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Abstract 
Culture-independent analyses of microbial communities have advanced dramatically in the last           
decade, particularly due to advances in methods for biological profiling via shotgun metagenomics.             
Opportunities for improvement continue to accelerate, with greater access to multi-omics, microbial            
reference genomes, and strain-level diversity. To leverage these, we present bioBakery 3, a set of               
integrated, improved methods for taxonomic, strain-level, functional, and phylogenetic profiling of           
metagenomes newly developed to build on the largest set of reference sequences now available.              
Compared to current alternatives, MetaPhlAn 3 increases the accuracy of taxonomic profiling, and             
HUMAnN 3 improves that of functional potential and activity. These methods detected novel             
disease-microbiome links in applications to CRC (1,262 metagenomes) and IBD (1,635           
metagenomes and 817 metatranscriptomes). Strain-level profiling of an additional 4,077          
metagenomes with StrainPhlAn 3 and PanPhlAn 3 unraveled the phylogenetic and functional            
structure of the common gut microbe ​Ruminococcus bromii​, previously described by only 15 isolate              
genomes. With open-source implementations and cloud-deployable reproducible workflows, the         
bioBakery 3 platform can help researchers deepen the resolution, scale, and accuracy of             
multi-omic profiling for microbial community studies. 
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Introduction 
Studies of microbial community biology continue to be enriched by the growth of             
culture-independent sequencing and high-throughput isolate genomics ​(Almeida et al., 2020, 2019;           
Forster et al., 2019; Parks et al., 2017; Pasolli et al., 2019; Poyet et al., 2019; Zou et al., 2019)​.                    
Shotgun metagenomic and metatranscriptomic (i.e. “meta-omic”) measurements can be used to           
address an increasing range of questions as diverse as the transmission and evolution of strains in                
situ ​(Asnicar et al., 2017; Ferretti et al., 2018; Truong et al., 2017; Yassour et al., 2018)​, the                  
mechanisms of multi-organism biochemical responses in the environment ​(Alivisatos et al., 2015;            
Blaser et al., 2016)​, or the epidemiology of the human microbiome for biomarkers and therapy               
(Gopalakrishnan et al., 2018; Le Chatelier et al., 2013; Thomas et al., 2019; Zeller et al., 2014)​.                 
Using such analyses for accurate discovery, however, requires efficient ways to integrate hundreds             
of thousands of (potentially fragmentary) isolate genomes with community profiles to detect novel             
species and strains, non-bacterial community members, microbial phylogeny and evolution, and           
biochemical and molecular signaling mechanisms. Correspondingly, this computational challenge         
has necessitated the continued development of platforms for the detailed functional interpretation            
of microbial communities. 

The past decade of metagenomics has seen remarkable growth both in the biology accessible via               
high-throughput sequencing and in the methods for doing so. Beginning with the now-classic             
questions of “who’s there?” and “what are they doing?” in microbial ecology ​(Human Microbiome              
Project Consortium, 2012)​, shotgun metagenomics provide a complementary means of taxonomic           
profiling to amplicon-based (e.g. 16S rRNA gene) sequencing, as well as functional profiling of              
genes or biochemical pathways ​(Morgan et al., 2013; Quince et al., 2017; Segata et al., 2013)​.                
More recently, metagenomic functional profiles have been joined by metatranscriptomics to also            
capture community regulation of gene expression ​(Lloyd-Price et al., 2019)​. Methods have been             
developed to focus on all variants of particular taxa of interest within a set of communities ​(Pasolli                 
et al., 2019)​, to discover new variants of gene families or biochemical activities ​(Franzosa et al.,                
2018; Kaminski et al., 2015)​, or to link the presence and evolution of closely related strains within                 
or between communities over time, space, and around the globe ​(Beghini et al., 2017; Karcher et                
al., 2020; Tett et al., 2019)​. Critically, all of these analyses (and the use of the word “microbiome”                  
throughout this manuscript) are equally applicable to both bacterial and non-bacterial community            
members (e.g. viruses and eukaryotes) ​(Beghini et al., 2017; Olm et al., 2019; Yutin et al., 2018)​.                 
Finally, although not addressed in depth by this study, shotgun meta-omics have increasingly also              
been combined with other community profiling techniques such as metabolomics ​(Heinken et al.,             
2019; Lloyd-Price et al., 2017; Sun et al., 2018) and proteomics ​(Xiong et al., 2015) to provide                 
richer pictures of microbial community membership, function, and ecology. 

