

Dorsal Periaqueductal gray ensembles represent approach and avoidance states

Fernando MCV Reis^{1,4}, Johannes Y Lee^{2,4}, Sandra Maesta-Pereira¹, Peter J Schuette¹, Meghmik Chakerian¹, Jinhan Liu², Mimi Q La-Vu¹, Brooke C Tobias¹, Newton S Canteras³, Jonathan C Kao^{2,5,*}, Avishek Adhikari^{1,5,6,*}

Author affiliations:

¹ Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.

² Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.

³ Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil.

⁴ These authors contributed equally

⁵ These authors contributed equally

⁶Lead contact

16

*Correspondence: avi@psych.ucla.edu (A.A.)

19 **Abstract**

20 Animals must balance needs to approach threats for risk-assessment and to avoid danger. The
21 dorsal periaqueductal gray (dPAG) controls defensive behaviors, but it is unknown how it represents
22 states associated with threat approach and avoidance. We identified a dPAG threat-avoidance
23 ensemble in mice that showed higher activity far from threats such as the open arms of the elevated
24 plus maze and a live predator. These cells were also more active during threat-avoidance behaviors
25 such as escape and freezing, even though these behaviors have antagonistic motor output.
26 Conversely, the threat-approach ensemble was more active during risk-assessment behaviors and
27 near threats. Furthermore, unsupervised methods showed approach/avoidance states were encoded
28 with shared activity patterns across threats. Lastly, the relative number of cells in each ensemble
29 predicted threat-avoidance across mice. Thus, dPAG ensembles dynamically encode threat approach
30 and avoidance states, providing a flexible mechanism to balance risk-assessment and danger
31 avoidance.

32

33

34 **Introduction**

35

36 Behavioral variables and emotional states are thought to be represented in neural activity (Anderson
37 and Adolphs, 2014). Such representations must be specific enough to differentiate across behaviors,
38 yet general enough to maintain functional cohesion across diverse threatening situations
39 (Grundemann et al., 2019). A large body of evidence has shown that defensive behaviors related to
40 threat exposure are represented in dorsal periaqueductal gray (dPAG) activity (Deng et al., 2016;
41 Evans et al., 2018; Watson et al., 2016), as dPAG activity correlates with escape and freeze.
42 Additionally, dPAG optogenetic and electrical stimulation induce these behaviors, as well as aversion
43 (Brandao et al., 1982; Carvalho et al., 2015; Carvalho et al., 2018; Deng et al., 2016; Tovote et al.,
44 2016). Furthermore, pharmacological manipulations of dPAG activity impact open arm exploration in
45 the elevated plus maze (EPM), a traditional measure of rodent anxiety (Fogaca et al., 2012). Lastly,
46 PAG activity in humans correlates positively with threat imminence (Mobbs et al., 2007; Mobbs et al.,
47 2010). These reports show the dPAG is a central node orchestrating defensive behaviors.

48

49 However, it is unknown how the dPAG represents moment-to-moment changes in brain states during
50 threat exposure. The two main behavioral states observed during exposure to threats are approach
51 and avoidance (Stankowich, 2019). In the approach state, animals voluntarily go near the threat and
52 perform risk-assessment behaviors. In this state, the exploratory risk-evaluation drive is stronger than
53 the motivation to avoid danger. By contrast, in the avoidance state, animals perceive high risk, and
54 thus attempt to minimize exposure to danger by escaping, freezing and maintaining distance to the
55 threat. No reports to date have investigated whether the dPAG consistently encodes approach and
56 avoidance states across distinct threats.

57

58 Key questions regarding the neural representation of approach and avoidance states remain
59 unanswered. Do dPAG cells respond uniformly to transitions between higher and lower threat
60 imminence? What is the overlap between the dPAG encoding of two completely distinct threats?

61 Does dPAG neuronal activity encode moment-to-moment changes regarding defensive approach and
62 avoidance states? Addressing these questions would require population-level analysis of dPAG cells
63 recorded longitudinally across threat modalities. Here, we report experimental data and analyses that
64 directly address these questions.

65 **Results and Discussion**

66 We performed microendoscopic calcium imaging of dPAG neurons expressing GCaMP6s (Figure 1A
67 and Figure 1-figure supplement 1) (Cai et al., 2016) during EPM and rat exposure assays. During
68 EPM test, we recorded 107 ± 19 cells per mouse ($n = 8$ mice; 857 cells were imaged; see Methods).
69 As expected, mice spent more time in the closed arms of the EPM (Figure 1B). They also displayed
70 exploratory risk-assessment head dips over the edges of the open arms (Figure 1B-C). During EPM
71 exploration cells often showed preferential activity either in closed or open arms (Figure 1D-E). To
72 identify EPM arm-type modulated neurons, we defined an “arm score metric” ranging from -1 to +1, in
73 which the +1 indicates that cell activity in the open arm is greater than activity in the closed arm, and
74 vice-versa. The arm score distribution in the observed data is wider than expected by chance,
75 indicating that dPAG cells show robust preference for EPM arm-types (Figure 1F left panel). We
76 defined neurons as belonging to one of the ensembles if activity in each arm-type was significantly
77 greater than the pooled activity in the opposite arm type (Figure 1F right panel, see Methods). The
78 results showed that cells fired similarly in arms of the same type, as firing in one open arm was highly
79 correlated to activity in the other open arm (Figure 1G, top panel). Conversely, firing rates in closed
80 and open arms were negatively correlated (Figure 1G, bottom panel).

81
82

83 Based on the distribution of cells per arm score, roughly half of the dPAG neurons were classified as
84 arm-modulated cells (49%, with 26% closed- and 23% open-modulated cells) (Figure 1H) which
85 suggests these ensembles are functionally relevant dPAG populations. During transitions between
86 arms, we identified opposite changes in activity levels of these two major, non-overlapping
87 populations of dPAG neurons. (Figure 1I and Figure 2A-B). For example, the closed arm-activated
88 ensemble showed a decrease in activity when mice traversed from a closed arm to an open arm.
89 Moreover, open and closed cells showed increased and decreased activity, respectively, during
90 exploratory head dip behavior (Figure 2C). Importantly, dPAG ensembles did not display strong
91 correlations with speed, suggesting these findings are not driven by variations in velocity (Figure 2D).
92 If EPM arm-type is prominently represented in dPAG activity, then it may be possible to use dPAG
93 activation patterns to differentiate mouse location in the EPM. Indeed, upon training support vector
94 machine (SVM) decoders on dPAG activity, we obtained significantly higher than chance
95 performance in identifying if the mouse was in an open or closed arm (Figure 2E, see Methods).

96

97 Next, we investigated whether dPAG activity could also predict specific mouse positions within the
98 arms. We defined a “threat score” as linearly varying between -1 and +1 (at closed and open arms
99 extremities, respectively), assigning zero to the center of the maze (Figure 2F, see Methods). We
100 then fitted a linear regression on the threat score using dPAG cell activity. Interestingly, the model
101 showed significantly higher than chance performance in predicting threat score, suggesting that the

102 identified dPAG ensembles may not only encode arm-type, but rather a risk perception and threat-
103 exposure gradient (Figure 2F-G and Figure 2-figure supplement 1).

105
106 To investigate whether dPAG population coding of risk perception generalizes to exploratory behavior
107 across different threatening contexts, we recorded the same dPAG neurons during exposure to a live
108 predator (Figure 3A-B and Figure 3—figure supplement 1). Mice were allowed to freely explore a
109 context, a long chamber, in the presence of a rat, which was tethered with a harness to one end of
110 the chamber (see Methods). All behavioral data from synchronized videos underwent automated
111 behavior scoring (Mathis et al., 2018). Mice spent most of the trial away from the rat (Figure 3A),
112 indicating aversion from perceived threat. Consistent with previous threat imminence theories and the
113 array of defensive behaviors evoked in the presence of a predator (Blanchard et al., 2011;
114 McNaughton and Corr, 2004; Perusini and Fanselow, 2015; Stankowich, 2019), mice presented
115 defensive strategy repertoires composed of approach and avoidance-related behaviors (i.e. escape
116 and freeze) (Figure 3A). Notably, average dPAG activity increased with rat proximity, rat movement
117 onset, escape, and decreased during freezing and approach (Figure 3C-E). Importantly, mice
118 displayed no signs of aversion nor differences in dPAG activity with proximity to a toy rat (Figure
119 3—figure supplement 2).

120
121 We then explored whether the activity of dPAG closed and open cell ensembles identified in the EPM
122 also represent risk-evaluation in the rat assay. A positive result would show that the ensembles are
123 likely responding not only to the original sensory biases (i.e. closed and open arms features), but
124 potentially representing behavioral states that generalize across threats. Intriguingly, open arm cells
125 were more active near the rat, while closed arm cells displayed higher activity far from the rat (Figure
126 3F-H and Figure 3—figure supplement 3). Closed cells also showed increased activity following onset
127 of both escape and freeze, despite these behaviors having opposite motor outputs (Figure 3I-K).
128 Additionally, even though freezing and approach onset occur similarly far from the rat (Figure 3A),
129 open and closed ensembles showed opposite activity patterns and different generalized linear model
130 weights (Figure 3I-K). Rat movement onset likely constitutes a threat signal and switches states from
131 approach to avoidance, as predator movement is indicative of increased threat imminence. Indeed,
132 rat movement is a significant predictor variable for less frequent approach and more occurrences of
133 threat avoidance-related behaviors, such as escape and freezing (Figure 3—figure supplement 4).
134 Accordingly, during rat movement onset, the threat-avoidance related closed-arm ensembles
135 displayed higher activity (Figure 3I-J). Notably, neither of the ensembles consistently resembled the
136 overall average dPAG activity during rat exposure (Figure 3E), as each ensemble had its own
137 functional profile (Figure 3I). Furthermore, dPAG cells also used shared patterns of neural activity
138 across rat and EPM assays to represent threat imminence (measured as distance to threat) (Figure
139 3—figure supplement 5, see methods). These results suggest that dPAG neuronal activity can
140 represent internal brain states using shared patterns of activity across different threats.

141
142 An approach-state is associated with open arm entries, head dips in the EPM and proximity to threat.
143 Conversely, an avoidance-state would be expected far away from threats and during actions that
144 decrease threat exposure, such as closed arm exploration, escape and freezing. Our results showed

145 that closed cells were more active during higher distance from threat and threat avoidance-related
146 behaviors, such as freezing and escaping, while open cells were more active during proximity to
147 threats and exploratory head dips in the EPM (Figure 2 and Figure 3). The consistency of these
148 results across behaviors and two different threat modalities indicate that dPAG closed and open cells
149 were encoding threat avoidance and threat approach states, respectively.

150
151 To further investigate how dPAG cells use a shared representation to encode approach and
152 avoidance states we developed an approach/avoidance score ranging between -1 and 1 (see
153 Methods). The score gradually increases during approach to threat and during EPM head dips,
154 reaching +1 when the mouse is adjacent to the rat or in the extreme end of the open arms. The score
155 decreases when the mouse is retreating from threat and is assigned a value of -1 when the mouse is
156 furthest from the rat, freezing, or in the extreme end of the closed arms (Figure 4A). To investigate
157 how the approach/avoidance score is encoded in dPAG activity we used k-means clustering, an
158 unsupervised approach, to group the data points into 10 clusters (Figure 4B, panel 1). We chose 10
159 clusters, as opposed to 2, since the neural data does not exclusively encode approach/avoidance
160 states. We then calculated the approach/avoidance score for each of the 10 clusters (Figure 4B,
161 panel 2). The clusters with the lowest and highest scores were classified as the 'avoidance' and the
162 'approach' cluster, respectively. Experimentally observed approach and avoidance clusters
163 respectively had higher and lower scores than bootstrap distributions, showing that our k-means
164 approach identified activity patterns that strongly encode the approach-avoidance score (Figure 4C).
165 The approach and avoidance cluster centroids from one assay were then applied to the other assay
166 (i.e., centroids were defined by training on EPM and applied on previously unseen data from the rat
167 assay, or vice-versa). Cluster centroids defined from the training data in one assay were applied to
168 the data from the other assay to assign cluster identity based on shortest euclidean distance to the
169 centroid. For example, the points in the testing dataset that were closest to the avoidance centroid,
170 previously defined by the training dataset, were assigned to the avoidance cluster (Figure 4B, panels
171 3-4). Scores for approach and avoidance clusters for shuffled data were used to create a bootstrap
172 distribution. Lastly, we show that approach and avoidance clusters trained on one assay and applied
173 on the other assay result in significantly different scores, despite the two assays having different
174 geometries and distinct threat modalities (Figure 4D). Similar results were also obtained for k-means
175 using a smaller number of clusters or employing a hidden Markov model, showing that the results in
176 Figure 4 can be found using a range of different computational approaches (Figure 4-figure
177 supplement 1). Importantly, these results were not found when computing approach and avoid
178 clusters centroids defined on the EPM but applied to a control toy rat (Figure 4-figure supplement 2).
179 These results indicate, using an unsupervised method, that approach and avoidance states are
180 encoded using shared patterns of neural activity across assays. Importantly, dPAG activity reflects
181 moment-to-moment changes in the behavioral states of the animal.

