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Abstract

Animals must balance needs to approach threats for risk-assessment and to avoid danger. The
dorsal periaqueductal gray (dPAG) controls defensive behaviors, but it is unknown how it represents
states associated with threat approach and avoidance. We identified a dPAG threat-avoidance
ensemble in mice that showed higher activity far from threats such as the open arms of the elevated
plus maze and a live predator. These cells were also more active during threat-avoidance behaviors
such as escape and freezing, even though these behaviors have antagonistic motor output.
Conversely, the threat-approach ensemble was more active during risk-assessment behaviors and
near threats. Furthermore, unsupervised methods showed approach/avoidance states were encoded
with shared activity patterns across threats. Lastly, the relative number of cells in each ensemble
predicted threat-avoidance across mice. Thus, dPAG ensembles dynamically encode threat approach
and avoidance states, providing a flexible mechanism to balance risk-assessment and danger
avoidance.

Introduction

Behavioral variables and emotional states are thought to be represented in neural activity (Anderson
and Adolphs, 2014). Such representations must be specific enough to differentiate across behaviors,
yet general enough to maintain functional cohesion across diverse threatening situations
(Grundemann et al., 2019). A large body of evidence has shown that defensive behaviors related to
threat exposure are represented in dorsal periaqueductal gray (dPAG) activity (Deng et al., 2016;
Evans et al., 2018; Watson et al., 2016), as dPAG activity correlates with escape and freeze.
Additionally, dPAG optogenetic and electrical stimulation induce these behaviors, as well as aversion
(Brandao et al., 1982; Carvalho et al., 2015; Carvalho et al., 2018; Deng et al., 2016; Tovote et al.,
2016). Furthermore, pharmacological manipulations of dPAG activity impact open arm exploration in
the elevated plus maze (EPM), a traditional measure of rodent anxiety (Fogaca et al., 2012). Lastly,
PAG activity in humans correlates positively with threat imminence (Mobbs et al., 2007; Mobbs et al.,
2010). These reports show the dPAG is a central node orchestrating defensive behaviors.

However, it is unknown how the dPAG represents moment-to-moment changes in brain states during
threat exposure. The two main behavioral states observed during exposure to threats are approach
and avoidance (Stankowich, 2019). In the approach state, animals voluntarily go near the threat and
perform risk-assessment behaviors. In this state, the exploratory risk-evaluation drive is stronger than
the motivation to avoid danger. By contrast, in the avoidance state, animals perceive high risk, and
thus attempt to minimize exposure to danger by escaping, freezing and maintaining distance to the
threat. No reports to date have investigated whether the dPAG consistently encodes approach and
avoidance states across distinct threats.

Key questions regarding the neural representation of approach and avoidance states remain
unanswered. Do dPAG cells respond uniformly to transitions between higher and lower threat
imminence? What is the overlap between the dPAG encoding of two completely distinct threats?
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Does dPAG neuronal activity encode moment-to-moment changes regarding defensive approach and
avoidance states? Addressing these questions would require population-level analysis of dPAG cells
recorded longitudinally across threat modalities. Here, we report experimental data and analyses that
directly address these questions.

Results and Discussion

We performed microendoscopic calcium imaging of dPAG neurons expressing GCaMP6s (Figure 1A
and Figure 1-figure supplement 1) (Cai et al., 2016) during EPM and rat exposure assays. During
EPM test, we recorded 107 + 19 cells per mouse (n = 8 mice; 857 cells were imaged; see Methods).
As expected, mice spent more time in the closed arms of the EPM (Figure 1B). They also displayed
exploratory risk-assessment head dips over the edges of the open arms (Figure 1B-C). During EPM
exploration cells often showed preferential activity either in closed or open arms (Figure 1D-E). To
identify EPM arm-type modulated neurons, we defined an “arm score metric” ranging from -1 to +1, in
which the +1 indicates that cell activity in the open arm is greater than activity in the closed arm, and
vice-versa. The arm score distribution in the observed data is wider than expected by chance,
indicating that dPAG cells show robust preference for EPM arm-types (Figure 1F left panel). We
defined neurons as belonging to one of the ensembles if activity in each arm-type was significantly
greater than the pooled activity in the opposite arm type (Figure 1F right panel, see Methods). The
results showed that cells fired similarly in arms of the same type, as firing in one open arm was highly
correlated to activity in the other open arm (Figure 1G, top panel). Conversely, firing rates in closed
and open arms were negatively correlated (Figure 1G, bottom panel).

Based on the distribution of cells per arm score, roughly half of the dPAG neurons were classified as
arm-modulated cells (49%, with 26% closed- and 23% open-modulated cells) (Figure 1H) which
suggests these ensembles are functionally relevant dPAG populations. During transitions between
arms, we identified opposite changes in activity levels of these two major, non-overlapping
populations of dPAG neurons. (Figure 11 and Figure 2A-B). For example, the closed arm-activated
ensemble showed a decrease in activity when mice traversed from a closed arm to an open arm.
Moreover, open and closed cells showed increased and decreased activity, respectively, during
exploratory head dip behavior (Figure 2C). Importantly, dPAG ensembles did not display strong
correlations with speed, suggesting these findings are not driven by variations in velocity (Figure 2D).
If EPM arm-type is prominently represented in dPAG activity, then it may be possible to use dPAG
activation patterns to differentiate mouse location in the EPM. Indeed, upon training support vector
machine (SVM) decoders on dPAG activity, we obtained significantly higher than chance
performance in identifying if the mouse was in an open or closed arm (Figure 2E, see Methods).

Next, we investigated whether dPAG activity could also predict specific mouse positions within the
arms. We defined a “threat score” as linearly varying between -1 and +1 (at closed and open arms
extremities, respectively), assigning zero to the center of the maze (Figure 2F, see Methods). We
then fitted a linear regression on the threat score using dPAG cell activity. Interestingly, the model
showed significantly higher than chance performance in predicting threat score, suggesting that the
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identified dPAG ensembles may not only encode arm-type, but rather a risk perception and threat-
exposure gradient (Figure 2F-G and Figure 2-figure supplement 1).

