using seqFISH 

(Supplementary Figure 21). 

 

As expected, plotting the physical position of the subclusters showed distinct patterning along 

the anterior-posterior axis (Figure 4B). Interestingly, this patterning of cell types along the 

anterior-posterior axis was mirrored by the presence of spatially-distinct populations of cells 

within the surrounding splanchnic mesoderm (Methods; Supplementary Figure 22), consistent 

with recent reports3 and confirming that signalling interactions between the gut endoderm and 

the surrounding mesoderm plays a key role in determining cell type identity92. 

 

Topological cell-cell contact analysis of all gut tube subclusters revealed a spatial separation of 

two lung subtypes (Lung1 and Lung2) defined by Nowotschin et al. (Figure 4C-D). We observed 

that cells assigned a Lung1 identity were located exclusively on the ventral side of the gut tube, 

while Lung2 cells were located on the dorsal side, suggesting an early symmetry breaking event 

(Figure 4B; Supplementary Figure 23). To further understand the spatial separation of the two 
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Lung subclusters, we performed a differential gene expression analysis. As expected, we 

observed gene expression changes associated with dorsal-ventral patterning (Figure 4E; 

Supplementary Table 8), including differential expression of Chordin, a known dorsal-ventral 

regulator94, and Osr1, which is necessary for lung specification and whose loss results in 

significantly fewer respiratory progenitors at E9.5 and reduced lung size95 (Figure 4F). 

Additionally, the T-box gene Tbx1, which is known to be expressed in the embryonic mesoderm 

and later in the pharyngeal region and otic vesicle96, was more strongly expressed on the dorsal 

side of the gut tube96,97. It has been demonstrated that mutants which show esophageal atresia / 

trachea-esophageal atresia display abnormal expression of Tbx198 and Tbx297. To independently 

validate these asymmetric dorsal-ventral expression patterns, we used whole-mount 

hybridization-chain reaction (HCR), combined with 3D imaging, to study the co-expression of 

Tbx1 (dorsal) and Shh (ventral) as well as Smoc2 (dorsal) and Tbx3 (ventral) (Figure 4G-J; 

Supplementary Figure 23). This confirmed the observations from our seqFISH data, with clear 

dorsal-ventral localization of these genes being observed in the foregut region of the gut tube 

corresponding to the Lung1 and Lung2 populations. 

 

Taken together, the spatially-resolved expression pattern of genes involved in esophagus, lung 

and trachea development and the anatomical position of the Lung1 and Lung2 populations 

indicate that the dorsal Lung2 population corresponds to esophageal progenitors, while the 

ventral Lung1 population represents lung and trachea progenitors. Although little is known about 

the transcriptional identity of the early dorsal and ventral endodermal population that ultimately 

give rise to the trachea and esophagus, Kuwahara et al. recently used single-cell RNA 

sequencing at E10.5 and E11.5 to better define the transcriptional identity of the developing 

esophagus, trachea and lung99. Several of the identified markers already show dorsal-ventral 

asymmetries in our data, including the lung and trachea marker Isl1, Isx2 and Isx3 and the 

esophagus marker Sox299–101. More broadly, previous studies have shown that the commitment of 

progenitor cells to either the lung/trachea or the esophagus is coordinated by the interplay of 

several transcription factors and signaling pathways that also regulate the dorsal-ventral 

specification of the gut tube99. Specifically, it was shown in E9.5 embryos that the expression of 

Wnt2/2b, Bmp4 and Nkx2-1 is enriched in the ventral foregut and respiratory mesenchyme, while 

the BMP signaling inhibitor Noggin and Sox2 are enriched in the dorsal foregut3,102–105. 
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Consistent with this, we observe strong expression of Wnt2/2b and Bmp4 in the splanchnic 

mesoderm surrounding the ventral Lung1 population, indicating an early role of WNT and BMP 

signaling in lung and trachea instruction (Supplementary Figure 22). Taken together our data 

suggest that the separation of cells committed to either the lung and trachea (Lung1) or the 

esophagus (Lung2) is already present at the 8-12 somite stage, approximately 12-24 hours earlier 

than previously reported. 

 

Discussion 

 

In this study we have combined cutting-edge experimental approaches with advanced 

computational analyses to generate a comprehensive map of how gene expression varies in space 

across sagittal sections of an entire mouse embryo at the 8-12 somite stage of development. 

Previous studies using scRNA-seq have computationally reconstructed developmental 

trajectories based on gene expression but, in the absence of cell-specific spatial information, it 

has been impossible to define how cell states are correlated with the position of cells within the 

embryo, or to understand how the local signaling environment to which they are exposed might 

impact their molecular signature and their ultimate fate. Conversely, although pioneering studies 

have mapped the expression of individual developmental genes at single-cell resolution, the 

ability to stitch together multiple independent in situ maps into a complete, single-cell resolution 

map has not been possible due to inevitable fine scale variations in local cellular organization 

between embryos. 

 

By combining our high-resolution seqFISH map with scRNA-seq we have delineated the precise 

location of distinct cell types within a single reference scaffold. To illustrate the potential of this 

resource, we have shown how it can provide insight into the formation of the midbrain-hindbrain 

boundary and, in particular, the aetiology of cell types along the nascent gut tube. In the latter 

case, we have added an additional axis of resolution to previous studies by uncovering dorsal-

ventral patterning associated with the commitment of cells towards either the esophagus or the 

lung and trachea. To enable this analysis, we developed computational tools for probe design, for 

integrating and imputing data, as well as strategies for downstream analysis, including modelling 

spatial heterogeneity and for performing virtual dissections. This provides a robust experimental 
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and computational framework for future studies, both in the mouse and in other biological 

systems. 

 

In the future, the generation of comprehensive cell-resolution spatial maps at additional stages of 

mouse development will allow spatiotemporal analysis and provide insight into the complex 

processes associated with cell fate specification during gastrulation and organogenesis. 3D 

wholemount maps would further resolve the processes associated with embryo patterning, in 

particular processes that are associated with the left-right axis. Moreover, the recent development 

of novel image-based cell lineage tracing methods, such as Zombie106 or intMEMOIR107, allow a 

cell’s lineage to be recorded while preserving spatial information. These methods are compatible 

with seqFISH and therefore afford the possibility to record spatial gene expression profiles and 

cell history from the same cell in intact tissue. Combining these novel lineage tracing methods 

with spatial transcriptomics will improve our ability to decipher the mechanisms underpinning 

cell fate choice and tissue patterning. 
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METHODS 

 

Library design 

 

We selected genes whose expression patterns discriminated cells from different labeled cell types 

described in the scRNA-seq data of Pijuan-Sala et al. 20196. To do this, we used the scran 

function findMarkers108, with the option 'pval.type = "any"', testing against an absolute fold 

change of 0.5. This was performed separately at each developmental stage of the Gastrulation 

atlas (E6.5-E8.5, in 0.25-day steps), and only cell types with more than 10 cells at any given 

stage were included in the per stage analysis. Genes were excluded if the upper quartile of the 

normalized count across cells in any individual cell type was greater than 20. This was 

performed to prevent the inclusion of highly expressed genes that may compromise imaging. The 

"top" 5 genes per cell type were saved from each stage, and the union of these genes was taken 

across stages. "Top" genes were defined by the findMarkers `Top` column, which identifies a 

minimal number of genes required to separate any cell type from any other. The gene panel was 

evaluated on a per-gene basis to exclude any genes that were too short or repetitive to produce 

reliable fluorescence in situ hybridization (FISH) probes. Additionally, for each cell type, the 

panel of genes was manually curated in order to ensure that the total normalized RNA count 

across cells for each cell type was less than 300 (Supplementary Figure 1). Finally, after 

determining a suitable set of cell type marker genes, we manually added genes of interest 

(especially transcription factors) to the panel, and iteratively performed the "fluorescent load" 

testing and gene removal as described in the previous two sentences. In total we selected 387 

genes, of which 351 genes were detected using seqFISH and 36 using non-barcoded sequential 

single molecular FISH (smFISH) imaging. 