182
183 Finally, we investigated if ensemble composition was related to threat avoidance traits across assays.
184 Rat approach and open arm exploration was correlated across mice, indicating that these measures
185 also reflected trait avoidance levels (Figure 4-figure supplement 3A). We then found that mice with a
186 higher proportion of open cells in relation to closed cells displayed increased avoidance of open arms
187 and rat (Figure 4-figure supplement 3B-C). These data indicate that in addition to encoding moment-

188 to-moment changes on behavioral states, dPAG ensembles composition may integrate risk
189 evaluation processes and influence individual mouse differences in threat avoidance traits.
190

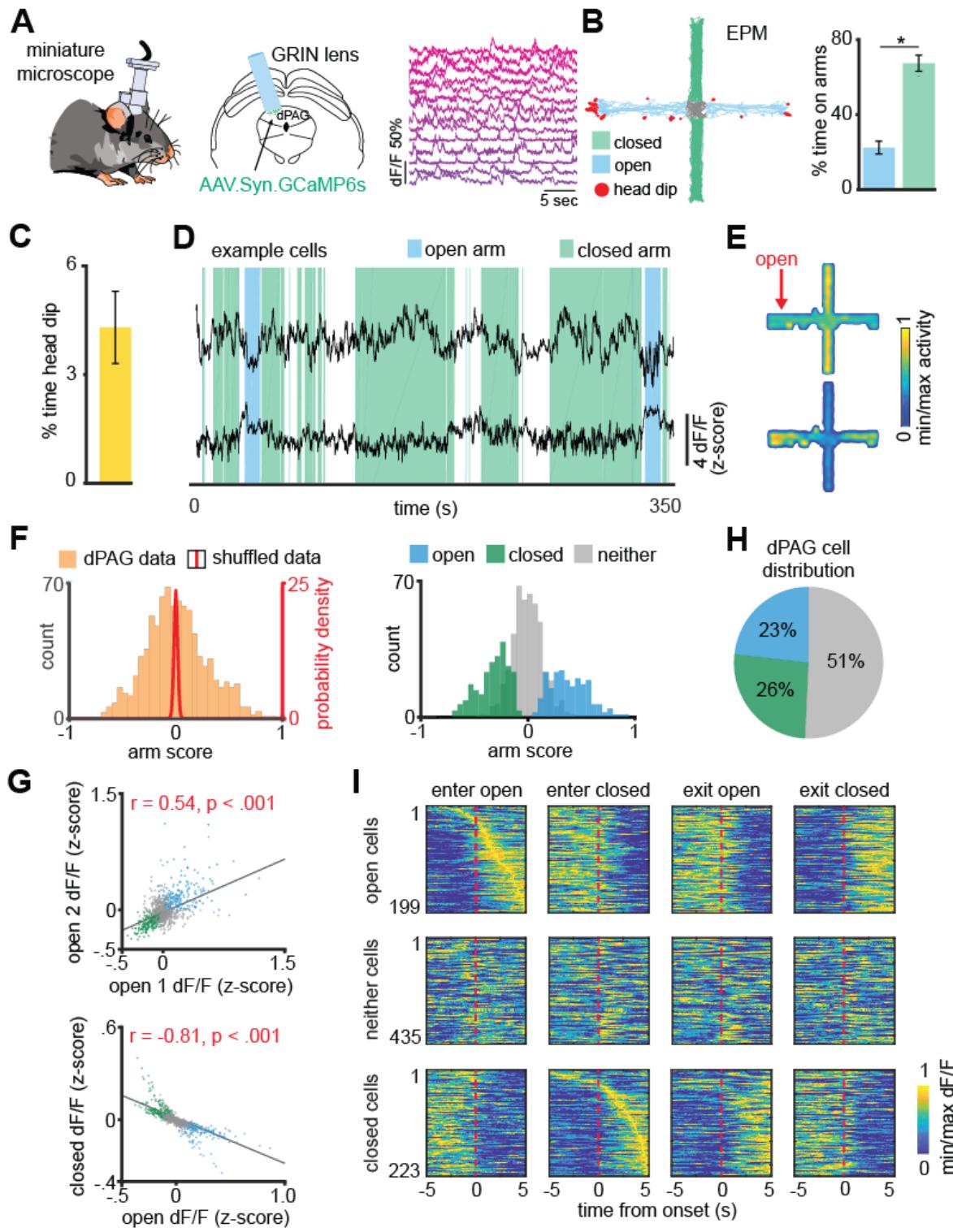
191 Together, these results suggest that the dPAG neural population has a shared representation of risk
192 perception across threatening circumstances. Individual neurons change their activity similarly to
193 represent threat approach and avoidance states across assays. These findings expand on the
194 oversimplified view of dPAG as a pre-motor output region and highlights it as a key node reflecting
195 the internal brain states that prepare the organism to engage in approach or avoidance of threat.
196

197
198 **Acknowledgements.** This work was supported by the National Institute for Mental Health (R00
199 MH106649 and R01 MH119089) (A.A.), the Brain and Behavior Research Foundation (Grants #
200 22663 and 27654 respectively to AA and FMCVR), the National Science Foundation (NSF-GRFP
201 DGE-1650604, P.J.S.), the UCLA Affiliates fellowship (P.J.S.) and the Hellman Foundation (A.A.).
202 Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Research Grant #2014/05432-
203 9, (NSC). FMCVR was supported with FAPESP grants #2015/23092-3 and #2017/08668-1. MQLV
204 was supported by the Achievement Rewards for College Scientists Foundation and by the National
205 Institute for Mental Health award F31 MH121050-01A1.

206 **Author contributions.** FMCVR, NSC and AA conceived the project and designed the experiments.
207 FMCVR, AA, JYL, SM and JCK wrote the paper. FMCVR, MC and SM performed the behavioral
208 assays. JYL, PJS, SM and JL analyzed the data. MQL and BCT assisted in the rat assay. JCK and
209 AA supervised the data analysis.

210 **Declaration of interests.**

211 The authors declare no competing interests.
212
213



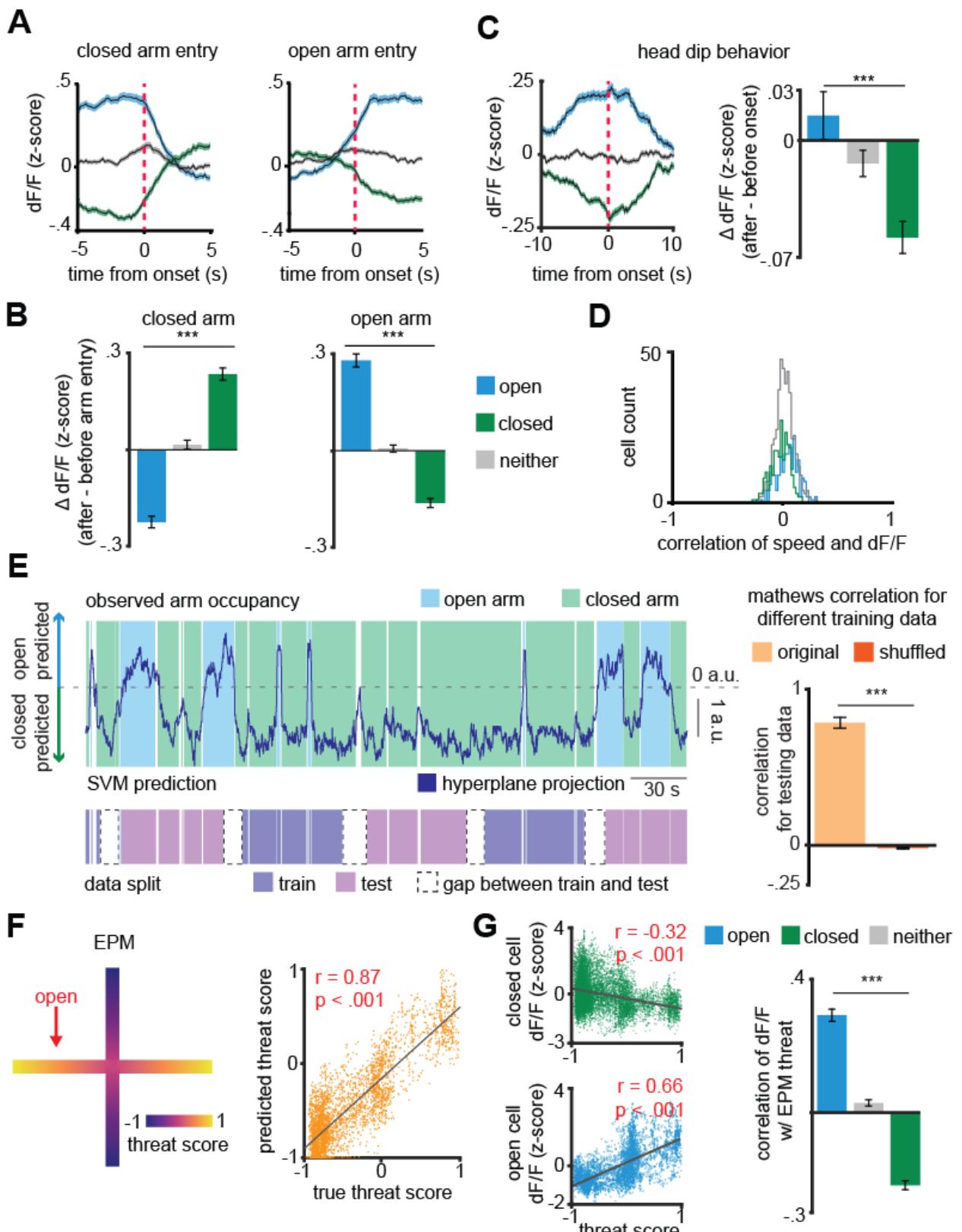
214

215

216 Figure 1. DPAG neuronal ensembles encode arm-type in the elevated plus maze.

217 (A) GRIN lens implantation, virus expression strategy and example Ca²⁺ signals of neurons in the dorsal periaqueductal
 218 gray (dPAG). (B) Example mouse exploration path recorded in the EPM. Mice spent significantly more time in the closed
 219 arms compared to the open arms (Data are represented as mean \pm SEM; $W = 0, p = 0.012$, Wilcoxon Signed Rank Test,
 220 $n = 8$ mice;). (C) Mean percentage of total time in which mice engaged in head dips. ($n = 8$ mice). (D) dPAG dF/F traces
 221 from the same mouse that display preferential firing in the closed (upper trace) and open (lower trace) arms of the EPM
 222 (open and closed arm-preferring cells). Epochs corresponding to exploration of the closed and open arms are shown
 223 respectively as green and blue shaded areas. (E) Activity heatmaps for corresponding example neurons shown in (D). (F)
 224 The arm preference score was calculated for each neuron (orange bars; see Methods), as was the distribution of arm

225 preference scores for shuffled data (red line). Bars show the distribution of arm preference scores for open, closed, and
226 neither cells. ($n = 857$ cells). (G) Scatterplots showing correlations between neural activity across the two open arms (top)
227 and between open and closed arms of the EPM (bottom). Each point represents one cell ($n = 857$ cells, r = Pearson's
228 correlation coefficient). (H) Pie chart shows the percent of all recorded neurons that were classified as open, closed or
229 neither cells. ($n = 857$ cells). (I) For each subplot, each row depicts the mean normalized activity of an open, closed, or
230 neither arm-preferring cell during behavior-aligned arm transitions. ($n = 857$ cells).
231



232

233

234

235

236

237

238

Figure 2. DPAG population activity predicts EPM exploration.

