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2 Abstract

23 Low-level states of consciousness are characterised by disruptions of brain dynamics
2% that sustain arousal and awareness. Yet, how structural, dynamical, local and network
25 brain properties interplay in the different levels of consciousness is unknown. Here, we
26 studied the fMRI brain dynamics from patients that suffered brain injuries leading to a
27 disorder of consciousness and from subjects undergoing propofol-induced anaesthesia. We
28 showed that pathological and pharmacological low-level states of consciousness displayed
20 less recurrent, less diverse, less connected, and more segregated synchronization patterns
30 than conscious states. We interpreted these effects using whole-brain models built on
31 healthy and injured connectomes. We showed that altered dynamics arise from a global
32 reduction of network interactions, together with more homogeneous and more structurally
33 constrained local dynamics. These effects were accentuated using injured connectomes.
3 Notably, these changes lead the hub regions to lose their stability during low-level states
35 of consciousness, thus attenuating the core-periphery structure of brain dynamics.

36 Keywords— whole-brain modelling, consciousness, DOC, propofol anaesthesia, complexity, brain-

37 mechanism, heterogeneity
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+ 1 Introduction

30 It is widely accepted that consciousness is decreased during sleep, under anaesthesia, or as a con-
20 sequence of major brain lesions producing disorders of consciousness (DOC). In clinical settings,
a1 different states of consciousness have been defined depending on the level of wakefulness and aware-
2 ness [I], as measured by the responsiveness and the ability to interact with the environment. The
a3 study of these different levels of consciousness has proved to be essential to understand the neural
s correlates of consciousness, yet, the underlying mechanisms remain largely unknown. Elucidating
45 these mechanisms is challenging since they seemingly rely on a non-trivial combination of alterations
s in local dynamics and network interactions.

a7 During the last decades, the study of the organization of brain dynamics and connectome structure
s has provided increased understanding of the healthy brain structure and function [2, 3, 4, 5 [6, [7]. On
s the one hand, analyses of electroencephalography (EEG), functional MRI (fMRI), and magnetoen-
so cephalography (MEG) have shown that a hallmark of healthy awake brain dynamics is the balance
s1 between integration and segregation [8, [ [0, IT]. On the other hand, graph theory studies have
52 shown that the modular and hierarchical organization of the human connectome optimizes the effi-
53 cilency and robustness of information transmission [3, [I2]. For these reasons, consciousness has been
sa considered to result from the interplay between dynamics and connectivity allowing the coordination
ss  of brain-wide activity to ensure the conscious functioning of the brain [I3] 14} 15, [16]. In contrast,
ss unconscious states are characterized by a loss of integration [I7, 14, [18], a loss of functional com-
s7 plexity [19] 20], and a loss of communication at the whole-brain level [21], 22| [9] 18]. Interestingly, it
ss  has been shown that the repertoire of functional correlations is more constrained by the anatomical
5o connectivity during unconscious states [23] 24], 25| [13]. In other words, the dependency of dynamics
60 on structural connections is increased in low-level states of consciousness. Along with these network
61 effects, it has been proposed that some local brain regions, such as fronto-parietal regions, poste-
62 rior cingulate, precuneus, thalamus and parahippocampus, play an important role in maintaining
63 consciousness [I 26 27]. To study how structural, dynamical, local and network brain properties in-
64 terplay in the different levels of consciousness, theoretical models are needed to incorporate all these
65 levels of description.

66 In this study, we built whole-brain models with global and local parameters to investigate the
67 possible mechanisms underlying the reduction of consciousness as a consequence of severe brain injury
es and transient physiological modifications due to anaesthesia. For this, we studied the fMRI dynamics
o of patients who have suffered brain injuries from various etiologies (i.e. traumatic brain injury (TBI),
70 anoxia, haemorrhage) affecting different brain regions implicated in DOC. Specifically, we analysed
71 data from patients with Unresponsiveness Wakefulness Syndrome (UWS; preserved arousal but no
72 behavioural signs of consciousness)[28] and in Minimally Conscious State (MCS, fluctuating but re-
73 producible signs of consciousness) [29], and compared them with healthy control subjects (CNT)
74 during wakefulness. We also considered the fMRI dynamics of healthy controls scanned during con-

75 scious wakefulness (W), during propofol-induced anaesthesia (state of deep sedation, S) and during
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76 the recovery from it (R). To study the brain dynamics, we used phase-synchronization analyses, which
77 have proven to effectively describe the spatiotemporal dynamics of fMRI signals [30]. We interpreted
78 the results using a whole-brain model based on Hopf bifurcations [31]. This model is able to generate
79 different collective oscillatory dynamics depending on the (healthy or injured) anatomical connectivity
so structure, the global strength of connections and the local state of the network’s nodes. Importantly,
81 the model allows the investigation of the interplay between structure and global and local dynamics.
g2 In particular, it allows to relate the network behaviors to the local dynamics of regions having an

83 important topological role in the network, such as the structurally highly connected nodes, or ”hubs”.

« 2 Results

85 We performed both data- and model-driven analyses to compare different levels of consciousness in
8 two neuroimaging datasets comprising DOC and healthy subjects under anaesthesia. The first dataset
g7 consisted of fMRI signals and structural connectomes (SC) from healthy subjects during conscious
ss  wakefulness (n =35), and MCS and UWS patients (n = 33 and n = 15, respectively). The analysis
8o was complemented with an additional fMRI data from 16 healthy controls scanned during conscious

o wakefulness (W), deep sedation (S) and recovery from it (R).

o« Decrease in brain data-driven phase dynamics complexity in low-level

» states of consciousness

03 We first searched for spatiotemporal signatures of loss of consciousness in the whole-brain blood-
o oxygen-level-dependent (BOLD) signals for the different experimental groups. We were interested
o5 in synchronization dynamics, thus, we concentrated on phase statistics. For this, following previous
o research, BOLD phases were extracted in the 0.04-0.07 Hz frequency band [32, 6], [30] using the Hilbert
o7 transform (Fig. [1/a-b). This allows to obtain, at each time point ¢, a phase-interaction matrix, P(t),
e given by the phase differences among the regions of interest (ROIs) (Fig. [1| ¢, see Methods). We were
90 interested in the spatiotemporal organization of these phase interactions.