Methods enabling such analyses of meta-omic sequencing have developed in roughly two            
complementary types, either relying on metagenomic assembly or using largely          
assembly-independent, reference-based approaches ​(Quince et al., 2017)​. The latter is especially           
supported by the corresponding growth of fragmentary, draft, and finished microbial isolate            
genomes, and their consistent annotation and clustering into genome groups and pan-genomes            
(Almeida et al., 2020, 2019; Pasolli et al., 2019)​. Most such methods focus on addressing a single                 
profiling task within (most often) metagenomes, such as taxonomic profiling ​(Lu et al., 2017;              
Milanese et al., 2019; Truong et al., 2015; Wood et al., 2019)​, strain identification ​(Luo et al., 2015;                  
Nayfach et al., 2016; Scholz et al., 2016; Truong et al., 2017)​, or functional profiling ​(Franzosa et                 
al., 2018; Kaminski et al., 2015; Nayfach et al., 2015; Nazeen et al., 2020)​. In a few cases,                  
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platforms such as the bioBakery ​(McIver et al., 2018)​, QIIME 2 ​(Bolyen et al., 2019)​, or MEGAN                 
(Mitra et al., 2011) integrate several such methods within an overarching environment. While not a               
primary focus of this study, metagenomic assembly methods enabling the former types of analyses              
(e.g. novel organism discovery or gene cataloging ​(Lesker et al., 2020; Stewart et al., 2019)​) have                
also advanced tremendously ​(Li et al., 2015; Nurk et al., 2017) and are now reaching a point of                  
integrating microbial community and isolate genomics, particularly for phylogeny ​(Asnicar et al.,            
2020; Zhu et al., 2019)​. These efforts have also led to increased consistency in microbial               
systematics and phylogeny, facilitating the types of automated, high-throughput analyses          
necessary when manual curation cannot keep up with such rapid growth ​(Asnicar et al., 2020;               
Chaumeil et al., 2019)​. 

Here, to further increase the scope of feasible microbial community studies, we introduce a suite of                
updated and expanded computational methods in a new version of the bioBakery platform. The              
bioBakery 3 includes updated sequence-level quality control and contaminant depletion guidelines           
(KneadData), MetaPhlAn 3 for taxonomic profiling, HUMAnN 3 for functional profiling, StrainPhlAn            
3 and PanPhlAn 3 for nucleotide- and gene-variant-based strain profiling, and PhyloPhlAn 3 for              
phylogenetic placement and putative taxonomic assignment of new assemblies (metagenomic or           
isolate). Most of these tools leverage an updated ChocoPhlAn 3 database of systematically             
organized and annotated microbial genomes and gene family clusters, newly derived from            
UniProt/UniRef ​(Suzek et al., 2007) and NCBI ​(NCBI Resource Coordinators, 2014)​. Our            
quantitative evaluations show each individual tool to be more accurate and, typically, more efficient              
than its previous version and other comparable methods, increasing sensitivity and specificity by             
sometimes more than 2-fold (e.g. in non-human-associated microbial communities). Biomarker          
identifications in 1,262 colorectal cancer (CRC) metagenomes, 1,635 inflammatory bowel disease           
(IBD) metagenomes, and 817 metatranscriptomes show both the platform’s efficiency and its ability             
to detect hundreds of species and thousands of gene families not previously profiled. Finally, in               
4,077 human gut metagenomes containing ​Ruminococcus bromii​, the bioBakery 3 platform permits            
an initial integration of assembly- and reference-based metagenomics, discovering a novel           
biogeographical and functional structure within the clade’s evolution and global distribution. All            
components are available as open-source implementations with documentation, source code, and           
workflows enabling provenance, reproducibility, and local or cloud deployment at          
http://segatalab.cibio.unitn.it/tools/biobakery​ and ​http://huttenhower.sph.harvard.edu/biobakery​. 
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Results 
The bioBakery provides a complete meta-omic tool suite and analysis environment, including            
methods for individual meta-omic (and other microbial community) processing steps, downstream           
statistics, integrated reproducible workflows, standardized packaging and documentation via         
open-source repositories (GitHub, Conda, PyPI, and R/Bioconductor), grid- and cloud-deployable          
images (AWS, GCP, and Docker), online training material and demonstration data, and a public              
community support forum. For any sample set, quality control, taxonomic profiling, functional            
profiling, strain profiling, and resulting data products and reports can all be generated with a single                
workflow, while maintaining version control and provenance logging. All of the methods            
themselves, the associated training material, quality control using KneadData, and packaging for            
distribution and use have been updated in this version. For example, Docker images have been               
scaled down in size to optimize use in cloud environments, and workflows have been ported to                
AWS (Amazon Web Services) Batch and Terra/Cromwell (Google Compute Engine) to reduce            
costs through the use of spot and pre-emptive instances, respectively. All base images and              
dependencies have been updated as well, including the most recent Python (v3.7+) and R (v4.0+,               
see ​Methods​). New and updated documentation of all tools, including detailed instructions on             
installation in different environments and package managers, is available at          
http://huttenhower.sph.harvard.edu/biobakery​. 