(A) Traces show the mean z-scored activity (± 1 SEM) of all open, closed, and neither cells, behavior-aligned to arm transitions (respectively the blue, green and gray traces). (B) Bars depict the change in z-scored dF/F for entries to closed (left) and open (right) arms, separately for open, closed and neither cells. (Data are represented as mean \pm SEM; both closed and open arm; $n = 199$ open cells, $n = 435$ neither cells, $n = 223$ closed cells; closed arm $U = 14.49$, *** $p < 0.001$, open arm $U = 14.05$, $p < 0.001$, Wilcoxon Rank Sum Test, $n = 8$ mice). (C) Average activity traces for open, closed, and neither cells during head dip behavior. (D) Histogram showing the distribution of correlation of speed and dF/F. (E) Top: Traces of observed arm occupancy (blue for open, green for closed) and SVM prediction (blue line) over 30 seconds. Bottom: Bar chart of Matthews correlation for testing data (original, orange; shuffled, red). (F) Left: EPM threat score scale from -1 (red arrow) to 1. Right: Scatter plot of predicted threat score vs true threat score for EPM. (G) Top: Scatter plots of closed cell dF/F (z-score) vs threat score (r = -0.32, p < .001) and open cell dF/F (z-score) vs threat score (r = 0.66, p < .001). Bottom: Bar chart of correlation of dF/F w/ EPM threat for open (blue), closed (green), and neither (gray) cells.

239 neither cells relative to onset of head dips in the EPM and quantification of changes in activity for all cell types (0-2.5
240 seconds after minus 2.5-5.0 seconds before head dip onset) (Data are represented as mean \pm SEM; n of cells same as
241 (G); $U = 4.53$, *** $p < 0.001$, Wilcoxon Rank Sum test). (D) Histograms depict the distribution of the Pearson correlation of
242 dF/F with speed for each cell type in the EPM. (E) Prediction of arm-type mouse position in the EPM from neural data
243 using a linear support vector machine (SVM). The blue and green areas represent the actual arm-type occupancy label
244 (open and closed arm, respectively), and the black trace represents the prediction of arm location by the SVM hyperplane
245 projection. If the trace was above 0 a.u., then that period was classified as open arm exploration, otherwise, it was
246 classified as closed arm occupancy. The pink and purple represent the data split (training and testing data, respectively).
247 The matthews correlation coefficient for real and permuted shuffled training data are shown to the right (mean +/- 1 s.e.m.;
248 $n = (8, 800)$, $U = 4.87$, $p < .001$, Wilcoxon Rank Sum Test). (F) (left) Example of EPM threat score where 1 and -1
249 correspond, respectively, to the extreme end of the open and closed arms and (right) prediction of labeled EPM threat
250 from dPAG neural data for an example mouse (scatterplot displays testing data that was not used for training, r =
251 Pearson's correlation coefficient). (G) (left) Correlation of example closed and open cell activity with threat score and
252 (right) mean correlation of dF/F with EPM threat (Data are represented as mean \pm SEM; $n = 64$ open cells, $n = 166$
253 neither cells, $n = 87$ closed cells; EPM $U = 10.48$ Wilcoxon Rank Sum Test, *** $p < 0.001$, r = Pearson's correlation
254 coefficient).

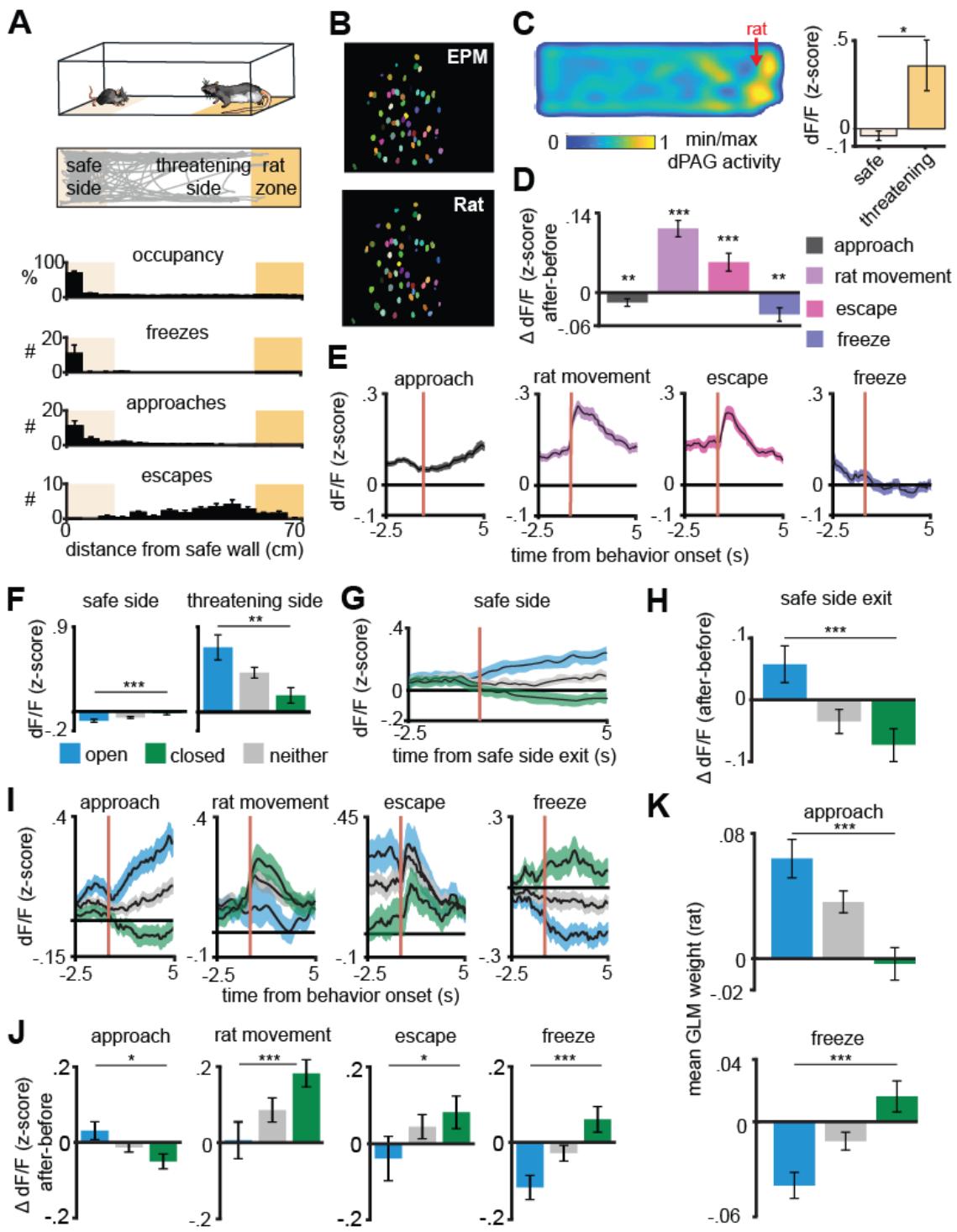
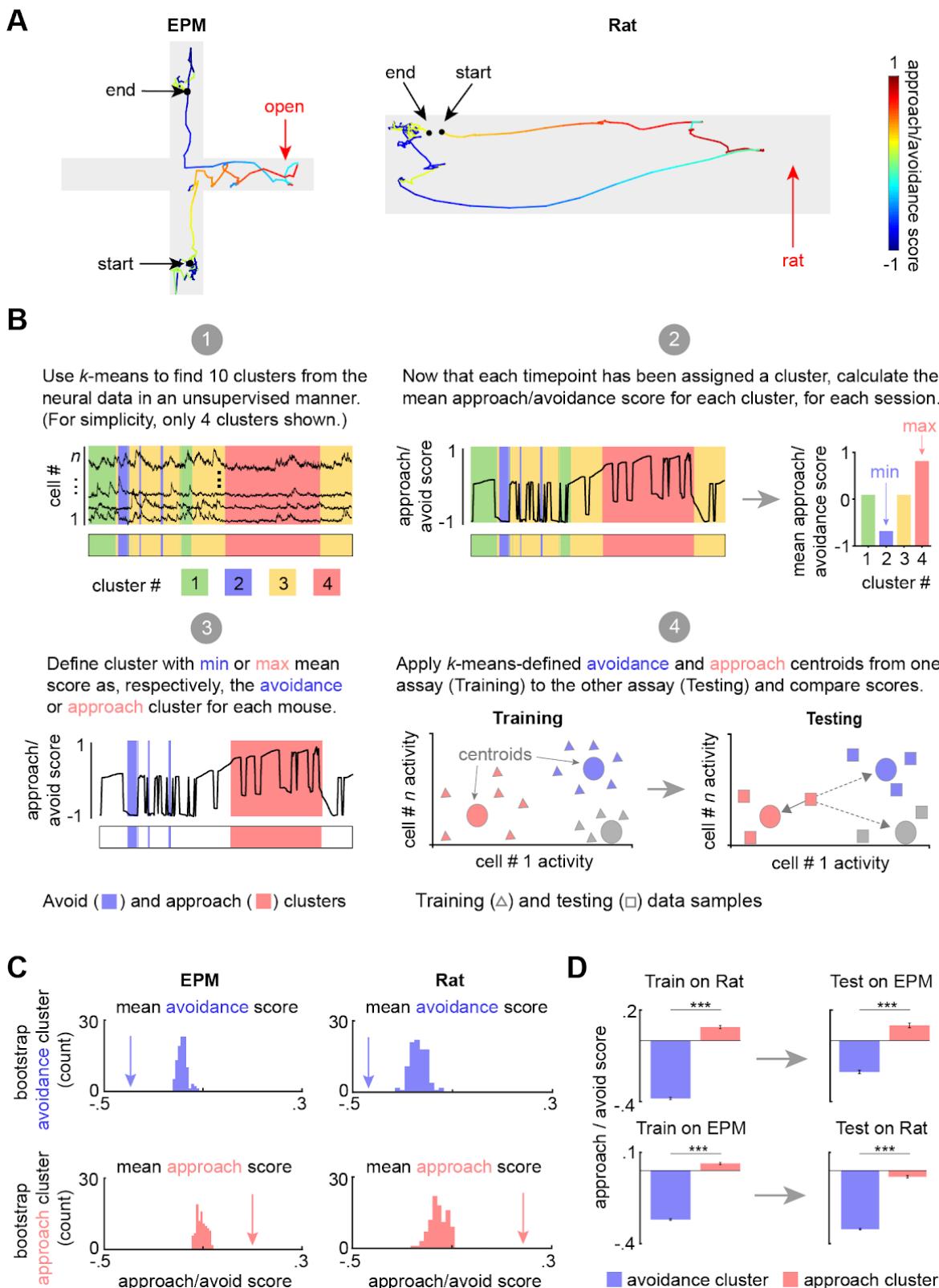


Figure 3. Arm-specific ensembles maintain functions across threatening situations.

(A) Illustration of the rat exposure assay (top) and example track (bottom), with labels depicting the area to which the rat is confined (rat zone) as well as areas near to and far from the rat (safe side). In all figures depicting this assay the rat area will be shown to the right. (B) Example imaging field of view with dPAG cells co-registered between EPM and rat exposure sessions. (C) Heatmap depicts the mean z-scored dF/F at each position of the rat exposure assay ($n = 713$ cells, $n = 7$ mice). (D) Change in dF/F (0-2.5 seconds after minus 0-2.5 seconds before) activity for all dPAG cells for behaviors in the rat exposure assay (Data are represented as mean \pm SEM; n of cells for approach, stretch, escape = 714, n of cells for freeze = 640; approach $t = -2.65$, $**p = 0.008$, stretch $t = 4.92$, $***p < 0.001$, escape $t = 3.39$, $***p < 0.001$, freeze $t = -3.23$, $**p = 0.0012$, one-sample t -test). (E) Traces show the mean z-scored activity of all cells (± 1 s.e.m.), aligned to onset of various behaviors (onset is indicated by the red vertical line) in the rat exposure assay (n of cells for approach, stretch, escape = 714, n of cells for freeze = 640). (F) dF/F (z-score) for different door conditions. (G) dF/F (z-score) for safe side exit. (H) dF/F (after-before) for safe side exit. (I) dF/F (z-score) for various behaviors. (J) dF/F change (after-before) for various behaviors. (K) mean GLM weight (rat) for various behaviors.