100 First, we examined the spatial distribution of phase-interaction matrices. We measured the in-
101 tegration and segregation of the phase-interaction matrices averaged over time. Integration was
102 measured as the size of the largest subcomponent. Segregation was measured as the modularity in-
103 dex of the matrix resulting from community detection (see Methods). We found that the average
104 integration across time was significantly lower for MCS and UWS, compared to CNT, and for S and
10s R compared to W (Fig|l|d, see also table . For the average segregation, we observed the opposite
s pattern (Fig (1] e, see also table . Thus, low-level states of consciousness were characterised by a

107 decrease of integration and an increase of segregation.
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Figure 1: Changes in global properties of phase-dynamics induced by loss of conscious-
ness. a) BOLD band-pass signals (0.04-0.07 Hz) for two samples ROIs. The instantaneous phases,
¢;(t) and ¢y(t), of each signal were computed using the Hilbert transform. b) At each time frame, the
interaction between ROIs was given by the instantaneous phase difference, Ag;i(t) = |¢;(t) — éx(t)],
which can be represented as vectors in the unit circle of the complex plane. c) Phase-interaction
matrices Pj(t) were calculated as the cosine of the phase difference, cos(A¢;i(t)), at time t. All
global measures used afterwards were based on the phase-interaction matrices. d-e) The structure of
phase interactions was described in terms of the integration and the segregation of the time-averaged
phase interaction matrix (see Methods). f) We quantified the temporal fluctuations of the mean phase
synchrony (i.e., the average over ROIs of matrix P(t)) through its temporal standard deviation. g)
To detect the existence of recurrent synchronization patterns, we computed the FCD comparing
phase-interaction matrices at different time (see Methods). Briefly, the FCD represents the (cosine)
similarities between phase-interaction matrices at times ¢ and ¢’ for all possible pairs (¢,¢'). The
panel shows the average similarity for each experimental condition. In panels d-g, each dot represents
a participant and the boxes represent the measure’s distribution. Differences between groups were
assessed using one-way ANOVA followed by FDR p-value correction. *: p < 0.05; **: p < 0.01; ***:
p < 0.001 (see Table 1 for details).

108 Second, we evaluated the temporal fluctuations of the average phase-interaction matrix. For this,
100 we computed the standard deviation of the mean phase-interaction value across time, providing an
uo  estimate of the diversity of the average synchronization (see Methods). We found significant reduction
w1 of phase-interaction fluctuations in low-level states of consciousness compared to conscious states (Fig.
12 |1 f, top; see also table .

113 Temporal fluctuations of the average phase-interaction matrix indicate excursions of the total level
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14 of synchronization over time but, alone, they do not capture the presence of recurrent connectivity
us  patterns. Therefore, we next evaluated the temporal recurrence of phase-interaction matrices over
ue time, or functional connectivity dynamics (FCD, see Methods), that describes how recurrent in time
u7 the synchronization patterns were. Briefly, this method computes the phase-interaction matrices
us  averaged in sliding time window of 30 s and measures the similarity across all pairs of time windows,
19 which is summarized in the FCD matrix. We found that low-level states of consciousness presented
120 a significantly lower mean FCD value than in normal wakefulness (Fig. |1 g; see also table |1 and
121 Supplementary Fig. 1). This suggests that phase configurations were less recurrent in time for
122 low-level states of consciousness.

123 Altogether, the above results show that, in both pathological and pharmacological low-level states
124 of consciousness, brain phase-synchronization patterns were less connected, less diverse and less re-

125 current in time than in healthy conscious states.

DOC Datasets Integration | Segregation Phase Inter'actlon Mean FCD
Fluctuations
CNT 0.6534 0.008 | 0.26 4+ 0.01 0.19 + 0.01 0.38 + 0.02
MCS 0.56 +0.01 | 0.31 £+ 0.01 0.12 + 0.01 0.28+ 0.02
UWS 0.54 + 0.03 | 0.35 £ 0.03 0.11£ 0.02 0.27 + 0.03
ANOVA p < 0.001 p=0.006 p < 0.001 p < 0.001
Fyg0 =18.51 | Fhg0 =5.21 Fy g0 = 13.39 Fr g =10.9
Multiple Comparisons
PDONT—MCS < 0.001 0.2072 < 0.001 0.014
DONT—UW S < 0.001 0.016 < 0.001 0.023
DMCOS—UWS 0.241 0.223 0.882 0.594
Anaesthesia Datasets | Integration | Segregation Phase Interﬁactlon Mean FCD
Fluctuations
W 0.71 £0.02 | 0.20 £ 0.03 0.23 = 0.03 0.52 + 0.04
S 0.59 +£0.01 | 0.34 £ 0.02 0.07 + 0.01 0.30 + 0.01
R 0.65 +0.01 | 0.27 £+ 0.02 0.15 + 0.02 0.43 + 0.02
ANOVA p < 0.001 p < 0.001 p < 0.001 p < 0.001
Fy45 =188 | Fy45 =8.93 Fy 45 = 17.46 Fy45 =188
Multiple Comparisons
Pw-—s < 0.001 0.001 < 0.001 < 0.001
PW-_R 0.029 0.126 0.014 0.041
Ps—Rr 0.006 0.115 0.014 0.004

Table 1: Results of the mean values of the global measurements for each group and
statistics. Statistics were computed with a one-way-ANOVA, followed by FDR correction (adjusted
p-values are shown). The table shows the mean values and standard error of the empirical measures

of integration, segregation, phase interaction fluctuations and mean FCD.
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s Decreased model-based global functional connectivity in low-levels

= states of consciousness

18 To gain insights into the possible mechanisms underlying the above changes in BOLD phase statis-
120 tics, we studied a whole-brain computational model. Because we were interested in synchronous
130 oscillations, we modelled the local dynamics of single brain regions using the normal form of a Hopf
131 bifurcation (see Methods, Eqs. 5 and 6). By varying a single bifurcation parameter a;, local dynam-
132 ics of a brain region j can transit from noisy oscillations (a; < 0) to sustained oscillations (a; > 0)
133 (Supplementary Fig. 2). The frequency of oscillations was estimated from the peak of the BOLD
134 power spectral density in the frequency band 0.04-0.07 Hz. The dynamics of the N = 214 brain
135 Tegions were coupled through the connectivity matrix Cj, which was given by the connectome of
s healthy subjects. The matrix Cj; was scaled by the global coupling g. Thus, the large-scale network
137 was weakly or strongly connected for small or large values of g, respectively (Fig. [2|a). In summary,
138 at this level of description the network dynamics depended on three ingredients: the local parameters
130 for each node (a;), the global strength of connections (¢g) and the network’s structure (Cjy,).