High-quality reference sequences for improved meta-omic profiling 
The majority of methods within the bioBakery 3 suite leverage a newly-updated reference genome              
and gene cataloging procedure, the results of which are packaged as ChocoPhlAn 3 (​Fig. 1A​)               
(McIver et al., 2018)​. ChocoPhlAn uses publicly available genomes and standardized gene calls             
and gene families to generate markers for taxonomic and strain-level profiling of metagenomes             
with MetaPhlAn 3, StrainPhlAn 3, and PanPhlAn 3, phylogenetic profiling of genomes and MAGs              
with PhyloPhlAn 3, and functional profiling of metagenomes with HUMAnN 3. 

ChocoPhlAn 3 is based on a genomic repository of 99.2k high-quality, fully annotated reference              
microbial genomes from 16.8k species available in the UniProt Proteomes portal as of January              
2019 ​(UniProt Consortium, 2019) and the corresponding functionally-annotated 87.3M UniRef90          
gene families ​(Suzek et al., 2015)​. From this resource, ChocoPhlAn initially generates annotated             
species-level pangenomes associating each microbial species with its sequenced genomes and           
repertoire of UniRef-based gene (nucleotide) and protein (amino acid sequence) families. These            
pangenomes provide a uniform shared resource for subsequent profiling across bioBakery 3.            
HUMAnN 3 and PanPhlAn 3 are directly based on complete pangenomes for overall functional and               
strain profiling, whereas other tools use additional information annotated onto the catalog.            
PhyloPhlAn 3 focuses on the subset of conserved core gene families (i.e. present in almost all                
strains of a species) for inferring accurate phylogenies, and both MetaPhlAn 3 and StrainPhlAn 3               
further refine core gene families into species-specific unique gene families to generate            
unambiguous markers for metagenomic species identification and strain-level genetic         
characterization.  
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Figure 1: bioBakery 3 includes new microbial community profiling approaches that outperform previous             
versions and current methods. ​(A) The newly developed ChocoPhlAn 3 consolidates, quality controls, and annotates               
isolate-derived reference sequences to enable metagenomic profiling in subsequent bioBakery methods. (*The 1.1M             
MetaPhlAn 3 markers also comprise for 61.8k viral markers from MetaPhlAn 2 ​(Truong et al., 2015)​; other version                  
descriptions in ​(Asnicar et al., 2020; Scholz et al., 2016; Truong et al., 2017)​) ​(B) MetaPhlAn 3 was applied to a set of                       
113 total evaluation datasets provided by CAMI ​(Fritz et al., 2019) representing diverse human-associated microbiomes               
and 5 datasets of non-human-associated microbiomes ( ​Table S1​). MetaPhlAn 3 showed increased performance             
compared with the previous version MetaPhlAn 2 ​(Truong et al., 2015)​, mOTUs2 ​(Milanese et al., 2019)​, and Bracken                  
2.5 ​(Lu et al., 2017)​. We report here the F1 scores (harmonic mean of the species-level precision and recall, see ​Fig. S1                      
for other evaluation scores). ​(C) MetaPhlAn 3 better recapitulates relative abundance profiles both from human and                
murine gastrointestinal metagenomes as well from non-human-associated communities compared to the other currently             
available tools (full results in ​Fig. S1 ​). Bracken is reported both using its original estimates based on the fraction of reads                     
assigned to each taxon and after re-normalizing them using the genome lengths of the taxa in the gold standard to match                     
the taxa abundance estimate of the other tools. ​(D) Compared with HUMAnN 2 ​(Franzosa et al., 2018) and Carnelian                   
(Nazeen et al., 2020)​, HUMAnN 3 produces more accurate estimates of EC abundances and displays a higher species                  
true positive rate compared to HUMAnN 2. 
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MetaPhlAn 3 increases the accuracy of quantitative taxonomic profiling 
MetaPhlAn estimates the relative abundance of microbial taxa in a metagenome using the             
coverage of clade-specific marker genes ​(Segata et al., 2012; Truong et al., 2015)​. Such marker               
genes are chosen so that essentially all of the strains in a clade (species or otherwise) possess                 
such genes, and at the same time no other clade contains orthologs close enough to incorrectly                
map metagenomic reads. MetaPhlAn 3 incorporates 13.5k species (more than twice than            
MetaPhlAn 2) with a completely new set of 1.1M marker genes (84±47 mean±SD markers per               
species) selected by ChocoPhlAn 3 from the set of 16.8k species pangenomes. The adoption of               
UniRef90 gene families permitted the efficient expansion of the core-gene identification procedure,            
which is followed by a mapping of potential core genes against all available whole microbial               
genomes to ensure unique marker identification (see ​Methods​). This restructuring of the marker             
selection process has been combined with several improvements and extensions of the algorithm,             
including optimized quality control during marker alignments and an estimation of the metagenome             
fraction composed of unknown microbes (​Table S2​). 