To investigate whether dPAG population coding of risk perception generalizes to exploratory behavior
across different threatening contexts, we recorded the same dPAG neurons during exposure to a live
predator (Figure 3A-B and Figure 3—figure supplement 1). Mice were allowed to freely explore a
context, a long chamber, in the presence of a rat, which was tethered with a harness to one end of
the chamber (see Methods). All behavioral data from synchronized videos underwent automated
behavior scoring (Mathis et al., 2018). Mice spent most of the trial away from the rat (Figure 3A),
indicating aversion from perceived threat. Consistent with previous threat imminence theories and the
array of defensive behaviors evoked in the presence of a predator (Blanchard et al., 2011,
McNaughton and Corr, 2004; Perusini and Fanselow, 2015; Stankowich, 2019), mice presented
defensive strategy repertoires composed of approach and avoidance-related behaviors (i.e. escape
and freeze) (Figure 3A). Notably, average dPAG activity increased with rat proximity, rat movement
onset, escape, and decreased during freezing and approach (Figure 3C-E). Importantly, mice
displayed no signs of aversion nor differences in dPAG activity with proximity to a toy rat (Figure
3—figure supplement 2).

We then explored whether the activity of dPAG closed and open cell ensembles identified in the EPM
also represent risk-evaluation in the rat assay. A positive result would show that the ensembles are
likely responding not only to the original sensory biases (i.e. closed and open arms features), but
potentially representing behavioral states that generalize across threats. Intriguingly, open arm cells
were more active near the rat, while closed arm cells displayed higher activity far from the rat (Figure
3F-H and Figure 3-figure supplement 3). Closed cells also showed increased activity following onset
of both escape and freeze, despite these behaviors having opposite motor outputs (Figure 3I-K).
Additionally, even though freezing and approach onset occur similarly far from the rat (Figure 3A),
open and closed ensembles showed opposite activity patterns and different generalized linear model
weights (Figure 3I-K). Rat movement onset likely constitutes a threat signal and switches states from
approach to avoidance, as predator movement is indicative of increased threat imminence. Indeed,
rat movement is a significant predictor variable for less frequent approach and more occurrences of
threat avoidance-related behaviors, such as escape and freezing (Figure 3-figure supplement 4).
Accordingly, during rat movement onset, the threat-avoidance related closed-arm ensembles
displayed higher activity (Figure 3I-J). Notably, neither of the ensembles consistently resembled the
overall average dPAG activity during rat exposure (Figure 3E), as each ensemble had its own
functional profile (Figure 3l). Furthermore, dPAG cells also used shared patterns of neural activity
across rat and EPM assays to represent threat imminence (measured as distance to threat) (Figure
3-figure supplement 5, see methods). These results suggest that dPAG neuronal activity can
represent internal brain states using shared patterns of activity across different threats.

An approach-state is associated with open arm entries, head dips in the EPM and proximity to threat.
Conversely, an avoidance-state would be expected far away from threats and during actions that
decrease threat exposure, such as closed arm exploration, escape and freezing. Our results showed
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that closed cells were more active during higher distance from threat and threat avoidance-related
behaviors, such as freezing and escaping, while open cells were more active during proximity to
threats and exploratory head dips in the EPM (Figure 2 and Figure 3). The consistency of these
results across behaviors and two different threat modalities indicate that dPAG closed and open cells
were encoding threat avoidance and threat approach states, respectively.

To further investigate how dPAG cells use a shared representation to encode approach and
avoidance states we developed an approach/avoidance score ranging between -1 and 1 (see
Methods). The score gradually increases during approach to threat and during EPM head dips,
reaching +1 when the mouse is adjacent to the rat or in the extreme end of the open arms. The score
decreases when the mouse is retreating from threat and is assigned a value of -1 when the mouse is
furthest from the rat, freezing, or in the extreme end of the closed arms (Figure 4A). To investigate
how the approach/avoidance score is encoded in dPAG activity we used k-means clustering, an
unsupervised approach, to group the data points into 10 clusters (Figure 4B, panel 1). We chose 10
clusters, as opposed to 2, since the neural data does not exclusively encode approach/avoidance
states. We then calculated the approach/avoidance score for each of the 10 clusters (Figure 4B,
panel 2). The clusters with the lowest and highest scores were classified as the ‘avoidance’ and the
‘approach’ cluster, respectively. Experimentally observed approach and avoidance clusters
respectively had higher and lower scores than bootstrap distributions, showing that our k-means
approach identified activity patterns that strongly encode the approach-avoidance score (Figure 4C).
The approach and avoidance cluster centroids from one assay were then applied to the other assay
(i.e., centroids were defined by training on EPM and applied on previously unseen data from the rat
assay, or vice-versa). Cluster centroids defined from the training data in one assay were applied to
the data from the other assay to assign cluster identity based on shortest euclidean distance to the
centroid. For example, the points in the testing dataset that were closest to the avoidance centroid,
previously defined by the training dataset, were assigned to the avoidance cluster (Figure 4B, panels
3-4). Scores for approach and avoidance clusters for shuffled data were used to create a bootstrap
distribution. Lastly, we show that approach and avoidance clusters trained on one assay and applied
on the other assay result in significantly different scores, despite the two assays having different
geometries and distinct threat modalities (Figure 4D). Similar results were also obtained for k-means
using a smaller number of clusters or employing a hidden Markov model, showing that the results in
Figure 4 can be found using a range of different computational approaches (Figure 4-figure
supplement 1). Importantly, these results were not found when computing approach and avoid
clusters centroids defined on the EPM but applied to a control toy rat (Figure 4-figure supplement 2).
These results indicate, using an unsupervised method, that approach and avoidance states are
encoded using shared patterns of neural activity across assays. Importantly, dPAG activity reflects
moment-to-moment changes in the behavioral states of the animal.

Finally, we investigated if ensemble composition was related to threat avoidance traits across assays.
Rat approach and open arm exploration was correlated across mice, indicating that these measures
also reflected trait avoidance levels (Figure 4-figure supplement 3A). We then found that mice with a
higher proportion of open cells in relation to closed cells displayed increased avoidance of open arms
and rat (Figure 4-figure supplement 3B-C). These data indicate that in addition to encoding moment-
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to-moment changes on behavioral states, dPAG ensembles composition may integrate risk
evaluation processes and influence individual mouse differences in threat avoidance traits.

Together, these results suggest that the dPAG neural population has a shared representation of risk
perception across threatening circumstances. Individual neurons change their activity similarly to
represent threat approach and avoidance states across assays. These findings expand on the
oversimplified view of dPAG as a pre-motor output region and highlights it as a key node reflecting
the internal brain states that prepare the organism to engage in approach or avoidance of threat.
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Figure 1. DPAG neuronal ensembles encode arm-type in the elevated plus maze.