140 First, we studied the network dynamics for the homogeneous case, in which we set a; = 0 for all
11 nodes. This choice was based on previous studies which suggest that the best fit to the empirical
142 data arises at the brink of the Hopf bifurcation where a ~ 0 [31]. In this case, the network dynamics
123 were determined by a single free parameter, the global coupling strength ¢g. This parameter was
us  estimated by fitting the FCD statistics of the data, as in previous studies [31) B3]. Specifically, for
15 each experimental condition, we evaluated the agreement between the simulated and the empirical
us group FCD using the Kolmogorov-Smirnov distance (KS-distance, Fig. 2|b). The KS-distance reached
147 a minimum at different values of g for the different experimental conditions, with g being the lowest
s for states of low-levels of consciousness (Fig c-d, see table 2). Notably, although the fit of the model
1o was based on the FCD, the models also maximized the fit of other data statistics, such as the FC and
10 the metastability (Supplementary Fig. 3).

151 Furthermore, we found that the increase in global coupling strength ¢ with consciousness goes in
12 line with a decrease in the correlation between the structural and functional connectivities (Supple-
153 mentary Fig. 4). These results indicate that in low-level states of consciousness the brain dynamics
154 were more constrained by the structural connectivity due to lower coupling values. Indeed, low global
155 coupling restricts the network interactions to ROIs directly connected by a link, while increasing the
156 global coupling favours the propagation of activity within the network, and gives rise to correlations

157 between nodes indirectly coupled.
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Figure 2: Fitting of global coupling parameter in the whole-brain network model. a) The
global coupling model parameter g scales the weights of the SC matrix. Low and high values of g
represent weakly and strongly coupled networks, respectively. b) To estimate this global parameter,
we sought for the model that best reproduced the distribution of FCD values (fixing all other model
parameters). ¢) KS-distance between the empirical and the model FCD distributions, as a function of
g, for one participant of each subject group (top: healthy controls and DOC patients; bottom: awake
and anaesthetised subjects). Solid lines and shaded areas represent the mean and the standard error
of the fitting curves over simulation trials. d) Optimal global coupling g for all participants. In each
panel, each dot represents a participant and the boxes represent the distribution of g. Differences
between groups were assessed using one-way ANOVA followed by FDR. p-value correction. *: p < 0.05;
. p < 0.01; ***: p < 0.001. In panels ¢ and d, we used the healthy structural connectome as the

underlying connectivity of all models.

Conditions | CNT MCS UWS \%\% S R

Global
coupling g

1.7+£0112£01108£02(|20+£02]09+0.1|144+0.2

Table 2: Estimated global couplings for all experimental conditions. p-values: pon7T—_ncs = 0.015,
peNT—Uws = 0.019, pyros—vws = 0.7984; pw—_s < 0.001, pyw_r = 0.031, pr_gs = 0.080.
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s Heterogeneous model

150 We next asked whether we can obtain additional information by relaxing the local bifurcation param-
160 eter which enforced all ROIs to operate at the same working point. We studied the heterogeneous case
11 in which the local parameters a; were allowed to vary. The individual parameters a; were estimated
12 from the data using a gradient descent method (see Methods). In this model, the g parameter was
163 fixed to the one previously estimated with the homogeneous model (i.e., all a;=0). We note that the
16¢  resulting distribution of local parameters contributed to network collective dynamics, since shuffling
15 the values of a across brain regions lead to worse fits of the network statistics (Supplementary Fig.
166 5)

167 We inspected the estimated bifurcation parameters across nodes within and across groups. We
s found that bifurcation parameters in normal wakefulness (i.e., CNT and W) tended to be more
10 negative compared to low-level states of consciousness (Fig. |3 a-d), i.e., they tended to display more
170 stable noisy oscillations. Notably, this was specially the case for the structural hub ROIs, which
i1 showed strong negative values of the local bifurcation parameter a during normal wakefulness (Fig
172 a-d, Supplementary Fig. 6). When comparing normal wakefulness before anaesthesia (W) and
173 recovery from anaesthesia (R) we found a similar distributions of the bifurcation parameter a values.
174 In particular, the negativity was reestablished for hubs (Fig|3|c-d). This tendency was also observed
175 when comparing MCS and UWS (Supplementary Fig. 7) and, even if in these cases the difference in
176 the bifurcation parameter values was smaller than for the others, the hubs had more negative values
177 in MCS. Using linear stability analysis, we showed that the hubs have a stabilizing role within the
178 dynamical system, i.e., they contribute to the most stable eigenvectors, and lose their stability for
179 low-level states of consciousness (see Supplementary Information and Supplementary Fig. 8). These
180 results show that the hubs lost their stabilizing role in low-level states of consciousness.

181 We computed the difference in local parameters between patients and controls and between anaes-
12 thesia/recovery and wakefulness (Fig. [3|¢). The highest absolute difference in local parameters be-
183 tween controls and MCS/UWS patients were found in subcortical regions, such as the thalamus,
18« caudate, and hippocampus, the amygdala, and in cortical regions such as calcarine, insula, fusiform,
185 frontal superior orbital, precuneus, cingulum, and temporal areas (Fig f top left and Supplementary
186 Tables 1-2). When comparing the local parameters for wakefulness and anaesthesia, the regions with
157 the highest absolute difference values included subcortical regions such as the thalamus, caudate, hip-
188 pocampus, parahippocampal, and putamen, and cortical regions such as cingulum, insula, and some
189 regions of the frontal part, paracentral and precentral (Fig. |3|f top right and Supplementary Table
190 3). Finally, the highest differences between wakefulness and recovery were found in the hippocampus,
191 the cingulum and the precuneus (Fig. [3| f bottom right and Supplementary Table 4).

192
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model parameters a for each of the 214 nodes (sorted by node strength). Bars indicate the mean +
standard deviations across simulation trials. Results for low-level states of consciousness (MCS and
UWS) are compared against the healthy controls in a) and b). Results for anesthesia and recovery
(S and R states) are compared to the initial awake state (W) in c) and d) respectively. e) Ranked
absolute parameter difference, Aa, for all the comparisons. f) Spatial distribution of Aa > 0.15 in

the brain for each of the group comparisons.