We evaluated the taxonomic profiling performance of MetaPhlAn 3 using 118 synthetic            
metagenomes spanning 113 synthetic samples from the 2​nd ​CAMI Challenge ​(Fritz et al., 2019;              
Sczyrba et al., 2017) through the OPAL benchmarking framework ​(Meyer et al., 2019) These              
represent typical microbiomes from five human-associated body sites and the murine gut, and we              
complemented them with 5 additional newly-generated synthetic non-human-associated        
metagenomes (see ​Methods​). In addition to MetaPhlAn 3, the comparative evaluation considered            
MetaPhlAn 2.7 ​(Truong et al., 2015)​, mOTUs 2.51 ​(Milanese et al., 2019) (latest database              
available as of July 2020), and Bracken 2.5 (using a database built after the April 2019 RefSeq                 
release) ​(Lu et al., 2017; Wood et al., 2019)​. These three profiling tools have consistently been                
shown to outperform other methods across multiple evaluations ​(McIntyre et al., 2017; Meyer et al.,               
2019; Milanese et al., 2019; Sczyrba et al., 2017; Truong et al., 2015; Ye et al., 2019)​. 

MetaPhlAn 3 outperformed all the other profilers across all considered types of communities when              
assessing the F1 score (​Fig. 1B​), which is a measure combining the fraction of species actually                
present in the metagenomes that are correctly detected (recall, ​Fig. S1​) and the fraction of species                
predicted to be present that were actually included in the synthetic metagenome (precision, ​Fig.              
S1​). With a very low number of false positive species detected, MetaPhlAn 3 (avg 8.51 s.d. 5.12)                 
also maximized precision (​Fig. S1​) with respect to the other tools (avg 9 s.d. 4.78 for mOTUs in                  
high precision mode, the closest competitor on precision). On recall, Bracken and mOTUs in              
high-recall mode were in several cases superior to MetaPhlAn 3, but at the cost of a very high                  
number of false positives (on average 729 species for Bracken and 39 for mOTUs high-recall, for a                 
total of 86,077 and 4,655 false positive species across the synthetic metagenomes). MetaPhlAn             
can further minimize false positives by requiring a higher fraction of positive markers for positive               
species (“--stat_q” parameter, ​Fig. S2​), but overall the F1 measure with default settings remains              
higher than the other evaluated tools across the panel of synthetic metagenomes in our evaluation. 

In addition to more accurate species detection, MetaPhlAn 3 also quantified taxonomic abundance             
profiles more accurately compared to MetaPhlAn 2, mOTUs2, and Bracken based on Bray-Curtis             
dissimilarities in most datasets (​Table S3​, ​Fig. 1C​). While it was slightly outperformed by mOTUs               
(only in high-recall mode) on the synthetic mouse gut dataset, even in this case, correlation-based               
measures (Pearson Correlation Coefficient between estimated and expected relative abundances)          
found MetaPhlAn 3 to be more accurate (r=0.73) than the other considered profilers (MetaPhlAn 2               
r=0.63, mOTUs2 precision r=0.60, mOTUs2 recall r=0.71, Bracken r=0.43). Additionally, because           
Bracken estimates the fraction of reads belonging to each taxon rather than its relative abundance,               
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we also re-normalized its estimates based on genome length of the target species. This improved               
Bracken’s performance on taxonomic abundances (but not false positives or false negatives, see             
Methods​), but even so they were comparable with MetaPhlAn 3 in only some of the simulated                
environments (​Fig. S1​). Overall, this confirms that MetaPhlAn 3 is superior to its previous version               
and is more accurate than other currently available tools in the large majority of simulated               
environment-specific datasets. 