(A) GRIN lens implantation, virus expression strategy and example Ca2+ signals of neurons the dorsal periaqueductal
gray (dPAG). (B) Example mouse exploration path recorded in the EPM. Mice spent significantly more time in the closed
arms compared to the open arms (Data are represented as mean + SEM; W = 0, p = 0.012, Wilcoxon Signed Rank Test,
n = 8 mice;). (C) Mean percentage of total time in which mice engaged in head dips. (n = 8 mice). (D) dPAG dF/F traces
from the same mouse that display preferential firing in the closed (upper trace) and open (lower trace) arms of the EPM
(open and closed arm-preferring cells). Epochs corresponding to exploration of the closed and open arms are shown
respectively as green and blue shaded areas. (E) Activity heat maps for corresponding example neurons shown in (D). (F)
The arm preference score was calculated for each neuron (orange bars; see Methods), as was the distribution of arm
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preference scores for shuffled data (red line). Bars show the distribution of arm preference scores for open, closed, and
neither cells. (n = 857 cells). (G) Scatterplots showing correlations between neural activity across the two open arms (top)
and between open and closed arms of the EPM (bottom). Each point represents one cell (n = 857 cells, r = Pearson’s
correlation coefficient). (H) Pie chart shows the percent of all recorded neurons that were classified as open, closed or
neither cells. (n = 857 cells). (I) For each subplot, each row depicts the mean normalized activity of an open, closed, or
neither arm-preferring cell during behavior-aligned arm transitions. (n = 857 cells).
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Figure 2. DPAG population activity predicts EPM exploration.

(A) Traces show the mean z-scored activity (+/- 1 SEM) of all open, closed, and neither cells, behavior-aligned to arm
transitions (respectively the blue, green and gray traces). (B) Bars depict the change in z-scored dF/F for entries to closed
left) and open (right) arms, separately for open, closed and neither cells. (Data are represented as mean + SEM; both
closed and open arm; n = 199 open cells, n = 435 neither cells, n = 223 closed cells; closed arm U = 14.49, ***p < 0.001,
open arm U = 14.05, p < 0.001, Wilcoxon Rank Sum Test, n = 8 mice). (C) Average activity traces for open, closed, and
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neither cells relative to onset of head dips in the EPM and quantification of changes in activity for all cell types (0-2.5
seconds after minus 2.5-5.0 seconds before head dip onset) (Data are represented as mean + SEM; n of cells same as
(G); U =4.53, **p < 0.001, Wilcoxon Rank Sum test). (D) Histograms depict the distribution of the Pearson correlation of
dF/F with speed for each cell type in the EPM. (E) Prediction of arm-type mouse position in the EPM from neural data
using a linear support vector machine (SVM). The blue and green areas represent the actual arm-type occupancy label
(open and closed arm, respectively), and the black trace represents the prediction of arm location by the SVM hyperplane
projection. If the trace was above 0 a.u., then that period was classified as open arm exploration, otherwise, it was
classified as closed arm occupancy. The pink and purple represent the data split (training and testing data, respectively).
The matthews correlation coefficient for real and permuted shuffled training data are shown to the right (mean +/- 1 s.e.m.;
n = (8, 800), U = 4.87, p < .001, Wilcoxon Rank Sum Test). (F) (left) Example of EPM threat score where 1 and -1
correspond, respectively, to the extreme end of the open and closed arms and (right) prediction of labeled EPM threat
from dPAG neural data for an example mouse (scatterplot displays testing data that was not used for training, r =
Pearson’s correlation coefficient). (G) (left) Correlation of example closed and open cell activity with threat score and
(right) mean correlation of dF/F with EPM threat (Data are represented as mean + SEM; n = 64 open cells, n = 166
neither cells, n = 87 closed cells; EPM U = 10.48 Wilcoxon Rank Sum Test, **p < 0.001, r = Pearson’s correlation
coefficient).
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Figure 3. Arm-specific ensembles maintain functions across threatening situations.
(A) lllustration of the rat exposure assay (top) and example track (bottom), with labels depicting the area to which the rat

is confined (rat zone) as well as areas near to and far from the rat (safe side). In all figures depicting this assay the rat
area will be shown to the right. (B) Example imaging field of view with dPAG cells co-registered between EPM and rat
exposure sessions. (C) Heatmap depicts the mean z-scored dF/F at each position of the rat exposure assay (n = 713
cells, n = 7 mice). (D) Change in dF/F (0-2.5 seconds after minus 0-2.5 seconds before) activity for all dPAG cells for
behaviors in the rat exposure assay (Data are represented as mean = SEM; n of cells for approach, stretch, escape =
714, n of cells for freeze = 640; approach t = -2.65, **p = 0.008, stretch t = 4.92, **p < 0.001, escape t = 3.39, ***p <
0.001, freeze t = -3.23, **p = 0.0012, one-sample t-test). (E) Traces show the mean z-scored activity of all cells (+/- 1

s.e.m.), aligned to onset of various behaviors (onset is indicated by the red vertical line) in the rat exposure assay (n of
11
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cells same as D). (F) Bars depict the mean z-scored dF/F of cells on the safe side and threatening side of the enclosure
(Data are represented as mean + SEM; n= 64 open cells, n = 166 neither cells, n = 87 closed cells; n =7 mice, safe U =
-3.82, ***p = 0.0001, threatening U = 3.05, **p = 0.002, Wilcoxon Rank Sum Test). (G) Traces show the mean z-scored
activity of open, closed, and neither cells (+/- 1 s.e.m.), aligned to exit of the safe side of the enclosure (far from the rat).
(H) Bars show the mean change in z-scored dF/F (0-2.5 seconds after minus 0-2.5 seconds before) aligned to safe side
exit for open, closed, and neither cells. (Data are represented as mean + SEM; n = 64 open cells, n = 166 neither cells, n
= 87 closed cells; U = 3.36, ***p = 0.0008, Wilcoxon Rank Sum Test). (I) Traces show the mean z-scored activity of open,
closed and neither cells (+/- 1 SEM), aligned to behaviors in the rat exposure assay (approach, escape: n = 64 open cells,
n = 87 closed cells, n = 166 neither cells; stretch: n = 50 open cells, n = 64 closed cells, n = 127 neither cells; freeze: n =
39 open cells, n = 56 closed cells, n = 117 neither cells). Onset of behaviors is indicated by a red vertical line. (J) Bars
depict the change in z-scored dF/F (0-2.5 seconds after minus 0-2.5 seconds before) for behaviors in the rat exposure
assay, separately for open, closed, and neither cells (Data are represented as mean + SEM; n of cells same as (l);
approach U = 2.45, *p = 0.014, stretch U = 0.25, p = .81, escape U = -2.16, *p = .03, U = -3.80, ***p = 0.0001, Wilcoxon
Rank Sum Test). (K) A generalized linear model (GLM) to predict single cell activity was constructed using approach,
stretch, escape and freeze behaviors as variables. Bar plots show average GLM weights for approach and freeze for
open, closed and neither cells. (Data are represented as mean + SEM; n = 62 open cells, n = 155 neither cells, n = 83
closed cells; approach U = 4.17, ***p < 0.001, p = .11, freeze U = 3.02, ***p < 0.001, Wilcoxon Rank Sum Test).