Loss of heterogeneity in low-level states of consciousness

In general, if we observe the dynamics of a node within a network and we estimate its node-specific
parameters, these parameters are affected by the network interactions, because we only have access to
the dynamics of the ROIs embedded in the network. In the following, we used a strategy to disentangle
the changes in local parameters due to network effects from those due to local modifications. This
analysis provides information about the origin (local or network-related) of the different dynamics of
the ROIs for the different states of consciousness.

Indeed, one can define an effective local parameter composed of the bifurcation parameter (a;)

10
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20 and the connectivity strength of each node (S; =", Cji), given as: a;ff = a; — g5, (see Methods).
22 Thus, for the family of homogeneous models (a; = const.), the effective parameter is linearly related
203 to the connectivity strength, while, in the heterogeneous case, we expect deviations from this linear
204 relation. In other words, in the homogeneous case, differences in effective local dynamics are fully
205 explained by the network connections. In contrast, the heterogeneous case can produce additional
206 diversity of local dynamics.

207 We used this relation to distinguish between homogeneous and heterogeneous dynamics in the

208 different data associated with different levels of consciousness. First, we estimated the effective bi-
eff
J

210 each condition (the values of g were those of Fig. [2/d). Note that, in this case, instead of estimating

200 furcation parameters a;’’ from the data in each brain state using gradient descent with fixed g for

a1 aj, the method estimates directly ajf ! (see Methods, Eq. 10). Next, we evaluated the deviation
212 from the linear relation between the estimated effective bifurcation parameter and the strength of
213 the nodes (Fig. 4| a-b). We found that linear regression residuals were larger for control subjects
21u and during healthy wakefulness than for DOC patients and anaesthesia (Fig. 4| c, p < 0.001 for all
215 comparison in both dataset (computed with a one-way-ANOVA, followed by FDR correction, with
216 the exception of ps_r = 0.002 ). This means that, on one hand, conscious states were associated with
217 more heterogeneous dynamics for which different brain regions had different local dynamics. On the
218 other hand, low-level states of consciousness were associated with homogeneous dynamics for which
210 differences in local dynamics were explained to a large degree by differences in connectivity strength
20 alone.

221
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Figure 4: Disentangling structurally- and dynamically-driven heterogeneity of local
eff
J

were optimized, after fixing g to that obtained for

nodes. a-b) The effective local bifurcation parameters, a
eff
J

the homogeneous model (see Methods). The obtained parameters were compared to the strengths of

, were estimated using the heteroge-

neous model. In this model, the parameters a

the nodes S;, for healthy controls and DOC patients (a) and for awake and anesthetized conditions
(b). In each panel, each dot represents one node. The red lines indicate the linear fits. ¢) Distribution
of the absolute residuals of each node given by the squared difference between the value of a?f ! and
the estimated linear relationship between ajf 7 and S;, for each group. d) Same as c¢) but for W, S
and R states.

Alteration of the structural connectivity core in DOC patients

Up to now, the structural connectivity of the models was given by the connectome of healthy subjects.
This allowed the study of dynamical factors leading to loss of consciousness. In the following, we stud-
ied the effect of injured anatomical connectivity on brain dynamics by considering the connectomes
from DOC patients (Fig. [5| a and Supplementary Fig. 9). First, we quantified the alterations in
connectomes caused by brain injuries through the strength of the nodes and the network’s rich-club

architecture.
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Figure 5: Disruption of the structural connectome in DOC patients. a) SC matrices were averaged

over subjects for each clinical group (CNT, MCS, and UWS). b) Average node strength of each node for

each group. Shaded areas represent the standard error across subjects. ¢) ROIs with significant differences in

strength between controls and patients (Wilcoxon rank sum test, followed by FDR correction). Top (green):
CNT-MCS comparison; bottom (red): CNT-UWS comparison. d) Visualization of hubs: each node corresponds
to one ROT and the edges correspond to the SC (only connections >0.2 are shown). The graph was displayed

using force-directed layout, i.e. attractive and repulsive forces between strongly and weakly connected nodes,

respectively. Highly connected nodes, i.e. with high strength, are called structural hubs (red dots). e€) Hubs

which are highly connected among themselves form a rich club (RC) sub-network (here depicted in blue for

the average SC of control subjects). f) For each ROI, the probability of forming part of the RC was computed

by RC identification in the individual SC matrices (see Methods). The percentage corresponds to the covered

part of the ROI in the AAL parcellation.g) Distribution of the estimated bifurcation parameters a; using the

average SC for each clinical group (healthy, MCS, and UWS). h) The variance of the distribution of parameters

a; for each clinical group. i) Median of the absolute residuals of the linear relationship between the acrs vs

strengt
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p <0.001, Wilcoxon rank sum test, followed by FDR correction.
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229 We found that the strength of each ROI, i.e. the sum of connections of one node averaged over
230 subjects, significantly decreased for DOC patients compared to controls for several brain regions
231 (p < 0.05 , Wilcoxon rank sum test with FDR correction; Fig. |5| b). These regions included the
232 thalamus, the posterior and the anterior cingulum, hippocampus, the frontal medial, motor areas,
233 caudate, precuneus, insula and precentral, for MCS patients (Fig. [5|c left, and see also Supplementary
23 Table 5) and the aforementioned ones plus the fusiform, the parahippocampal, the cuneus, the lingual
235 and the temporal areas for UWS patients (Fig 5| ¢ right, and see details in Supplementary Table 6).
236 We next examined the interconnections between the ROIs with larger strength by the detection of
237 a rich-club organization (see Methods). A network is said to contain a rich-club when (7) it contains
238 hubs and (i7) those hubs are densely interconnected among themselves forming a cluster. (Fig. |5|d,
230 see also Supplementary Fig. 10). In the healthy SC, the rich club was composed mostly of subcortical
20 (thalamus, hippocampus, and caudate) and cortical regions such as the insula, the precuneus and the
a1 posterior cingulum (Fig. |5 e). We calculated the probability of each ROI to pertain to the rich club
22 across individual subjects for controls and DOC patients (see Methods). We found that, when present
23 in DOC patients, rich clubs were made of less ROIs and their composition varied from subject to
24 subject (Fig. [5| f and Supplementary Fig. 11). Overall, these results show that connectomes from
25 DOC patients presented alterations in the formation and the composition of the rich-clubs.

