

1 Loss of consciousness reduces the stability of brain hubs
2 and the heterogeneity of brain dynamics

3 Ane López-González^{1,*,†}, Rajanikant Panda^{2,3,†}, Adrián Ponce-Alvarez¹,
4 Gorka Zamora-López¹, Anira Escrichs¹, Charlotte Martial^{2,3}, Aurore
5 Thibaut^{2,3}, Olivia Gosseries^{2,3}, Morten L. Kringelbach^{5,6,7}, Jitka Annen^{2,3},
6 Steven Laureys^{2,3}, and Gustavo Deco^{1,4}

7 ¹Computational Neuroscience Group, Center for Brain and Cognition,
8 Universitat Pompeu Fabra, Barcelona, Spain

9 ²GIGA-Consciousness, Coma Science Group, University of Liège, Liège,
10 Belgium

11 ³Centre du Cerveau², University Hospital of Liège, Liège, Belgium

12 ⁴Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís
13 Companys 23, 08010 Barcelona, Spain

14 ⁵Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United
15 Kingdom

16 ⁶Center for Music in the Brain, Department of Clinical Medicine, Aarhus
17 University, DK-8000 Aarhus C, Denmark

18 ⁷Life and Health Sciences Research Institute, School of Medicine, University
19 of Minho, 4710-057, Braga, Portugal

20 [†]These authors contributed equally to this work.

21 ^{*}Correspondence should be addressed to A.LG (email: ane.lopez@upf.edu)

22

Abstract

23

Low-level states of consciousness are characterised by disruptions of brain dynamics that sustain arousal and awareness. Yet, how structural, dynamical, local and network brain properties interplay in the different levels of consciousness is unknown. Here, we studied the fMRI brain dynamics from patients that suffered brain injuries leading to a disorder of consciousness and from subjects undergoing propofol-induced anaesthesia. We showed that pathological and pharmacological low-level states of consciousness displayed less recurrent, less diverse, less connected, and more segregated synchronization patterns than conscious states. We interpreted these effects using whole-brain models built on healthy and injured connectomes. We showed that altered dynamics arise from a global reduction of network interactions, together with more homogeneous and more structurally constrained local dynamics. These effects were accentuated using injured connectomes. Notably, these changes lead the hub regions to lose their stability during low-level states of consciousness, thus attenuating the core-periphery structure of brain dynamics.

24

25

26

27

28

29

30

31

32

33

34

35

36 *Keywords*— whole-brain modelling, consciousness, DOC, propofol anaesthesia, complexity, brain-mechanism, heterogeneity

37

38 1 Introduction

39 It is widely accepted that consciousness is decreased during sleep, under anaesthesia, or as a con-
40 sequence of major brain lesions producing disorders of consciousness (DOC). In clinical settings,
41 different states of consciousness have been defined depending on the level of wakefulness and aware-
42 ness [1], as measured by the responsiveness and the ability to interact with the environment. The
43 study of these different levels of consciousness has proved to be essential to understand the neural
44 correlates of consciousness, yet, the underlying mechanisms remain largely unknown. Elucidating
45 these mechanisms is challenging since they seemingly rely on a non-trivial combination of alterations
46 in local dynamics and network interactions.

47 During the last decades, the study of the organization of brain dynamics and connectome structure
48 has provided increased understanding of the healthy brain structure and function [2, 3, 4, 5, 6, 7]. On
49 the one hand, analyses of electroencephalography (EEG), functional MRI (fMRI), and magnetoen-
50 cephalography (MEG) have shown that a hallmark of healthy awake brain dynamics is the balance
51 between integration and segregation [8, 9, 10, 11]. On the other hand, graph theory studies have
52 shown that the modular and hierarchical organization of the human connectome optimizes the effi-
53 ciency and robustness of information transmission [3, 12]. For these reasons, consciousness has been
54 considered to result from the interplay between dynamics and connectivity allowing the coordination
55 of brain-wide activity to ensure the conscious functioning of the brain [13, 14, 15, 16]. In contrast,
56 unconscious states are characterized by a loss of integration [17, 14, 18], a loss of functional com-
57 plexity [19, 20], and a loss of communication at the whole-brain level [21, 22, 9, 18]. Interestingly, it
58 has been shown that the repertoire of functional correlations is more constrained by the anatomical
59 connectivity during unconscious states [23, 24, 25, 13]. In other words, the dependency of dynamics
60 on structural connections is increased in low-level states of consciousness. Along with these network
61 effects, it has been proposed that some local brain regions, such as fronto-parietal regions, poste-
62 rior cingulate, precuneus, thalamus and parahippocampus, play an important role in maintaining
63 consciousness [1, 26, 27]. To study how structural, dynamical, local and network brain properties in-
64 terplay in the different levels of consciousness, theoretical models are needed to incorporate all these
65 levels of description.

66 In this study, we built whole-brain models with global and local parameters to investigate the
67 possible mechanisms underlying the reduction of consciousness as a consequence of severe brain injury
68 and transient physiological modifications due to anaesthesia. For this, we studied the fMRI dynamics
69 of patients who have suffered brain injuries from various etiologies (i.e. traumatic brain injury (TBI),
70 anoxia, haemorrhage) affecting different brain regions implicated in DOC. Specifically, we analysed
71 data from patients with Unresponsiveness Wakefulness Syndrome (UWS; preserved arousal but no
72 behavioural signs of consciousness)[28] and in Minimally Conscious State (MCS, fluctuating but re-
73 producible signs of consciousness) [29], and compared them with healthy control subjects (CNT)
74 during wakefulness. We also considered the fMRI dynamics of healthy controls scanned during con-
75 scious wakefulness (W), during propofol-induced anaesthesia (state of deep sedation, S) and during

76 the recovery from it (R). To study the brain dynamics, we used phase-synchronization analyses, which
77 have proven to effectively describe the spatiotemporal dynamics of fMRI signals [30]. We interpreted
78 the results using a whole-brain model based on Hopf bifurcations [31]. This model is able to generate
79 different collective oscillatory dynamics depending on the (healthy or injured) anatomical connectivity
80 structure, the global strength of connections and the local state of the network's nodes. Importantly,
81 the model allows the investigation of the interplay between structure and global and local dynamics.
82 In particular, it allows to relate the network behaviors to the local dynamics of regions having an
83 important topological role in the network, such as the structurally highly connected nodes, or "hubs".

84 **2 Results**

85 We performed both data- and model-driven analyses to compare different levels of consciousness in
86 two neuroimaging datasets comprising DOC and healthy subjects under anaesthesia. The first dataset
87 consisted of fMRI signals and structural connectomes (SC) from healthy subjects during conscious
88 wakefulness (n = 35), and MCS and UWS patients (n = 33 and n = 15, respectively). The analysis
89 was complemented with an additional fMRI data from 16 healthy controls scanned during conscious
90 wakefulness (W), deep sedation (S) and recovery from it (R).

91 **Decrease in brain data-driven phase dynamics complexity in low-level 92 states of consciousness**

93 We first searched for spatiotemporal signatures of loss of consciousness in the whole-brain blood-
94 oxygen-level-dependent (BOLD) signals for the different experimental groups. We were interested
95 in synchronization dynamics, thus, we concentrated on phase statistics. For this, following previous
96 research, BOLD phases were extracted in the 0.04-0.07 Hz frequency band [32, 6, 30] using the Hilbert
97 transform (Fig. 1 a-b). This allows to obtain, at each time point t , a phase-interaction matrix, $P(t)$,
98 given by the phase differences among the regions of interest (ROIs) (Fig. 1 c, see Methods). We were
99 interested in the spatiotemporal organization of these phase interactions.

100 First, we examined the spatial distribution of phase-interaction matrices. We measured the in-
101 tegration and segregation of the phase-interaction matrices averaged over time. Integration was
102 measured as the size of the largest subcomponent. Segregation was measured as the modularity in-
103 dex of the matrix resulting from community detection (see Methods). We found that the average
104 integration across time was significantly lower for MCS and UWS, compared to CNT, and for S and
105 R compared to W (Fig 1 d, see also table 1). For the average segregation, we observed the opposite
106 pattern (Fig 1 e, see also table 1). Thus, low-level states of consciousness were characterised by a
107 decrease of integration and an increase of segregation.

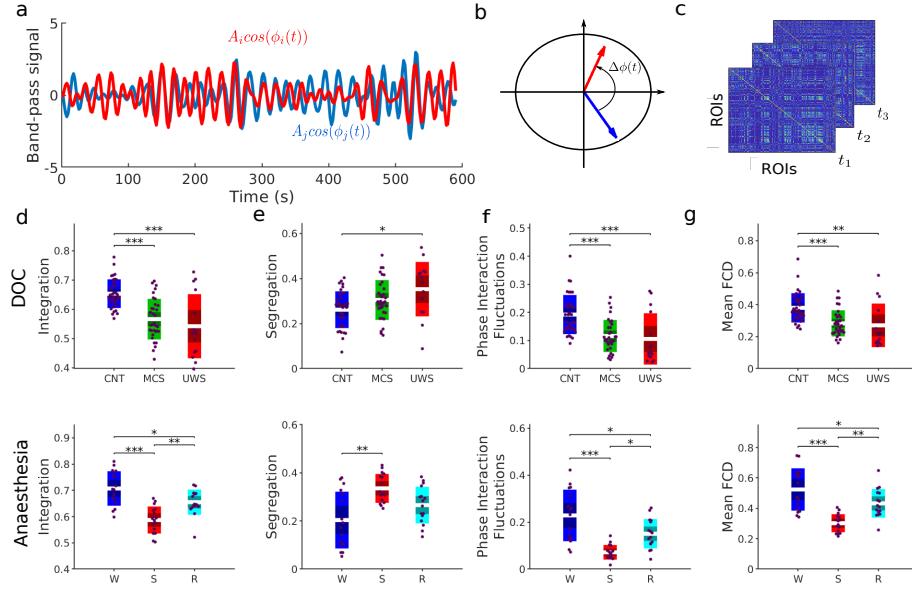


Figure 1: Changes in global properties of phase-dynamics induced by loss of consciousness. **a)** BOLD band-pass signals (0.04-0.07 Hz) for two samples ROIs. The instantaneous phases, $\phi_j(t)$ and $\phi_k(t)$, of each signal were computed using the Hilbert transform. **b)** At each time frame, the interaction between ROIs was given by the instantaneous phase difference, $\Delta\phi_{jk}(t) = |\phi_j(t) - \phi_k(t)|$, which can be represented as vectors in the unit circle of the complex plane. **c)** Phase-interaction matrices $P_{jk}(t)$ were calculated as the cosine of the phase difference, $\cos(\Delta\phi_{jk}(t))$, at time t . All global measures used afterwards were based on the phase-interaction matrices. **d-e)** The structure of phase interactions was described in terms of the integration and the segregation of the time-averaged phase interaction matrix (see Methods). **f)** We quantified the temporal fluctuations of the mean phase synchrony (i.e., the average over ROIs of matrix $P(t)$) through its temporal standard deviation. **g)** To detect the existence of recurrent synchronization patterns, we computed the FCD comparing phase-interaction matrices at different time (see Methods). Briefly, the FCD represents the (cosine) similarities between phase-interaction matrices at times t and t' for all possible pairs (t, t') . The panel shows the average similarity for each experimental condition. In panels d-g, each dot represents a participant and the boxes represent the measure's distribution. Differences between groups were assessed using one-way ANOVA followed by FDR p-value correction. *: $p < 0.05$; **: $p < 0.01$; ***: $p < 0.001$ (see Table 1 for details).

