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Abstract22

Low-level states of consciousness are characterised by disruptions of brain dynamics23

that sustain arousal and awareness. Yet, how structural, dynamical, local and network24

brain properties interplay in the different levels of consciousness is unknown. Here, we25

studied the fMRI brain dynamics from patients that suffered brain injuries leading to a26

disorder of consciousness and from subjects undergoing propofol-induced anaesthesia. We27

showed that pathological and pharmacological low-level states of consciousness displayed28

less recurrent, less diverse, less connected, and more segregated synchronization patterns29

than conscious states. We interpreted these effects using whole-brain models built on30

healthy and injured connectomes. We showed that altered dynamics arise from a global31

reduction of network interactions, together with more homogeneous and more structurally32

constrained local dynamics. These effects were accentuated using injured connectomes.33

Notably, these changes lead the hub regions to lose their stability during low-level states34

of consciousness, thus attenuating the core-periphery structure of brain dynamics.35

Keywords— whole-brain modelling, consciousness, DOC, propofol anaesthesia, complexity, brain-36

mechanism, heterogeneity37
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1 Introduction38

It is widely accepted that consciousness is decreased during sleep, under anaesthesia, or as a con-39

sequence of major brain lesions producing disorders of consciousness (DOC). In clinical settings,40

different states of consciousness have been defined depending on the level of wakefulness and aware-41

ness [1], as measured by the responsiveness and the ability to interact with the environment. The42

study of these different levels of consciousness has proved to be essential to understand the neural43

correlates of consciousness, yet, the underlying mechanisms remain largely unknown. Elucidating44

these mechanisms is challenging since they seemingly rely on a non-trivial combination of alterations45

in local dynamics and network interactions.46

During the last decades, the study of the organization of brain dynamics and connectome structure47

has provided increased understanding of the healthy brain structure and function [2, 3, 4, 5, 6, 7]. On48

the one hand, analyses of electroencephalography (EEG), functional MRI (fMRI), and magnetoen-49

cephalography (MEG) have shown that a hallmark of healthy awake brain dynamics is the balance50

between integration and segregation [8, 9, 10, 11]. On the other hand, graph theory studies have51

shown that the modular and hierarchical organization of the human connectome optimizes the effi-52

ciency and robustness of information transmission [3, 12]. For these reasons, consciousness has been53

considered to result from the interplay between dynamics and connectivity allowing the coordination54

of brain-wide activity to ensure the conscious functioning of the brain [13, 14, 15, 16]. In contrast,55

unconscious states are characterized by a loss of integration [17, 14, 18], a loss of functional com-56

plexity [19, 20], and a loss of communication at the whole-brain level [21, 22, 9, 18]. Interestingly, it57

has been shown that the repertoire of functional correlations is more constrained by the anatomical58

connectivity during unconscious states [23, 24, 25, 13]. In other words, the dependency of dynamics59

on structural connections is increased in low-level states of consciousness. Along with these network60

effects, it has been proposed that some local brain regions, such as fronto-parietal regions, poste-61

rior cingulate, precuneus, thalamus and parahippocampus, play an important role in maintaining62

consciousness [1, 26, 27]. To study how structural, dynamical, local and network brain properties in-63

terplay in the different levels of consciousness, theoretical models are needed to incorporate all these64

levels of description.65

In this study, we built whole-brain models with global and local parameters to investigate the66

possible mechanisms underlying the reduction of consciousness as a consequence of severe brain injury67

and transient physiological modifications due to anaesthesia. For this, we studied the fMRI dynamics68

of patients who have suffered brain injuries from various etiologies (i.e. traumatic brain injury (TBI),69

anoxia, haemorrhage) affecting different brain regions implicated in DOC. Specifically, we analysed70

data from patients with Unresponsiveness Wakefulness Syndrome (UWS; preserved arousal but no71

behavioural signs of consciousness)[28] and in Minimally Conscious State (MCS, fluctuating but re-72

producible signs of consciousness) [29], and compared them with healthy control subjects (CNT)73

during wakefulness. We also considered the fMRI dynamics of healthy controls scanned during con-74

scious wakefulness (W), during propofol-induced anaesthesia (state of deep sedation, S) and during75
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the recovery from it (R). To study the brain dynamics, we used phase-synchronization analyses, which76

have proven to effectively describe the spatiotemporal dynamics of fMRI signals [30]. We interpreted77

the results using a whole-brain model based on Hopf bifurcations [31]. This model is able to generate78

different collective oscillatory dynamics depending on the (healthy or injured) anatomical connectivity79

structure, the global strength of connections and the local state of the network’s nodes. Importantly,80

the model allows the investigation of the interplay between structure and global and local dynamics.81

In particular, it allows to relate the network behaviors to the local dynamics of regions having an82

important topological role in the network, such as the structurally highly connected nodes, or ”hubs”.83

2 Results84

We performed both data- and model-driven analyses to compare different levels of consciousness in85

two neuroimaging datasets comprising DOC and healthy subjects under anaesthesia. The first dataset86

consisted of fMRI signals and structural connectomes (SC) from healthy subjects during conscious87

wakefulness (n =35), and MCS and UWS patients (n = 33 and n = 15, respectively). The analysis88

was complemented with an additional fMRI data from 16 healthy controls scanned during conscious89

wakefulness (W), deep sedation (S) and recovery from it (R).90

Decrease in brain data-driven phase dynamics complexity in low-level91

states of consciousness92

We first searched for spatiotemporal signatures of loss of consciousness in the whole-brain blood-93

oxygen-level-dependent (BOLD) signals for the different experimental groups. We were interested94

in synchronization dynamics, thus, we concentrated on phase statistics. For this, following previous95

research, BOLD phases were extracted in the 0.04-0.07 Hz frequency band [32, 6, 30] using the Hilbert96

transform (Fig. 1 a-b). This allows to obtain, at each time point t, a phase-interaction matrix, P (t),97

given by the phase differences among the regions of interest (ROIs) (Fig. 1 c, see Methods). We were98

interested in the spatiotemporal organization of these phase interactions.99

First, we examined the spatial distribution of phase-interaction matrices. We measured the in-100

tegration and segregation of the phase-interaction matrices averaged over time. Integration was101

measured as the size of the largest subcomponent. Segregation was measured as the modularity in-102

dex of the matrix resulting from community detection (see Methods). We found that the average103

integration across time was significantly lower for MCS and UWS, compared to CNT, and for S and104