266 cells same as D). (F) Bars depict the mean z-scored dF/F of cells on the safe side and threatening side of the enclosure
267 (Data are represented as mean \pm SEM; $n = 64$ open cells, $n = 166$ neither cells, $n = 87$ closed cells; $n = 7$ mice, safe $U =$
268 -3.82 , *** $p = 0.0001$, threatening $U = 3.05$, ** $p = 0.002$, Wilcoxon Rank Sum Test). (G) Traces show the mean z-scored
269 activity of open, closed, and neither cells (+/- 1 s.e.m.), aligned to exit of the safe side of the enclosure (far from the rat).
270 (H) Bars show the mean change in z-scored dF/F (0-2.5 seconds after minus 0-2.5 seconds before) aligned to safe side
271 exit for open, closed, and neither cells. (Data are represented as mean \pm SEM; $n = 64$ open cells, $n = 166$ neither cells, n
272 = 87 closed cells; $U = 3.36$, *** $p = 0.0008$, Wilcoxon Rank Sum Test). (I) Traces show the mean z-scored activity of open,
273 closed and neither cells (+/- 1 SEM), aligned to behaviors in the rat exposure assay (approach, escape: $n = 64$ open cells,
274 $n = 87$ closed cells, $n = 166$ neither cells; stretch: $n = 50$ open cells, $n = 64$ closed cells, $n = 127$ neither cells; freeze: $n =$
275 39 open cells, $n = 56$ closed cells, $n = 117$ neither cells). Onset of behaviors is indicated by a red vertical line. (J) Bars
276 depict the change in z-scored dF/F (0-2.5 seconds after minus 0-2.5 seconds before) for behaviors in the rat exposure
277 assay, separately for open, closed, and neither cells (Data are represented as mean \pm SEM; n of cells same as (I);
278 approach $U = 2.45$, * $p = 0.014$, stretch $U = 0.25$, $p = .81$, escape $U = -2.16$, * $p = .03$, $U = -3.80$, *** $p = 0.0001$, Wilcoxon
279 Rank Sum Test). (K) A generalized linear model (GLM) to predict single cell activity was constructed using approach,
280 stretch, escape and freeze behaviors as variables. Bar plots show average GLM weights for approach and freeze for
281 open, closed and neither cells. (Data are represented as mean \pm SEM; $n = 62$ open cells, $n = 155$ neither cells, $n = 83$
282 closed cells; approach $U = 4.17$, *** $p < 0.001$, $p = .11$, freeze $U = 3.02$, *** $p < 0.001$, Wilcoxon Rank Sum Test).
283
284



285
286
287 **Figure 4. DPAG displays a shared neural representation of approach and avoidance states across the**
288 **EPM and rat exposure assays.**

289 (A) Example tracks in the EPM (left) and Rat exposure assay (right), color-coded by approach/avoidance score (see
290 Methods). The approach score increased during movements towards the threat, reaching +1 when the animal reaches the
291 end of the open arms or the rat. The score decreases during movement away from threat and reaches its minimum value

292 of -1 when the mouse reaches the end of closed arms or the furthest point from the rat. This score was developed as a
293 measure of approach/avoidance states. **(B)** Explanatory diagram depicting steps of the clustering analysis (see Methods).
294 (1) K-means ($k = 10$) was used to find clusters in the neural data in an unsupervised manner. (2) The mean
295 approach/avoidance score was calculated for each cluster defined in step 1. (3) The 'avoidance' and 'approach' clusters
296 were identified as those with, respectively, the minimum or maximum mean approach/avoid score calculated in step 2. (4)
297 The approach and avoidance centroids defined in one assay were used to classify neural data from the other assay,
298 based on the minimum euclidean distance for each sample (as depicted by solid arrow). **(C)** Arrow depicts the
299 experimentally observed mean approach/avoidance score for avoidance and approach clusters across concatenated
300 sessions ($n = 7$ mice). This mean was compared to a bootstrapped distribution of avoidance (top) or approach (bottom)
301 cluster means, calculated by shuffling the neural data 100 times (EPM cells $n=801$, rat assay cells $n=878$; for all, $p <$
302 0.01). **(D)** (left) Bars depict the mean Rat and EPM approach/avoidance scores (+/- 1 s.e.m.) for approach and avoidance
303 clusters across mice. (right) As described in Methods and 4B, these cluster centroid locations, trained on one assay, were
304 then used to define approach and avoidance timepoints in the other assay. Bars depict the corresponding mean
305 approach/avoidance score (+/- 1 s.e.m.) for this testing data (Train on EPM: avoidance cluster $n = 3867$, approach cluster
306 $n = 5027$; Test on Rat: avoidance cluster $n = 2445$, approach cluster $n = 2622$; Train on Rat: avoidance cluster $n = 4894$,
307 approach cluster $n = 3222$; Test on EPM: avoidance cluster $n = 2624$, approach cluster $n = 1446$ (n represents the
308 number of time points, not cells); coregistered cells $n=399$; Wilcoxon ranked-sum test, *** $p < 0.001$).
309

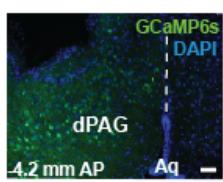
310

311

312
313

Supplementary Figures

A



id #

1

2

3

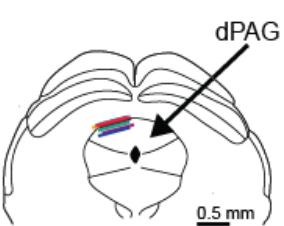
4

5

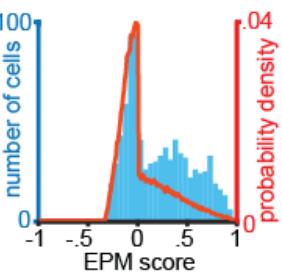
6

7

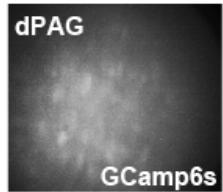
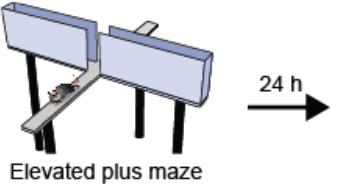
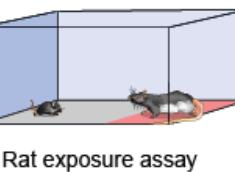
8



C



B



314
315

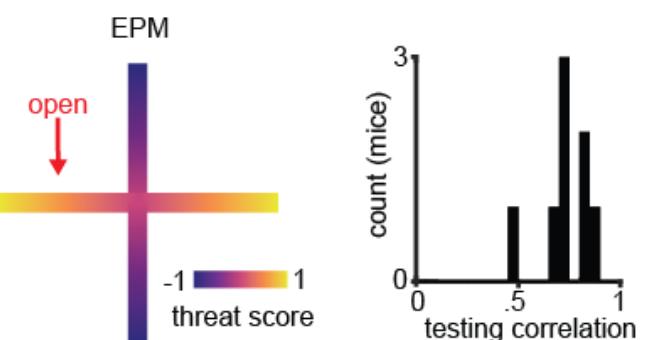
Figure 1—figure supplement 1. Deep brain imaging of dorsal periaqueductal gray neurons and distribution of EPM scores. (A) (top) Coronal section of the periaqueductal gray showing GCaMP6s expression and representative GRIN lens placement in the dorsal part of the periaqueductal gray (dPAG) (DAPI, blue; GCaMP6s, green). Position of the section relative to bregma is indicated in the lower left corner. Aq: aqueduct (Sylvius). Scale bar: 50μm. (bottom) Maximum projection of the dPAG field of view in an example mouse. (top right) Anatomical scheme of GRIN lens front location of animals expressing GCaMP6s under the control of the Syn promoter in large populations of dPAG neurons ($n = 8$ mice). (B) Illustration and sequence of elevated plus maze (EPM) and rat exposure assays. (C) The EPM score (blue) differs significantly from distribution expected by chance (red line). ($n = 857$ cells; $U = 15.62$, $p < 0.001$, Wilcoxon Rank Sum Test). The EPM score is near +1 for cells that fire similarly in arms of the same type. For example, a cell that had very high firing rate in both open arms and very low rate on both closed arms would have a score near 1. A cell with high firing in both closed arms and low firing in both open arms also would have a score near 1. Thus, both open and closed-arm preferring cells would have positive scores. A cell firing uniformly in the environment would have a score near 0. A cell that fired differently in arms of the same type would have negative score, such as a cell that has high firing rate in one open arm and lower than mean firing rate in the other open arm. Note that this is a different metric from the arm score metric shown in Figure 1F.

331

332

333

Figure 2—figure supplement 1. Validation of linear regression to predict threat score using dorsal periaqueductal gray activity. Example of EPM threat score where 1 and -1 correspond, respectively, to the extreme end of the open and closed arms. Histogram of testing correlations between labeled and predicted threat for individual mice is significantly greater than zero ($t = 17.7$, $p < 0.001$, 7 d.o.f., one-sample t -test, $n = 8$ mice).



341

342

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

Figure 3—figure supplement 1. Validation of co-registration procedure. The peak-to-noise ratio (PNR) and mean peak amplitude correlation values were calculated for co-registered cells between rat and EPM assays. Cell identities were then shuffled within the ten nearest neighbors 1000 times, and the same correlation measures were calculated for each iteration. The resulting bootstrap distribution was compared to the actual peak-to-noise and mean peak amplitude values, indicated with arrow ($n=462$; $p<.001$, $n=7$ mice).

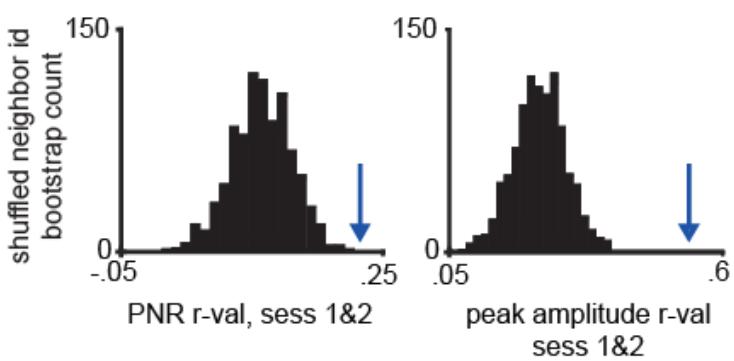


Figure 3—figure supplement 2. Behavioral and dPAG activity differences between rat and toy rat exposure. (A) Heatmaps depict spatial occupancy during rat (top) and toy rat exposure (bottom). (B) Time spent near and far from rat (top, $U = 3.13$, $p = 0.0017$, Wilcoxon Rank Sum Test) and toy rat (bottom, $U = 0.70$, $p > 0.05$, Wilcoxon Rank Sum Test). (C) Average z-scored dPAG activity far and near to a toy rat ($U=1.85$, $p > 0.05$, Wilcoxon Rank Sum Test). (A-C, $n=7$ mice).

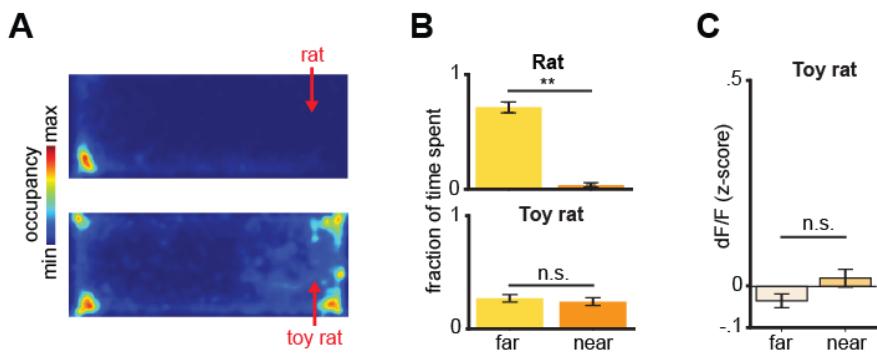
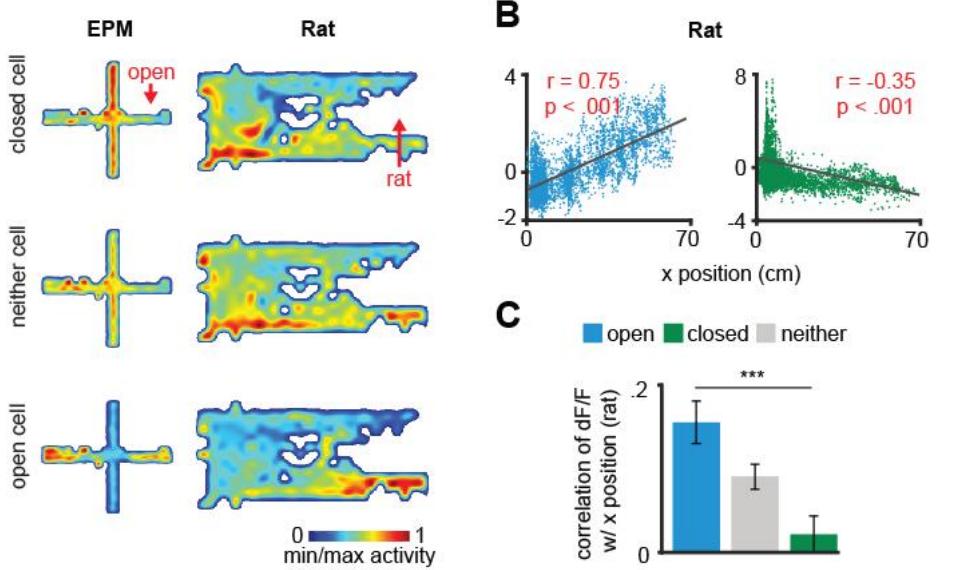


Figure 3—figure supplement 3. Correlation of dorsal periaqueductal gray cell ensembles with distance to a rat. (A) Heatmaps show the normalized activity of example open, closed, and neither cells across both the EPM and rat exposure assays. Note that the open arm cell was more active near the rat while the closed cell was more active far from the rat. (B) Correlation of example open and closed cell activity with distance from the safe wall (rat exposure). Higher x position corresponds to locations more near the rat. (C) Mean correlation of dF/F with x position in the rat assay (Data are represented as mean \pm SEM; $n = 64$ open cells, $n = 166$ neither cells, $n = 87$ closed cells; $U = 3.89$, *** $p < 0.001$, Wilcoxon Rank Sum Test, $n = 7$ mice, r = Pearson's correlation coefficient).