 

Primary probe design 

 

Gene specific primary probes were designed for the selected 351 seqFISH and 36 smFISH genes, 

as previously introduced by Eng et al.109 (Supplementary Table 1). To design 30-nucleotide 

primary probe sequences for the 351 selected seqFISH and 36 smFISH genes, we extracted 30-

nucleotide sequences of each of the selected genes, using the coding region of each gene. The 
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mask genome and annotation from the University of Santa Cruz (UCSC) were used to look up 

the gene sequences. All probe sequences were selected to have a GC content in the range from 

45 to 65% and to not have five or more consecutive bases. Genes with more than 48 primary 

probes were used as a secondary filter to remove off targets. Any gene that did not achieve a 

minimum of 28 probes for seqFISH and 17 probes for smFISH was dropped. To validate the 

specificity of the generated primary probes and to minimize off targets, we performed a BLAST 

search against the mouse transcriptome and all BLAST hits other than the target gene with a 15-

nucleotide match were considered off targets. To avoid off target hits between the primary 

probes a second round of optimization was performed. We constructed a local BLAST database 

from the primary probe sequences and probes that were predicted to hit more than 7 times by all 

of the combined primary probes in the BLAST database were iteratively dropped from the probe 

set, until no more than 7 off-targets hits existed for each primary probe sequence.  

 

Readout probe design 

 

Readout probes of 15-nucleotide length were designed as previously introduced by Shah et al. 27. 

In brief, the probe sequences were randomly generated with combinations of A, T, G or C 

nucleotides, with a GC-content in the range of 40-60%. To validate the specificity of the 

generated readout sequences, we performed a BLAST search against the mouse transcriptome. 

To minimize cross-hybridization of the readout probes, all probes with ten contiguously 

matching sequences between the readout probes were removed. The reverse complements of 

these readout-probe sequences were included in the primary probe, as described below (Primary 

probe library construction; Supplementary Table 1). 

 

Primary probe library construction 

 

The primary probe library, consisting of 15,989 probes for 387 genes (17-48 per gene / average 

of 41.32 per gene), was ordered as an oligoarray pool from Twist Bioscience. Each probe for 

barcoded mRNA seqFISH was assembled out of 30-nucleotide mRNA complementary sequence 

for in situ hybridization, four 15-nucleotide gene specific readout sequences separated by 2-

nucleotide spacer, and two flanking primer sequences to allow PCR amplification of the probe 
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library (Primary barcoded mRNA seqFISH probes: 5’ – [primer 1] – [readout 1] – [readout 2] – 

[probe] – [readout 3] – [readout 4] – [primer 2] – 3’). Each of the probes for non-barcoded 

sequential smFISH were assembled in the same way, with the exception that the sequence for the 

four readout sequences was the same for all four readout sequences (Primary non-barcoded 

sequential smFISH probes: 5’ – [primer 1] – [readout 1] – [readout 1] – [probe] – [readout 1] – 

[readout 1] – [primer 2] – 3’). We used validated primer and 84 readout sequences, previously 

used in seqFISH+ 26. Next, the probe library was amplified as previously described25,26,109–111. In 

brief, limited cycle PCR was used to generate in vitro transcription template, using primer 1 and 

primer 2. Next, the PCR product was purified using a QIAquick PCR Purification Kit (Qiagen, 

28104), following the manufacturer's instructions. Subsequently, the purified PCR product was 

used for in vitro transcription (NEB, E2040S) followed by reverse transcription (Thermo Fisher, 

EP7051) with the forward primer containing a uracil nucleotide112. Next, the forward primer 

sequence was removed by cleaving off the uracil nucleotide. The probes were subjected to a 1:30 

dilution of uracil-specific excision reagent (USER) enzyme (NEB, N5505S) for about 24h at 37 

°C. The single-stranded DNA (ssDNA) was alkaline hydrolyzed with 1 M NaOH at 65 °C for 15 

minutes, followed by neutralization with 1 M acetic acid to remove the remaining RNA 

templates. Next, the probe library was purified by ethanol precipitation to remove residual 

nucleotides and by phenol-chloroform extraction to remove the proteins. Finally, the amplified 

primary probe library was dried by speedvac and resuspended at a concentration of 40 nM per 

probe in primary probe hybridization buffer, composed of 40% formamide (Sigma, F9027), 2x 

SSC, and 10% (w/v) dextran sulphate (Sigma, D8906). The probes were stored at -20 °C. 

 

Readout probe synthesis 

 

15-nucleotide readout probes were ordered from Integrated DNA Technologies (IDT), 

conjugated to Alexa Fluor 488, Cy3B and Alexa Fluor 647 as indicated in Supplementary Table 

2 and 3. All readout probes were stored at −20 °C. 

 

Encoding strategy 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2020. ; https://doi.org/10.1101/2020.11.20.391896doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.20.391896
http://creativecommons.org/licenses/by-nc/4.0/


 21 

In this experiment we used a 12-pseudocolour encoding scheme, as described previously27,109. In 

brief, 12-pseudocolours were equally separated across three fluorescent channels (Alexa Fluor 

488, Cy3B and Alexa Fluor 647). The 12-pseudocolour imaging was repeated four times, 

resulting in 124 (20,736) unique barcodes. Additionally, an extra round of pseudocolour imaging 

was performed to obtain error-correctable barcodes, as previously introduced25. In this 

experiment, 351 genes were encoded across all channels (Supplementary Table 2). 

 

Coverslip functionalization 

 

Coverslips were functionalized as previously described 26. In brief, coverslips (Thermo 

Scientific, 3421) were washed in nuclease free water, followed by an immersion in 100% ethanol 

(Koptec). Subsequently, coverslips were air dried and cleaned using a plasma cleaner on the high 

setting (PDC-001, Harrick Plasma) for 5 minutes. Then, the coverslips were immersed in 1% 

bind-saline solution (GE, 17-1330-13) made in pH 3.5 10% (v/v) acidic ethanol solution for 1 

hour at room temperature. Next, coverslips were rinsed three times in 100% ethanol and heat-

dried in an oven at >90 °C for 30 min. Then, the coverslips were treated with 100 µg/ml of Poly-

D-lysin (Sigma, P6407) in water for a minimum of 1 hour at RT. Afterwards, coverslips were 

washed three times in nuclease free water and air dried. Functionalized coverslips can be stored 

for up to 1-week at 4 °C. 