R compared to W (Fig 1 d, see also table 1). For the average segregation, we observed the opposite105

pattern (Fig 1 e, see also table 1). Thus, low-level states of consciousness were characterised by a106

decrease of integration and an increase of segregation.107
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Figure 1: Changes in global properties of phase-dynamics induced by loss of conscious-

ness. a) BOLD band-pass signals (0.04-0.07 Hz) for two samples ROIs. The instantaneous phases,

φj(t) and φk(t), of each signal were computed using the Hilbert transform. b) At each time frame, the

interaction between ROIs was given by the instantaneous phase difference, ∆φjk(t) = |φj(t)− φk(t)|,
which can be represented as vectors in the unit circle of the complex plane. c) Phase-interaction

matrices Pjk(t) were calculated as the cosine of the phase difference, cos(∆φjk(t)), at time t. All

global measures used afterwards were based on the phase-interaction matrices. d-e) The structure of

phase interactions was described in terms of the integration and the segregation of the time-averaged

phase interaction matrix (see Methods). f) We quantified the temporal fluctuations of the mean phase

synchrony (i.e., the average over ROIs of matrix P (t)) through its temporal standard deviation. g)

To detect the existence of recurrent synchronization patterns, we computed the FCD comparing

phase-interaction matrices at different time (see Methods). Briefly, the FCD represents the (cosine)

similarities between phase-interaction matrices at times t and t′ for all possible pairs (t, t′). The

panel shows the average similarity for each experimental condition. In panels d-g, each dot represents

a participant and the boxes represent the measure’s distribution. Differences between groups were

assessed using one-way ANOVA followed by FDR p-value correction. *: p < 0.05; **: p < 0.01; ***:

p < 0.001 (see Table 1 for details).

Second, we evaluated the temporal fluctuations of the average phase-interaction matrix. For this,108

we computed the standard deviation of the mean phase-interaction value across time, providing an109

estimate of the diversity of the average synchronization (see Methods). We found significant reduction110

of phase-interaction fluctuations in low-level states of consciousness compared to conscious states (Fig.111

1 f, top; see also table 1).112

Temporal fluctuations of the average phase-interaction matrix indicate excursions of the total level113
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of synchronization over time but, alone, they do not capture the presence of recurrent connectivity114

patterns. Therefore, we next evaluated the temporal recurrence of phase-interaction matrices over115

time, or functional connectivity dynamics (FCD, see Methods), that describes how recurrent in time116

the synchronization patterns were. Briefly, this method computes the phase-interaction matrices117

averaged in sliding time window of 30 s and measures the similarity across all pairs of time windows,118

which is summarized in the FCD matrix. We found that low-level states of consciousness presented119

a significantly lower mean FCD value than in normal wakefulness (Fig. 1 g; see also table 1 and120

Supplementary Fig. 1). This suggests that phase configurations were less recurrent in time for121

low-level states of consciousness.122

Altogether, the above results show that, in both pathological and pharmacological low-level states123

of consciousness, brain phase-synchronization patterns were less connected, less diverse and less re-124

current in time than in healthy conscious states.125

DOC Datasets Integration Segregation
Phase Interaction

Fluctuations
Mean FCD

CNT 0.653± 0.008 0.26 ± 0.01 0.19 ± 0.01 0.38 ± 0.02

MCS 0.56 ±0.01 0.31 ± 0.01 0.12 ± 0.01 0.28± 0.02

UWS 0.54 ± 0.03 0.35 ± 0.03 0.11± 0.02 0.27 ± 0.03

ANOVA
p < 0.001

F2,80 = 18.51

p=0.006

F2,80 = 5.21

p < 0.001

F2,80 = 13.39

p < 0.001

F2,80 = 10.9

Multiple Comparisons

pCNT−MCS < 0.001 0.2072 < 0.001 0.014

pCNT−UWS < 0.001 0.016 < 0.001 0.023

pMCS−UWS 0.241 0.223 0.882 0.594

Anaesthesia Datasets Integration Segregation
Phase Interaction

Fluctuations
Mean FCD

W 0.71 ±0.02 0.20 ± 0.03 0.23 ± 0.03 0.52 ± 0.04

S 0.59 ±0.01 0.34 ± 0.02 0.07 ± 0.01 0.30 ± 0.01

R 0.65 ±0.01 0.27 ± 0.02 0.15 ± 0.02 0.43 ± 0.02

ANOVA
p < 0.001

F2,45 = 18.8

p < 0.001

F2,45 = 8.93

p < 0.001

F2,45 = 17.46

p < 0.001

F2,45 = 18.8

Multiple Comparisons

pW−S < 0.001 0.001 < 0.001 < 0.001

pW−R 0.029 0.126 0.014 0.041

pS−R 0.006 0.115 0.014 0.004

Table 1: Results of the mean values of the global measurements for each group and

statistics. Statistics were computed with a one-way-ANOVA, followed by FDR correction (adjusted

p-values are shown). The table shows the mean values and standard error of the empirical measures

of integration, segregation, phase interaction fluctuations and mean FCD.

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 22, 2020. ; https://doi.org/10.1101/2020.11.20.391482doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.20.391482
http://creativecommons.org/licenses/by-nc-nd/4.0/


Decreased model-based global functional connectivity in low-levels126

states of consciousness127

To gain insights into the possible mechanisms underlying the above changes in BOLD phase statis-128

tics, we studied a whole-brain computational model. Because we were interested in synchronous129

oscillations, we modelled the local dynamics of single brain regions using the normal form of a Hopf130

bifurcation (see Methods, Eqs. 5 and 6). By varying a single bifurcation parameter aj , local dynam-131

ics of a brain region j can transit from noisy oscillations (aj < 0) to sustained oscillations (aj > 0)132

(Supplementary Fig. 2). The frequency of oscillations was estimated from the peak of the BOLD133

power spectral density in the frequency band 0.04-0.07 Hz. The dynamics of the N = 214 brain134

regions were coupled through the connectivity matrix Cjk, which was given by the connectome of135

healthy subjects. The matrix Cjk was scaled by the global coupling g. Thus, the large-scale network136

was weakly or strongly connected for small or large values of g, respectively (Fig. 2 a). In summary,137

at this level of description the network dynamics depended on three ingredients: the local parameters138

for each node (aj), the global strength of connections (g) and the network’s structure (Cjk).139