246 Finally, we studied the global and local dynamics of whole-brain models with large-scale connec-
27 tions constrained by the injured connectomes. Using these connectomes, we did not find significant
s differences in the global coupling parameter g (Supplementary Fig. 12). This was due to the high
20 inter-individual variability of the structural connectomes. In contrast, consistent with the results
20 above, we found that heterogeneity of local dynamics was reduced for models corresponding to DOC
51 patients (Fig. [5| g-h and Supplementary Fig. 13). Moreover, the dynamically-based heterogeneity
252 was significantly reduced (Fig. i and Supplementary Fig. 14), indicating that local parameters were
23 strongly determined by structural connections. These effects were stronger using injured SCs than
24 using the healthy SC for all conditions, indicating that structural damage additionally impairs the

255 emergence of heterogeneity.

» 3 IDiscussion

257 In the present study, we analysed and modelled brain dynamics from patients that show reduced
258 consciousness due to brain damage (MCS and UWS), to propofol-induced anaesthesia (S), and to re-
250 covery from it (R). We showed that reduction of consciousness is characterized by brain dynamics with
260 less recurrent, less diverse, less connected and more segregated phase-synchronization patterns than
261 for conscious states. Using whole-brain models constrained with healthy and injured connectomes,
262 we showed that both pathological and pharmacological low-level states of consciousness presented al-
263 tered network interactions and more homogeneous and anatomically-constrained local dynamics than

264 conscious states.
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265

266 It has been proposed that an imbalance between integration and segregation of information in the
27 brain is a network effect of the loss of consciousness [34] [I7] that impairs the neural communication
28 across specialized brain modules or subnetworks [35, 36, 37]. Consistent with this view, we found
%9 an alteration of integration-segregation of functional phase interactions during low-level states of
270 consciousness caused by brain damage, deep anaesthesia, and anaesthesia’s long-lasting effects during
arn recovery (Fig. [1)). Previous work argued that integration and segregation are reconciled in the case of
o2 metastability, which has been shown to produce transient synchronized clusters for which sets of brain
a3 regions engage and disengage in time, facilitating the exploration of a larger dynamical repertoire of
27+ the brain [26] B0, 38]. Here, we showed that the diversity of phase synchronization patterns and
275 their recurrence in time were also reduced in low-level states of consciousness (Fig. , presumably
76 leading to a failure to dynamically balance integration and segregation. These results are in line with
277 previous studies showing differences in the synchronized states both in space and time during altered
213 states of consciousness [39, 40, 141, 241 [42], 17, 14}, [18].

279 The whole-brain model used here allowed us to understand how structural, dynamical, local and
280 network properties interplay in the different levels of consciousness. Within this model, the network
281 dynamics depended on three ingredients: local bifurcation parameters, the global strength of con-
222 nections and their structure. Consistent with previous studies [13, [43], we showed that the brain
283 dynamics of low-level states of consciousness were more constrained by the structural connectivity.
28« In the model, this effect arises due to a reduced global coupling strength in low-level states of con-
285 sciousness, restricting the propagation of activity to direct connections. In contrast, during conscious
286 wakefulness, sufficient global connectivity allows the propagation of activity through direct and indi-
287 rect paths, thus enhancing the communication between different brain regions. This result supports
288 the predictions of integrated information theory (IIT), which proposes that unconscious states are
20 characterized by a loss of information propagation and integrative capacity of the brain [35]. The
200 observed decrease in global connectivity is also consistent with previous studies of EEG signals after
200 a transcraneal magnetic stimulation (TMS)-mediated perturbation, showing that low-level states of
202 consciousness were less responsive than conscious states[19] 20].

203 We studied different versions of the model, which could be homogeneous (all local parameters were
204 constant) or heterogeneous (local parameters were allowed to vary from one brain region to the other
205 and were estimated from the data). Using the heterogeneous model, we found that in low-level states of
206 consciousness, the estimated local dynamics were strongly determined by the structural connections.
207 In contrast, local dynamics associated with consciousness presented a diversity across nodes that
208 were not fully determined by structural connections. In other words, for conscious states, local
200 dynamics can dissociate from their structural constrains, allowing for additional heterogeneity arising
s0 from dynamics. Moreover, including the damaged structural connectivities due to brain injuries in
so0  the DOC patients into the model showed a further limitation of the diversity of local dynamics in

32 pathological low-level states of consciousness.
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303 These results are consistent with dynamics tied to the structure during low-level states of con-
s04 sciousness and have important functional implications. Indeed, electrophysiological, fMRI and MEG
305 studies have shown that heterogeneous local dynamics, differing between sensory and association
06 brain regions, contribute to the hierarchical specialization across areas at the functional level [44] [45]
so7 46, 147, [48]. Recently, it has been shown that extending models to include heterogeneous information
ss  of local dynamics, e.g., as given by positron-emission tomography (PET) maps of neurotransmitter
00 receptor density [46] or by Twl/Tw2 maps as proxies of microcircuit properties [47], increases model
310 performance to fit empirical data. Our model could be extended to include these and other axes of
s hierarchy to explore brain mechanism of consciousness.

312 Furthermore, in parallel with the additional dynamic-based heterogeneity observed in conscious
313 states, we found that local dynamics of hub regions were more stable in conscious states than in low-
s level states of consciousness and contribute the most to the system’s linear stability (Supplementary
sis Fig. 7). This suggests that in order to release the structural constraints on local dynamics while en-
s16  suring the global stability of the system, hubs play an important role by increasing their local stability
s17 - and diminishing their variability. We believe that the dynamical stability of the hubs is a signature
a8 of consciousness and has functional implications. On one hand, unstable hubs would propagate noise
319 to the rest of the network, thus degrading the communication among brain regions. On the other
320 hand, the stability of hubs is required to maintain a functional core-periphery architecture. It has
21 been shown that this architecture is essential to achieve trade-offs between stability and flexibility
s22 [49]. Indeed, previous studies of complex systems have derived general principles of core-periphery
33 architecture, pointing that the network periphery can support more variability, responsitivity and
s+ plasticity than the network core, while the latter enhances the system robustness [49, [50]. Consis-
35 tent with this, previous works on whole-brain fMRI have observed core-periphery organization during
226 resting state [51] and a stable core together with a variable periphery during learning [52]. Finally,
327 we showed that structural breakdown of core-periphery architecture, as observed in injured struc-
32 tural connectivity (Fig. , also leads to a reduction of dynamical heterogeneity. Thus, functional
320 disruption in low-level states of consciousness might partly rely on an attenuation of core-periphery
330 structure induced by i) the loss of stability of the hubs and ii) the structural damage of the hubs.