12


https://doi.org/10.1101/2020.11.19.389486
http://creativecommons.org/licenses/by/4.0/

285
286
287
288
289
290
291

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.19.389486; this version posted November 19, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A EPM Rat

f
AN

start —» rat

‘l

o 2]

Use k-means to find 10 clusters from the Now that each timepoint has been assigned a cluster, calculate the
neural data in an unsupervised manner. mean approach/avoidance score for each cluster, for each session.
(For simplicity, only 4 clusters shown.)

2100s @oueplone/yoeoldde

]
-

©
- 0 4 =
n < c?
* g8 8 3
3 S5 5o
o a3 —> a9
1 @ z-1 =
T l T ] | 5§38
g = 1234
cluster# 1 . 3 |4 cluster #
Define cluster with min or mean Apply k-means-defined avoidance and I I centroids from one
score as, respectively, the avoidance assay (Training) to the other assay (Testing) and compare scores.
or cluster for each mouse. o i
Training Testing
~ @ = Fo
5a 1 = centroids-.,.,: 2. = | ]
T 3 o [ A A . G . .
e © | A © ¥
23 S A - L =
82 * Tt R @ T,
CHTI 8 : 3 ._
cell # 1 activity cell # 1 activity
Avoid () and approach ([7) clusters Training (A) and testing (o) data samples
C _ EPM Rat D Train on Rat Test on EPM
% mean avoidance score mean avoidance score 2y FEE — ik
oo 30 30 o ; i
m O —_
58 i g el |
8& <& A o
a%go 0 . 0 o
S -5 3 -5 3 z -4
© = Train on EPM Test on Rat
Q *kk k%
i't’ mean h score mean I score S : =
a8 30 30 ) a :
g% g —>
7] =
- Q
8°% ¢ 0 -4
-5 3 -5 3
approach/avoid score approach/avoid score M avoidance cluster approach cluster

Figure 4. DPAG displays a shared neural representation of approach and avoidance states across the
EPM and rat exposure assays.

(A) Example tracks in the EPM (left) and Rat exposure assay (right), color-coded by approach/avoidance score (see
Methods). The approach score increased during movements towards the threat, reaching +1 when the animal reaches the
end of the open arms or the rat. The score decreases during movement away from threat and reaches its minimum value
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of -1 when the mouse reaches the end of closed arms or the furthest point from the rat. This score was developed as a
measure of approach/avoidance states. (B) Explanatory diagram depicting steps of the clustering analysis (see Methods).
(1) K-means (k = 10) was used to find clusters in the neural data in an unsupervised manner. (2) The mean
approach/avoidance score was calculated for each cluster defined in step 1. (3) The ‘avoidance’ and ‘approach’ clusters
were identified as those with, respectively, the minimum or maximum mean approach/avoid score calculated in step 2. (4)
The approach and avoidance centroids defined in one assay were used to classify neural data from the other assay,
based on the minimum euclidean distance for each sample (as depicted by solid arrow). (C) Arrow depicts the
experimentally observed mean approach/avoidance score for avoidance and approach clusters across concatenated
sessions (n = 7 mice). This mean was compared to a bootstrapped distribution of avoidance (top) or approach (bottom)
cluster means, calculated by shuffling the neural data 100 times (EPM cells n=801, rat assay cells n=878; for all, p <
0.01). (D) (left) Bars depict the mean Rat and EPM approach/avoidance scores (+/- 1 s.e.m.) for approach and avoidance
clusters across mice. (right) As described in Methods and 4B, these cluster centroid locations, trained on one assay, were
then used to define approach and avoidance timepoints in the other assay. Bars depict the corresponding mean
approach/avoidance score (+/- 1 s.e.m.) for this testing data (Train on EPM: avoidance cluster n = 3867, approach cluster
n = 5027; Test on Rat: avoidance cluster n = 2445, approach cluster n = 2622; Train on Rat: avoidance cluster n = 4894,
approach cluster n = 3222; Test on EPM: avoidance cluster n = 2624, approach cluster n = 1446 (n represents the
number of time points, not cells); coregistered cells n=399; Wilcoxon ranked-sum test, *** p < 0.001).
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Supplementary Figures
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Figure 1—figure supplement 1. Deep brain imaging of dorsal periaqueductal gray neurons and
distribution of EPM scores. (A) (top) Coronal section of the periaqueductal gray showing GCaMP6s expression and
representative GRIN lens placement in the dorsal part of the periaqueductal gray (dPAG) (DAPI, blue; GCaMP6s, green).
Position of the section relative to bregma is indicated in the lower left corner. Aq: aqueduct (Sylvius). Scale bar: 50um.
(bottom) Maximum projection of the dPAG field of view in an example mouse. (top right) Anatomical scheme of GRIN lens
front location of animals expressing GCaMP6s under the control of the Syn promoter in large populations of dPAG
neurons (n = 8 mice). (B) lllustration and sequence of elevated plus maze (EPM) and rat exposure assays. (C) The EPM
score (blue) differs significantly from distribution expected by chance (red line). (n = 857 cells; U = 15.62, p <0 .001,
Wilcoxon Rank Sum Test). The EPM score is near +1 for cells that fire similarly in arms of the same type. For example, a
cell that had very high firing rate in both open arms and very low rate on both closed arms would have a score near 1. A
cell with high firing in both closed arms and low firing in both open arms also would have a score near 1. Thus, both open
and closed-arm preferring cells would have positive scores. A cell firing uniformly in the environment would have a score
near 0. A cell that fired differently in arms of the same type would have negative score, such as a cell that has high firing
rate in one open arm and lower than mean firing rate in the other open arm. Note that this is a different metric from the
arm score metric shown in Figure 1F.
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Figure 3—figure supplement 1. Validation of 150 150
co-registration procedure. The peak-to-noise
ratio (PNR) and mean peak amplitude correlation
values were calculated for co-registered cells
between rat and EPM assays. Cell identities were
then shuffled within the ten nearest neighbors 1000 l l
times, and the same correlation measures were 0.
calculated for each iteration. The resulting bootstrap -05 25 05 ;
distribution was compared to the actual peak-to- PNR r-val, sess 1&2 peak amplitude r-val
noise and mean peak amplitude values, indicated sess 182
with arrow (n=462; p<.001, n=7 mice).