First, we studied the network dynamics for the homogeneous case, in which we set aj = 0 for all140

nodes. This choice was based on previous studies which suggest that the best fit to the empirical141

data arises at the brink of the Hopf bifurcation where a ∼ 0 [31]. In this case, the network dynamics142

were determined by a single free parameter, the global coupling strength g. This parameter was143

estimated by fitting the FCD statistics of the data, as in previous studies [31, 33]. Specifically, for144

each experimental condition, we evaluated the agreement between the simulated and the empirical145

group FCD using the Kolmogorov-Smirnov distance (KS-distance, Fig. 2 b). The KS-distance reached146

a minimum at different values of g for the different experimental conditions, with g being the lowest147

for states of low-levels of consciousness (Fig 2 c-d, see table 2). Notably, although the fit of the model148

was based on the FCD, the models also maximized the fit of other data statistics, such as the FC and149

the metastability (Supplementary Fig. 3).150

Furthermore, we found that the increase in global coupling strength g with consciousness goes in151

line with a decrease in the correlation between the structural and functional connectivities (Supple-152

mentary Fig. 4). These results indicate that in low-level states of consciousness the brain dynamics153

were more constrained by the structural connectivity due to lower coupling values. Indeed, low global154

coupling restricts the network interactions to ROIs directly connected by a link, while increasing the155

global coupling favours the propagation of activity within the network, and gives rise to correlations156

between nodes indirectly coupled.157
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a

c d

b

Figure 2: Fitting of global coupling parameter in the whole-brain network model. a) The

global coupling model parameter g scales the weights of the SC matrix. Low and high values of g

represent weakly and strongly coupled networks, respectively. b) To estimate this global parameter,

we sought for the model that best reproduced the distribution of FCD values (fixing all other model

parameters). c) KS-distance between the empirical and the model FCD distributions, as a function of

g, for one participant of each subject group (top: healthy controls and DOC patients; bottom: awake

and anaesthetised subjects). Solid lines and shaded areas represent the mean and the standard error

of the fitting curves over simulation trials. d) Optimal global coupling g for all participants. In each

panel, each dot represents a participant and the boxes represent the distribution of g. Differences

between groups were assessed using one-way ANOVA followed by FDR p-value correction. *: p < 0.05;

**: p < 0.01; ***: p < 0.001. In panels c and d, we used the healthy structural connectome as the

underlying connectivity of all models.

Conditions CNT MCS UWS W S R

Global

coupling g
1.7 ± 0.1 1.2 ± 0.1 0.8 ± 0.2 2.0 ± 0.2 0.9 ± 0.1 1.4 ± 0.2

Table 2: Estimated global couplings for all experimental conditions. p-values: pCNT−MCS = 0.015,

pCNT−UWS = 0.019, pMCS−UWS = 0.7984; pW−S < 0.001, pW−R = 0.031, pR−S = 0.080.
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Heterogeneous model158

We next asked whether we can obtain additional information by relaxing the local bifurcation param-159

eter which enforced all ROIs to operate at the same working point. We studied the heterogeneous case160

in which the local parameters aj were allowed to vary. The individual parameters aj were estimated161

from the data using a gradient descent method (see Methods). In this model, the g parameter was162

fixed to the one previously estimated with the homogeneous model (i.e., all aj=0). We note that the163

resulting distribution of local parameters contributed to network collective dynamics, since shuffling164

the values of a across brain regions lead to worse fits of the network statistics (Supplementary Fig.165

5).166

We inspected the estimated bifurcation parameters across nodes within and across groups. We167

found that bifurcation parameters in normal wakefulness (i.e., CNT and W) tended to be more168

negative compared to low-level states of consciousness (Fig. 3 a-d), i.e., they tended to display more169

stable noisy oscillations. Notably, this was specially the case for the structural hub ROIs, which170

showed strong negative values of the local bifurcation parameter a during normal wakefulness (Fig171

3 a-d, Supplementary Fig. 6). When comparing normal wakefulness before anaesthesia (W) and172

recovery from anaesthesia (R) we found a similar distributions of the bifurcation parameter a values.173

In particular, the negativity was reestablished for hubs (Fig 3 c-d). This tendency was also observed174

when comparing MCS and UWS (Supplementary Fig. 7) and, even if in these cases the difference in175

the bifurcation parameter values was smaller than for the others, the hubs had more negative values176

in MCS. Using linear stability analysis, we showed that the hubs have a stabilizing role within the177

dynamical system, i.e., they contribute to the most stable eigenvectors, and lose their stability for178

low-level states of consciousness (see Supplementary Information and Supplementary Fig. 8). These179

results show that the hubs lost their stabilizing role in low-level states of consciousness.180

We computed the difference in local parameters between patients and controls and between anaes-181

thesia/recovery and wakefulness (Fig. 3 e). The highest absolute difference in local parameters be-182

tween controls and MCS/UWS patients were found in subcortical regions, such as the thalamus,183

caudate, and hippocampus, the amygdala, and in cortical regions such as calcarine, insula, fusiform,184

frontal superior orbital, precuneus, cingulum, and temporal areas (Fig 3 f top left and Supplementary185

Tables 1-2). When comparing the local parameters for wakefulness and anaesthesia, the regions with186

the highest absolute difference values included subcortical regions such as the thalamus, caudate, hip-187

pocampus, parahippocampal, and putamen, and cortical regions such as cingulum, insula, and some188

regions of the frontal part, paracentral and precentral (Fig. 3 f top right and Supplementary Table189

3). Finally, the highest differences between wakefulness and recovery were found in the hippocampus,190

the cingulum and the precuneus (Fig. 3 f bottom right and Supplementary Table 4).191

192
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a c

b d

e f
CNT-MCS

CNT-UWS

W-S

W-R

0.15

1.5

Figure 3: Local bifurcation parameters of the whole-brain model. a-d) Estimated bifurcation

model parameters a for each of the 214 nodes (sorted by node strength). Bars indicate the mean ±
standard deviations across simulation trials. Results for low-level states of consciousness (MCS and

UWS) are compared against the healthy controls in a) and b). Results for anesthesia and recovery

(S and R states) are compared to the initial awake state (W) in c) and d) respectively. e) Ranked

absolute parameter difference, ∆a, for all the comparisons. f) Spatial distribution of ∆a > 0.15 in

the brain for each of the group comparisons.