331 Overall, our results suggest that, during healthy wakefulness, in order to allow a dynamically-
322 based heterogeneity of local dynamics across the brain, resulting in diverse collective activity patterns,
333 while preserving stability and a core-periphery architecture, the hubs are required to “anchor” the
s34 dynamics by increasing their stability.

335 A prediction of our study is thus that, under localized external stimulation, hub regions should
33 be less responsive for conscious states compared to low-level states of consciousness. In particular,
337 we found stronger effects in subcortical areas, such as thalamus and hippocampus, and in the pre-
;33 cuneus and the posterior cingulate areas, which are directly involved in the thalamo-cortical loop
330 and are thought to down-regulate the activity of the cortical network [53]. Thus, enhancement of

30 neural excitability in those regions through therapeutic procedures may improve conscious recovery
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sar process [54]. However, current stimulation protocols using TMS to investigate the network response
sz during different states of consciousness in humans [19] 20] cannot achieve the required localization
33 of stimulation to test our predictions. Indeed, TMS is a strong external perturbation that activates
a4 several cortical and subcortical areas, producing a global perturbation. Nevertheless, at the moment,
us  in-silico perturbation of diverse computational models [55, [56] might be useful to test this prediction.
346 Using global synchronization measures, we found significant differences for different levels of con-
a7 sciousness (CNT and DOC patients and W, S, and R), but these measures mostly failed to identify a
us  significant difference between patients groups (MCS vs. UWS) (Fig. [1). However, our model-based
so analysis of local dynamics was able to distinguish between patients groups (Figs. 3f, 4, 5h-i and Sup-
30 plementary Fig. 7). This highlights the clinical translation potential of multi-parameter whole-brain
351 models and the need of further studies that consider region-specific measures for clinical predictions.
52 Nevertheless, given the patient inclusion criteria used here (see Methods), a limitation of our study
353 is the potential lack of generalizability of the results to a broader spectrum of DOC patients, such as
354 those presenting larger brain structural damage.

355 In conclusion, our results show that pathological and pharmacological low-level states of con-
356 sciousness presented altered network interactions, more homogeneous, structurally-constrained local
357 dynamics, and less stability of the network’s core compared to conscious states. These results provide
358 relevant information about the mechanisms of consciousness both from the research and clinical point
350 of view.

360

« 4 Methods

% Participants

63 In this study, we have selected altered states of consciousness for pathological condition so-called
s« DOC, and healthy subjects during propofol anaesthesia-induced loss of consciousness. The study was
ss  approved by the Ethics Committee of the Faculty of Medicine of the University of Liege. Written
66 informed consent to participate in the study was obtained directly from healthy control participants
37 and the legal surrogates of the patients.

368 We selected 48 DOC patients, 33 in MCS (9 females, age range 24-83 years; mean age + SD, 45
30+ 16 years) and 15 with UWS (6 females, age range 20-74 years; mean age + SD, 47 £ 16 years) and
s 35 age and gender-matched healthy controls (14 females, age range 19-72 years; mean age + SD, 40
sn =+ 14 years). The DOC patients data was recorded 880 + 35 days after injury. The healthy controls
s data was collected while awake and aware. The diagnosis of the DOC patients was confirmed through
s13  repeated behavioural assessment with the Coma Recovery Scale-Revised (CRS-R) that evaluates au-
sra ditory, visual, motor, sensorimotor function, communication and arousal [57]. The DOC patients were

375 included in the study, if MRI exam was recorded without anesthetized condition and the behavioural
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w6 diagnosis was carried out at least five times for each patient using CRS-R examination [58]. The
a7 best CRS-R result was retained for the behavioural diagnosis. The exclusion criteria of patients were
srs  as follows: (i) having any significant neurological, neurosurgical or psychiatric disorders prior to the
s7o brain insult that lead to DOC, (ii) having any contraindication to MRI such as electronic implanted
30 devices, external ventricular drain, and (iii) being not medically stable or large focal brain damage,
ss1 1.e. > 2/3 of one hemisphere. Details on patients’ demographics and clinical characteristics are sum-
32 marized in Supplementary Table 7-8.

383

384 For the propofol anaesthesia, 16 healthy control subjects (14 females, age range, 18-31 years; mean
ss age + SD, 22 4+ 3.3 years) were selected in three clinical states including normal wakefulness with
;6 eyes closed (W), anaesthesia-induced reduction of consciousness (S) and recovery from anaesthesia
ss7 (R). Propofol was infused through an intravenous catheter placed into a vein of the right hand or
sss forearm and arterial catheter was placed into the left radial artery. During the study ECG, blood
a0 pressure, SpO2 and breathing parameters were monitored continuously. The level of consciousness was
s evaluated clinically throughout the Ramsay scale, representing the verbal commands; for details on the
sa1  procedure, see [60]. It should be noted that during the recovery of consciousness, R, subjects showed
sz clinical recovery of consciousness (i.e., same score on Ramsay sedation scale as during wakefulness) but
303 they showed residual plasma propofol levels and lower reaction times scores. The healthy subjects did
s0¢  not have MRI contradication, any history of neurological or psychiatric disorders or drug consumption,

305 which have significant effects in brain function.

» IMRI acquisition and data analysis

37 For the DOC dataset, structural and fMRI data were acquired on a Siemens 3T Trio scanner (Siemens
38 Inc, Munich, Germany); propofol dataset was acquired on a 3T Siemens Allegra scanner (Siemens AG,
300 Munich, Germany). The acquisition parameters are described in the Supplementary Information.

400 The preprocessing of MRI data and the extraction of BOLD time series are described in Supple-
201 mentary Information. Briefly, independent component analysis was used for motion correction, spatial
w02 smoothing and non-brain removal. After preprocessing, FIX (FMRIB’s ICA-based X-noiseifier) [61]
203 was applied to remove the noise components and the lesion-driven artefacts, independently and man-
204 ually, for each subject. Finally, FSL tools were used to obtain the BOLD time series of 214 cortical
as and subcortical brain regions (see details in Supplementary material Table 9) in each individual’s
w6 native EPI space, defined according to a resting-state Shen atlas [62] and removing the cerebellar

407 parcels.

o Structural connectivity

a9 A whole-brain structural connectivity (SC) matrix was computed for each subject from the DOC

a0 dataset, using diffusion imaging and probabilistic tractography (see Supplementary Information for
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aun details). The procedure resulted in a symmetric SC matrix summarizing the density of anatomical

412 links among the 214 ROIs, for each healthy control and participant.