 

Mice 

 

Experiments, with exception of the HCR experiment (see below), were performed in accordance 

with EU guidelines for the care and use of laboratory animals, and under authority of appropriate 

UK governmental legislation. 8-12 week wild-type C57BL/6J mice (Charles Rivers) were used, 

with exception of the HCR experiment (see below). For the HCR experiment, wild-type CD-1 

mice (Charles Rivers) were used. Mice used were housed under a 12-h light/dark cycle. Natural 

mating was set up between males and 4–6-week-old virgin females, with noon of the day of 

vaginal plug considered to be E0.5. Mice were maintained in accordance with guidelines from 

Memorial Sloan Kettering Cancer Center (MSKCC) Institutional Animal Care and Use 

Committee (IACUC) under protocol no. 03-12-017 (principal investigator A.-K.H.).  
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Tissue preparation 

 

Embryos were dissected from the uteri, washed in M2 media (Sigma Aldrich, 7167) and 

immediately placed in 4% PFA (Thermo Scientific, 28908) in 1x PBS (Invitrogen, AM9624) for 

30 minutes at room temperature. The embryos were then washed and immersed in 30 % RNase-

free sucrose (Sigma Aldrich, 84097) in 1x PBS at 4 °C until the embryo sank to the bottom of 

the tube. Afterwards, each embryo was positioned in a sagittal orientation in a tissue base mold 

(Sakura, 4162) in optimal cutting temperature compound (OCT) solution (Sakura, 4583) and 

frozen in a dry ice isopropanol (VWR, 20842) and stored at -80 °C. 20 µm tissue section were 

cut using a cryotome and collected on the functionalized coverslips and stored at -80 °C. 

 

seqFISH using tissue sections 

 

Tissue sections were post-fixed with 4% PFA in 1x PBS for 15 minutes at room temperature to 

stabilize the DNA, RNA and overall sample structure. The fixed samples were permeabilized 

with 70% EtOH for 1 hour at room temperature. Then the tissue slices were cleared with 8% 

SDS in 1x PBS for 20 minutes at room temperature. The cleared sample was washed with 70% 

EtOH and then air-dried. Samples were blocked for a minimum of 2 hours in blocking solution at 

room temperature in a humidified chamber (1x PBS, supplemented with 0.25% TritionX-100, 10 

mg/ml BSA (Thermo Fisher, AM2616), 0.5 mg/ml salmon sperm DNA (Thermo Fisher, 

AM9680)). Anti-pan Cadherin (Abcam, ab22744), anti-N-Cadherin (Cell Signaling Technology, 

[13A9], 14215), anti-β-Catenin antibody (15B8) (Abcam, ab6301), and anti-E-Cadherin antibody 

(BD Biosciences, clone 36, 610181) were diluted in blocking solution and incubated for 2 hours 

at room temperature. Samples were washed three times in 1x PBS, supplemented with 0.1% 

TritonX-100 (PBS-T), before incubating anti-mouse IgG secondary antibody, conjugated to 

CCTTACACCAACCCT oligo, diluted 1:500 in blocking solution for at least 2 hours at room 

temperature. Next, the samples were washed three times in 1x PBS-T. The samples were post-

fixed with 4% PFA in 1x PBS for 15 minutes followed by three 10-minute washes in 2x SSC 

(Thermo Fisher, 15557036). The samples were dried and hybridized for 24-36 hours with the 

probe library (~2.5 nM per probe), 1 nM of Eef2 probe set A and B (Supplementary Table 1), 
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and 1 µM Locked Nucleic Acid (LNA) oligo-d(T)30 (Qiagen) in primary-probe hybridization 

buffer composed of 40% formamide (Sigma, F9027), 2x SSC and 10% (w/v) dextran sulfate 

(Sigma, D8906) in a humid chamber at 37 °C. The hybridization samples were washed with 40% 

formamide wash buffer (40% formamide, 0.1% TritonX-100 in 2x SSC) for 30 minutes at 37 °C, 

followed by three rinses with 2x SSC. Then, the samples were hybridized for at least 2 hours 

with 200 nM tertiary probe (/5Acryd/AG GGT TGG TGT AAG GTT TAC CTG GCG TTG 

CGA CGA CTA A) in EC buffer made of 10% ethylene carbonate (Sigma, E26258), 10 % 

dextran sulfate (Sigma, D4911), 4x SSC. The samples were washed for 5 minutes in a 10% 

formamide washing buffer (10% formamide, 0.1% TritonX-100 in 2x SSC), followed by two 5-

minute washes in 2x SSC. The samples were treated with 0.1 mg/ml Acryoloyl-X succinimidyl 

ester (Thermo Fisher, A20770) in 1x PBS for 30 minutes at room temperature. Then the samples 

were rinsed three times with 2x SSC and post-fixed with 4% PFA in 1x PBS for 15 minutes, 

followed by three washes in 2x SSC. Next, the samples were incubated with 4% acrylamide/bis 

(1:19 crosslinking) hydrogel solution in 2x SSC for 30 minutes. The hydrogel solution was 

aspirated and the sample covered with 20 µl of degassed 4% hydrogel solution containing 0.05% 

ammonium persulfate (APS) (Sigma, A3078) and 0.05% N,N,N’,N’-tetramethylenediamine 

(TEMED) (Sigma, T7024) in 2x SSC. The sample was sandwiched by GelSlick functionalized 

slide (Lonza, 50640). The samples were transferred to a home-made nitrogen gas chamber and 

incubated for 30 minutes at room temperature, before transferring to 37 °C for at least 3 hours. 

After polymerization, the slides were gently separated from the coverslip and the hydrogel-

embedded tissue was rinsed with 2x SSC three times. Then the samples were cleared for 3 hours 

at 37°C using digestion buffer, as previously described34. The digestion buffer consisted of 1:100 

proteinase K (NEB, P8107S), 50 mM pH 8 Tris-HCl (Invitrogen, AM9856), 1 mM EDTA 

(Invitrogen, 15575020), 0.5% Triton-X100, 1% SDS and 500 mM NaCl (Sigma, S5150). After 

digestion, the tissue slices were rinsed with 2x SSC multiple times and then subjected to 0.1 

mg/ml label-X modification for 45 minutes at 37°C34. For further stabilization the sample was re-

embedded in a 4% hydrogel solution as described above, with a shortened gelation time of 2.5 

hours. Excess gel was removed with a razor and the sample covered with an in-house made flow 

cell. The sample was immediately imaged. 

 

seqFISH imaging 
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Two tissue sections from two experimental blocks, containing three embryos, were imaged as 

previously described26,27. In brief, the flow cell was connected to an automated fluidics system. 