In addition to improvements in accuracy, MetaPhlAn 3’s computational efficiency also compares            
favorably with alternatives and with its previous version. It is >3x faster than MetaPhlAn 2 (10.0k                
vs. 2.9k reads/second on a Xeon Gold 6140) and almost matches the speed of Bracken (11k                
reads per second). MetaPhlAn 3 memory usage is slightly higher (2.6Gb for a complete taxonomic               
profiling run) than MetaPhlAn 2 (2.1Gb), but outperforms the other methods (4.3 Gb for mOTUs               
and 32.5 Gb for Bracken, ​Fig. S2​, ​Table S4​). 

HUMAnN 3 accurately quantifies species’ contributions to community function 
HUMAnN 3 functionally profiles genes, pathways, and modules from metagenomes, now using            
native UniRef90 annotations from ChocoPhlAn species pangenomes. We compared its          
performance against HUMAnN 2 ​(Franzosa et al., 2018)​, and the recently published Carnelian             
(Nazeen et al., 2020) when profiling the 30 CAMI and 5 additional synthetic metagenomes              
introduced above (see ​Methods and ​Fig. 1​). Carnelian was selected because it was published              
subsequent to HUMAnN 2 and, more importantly, follows the HUMAnN strategy of estimating the              
relative abundance of molecular functions directly from shotgun meta-omic sequencing reads           
rather than assembled contigs (albeit by a different approach). While HUMAnN 2 and 3 can both                
natively estimate the relative abundances of a wide variety of functional features from a              
metagenome (by first quantifying and then manipulating UniRef90 or UniRef50 abundances), we            
selected level-4 enzyme commission (EC) categories as a basis for comparison with Carnelian, as              
the method’s authors provided a precomputed index for EC quantification ​(Nazeen et al., 2020)​. 

HUMAnN 3 produced highly accurate estimates of community-level EC abundances across the 30             
CAMI metagenomes (mean ± SD of Bray-Curtis similarity=0.93 ± 0.03, ​Fig. 1​). HUMAnN 2              
followed with an accuracy of 0.70 ± 0.04 and Carnelian at 0.49 ± 0.04. While HUMAnN 3 benefits                  
in part from access to a more up-to-date sequence database, we note that HUMAnN 2’s database                
(c. 2014) predates the Carnelian method by several years, and so recency cannot be the only                
explanation for this trend. For example, Carnelian uses a mean sequence length per EC during               
abundance estimation, a choice which may contribute additional error relative to HUMAnN’s sum             
over per-sequence estimates. We observed similar trends in accuracy among the three methods             
using F1 score to prioritize presence/absence calls over abundance (​Fig. S3​). HUMAnN 2 and              
Carnelian were notably similar with respect to sensitivity (0.72 ± 0.05 vs. 0.74 ± 0.04, respectively)                
but not precision (0.95 ± 0.02 vs. 0.60 ± 0.08). This difference is attributable in part to HUMAnN’s                  
use of database sequence coverage filters (see ​Methods​) to reduce false positives, an approach              
introduced for translated search in HUMAnN 2 and expanded to nucleotide search in HUMAnN 3               
(​Fig. S4​). 

One of the main advantages of HUMAnN 3 (and 2) compared with other functional profiling               
systems (including Carnelian) is their ability to stratify community functional profiles according to             
contributing species. This feature is additionally more accurate and useful in HUMAnN 3 as a               
function of its broader pangenome catalog. Across the CAMI metagenomes, EC accuracy for             
species with at least 1x mean coverage depth was 0.81 ± 0.16 for HUMAnN 3 and 0.51 ± 0.15 for                    
HUMAnN 2 (mean ± SD within-species Bray-Curtis similarity; ​Fig. 1​). HUMAnN 3 (via MetaPhlAn              
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3) additionally tended to detect more expected species in this coverage range compared with              
HUMAnN 2, a major driver of its improved community-level accuracy. As previously noted             
(Franzosa et al., 2018)​, HUMAnN’s within-species function sensitivity is naturally lower for species             
below 1x coverage in a sample, as many of their genes will not have been sampled at all during the                    
sequencing process. Per-species precision, however, remained high with HUMAnN independent of           
coverage and, following refinements in alignment post-processing, was slightly improved in v3            
compared with v2 (0.95 ± 0.08 vs. 0.91 ± 0.07). 