a3 Phase-interaction matrices

44 To evaluate the level of synchrony in the fMRI the phase interaction between BOLD signals was
a5 evaluated. Therefore, a band-pass filter within the narrowband of 0.04 — 0.07 Hz was applied in order
a6 to extract the instantaneous phases ¢;(t) for each region j. This frequency band has been mapped to
a7 the gray matter and captures more relevant information than other frequency bands in terms of brain
ss  function [32]. The instantaneous phases, ¢;(t), were then estimated applying the Hilbert transform
a9 to the filtered BOLD signals individually. The Hilbert transform derives the analytic representation
a0 of a real-valued signal given by the BOLD timeseries. The analytical signal, s(t), represents the
41 narrowband BOLD signal in the time domain. This analytical signal can be also described as a
a2 rotating vector with an instantaneous phase, ¢(t), and an instantaneous amplitude, A(t), such that
w3 s(t) = A(t)cos(¢(t)). The phase and the amplitude are given by the argument and the modulus,
a4 respectively, of the complex signal z(t) = s(t) + i.H[s(t)], where i is the imaginary unit and H{[s(t)]
a5 is the Hilbert transform of s(t).

426 The synchronization between pairs of brain regions was characterised as the difference between
sz their instantaneous phases. At each time point, the phase difference Pj(t) between two regions j

28 and k was calculated as:

Py (t) = cos (|¢;(t) — or(t)]) - (1)

w29 Here, Pj;, = 1 when the two regions are in phase (¢; = @), Pjr = 0 when they are orthogonal and
s0  Pj, = —1 when they are in anti-phase. At any time ¢, the phase-interaction matrix P(t) represents
41 the instantaneous phase synchrony among the different ROIs. The time averaged phase-interaction
a2 matrix, (P) = Zthl P(t)/T, was bias-corrected by subtracting the expected phase-interactions phase-
433 randomized surrogates, designed to decorrelate the phases while preserving the power spectrum of
a3 the original signals (see Supplementary Information).

435 The instantaneous global level of synchrony of the whole network r(¢) was calculated as the average

a6 of the phase differences at each time point. Since P(t) is a symmetric matrix, then:

1 N N
r(t) = ——= Pir(t). 2
=1 k=j5+1
s37 Finally, the fluctuations of r(t) over time indicate the diversity of the observed network phase inter-
438 actions. The phase-interaction fluctuations m were thus calculated as the standard deviation of r.
130 When all the nodes of a network are synchronised then r(t) = 1 for all ¢ and thus m = 0. However, if
40 the network switches among synchronization states over time leading to fluctuations of r, then m > 0,

41 reflecting those fluctuations.
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« Integration

413 We used the integration measure to evaluate the brain’s capacity to link network communities and
44 ensure communication. The integration, I, was determined using the length of the largest connected
as  component of the time-averaged phase-interaction matrix, (P), based on the procedure presented in
us  [8]. The number of nodes within the largest connected component of the binarized phase-interaction
a7 matrix was computed for different binarizing thresholds, ranging from 0 to 1 (scanning the whole
as range). The largest connected component was given by the largest sub-graph in which any two
49 vertices are connected to each other by paths, and which connects to no additional vertices in the
w0 super-graph. We define the integration value, I, as the integral of the size of the largest connected

a1 component as a function of the threshold.

= Segregation

453 Complementary to the integration, we measured the brain’s ability to distinguish densely connected
454 network communities. This was done by measuring the segregation of phase-interactions using a
455 community analysis detection. First, we binarized the matrix (P) by detecting the pairs of regions
a6 with average phase interaction significantly (p < 0.01) larger than expected in phase-randomized
w7 surrogates (see Supplementary Information). The segregation was measured in the binarized phase-
458 interaction matrix. It was given by the statistics of the quality of the partition algorithm, i.e., the
50 cost function of the process of detecting communities, or modularity index @ [63]. Communities were
w60 detected using the Louvain algorithm that performs a subdivision of the matrix into non-overlapping
461 groups of brain regions which maximize the number of within-group edges and minimizes the number
w2 of between-group edges [64]. The modularity index, ), measures the statistics of the community
463 detection and evaluates the quality of the partition in terms of the number of within- and between-

464 groups’ edges.

« Functional connectivity dynamics (FCD)

w66  We evaluated the presence of repeating patterns of network states by calculating the recurrence of
a7 the phase-interaction patterns. For this, we used the functional connectivity dynamics (FCD). This
468 measure is based on previous studies that defined the FCD for FC matrices calculated in different time
a0 windows [65]. In our study, the duration of scans (10 min) was divided into M=20 sliding windows
a0 of 30 s, shifted in 2 s steps. For each time window, centred at time ¢, the average phase-interaction

s matrix, (P(t)(, was calculated as:

(Py)=7 > P), 3)

[t—t'|<15s

a2 where T is the total number of TRs in 30 s. We then constructed the M x M symmetric matrix

a3 whose (t1, t2) entry was defined by the cosine similarity, 6, between the upper diagonal elements of
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a2 two matrices (P)(t1) and (P)(t2), given as:

_ p(t)plta)
Ot t2) = o e @

a5 where p(t1) and p(ta) are the vectorized representations of matrices (P)(t1) and (P)(t2), respectively.
476 Finally, the FCD measures was given by the distribution of these cosine similarities for all pairs of

a7 time windows.

«s Whole-Brain Network Model

479 The brain network model consists of N = 214 coupled brain regions derived from the Shen parcellation
0 [62]. The global dynamics of the brain network model used here results from the mutual interactions
41 of local node dynamics coupled through the underlying empirical anatomical structural connectivity
w2 matrix Cy; (see Fig. . Local dynamics are simulated by the normal form of a supercritical Hopf
a3 bifurcation, i.e., Stuart-Landau oscillator [66l, [67], describing the transition from noisy oscillations to

s sustained oscillations [68], and is given, in the complex plane, as:

P — al(atiw) — o) + (). )
w5 where z; is a complex number, p;(t) is additive Gaussian noise with standard deviation 8 = 0.02,
ass  and w; corresponds to the intrinsic frequency of the oscillator in the range of 0.04-0.07 Hz band. The
457 intrinsic frequencies were estimated from the averaged peak frequency of the narrowband empirical
ses BOLD signals of each brain region. For a; < 0, the local dynamics present a stable spiral point,
a0 producing damped or noisy oscillations in absence or presence of noise, respectively (Supplementary
a0 Fig. 2). For aj > 0, the spiral becomes unstable and a stable limit cycle oscillation appears, producing
a1 autonomous oscillations with frequency 27 f; = w; (Supplementary Fig. 2). The BOLD fluctuations

a2 were modelled by the real part of the state variables, i.e., Real(z;).