108 Second, we evaluated the temporal fluctuations of the average phase-interaction matrix. For this,
 109 we computed the standard deviation of the mean phase-interaction value across time, providing an
 110 estimate of the diversity of the average synchronization (see Methods). We found significant reduction
 111 of phase-interaction fluctuations in low-level states of consciousness compared to conscious states (Fig.
 112 1 f, top; see also table 1).

113 Temporal fluctuations of the average phase-interaction matrix indicate excursions of the total level

114 of synchronization over time but, alone, they do not capture the presence of recurrent connectivity
 115 patterns. Therefore, we next evaluated the temporal recurrence of phase-interaction matrices over
 116 time, or functional connectivity dynamics (FCD, see Methods), that describes how recurrent in time
 117 the synchronization patterns were. Briefly, this method computes the phase-interaction matrices
 118 averaged in sliding time window of 30 s and measures the similarity across all pairs of time windows,
 119 which is summarized in the FCD matrix. We found that low-level states of consciousness presented
 120 a significantly lower mean FCD value than in normal wakefulness (Fig. 1 g; see also table 1 and
 121 Supplementary Fig. 1). This suggests that phase configurations were less recurrent in time for
 122 low-level states of consciousness.

123 Altogether, the above results show that, in both pathological and pharmacological low-level states
 124 of consciousness, brain phase-synchronization patterns were less connected, less diverse and less re-
 125 current in time than in healthy conscious states.

DOC Datasets	Integration	Segregation	Phase Interaction Fluctuations	Mean FCD
CNT	0.653 ± 0.008	0.26 ± 0.01	0.19 ± 0.01	0.38 ± 0.02
MCS	0.56 ± 0.01	0.31 ± 0.01	0.12 ± 0.01	0.28 ± 0.02
UWS	0.54 ± 0.03	0.35 ± 0.03	0.11 ± 0.02	0.27 ± 0.03
ANOVA	$p < 0.001$ $F_{2,80} = 18.51$	$p = 0.006$ $F_{2,80} = 5.21$	$p < 0.001$ $F_{2,80} = 13.39$	$p < 0.001$ $F_{2,80} = 10.9$
Multiple Comparisons				
$p_{CNT-MCS}$	< 0.001	0.2072	< 0.001	0.014
$p_{CNT-UWS}$	< 0.001	0.016	< 0.001	0.023
$p_{MCS-UWS}$	0.241	0.223	0.882	0.594
Anaesthesia Datasets	Integration	Segregation	Phase Interaction Fluctuations	Mean FCD
W	0.71 ± 0.02	0.20 ± 0.03	0.23 ± 0.03	0.52 ± 0.04
S	0.59 ± 0.01	0.34 ± 0.02	0.07 ± 0.01	0.30 ± 0.01
R	0.65 ± 0.01	0.27 ± 0.02	0.15 ± 0.02	0.43 ± 0.02
ANOVA	$p < 0.001$ $F_{2,45} = 18.8$	$p < 0.001$ $F_{2,45} = 8.93$	$p < 0.001$ $F_{2,45} = 17.46$	$p < 0.001$ $F_{2,45} = 18.8$
Multiple Comparisons				
p_{W-S}	< 0.001	0.001	< 0.001	< 0.001
p_{W-R}	0.029	0.126	0.014	0.041
p_{S-R}	0.006	0.115	0.014	0.004

Table 1: **Results of the mean values of the global measurements for each group and statistics.** Statistics were computed with a one-way-ANOVA, followed by FDR correction (adjusted p-values are shown). The table shows the mean values and standard error of the empirical measures of integration, segregation, phase interaction fluctuations and mean FCD.

126 Decreased model-based global functional connectivity in low-levels 127 states of consciousness

128 To gain insights into the possible mechanisms underlying the above changes in BOLD phase statis-
129 tics, we studied a whole-brain computational model. Because we were interested in synchronous
130 oscillations, we modelled the local dynamics of single brain regions using the normal form of a Hopf
131 bifurcation (see Methods, Eqs. 5 and 6). By varying a single bifurcation parameter a_j , local dynam-
132 ics of a brain region j can transit from noisy oscillations ($a_j < 0$) to sustained oscillations ($a_j > 0$)
133 (Supplementary Fig. 2). The frequency of oscillations was estimated from the peak of the BOLD
134 power spectral density in the frequency band 0.04-0.07 Hz. The dynamics of the $N = 214$ brain
135 regions were coupled through the connectivity matrix C_{jk} , which was given by the connectome of
136 healthy subjects. The matrix C_{jk} was scaled by the global coupling g . Thus, the large-scale network
137 was weakly or strongly connected for small or large values of g , respectively (Fig. 2 a). In summary,
138 at this level of description the network dynamics depended on three ingredients: the local parameters
139 for each node (a_j), the global strength of connections (g) and the network's structure (C_{jk}).

140 First, we studied the network dynamics for the homogeneous case, in which we set $a_j = 0$ for all
141 nodes. This choice was based on previous studies which suggest that the best fit to the empirical
142 data arises at the brink of the Hopf bifurcation where $a \sim 0$ [31]. In this case, the network dynamics
143 were determined by a single free parameter, the global coupling strength g . This parameter was
144 estimated by fitting the FCD statistics of the data, as in previous studies [31, 33]. Specifically, for
145 each experimental condition, we evaluated the agreement between the simulated and the empirical
146 group FCD using the Kolmogorov-Smirnov distance (KS-distance, Fig. 2 b). The KS-distance reached
147 a minimum at different values of g for the different experimental conditions, with g being the lowest
148 for states of low-levels of consciousness (Fig 2 c-d, see table 2). Notably, although the fit of the model
149 was based on the FCD, the models also maximized the fit of other data statistics, such as the FC and
150 the metastability (Supplementary Fig. 3).

151 Furthermore, we found that the increase in global coupling strength g with consciousness goes in
152 line with a decrease in the correlation between the structural and functional connectivities (Supple-
153 mentary Fig. 4). These results indicate that in low-level states of consciousness the brain dynamics
154 were more constrained by the structural connectivity due to lower coupling values. Indeed, low global
155 coupling restricts the network interactions to ROIs directly connected by a link, while increasing the
156 global coupling favours the propagation of activity within the network, and gives rise to correlations
157 between nodes indirectly coupled.

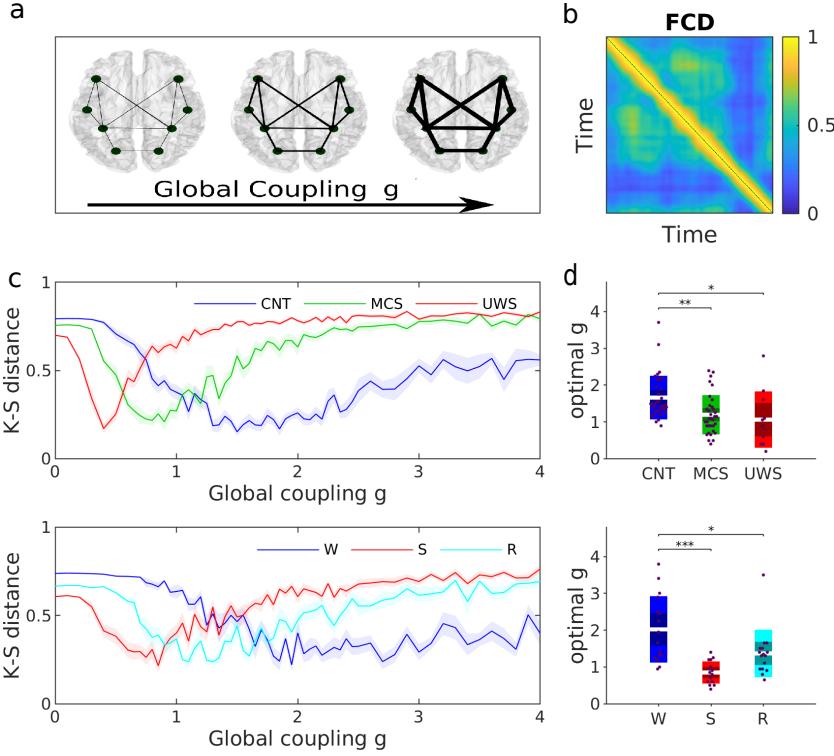


Figure 2: **Fitting of global coupling parameter in the whole-brain network model.** **a)** The global coupling model parameter g scales the weights of the SC matrix. Low and high values of g represent weakly and strongly coupled networks, respectively. **b)** To estimate this global parameter, we sought for the model that best reproduced the distribution of FCD values (fixing all other model parameters). **c)** KS-distance between the empirical and the model FCD distributions, as a function of g , for one participant of each subject group (top: healthy controls and DOC patients; bottom: awake and anaesthetised subjects). Solid lines and shaded areas represent the mean and the standard error of the fitting curves over simulation trials. **d)** Optimal global coupling g for all participants. In each panel, each dot represents a participant and the boxes represent the distribution of g . Differences between groups were assessed using one-way ANOVA followed by FDR p-value correction. *: $p < 0.05$; **: $p < 0.01$; ***: $p < 0.001$. In panels c and d, we used the healthy structural connectome as the underlying connectivity of all models.

Conditions	CNT	MCS	UWS	W	S	R
Global coupling g	1.7 ± 0.1	1.2 ± 0.1	0.8 ± 0.2	2.0 ± 0.2	0.9 ± 0.1	1.4 ± 0.2

Table 2: Estimated global couplings for all experimental conditions. p-values: $p_{CNT-MCS} = 0.015$, $p_{CNT-UWS} = 0.019$, $p_{MCS-UWS} = 0.7984$; $p_{W-S} < 0.001$, $p_{W-R} = 0.031$, $p_{R-S} = 0.080$.