Loss of heterogeneity in low-level states of consciousness193

In general, if we observe the dynamics of a node within a network and we estimate its node-specific194

parameters, these parameters are affected by the network interactions, because we only have access to195

the dynamics of the ROIs embedded in the network. In the following, we used a strategy to disentangle196

the changes in local parameters due to network effects from those due to local modifications. This197

analysis provides information about the origin (local or network-related) of the different dynamics of198

the ROIs for the different states of consciousness.199

Indeed, one can define an effective local parameter composed of the bifurcation parameter (aj)200
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and the connectivity strength of each node (Sj =
∑

k Cjk), given as: aeffj = aj − gSj , (see Methods).201

Thus, for the family of homogeneous models (aj = const.), the effective parameter is linearly related202

to the connectivity strength, while, in the heterogeneous case, we expect deviations from this linear203

relation. In other words, in the homogeneous case, differences in effective local dynamics are fully204

explained by the network connections. In contrast, the heterogeneous case can produce additional205

diversity of local dynamics.206

We used this relation to distinguish between homogeneous and heterogeneous dynamics in the207

different data associated with different levels of consciousness. First, we estimated the effective bi-208

furcation parameters aeffj from the data in each brain state using gradient descent with fixed g for209

each condition (the values of g were those of Fig. 2 d). Note that, in this case, instead of estimating210

aj , the method estimates directly aeffj (see Methods, Eq. 10). Next, we evaluated the deviation211

from the linear relation between the estimated effective bifurcation parameter and the strength of212

the nodes (Fig. 4 a-b). We found that linear regression residuals were larger for control subjects213

and during healthy wakefulness than for DOC patients and anaesthesia (Fig. 4 c, p < 0.001 for all214

comparison in both dataset (computed with a one-way-ANOVA, followed by FDR correction, with215

the exception of pS−R = 0.002 ). This means that, on one hand, conscious states were associated with216

more heterogeneous dynamics for which different brain regions had different local dynamics. On the217

other hand, low-level states of consciousness were associated with homogeneous dynamics for which218

differences in local dynamics were explained to a large degree by differences in connectivity strength219

alone.220

221
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a

b

c d

g=1.7 g=1.2 g=0.8

g=1.4g=0.9g=2.0

Figure 4: Disentangling structurally- and dynamically-driven heterogeneity of local

nodes. a-b) The effective local bifurcation parameters, aeffj , were estimated using the heteroge-

neous model. In this model, the parameters aeffj were optimized, after fixing g to that obtained for

the homogeneous model (see Methods). The obtained parameters were compared to the strengths of

the nodes Sj , for healthy controls and DOC patients (a) and for awake and anesthetized conditions

(b). In each panel, each dot represents one node. The red lines indicate the linear fits. c) Distribution

of the absolute residuals of each node given by the squared difference between the value of aeffj and

the estimated linear relationship between aeffj and Sj , for each group. d) Same as c) but for W, S

and R states.

Alteration of the structural connectivity core in DOC patients222

Up to now, the structural connectivity of the models was given by the connectome of healthy subjects.223

This allowed the study of dynamical factors leading to loss of consciousness. In the following, we stud-224

ied the effect of injured anatomical connectivity on brain dynamics by considering the connectomes225

from DOC patients (Fig. 5 a and Supplementary Fig. 9). First, we quantified the alterations in226

connectomes caused by brain injuries through the strength of the nodes and the network’s rich-club227

architecture.228
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a b

Rich club

c

d e

f

g h i

Figure 5: Disruption of the structural connectome in DOC patients. a) SC matrices were averaged

over subjects for each clinical group (CNT, MCS, and UWS). b) Average node strength of each node for

each group. Shaded areas represent the standard error across subjects. c) ROIs with significant differences in

strength between controls and patients (Wilcoxon rank sum test, followed by FDR correction). Top (green):

CNT-MCS comparison; bottom (red): CNT-UWS comparison. d) Visualization of hubs: each node corresponds

to one ROI and the edges correspond to the SC (only connections >0.2 are shown). The graph was displayed

using force-directed layout, i.e. attractive and repulsive forces between strongly and weakly connected nodes,

respectively. Highly connected nodes, i.e. with high strength, are called structural hubs (red dots). e) Hubs

which are highly connected among themselves form a rich club (RC) sub-network (here depicted in blue for

the average SC of control subjects). f) For each ROI, the probability of forming part of the RC was computed

by RC identification in the individual SC matrices (see Methods). The percentage corresponds to the covered

part of the ROI in the AAL parcellation.g) Distribution of the estimated bifurcation parameters aj using the

average SC for each clinical group (healthy, MCS, and UWS). h) The variance of the distribution of parameters

aj for each clinical group. i) Median of the absolute residuals of the linear relationship between the aeff vs

strength. ***: p <0.001, Wilcoxon rank sum test, followed by FDR correction.
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We found that the strength of each ROI, i.e. the sum of connections of one node averaged over229

subjects, significantly decreased for DOC patients compared to controls for several brain regions230

(p < 0.05 , Wilcoxon rank sum test with FDR correction; Fig. 5 b). These regions included the231

thalamus, the posterior and the anterior cingulum, hippocampus, the frontal medial, motor areas,232

caudate, precuneus, insula and precentral, for MCS patients (Fig. 5 c left, and see also Supplementary233

Table 5) and the aforementioned ones plus the fusiform, the parahippocampal, the cuneus, the lingual234

and the temporal areas for UWS patients (Fig 5 c right, and see details in Supplementary Table 6).235

We next examined the interconnections between the ROIs with larger strength by the detection of236

a rich-club organization (see Methods). A network is said to contain a rich-club when (i) it contains237

hubs and (ii) those hubs are densely interconnected among themselves forming a cluster. (Fig. 5 d,238

see also Supplementary Fig. 10). In the healthy SC, the rich club was composed mostly of subcortical239

(thalamus, hippocampus, and caudate) and cortical regions such as the insula, the precuneus and the240

posterior cingulum (Fig. 5 e). We calculated the probability of each ROI to pertain to the rich club241

across individual subjects for controls and DOC patients (see Methods). We found that, when present242

in DOC patients, rich clubs were made of less ROIs and their composition varied from subject to243

subject (Fig. 5 f and Supplementary Fig. 11). Overall, these results show that connectomes from244