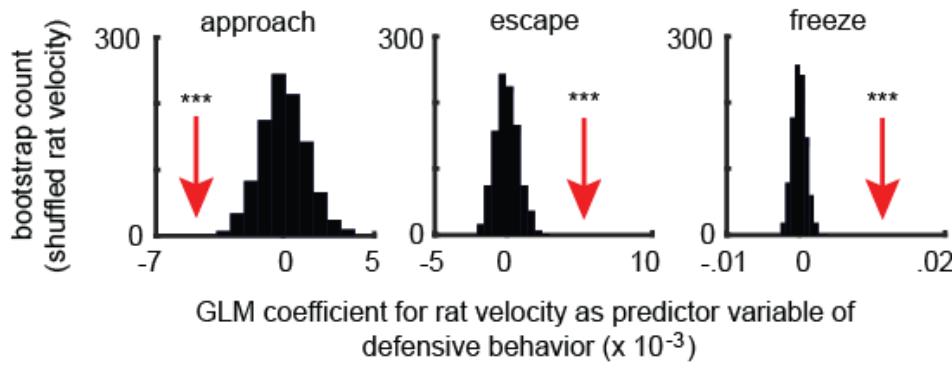
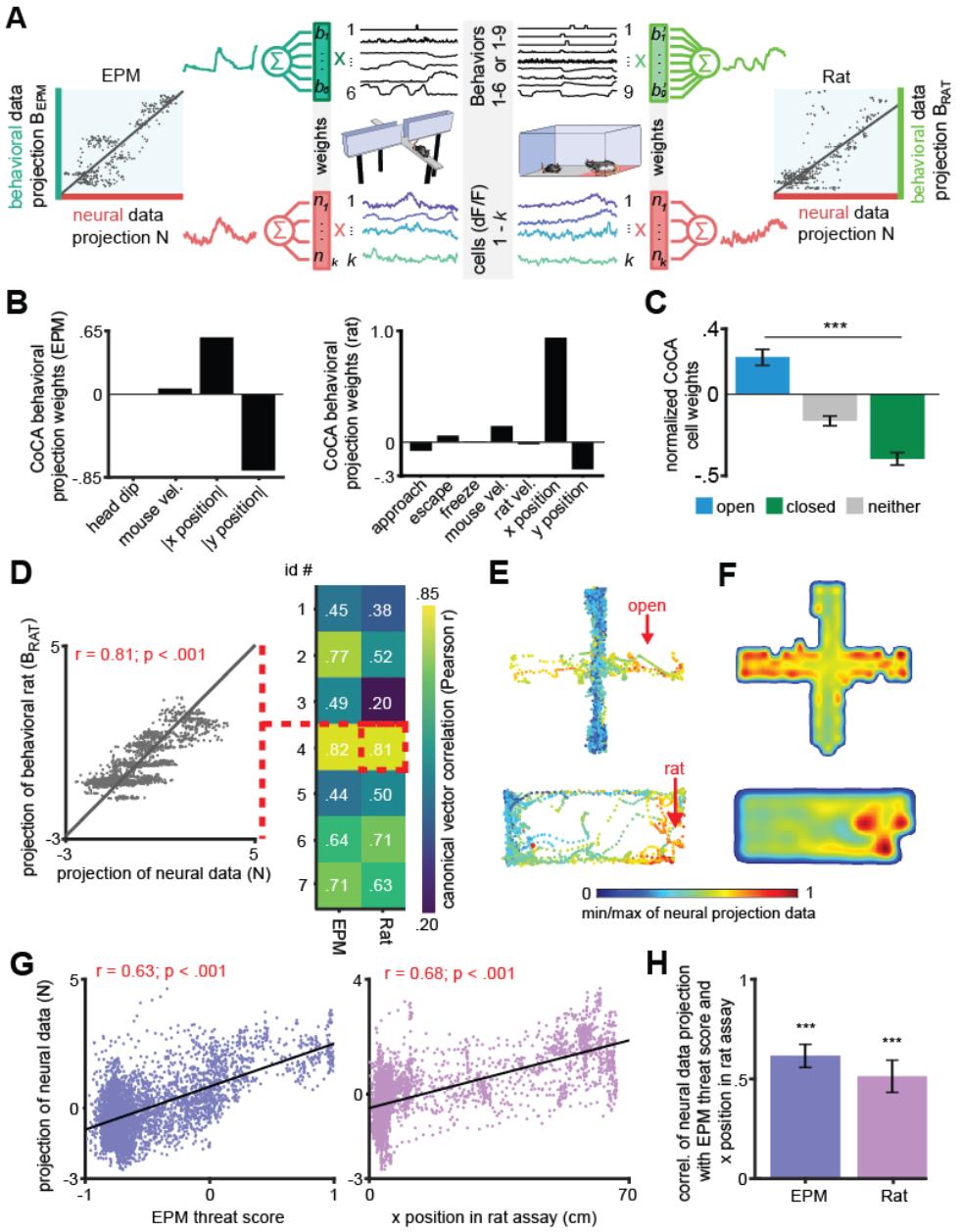


Figure 3—figure supplement 4. Increased rat velocity predicts lower approach to rat and higher threat avoidance related behaviors such as escape and threat. Separate generalized linear models (GLMs) were fit with rat velocity as the predictor variable and one of the binarized mouse behaviors: either approach (left), escape (middle), or freeze (right), as the response variable. The red arrow depicts the actual GLM coefficient for rat velocity, given each mouse behavior, while the histogram depicts the bootstrapped distribution of rat velocity coefficient values for shuffled timepoints. Compared to this distribution, rat velocity shows a significantly negative coefficient for approach and significantly positive coefficients for escape and freeze. These data show that higher rat velocity predicts decreased occurrence of approach and increased frequency of escape and freezing. (**p < 0.001, n = 7 mice).

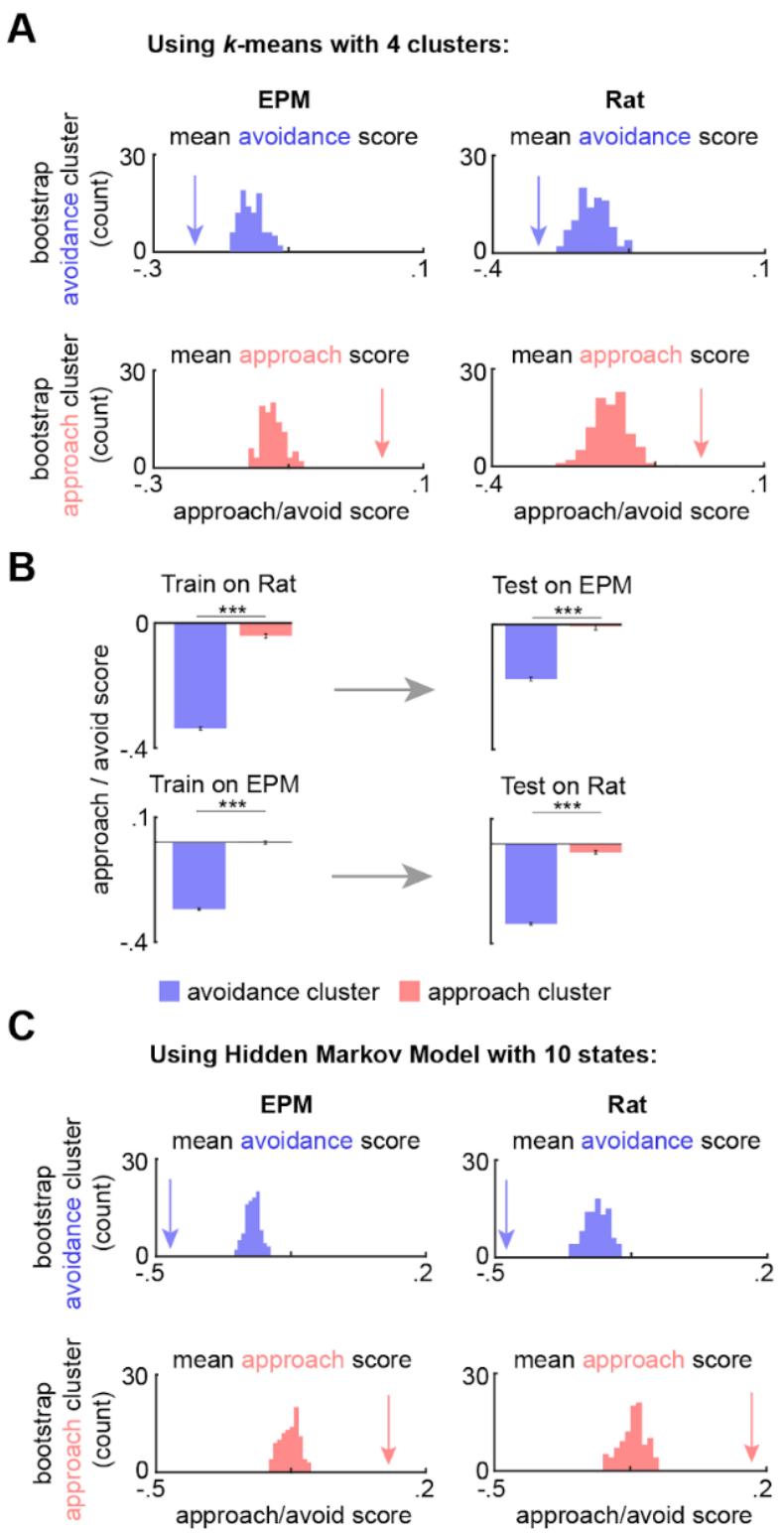
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Figure 3—figure supplement 5. DPAG displays a shared neural representation of risk imminence across the EPM and rat exposure assays. (A) Constrained Correlation Analysis (CoCA) reveals correlated encoding of behaviors and neural activity consistent across EPM and rat exposure assays. Linear projections of behaviors (top) correlate with projections of neural activity (bottom). Weights were optimized to maximize the correlation between neural and behavioral projections. Weight selection was constrained in the following way: weights for behavioral variable weights for each assay had to be conserved across mice, whereas neural projector weights had to be fixed across the EPM and rat assays for each cell. The behavioral variables used are listed in the x-axis of (B). Colors indicate consistent cells and projector weights. (B) Weights of CoCA behavioral projector variables for the EPM (top) and rat exposure (bottom) assays showing the relative importance of each variable in each assay. All variables were normalized to unit variance before training and testing, with the exception of $|x|$ and $|y|$, which were scaled to the range $[0, 1]$. (C) CoCA neural projection weights normalized to the range $[-1, 1]$, mean \pm 1 SEM. (Data are represented as mean \pm SEM; $n = 64$ open cells, $n = 166$ neither cells, $n = 87$ closed cells; $U = 8.02$, *** $p < 0.001$, Wilcoxon Rank Sum Test, $n = 7$ mice). (D) (left) Example correlation of CoCA projection of behavioral data with projection of neural data for testing data (mouse 4, rat exposure). Each point is one time point of data. (right) Correlation values of CoCA projection of behavioral data with projection of neural data for testing data for each mouse in each assay ($p < 0.05$ all trials v.s. random weights, see Methods). (E) CoCA projection of neural data in the EPM (top) and rat exposure (bottom) assays for the same mouse. (F) Similar to (E), but as a heatmap using testing data from all mice for EPM (top) and rat exposure (bottom). (G) Projection of testing neural data is correlated with safety score (EPM, left) and x position (Rat, right) for an example mouse ($r =$ Pearson's correlation coefficient). Larger EPM threat scores correspond to locations more near the extreme end of the open arms. Larger x position values correspond to locations more near the rat. (H) Average correlation of projection of neural data with EPM threat score and x position (Rat) differs significantly from 0 (Data are represented as mean \pm SEM; $n = 7$ mice; EPM $t = 10.80$; Rat $t = 6.49$, *** $p < 0.001$, one-sample t -test).