First, the sample was stained with 10 µg/ml DAPI (Sigma, D8417) in 4x SSC and the field of 

view (FOV) were selected. All rounds of imaging were performed in anti-bleaching buffer made 

of 50 mM Tris-HCl pH 8.0 (Thermo Fisher, 15568025), 300 mM NaCl (Sigma, S5150), 2x SSC 

(Thermo Fisher, 15557036), 3 mM Trolox (Sigma, 238813), 0.8% D-glucose (Sigma, G7528), 

1:100 diluted Catalase (Sigma, C3155), and 0.5 mg/mL Glucose oxidase (Sigma, G2133). The 

RNA integrity of the sample was validated by colocalization of the dots of two interspersed Eef2 

probes, each read out by secondary readout probes with distinct fluorophores (Supplementary 

Figure 2; Supplementary Table 3). Sixteen hybridization rounds were imaged for the decoding of 

the barcoded mRNA seqFISH probes followed by a repeat of the first hybridization. Then, 

twelve-serial hybridization rounds were imaged for 36 non-barcoded sequential smFISH probes, 

followed by one hybridization to visualize the cell segmentation staining, using Cy3B conjugated 

to /5AmMC6/TTAGTCGTCGCAACG. The hybridization buffer for each of the hybridization 

rounds, excluding the last, contained three unique readout probes, each consisting of a unique 15 

nucleotide probe sequences, conjugated to either Alexa Fluor 647 (50 nM), Cy3B (50 nM) or 

Alexa Fluor 488 (50 nM) in EC buffer, as described above (Supplementary Table 2-3). The 

hybridization buffer for the cell segmentation staining contained one unique 15-nucleotide probe 

sequence conjugated to Alexa Fluor 647. The hybridization buffer mixes for the 30 rounds of 

hybridization were stored in a deep bottom 96-well plate and were added to the hybridization 

chamber by an automated sampler system, as described previously26. The tissue section was 

incubated in the hybridization solution for 25 minutes at room temperature in the dark. Next, the 

sample was washed with 300 µl of 10% formamide wash buffer to remove excess and non-

specific readout probes. The sample was rinsed with 4x SSC and subsequently stained with 10 

µg/ml DAPI in 4x SSC for 1.5 minutes. Then, the flow chamber was filled with anti-bleaching 

buffer and all selected FOVs of the sample were imaged. The microscope used was a Leica 

DMi8 stand equipped with a Yokogawa CSU-W1 spinning disk confocal scanner, an Andor Zyla 

4.2 Plus sCMOS camera, a 63x Leica 1.40 NA oil objective, a motorized stage (ASI MS2000), 

lasers from CNI and filter sets from Semrock. For each field of view, snapshots were acquired 

with 4 µm z-steps for 6 z-slices. After imaging, the readout probes were stripped off using 55% 
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wash buffer (55% formamide, 0.1% Triton-X100 in 2x SSC) by incubating the sample for 4 

minutes, followed by 4x SSC rinse. Serial hybridization and imaging were repeated for 29 

rounds. The integration of automated fluidics delivery system and imaging was controlled by a 

custom script written in µManager113. 

 

Image processing 

 

To remove the effects of chromatic aberration, 0.1 mm TetraSpeck beads’ (Thermo Scientific 

T7279) images were first used to create geometric transforms to align all fluorescence channels. 

Tissue background and auto-fluorescence were then removed by dividing the initial background 

with the fluorescence images. To correct for the non-uniform background, a flat field correction 

was applied by dividing the normalized background illumination with each of the fluorescence 

images while preserving the intensity profile of the fluorescent points. The background signal 

was then subtracted using the ImageJ rolling ball background subtraction algorithm with a radius 

of 3 pixels and filtered with a despeckle algorithm to remove any hot pixels. 

 

Image registration 

 

Each round of imaging contained the 405 channel, which included the DAPI stain of the cell. For 

each field of view (e.g. tile), all of the DAPI images from every round of hybridization were 

aligned to the first image using a 2D phase correlation algorithm. 

 

Cell segmentation 

 

For semi-automatic cell segmentation, the membrane stains β-catenin, E-cadherin, N-Cadherin 

and Pen-cadherin were aligned to the first hybridization round using DAPI, and subsequently 

trained with Ilastik36, an interactive supervised machine learning toolkit, to output probability 

maps, which were used in the Multicut114 tool to produce 2D labeled cells for each z-slice. For 

image analysis, potential mRNA transcript signals were located by finding the local maxima in 

the processed image above a predetermined pixel threshold, manually calculated for one field of 

view and adjusted for the remainder according to the number of expected potential spots per cell. 
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The transcript spots were assigned to the corresponding labeled cells according to location, 

thereby generating a gene-cell count table. 

 

Barcode calling 

 

Once all potential points in all channels of all hybridizations were obtained, dots were matched 

to potential barcode partners in all other channels of all other hybridizations using a 2.45-pixel 

search radius to find symmetric nearest neighbors. Point combinations that yielded only a single 

barcode were immediately matched to the on-target barcode set. For points that matched to 

multiple barcodes, first the point sets were filtered by calculating the residual spatial distance of 

each potential barcode point set and only the point sets giving the minimum residuals were used 

to match to a barcode. If multiple barcodes were still possible, the point was matched to its 

closest on-target barcode with a hamming distance of 1. If multiple on target barcodes were still 

possible, then the point was dropped from the analysis as an ambiguous barcode. This procedure 

was repeated using each hybridization as a seed for barcode finding and only barcodes that were 

called similarly in at least 3 out of 4 rounds were validated as genes. For more details regarding 

the seqFISH method, please refer to Shah et al.25. 

 

smFISH processing 

 

For the 36 genes that were probed using smFISH, twelve sequential rounds of imaging across 

three fluorescent channels (corresponding to A647, Cy3B and A488 respectively) were used 

(Supplementary Table 3). Assignment of an optimal light intensity threshold to separate 

background noise from hybridized mRNA molecules poses an additional challenge for these data 

since, unlike the seqFISH probed transcripts, each gene’s expression is measured only over a 

single round of hybridization. 

 

To address this problem, we manually assigned a threshold for three randomly selected fields of 

view in the first experimental block (corresponding to embryos 1 and 2) and three fields of view 

in the second experimental block (embryo 3) for all fluorescent channels and all hybridization 

rounds. The choice of threshold was motivated by considering the minimum value at which we 
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acquire nearly complete loss of dots in cell-free areas, which we expect should only contain 

background signal. We then assessed the relationship between the channel, and hybridization 

round and the manually selected thresholds, observing that intensity thresholds are highly 

channel specific, but do not vary as a function of hybridization round (Supplementary Figure 24). 

Accordingly, for each channel, hybridization round and experimental block, we assigned the 

intensity threshold as the average across all manually selected thresholds. 

 

We then visually assessed the spatial distribution of selected spots for each gene, embryo and z-

slice. While most of estimated intensity thresholds resulted in spatially coherent expression 

patterns across all embryos, we noticed a strong channel - field of view specific effect for some 

genes. Specifically, in the first experimental block, genes probed with A647 exhibited substantial 

background signal in fields of view 39, 40 and 44. Given that the effect is highly specific to this 

channel, it is likely an artefact of the imaging experiment. For these genes and fields of view, 

manual examination of a wide range of appropriate intensity thresholds failed to identify a 

threshold at which the background noise was eliminated (Supplementary Figure 24). 

Consequently, we discarded these fields when evaluating the performance of our imputation 

strategy (see below). 

 

Whole-mount hybridization chain reaction (HCR) on E8.75 mouse embryos 

 

Hybridization chain reaction fluorescent in situs where carried out as described115,116 with the 

modification of using 60 pmol of each hairpin per 0.5ml of amplification buffer. Hairpins were 

left 12-14 hours at room temperature for saturation of amplification to achieve highest levels of 

signal to noise117. Split initiator probes (V3.0) were designed by Molecular Instruments, Inc. 