158 Heterogeneous model

159 We next asked whether we can obtain additional information by relaxing the local bifurcation parameter
160 which enforced all ROIs to operate at the same working point. We studied the heterogeneous case
161 in which the local parameters a_j were allowed to vary. The individual parameters a_j were estimated
162 from the data using a gradient descent method (see Methods). In this model, the g parameter was
163 fixed to the one previously estimated with the homogeneous model (i.e., all $a_j=0$). We note that the
164 resulting distribution of local parameters contributed to network collective dynamics, since shuffling
165 the values of a across brain regions lead to worse fits of the network statistics (Supplementary Fig.
166 5).

167 We inspected the estimated bifurcation parameters across nodes within and across groups. We
168 found that bifurcation parameters in normal wakefulness (i.e., CNT and W) tended to be more
169 negative compared to low-level states of consciousness (Fig. 3 a-d), i.e., they tended to display more
170 stable noisy oscillations. Notably, this was specially the case for the structural hub ROIs, which
171 showed strong negative values of the local bifurcation parameter a during normal wakefulness (Fig
172 3 a-d, Supplementary Fig. 6). When comparing normal wakefulness before anaesthesia (W) and
173 recovery from anaesthesia (R) we found a similar distributions of the bifurcation parameter a values.
174 In particular, the negativity was reestablished for hubs (Fig 3 c-d). This tendency was also observed
175 when comparing MCS and UWS (Supplementary Fig. 7) and, even if in these cases the difference in
176 the bifurcation parameter values was smaller than for the others, the hubs had more negative values
177 in MCS. Using linear stability analysis, we showed that the hubs have a stabilizing role within the
178 dynamical system, i.e., they contribute to the most stable eigenvectors, and lose their stability for
179 low-level states of consciousness (see Supplementary Information and Supplementary Fig. 8). These
180 results show that the hubs lost their stabilizing role in low-level states of consciousness.

181 We computed the difference in local parameters between patients and controls and between anaes-
182 thesis/recovery and wakefulness (Fig. 3 e). The highest absolute difference in local parameters be-
183 tween controls and MCS/UWS patients were found in subcortical regions, such as the thalamus,
184 caudate, and hippocampus, the amygdala, and in cortical regions such as calcarine, insula, fusiform,
185 frontal superior orbital, precuneus, cingulum, and temporal areas (Fig 3 f top left and Supplementary
186 Tables 1-2). When comparing the local parameters for wakefulness and anaesthesia, the regions with
187 the highest absolute difference values included subcortical regions such as the thalamus, caudate, hip-
188 pocampus, parahippocampal, and putamen, and cortical regions such as cingulum, insula, and some
189 regions of the frontal part, paracentral and precentral (Fig. 3 f top right and Supplementary Table
190 3). Finally, the highest differences between wakefulness and recovery were found in the hippocampus,
191 the cingulum and the precuneus (Fig. 3 f bottom right and Supplementary Table 4).

192

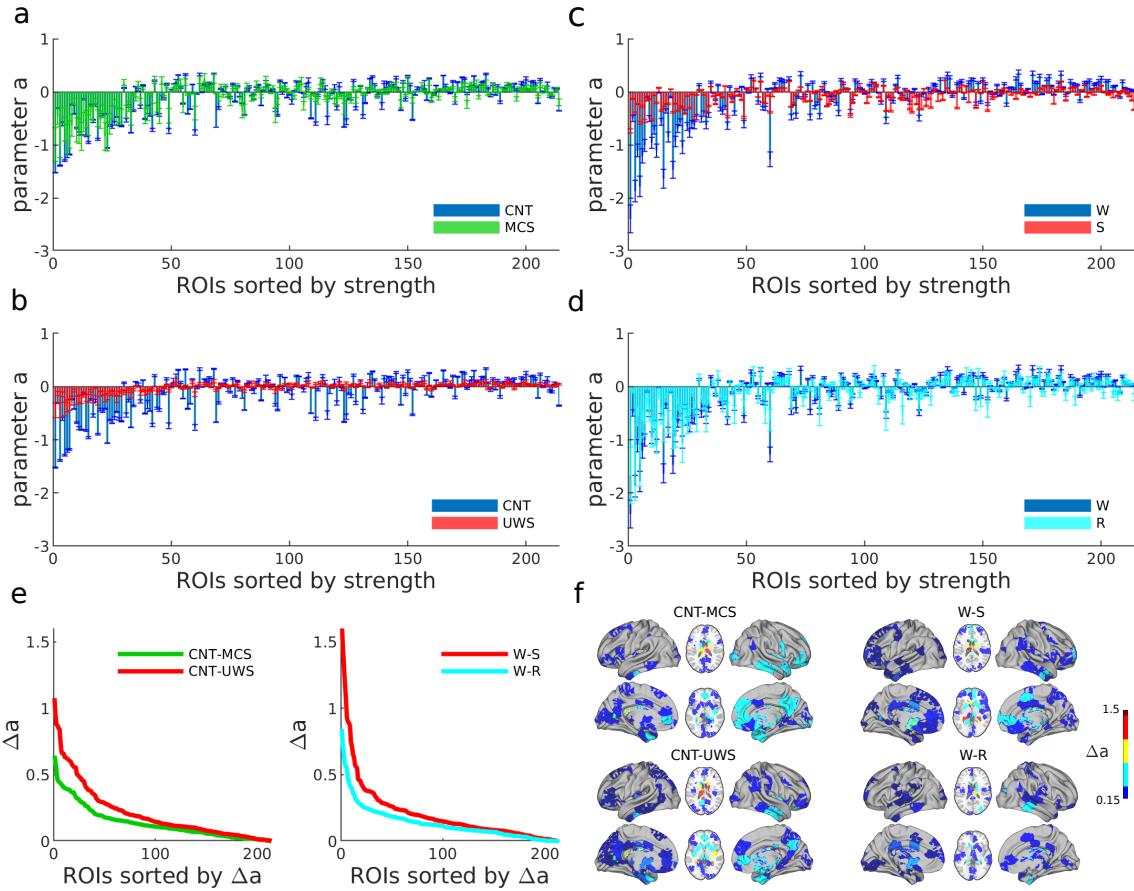


Figure 3: **Local bifurcation parameters of the whole-brain model.** **a-d)** Estimated bifurcation model parameters a for each of the 214 nodes (sorted by node strength). Bars indicate the mean \pm standard deviations across simulation trials. Results for low-level states of consciousness (MCS and UWS) are compared against the healthy controls in a) and b). Results for anesthesia and recovery (S and R states) are compared to the initial awake state (W) in c) and d) respectively. **e)** Ranked absolute parameter difference, Δa , for all the comparisons. **f)** Spatial distribution of $\Delta a > 0.15$ in the brain for each of the group comparisons.

193 **Loss of heterogeneity in low-level states of consciousness**

194 In general, if we observe the dynamics of a node within a network and we estimate its node-specific
 195 parameters, these parameters are affected by the network interactions, because we only have access to
 196 the dynamics of the ROIs *embedded* in the network. In the following, we used a strategy to disentangle
 197 the changes in local parameters due to network effects from those due to local modifications. This
 198 analysis provides information about the origin (local or network-related) of the different dynamics of
 199 the ROIs for the different states of consciousness.

200 Indeed, one can define an *effective* local parameter composed of the bifurcation parameter (a_j)

201 and the connectivity strength of each node ($S_j = \sum_k C_{jk}$), given as: $a_j^{eff} = a_j - gS_j$, (see Methods).
202 Thus, for the family of homogeneous models ($a_j = const.$), the effective parameter is linearly related
203 to the connectivity strength, while, in the heterogeneous case, we expect deviations from this linear
204 relation. In other words, in the homogeneous case, differences in effective local dynamics are fully
205 explained by the network connections. In contrast, the heterogeneous case can produce additional
206 diversity of local dynamics.

207 We used this relation to distinguish between homogeneous and heterogeneous dynamics in the
208 different data associated with different levels of consciousness. First, we estimated the effective bi-
209 furcation parameters a_j^{eff} from the data in each brain state using gradient descent with fixed g for
210 each condition (the values of g were those of Fig. 2 d). Note that, in this case, instead of estimating
211 a_j , the method estimates directly a_j^{eff} (see Methods, Eq. 10). Next, we evaluated the deviation
212 from the linear relation between the estimated effective bifurcation parameter and the strength of
213 the nodes (Fig. 4 a-b). We found that linear regression residuals were larger for control subjects
214 and during healthy wakefulness than for DOC patients and anaesthesia (Fig. 4 c, $p < 0.001$ for all
215 comparison in both dataset (computed with a one-way-ANOVA, followed by FDR correction, with
216 the exception of $p_{S-R} = 0.002$). This means that, on one hand, conscious states were associated with
217 more heterogeneous dynamics for which different brain regions had different local dynamics. On the
218 other hand, low-level states of consciousness were associated with homogeneous dynamics for which
219 differences in local dynamics were explained to a large degree by differences in connectivity strength
220 alone.