shuffled neighbor id
bootstrap count

6
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Figure 3—figure supplement A EPM

Rat

3. _Correlatlon of dorsal mopfn

perlaqueductgl .gray cell — &S
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rat. (A) Heatmaps show the ’ rat
normalized activity of example

open, closed, and neither cells
across both the EPM and rat
exposure assays. Note that the

open arm cell was more active
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exposure). Higher x position
corresponds to locations more near the rat. (C) Mean correlation of dF/F with x position in the rat assay (Data are
represented as mean + SEM; n = 64 open cells, n = 166 neither cells, n = 87 closed cells; U = 3.89, **p < 0.001,
Wilcoxon Rank Sum Test, n = 7 mice, r = Pearson’s correlation coefficient).
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Figure 3—figure supplement 4. Increased rat velocity predicts lower approach to rat and higher threat
avoidance related behaviors such as escape and threat. Separate generalized linear models (GLMs) were fit
with rat velocity as the predictor variable and one of the binarized mouse behaviors: either approach (left), escape
(middle), or freeze (right), as the response variable. The red arrow depicts the actual GLM coefficient for rat velocity, given
each mouse behavior, while the histogram depicts the bootstrapped distribution of rat velocity coefficient values for
shuffled timepoints. Compared to this distribution, rat velocity shows a significantly negative coefficient for approach and
significantly positive coefficients for escape and freeze. These data show that higher rat velocity predicts decreased
occurrence of approach and increased frequency of escape and freezing. (*** p < 0.001, n = 7 mice).
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Figure 3—figure supplement 5.
DPAG displays a shared neural
representation of risk imminence
across the EPM and rat exposure
assays. (A) Constrained Correlation
Analysis (CoCA) reveals correlated
encoding of behaviors and neural
activity consistent across EPM and rat
exposure assays. Linear projections of
behaviors (top) correlate  with
projections of neural activity (bottom).
Weights were optimized to maximize

the correlation between neural and
behavioral projections. Weight
selection was constrained in the

following way: weights for behavioral
variable weights for each assay had to
be conserved across mice, whereas
neural projector weights had to be fixed
across the EPM and rat assays for
each cell. The behavioral variables
used are listed in the x-axis of (B).
Colors indicate consistent cells and
projector weights. (B) Weights of CoCA
behavioral projector variables for the
EPM (top) and rat exposure (bottom)
assays showing the relative importance
of each variable in each assay. All
variables were normalized to unit
variance before training and testing,
with the exception of [x| and |y|, which
were scaled to the range [0, 1]. (C)
CoCA neural projection weights
normalized to the range [-1, 1], mean
+/- 1 SEM. (Data are represented as

available under aCC-BY 4.0 International license.
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mean + SEM; n = 64 open cells, n = 166 neither cells, n = 87 closed cells; U = 8.02, **p < 0.001, Wilcoxon Rank Sum
Test, n =7 mice). (D) (left) Example correlation of CoOCA projection of behavioral data with projection of neural data for
testing data (mouse 4, rat exposure). Each point is one time point of data. (right) Correlation values of CoCA projection of
behavioral data with projection of neural data for testing data for each mouse in each assay (p < 0.05 all trials v.s. random
weights, see Methods). (E) CoCA projection of neural data in the EPM (top) and rat exposure (bottom) assays for the
same mouse. (F) Similar to (E), but as a heatmap using testing data from all mice for EPM (top) and rat exposure
(bottom). (G) Projection of testing neural data is correlated with safety score (EPM, left) and x position (Rat, right) for an
example mouse (r = Pearson’s correlation coefficient). Larger EPM threat scores correspond to locations more near the
extreme end of the open arms. Larger x position values correspond to locations more near the rat. (H) Average correlation
of projection of neural data with EPM threat score and x position (Rat) differs significantly from 0 (Data are represented as
mean * SEM; n=7 mice; EPM t = 10.80; Ratt = 6.49, ***p < 0.001, one-sample t-test).
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Figure 4—figure supplement 1. Approach
and avoidance identified by k-means with

fewer clusters and Hidden Markov
Model. (A) Arrow depicts the mean
approach/avoidance score for avoidance and

approach clusters (4 clusters), identified by k-
means, across concatenated sessions (n = 7 mice).
This mean was compared to a bootstrapped
distribution ~ of  approach/avoidance  means,
calculated by shuffling the neural data 100 times (n
cells same as Fig. 4C; p < 0.01). (B) (left) Bars
depict the mean Rat and EPM approach/avoidance
scores (+/- 1 s.e.m.) for approach and avoidance
clusters across mice. (right) As described in
Methods and Fig. 4B, these cluster centroid
locations, trained on one assay, were then used to
define approach and avoidance timepoints in the
other assay. Bars depict the corresponding mean
approach/avoidance score (+/- 1 s.e.m.) for this
testing data (Train on EPM: avoidance cluster n =
14683, approach cluster n=8949; Test on Rat:
avoidance cluster n = 15727, approach cluster n =
7724; Train on Rat: avoidance cluster n = 10335,
approach cluster n = 7742; Test on EPM: avoidance
cluster n = 9867, approach cluster n = 3028; n cells
same as Fig. 4D; Wilcoxon ranked-sum test, *** p <
0.001). (C) Same as (A) but using Hidden Markov
Model with 10 states rather than k-means; for all, p
<0.01).
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Figure 4—figure supplement 2. DPAG ensembles to not
encode approach and avoidance to a control toy rat. Bars
depict the mean EPM approach/avoidance scores (+/- 1 s.e.m.) for
approach and avoidance clusters across mice (left). As described
in Methods and Figure 4B, these cluster centroid locations,
identified using EPM data, were then used to define approach and
avoidance timepoints in the toy rat assay (right). Bars depict the
corresponding mean approach/avoidance score (+/- 1 s.e.m.) for
this testing data (EPM: avoidance cluster n = 3066, approach
cluster n = 6207; Toy Rat: avoidance cluster n = 1985, approach

Train on EPM Test on Toy Rat
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cluster n = 3497; Wilcoxon ranked-sum test, *** p < 0.001, n = 7 mice).
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Figure 4—figure supplement 3. Fraction of
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Materials and Methods

Mice. Mice (Mus musculus) of the C57BL/6J strain (Jackson Laboratory stock No. 000664) were
used for all experiments. Male mice between 2 and 5 months of age were used in all experiments.
Mice were maintained on a 12-hour reverse light-dark cycle with food and water ad libitum. Sample
sizes were chosen based on previous behavioral studies with miniaturized microscope recordings on
defensive behaviors, which typically use 6-10 mice per group. All mice were handled for a minimum
of 5 days prior to any behavioral task. In this work, analyses of the Elevated Plus Maze (EPM)
environment used 8 mice, while any analyses involving rat exposure used 7 mice. Sample size was
chosen based on prior dIPAG calcium transient recordings (Evans et al., 2018). All procedures have
been approved by the University of California, Los Angeles Institutional Animal Care and Use
Committee, protocols 2017-011 and 2017-075.