 

HCR imaging 

All images were obtained on a Zeiss 880 laser scanning confocal microscope with a 10x 

objective and 6.74 µm z-step sizes. Tile-scanned z-stacks were stitched in Zen software and 

rendered in 3D in Imaris (v9.6, Bitplane Inc). 
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Downstream computational analysis 

Quality control and filtering 

 

To lower the chance of counting cells multiple times in contiguous z-slices, we selected two z-

slices (denoted 1 and 2 hereafter) for further analysis, corresponding to two parallel tissue layers 

12um apart. We then removed segmented regions most likely to correspond to empty space 

rather than cell-containing regions by testing whether a putative cell’s square-root transformed 

segmented area was larger than expected (Z-test; FDR threshold of 0.01). Of the remaining 

segmented regions, we considered segments containing at least 10 detected mRNA molecules 

corresponding to at least 5 unique genes as true cells.  

 

Cell neighborhood network construction 

 

To construct a cell neighborhood network, for each cell within a given embryo and z-slice we 

extracted the polygon representation of the cell’s segmentation, corresponding to a set of vertex 

coordinates. We then calculated an expanded segmentation by constructing a new polygon where 

each expanded vertex was lengthened along the line containing the original vertex and the center 

of the polygon. We performed a multiplicative expansion of 1.3 for each vertex. To construct the 

cell neighborhood network, we then identified the other cells in which segmentation vertices 

were found to be within the expanded polygon. Cell neighborhood networks were considered 

separately for each embryo and z-slice combination. 

 

Gene expression quantification per cell 

 

We calculated normalized expression logcounts for each cell using scran’s logNormCounts 

function108, with size factors corresponding to the total number of mRNAs (excluding the sex-

specific gene Xist) identified for each cell. Size factors were scaled to unity and a pseudocount of 

1 was added before the logcounts were extracted. For the majority of downstream analyses, such 

as differential gene expression, we specifically included biological and technical variables (i.e. z-

slice and field of view) as covariates. However, for the task of harmoniously visualizing gene 

expression in spatial coordinates, we extracted ‘batch-corrected expression’ values for each gene. 
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This was done by first performing batch correction using the Mutual Nearest Neighbors method, 

implemented with fastMNN in the scran package108, with batch variables corresponding to z-

slice and field of view. To ensure interpretability of the reconstructed expression values, we 

rescaled these values to correspond to the unnormalized logcounts expression distribution for 

each gene, resulting in a “batch-corrected expression” matrix. 

 

Clustering gene expression 

 

To identify unsupervised clusters, we first performed multi-batch aware PCA on the normalized 

logcounts using the multiBatchPCA function in scran108, with z-slice and field of view as batch 

variables, using all genes except Xist as input to extract 50 PCs. We then performed batch 

correction using the Mutual Nearest Neighbors approach, resulting in a corrected reduced 

dimension embedding of cells. To identify clusters, we estimated a shared nearest neighbor 

network, followed by Louvain network clustering. To further extract unsupervised subclusters, 

for each set of cells belonging to a given cluster we performed highly variable gene selection to 

select genes with a non-zero estimated biological variance, excluding the sex-specific gene Xist. 

Using these selected genes, we performed batch-aware PCA to extract 50 PCs, followed by batch 

correction, shared nearest neighbor network construction and Louvain clustering similar to what 

was performed for all cells. 

 

Joint analysis with Gastrulation atlas 

 

We downloaded the E8.5 Pijuan-Sala et al.6 10X Genomics scRNA-seq dataset from the 

Bioconductor package MouseGastrulationData and performed batch aware normalization using 

the multiBatchNorm function in the scran package108, before extracting cells that correspond to a 

known cell type with at least 25 cells. Cell types associated with the somitic and paraxial 

mesoderm were further refined using labels assigned by Carolina Guibentif (personal 

communication); blood subtypes (Erythroid1/2/3 and Blood progenitors 1/2) were collapsed to 

the two major groups; ExE mesoderm was renamed to Lateral plate mesoderm; and Pharyngeal 

mesoderm was renamed to Splanchnic mesoderm. Subsequently, only genes probed by both the 

scRNA-seq and seqFISH assays were kept for this analysis. We then jointly embedded the 
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normalized logcounts of each of the two datasets by performing batch-aware PCA with 50 

components (excluding the sex-specific gene Xist) via the multiBatchPCA function in scran with 

batch variables corresponding to sequencing runs in the Gastrulation atlas and field of view and 

z-slice for the seqFISH data. We corrected for platform and batch specific effects using the MNN 

method (fastMNN118), ensuring that merge ordering is such that Gastrulation atlas batches are 

merged first (ordered by decreasing number of cells). This joint embedding of the Gastrulation 

atlas and seqFISH dataset was further reduced in dimension using UMAP, implemented by 

calculate UMAP in scran108 to allow the data to be visualized in two dimensions. 

 

Cell type identification 

 

To assign a cell type label to each seqFISH cell, we considered the Gastrulation atlas cells that it 

was closest to in the batch-corrected space. We considered the k-nearest cells, with the distance 

from the seqFISH cell to its Gastrulation atlas neighbors being computed as the Euclidean 

distance amongst the batch-corrected PC coordinates. We set the number of nearest neighbors, k, 

to 25. Ties were broken by favoring the cell type of those closest in distance to the query cell. 

We calculated a “mapping score” for each query cell as the proportion of the majority cell type 

present among the 25 closest cells.  

 

To further refine the predicted cell types we performed joint clustering of the Gastrulation atlas 

and seqFISH cells by building a shared nearest neighbor network on the joint PCs followed by 

Louvain network clustering. Additionally, we further subclustered the output by building a 

shared nearest neighbor network on the cells corresponding to each cluster followed by Louvain 

network clustering. We then inspected the relative contribution of cells to each subcluster as well 

as the expression of marker genes in order to identify subclusters that potentially required 

manual re-annotation, either due to small differences in composition in the reference atlas or in 

the gene expression profile (Supplementary Figure 6). We also identified a set of subclusters that 

were likely associated with low quality cells, defined by lower total mRNA counts. Furthermore, 

we performed virtual dissection on regions corresponding anatomically to the developing gut 

tube, and for these cells re-classified those that were “Surface ectoderm” as “Gut tube”. 
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Subclustering of mixed mesenchymal mesoderm cells 

 

To analyze the mixed mesenchymal mesoderm, population we performed highly variable gene 

selection for these cells only, using the 'modelGeneVar' function in scran108, and performed 

principal component analysis (excluding the sex-specific gene Xist) on the normalized logcounts 

followed by batch correction using MNN with embryo and z-slice as batch variables. We then 

further reduced these corrected PCs into two dimensions using UMAP for visualization 

purposes. To identify mixed mesenchymal mesoderm subclusters, we estimated a shared nearest 

neighbor network, followed by Louvain network clustering. We then performed differential 

expression analysis on the seqFISH genes and on the imputed gene expression values (described 

further below) using the 'findMarkers' function in scran108, and gene ontology enrichment 

analysis as described below. To further identify the spatial context for the mixed mesenchymal 

mesoderm, for each cluster we extracted the cells that appear as direct contact neighbors with 

any cell belonging to the cluster, and recorded their corresponding cell type. To assess the 

relative association of each mixed mesenchymal mesoderm subcluster to the Gastrulation atlas6, 

we calculated a weighted score per Gastrulation atlas cell and mixed mesenchymal mesoderm 

subcluster, corresponding to the average ranking of the Gastrulation atlas cell among the top 25 

nearest neighbors for each mixed mesenchymal mesoderm subcluster cell. 