221

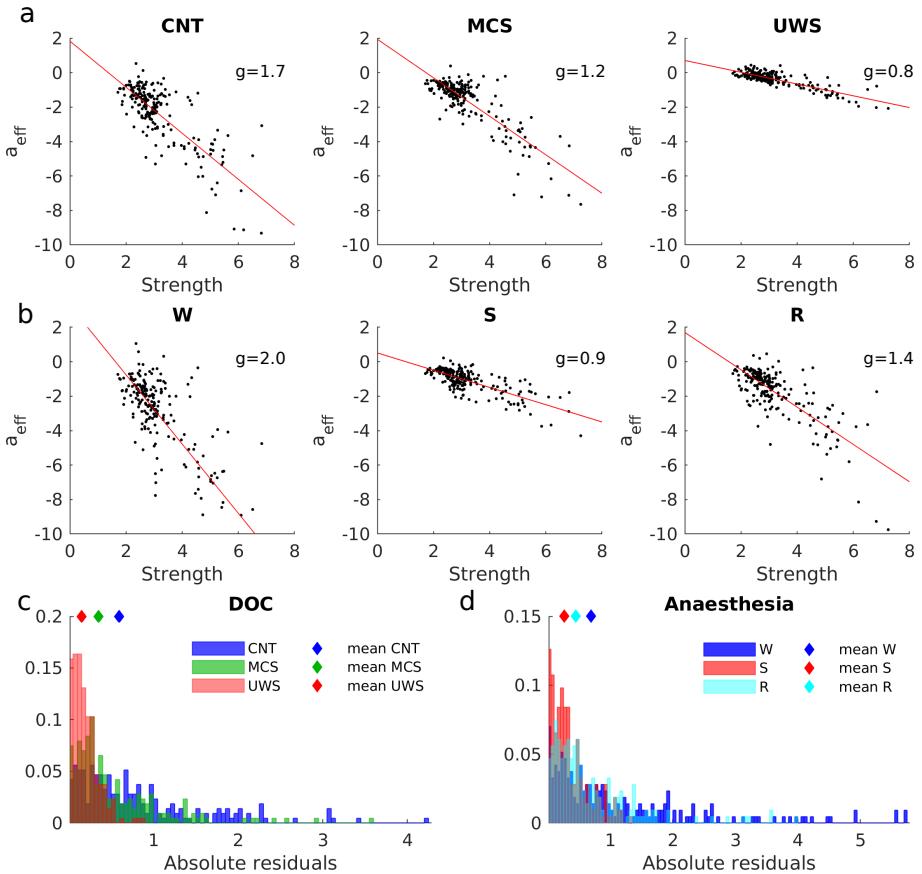


Figure 4: Disentangling structurally- and dynamically-driven heterogeneity of local nodes. **a-b)** The effective local bifurcation parameters, a_j^{eff} , were estimated using the heterogeneous model. In this model, the parameters a_j^{eff} were optimized, after fixing g to that obtained for the homogeneous model (see Methods). The obtained parameters were compared to the strengths of the nodes S_j , for healthy controls and DOC patients (a) and for awake and anesthetized conditions (b). In each panel, each dot represents one node. The red lines indicate the linear fits. **c)** Distribution of the absolute residuals of each node given by the squared difference between the value of a_j^{eff} and the estimated linear relationship between a_j^{eff} and S_j , for each group. **d)** Same as c) but for W, S and R states.

222 Alteration of the structural connectivity core in DOC patients

223 Up to now, the structural connectivity of the models was given by the connectome of healthy subjects.
 224 This allowed the study of dynamical factors leading to loss of consciousness. In the following, we stud-
 225 ied the effect of injured anatomical connectivity on brain dynamics by considering the connectomes
 226 from DOC patients (Fig. 5 a and Supplementary Fig. 9). First, we quantified the alterations in
 227 connectomes caused by brain injuries through the strength of the nodes and the network's rich-club
 228 architecture.

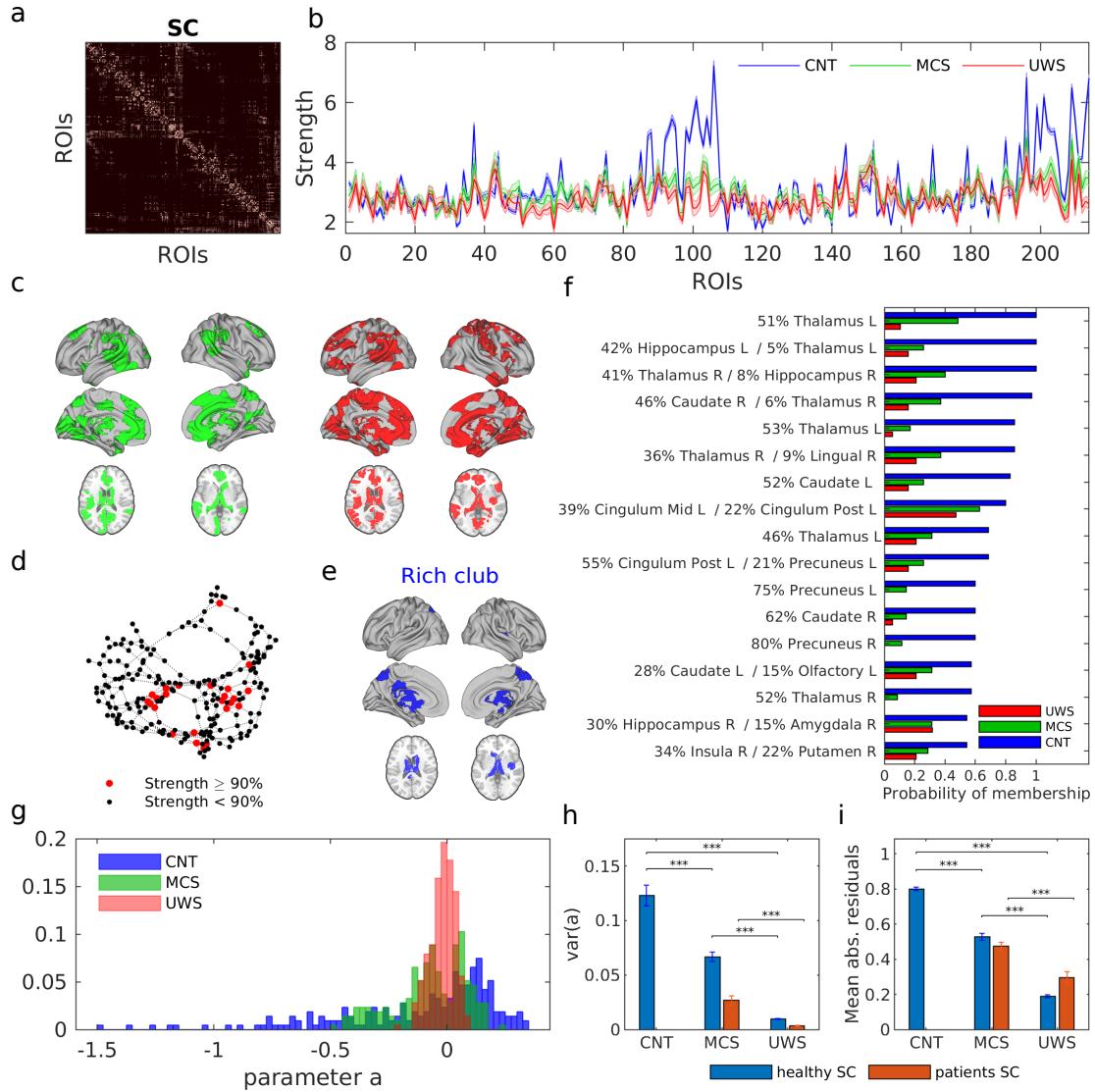


Figure 5: Disruption of the structural connectome in DOC patients. **a)** SC matrices were averaged over subjects for each clinical group (CNT, MCS, and UWS). **b)** Average node strength of each node for each group. Shaded areas represent the standard error across subjects. **c)** ROIs with significant differences in strength between controls and patients (Wilcoxon rank sum test, followed by FDR correction). Top (green): CNT-MCS comparison; bottom (red): CNT-UWS comparison. **d)** Visualization of hubs: each node corresponds to one ROI and the edges correspond to the SC (only connections >0.2 are shown). The graph was displayed using force-directed layout, i.e. attractive and repulsive forces between strongly and weakly connected nodes, respectively. Highly connected nodes, i.e. with high strength, are called structural hubs (red dots). **e)** Hubs which are highly connected among themselves form a rich club (RC) sub-network (here depicted in blue for the average SC of control subjects). **f)** For each ROI, the probability of forming part of the RC was computed by RC identification in the individual SC matrices (see Methods). The percentage corresponds to the covered part of the ROI in the AAL parcellation. **g)** Distribution of the estimated bifurcation parameters a_j using the average SC for each clinical group (healthy, MCS, and UWS). **h)** The variance of the distribution of parameters a_j for each clinical group. **i)** Median of the absolute residuals of the linear relationship between the a_{eff} vs strength. ***: $p < 0.001$, Wilcoxon rank sum test, followed by FDR correction.

229 We found that the strength of each ROI, i.e. the sum of connections of one node averaged over
230 subjects, significantly decreased for DOC patients compared to controls for several brain regions
231 ($p < 0.05$, Wilcoxon rank sum test with FDR correction; Fig. 5 b). These regions included the
232 thalamus, the posterior and the anterior cingulum, hippocampus, the frontal medial, motor areas,
233 caudate, precuneus, insula and precentral, for MCS patients (Fig. 5 c left, and see also Supplementary
234 Table 5) and the aforementioned ones plus the fusiform, the parahippocampal, the cuneus, the lingual
235 and the temporal areas for UWS patients (Fig 5 c right, and see details in Supplementary Table 6).

236 We next examined the interconnections between the ROIs with larger strength by the detection of
237 a rich-club organization (see Methods). A network is said to contain a rich-club when (i) it contains
238 hubs and (ii) those hubs are densely interconnected among themselves forming a cluster. (Fig. 5 d,
239 see also Supplementary Fig. 10). In the healthy SC, the rich club was composed mostly of subcortical
240 (thalamus, hippocampus, and caudate) and cortical regions such as the insula, the precuneus and the
241 posterior cingulum (Fig. 5 e). We calculated the probability of each ROI to pertain to the rich club
242 across individual subjects for controls and DOC patients (see Methods). We found that, when present
243 in DOC patients, rich clubs were made of less ROIs and their composition varied from subject to
244 subject (Fig. 5 f and Supplementary Fig. 11). Overall, these results show that connectomes from
245 DOC patients presented alterations in the formation and the composition of the rich-clubs.

246 Finally, we studied the global and local dynamics of whole-brain models with large-scale connec-
247 tions constrained by the injured connectomes. Using these connectomes, we did not find significant
248 differences in the global coupling parameter g (Supplementary Fig. 12). This was due to the high
249 inter-individual variability of the structural connectomes. In contrast, consistent with the results
250 above, we found that heterogeneity of local dynamics was reduced for models corresponding to DOC
251 patients (Fig. 5 g-h and Supplementary Fig. 13). Moreover, the dynamically-based heterogeneity
252 was significantly reduced (Fig. 5 i and Supplementary Fig. 14), indicating that local parameters were
253 strongly determined by structural connections. These effects were stronger using injured SCs than
254 using the healthy SC for all conditions, indicating that structural damage additionally impairs the
255 emergence of heterogeneity.

256 3 Discussion

257 In the present study, we analysed and modelled brain dynamics from patients that show reduced
258 consciousness due to brain damage (MCS and UWS), to propofol-induced anaesthesia (S), and to re-
259 covery from it (R). We showed that reduction of consciousness is characterized by brain dynamics with
260 less recurrent, less diverse, less connected and more segregated phase-synchronization patterns than
261 for conscious states. Using whole-brain models constrained with healthy and injured connectomes,
262 we showed that both pathological and pharmacological low-level states of consciousness presented al-
263 tered network interactions and more homogeneous and anatomically-constrained local dynamics than
264 conscious states.