Rats. Male Long-Evans rats (250-400 grams) were obtained from Charles River and were individually
housed on a standard 12-hour light-dark cycle and given food and water ad libitum. Rats were only
used as a predatory stimulus. Rats were handled for several weeks prior to being used and were
screened for low aggression to avoid attacks on mice. No attacks on mice were observed in this
experiment.
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Surgeries. Eight-week-old mice were anaesthetized with 1.5-3.0% isoflurane and placed in a
stereotaxic apparatus (Kopf Instruments). AAV9.Syn.GCaMP6s.WPRE.SV40 were packaged and
supplied by UPenn Vector Core at titers 7.5 x 10 viral particles per ml and viral aliquots were diluted
prior to use with artificial cortex buffer to a final titer of 5 x 10 viral particles per ml. After performing
a craniotomy, 100nl of virus was injected into the dPAG (coordinates in mm, from skull surface): -4.20
anteromedial, -0.85 lateral, -2.3 depth, 15-degree angle. Five days after virus injection, the animals
underwent a second surgery in which two skull screws were inserted and a microendoscope was
implanted above the injection site. A 0.5 mm diameter, ~4 mm long gradient refractive index (GRIN)
lens (Inscopix, Palo Alto, CA) was implanted above the dPAG (-2.0 mm ventral to the skull surface)
(Resendez et al., 2016). The lens was fixed to the skull with cyanoacrylate glue and adhesive cement
(Metabond; Parkell). The exposed end of the GRIN lens was protected with transparent Kwik-seal
glue and animals were returned to a clean cage. Two weeks later, a small aluminum base plate was
cemented onto the animal’s head on top of the previously formed dental cement. Animals were
provided with analgesic and anti-inflammatory (carprofen).

Behavioral timeline. Behavioral tests were combined in the following manner across days: EPM test,
habituation 1, habituation 2 (toy rat), rat exposure. Each experiment was performed twice, with two
cohorts of 3 and 4 mice each. Each mouse was only exposed to each assay once, as fear assays
cannot be repeated. Thus, there are no technical replicates. No outliers were found or excluded. All
mice were used. Neural recordings were obtained from all mice in identical conditions, and thus they
were all allocated to the same experimental group. There were no experimentally controlled
differences across mice and there were no “treatment groups”.

Elevated Plus Maze test. Mice were placed in the center of the EPM facing one of the closed arms
and were allowed to freely explore the environment for 20 minutes. The length of each arm was 30
cm, the width was 7 cm and the height of the closed arm walls was 20 cm. The maze was 65 cm
elevated from the floor by a camera stand. A total of 8 mice were analyzed.

Rat Exposure Assay. Mice were habituated to a white rectangular box (70 cm length, 26 cm width,
44 cm height) for two consecutive days during 20-minute sessions. Mice were then exposed to an
adult rat in this environment on the following day. The rat was secured by a harness tied to one of the
walls and could freely ambulate only within a short perimeter. The mouse was placed near the wall
opposite to the rat and freely explored the context for 20 minutes. No separating barrier was placed
between the mouse and the rat, allowing for close naturalistic encounters that can induce a variety of
robust defensive behaviors. A total of 7 mice were analyzed.

Behavior and miniscope video capture. All videos were recorded at 30 frames/sec using a
Logitech HD C310 webcam and custom-built head-mounted UCLA miniscope (Aharoni and
Hoogland, 2019). Open-source UCLA Miniscope software and hardware (http://miniscope.org/) were
used to capture and synchronize neural and behavioral video (Cai et al., 2016; Schuette et al., 2020).

Perfusion and histological verification. Mice were anesthetized with Fatal-Plus and transcardially
perfused with phosphate buffered saline followed by a solution of 4% paraformaldehyde. Extracted
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brains were stored for 12 hours at 4°C in 4% paraformaldehyde. Brains were then placed in sucrose
solution for a minimum of 24 hours. Brains were sectioned in the coronal plane in a cryostat, washed
in phosphate buffered saline and mounted on glass slides using PVA-DABCO. Images were acquired
using a Keyence BZ-X fluorescence microscope with a 10 or 20X air objective.

Data Analysis was performed using custom-written code in MATLAB and Python.

Miniscope postprocessing and co-registration. Miniscope videos were motion-corrected using the
open-source UCLA miniscope analysis package (https://github.com/daharoni/Miniscope_Analysis)
(Aharoni and Hoogland, 2019). They were spatially downsampled by a factor of two and temporally
downsampled by a factor of four, and the cell footprints and activity were extracted using the open-
source package Constrained Nonnegative Matrix Factorization for microEndoscopic data (CNMF-E;
https://github.com/zhoupc/CNMF_E) (Zhou et al., 2018). Neurons were co-registered across sessions
using the open-source probabilistic modeling package CellReg (https://github.com/ziviab/CellReg)
(Sheintuch et al., 2017).

Artifact suppression. For suppression of long timescale artifacts, e.g. long-time scale fluctuations in
calcium fluorescence shared across many neurons due to bleaching or other factors, we used PCA to
identify large variance PCs (2 5% total variance) reflecting these artifacts. Cell activity was then
reconstructed using these PCs excluded from reconstruction (O'Shea and Shenoy, 2018). This
method was applied only to data for mouse 1 in the rat exposure assay.

Variance thresholding. A minority of recorded cells had very small variance over the course of an
experimental session. To exclude these cells from analysis, we identified a representative cell for
each trial. Cells with less than 10% of the representative cell’s variance were discarded. The
remaining cells were used for further analysis.