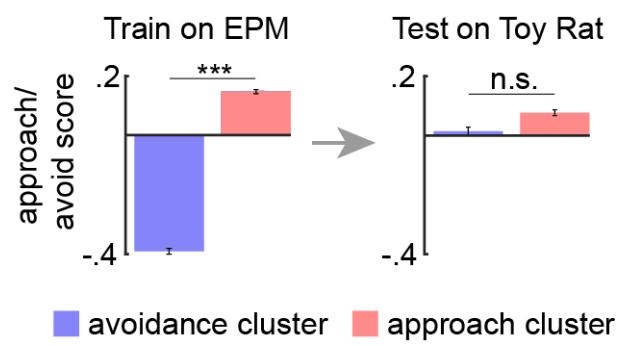
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Figure 4—figure supplement 1. Approach and avoidance identified by k-means with fewer clusters and Hidden Markov Model. (A) Arrow depicts the mean approach/avoidance score for avoidance and approach clusters (4 clusters), identified by k-means, across concatenated sessions ($n = 7$ mice). This mean was compared to a bootstrapped distribution of approach/avoidance means, calculated by shuffling the neural data 100 times (n cells same as Fig. 4C; $p < 0.01$). (B) (left) Bars depict the mean Rat and EPM approach/avoidance scores (± 1 s.e.m.) for approach and avoidance clusters across mice. (right) As described in Methods and Fig. 4B, these cluster centroid locations, trained on one assay, were then used to define approach and avoidance timepoints in the other assay. Bars depict the corresponding mean approach/avoidance score (± 1 s.e.m.) for this testing data (Train on EPM: avoidance cluster $n = 14683$, approach cluster $n=8949$; Test on Rat: avoidance cluster $n = 15727$, approach cluster $n = 7724$; Train on Rat: avoidance cluster $n = 10335$, approach cluster $n = 7742$; Test on EPM: avoidance cluster $n = 9867$, approach cluster $n = 3028$; n cells same as Fig. 4D; Wilcoxon ranked-sum test, *** $p < 0.001$). (C) Same as (A) but using Hidden Markov Model with 10 states rather than k-means; for all, $p < 0.01$.



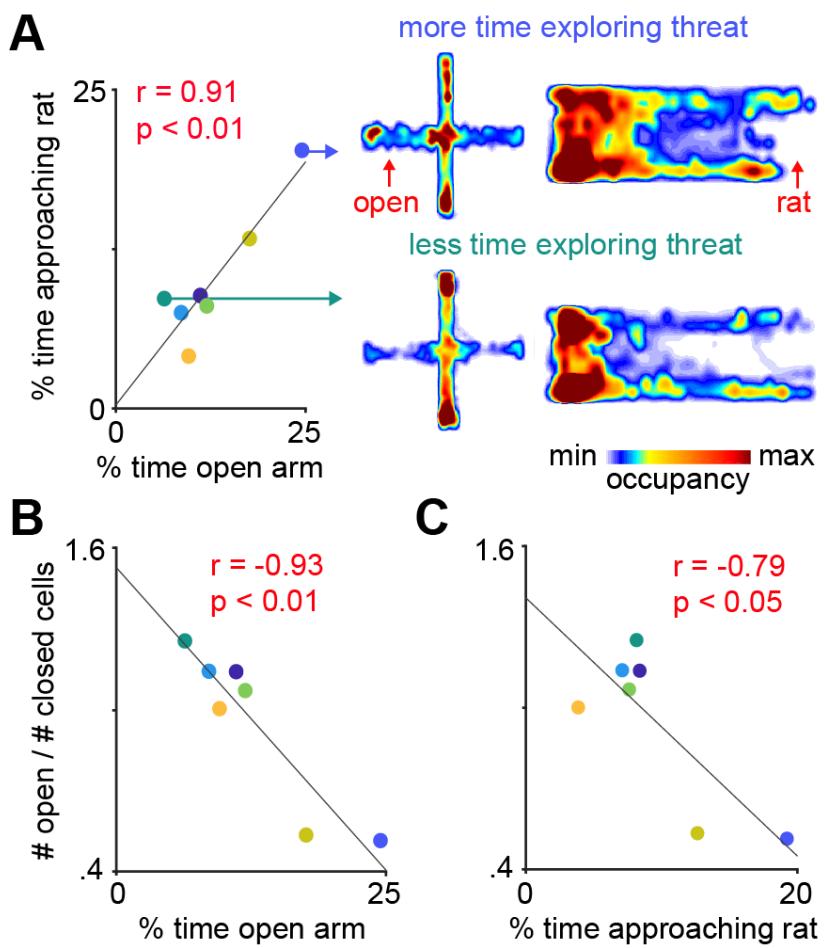
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532

Figure 4—figure supplement 2. DPAG ensembles to not encode approach and avoidance to a control toy rat. Bars depict the mean EPM approach/avoidance scores (+/- 1 s.e.m.) for approach and avoidance clusters across mice (left). As described in Methods and Figure 4B, these cluster centroid locations, identified using EPM data, were then used to define approach and avoidance timepoints in the toy rat assay (right). Bars depict the corresponding mean approach/avoidance score (+/- 1 s.e.m.) for this testing data (EPM: avoidance cluster $n = 3066$, approach cluster $n = 6207$; Toy Rat: avoidance cluster $n = 1985$, approach cluster $n = 3497$; Wilcoxon ranked-sum test, *** $p < 0.001$, $n = 7$ mice).



533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568

Figure 4—figure supplement 3. Fraction of open arm cells was negatively correlated with approach to threat across mice. (A) Exploration of the open arms in the EPM and approach to rat are correlated. Each point represents one mouse ($n = 7$ mice). Heat maps show exploration in the EPM and the rat assay for example mice showing high (top traces) and low (bottom traces) levels of approach to the open arms and the area near the rat (both high threat areas are shown in red). (B-C) Mice with a higher fraction of open arm cells show lower exploration of the open arms in the EPM (B) and less time approaching the rat (C). r = Pearson's correlation coefficient.



569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621

References

Adhikari, A, Topiwala, MA, Gordon, JA. 2011. Single units in the medial prefrontal cortex with anxiety-related firing patterns are preferentially influenced by ventral hippocampal activity. *Neuron*, **71**:898-910. doi:10.1016/j.neuron.2011.07.027

Aharoni, D, Hoogland, TM. 2019. Circuit Investigations With Open-Source Miniaturized Microscopes: Past, Present and Future. *Frontiers in Cellular Neuroscience*, **13**:141. doi:10.3389/fncel.2019.00141

Anderson, DJ, Adolphs, R. 2014. A framework for studying emotions across species. *Cell*, **157**:187-200. doi:10.1016/j.cell.2014.03.003

Blanchard, DC, Griebel, G, Pobbe, R, Blanchard, RJ. 2011. Risk assessment as an evolved threat detection and analysis process. *Neuroscience and Biobehavioral Reviews*, **35**:991-998. doi:10.1016/j.neubiorev.2010.10.016

Brandao, ML, de Aguiar, JC, Graeff, FG. 1982. GABA mediation of the anti-aversive action of minor tranquilizers. *Pharmacology, Biochemistry and Behavior*, **16**:397-402. doi:10.1016/0091-3057(82)90441-5

Cai, DJ, Aharoni, D, Shuman, T, Shobe, J, Biane, J, Song, W, Wei, B, Veshkini, M, La-Vu, M, Lou, J, et al. 2016. A shared neural ensemble links distinct contextual memories encoded close in time. *Nature*, **534**:115-118. doi:10.1038/nature17955

Carvalho, MC, Santos, JM, Brandao, ML. 2015. Dorsal periaqueductal gray post-stimulation freezing is counteracted by neurokinin-1 receptor antagonism in the central nucleus of the amygdala in rats. *Neurobiology of Learning and Memory*, **121**:52-58. doi:10.1016/j.nlm.2015.04.001

Carvalho, MC, Veloni, AC, Genaro, K, Brandao, ML. 2018. Behavioral sensitization induced by dorsal periaqueductal gray electrical stimulation is counteracted by NK1 receptor antagonism in the ventral hippocampus and central nucleus of the amygdala. *Neurobiology of Learning and Memory*, **148**:60-68. doi:10.1016/j.nlm.2018.01.009

Deng, H, Xiao, X, Wang, Z. 2016. Periaqueductal Gray Neuronal Activities Underlie Different Aspects of Defensive Behaviors. *Journal of Neuroscience*, **36**:7580-7588. doi:10.1523/JNEUROSCI.4425-15.2016

Evans, DA, Stempel, AV, Vale, R, Ruehle, S, Lefler, Y, Branco, T. 2018. A synaptic threshold mechanism for computing escape decisions. *Nature*, **558**:590-594. doi:10.1038/s41586-018-0244-6

Fogaca, MV, Lisboa, SF, Aguiar, DC, Moreira, FA, Gomes, FV, Casarotto, PC, Guimaraes, FS. 2012. Fine-tuning of defensive behaviors in the dorsal periaqueductal gray by atypical neurotransmitters. *Brazilian Journal of Medical and Biological Research*, **45**:357-365. doi:10.1590/s0100-879x2012007500029

Grundemann, J, Bitterman, Y, Lu, T, Krabbe, S, Grewe, BF, Schnitzer, MJ, Luthi, A. 2019. Amygdala ensembles encode behavioral states. *Science*, **364**. doi:10.1126/science.aav8736

Kingma, DP, Ba, JL. 2015. ADAM: A Method for stochastic optimization. In *ICLR: International Conference on Learning Representations*, arXiv:1412.6980v9.

Mathis, A, Mamidanna, P, Cury, KM, Abe, T, Murthy, VN, Mathis, MW, Bethge, M. 2018. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. *Nature Neuroscience*, **21**:1281-1289. doi:10.1038/s41593-018-0209-y

McNaughton, N, Corr, PJ. 2004. A two-dimensional neuropsychology of defense: fear/anxiety and defensive distance. *Neuroscience and Biobehavioral Reviews*, **28**:285-305. doi:10.1016/j.neubiorev.2004.03.005

Mobbs, D, Petrovic, P, Marchant, JL, Hassabis, D, Weiskopf, N, Seymour, B, Dolan, RJ, Frith, CD. 2007. When fear is near: threat imminence elicits prefrontal-periaqueductal gray shifts in humans. *Science*, **317**:1079-1083. doi:10.1126/science.1144298

Mobbs, D, Yu, R, Rowe, JB, Eich, H, FeldmanHall, O, Dalglish, T. 2010. Neural activity associated with monitoring the oscillating threat value of a tarantula. *Proceedings of the National Academy of Sciences of the United States of America*, **107**:20582-20586. doi:10.1073/pnas.1009076107

O'Shea, DJ, Shenoy, KV. 2018. ERAASR: an algorithm for removing electrical stimulation artifacts from multielectrode array recordings. *J Neural Eng*, **15**:026020. doi:10.1088/1741-2552/aaa365

622 Pedregosa, F, Varoquaux, G, Gramfort, A, Michel, V, Thirion, B, Grisel, O, Blondel, M, Prettenhofer, P, Weiss,
623 R, Dubourg, V, et al. 2011. Scikit-learn: Machine Learning in Python. *Journal of Machine Learning
624 Research*, **12**:2825-2830.