265

266 It has been proposed that an imbalance between integration and segregation of information in the
267 brain is a network effect of the loss of consciousness [34, 17] that impairs the neural communication
268 across specialized brain modules or subnetworks [35, 36, 37]. Consistent with this view, we found
269 an alteration of integration-segregation of functional phase interactions during low-level states of
270 consciousness caused by brain damage, deep anaesthesia, and anaesthesia's long-lasting effects during
271 recovery (Fig. 1). Previous work argued that integration and segregation are reconciled in the case of
272 metastability, which has been shown to produce transient synchronized clusters for which sets of brain
273 regions engage and disengage in time, facilitating the exploration of a larger dynamical repertoire of
274 the brain [26, 30, 38]. Here, we showed that the diversity of phase synchronization patterns and
275 their recurrence in time were also reduced in low-level states of consciousness (Fig. 1), presumably
276 leading to a failure to dynamically balance integration and segregation. These results are in line with
277 previous studies showing differences in the synchronized states both in space and time during altered
278 states of consciousness [39, 40, 41, 24, 42, 17, 14, 18].

279 The whole-brain model used here allowed us to understand how structural, dynamical, local and
280 network properties interplay in the different levels of consciousness. Within this model, the network
281 dynamics depended on three ingredients: local bifurcation parameters, the global strength of con-
282 nections and their structure. Consistent with previous studies [13, 43], we showed that the brain
283 dynamics of low-level states of consciousness were more constrained by the structural connectivity.
284 In the model, this effect arises due to a reduced global coupling strength in low-level states of con-
285 sciousness, restricting the propagation of activity to direct connections. In contrast, during conscious
286 wakefulness, sufficient global connectivity allows the propagation of activity through direct and indi-
287 rect paths, thus enhancing the communication between different brain regions. This result supports
288 the predictions of integrated information theory (IIT), which proposes that unconscious states are
289 characterized by a loss of information propagation and integrative capacity of the brain [35]. The
290 observed decrease in global connectivity is also consistent with previous studies of EEG signals after
291 a transcranial magnetic stimulation (TMS)-mediated perturbation, showing that low-level states of
292 consciousness were less responsive than conscious states[19, 20].

293 We studied different versions of the model, which could be homogeneous (all local parameters were
294 constant) or heterogeneous (local parameters were allowed to vary from one brain region to the other
295 and were estimated from the data). Using the heterogeneous model, we found that in low-level states of
296 consciousness, the estimated local dynamics were strongly determined by the structural connections.
297 In contrast, local dynamics associated with consciousness presented a diversity across nodes that
298 were not fully determined by structural connections. In other words, for conscious states, local
299 dynamics can dissociate from their structural constrains, allowing for additional heterogeneity arising
300 from dynamics. Moreover, including the damaged structural connectivities due to brain injuries in
301 the DOC patients into the model showed a further limitation of the diversity of local dynamics in
302 pathological low-level states of consciousness.

303 These results are consistent with dynamics tied to the structure during low-level states of con-
304 sciousness and have important functional implications. Indeed, electrophysiological, fMRI and MEG
305 studies have shown that heterogeneous local dynamics, differing between sensory and association
306 brain regions, contribute to the hierarchical specialization across areas at the functional level [44, 45,
307 46, 47, 48]. Recently, it has been shown that extending models to include heterogeneous information
308 of local dynamics, e.g., as given by positron-emission tomography (PET) maps of neurotransmitter
309 receptor density [46] or by $Tw1/Tw2$ maps as proxies of microcircuit properties [47], increases model
310 performance to fit empirical data. Our model could be extended to include these and other axes of
311 hierarchy to explore brain mechanism of consciousness.

312 Furthermore, in parallel with the additional dynamic-based heterogeneity observed in conscious
313 states, we found that local dynamics of hub regions were more stable in conscious states than in low-
314 level states of consciousness and contribute the most to the system's linear stability (Supplementary
315 Fig. 7). This suggests that in order to release the structural constraints on local dynamics while en-
316 suring the global stability of the system, hubs play an important role by increasing their local stability
317 and diminishing their variability. We believe that the dynamical stability of the hubs is a signature
318 of consciousness and has functional implications. On one hand, unstable hubs would propagate noise
319 to the rest of the network, thus degrading the communication among brain regions. On the other
320 hand, the stability of hubs is required to maintain a functional core-periphery architecture. It has
321 been shown that this architecture is essential to achieve trade-offs between stability and flexibility
322 [49]. Indeed, previous studies of complex systems have derived general principles of core-periphery
323 architecture, pointing that the network periphery can support more variability, responsiveness and
324 plasticity than the network core, while the latter enhances the system robustness [49, 50]. Consis-
325 tent with this, previous works on whole-brain fMRI have observed core-periphery organization during
326 resting state [51] and a stable core together with a variable periphery during learning [52]. Finally,
327 we showed that structural breakdown of core-periphery architecture, as observed in injured struc-
328 tural connectivity (Fig. 5), also leads to a reduction of dynamical heterogeneity. Thus, functional
329 disruption in low-level states of consciousness might partly rely on an attenuation of core-periphery
330 structure induced by i) the loss of stability of the hubs and ii) the structural damage of the hubs.

331 Overall, our results suggest that, during healthy wakefulness, in order to allow a dynamically-
332 based heterogeneity of local dynamics across the brain, resulting in diverse collective activity patterns,
333 while preserving stability and a core-periphery architecture, the hubs are required to “anchor” the
334 dynamics by increasing their stability.

335 A prediction of our study is thus that, under localized external stimulation, hub regions should
336 be less responsive for conscious states compared to low-level states of consciousness. In particular,
337 we found stronger effects in subcortical areas, such as thalamus and hippocampus, and in the pre-
338 cuneus and the posterior cingulate areas, which are directly involved in the thalamo-cortical loop
339 and are thought to down-regulate the activity of the cortical network [53]. Thus, enhancement of
340 neural excitability in those regions through therapeutic procedures may improve conscious recovery

341 process [54]. However, current stimulation protocols using TMS to investigate the network response
342 during different states of consciousness in humans [19, 20] cannot achieve the required localization
343 of stimulation to test our predictions. Indeed, TMS is a strong external perturbation that activates
344 several cortical and subcortical areas, producing a global perturbation. Nevertheless, at the moment,
345 in-silico perturbation of diverse computational models [55, 56] might be useful to test this prediction.

346 Using global synchronization measures, we found significant differences for different levels of con-
347 sciousness (CNT and DOC patients and W, S, and R), but these measures mostly failed to identify a
348 significant difference between patients groups (MCS vs. UWS) (Fig. 1). However, our model-based
349 analysis of local dynamics was able to distinguish between patients groups (Figs. 3f, 4, 5h-i and Sup-
350 plementary Fig. 7). This highlights the clinical translation potential of multi-parameter whole-brain
351 models and the need of further studies that consider region-specific measures for clinical predictions.
352 Nevertheless, given the patient inclusion criteria used here (see Methods), a limitation of our study
353 is the potential lack of generalizability of the results to a broader spectrum of DOC patients, such as
354 those presenting larger brain structural damage.

355 In conclusion, our results show that pathological and pharmacological low-level states of con-
356 sciousness presented altered network interactions, more homogeneous, structurally-constrained local
357 dynamics, and less stability of the network's core compared to conscious states. These results provide
358 relevant information about the mechanisms of consciousness both from the research and clinical point
359 of view.

360

361 4 Methods

362 Participants

363 In this study, we have selected altered states of consciousness for pathological condition so-called
364 DOC, and healthy subjects during propofol anaesthesia-induced loss of consciousness. The study was
365 approved by the Ethics Committee of the Faculty of Medicine of the University of Liege. Written
366 informed consent to participate in the study was obtained directly from healthy control participants
367 and the legal surrogates of the patients.

368 We selected 48 DOC patients, 33 in MCS (9 females, age range 24-83 years; mean age \pm SD, 45
369 \pm 16 years) and 15 with UWS (6 females, age range 20-74 years; mean age \pm SD, 47 \pm 16 years) and
370 35 age and gender-matched healthy controls (14 females, age range 19-72 years; mean age \pm SD, 40
371 \pm 14 years). The DOC patients data was recorded 880 \pm 35 days after injury. The healthy controls
372 data was collected while awake and aware. The diagnosis of the DOC patients was confirmed through
373 repeated behavioural assessment with the Coma Recovery Scale-Revised (CRS-R) that evaluates au-
374 ditory, visual, motor, sensorimotor function, communication and arousal [57]. The DOC patients were
375 included in the study, if MRI exam was recorded without anesthetized condition and the behavioural

376 diagnosis was carried out at least five times for each patient using CRS-R examination [58]. The
377 best CRS-R result was retained for the behavioural diagnosis. The exclusion criteria of patients were
378 as follows: (i) having any significant neurological, neurosurgical or psychiatric disorders prior to the
379 brain insult that lead to DOC, (ii) having any contraindication to MRI such as electronic implanted
380 devices, external ventricular drain, and (iii) being not medically stable or large focal brain damage,
381 i.e. > 2/3 of one hemisphere. Details on patients' demographics and clinical characteristics are sum-
382 marized in Supplementary Table 7-8.

383

384 For the propofol anaesthesia, 16 healthy control subjects (14 females, age range, 18–31 years; mean
385 age \pm SD, 22 ± 3.3 years) were selected in three clinical states including normal wakefulness with
386 eyes closed (W), anaesthesia-induced reduction of consciousness (S) and recovery from anaesthesia
387 (R). Propofol was infused through an intravenous catheter placed into a vein of the right hand or
388 forearm and arterial catheter was placed into the left radial artery. During the study ECG, blood
389 pressure, SpO₂ and breathing parameters were monitored continuously. The level of consciousness was
390 evaluated clinically throughout the Ramsay scale, representing the verbal commands; for details on the
391 procedure, see [60]. It should be noted that during the recovery of consciousness, R, subjects showed
392 clinical recovery of consciousness (i.e., same score on Ramsay sedation scale as during wakefulness) but
393 they showed residual plasma propofol levels and lower reaction times scores. The healthy subjects did
394 not have MRI contraindication, any history of neurological or psychiatric disorders or drug consumption,
395 which have significant effects in brain function.

396 MRI acquisition and data analysis

397 For the DOC dataset, structural and fMRI data were acquired on a Siemens 3T Trio scanner (Siemens
398 Inc, Munich, Germany); propofol dataset was acquired on a 3T Siemens Allegra scanner (Siemens AG,
399 Munich, Germany). The acquisition parameters are described in the Supplementary Information.