DOC patients presented alterations in the formation and the composition of the rich-clubs.245

Finally, we studied the global and local dynamics of whole-brain models with large-scale connec-246

tions constrained by the injured connectomes. Using these connectomes, we did not find significant247

differences in the global coupling parameter g (Supplementary Fig. 12). This was due to the high248

inter-individual variability of the structural connectomes. In contrast, consistent with the results249

above, we found that heterogeneity of local dynamics was reduced for models corresponding to DOC250

patients (Fig. 5 g-h and Supplementary Fig. 13). Moreover, the dynamically-based heterogeneity251

was significantly reduced (Fig. 5 i and Supplementary Fig. 14), indicating that local parameters were252

strongly determined by structural connections. These effects were stronger using injured SCs than253

using the healthy SC for all conditions, indicating that structural damage additionally impairs the254

emergence of heterogeneity.255

3 Discussion256

In the present study, we analysed and modelled brain dynamics from patients that show reduced257

consciousness due to brain damage (MCS and UWS), to propofol-induced anaesthesia (S), and to re-258

covery from it (R). We showed that reduction of consciousness is characterized by brain dynamics with259

less recurrent, less diverse, less connected and more segregated phase-synchronization patterns than260

for conscious states. Using whole-brain models constrained with healthy and injured connectomes,261

we showed that both pathological and pharmacological low-level states of consciousness presented al-262

tered network interactions and more homogeneous and anatomically-constrained local dynamics than263

conscious states.264
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265

It has been proposed that an imbalance between integration and segregation of information in the266

brain is a network effect of the loss of consciousness [34, 17] that impairs the neural communication267

across specialized brain modules or subnetworks [35, 36, 37]. Consistent with this view, we found268

an alteration of integration-segregation of functional phase interactions during low-level states of269

consciousness caused by brain damage, deep anaesthesia, and anaesthesia’s long-lasting effects during270

recovery (Fig. 1). Previous work argued that integration and segregation are reconciled in the case of271

metastability, which has been shown to produce transient synchronized clusters for which sets of brain272

regions engage and disengage in time, facilitating the exploration of a larger dynamical repertoire of273

the brain [26, 30, 38]. Here, we showed that the diversity of phase synchronization patterns and274

their recurrence in time were also reduced in low-level states of consciousness (Fig. 1), presumably275

leading to a failure to dynamically balance integration and segregation. These results are in line with276

previous studies showing differences in the synchronized states both in space and time during altered277

states of consciousness [39, 40, 41, 24, 42, 17, 14, 18].278

The whole-brain model used here allowed us to understand how structural, dynamical, local and279

network properties interplay in the different levels of consciousness. Within this model, the network280

dynamics depended on three ingredients: local bifurcation parameters, the global strength of con-281

nections and their structure. Consistent with previous studies [13, 43], we showed that the brain282

dynamics of low-level states of consciousness were more constrained by the structural connectivity.283

In the model, this effect arises due to a reduced global coupling strength in low-level states of con-284

sciousness, restricting the propagation of activity to direct connections. In contrast, during conscious285

wakefulness, sufficient global connectivity allows the propagation of activity through direct and indi-286

rect paths, thus enhancing the communication between different brain regions. This result supports287

the predictions of integrated information theory (IIT), which proposes that unconscious states are288

characterized by a loss of information propagation and integrative capacity of the brain [35]. The289

observed decrease in global connectivity is also consistent with previous studies of EEG signals after290

a transcraneal magnetic stimulation (TMS)-mediated perturbation, showing that low-level states of291

consciousness were less responsive than conscious states[19, 20].292

We studied different versions of the model, which could be homogeneous (all local parameters were293

constant) or heterogeneous (local parameters were allowed to vary from one brain region to the other294

and were estimated from the data). Using the heterogeneous model, we found that in low-level states of295

consciousness, the estimated local dynamics were strongly determined by the structural connections.296

In contrast, local dynamics associated with consciousness presented a diversity across nodes that297

were not fully determined by structural connections. In other words, for conscious states, local298

dynamics can dissociate from their structural constrains, allowing for additional heterogeneity arising299

from dynamics. Moreover, including the damaged structural connectivities due to brain injuries in300

the DOC patients into the model showed a further limitation of the diversity of local dynamics in301

pathological low-level states of consciousness.302
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These results are consistent with dynamics tied to the structure during low-level states of con-303

sciousness and have important functional implications. Indeed, electrophysiological, fMRI and MEG304

studies have shown that heterogeneous local dynamics, differing between sensory and association305

brain regions, contribute to the hierarchical specialization across areas at the functional level [44, 45,306

46, 47, 48]. Recently, it has been shown that extending models to include heterogeneous information307

of local dynamics, e.g., as given by positron-emission tomography (PET) maps of neurotransmitter308

receptor density [46] or by Tw1/Tw2 maps as proxies of microcircuit properties [47], increases model309

performance to fit empirical data. Our model could be extended to include these and other axes of310

hierarchy to explore brain mechanism of consciousness.311

Furthermore, in parallel with the additional dynamic-based heterogeneity observed in conscious312

states, we found that local dynamics of hub regions were more stable in conscious states than in low-313

level states of consciousness and contribute the most to the system’s linear stability (Supplementary314

Fig. 7). This suggests that in order to release the structural constraints on local dynamics while en-315

suring the global stability of the system, hubs play an important role by increasing their local stability316

and diminishing their variability. We believe that the dynamical stability of the hubs is a signature317

of consciousness and has functional implications. On one hand, unstable hubs would propagate noise318

to the rest of the network, thus degrading the communication among brain regions. On the other319

hand, the stability of hubs is required to maintain a functional core-periphery architecture. It has320

been shown that this architecture is essential to achieve trade-offs between stability and flexibility321

[49]. Indeed, previous studies of complex systems have derived general principles of core-periphery322

architecture, pointing that the network periphery can support more variability, responsitivity and323

plasticity than the network core, while the latter enhances the system robustness [49, 50]. Consis-324

tent with this, previous works on whole-brain fMRI have observed core-periphery organization during325

resting state [51] and a stable core together with a variable periphery during learning [52]. Finally,326

we showed that structural breakdown of core-periphery architecture, as observed in injured struc-327

tural connectivity (Fig. 5), also leads to a reduction of dynamical heterogeneity. Thus, functional328

disruption in low-level states of consciousness might partly rely on an attenuation of core-periphery329

structure induced by i) the loss of stability of the hubs and ii) the structural damage of the hubs.330