 

Spatial heterogeneity testing per cell type 

 

We identified genes with a spatially heterogeneous pattern of expression using a linear model 

with observations corresponding to each cell for a given cell type, and with outcome 

corresponding to the gene of interest’s expression value. For each gene, we fit a linear model 

including the embryo and z-slice information as covariates as well as an additional covariate 

corresponding to the weighted mean of all other cells’ gene expression values. The weight was 

computed as the inverse of the cell-cell distance in the cell-cell neighborhood network.  

 

More formally, let  be the expression of gene  for cell . Calculate  as the weighted 

average of other  cells' expression, weighted by distance in the neighborhood network 
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where 

 
is the path length in the neighborhood network between vertices corresponding to cells  and . 

We then fit the linear model for each gene 

 
where  and  correspond to the embryo and z-slice identity of the cells, and  represents random 

normally distributed noise. The -statistic corresponding to  is reported here as a measure of 

spatial heterogeneity for the given gene, a large value corresponding to a strong spatial 

expression pattern of the gene in space, especially among its neighbors. 

 

Subclustering of developing brain cells 

 

To further subcluster the developing brain cells, we extracted the Gastrulation atlas cells 

corresponding to embryonic day E8.5 that were classified as Forebrain/Midbrain/Hindbrain. For 

these cells we identified genes to further cluster by using the scran function modelGeneVar108 to 

identify highly variable genes with nonzero biological variability, excluding the sex-specific 

gene Xist. For these genes we extracted the cosine-standardized logcounts, which were 

standardized against the entire transcriptome. We then performed batch correction using the 

MNN method on batch-aware PC coordinates, where batches corresponded to the sequencing 

samples. Using this batch-corrected embedding we estimated a shared nearest neighborhood 

network and performed Louvain network clustering. To relate these brain subcluster labels to the 

seqFISH data, we extracted the nearest neighbor information (as described in “Cell type 

identification”) for seqFISH cells corresponding to Forebrain/Midbrain/Hindbrain, and classified 

their brain subcluster label using k-Nearest Neighbors with k = 25, with closest cells breaking 

ties. We then named these subclusters based on marker gene expression, including a class that 

may be technically driven (NA class). 

 

Cell-cell contact map inference 
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We constructed cell-cell contact maps for multiple cell annotation labelings, including mapped 

cell types, subclusters within each cell type, and for mapped gut tube subtypes. To do this, for 

each embryo and z-slice combination, we extracted the cell neighborhood network and cell-level 

annotation. We then generated cell-cell contact maps by first calculating the number of edges for 

which a particular pair of annotated groups was observed. We then randomly re-assigned (500 

times) the annotation by sampling without replacement, and calculated the number of edges for 

all pairs of annotated groups. To construct the cell-cell contact map, we reported the proportion 

of times the randomly re-assigned number of edges was larger than or equal to the observed 

number of edges. Small values correspond to the pair of annotation groups being more 

segregated, and large values correspond to them being more integrated in physical space 

compared to a random allocation. To combine these cell-cell contact maps for each embryo and 

z-slice combination, we further calculated the element-wise mean for each pair of cell labels. We 

visualized this in a heatmap, ordering the annotation groups using hierarchical clustering with 

Euclidean distance and complete linkage. In the case of the gut tube subtypes, we ordered these 

classes by the anterior-posterior ordering given by Nowotschin et al.2. In the brain subtypes, we 

ordered these classes by their approximate anatomical location, from the forebrain to the 

hindbrain region. 

 

Gene ontology enrichment analysis 

 

To functionally annotate sets of gene clusters, we performed gene set enrichment analysis using 

mouse Gene Ontology terms with between 10 and 500 genes appearing in each dataset, and at 

least one gene appearing from the testing scaffold119 using Fisher’s exact test to test for 

overrepresentation of genes, using all scHOT tested genes as the gene universe. An FDR 

adjusted P < 0.05 was considered to be statistically significant. 

 

Imputation 

 

Below we outline the different elements of our strategy for imputing the spatially-resolved 

expression of genes not profiled using seqFISH. 
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Intermediate mapping 

 

First, for each gene in the seqFISH library (excluding the sex-specific gene Xist), we performed 

an intermediate mapping to align each seqFISH cell with the most similar set of cells in the 

scRNA-seq dataset. To perform the mapping we excluded the gene of interest and used the 

remaining 349 genes (351 seqFISH genes – Xist – gene of interest), resulting in 350 intermediate 

mappings overall. The leave-one-gene-out mapping approach was used to assess whether the 

intermediate mapping strategy outlined below could be used to estimate the expression counts of 

the omitted gene. 

 

Similar to the integration strategy described earlier for assigning cell type labels, for each 

embryo and z-slice we concatenated the cosine normalized seqFISH counts with the cosine 

normalized expression values from the Gastrulation atlas scRNA-seq data6. We performed 

dimensionality reduction using ‘multibatchPCA’ (using 50 principal components) and performed 

batch correction using the ‘reducedMNN’ function implemented in scran108. Next, for each cell 

in the seqFISH dataset that was assigned a cell type identity in the earlier integration, we used 

the ‘queryKNN’ function in BiocNeighbors to identify its 25 nearest neighbors in the scRNA-seq 

data. Finally, for each seqFISH cell, the expression count of the gene of interest is estimated as 

the average expression of the corresponding gene across the cell’s 25 nearest neighbors. 

 

Performance evaluation 

 

For each mapped gene, its Performance score is calculated as the Pearson correlation (across 

cells) between its imputed values and its measured seqFISH expression level. To estimate an 

upper bound on the performance score (i.e., the maximum correlation we might expect to 

observe) we took advantage of the four independent batches of E8.5 cells that were processed in 

the scRNA-seq Gastrulation atlas. In particular, we treated one of the four batches as the query 

set and used the leave-one-out approach described above to impute the expression of genes of 

interest by mapping cells onto a reference composed of the remaining three batches. 

Additionally, to mimic the seqFISH imputation, we considered a subset of the Gastrulation atlas 

data consisting of only those genes that were probed in the seqFISH experiment. Moreover, due 
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to the experimental procedure, some cell types present in the Gastrulation atlas (e.g., extra-

embryonic cell types) were not probed in the seqFISH experiment. Accordingly, we considered 

only the subset of scRNA-seq profiled cells that were amongst the nearest neighbors of a 

seqFISH mapped cells so this subset most faithfully resembled the seqFISH data.  

  

Subsequently, for each mapped gene, we computed its Prediction score as the weighted Pearson 

correlation between its imputed expression level and its true expression level. The weights were 

proportional to the number of times each Gastrulation atlas cell was present among the neighbors 

of a seqFISH cell, across all profiled genes. 

 

Finally, for each gene probed in the seqFISH experiment, we define its normalized imputation 

performance score as the ratio of its performance score over its prediction score.  

 

Final imputation 

 

To perform imputation for all genes, we aggregated across the 350 intermediate mappings 

generated from each gene probed using seqFISH. Specifically, for each seqFISH cell, we 

considered the set of all Gastrulation atlas cells that were associated with it in any intermediate 

mapping. Subsequently, for every cell, we calculated each gene’s imputed expression level as the 

weighted average of the gene’s expression across the associated set of Gastrulation atlas cells, 

where weights were proportional to the number of times each Gastrulation atlas cell was present.  