400 The preprocessing of MRI data and the extraction of BOLD time series are described in Supple-
401 mentary Information. Briefly, independent component analysis was used for motion correction, spatial
402 smoothing and non-brain removal. After preprocessing, FIX (FMRIB's ICA-based X-noiseififier) [61]
403 was applied to remove the noise components and the lesion-driven artefacts, independently and man-
404 ually, for each subject. Finally, FSL tools were used to obtain the BOLD time series of 214 cortical
405 and subcortical brain regions (see details in Supplementary material Table 9) in each individual's
406 native EPI space, defined according to a resting-state Shen atlas [62] and removing the cerebellar
407 parcels.

408 Structural connectivity

409 A whole-brain structural connectivity (SC) matrix was computed for each subject from the DOC
410 dataset, using diffusion imaging and probabilistic tractography (see Supplementary Information for

411 details). The procedure resulted in a symmetric SC matrix summarizing the density of anatomical
412 links among the 214 ROIs, for each healthy control and participant.

413 Phase-interaction matrices

414 To evaluate the level of synchrony in the fMRI the phase interaction between BOLD signals was
415 evaluated. Therefore, a band-pass filter within the narrowband of 0.04 – 0.07 Hz was applied in order
416 to extract the instantaneous phases $\phi_j(t)$ for each region j . This frequency band has been mapped to
417 the gray matter and captures more relevant information than other frequency bands in terms of brain
418 function [32]. The instantaneous phases, $\phi_j(t)$, were then estimated applying the Hilbert transform
419 to the filtered BOLD signals individually. The Hilbert transform derives the analytic representation
420 of a real-valued signal given by the BOLD timeseries. The analytical signal, $s(t)$, represents the
421 narrowband BOLD signal in the time domain. This analytical signal can be also described as a
422 rotating vector with an instantaneous phase, $\phi(t)$, and an instantaneous amplitude, $A(t)$, such that
423 $s(t) = A(t)\cos(\phi(t))$. The phase and the amplitude are given by the argument and the modulus,
424 respectively, of the complex signal $z(t) = s(t) + i.H[s(t)]$, where i is the imaginary unit and $H[s(t)]$
425 is the Hilbert transform of $s(t)$.

426 The synchronization between pairs of brain regions was characterised as the difference between
427 their instantaneous phases. At each time point, the phase difference $P_{jk}(t)$ between two regions j
428 and k was calculated as:

$$P_{jk}(t) = \cos(|\phi_j(t) - \phi_k(t)|). \quad (1)$$

429 Here, $P_{jk} = 1$ when the two regions are in phase ($\phi_j = \phi_k$), $P_{jk} = 0$ when they are orthogonal and
430 $P_{jk} = -1$ when they are in anti-phase. At any time t , the phase-interaction matrix $P(t)$ represents
431 the instantaneous phase synchrony among the different ROIs. The time averaged phase-interaction
432 matrix, $\langle P \rangle = \sum_{t=1}^T P(t)/T$, was bias-corrected by subtracting the expected phase-interactions phase-
433 randomized surrogates, designed to decorrelate the phases while preserving the power spectrum of
434 the original signals (see Supplementary Information).

435 The instantaneous global level of synchrony of the whole network $r(t)$ was calculated as the average
436 of the phase differences at each time point. Since $P(t)$ is a symmetric matrix, then:

$$r(t) = \frac{1}{N(N-1)} \sum_{j=1}^N \sum_{k=j+1}^N P_{jk}(t). \quad (2)$$

437 Finally, the fluctuations of $r(t)$ over time indicate the diversity of the observed network phase inter-
438 actions. The *phase-interaction fluctuations* m were thus calculated as the standard deviation of r .
439 When all the nodes of a network are synchronised then $r(t) = 1$ for all t and thus $m = 0$. However, if
440 the network switches among synchronization states over time leading to fluctuations of r , then $m > 0$,
441 reflecting those fluctuations.

442 Integration

443 We used the integration measure to evaluate the brain's capacity to link network communities and
444 ensure communication. The integration, I , was determined using the length of the largest connected
445 component of the time-averaged phase-interaction matrix, $\langle P \rangle$, based on the procedure presented in
446 [8]. The number of nodes within the largest connected component of the binarized phase-interaction
447 matrix was computed for different binarizing thresholds, ranging from 0 to 1 (scanning the whole
448 range). The largest connected component was given by the largest sub-graph in which any two
449 vertices are connected to each other by paths, and which connects to no additional vertices in the
450 super-graph. We define the integration value, I , as the integral of the size of the largest connected
451 component as a function of the threshold.

452 Segregation

453 Complementary to the integration, we measured the brain's ability to distinguish densely connected
454 network communities. This was done by measuring the segregation of phase-interactions using a
455 community analysis detection. First, we binarized the matrix $\langle P \rangle$ by detecting the pairs of regions
456 with average phase interaction significantly ($p < 0.01$) larger than expected in phase-randomized
457 surrogates (see Supplementary Information). The segregation was measured in the binarized phase-
458 interaction matrix. It was given by the statistics of the quality of the partition algorithm, i.e., the
459 cost function of the process of detecting communities, or modularity index Q [63]. Communities were
460 detected using the Louvain algorithm that performs a subdivision of the matrix into non-overlapping
461 groups of brain regions which maximize the number of within-group edges and minimizes the number
462 of between-group edges [64]. The modularity index, Q , measures the statistics of the community
463 detection and evaluates the quality of the partition in terms of the number of within- and between-
464 groups' edges.

465 Functional connectivity dynamics (FCD)

466 We evaluated the presence of repeating patterns of network states by calculating the recurrence of
467 the phase-interaction patterns. For this, we used the functional connectivity dynamics (FCD). This
468 measure is based on previous studies that defined the FCD for FC matrices calculated in different time
469 windows [65]. In our study, the duration of scans (10 min) was divided into $M=20$ sliding windows
470 of 30 s, shifted in 2 s steps. For each time window, centred at time t , the average phase-interaction
471 matrix, $\langle P(t) \rangle$, was calculated as:

$$\langle P \rangle(t) = \frac{1}{T} \sum_{|t-t'| < 15s} P(t'), \quad (3)$$

472 where T is the total number of TRs in 30 s. We then constructed the $M \times M$ symmetric matrix
473 whose (t_1, t_2) entry was defined by the cosine similarity, θ , between the upper diagonal elements of

474 two matrices $\langle P \rangle(t_1)$ and $\langle P \rangle(t_2)$, given as:

$$\theta(t_1, t_2) = \frac{\vec{p}(t_1) \cdot \vec{p}(t_2)}{|\vec{p}(t_1)| |\vec{p}(t_2)|}, \quad (4)$$

475 where $\vec{p}(t_1)$ and $\vec{p}(t_2)$ are the vectorized representations of matrices $\langle P \rangle(t_1)$ and $\langle P \rangle(t_2)$, respectively.

476 Finally, the FCD measures was given by the distribution of these cosine similarities for all pairs of
477 time windows.

478 Whole-Brain Network Model

479 The brain network model consists of $N = 214$ coupled brain regions derived from the Shen parcellation
480 [62]. The global dynamics of the brain network model used here results from the mutual interactions
481 of local node dynamics coupled through the underlying empirical anatomical structural connectivity
482 matrix C_{ij} (see Fig. 1). Local dynamics are simulated by the normal form of a supercritical Hopf
483 bifurcation, i.e., Stuart-Landau oscillator [66, 67], describing the transition from noisy oscillations to
484 sustained oscillations [68], and is given, in the complex plane, as:

$$\frac{d\mathbf{z}}{dt} = \mathbf{z}[(\mathbf{a} + i\omega) - |\mathbf{z}|^2] + \beta\boldsymbol{\mu}(t), \quad (5)$$

485 where z_j is a complex number, $\mu_j(t)$ is additive Gaussian noise with standard deviation $\beta = 0.02$,
486 and ω_j corresponds to the intrinsic frequency of the oscillator in the range of 0.04–0.07 Hz band. The
487 intrinsic frequencies were estimated from the averaged peak frequency of the narrowband empirical
488 BOLD signals of each brain region. For $a_j < 0$, the local dynamics present a stable spiral point,
489 producing damped or noisy oscillations in absence or presence of noise, respectively (Supplementary
490 Fig. 2). For $a_j > 0$, the spiral becomes unstable and a stable limit cycle oscillation appears, producing
491 autonomous oscillations with frequency $2\pi f_j = \omega_j$ (Supplementary Fig. 2). The BOLD fluctuations
492 were modelled by the real part of the state variables, i.e., $\text{Real}(z_j)$.

493 The whole-brain dynamics were obtained by coupling the local dynamics through the C_{ij} matrix:

$$\frac{dz_j}{dt} = z_j[(a_j + i\omega_j) - |z_j|^2] + g \sum_{k=1}^N C_{jk}(z_k - z_j) + \beta\mu_j(t), \quad (6)$$

495 where g represents a global coupling scaling the structural connectivity C_{ij} . The matrix C_{ij} is
496 scaled to a maximum value of 0.2 to prevent full synchronization of the model. Interactions were
497 modelled using the common difference coupling, which approximates the simplest (linear) part of a
498 general coupling function [69].

499

500 Homogeneous model: Fitting the global coupling g

501 To create a representative model of BOLD activity in each brain state, we adjusted the model pa-
502 rameters (g and a_j) to fit the spatiotemporal BOLD dynamics for each brain state and each dataset.

503 Our first aim was to describe the global properties of the spatio-temporal dynamics of each subject
504 in each state, independently of the variations in the dynamics of local nodes. For that reason, in
505 this first approach to the model, all nodes were set to $a_j = 0$, called the homogeneous model. The
506 global coupling parameter g was obtained by fitting the simulated and empirical data. Specifically,
507 for each value of g , the model FCD was computed and compared with the empirical FCD using the
508 Kolmogorov-Smirnov (KS) distance between the simulated and empirical distribution of the FCD
509 elements. The KS-distance quantifies the maximal difference between the cumulative distribution
510 functions of the two samples. Thus, the optimal value of g was the one that minimized the KS dis-
511 tance.

512

513 **Heterogeneous model: Local optimization of the bifurcation parameters**

514 To evaluate the heterogeneous local dynamics on the network's dynamics, we extended the model
515 to allow differences in bifurcation parameters a_j for different ROIs. The g parameter was the one
516 estimated with the homogeneous model. The bifurcation parameters were optimized based on the
517 empirical power spectral density of the BOLD signals in each node. Specifically, we fitted the propor-
518 tion of power in the 0.04–0.07 Hz band with respect to the 0.04–0.25 Hz band (i.e. we removed the
519 smallest frequencies below 0.04 Hz and considered the whole spectrum up to the Nyquist frequency
520 which is 0.25Hz) [33]. For this, the BOLD signals were filtered in the 0.04–0.25 Hz band and the
521 power spectrum $PS_j(f)$ was calculated for each node j . We then defined the proportion of power in
522 the 0.04–0.07 Hz band as:

$$p_j = \frac{\int_{0.04}^{0.07} PS_j(f) df}{\int_{0.04}^{0.25} PS_j(f) df} \quad (7)$$

523 We updated the local bifurcation parameters by an iterative gradient descendent strategy, i.e.:

$$a_j = a_j + \eta(p_j^{emp} - p_j^{sim}), \quad (8)$$

524 until convergence. η was set to 0.1 and the updates of the a_j values were done in each optimization
525 step in parallel.