625 Perusini, JN, Fanselow, MS. 2015. Neurobehavioral perspectives on the distinction between fear and anxiety.
626 *Learning and Memory*, **22**:417-425. doi:10.1101/lm.039180.115

627 Resendez, SL, Jennings, JH, Ung, RL, Namboodiri, VM, Zhou, ZC, Otis, JM, Nomura, H, McHenry, JA, Kosyk,
628 O, Stuber, GD. 2016. Visualization of cortical, subcortical and deep brain neural circuit dynamics during
629 naturalistic mammalian behavior with head-mounted microscopes and chronically implanted lenses.
630 *Nature Protocols*, **11**:566-597. doi:10.1038/nprot.2016.021

631 Schuette, PJ, Reis, F, Maesta-Pereira, S, Chakerian, M, Torossian, A, Blair, G, Wang, W, Blair, HT, Fanselow,
632 MS, Kao, JC, et al. 2020. Long-term characterization of hippocampal remapping during contextual fear
633 acquisition and extinction. *Journal of Neuroscience*. doi:10.1523/JNEUROSCI.1022-20.2020

634 Sheintuch, L, Rubin, A, Brande-Eilat, N, Geva, N, Sadeh, N, Pinchasof, O, Ziv, Y. 2017. Tracking the Same
635 Neurons across Multiple Days in Ca(2+) Imaging Data. *Cell Reports*, **21**:1102-1115.
636 doi:10.1016/j.celrep.2017.10.013

637 Stankowich, T. 2019. Defensive Risk-Taking in Animals. In *Encyclopedia of Animal Behavior*, J.C. Choe, ed.
638 (Elsevier, Academic Press), pp. 340–348.

639 Tovote, P, Esposito, MS, Botta, P, Chaudun, F, Fadok, JP, Markovic, M, Wolff, SB, Ramakrishnan, C, Feno,
640 L, Deisseroth, K, et al. 2016. Midbrain circuits for defensive behaviour. *Nature*, **534**:206-212.
641 doi:10.1038/nature17996

642 Virtanen, P, Gommers, R, Oliphant, TE, Haberland, M, Reddy, T, Cournapeau, D, Burovski, E, Peterson, P,
643 Weckesser, W, Bright, J, et al. 2020. SciPy 1.0: fundamental algorithms for scientific computing in
644 Python. *Nature Methods*, **17**:261-272. doi:10.1038/s41592-019-0686-2

645 Watson, TC, Cerminara, NL, Lumb, BM, Apps, R. 2016. Neural Correlates of Fear in the Periaqueductal Gray.
646 *Journal of Neuroscience*, **36**:12707-12719. doi:10.1523/JNEUROSCI.1100-16.2016

647 Zhou, P, Resendez, SL, Rodriguez-Romaguera, J, Jimenez, JC, Neufeld, SQ, Giovannucci, A, Friedrich, J,
648 Pnevmatikakis, EA, Stuber, GD, Hen, R, et al. 2018. Efficient and accurate extraction of in vivo calcium
649 signals from microendoscopic video data. *eLife*, **7**. doi:10.7554/eLife.28728

650

651 Materials and Methods

652 **Mice.** Mice (*Mus musculus*) of the C57BL/6J strain (Jackson Laboratory stock No. 000664) were
653 used for all experiments. Male mice between 2 and 5 months of age were used in all experiments.
654 Mice were maintained on a 12-hour reverse light-dark cycle with food and water *ad libitum*. Sample
655 sizes were chosen based on previous behavioral studies with miniaturized microscope recordings on
656 defensive behaviors, which typically use 6-10 mice per group. All mice were handled for a minimum
657 of 5 days prior to any behavioral task. In this work, analyses of the Elevated Plus Maze (EPM)
658 environment used 8 mice, while any analyses involving rat exposure used 7 mice. Sample size was
659 chosen based on prior dIPAG calcium transient recordings (Evans et al., 2018). All procedures have
660 been approved by the University of California, Los Angeles Institutional Animal Care and Use
661 Committee, protocols 2017-011 and 2017-075.

662 **Rats.** Male Long-Evans rats (250-400 grams) were obtained from Charles River and were individually
663 housed on a standard 12-hour light-dark cycle and given food and water *ad libitum*. Rats were only
664 used as a predatory stimulus. Rats were handled for several weeks prior to being used and were
665 screened for low aggression to avoid attacks on mice. No attacks on mice were observed in this
666 experiment.

667 **Surgeries.** Eight-week-old mice were anaesthetized with 1.5-3.0% isoflurane and placed in a
668 stereotaxic apparatus (Kopf Instruments). AAV9.Syn.GCaMP6s.WPRE.SV40 were packaged and
669 supplied by UPenn Vector Core at titers 7.5×10^3 viral particles per ml and viral aliquots were diluted
670 prior to use with artificial cortex buffer to a final titer of 5×10^{12} viral particles per ml. After performing
671 a craniotomy, 100nl of virus was injected into the dPAG (coordinates in mm, from skull surface): -4.20
672 anteromedial, -0.85 lateral, -2.3 depth, 15-degree angle. Five days after virus injection, the animals
673 underwent a second surgery in which two skull screws were inserted and a microendoscope was
674 implanted above the injection site. A 0.5 mm diameter, ~4 mm long gradient refractive index (GRIN)
675 lens (Inscopix, Palo Alto, CA) was implanted above the dPAG (-2.0 mm ventral to the skull surface)
676 (Resendez et al., 2016). The lens was fixed to the skull with cyanoacrylate glue and adhesive cement
677 (Metabond; Parkell). The exposed end of the GRIN lens was protected with transparent Kwik-seal
678 glue and animals were returned to a clean cage. Two weeks later, a small aluminum base plate was
679 cemented onto the animal's head on top of the previously formed dental cement. Animals were
680 provided with analgesic and anti-inflammatory (carprofen).

681 **Behavioral timeline.** Behavioral tests were combined in the following manner across days: EPM test,
682 habituation 1, habituation 2 (toy rat), rat exposure. Each experiment was performed twice, with two
683 cohorts of 3 and 4 mice each. Each mouse was only exposed to each assay once, as fear assays
684 cannot be repeated. Thus, there are no technical replicates. No outliers were found or excluded. All
685 mice were used. Neural recordings were obtained from all mice in identical conditions, and thus they
686 were all allocated to the same experimental group. There were no experimentally controlled
687 differences across mice and there were no "treatment groups".
688
689

690 **Elevated Plus Maze test.** Mice were placed in the center of the EPM facing one of the closed arms
691 and were allowed to freely explore the environment for 20 minutes. The length of each arm was 30
692 cm, the width was 7 cm and the height of the closed arm walls was 20 cm. The maze was 65 cm
693 elevated from the floor by a camera stand. A total of 8 mice were analyzed.

694 **Rat Exposure Assay.** Mice were habituated to a white rectangular box (70 cm length, 26 cm width,
695 44 cm height) for two consecutive days during 20-minute sessions. Mice were then exposed to an
696 adult rat in this environment on the following day. The rat was secured by a harness tied to one of the
697 walls and could freely ambulate only within a short perimeter. The mouse was placed near the wall
698 opposite to the rat and freely explored the context for 20 minutes. No separating barrier was placed
699 between the mouse and the rat, allowing for close naturalistic encounters that can induce a variety of
700 robust defensive behaviors. A total of 7 mice were analyzed.

701 **Behavior and miniscope video capture.** All videos were recorded at 30 frames/sec using a
702 Logitech HD C310 webcam and custom-built head-mounted UCLA miniscope (Aharoni and
703 Hoogland, 2019). Open-source UCLA Miniscope software and hardware (<http://miniscope.org/>) were
704 used to capture and synchronize neural and behavioral video (Cai et al., 2016; Schuette et al., 2020).

705 **Perfusion and histological verification.** Mice were anesthetized with Fatal-Plus and transcardially
706 perfused with phosphate buffered saline followed by a solution of 4% paraformaldehyde. Extracted

707 brains were stored for 12 hours at 4°C in 4% paraformaldehyde. Brains were then placed in sucrose
708 solution for a minimum of 24 hours. Brains were sectioned in the coronal plane in a cryostat, washed
709 in phosphate buffered saline and mounted on glass slides using PVA-DABCO. Images were acquired
710 using a Keyence BZ-X fluorescence microscope with a 10 or 20X air objective.

711 Data Analysis was performed using custom-written code in MATLAB and Python.

712 **Miniscope postprocessing and co-registration.** Miniscope videos were motion-corrected using the
713 open-source UCLA miniscope analysis package (https://github.com/daharoni/Miniscope_Analysis)
714 (Aharoni and Hoogland, 2019). They were spatially downsampled by a factor of two and temporally
715 downsampled by a factor of four, and the cell footprints and activity were extracted using the open-
716 source package Constrained Nonnegative Matrix Factorization for microEndoscopic data (CNMF-E;
717 https://github.com/zhoup/CNMF_E) (Zhou et al., 2018). Neurons were co-registered across sessions
718 using the open-source probabilistic modeling package CellReg (<https://github.com/zivlab/CellReg>)
719 (Sheintuch et al., 2017).

720 **Artifact suppression.** For suppression of long timescale artifacts, e.g. long-time scale fluctuations in
721 calcium fluorescence shared across many neurons due to bleaching or other factors, we used PCA to
722 identify large variance PCs ($\geq 5\%$ total variance) reflecting these artifacts. Cell activity was then
723 reconstructed using these PCs excluded from reconstruction (O'Shea and Shenoy, 2018). This
724 method was applied only to data for mouse 1 in the rat exposure assay.

725 **Variance thresholding.** A minority of recorded cells had very small variance over the course of an
726 experimental session. To exclude these cells from analysis, we identified a representative cell for
727 each trial. Cells with less than 10% of the representative cell's variance were discarded. The
728 remaining cells were used for further analysis.

729 **Behavior detection.** To extract the pose of freely-behaving mice in the described assays, we
730 implemented DeepLabCut (Mathis et al., 2018), an open-source convolutional neural network-based
731 toolbox, to identify mouse nose, ear and tail base xy-coordinates in each recorded video frame.
732 These coordinates were then used to calculate velocity and position at each time point, as well as
733 classify defensive behaviors in an automated manner using custom Matlab scripts. Freezing was
734 defined as epochs of cessation of all movement except for breathing. Approach and escape were
735 defined as epochs when the mouse moved, respectively towards or away from the rat at a velocity
736 exceeding a minimum threshold.

737 **Categorization of open, neither and closed arm-preferring cells.** A cell was categorized as an
738 open arm-preferring cell if activity in each individual open arm was significantly greater than the
739 pooled activity in the closed arms (Wilcoxon rank sum test, $p < 0.05$). Likewise, a closed arm-
740 preferring cell was identified as a cell whose activity in each individual closed arm was significantly
741 greater than the pooled activity in the open arms. The remaining cells were labeled as neither arm-
742 preferring cells.

743 **Behavior-aligned trace and Δ dF/F activity.** We calculated each cell's z-scored behavior-aligned
744 activity by computing the mean activity of the cell over all behavior occurrences, aligned to behavior

745 onset. The mean peri-behavior trace for an ensemble (e.g., closed cells, open cells, or neither cells)
746 was the average of peri-behavior activity across all cells in the ensemble. Change in mean activity
747 after and before behavior was calculated by first subtracting the mean activity of each cell during the
748 time frame [-2.5, 0] seconds relative to behavior onset from the mean activity of each cell in the time
749 frame [0, 2.5] seconds. The overall difference in an ensemble, denoted $\Delta dF/F$, was the average of the
750 change in mean activity across all cells in the ensemble. For head dips, $\Delta dF/F$ was calculated using
751 windows of [-5, -2.5] (before) and [0, 2.5] (after).

752 **Interleaved training and testing data.** For analyses involving regression (EPM safety score, CoCA),
753 testing data were interleaved with training data, with 60 seconds for each segment and 10 seconds of
754 separation between data types, i.e., [60s training, 10s excluded, 60s testing, 10s excluded, 60s
755 training, etc.]. These gaps minimize overlapping activity in the training and testing sets, which may
756 arise due to dynamics in calcium activity.

757 **EPM arm score.** The arm score quantifies the separability of cell activity between arm types and is
758 invariant to scaling and shifting. Excluding times when the mouse was in the center of the EPM, data
759 points were labeled according to whether the mouse was in an open arm (positive label) or a closed
760 arm (negative label). The arm score was then defined as:

761
$$\text{arm score} = 2 * \text{AUC} - 1,$$

762 where AUC is the area under the receiver operating characteristic curve resulting from predicting
763 which arm the mouse was in from single-cell activity. Cells with strong preference for firing in the
764 closed arms or open arms respectively have arm score values near -1 and +1. An arm score of
765 exactly +1 indicates that cell activity in the open arm is strictly greater than activity in the closed arm.