Overall, our results suggest that, during healthy wakefulness, in order to allow a dynamically-331

based heterogeneity of local dynamics across the brain, resulting in diverse collective activity patterns,332

while preserving stability and a core-periphery architecture, the hubs are required to “anchor” the333

dynamics by increasing their stability.334

A prediction of our study is thus that, under localized external stimulation, hub regions should335

be less responsive for conscious states compared to low-level states of consciousness. In particular,336

we found stronger effects in subcortical areas, such as thalamus and hippocampus, and in the pre-337

cuneus and the posterior cingulate areas, which are directly involved in the thalamo-cortical loop338

and are thought to down-regulate the activity of the cortical network [53]. Thus, enhancement of339

neural excitability in those regions through therapeutic procedures may improve conscious recovery340
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process [54]. However, current stimulation protocols using TMS to investigate the network response341

during different states of consciousness in humans [19, 20] cannot achieve the required localization342

of stimulation to test our predictions. Indeed, TMS is a strong external perturbation that activates343

several cortical and subcortical areas, producing a global perturbation. Nevertheless, at the moment,344

in-silico perturbation of diverse computational models [55, 56] might be useful to test this prediction.345

Using global synchronization measures, we found significant differences for different levels of con-346

sciousness (CNT and DOC patients and W, S, and R), but these measures mostly failed to identify a347

significant difference between patients groups (MCS vs. UWS) (Fig. 1). However, our model-based348

analysis of local dynamics was able to distinguish between patients groups (Figs. 3f, 4, 5h-i and Sup-349

plementary Fig. 7). This highlights the clinical translation potential of multi-parameter whole-brain350

models and the need of further studies that consider region-specific measures for clinical predictions.351

Nevertheless, given the patient inclusion criteria used here (see Methods), a limitation of our study352

is the potential lack of generalizability of the results to a broader spectrum of DOC patients, such as353

those presenting larger brain structural damage.354

In conclusion, our results show that pathological and pharmacological low-level states of con-355

sciousness presented altered network interactions, more homogeneous, structurally-constrained local356

dynamics, and less stability of the network’s core compared to conscious states. These results provide357

relevant information about the mechanisms of consciousness both from the research and clinical point358

of view.359

360

4 Methods361

Participants362

In this study, we have selected altered states of consciousness for pathological condition so-called363

DOC, and healthy subjects during propofol anaesthesia-induced loss of consciousness. The study was364

approved by the Ethics Committee of the Faculty of Medicine of the University of Liege. Written365

informed consent to participate in the study was obtained directly from healthy control participants366

and the legal surrogates of the patients.367

We selected 48 DOC patients, 33 in MCS (9 females, age range 24-83 years; mean age ± SD, 45368

± 16 years) and 15 with UWS (6 females, age range 20-74 years; mean age ± SD, 47 ± 16 years) and369

35 age and gender-matched healthy controls (14 females, age range 19-72 years; mean age ± SD, 40370

± 14 years). The DOC patients data was recorded 880 ± 35 days after injury. The healthy controls371

data was collected while awake and aware. The diagnosis of the DOC patients was confirmed through372

repeated behavioural assessment with the Coma Recovery Scale-Revised (CRS-R) that evaluates au-373

ditory, visual, motor, sensorimotor function, communication and arousal [57]. The DOC patients were374

included in the study, if MRI exam was recorded without anesthetized condition and the behavioural375
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diagnosis was carried out at least five times for each patient using CRS-R examination [58]. The376

best CRS-R result was retained for the behavioural diagnosis. The exclusion criteria of patients were377

as follows: (i) having any significant neurological, neurosurgical or psychiatric disorders prior to the378

brain insult that lead to DOC, (ii) having any contraindication to MRI such as electronic implanted379

devices, external ventricular drain, and (iii) being not medically stable or large focal brain damage,380

i.e. > 2/3 of one hemisphere. Details on patients’ demographics and clinical characteristics are sum-381

marized in Supplementary Table 7-8.382

383

For the propofol anaesthesia, 16 healthy control subjects (14 females, age range, 18–31 years; mean384

age ± SD, 22 ± 3.3 years) were selected in three clinical states including normal wakefulness with385

eyes closed (W), anaesthesia-induced reduction of consciousness (S) and recovery from anaesthesia386

(R). Propofol was infused through an intravenous catheter placed into a vein of the right hand or387

forearm and arterial catheter was placed into the left radial artery. During the study ECG, blood388

pressure, SpO2 and breathing parameters were monitored continuously. The level of consciousness was389

evaluated clinically throughout the Ramsay scale, representing the verbal commands; for details on the390

procedure, see [60]. It should be noted that during the recovery of consciousness, R, subjects showed391

clinical recovery of consciousness (i.e., same score on Ramsay sedation scale as during wakefulness) but392

they showed residual plasma propofol levels and lower reaction times scores. The healthy subjects did393

not have MRI contradication, any history of neurological or psychiatric disorders or drug consumption,394

which have significant effects in brain function.395

MRI acquisition and data analysis396

For the DOC dataset, structural and fMRI data were acquired on a Siemens 3T Trio scanner (Siemens397

Inc, Munich, Germany); propofol dataset was acquired on a 3T Siemens Allegra scanner (Siemens AG,398

Munich, Germany). The acquisition parameters are described in the Supplementary Information.399