526

527 **Relation between the weight of the strength of a node and its dynamics**

528 Finally, the relation between local and network dynamics was studied. An effective bifurcation
529 parameter a_j^{eff} was defined which contains information of the local dynamics and local structure
530 given by its strength. This parameter permits to extract the relation between the dynamics and
531 structure of each node. More specifically, in equation 6, we separated the part that relates to the

532 effective local dynamics and the part that relates to the interaction between nodes. Noting that
 533 $\sum_{k=1}^N C_{jk}(z_k - z_j) = \sum_{k=1}^N C_{jk}z_k - z_j \sum_{k=1}^N C_{jk}$, equation 6 can be written as:

$$\frac{dz_j}{dt} = (a_j - g \sum_{k=1}^N C_{jk} + i\omega_j)z_j - |z_j|^2 + g \sum_{k=1}^N C_{jk}z_k + \beta\mu_j(t). \quad (9)$$

534 Taking $a_j^{eff} = a_j - g \sum_{k=1}^N C_{jk}$, we get:

$$\frac{dz_j}{dt} = (a_j^{eff} + i\omega_j)z_j - |z_j|^2 + g \sum_{k=1}^N C_{jk}z_k + \beta\mu_j(t). \quad (10)$$

535 Note that, if a_j is homogeneous across the network ($a_j = a$ for all j), a_j^{eff} is linearly related to the
 536 nodal strength $S_j = \sum_{k=1}^N C_{jk}$.

537

538 Graph analysis of the structural connectivity

539 The network organization of the SC matrices was investigated using measures of graph theory (GAlib:
 540 Graph Analysis library in Python / Numpy, www.github.com/gorkazl/pyGAlib). Here, we focused
 541 only on the identification of hub regions and a rich-club to study their relation to the dynamical prop-
 542 erties. The strength of a node is the number of connections a node makes in a network. Hubs are thus
 543 defined as nodes with high strength, usually playing a central role in the network's communication.
 544 Computing the rich club coefficients requires that the weighted SCs derived from tractography are
 545 binarized, discarding the smaller values. An adaptive threshold was applied such that all resulting
 546 binary SCs had the same number of links, with a link density of 0.2. A rich club is a supra-structure
 547 of a network happening when (i) a network contains hubs and (ii) those hubs are densely connected
 548 with each other, forming a cluster [70]. Identifying the presence or the absence of a rich-club is a
 549 sensitive problem because it relies on the interpretation of an indirect metric, k -density, $\rho(k)$, an
 550 iterative process which evaluates the density $\rho(k')$ of the network after all nodes with degree $k < k'$
 551 have been removed [70]. Here, we considered a strict criterion and considered that networks con-
 552 tained a rich-club only if a degree k' exist for which $\rho(k')$ overcomes 0.9 (largest possible density is
 553 1.0), implying that the hubs of the network are almost all-to-all connected. The regions forming the
 554 rich-club were thus identified as the remaining set of nodes with degree $k > k'$. Finally, to study
 555 alterations in the rich-club due to brain damage, rich-club identification was performed from the SCs
 556 of all patients, all healthy controls and from the averaged SC for the control group. The probability
 557 of a brain region to take part in the rich-club was evaluated as the frequency with which the region
 558 is present in the rich-clubs identified across subjects of the same group.

559 Statistical analysis

560 Statistical differences between levels of consciousness were assessed using one-way repeated measures
561 (rm) ANOVA followed by multiple comparisons using False Discovery Rate (FDR) correction [71].
562 The threshold for statistical significance was set to p-values<0.05. Wilcoxon rank-sum test (equivalent
563 to a Mann–Whitney U test) was applied in order to find region-wise differences between CNT and
564 DOC patients in the strength of the SC. We corrected for multiple comparisons by using the FDR
565 correction, considering P<0.05 as statistically significant.

566 Data availability

567 The codes and multimodal neuroimaging data from the experiment are available upon request.

568 Authors' contributions

569 ALG, APA, GZL, SL and GD designed research. RP, JA, AT, CM and OG acquired the data. ALG,
570 RP, AE and MK preprocessed the data. ALG and RJ analysed the data. ALG, APA, GZL, MK and
571 GD studied the computational model. APA, GZL, OG, SL and GD supervised research. ALG, RP,
572 APA, AE and GZL wrote the manuscript. All authors contributed to the editing of the manuscript.

573 Acknowledgements

574 ALG and GD was supported by Swiss National Science Foundation Sinergia grant no. 170873. APA
575 and GD received funding from the FLAG-ERA JTC (PCI2018-092891). GD acknowledges funding
576 from the European Union's Horizon 2020 FET Flagship Human Brain Project under Grant Agreement
577 785907 HBP SGA1, SGA2 and SGA3, the Spanish Ministry Project PSI2016-75688-P (AEI/FEDER),
578 the Catalan Research Group Support 2017 SGR 1545, and AWAKENING (PID2019-105772GB-I00,
579 AEI FEDER EU) funded by the Spanish Ministry of Science, Innovation and Universities (MCIU),
580 State Research Agency (AEI) and European Regional Development Funds (FEDER). The study
581 was further supported by the University and University Hospital of Liege, the Belgian National
582 Funds for Scientific Research (FRS-FNRS), the European Space Agency (ESA) and the Belgian
583 Federal Science Policy Office (BELSPO) in the framework of the PRODEX Programme, “Fondazione
584 Europea di Ricerca Biomedica”, the Bial Foundation, the Mind Science Foundation and the European
585 Commission, the fund Generet, the King Baudouin Foundation, AstraZeneca foundation, and the
586 DOCMA project [EU-H2020-MSCA-RISE-778234]. RP is research fellow. OG is research associate
587 and SL is research director at F.R.S.-FNRS. MLK is supported by the ERC Consolidator Grant:
588 CAREGIVING (n. 615539), Center for Music in the Brain, funded by the Danish National Research

589 Foundation (DNRF117), and Centre for Eudaimonia and Human Flourishing funded by the Pettit
590 and Carlsberg Foundations.

591 We would like to thank the healthy participants and the patients, their families, caregivers and
592 treating clinicians for their participation in this study. The authors thank the whole staff from the
593 ICU and Nuclear Medicine departments, University Hospital of Liège. We are highly grateful to the
594 members of the Liège Coma Science Group for their assistance in clinical evaluations. We also thank
595 Manel Vila-Vidal for his valuable comments.

596 Competing interest

597 The authors declare that they have no competing interest.

598 References

599 [1] Laureys, S. The neural correlate of (un)awareness: lessons from the vegetative state. *Trends in*
600 *Cognitive Sciences* **9**, 556–559 (2005).

601 [2] Sporns, O., Tononi, G. & Kötter, R. The Human Connectome: A Structural Description of the
602 Human Brain. *PLoS Computational Biology* **1**, e42 (2005).

603 [3] van den Heuvel, M. P. & Sporns, O. A cross-disorder connectome landscape of brain dysconnec-
604 tivity. *Nature Reviews Neuroscience* **20**, 435–446 (2019).

605 [4] Biswal, B., Yetkin, F. Z., Haughton, V. M. & Hyde, J. S. Functional connectivity in the motor
606 cortex of resting human brain using echo-planar MRI. *Magnetic resonance in medicine* **34**,
607 537–41 (1995).

608 [5] Greicius, M. D., Krasnow, B., Reiss, A. L. & Menon, V. Functional connectivity in the resting
609 brain: A network analysis of the default mode hypothesis. *Proceedings of the National Academy
610 of Sciences* **100**, 253–258 (2003).

611 [6] Damoiseaux, J. S. *et al.* Consistent resting-state networks across healthy subjects. *Proceedings
612 of the National Academy of Sciences of the United States of America* **103**, 13848–53 (2006).

613 Electrophysiological signatures of resting state networks in the human brain. *Proceedings of the
614 National Academy of Sciences of the United States of America* **104**, 13170–5 (2007).

615 [7] Zamora-López, G., Zhou, C. & Kurths, J. Exploring brain function from anatomical connectivity
616 (2011).

617 [8] Deco, G., Tononi, G., Boly, M. & Kringelbach, M. L. Rethinking segregation and integration:
618 contributions of whole-brain modelling. *Nature Reviews Neuroscience* **16**, 430–439 (2015).

619 [9] Deco, G. & Kringelbach, M. L. Hierarchy of Information Processing in the Brain: A Novel
620 ‘Intrinsic Ignition’ Framework. *Neuron* **94**, 961–968 (2017).

621 [10] Dehaene, S. & Changeux, J.-P. Experimental and Theoretical Approaches to Conscious Process-
622 ing. *Neuron* **70**, 200–227 (2011).

623 [11] Tononi, G. & Koch, C. The neural correlates of consciousness: an update. *Annals of the New
624 York Academy of Sciences* **1124**, 239–61 (2008).

625 [12] Zamora-López, G. & Brasselet, R. Sizing complex networks. *Communications Physics* **2**, 1–10
626 (2019).

627 [13] Demertzi, A. *et al.* Human consciousness is supported by dynamic complex patterns of brain
628 signal coordination. *Science Advances* **5**, eaat7603 (2019).

629 [14] Luppi, A. I. *et al.* Consciousness-specific dynamic interactions of brain integration and functional
630 diversity. *Nature Communications* **10**, 1–12 (2019).

631 [15] Panda, R. *et al.* Temporal Dynamics of the Default Mode Network Characterize Meditation-
632 Induced Alterations in Consciousness. *Frontiers in Human Neuroscience* **10**, 372 (2016).

633 [16] Escrichs, A. *et al.* Characterizing the Dynamical Complexity Underlying Meditation. *Frontiers*
634 *in Systems Neuroscience* **13**, 27 (2019).

635 [17] Rizkallah, J. *et al.* Decreased integration of EEG source-space networks in disorders of consciousness.
636 *NeuroImage: Clinical* **23**, 101841 (2019).

637 [18] Monti, M. M. *et al.* Dynamic Change of Global and Local Information Processing in Propofol-
638 Induced Loss and Recovery of Consciousness. *PLoS Computational Biology* **9** (2013).