 

Midbrain-Hindbrain Boundary (MHB) detection and virtual dissection 

 

To identify the MHB, we visually assessed the expression of the well-described mesencephalon 

and prosencephalon marker Otx2 and the rhombencephalon marker Gbx2 (Supplementary Figure 

19). We manually selected the physical region where both genes are expressed and defined this 

as the field of view (black rectangle, Supplementary Figure 19). Subsequently, within the 

selected region we performed a virtual dissection by manually choosing the boundary that best 

discriminates the expression of Otx2 and Gbx2 (Supplementary Figure 19) and based on the 

boundary we assigned cells either a Midbrain or a Hindbrain identity. 
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Downstream analysis of the MHB region 

 

Differential expression analysis was performed between Midbrain and Hindbrain assigned cells 

using the scran function ‘findMarkers’ (with a log fold-change threshold of 0.2 and an FDR-

adjusted P-value threshold of 0.05; Supplementary Table 6).  

 

To perform diffusion analysis of the MHB region, we performed batch correction of the fields of 

view and z-slice using the MNN approach, with logcounts of all genes excluding the sex-specific 

gene Xist as input. We then used the diffusion pseudotime (DPT) method implemented in the R 

package destiny79 to build a diffusion map with 20 diffusion components (DC), using the cell 

with maximum value in DC1 as the root cell for DPT estimation. To visualize the diffusion 

components in space, we added an estimated vector field to the segmented spatial graphs with 

arrow sizes corresponding to the magnitude of change among nearby cells, and directions 

corresponding to the direction with the largest change in the diffusion component. We then 

identified imputed genes strongly correlated with DPT (absolute Spearman correlation > 0.5) 

amongst either Midbrain or Hindbrain region cells. For smooth expression estimation along the 

DPT, we split cells into either Midbrain or Hindbrain regions and extracted fitted values from 

local regression (loess) for each gene with DPT ranking as the explanatory variable. To further 

identify genes associated with spatial variation in expression, we performed scHOT82 analysis 

using weighted mean as the underlying higher order function, with a weighting span of 0.1 on 

spatial coordinates and using the imputed gene expression values. We then identified the 500 

top-ranked significantly spatially variable genes (ensuring also that FDR-adjusted P-value < 

0.05), and clustered their smoothed expression using hierarchical clustering (Supplementary 

Table 7), selecting the number of clusters using dynamicTreeCut120. To visualize spatial 

expression profiles of clusters, we calculated the mean inferred gene expression value for the 

genes associated with each cluster. 

 

Joint analysis with Nowotschin et al. (2019) dataset 
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We downloaded the Nowotschin et al. 10X Genomics scRNA-seq counts and associated 

annotations from the corresponding Shiny web application (https://endoderm-explorer.com/)2. 

We then subset down to E8.75 cells, considering each 10X Genomics sequencing library as a 

batch variable. We performed highly variable gene (HVG) selection using ‘modelGeneVar’ from 

the scran package108, using the library sample as the blocking variable. We then selected the 

intersection of these HVGs and the genes appearing in the seqFISH dataset for further analysis. 

We concatenated the normalized logcounts for the Nowotschin et al. and seqFISH datasets and 

performed dimensionality reduction to 50 principal components using ‘multiBatchNorm’ as 

implemented in scran108. We then performed batch correction using the Mutual Nearest 

Neighbors approach, where the merge order was fixed to first integrate batches from the 

Nowotschin et al. dataset (ordered by decreasing cell number). We then identified the 10 nearest 

neighbors of the seqFISH cells to the Nowotschin et al. cells in the corrected reduced 

dimensional space. Using these nearest neighbors, we classified seqFISH Gut tube cells to a cell 

type defined by Nowotschin et al.. A “mapping score” was computed for each cell as the 

proportion of the nearest neighbors in Nowotschin et al. data corresponding to the selected class. 

We performed differential gene expression analysis between the Lung 1 and Lung 2 groups using 

'findMarkers' in scran108, and also performed differential gene expression analysis between the 

associated mesodermal cells at most three steps away from the Lung 1 or Lung 2 cells in the cell-

cell neighborhood network. 

 

Anterior-Posterior axis cell ranking 

 

To calculate the relative position of developing gut tube cells along the anterior-posterior axis, 

for each embryo we performed a virtual dissection to visually identify the dorsal and ventral 

regions of the gut tube. Then for each embryo and each dorsal or ventral tissue region, we fit a 

single principal curve model, using the R package princurve121, with explanatory variables 

corresponding to the physical coordinates. We then extracted anterior-posterior cell rankings by 

taking the rank of the fitted arc-length from the beginning of the curve, ensuring the curve 

always began at the anterior-most position.  

 

Joint analysis with Nowotschin et al. (2019) and Han et al. (2020) datasets 
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To further understand the relationship between the endodermal and mesodermal layers in the gut 

tube, we performed joint analysis between the Nowotschin et al. data (described above), as well 

as the E8.5 splanchnic mesoderm cells from Han et al.3. For the Han et al. data, we performed 

highly variable gene (HVG) selection using ‘modelGeneVar’ from the scran package108, using 

the library sample as the blocking variable, and then selected the genes that appeared in either 

the HVG list for Nowotschin et al. or Han et al., and that were also present in the seqFISH gene 

library. We then concatenated the normalized logcounts of all three datasets and performed 

integration (dimensionality reduction, batch correction, further dimensionality reduction for 

visualization) and cell classification as described above. Thus, for each seqFISH cell, we 

obtained a classified cell class according to the labels provided by Han et al., including 

mesodermal subtypes in the splanchnic mesoderm. To further investigate the surrounding 

mesodermal cells of the gut tube, we used the cell-cell neighborhood network to identify 

mesodermal cells at most three steps away from a gut tube cell and, for each of these cells, we 

identify their position as either dorsal or ventral to the gut tube, and calculated the mean position 

along the anterior to posterior axis. 
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FIGURES 
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Figure 1: Single-cell spatial transcriptomics map of mouse organogenesis using seqFISH. 
 
(A) Illustration of 8-12 somite stage mouse embryo. Horizontal lines indicate estimated position 
of sagittal tissue section shown in (B). Abbreviations used: D= dorsal, V= ventral, R= right; L= 
left; A= anterior; P= posterior. 
 
(B) Tile-scan of a 20 µm sagittal section of three 8-12 somite stage embryos, stained with 
nuclear dye DAPI (white). Red boxes indicate selected field of view (FOV), imaged using 
seqFISH. 
 
(C) Illustration of experimental overview for spatial transcriptomics, using seqFISH for 351 
selected genes and non-barcoded sequential smFISH for 36 genes. 
 
(D) Cell segmentation strategy, using a combination of E-cadherin (E-cad), N-cadherin (N-cad), 
Pan-cadherin (Pan-cad) and β-catenin antibody (AB; green) staining, detected by an oligo 
conjugated anti-mouse IgG secondary antibody (orange) that gets recognized by a tertiary probe 
sequence. The acrydite group (blue star) of the tertiary probe (blue) gets crosslinked into a 
hydrogel scaffold and stays in place even after protein removal during tissue clearing. The cell 
segmentation labeling can be read out by a fluorophore-conjugated readout probe (red). 
 
(E) Cell segmentation staining of a 10 µm thick transverse section of an E8.5 mouse embryo, 
using the strategy introduced in (D). Cell segmentation signal was used to generate a cell 
segmentation mask using Ilastik (right panel). 
 