The preprocessing of MRI data and the extraction of BOLD time series are described in Supple-400

mentary Information. Briefly, independent component analysis was used for motion correction, spatial401

smoothing and non-brain removal. After preprocessing, FIX (FMRIB’s ICA-based X-noiseifier) [61]402

was applied to remove the noise components and the lesion-driven artefacts, independently and man-403

ually, for each subject. Finally, FSL tools were used to obtain the BOLD time series of 214 cortical404

and subcortical brain regions (see details in Supplementary material Table 9) in each individual’s405

native EPI space, defined according to a resting-state Shen atlas [62] and removing the cerebellar406

parcels.407

Structural connectivity408

A whole-brain structural connectivity (SC) matrix was computed for each subject from the DOC409

dataset, using diffusion imaging and probabilistic tractography (see Supplementary Information for410
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details). The procedure resulted in a symmetric SC matrix summarizing the density of anatomical411

links among the 214 ROIs, for each healthy control and participant.412

Phase-interaction matrices413

To evaluate the level of synchrony in the fMRI the phase interaction between BOLD signals was414

evaluated. Therefore, a band-pass filter within the narrowband of 0.04−0.07 Hz was applied in order415

to extract the instantaneous phases φj(t) for each region j. This frequency band has been mapped to416

the gray matter and captures more relevant information than other frequency bands in terms of brain417

function [32]. The instantaneous phases, φj(t), were then estimated applying the Hilbert transform418

to the filtered BOLD signals individually. The Hilbert transform derives the analytic representation419

of a real-valued signal given by the BOLD timeseries. The analytical signal, s(t), represents the420

narrowband BOLD signal in the time domain. This analytical signal can be also described as a421

rotating vector with an instantaneous phase, φ(t), and an instantaneous amplitude, A(t), such that422

s(t) = A(t)cos(φ(t)). The phase and the amplitude are given by the argument and the modulus,423

respectively, of the complex signal z(t) = s(t) + i.H[s(t)], where i is the imaginary unit and H[s(t)]424

is the Hilbert transform of s(t).425

The synchronization between pairs of brain regions was characterised as the difference between426

their instantaneous phases. At each time point, the phase difference Pjk(t) between two regions j427

and k was calculated as:428

Pjk(t) = cos (|φj(t)− φk(t)|) . (1)

Here, Pjk = 1 when the two regions are in phase (φj = φk), Pjk = 0 when they are orthogonal and429

Pjk = −1 when they are in anti-phase. At any time t, the phase-interaction matrix P (t) represents430

the instantaneous phase synchrony among the different ROIs. The time averaged phase-interaction431

matrix, 〈P 〉 =
∑T

t=1 P (t)/T , was bias-corrected by subtracting the expected phase-interactions phase-432

randomized surrogates, designed to decorrelate the phases while preserving the power spectrum of433

the original signals (see Supplementary Information).434

The instantaneous global level of synchrony of the whole network r(t) was calculated as the average435

of the phase differences at each time point. Since P (t) is a symmetric matrix, then:436

r(t) =
1

N(N − 1)

N∑
j=1

N∑
k=j+1

Pjk(t). (2)

Finally, the fluctuations of r(t) over time indicate the diversity of the observed network phase inter-437

actions. The phase-interaction fluctuations m were thus calculated as the standard deviation of r.438

When all the nodes of a network are synchronised then r(t) = 1 for all t and thus m = 0. However, if439

the network switches among synchronization states over time leading to fluctuations of r, then m > 0,440

reflecting those fluctuations.441
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Integration442

We used the integration measure to evaluate the brain’s capacity to link network communities and443

ensure communication. The integration, I, was determined using the length of the largest connected444

component of the time-averaged phase-interaction matrix, 〈P 〉, based on the procedure presented in445

[8]. The number of nodes within the largest connected component of the binarized phase-interaction446

matrix was computed for different binarizing thresholds, ranging from 0 to 1 (scanning the whole447

range). The largest connected component was given by the largest sub-graph in which any two448

vertices are connected to each other by paths, and which connects to no additional vertices in the449

super-graph. We define the integration value, I, as the integral of the size of the largest connected450

component as a function of the threshold.451

Segregation452

Complementary to the integration, we measured the brain’s ability to distinguish densely connected453

network communities. This was done by measuring the segregation of phase-interactions using a454

community analysis detection. First, we binarized the matrix 〈P 〉 by detecting the pairs of regions455

with average phase interaction significantly (p < 0.01) larger than expected in phase-randomized456

surrogates (see Supplementary Information). The segregation was measured in the binarized phase-457

interaction matrix. It was given by the statistics of the quality of the partition algorithm, i.e., the458

cost function of the process of detecting communities, or modularity index Q [63]. Communities were459

detected using the Louvain algorithm that performs a subdivision of the matrix into non-overlapping460

groups of brain regions which maximize the number of within-group edges and minimizes the number461

of between-group edges [64]. The modularity index, Q, measures the statistics of the community462

detection and evaluates the quality of the partition in terms of the number of within- and between-463

groups’ edges.464

Functional connectivity dynamics (FCD)465

We evaluated the presence of repeating patterns of network states by calculating the recurrence of466

the phase-interaction patterns. For this, we used the functional connectivity dynamics (FCD). This467

measure is based on previous studies that defined the FCD for FC matrices calculated in different time468

windows [65]. In our study, the duration of scans (10 min) was divided into M=20 sliding windows469

of 30 s, shifted in 2 s steps. For each time window, centred at time t, the average phase-interaction470

matrix, 〈P (t)〈, was calculated as:471

〈P 〉(t) =
1

T

∑
|t−t′|<15 s

P (t′), (3)

where T is the total number of TRs in 30 s. We then constructed the M ×M symmetric matrix472

whose (t1, t2) entry was defined by the cosine similarity, θ, between the upper diagonal elements of473
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two matrices 〈P 〉(t1) and 〈P 〉(t2), given as:474

θ(t1, t2) =
~p(t1).~p(t2)

|~p(t1)||~p(t2)|
, (4)

where ~p(t1) and ~p(t2) are the vectorized representations of matrices 〈P 〉(t1) and 〈P 〉(t2), respectively.475

Finally, the FCD measures was given by the distribution of these cosine similarities for all pairs of476

time windows.477

Whole-Brain Network Model478

The brain network model consists of N = 214 coupled brain regions derived from the Shen parcellation479

[62]. The global dynamics of the brain network model used here results from the mutual interactions480

of local node dynamics coupled through the underlying empirical anatomical structural connectivity481

matrix Cij (see Fig. 1). Local dynamics are simulated by the normal form of a supercritical Hopf482

bifurcation, i.e., Stuart-Landau oscillator [66, 67], describing the transition from noisy oscillations to483

sustained oscillations [68], and is given, in the complex plane, as:484

dz

dt
= z[(a + iω)− |z|2] + βµµµ(t), (5)

where zj is a complex number, µj(t) is additive Gaussian noise with standard deviation β = 0.02,485

and ωj corresponds to the intrinsic frequency of the oscillator in the range of 0.04–0.07 Hz band. The486

intrinsic frequencies were estimated from the averaged peak frequency of the narrowband empirical487