639 [19] Rosanova, M. *et al.* Sleep-like cortical OFF-periods disrupt causality and complexity in the brain
640 of unresponsive wakefulness syndrome patients. *Nature Communications* **9**, 4427 (2018).

641 [20] Casali, A. G. *et al.* A Theoretically Based Index of Consciousness Independent of Sensory
642 Processing and Behavior. *Science Translational Medicine* **5**, 105–198 (2013).

643 [21] Bodart, O. *et al.* Global structural integrity and effective connectivity in patients with disorders
644 of consciousness. *Brain Stimulation* **11**, 358–365 (2018).

645 [22] Boly, M. *et al.* Preserved Feedforward But Impaired Top-Down Processes in the Vegetative State.
646 *Science* **332**, 858–862 (2011).

647 [23] Greicius, M. Resting-state functional connectivity in neuropsychiatric disorders. *Current opinion*
648 *in neurology* **21**, 424–30 (2008).

649 [24] Barttfeld, P. *et al.* Signature of consciousness in the dynamics of resting-state brain activity.
650 *Proceedings of the National Academy of Sciences* **112**, 887–892 (2015).

651 [25] Tagliazucchi, E., Crossley, N., Bullmore, E. T. & Laufs, H. Deep sleep divides the cortex into
652 opposite modes of anatomical–functional coupling. *Brain Structure and Function* **221**, 4221–4234
653 (2016).

654 [26] Dehaene, S. & Naccache, L. Towards a cognitive neuroscience of consciousness: basic evidence
655 and a workspace framework. *Cognition* **79**, 1–37 (2001).

656 [27] Crone, J. S. *et al.* Altered network properties of the fronto-parietal network and the thalamus
657 in impaired consciousness. *NeuroImage: Clinical* **4**, 240–248 (2014).

658 [28] Laureys, S. *et al.* Unresponsive wakefulness syndrome: A new name for the vegetative state or
659 apallic syndrome. *BMC Medicine* **8** (2010).

660 [29] Giacino, J. T. *et al.* The minimally conscious state: Definition and diagnostic criteria. *Neurology*
661 **58**, 349–353 (2002).

662 [30] Ponce-Alvarez, A. *et al.* Resting-State Temporal Synchronization Networks Emerge from Con-
663 nectivity Topology and Heterogeneity. *PLOS Computational Biology* **11**, e1004100 (2015).

664 [31] Deco, G., Kringelbach, M. L., Jirsa, V. K. & Ritter, P. The dynamics of resting fluctuations in
665 the brain: metastability and its dynamical cortical core. *Scientific Reports* **7**, 3095 (2017).

666 [32] Glerean, E., Salmi, J., Lahnakoski, J. M., Jääskeläinen, I. P. & Sams, M. Functional Magnetic
667 Resonance Imaging Phase Synchronization as a Measure of Dynamic Functional Connectivity.
668 *Brain Connectivity* **2**, 91–101 (2012).

669 [33] Saenger, V. M. *et al.* Uncovering the underlying mechanisms and whole-brain dynamics of deep
670 brain stimulation for Parkinson’s disease. *Scientific reports* **7**, 9882 (2017).

671 [34] Demertzi, A., Soddu, A. & Laureys, S. Consciousness supporting networks. *Current Opinion in*
672 *Neurobiology* **23**, 239–244 (2013).

673 [35] Tononi, G. & Koch, C. *“The Neural Correlates of Consciousness”*. *Annals of the New York*
674 *Academy of Sciences* **1124**, 239–261 (2008).

675 [36] Deco, G. & Kringelbach, M. L. Metastability and Coherence: Extending the Communication
676 through Coherence Hypothesis Using A Whole-Brain Computational Perspective. *Trends in*
677 *Neurosciences* **39**, 125–135 (2016).

678 [37] Deco, G., Tononi, G., Boly, M. & Kringelbach, M. L. Rethinking segregation and integration:
679 contributions of whole-brain modelling. *Nature Reviews Neuroscience* **16**, 430–439 (2015).

680 [38] Tognoli, E. & Kelso, J. A. The Metastable Brain (2014).

681 [39] Tagliazucchi, E. *et al.* Large-scale signatures of unconsciousness are consistent with a departure
682 from critical dynamics. *Journal of The Royal Society Interface* **13**, 20151027 (2016).

683 [40] Demertzi, A. *et al.* Intrinsic functional connectivity differentiates minimally conscious from
684 unresponsive patients. *Brain: a journal of neurology* **138**, 2619–31 (2015).

685 [41] Amico, E. *et al.* Posterior Cingulate Cortex-Related Co-Activation Patterns: A Resting State
686 fMRI Study in Propofol-Induced Loss of Consciousness. *PLoS ONE* **9**, e100012 (2014).

687 [42] Chennu, S. *et al.* Brain networks predict metabolism, diagnosis and prognosis at the bedside in
688 disorders of consciousness. *Brain* **140**, 2120–2132 (2017).

689 [43] Uhlig, M., Levina, A., Geisel, T. & Herrmann, J. M. Critical dynamics in associative memory
690 networks. *Frontiers in Computational Neuroscience* **7**, 87 (2013).

691 [44] Honey, C. J. *et al.* Slow Cortical Dynamics and the Accumulation of Information over Long
692 Timescales. *Neuron* **76**, 423–434 (2012).

693 [45] Murray, J. D. *et al.* A hierarchy of intrinsic timescales across primate cortex. *Nature Neuroscience*
694 **17**, 1661–1663 (2014).

695 [46] Deco, G. *et al.* Whole-Brain Multimodal Neuroimaging Model Using Serotonin Receptor Maps
696 Explains Non-linear Functional Effects of LSD. *Current biology : CB* **28**, 3065–3074 (2018).

697 [47] Demirtaş, M. *et al.* Hierarchical Heterogeneity across Human Cortex Shapes Large-Scale Neural
698 Dynamics. *Neuron* **101**, 1181–1194 (2019).

699 [48] Margulies, D. S. *et al.* Situating the default-mode network along a principal gradient of
700 macroscale cortical organization. *Proceedings of the National Academy of Sciences of the United
701 States of America* **113**, 12574–12579 (2016).

702 [49] Kitano, H. Biological robustness (2004).

703 [50] Csermely, P. The Wisdom of Networks: A General Adaptation and Learning Mechanism of
704 Complex Systems. *BioEssays* **40**, 1700150 (2018).

705 [51] Gu, S. *et al.* Functional hypergraph uncovers novel covariant structures over neurodevelopment.
706 *Human Brain Mapping* **38**, 3823–3835 (2017).

707 [52] Bassett, D. S. *et al.* Task-Based Core-Periphery Organization of Human Brain Dynamics. *PLoS
708 Computational Biology* **9** (2013).

709 [53] Schiff, N. D. Recovery of consciousness after brain injury: a mesocircuit hypothesis (2010).

710 [54] Thibaut, A., Schiff, N., Giacino, J., Laureys, S. & Gosseries, O. Therapeutic interventions in
711 patients with prolonged disorders of consciousness (2019).

712 [55] Deco, G. *et al.* Perturbation of whole-brain dynamics in silico reveals mechanistic differences
713 between brain states. *NeuroImage* **169**, 46–56 (2018).

714 [56] Deco, G. *et al.* Awakening: Predicting external stimulation to force transitions between different
715 brain states. *Proceedings of the National Academy of Sciences of the United States of America*
716 **116**, 18088–18097 (2019).

717 [57] Giacino, J. T. The minimally conscious state: Defining the borders of consciousness (2005).

718 [58] Wannez, S., Heine, L., Thonnard, M., Gosseries, O. & Laureys, S. The repetition of behavioral
719 assessments in diagnosis of disorders of consciousness. *Annals of Neurology* **81**, 883–889 (2017).

720 [59] MacLaren, R. *et al.* A prospective evaluation of empiric versus protocol-based sedation and
721 analgesia. *Pharmacotherapy* **20**, 662–672 (2000).

722 [60] Boveroux , P., Vanhaudenhuyse, A., Bruno, M. A., Noirhomme, Q., Lauwick, S., Luxen, A.,
723 Degueldre, C.,Plenevaux, A.,Schnakers, C.,Phillips, C.,Brichant, J.F.,Bonhomme, V.,Maquet,
724 P., Greicius, M.D.,Laureys, S., & Boly, M. Breakdown of within- and between-network rest-
725 ing state functional magnetic resonance imaging connectivity during propofol-induced loss of
726 consciousness. *Anesthesiology* **113**, 1038–1053 (2010).

727 [61] Griffanti, L. *et al.* ICA-based artefact removal and accelerated fMRI acquisition for improved
728 resting state network imaging. *NeuroImage* **95**, 232–247 (2014).

729 [62] Shen, X., Tokoglu, F., Papademetris, X. & Constable, R. Groupwise whole-brain parcellation
730 from resting-state fMRI data for network node identification. *NeuroImage* **82**, 403–415 (2013).

731 [63] Newman, M. E. Modularity and community structure in networks. *Proceedings of the National
732 Academy of Sciences of the United States of America* **103**, 8577–8582 (2006).

733 [64] Rubinov, M. & Sporns, O. Weight-conserving characterization of complex functional brain net-
734 works. *NeuroImage* **56**, 2068–2079 (2011).

735 [65] Hansen, E. C., Battaglia, D., Spiegler, A., Deco, G. & Jirsa, V. K. Functional connectivity
736 dynamics: Modeling the switching behavior of the resting state. *NeuroImage* **105**, 525–535
737 (2015).

738 [66] Landau & D., L. On the problem of turbulence. *Dokl. Akad. Nauk USSR* **44**, 311 (1944).

739 [67] Stuart, J. T. On the non-linear mechanics of wave disturbances in stable and unstable parallel
740 flows Part 1. The basic behaviour in plane Poiseuille flow. *Journal of Fluid Mechanics* **9**, 353–370
741 (1960).

742 [68] Kuznetsov, Y. A. *Elements of Applied Bifurcation Theory*, vol. 112 of *Applied Mathematical
743 Sciences* (Springer New York, New York, NY, 2004).

744 [69] Pikovsky, A., Rosenblum, M., Kurths, J. & Hilborn, R. C. Synchronization: A Universal
745 Concept in Nonlinear Science . *American Journal of Physics* **70**, 655–655 (2002).

746 [70] Zhou, S. & Mondragón, R. J. The rich-club phenomenon in the internet topology. *IEEE Com-
747 munications Letters* **8**, 180–182 (2004).

748 [71] Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful
749 Approach to Multiple Testing. *Journal of the Royal Statistical Society: Series B (Methodological)*
750 **57**, 289–300 (1995).