Behavior detection. To extract the pose of freely-behaving mice in the described assays, we
implemented DeepLabCut (Mathis et al., 2018), an open-source convolutional neural network-based
toolbox, to identify mouse nose, ear and tail base xy-coordinates in each recorded video frame.
These coordinates were then used to calculate velocity and position at each time point, as well as
classify defensive behaviors in an automated manner using custom Matlab scripts. Freezing was
defined as epochs of cessation of all movement except for breathing. Approach and escape were
defined as epochs when the mouse moved, respectively towards or away from the rat at a velocity
exceeding a minimum threshold.

Categorization of open, neither and closed arm-preferring cells. A cell was categorized as an
open arm-preferring cell if activity in each individual open arm was significantly greater than the
pooled activity in the closed arms (Wilcoxon rank sum test, p < 0.05). Likewise, a closed arm-
preferring cell was identified as a cell whose activity in each individual closed arm was significantly
greater than the pooled activity in the open arms. The remaining cells were labeled as neither arm-
preferring cells.

Behavior-aligned trace and AdF/F activity. We calculated each cell’'s z-scored behavior-aligned
activity by computing the mean activity of the cell over all behavior occurrences, aligned to behavior
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onset. The mean peri-behavior trace for an ensemble (e.g., closed cells, open cells, or neither cells)
was the average of peri-behavior activity across all cells in the ensemble. Change in mean activity
after and before behavior was calculated by first subtracting the mean activity of each cell during the
time frame [-2.5, 0] seconds relative to behavior onset from the mean activity of each cell in the time
frame [0, 2.5] seconds. The overall difference in an ensemble, denoted AdF/F, was the average of the
change in mean activity across all cells in the ensemble. For head dips, AdF/F was calculated using
windows of [-5, -2.5] (before) and [0, 2.5] (after).

Interleaved training and testing data. For analyses involving regression (EPM safety score, CoCA),
testing data were interleaved with training data, with 60 seconds for each segment and 10 seconds of
separation between data types, i.e., [60s training, 10s excluded, 60s testing, 10s excluded, 60s
training, etc.]. These gaps minimize overlapping activity in the training and testing sets, which may
arise due to dynamics in calcium activity.

EPM arm score. The arm score quantifies the separability of cell activity between arm types and is
invariant to scaling and shifting. Excluding times when the mouse was in the center of the EPM, data
points were labeled according to whether the mouse was in an open arm (positive label) or a closed
arm (negative label). The arm score was then defined as:

arm score = 2*AUC - 1,

where AUC is the area under the receiver operating characteristic curve resulting from predicting
which arm the mouse was in from single-cell activity. Cells with strong preference for firing in the
closed arms or open arms respectively have arm score values near -1 and +1. An arm score of
exactly +1 indicates that cell activity in the open arm is strictly greater than activity in the closed arm.

EPM score. The EPM score quantifies how differently a cell fires between closed vs open arms. It is
close to 1 when the cell has large differences in activity between arms of different types but is
negative if the cell’s activity is more similar between different arm types than between same arm
types. To calculate EPM score, we first compute the mean difference in z-scored activity between
arms of different types (A) and arms of the same type (B). These are defined as

A =0.25* (|Fc1 - Fou| + |Fc1 - Foz| + |Fc2 - Foul + |Fcz - Fozl)
B=05* (ch1 - Fczl + |F01 - FOZl)!

where Fo; and Fo, are the mean z-scored activity of the cell in open arms 1 and 2, respectively, and
Fci1 and Fc, are the mean z-scored activity in closed arms 1 and 2 (Adhikari et al., 2011). The EPM
score is defined as:

EPM score=(A-B)/ (A +B).

Cells with high EPM score if they have large differences in activity in different arm types (large A) and
similar activity in same type arms (small B). The maximum score of 1.0 indicates no difference in
firing rates across arms of the same type (B = 0). Cells with negative EPM scores have more similar

activity across arms of different types than across arms of the same type.
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EPM threat score. The threat score quantifies the threat exposure to the mouse. It is close to 1 when
the mouse is at the end of an open arm, and close to -1 when the mouse is at the end of the closed
arms. To calculate threat score, we first normalized the x and y position of the mice in the EPM to be
in the range [-1, 1], where the x position is 1 at the ends of the open arms and the y position is +1 at
the ends of the closed arms. We defined the threat measure as:

threat score = |x| - |y|.

The threat score is therefore a value between-1 and 1. Prediction of threat score (Figure 1H-1) was
performed using linear regression with interleaved training and testing data. Outputs were clipped to
the range [-1, 1] before final prediction was made.

Prediction of mouse position in the EPM from neural data using a linear support vector
machine (SVM).

After z-scoring data, times when the mouse was in the center of the EPM were removed from
training. The remaining data were separated into alternating blocks of 50s training data and 50s
testing data with 10s of separation between blocks. A linear SVM was fit on training using scikit-
learn's SVC function with balanced class weights (Pedregosa et al., 2011). Significance testing was
performed with bootstrapping using shuffled class labels for 100 random trials per mouse. The
Matthews correlation coefficient was used to quantify the relation between predicted and observed
arm-type occupancy because this metric was developed to assess correlations between binary
values (such as arm-type, which can only be closed or open arms).

Zones in the rat assay. The safe zone was defined as the left 20% of the rat environment, based on
X position. The threatening zone was defined as being within 20% of the maximum distance from the
rat during the exposure.

Generalized linear model: A generalized linear model (GLM) was fit for each cell. Each GLM
mapped behavior variables to the cell’s z-scored calcium activity. Discrete behaviors were binary,
labeled as 1 at all times in which they occurred and 0 otherwise. To enable behaviors to alter neural
activity prior to and following the behavior, each binarized behavior was convolved with a non-causal
log-time scaled raised cosine basis, from 5 seconds before behavior onset to 5 seconds after
behavior offset. Further, to enable historical kinematics to affect present neural data, the kinematics
were convolved with a causal kernel, which used the same set of bases as the behavior, but only had
responses after the onset within 5 seconds. These convolved behavior variables, denoted here as vy,
Yo, etc., were then modeled to produce the cell’s calcium fluorescence as:

X=P1y1+B2Y2+ "+ B Ym+C,

where g; is the coefficient for the ith behavior variable. In total, there were 8 behavior variables for rat:
distance to rat, mouse velocity, rat velocity, angle from mouse’s head to the rat, and occurrence of
approaching, escaping and freezing. The GLM was optimized by minimizing the mean-square error of
the reconstruction between the GLM activity estimate, X, and the recorded calcium activity.