BOLD signals of each brain region. For aj < 0, the local dynamics present a stable spiral point,488

producing damped or noisy oscillations in absence or presence of noise, respectively (Supplementary489

Fig. 2). For aj > 0, the spiral becomes unstable and a stable limit cycle oscillation appears, producing490

autonomous oscillations with frequency 2πfj = wj (Supplementary Fig. 2). The BOLD fluctuations491

were modelled by the real part of the state variables, i.e., Real(zj).492

The whole-brain dynamics were obtained by coupling the local dynamics through the Cij matrix:493

494

dzj
dt

= zj [(aj + iωj)− |zj |2] + g
N∑
k=1

Cjk(zk − zj) + βµj(t), (6)

where g represents a global coupling scaling the structural connectivity Cij .The matrix Cij is495

scaled to a maximum value of 0.2 to prevent full synchronization of the model. Interactions were496

modelled using the common difference coupling, which approximates the simplest (linear) part of a497

general coupling function [69].498

499

Homogeneous model: Fitting the global coupling g500

To create a representative model of BOLD activity in each brain state, we adjusted the model pa-501

rameters (g and aj) to fit the spatiotemporal BOLD dynamics for each brain state and each dataset.502
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Our first aim was to describe the global properties of the spatio-temporal dynamics of each subject503

in each state, independently of the variations in the dynamics of local nodes. For that reason, in504

this first approach to the model, all nodes were set to aj = 0, called the homogeneous model. The505

global coupling parameter g was obtained by fitting the simulated and empirical data. Specifically,506

for each value of g, the model FCD was computed and compared with the empirical FCD using the507

Kolmogorov-Smirnov (KS) distance between the simulated and empirical distribution of the FCD508

elements. The KS-distance quantifies the maximal difference between the cumulative distribution509

functions of the two samples. Thus, the optimal value of g was the one that minimized the KS dis-510

tance.511

512

Heterogeneous model: Local optimization of the bifurcation parameters513

To evaluate the heterogeneous local dynamics on the network’s dynamics, we extended the model514

to allow differences in bifurcation parameters aj for different ROIs. The g parameter was the one515

estimated with the homogeneous model. The bifurcation parameters were optimized based on the516

empirical power spectral density of the BOLD signals in each node. Specifically, we fitted the propor-517

tion of power in the 0.04–0.07 Hz band with respect to the 0.04–0.25 Hz band (i.e. we removed the518

smallest frequencies below 0.04 Hz and considered the whole spectrum up to the Nyquist frequency519

which is 0.25Hz) [33]. For this, the BOLD signals were filtered in the 0.04–0.25 Hz band and the520

power spectrum PSj(f) was calculated for each node j. We then defined the proportion of power in521

the 0.04–0.07 Hz band as:522

pj =

∫ 0.07

0.04
PSj(f)df∫ 0.25

0.04
PSj(f)df

(7)

We updated the local bifurcation parameters by an iterative gradient descendent strategy, i.e.:523

aj = aj + η(pemp
j − psimj ), (8)

until convergence. η was set to 0.1 and the updates of the aj values were done in each optimization524

step in parallel.525

526

Relation between the weight of the strength of a node and its dynamics527

Finally, the relation between local and network dynamics was studied. An effective bifurcation528

parameter aeffj was defined which contains information of the local dynamics and local structure529

given by its strength. This parameter permits to extract the relation between the dynamics and530

structure of each node. More specifically, in equation 6, we separated the part that relates to the531
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effective local dynamics and the part that relates to the interaction between nodes. Noting that532 ∑N
k=1Cjk(zk − zj) =

∑N
k=1Cjkzk − zj

∑N
k=1Cjk, equation 6 can be written as:533

dzj
dt

= (aj − g
N∑
k=1

Cjk + iωj)zj − |zj |2 + g
N∑
k=1

Cjkzk + βµj(t). (9)

Taking aeffj = aj − g
∑N

k=1Cjk, we get:534

dzj
dt

= (aeffj + iωj)zj − |zj |2 + g
N∑
k=1

Cjkzk + βµj(t). (10)

Note that, if aj is homogeneous across the network (aj = a for all j), aeffj is linearly related to the535

nodal strength Sj =
∑N

k=1Cjk.536

537

Graph analysis of the structural connectivity538

The network organization of the SC matrices was investigated using measures of graph theory (GAlib:539

Graph Analysis library in Python / Numpy, www.github.com/gorkazl/pyGAlib). Here, we focused540

only on the identification of hub regions and a rich-club to study their relation to the dynamical prop-541

erties. The strength of a node is the number of connections a node makes in a network. Hubs are thus542

defined as nodes with high strength, usually playing a central role in the network’s communication.543

Computing the rich club coefficients requires that the weighted SCs derived from tractography are544

binarized, discarding the smaller values. An adaptive threshold was applied such that all resulting545

binary SCs had the same number of links, with a link density of 0.2. A rich club is a supra-structure546

of a network happening when (i) a network contains hubs and (ii) those hubs are densely connected547

with each other, forming a cluster [70]. Identifying the presence or the absence of a rich-club is a548

sensitive problem because it relies on the interpretation of an indirect metric, k-density, ρ(k), an549

iterative process which evaluates the density ρ(k′) of the network after all nodes with degree k < k′550

have been removed [70]. Here, we considered a strict criterion and considered that networks con-551

tained a rich-club only if a degree k′ exist for which ρ(k′) overcomes 0.9 (largest possible density is552

1.0), implying that the hubs of the network are almost all-to-all connected. The regions forming the553

rich-club were thus identified as the remaining set of nodes with degree k > k′. Finally, to study554

alterations in the rich-club due to brain damage, rich-club identification was performed from the SCs555

of all patients, all healthy controls and from the averaged SC for the control group. The probability556

of a brain region to take part in the rich-club was evaluated as the frequency with which the region557

is present in the rich-clubs identified across subjects of the same group.558
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Statistical analysis559

Statistical differences between levels of consciousness were assessed using one-way repeated measures560

(rm) ANOVA followed by multiple comparisons using False Discovery Rate (FDR) correction [71].561

The threshold for statistical significance was set to p-values<0.05. Wilcoxon rank-sum test (equivalent562

to a Mann–Whitney U test) was applied in order to find region-wise differences between CNT and563

DOC patients in the strength of the SC. We corrected for multiple comparisons by using the FDR564

correction, considering P<0.05 as statistically significant.565
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