(F) Visualization of normalized log expression counts of 12 selected genes, measured by 
seqFISH to validate performance. Scale bar 250 µm. 
 
(G) Highly resolved ‘digital in situ’ of the cardiomyocyte marker Titin (Ttn), Tbx5, Cdh5, and 
Dlk, colored in red, cyan, green and orange respectively. Dots represent individually detected 
mRNA spots. Box represents an area that was magnified for better visualization. Scale bars 50 
µm. 
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Figure 2: Cell type annotation and neighborhood characterization. 
 
(A) Projection of seqFISH spatial and Gastrulation atlas cells in joint reduced dimensional space 
in order to annotate seqFISH cells based on their nearest neighbors in the mouse Gastrulation 
atlas. 
 
(B) Real position of annotated seqFISH cells in embryo tissue section. Colors represent refined 
cell type classification. Scale bar 250 µm. 
 
(C) Cell type maps separated by the three germ layers (ectoderm, mesoderm, endoderm). Scale 
bar 250 µm. 
 
(D) Cell-cell contact map displaying the relative enrichment towards integration and segregation 
of pairs of cell types in space. Cell types are clustered by their relative integration with others. 
 
(E) Violin plots showing the t-statistic for each gene and cell type corresponding to a measure of 
the degree of residual transcriptional heterogeneity explained by space. For each cell type 
selected top genes are labeled.  
 
(F) Re-clustering of Forebrain/Midbrain/Hindbrain cell type into 7 spatially distinct clusters. 
Scale bar 250 µm. 
 
(G) Zoom in of the brain region to visualize four major brain regions and seven subclusters 
identified in (F). Scale bars 50 µm. 
 
(H) Cell-cell contact map of brain subclusters in space, ordered roughly anatomically from 
hindbrain to forebrain. 
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Figure 3: Creating and using a 10,000-plex spatial map.  
 
(A) Schematic representation of the imputation strategy. 
 
(B) Independent validation of imputation performance by comparing normalized gene expression 
profiles of selected genes measured by smFISH with the corresponding imputed gene expression 
profiles. Scale bars 250 µm. 
 
(C) Visualization of brain subclusters in embryo 2 and virtual dissection of the midbrain-
hindbrain boundary (MHB), highlighted by red rectangle and inset zoom. Scale bar 250 µm. 
Abbreviations used: C= caudal; R= rostral; D= dorsal; V= ventral. 
 
(D) ‘Digital in situ’ showing detected mRNA molecules of a mesencephalon and prosencephalon 
marker Otx2 (orange dots) and a rhombencephalon marker Gbx2 (purple dots) to identify the 
MHB. Scale bar 50 µm. 
 
(E) MA (log-ratio and mean average) plot showing differential gene expression analysis between 
the virtually dissected hindbrain region (orange, 48 genes significantly upregulated, absolute 
LFC > 0.2, FDR-adjusted P-value < 0.05) and virtually dissected midbrain region (purple, 18 
genes significantly upregulated, absolute LFC > 0.2, FDR-adjusted P-value < 0.05) using the 
imputed transcriptome. 
 
(F) Diffusion pseudotime analysis of the virtually dissected region to understand dynamics of 
gene expression at the MHB. Scatterplot of diffusion-based embedding of virtually dissected 
cells, displaying diffusion components (DC) 1 and 2. Cell colors correspond to inferred diffusion 
pseudotime. 
 
(G) Spatial graph showing virtually dissected cells colored by inferred diffusion pseudotime, 
dominated by DC1. Arrow sizes correspond to the magnitude of change of pseudotime value 
within the region, in the direction from large to small pseudotime values. The highest pseudotime 
values are observed along the MHB region, smoothly diffusing outward to the midbrain and 
hindbrain regions. Scale bar 50 µm. 
 
(H) Spatial graph showing virtually dissected cells colored by DC2. Arrow sizes correspond to 
the magnitude of change of DC2 value within the region. The most extreme DC2 values are 
observed perpendicular to the MHB region, smoothly diffusing outward to the floorplate and 
roofplate regions. Scale bar 50 µm. 
 
(I) Visualization of normalized log expression counts of important regulators of 
midbrain/hindbrain formation. Gene name in red font indicate imputed expression, while black 
font indicates measured expression. Scale bar 50 µm. 
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Figure 4: Spatial characterization of gut tube organogenesis 
 
(A) Joint embedding of seqFISH data and Nowotschin et al. cells corresponding to the 
developing gut tube2 with seqFISH cells annotated by their predicted gut tube subtype. Colors 
represent gut tube subtypes. Zoomed in region shows anterior-posterior patterning of the gut 
endoderm cluster in the UMAP space, indicated by arrow. Abbreviations used: A= anterior; P= 
posterior. 
 
(B) Position of gut tube cell types in the embryo tissue section. Colors represent cell type 
classification. Scale bar 250 µm. Right hand side shows a zoom in into the region of the gut tube 
for better visualization. 
 
(C) Anterior-posterior ranking of cells, corresponding to each gut tube subtype, split into dorsal 
and ventral regions. Bar color corresponds to the mapping score associated with classification 
into the subtype.  
 
(D) Cell-cell contact map that displays the relative enrichment towards integration and 
segregation of pairs of gut tube subtypes in space, ordered along the inferred A-P ordering in 
Nowotschin et al.2. 
 
(E) Volcano plot showing gene expression comparison between the (ventral) Lung1 and (dorsal) 
Lung2 subtypes using seqFISH data. Significantly differentially expressed genes (absolute LFC 
> 0.5 & FDR-adjusted P-value < 0.05) are highlighted and corresponding gene names are 
indicated. 
 
(F) Visualization of expression of Tbx1 (enriched in the dorsal Lung2 cluster) and Osr1 
(enriched in the ventral Lung1 cluster). Scale bar 50 µm. 
 
(G) ‘Digital in situ’ showing detected mRNA molecules for Tbx1 (red) and Shh (cyan) across the 
entire embryo tissue section. Scale bar 250 µm. 
 
(H) Multiplexed mRNA imaging of whole-mount E8.75 mouse embryo using hybridization 
chain reaction (HCR) of Tbx1 (red) and Shh (cyan). Zoom in shows region specific expression in 
the developing lung region. Scale bar 150 µm. Abbreviation used: PA= pharyngeal arch. 
 
(I) ‘Digital in situ’ showing detected mRNA molecules for Smoc2 (red) and Tbx3 (cyan) across 
the entire embryo tissue section. Scale bar 250 µm. 
 
(J) Multiplexed mRNA imaging of whole-mount E8.75 mouse embryo using hybridization chain 
reaction (HCR) of Smoc2 (red) and Tbx3 (cyan). Zoom in shows region specific expression in the 
developing lung region. Scale bar 150 µm. 
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Data availability 

The spatial transcriptomic map can be explored interactively at: 

https://marionilab.cruk.cam.ac.uk/SpatialMouseAtlas/ and raw image data is available on 

request. Processed gene expression data with segmentation information and associated metadata 

is also available to download and explore online at 

https://marionilab.cruk.cam.ac.uk/SpatialMouseAtlas/. Scripts for downstream analysis are 

available at https://github.com/MarioniLab/SpatialMouseAtlas2020. 
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