Cross-assay Constrained Correlation Analysis (CoCA).
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To investigate if the dPAG uses shared patterns of neural activity to represent threat imminence
across assays we developed Constrained Correlation Analysis (CoCA). This model identifies the
features used in a shared neural representation between different threatening situations. The CoCA
technique defined a shared neural projection as a linear combination of the activity of individual
neurons. Additionally, we constructed a behavioral projection for each assay, through a linear
combination of each assay’s behavioral variables. Optimization via CoCA produced neural projection
weights that were compared across open and closed cell ensembles.

kxT
We denote calcium fluorescence neural data as X € R and externally-observed behavioral data

xXT
asyY e Rp , Where k is the number of recorded cells for the corresponding mouse, shared across

assays, p is the chosen number of behavioral variables for the corresponding assay, shared across
mice, and T is the length of a recording session, unique for each session, but shared between neural
and behavioral data for the same session. Behavioral variables contained both continuous kinematic
variables (such as speed and distance from rat) as well as binary defensive behavior variables (such
as the occurrence of freezing and escape). All variables were normalized to zero mean and unit
variance, except normalized |x| and |y| in EPM, which were already in the range [0, 1] (variance <
0.25).

In order to find a common linear projection of threat across mice and assays, we performed the
following optimization with mouse IDs i = 1, 2, ...7 and assay IDs j = EPM, RAT. Calcium fluorescence
traces of dPAG cells for mouse i were linearly combined after multiplying each cell with weights n;' to
ne', where k is the number of cells that were co-registered in both assays. Taking the dot product of
the calcium activity for mouse i in assay j, given by Xi;, and the weights n' = [n'._] defined a neural
projection for mouse i and assay j, given by N;; = (ni)TXiJ (Figure 6A, neural data projection in red).
For each mouse, the weights, n', were the same across assays, so that each cell had the same
weight in both assays. The behavioral variables for the EPM (such as x and y position, speed, etc.)
were linearly combined with a set of weights b; to bg (as 6 behavioral variables were used for the
EPM). These weights, b¥™ = [b,""™, b.m"M, ..., b¢™ "] were conserved across all mice. Linearly
combining the EPM behavioral variables resulted in a behavioral projection for mouse i and assay
EPM, given by Biegpm = (b5"™)TY, epm. Similarly, 9 behavioral variables from the rat assay were linearly
combined to produce a behavioral projection Bigar = (b7*7)Y; rat Using weights b™AT = [b;"AT, b,"AT,
..., bo""T]. We chose the neural weights, n', and the behavioral weights, b and b®", to optimize
the correlations across all mice and assays:

max Z Z corr(Nl-,j, Bi,j)
Lo

where corr() is the Pearson correlation coefficient, and N;; and B;; are the linear projections of neural
and behavioral data, respectively, given by: N;; = (ni)TXi,j and B;; = (b")TYi,j. The optimization variables
n',i=1,2,..7, and b, j = EPM, RAT, were simultaneously optimized using gradient descent via the
Adam optimizer (Kingma and Ba, 2015) until convergence. Results presented use interleaved training
and testing data. This method was implemented using PyTorch.
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CoCA bootstrapping. In order to test if correlations of testing data were better than expected by
chance, correlations were computed between projected behavioral data (using projections fit by
training data) and random projections of neural data (1000 trials). We emphasize these correlations
were applied to the testing data, and therefore it was possible for a random projection to have higher
correlation than the CoCA projection. Here a one-tailed test was used.

Approach/Avoidance score. To calculate the continuous approach/avoidance score for each assay,
the distance from safety was calculated (Rat: distance from the safe wall; EPM: distance from the end
of the closed arm) and normalized such that it ranged from 0 to 1 in the Rat assay and 0 to 0.9 in the
EPM. A binarized direction value was also assigned to each timepoint, indicating if the mouse was
moving towards (+1) or away from (-1) the threat. To incorporate categorized behaviors, the
approach/avoidance score for freeze samples equaled the minimum score of -1. For the EPM only,
the approach/avoidance score was multiplied by 1.11 for head dip samples, such that a head dip at
the end of the open arm would yield the maximum score of 1.

To calculate the score at each timepoint:
While approaching threat, approach/avoidance score = distance to safety x direction
While avoiding threat: approach/avoidance score = [1-distance to safety] x direction

K-means clustering of neural data. To determine if the approach/avoidance score is represented in
the neural data, the k-means algorithm (k=10) was used to cluster the neural data in an unsupervised
manner. For each implementation of k-means, ten sets of clusters were identified using ten different
randomized initializations; the set with the minimum sum of euclidean distances was used. The
approach and avoidance clusters then identified, for each session, as those with, respectively, the
highest and lowest mean approach/avoidance scores. The overall mean approach/avoidance scores
for approach and avoidance clusters were then calculated across mice. To determine if these
approach and avoidance cluster scores were statistically significant, the actual mean was compared
to a bootstrapped distribution of means, calculated in an identical manner with shuffled neural data
over 100 iterations. If the approach and avoidance score means were respectively greater than or
less than 95% of this bootstrapped distribution, they were considered significant. For the
training/testing analysis, k-means was implemented on one assay as described above (the training
assay), using only cells that coregistered between both assays. The cluster centroids identified in the
training assay were then used to categorize approach and avoidance samples in the withheld testing
assay. The mean approach/avoidance score was calculated for all approach and avoidance
timepoints, across all training or testing sessions.

In a similar way, approach/avoidance states were identified by Hidden Markov Models (10 states),
using the top principal components of the neural data as input (accounting for >=60% of the total
variance). These states were analyzed in an identical manner to the k-means clusters described
above. For the code, see 'Expectation-Maximization for Hidden Markov Models using real-values
Gaussian observations' at Zoubin Ghahramani's code base:
http://mlg.eng.cam.ac.uk/zoubin/software.html).
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Statistical analysis. Significance values are included in the figure legends. Unless otherwise noted,
all statistical comparisons were performed by either nonparametric Wilcoxon rank-sum or signed-rank
tests. With the exception of CoCA bootstrapping, all significance tests were two-tailed. Standard error
of the mean was plotted in each figure as an estimate of variation of the mean. Correlations were
calculated using Pearson’s method. Multiple comparisons were corrected with the false discovery rate
method. All statistical analyses were performed using SciPy (Virtanen et al., 2020) and custom
Matlab scripts.

Data and code availability

All data was uploaded to dryad and all code was uploaded to github.
https://datadryad.org/stash/share/4GezSjw4dvDJCIAWa_zRoNWioH9qzGtDCJjLQ89HVOoA
https://doi.org/10.5068/D1TM2G
https://github.com/schuettepeter/eLife_dPAG-ensembles-represent-approach-and-avoidance-states
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