403 The whole-brain dynamics were obtained by coupling the local dynamics through the C;; matrix:
494
dz; al
. 2
dTJ = zjl(a; +iw;) — |21 + 9> Cinlzr — 2;) + Bu; (1), (6)
k=1
495 where g represents a global coupling scaling the structural connectivity C;;.The matrix Cj; is

106 scaled to a maximum value of 0.2 to prevent full synchronization of the model. Interactions were
a7 modelled using the common difference coupling, which approximates the simplest (linear) part of a
a8 general coupling function [69].

499

s0o Homogeneous model: Fitting the global coupling g

so0 To create a representative model of BOLD activity in each brain state, we adjusted the model pa-

s2 rameters (g and a;) to fit the spatiotemporal BOLD dynamics for each brain state and each dataset.
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s3  Our first aim was to describe the global properties of the spatio-temporal dynamics of each subject
so4 in each state, independently of the variations in the dynamics of local nodes. For that reason, in
sos this first approach to the model, all nodes were set to a; = 0, called the homogeneous model. The
s6  global coupling parameter g was obtained by fitting the simulated and empirical data. Specifically,
so7  for each value of g, the model FCD was computed and compared with the empirical FCD using the
sos Kolmogorov-Smirnov (KS) distance between the simulated and empirical distribution of the FCD
so0 elements. The KS-distance quantifies the maximal difference between the cumulative distribution
s10 functions of the two samples. Thus, the optimal value of g was the one that minimized the KS dis-
511 tance.

512

s3. Heterogeneous model: Local optimization of the bifurcation parameters

514 To evaluate the heterogeneous local dynamics on the network’s dynamics, we extended the model
si5 to allow differences in bifurcation parameters a; for different ROIs. The g parameter was the one
516 estimated with the homogeneous model. The bifurcation parameters were optimized based on the
517 empirical power spectral density of the BOLD signals in each node. Specifically, we fitted the propor-
sis tion of power in the 0.04-0.07 Hz band with respect to the 0.04-0.25 Hz band (i.e. we removed the
519 smallest frequencies below 0.04 Hz and considered the whole spectrum up to the Nyquist frequency
s20 which is 0.25Hz) [33]. For this, the BOLD signals were filtered in the 0.04-0.25 Hz band and the
s21 power spectrum PS;(f) was calculated for each node j. We then defined the proportion of power in
52 the 0.04-0.07 Hz band as:

0.07
| psioar
0.04 (7)

0.25
/0 PS;(f)df

.04

pj =

523 We updated the local bifurcation parameters by an iterative gradient descendent strategy, i.e.:
aj = a;j +n(p;™" —pi"™m), (8)

s24 until convergence. 1 was set to 0.1 and the updates of the a; values were done in each optimization
525 step in parallel.

526

527 Relation between the weight of the strength of a node and its dynamics

58 Finally, the relation between local and network dynamics was studied. An effective bifurcation

520 parameter ajf 7 was defined which contains information of the local dynamics and local structure

530  given by its strength. This parameter permits to extract the relation between the dynamics and

531 structure of each node. More specifically, in equation [6] we separated the part that relates to the
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522 effective local dynamics and the part that relates to the interaction between nodes. Noting that
533 fozl Cik(zk — 25) = Zfﬁvzl Cikzr — zj Z,ivzl Cjk, equation @ can be written as:

N N
dz; .
L (03O ) 493 O+ G0 0
k=1 k=1
s Taking ajff =a;—g Z.{c\le Cjk, we get:
dz; eff | - 2 Y
o= (aj +iw;j)z; — |2° + QZCjkzk + Buj(t). (10)
k=1

s35. Note that, if a; is homogeneous across the network (a; = a for all j), as!

j
s3s nodal strength §; = Zfe\le Cijk-

537

T is linearly related to the

s Graph analysis of the structural connectivity

s39  The network organization of the SC matrices was investigated using measures of graph theory (GAlib:
ss0  Graph Analysis library in Python / Numpy, www.github.com/gorkazl/pyGAlib). Here, we focused
sa1 - only on the identification of hub regions and a rich-club to study their relation to the dynamical prop-
s22  erties. The strength of a node is the number of connections a node makes in a network. Hubs are thus
543 defined as nodes with high strength, usually playing a central role in the network’s communication.
544 Computing the rich club coefficients requires that the weighted SCs derived from tractography are
ses  binarized, discarding the smaller values. An adaptive threshold was applied such that all resulting
se6  binary SCs had the same number of links, with a link density of 0.2. A rich club is a supra-structure
sa7 - of a network happening when (i) a network contains hubs and (ii) those hubs are densely connected
sss with each other, forming a cluster [70]. Identifying the presence or the absence of a rich-club is a
ss0  sensitive problem because it relies on the interpretation of an indirect metric, k-density, p(k), an
ss0  iterative process which evaluates the density p(k’) of the network after all nodes with degree k < £/
ss1 have been removed [70]. Here, we considered a strict criterion and considered that networks con-
2 tained a rich-club only if a degree k' exist for which p(k’) overcomes 0.9 (largest possible density is
553 1.0), implying that the hubs of the network are almost all-to-all connected. The regions forming the
ss«  rich-club were thus identified as the remaining set of nodes with degree k > k’. Finally, to study
555 alterations in the rich-club due to brain damage, rich-club identification was performed from the SCs
ss6  of all patients, all healthy controls and from the averaged SC for the control group. The probability
ss7 - of a brain region to take part in the rich-club was evaluated as the frequency with which the region

sss 1S present in the rich-clubs identified across subjects of the same group.
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s oStatistical analysis

se0  Statistical differences between levels of consciousness were assessed using one-way repeated measures
ss1  (rm) ANOVA followed by multiple comparisons using False Discovery Rate (FDR) correction [71].
se2  The threshold for statistical significance was set to p-values<0.05. Wilcoxon rank-sum test (equivalent
563 to a Mann—Whitney U test) was applied in order to find region-wise differences between CNT and
se¢  DOC patients in the strength of the SC. We corrected for multiple comparisons by using the FDR

s65 correction, considering P<0.05 as statistically significant.

= Data availability

se7 The codes and multimodal neuroimaging data from the experiment are available upon request.
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