766 **EPM score.** The EPM score quantifies how differently a cell fires between closed vs open arms. It is
767 close to 1 when the cell has large differences in activity between arms of different types but is
768 negative if the cell's activity is more similar between different arm types than between same arm
769 types. To calculate EPM score, we first compute the mean difference in z-scored activity between
770 arms of different types (A) and arms of the same type (B). These are defined as

771
772
$$A = 0.25 * (|F_{C1} - F_{O1}| + |F_{C1} - F_{O2}| + |F_{C2} - F_{O1}| + |F_{C2} - F_{O2}|)$$

773
$$B = 0.5 * (|F_{C1} - F_{C2}| + |F_{O1} - F_{O2}|),$$

774 where F_{O1} and F_{O2} are the mean z-scored activity of the cell in open arms 1 and 2, respectively, and
775 F_{C1} and F_{C2} are the mean z-scored activity in closed arms 1 and 2 (Adhikari et al., 2011). The EPM
776 score is defined as:

777
$$\text{EPM score} = (A - B) / (A + B).$$

778 Cells with high EPM score if they have large differences in activity in different arm types (large A) and
779 similar activity in same type arms (small B). The maximum score of 1.0 indicates no difference in
780 firing rates across arms of the same type ($B = 0$). Cells with negative EPM scores have more similar
781 activity across arms of different types than across arms of the same type.

782 **EPM threat score.** The threat score quantifies the threat exposure to the mouse. It is close to 1 when
783 the mouse is at the end of an open arm, and close to -1 when the mouse is at the end of the closed
784 arms. To calculate threat score, we first normalized the x and y position of the mice in the EPM to be
785 in the range [-1, 1], where the x position is ± 1 at the ends of the open arms and the y position is ± 1 at
786 the ends of the closed arms. We defined the threat measure as:

787
$$\text{threat score} = |x| - |y|.$$

788 The threat score is therefore a value between -1 and 1. Prediction of threat score (Figure 1H-I) was
789 performed using linear regression with interleaved training and testing data. Outputs were clipped to
790 the range [-1, 1] before final prediction was made.

791 **Prediction of mouse position in the EPM from neural data using a linear support vector
792 machine (SVM).**

793 After z-scoring data, times when the mouse was in the center of the EPM were removed from
794 training. The remaining data were separated into alternating blocks of 50s training data and 50s
795 testing data with 10s of separation between blocks. A linear SVM was fit on training using scikit-
796 learn's SVC function with balanced class weights (Pedregosa et al., 2011). Significance testing was
797 performed with bootstrapping using shuffled class labels for 100 random trials per mouse. The
798 Matthews correlation coefficient was used to quantify the relation between predicted and observed
799 arm-type occupancy because this metric was developed to assess correlations between binary
800 values (such as arm-type, which can only be closed or open arms).

801 **Zones in the rat assay.** The safe zone was defined as the left 20% of the rat environment, based on
802 x position. The threatening zone was defined as being within 20% of the maximum distance from the
803 rat during the exposure.

804 **Generalized linear model:** A generalized linear model (GLM) was fit for each cell. Each GLM
805 mapped behavior variables to the cell's z-scored calcium activity. Discrete behaviors were binary,
806 labeled as 1 at all times in which they occurred and 0 otherwise. To enable behaviors to alter neural
807 activity prior to and following the behavior, each binarized behavior was convolved with a non-causal
808 log-time scaled raised cosine basis, from 5 seconds before behavior onset to 5 seconds after
809 behavior offset. Further, to enable historical kinematics to affect present neural data, the kinematics
810 were convolved with a causal kernel, which used the same set of bases as the behavior, but only had
811 responses after the onset within 5 seconds. These convolved behavior variables, denoted here as y_1 ,
812 y_2 , etc., were then modeled to produce the cell's calcium fluorescence as:

813
$$x = \beta_1 y_1 + \beta_2 y_2 + \cdots + \beta_m y_m + c,$$

814 where β_i is the coefficient for the i th behavior variable. In total, there were 8 behavior variables for rat:
815 distance to rat, mouse velocity, rat velocity, angle from mouse's head to the rat, and occurrence of
816 approaching, escaping and freezing. The GLM was optimized by minimizing the mean-square error of
817 the reconstruction between the GLM activity estimate, x , and the recorded calcium activity.

818 **Cross-assay Constrained Correlation Analysis (CoCA).**

819 To investigate if the dPAG uses shared patterns of neural activity to represent threat imminence
820 across assays we developed Constrained Correlation Analysis (CoCA). This model identifies the
821 features used in a shared neural representation between different threatening situations. The CoCA
822 technique defined a shared neural projection as a linear combination of the activity of individual
823 neurons. Additionally, we constructed a behavioral projection for each assay, through a linear
824 combination of each assay's behavioral variables. Optimization via CoCA produced neural projection
825 weights that were compared across open and closed cell ensembles.

826 We denote calcium fluorescence neural data as $X \in \mathbb{R}^{k \times T}$ and externally-observed behavioral data
827 as $Y \in \mathbb{R}^{p \times T}$, where k is the number of recorded cells for the corresponding mouse, shared across
828 assays, p is the chosen number of behavioral variables for the corresponding assay, shared across
829 mice, and T is the length of a recording session, unique for each session, but shared between neural
830 and behavioral data for the same session. Behavioral variables contained both continuous kinematic
831 variables (such as speed and distance from rat) as well as binary defensive behavior variables (such
832 as the occurrence of freezing and escape). All variables were normalized to zero mean and unit
833 variance, except normalized $|x|$ and $|y|$ in EPM, which were already in the range $[0, 1]$ (variance \leq
834 0.25).

835 In order to find a common linear projection of threat across mice and assays, we performed the
836 following optimization with mouse IDs $i = 1, 2, \dots, 7$ and assay IDs $j = EPM, RAT$. Calcium fluorescence
837 traces of dPAG cells for mouse i were linearly combined after multiplying each cell with weights n_1^i to
838 n_k^i , where k is the number of cells that were co-registered in both assays. Taking the dot product of
839 the calcium activity for mouse i in assay j , given by $X_{i,j}$, and the weights $\mathbf{n}^i = [n_1^i \dots n_k^i]$ defined a neural
840 projection for mouse i and assay j , given by $N_{i,j} = (\mathbf{n}^i)^T X_{i,j}$ (Figure 6A, neural data projection in red).
841 For each mouse, the weights, \mathbf{n}^i , were the same across assays, so that each cell had the same
842 weight in both assays. The behavioral variables for the EPM (such as x and y position, speed, etc.)
843 were linearly combined with a set of weights b_1 to b_6 (as 6 behavioral variables were used for the
844 EPM). These weights, $\mathbf{b}^{EPM} = [b_1^{EPM}, b_2^{EPM}, \dots, b_6^{EPM}]$ were conserved across all mice. Linearly
845 combining the EPM behavioral variables resulted in a behavioral projection for mouse i and assay
846 EPM , given by $B_{i,EPM} = (\mathbf{b}^{EPM})^T Y_{i,EPM}$. Similarly, 9 behavioral variables from the rat assay were linearly
847 combined to produce a behavioral projection $B_{i,RAT} = (\mathbf{b}^{RAT})^T Y_{i,RAT}$ using weights $\mathbf{b}^{RAT} = [b_1^{RAT}, b_2^{RAT},$
848 $\dots, b_9^{RAT}]$. We chose the neural weights, \mathbf{n}^i , and the behavioral weights, \mathbf{b}^{EPM} and \mathbf{b}^{RAT} , to optimize
849 the correlations across all mice and assays:
850

$$\max \sum_i \sum_j \text{corr}(N_{i,j}, B_{i,j})$$

851 where $\text{corr}()$ is the Pearson correlation coefficient, and $N_{i,j}$ and $B_{i,j}$ are the linear projections of neural
852 and behavioral data, respectively, given by: $N_{i,j} = (\mathbf{n}^i)^T X_{i,j}$ and $B_{i,j} = (\mathbf{b}^j)^T Y_{i,j}$. The optimization variables
853 \mathbf{n}^i , $i = 1, 2, \dots, 7$, and \mathbf{b}^j , $j = EPM, RAT$, were simultaneously optimized using gradient descent via the
854 Adam optimizer (Kingma and Ba, 2015) until convergence. Results presented use interleaved training
855 and testing data. This method was implemented using PyTorch.

856 **CoCA bootstrapping.** In order to test if correlations of testing data were better than expected by
857 chance, correlations were computed between projected behavioral data (using projections fit by
858 training data) and random projections of neural data (1000 trials). We emphasize these correlations
859 were applied to the testing data, and therefore it was possible for a random projection to have higher
860 correlation than the CoCA projection. Here a one-tailed test was used.

861
862 **Approach/Avoidance score.** To calculate the continuous approach/avoidance score for each assay,
863 the distance from safety was calculated (Rat: distance from the safe wall; EPM: distance from the end
864 of the closed arm) and normalized such that it ranged from 0 to 1 in the Rat assay and 0 to 0.9 in the
865 EPM. A binarized direction value was also assigned to each timepoint, indicating if the mouse was
866 moving towards (+1) or away from (-1) the threat. To incorporate categorized behaviors, the
867 approach/avoidance score for freeze samples equaled the minimum score of -1. For the EPM only,
868 the approach/avoidance score was multiplied by 1.11 for head dip samples, such that a head dip at
869 the end of the open arm would yield the maximum score of 1.

870
871 To calculate the score at each timepoint:

872 While approaching threat, approach/avoidance score = distance to safety x direction

873 While avoiding threat: approach/avoidance score = [1-distance to safety] x direction

874 **K-means clustering of neural data.** To determine if the approach/avoidance score is represented in
875 the neural data, the k-means algorithm (k=10) was used to cluster the neural data in an unsupervised
876 manner. For each implementation of k-means, ten sets of clusters were identified using ten different
877 randomized initializations; the set with the minimum sum of euclidean distances was used. The
878 approach and avoidance clusters then identified, for each session, as those with, respectively, the
879 highest and lowest mean approach/avoidance scores. The overall mean approach/avoidance scores
880 for approach and avoidance clusters were then calculated across mice. To determine if these
881 approach and avoidance cluster scores were statistically significant, the actual mean was compared
882 to a bootstrapped distribution of means, calculated in an identical manner with shuffled neural data
883 over 100 iterations. If the approach and avoidance score means were respectively greater than or
884 less than 95% of this bootstrapped distribution, they were considered significant. For the
885 training/testing analysis, k-means was implemented on one assay as described above (the training
886 assay), using only cells that coregistered between both assays. The cluster centroids identified in the
887 training assay were then used to categorize approach and avoidance samples in the withheld testing
888 assay. The mean approach/avoidance score was calculated for all approach and avoidance
889 timepoints, across all training or testing sessions.

890
891 In a similar way, approach/avoidance states were identified by Hidden Markov Models (10 states),
892 using the top principal components of the neural data as input (accounting for >=60% of the total
893 variance). These states were analyzed in an identical manner to the k-means clusters described
894 above. For the code, see 'Expectation-Maximization for Hidden Markov Models using real-values
895 Gaussian observations' at Zoubin Ghahramani's code base:
896 <http://mlg.eng.cam.ac.uk/zoubin/software.html>.

897

898 **Statistical analysis.** Significance values are included in the figure legends. Unless otherwise noted,
899 all statistical comparisons were performed by either nonparametric Wilcoxon rank-sum or signed-rank
900 tests. With the exception of CoCA bootstrapping, all significance tests were two-tailed. Standard error
901 of the mean was plotted in each figure as an estimate of variation of the mean. Correlations were
902 calculated using Pearson's method. Multiple comparisons were corrected with the false discovery rate
903 method. All statistical analyses were performed using SciPy (Virtanen et al., 2020) and custom
904 Matlab scripts.

905 **Data and code availability**

906 All data was uploaded to dryad and all code was uploaded to github.

907 https://datadryad.org/stash/share/4GezSjw4dvDJCIWA_zRoNWioH9qzGtDCJjLQ89HVoA

908 <https://doi.org/10.5068/D1TM2G>

909 https://github.com/schuettepeter/eLife_dPAG-ensembles-represent-approach-and-avoidance-states

910
911