Carnelian was the most computationally efficient of the three methods, analyzing the CAMI             
metagenomes in 26.4 ± 2.7 CPU-hours (mean ± SD) compared with 38.1 ± 12.8 CPU-hours for                
HUMAnN 2 and 52.5 ± 19.2 CPU-hours for HUMAnN 3 (​Fig. S3​). Trends in peak memory use                 
(MaxRSS) were similar, with Carnelian requiring 11.9 ± 0.0 GB versus HUMAnN 2’s 17.0 ± 0.3 GB                 
and HUMAnN 3’s 21.5 ± 1.9 GB. We attribute these differences in large part to the sizes of the                   
sequence spaces over which the methods search: while Carnelian focuses only on a subset of               
sequences annotatable to EC terms, HUMAnN aims to first quantify 10s of millions of unique               
UniRef90s, of which only 12.5% are ultimately annotated by ECs. The increased runtime of              
HUMAnN 3 compared to HUMAnN 2 is likewise attributable to the former’s larger translated search               
database (87.3M vs. 23.9M UniRef90 sequences), as the translated search tier is the rate-limiting              
step of the HUMAnN algorithm even when most sample reads are explained in the preceding               
nucleotide-level search tiers (​Fig. S5​). This phenomenon also explains the greater runtime            
variability of HUMAnN, as runtimes vary inversely with the (a priori unknown) fraction of sample               
reads explained before the translated search tier ​(Franzosa et al., 2018)​. Notably, by bypassing the               
translated search step, HUMAnN 3 could explain the majority of CAMI metagenomic reads (70.9 ±               
9.6% per sample) in only 5.8 ± 0.8 CPU-hours (a 9x speed-up; ​Fig. S5​), although this is generally                  
only appropriate for communities known to be well-covered by related reference sequences. 

Evaluations on a set of synthetic metagenomes enriched for non-human-associated species           
resulted in similar relative accuracy and efficiency trends among the three methods (​Fig. 1 and               
Fig. S3​). Hence, HUMAnN 3’s strong performance is not restricted to microbial communities             
assembled from host-associated species. Moreover, MetaPhlAn 3’s improved sensitivity for          
non-host-associated species increased both the accuracy and performance of HUMAnN 3 relative            
to HUMAnN 2 (by enabling a larger fraction of reads to be explained during the faster and more                  
accurate pangenome search step). Finally, we evaluated HUMAnN 3’s accuracy at the level of              
individual UniRef90 protein families (​Fig. S5​). As previously noted ​(Franzosa et al., 2018)​, the              
challenge of differentiating globally homologous UniRef90 protein sequences using short          
sequencing reads results in a reduction of community and per-species accuracy relative to broader              
gene families. However, because these homologs tend to share similar functional annotations, this             
error is smoothed out when individual UniRef90 abundances are combined in HUMAnN’s            
downstream steps (as seen in the EC-level evaluation; ​Fig. 1​). 

MetaPhlAn 3 and HUMAnN 3 expand the link between the microbiome and colorectal cancer              
with a meta-analysis of 1,262 metagenomes 
To illustrate the potential of bioBakery 3’s updated profiling tools and to extend our understanding               
of the microbial signatures in colorectal cancer (CRC), we expanded our previous work to              
meta-analyze both existing and newly available CRC metagenomic cohorts for a total of 1,262              
samples (600 control and 662 CRC samples) from 9 different datasets spanning 8 different              
countries ​(Feng et al., 2015; Gupta et al., 2019; Thomas et al., 2019; Vogtmann et al., 2016; Wirbel                  
et al., 2019; Yachida et al., 2019; Yu et al., 2017; Zeller et al., 2014)​. The resulting integrated                  
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profiles are available for download (​Table S5​) and included in the new release of              
curatedMetagenomicData ​(Pasolli et al., 2017)​. 

MetaPhlAn 3 identified a total of 1,083 species detected at least once (172 considered “prevalent”               
when defined as present in >5% of samples at >0.1% relative abundance), of which 505 species                
(52 prevalent) were previously not reported by MetaPhlAn 2 due to the expansion of the genome                
database (or in some cases because of changes in the NCBI taxonomy). In addition, 82 species                
present in the MetaPhlAn 2 database were not detected by MetaPhlAn 2 but are now identified in                 
the samples by MetaPhlAn 3, due to the expanded sequence catalog, improved marker discovery              
procedure, and increased sensitivity to low-abundance species ​(Thomas et al., 2019)​. 

We found 121 species significantly associated with CRC (FDR q<0.05 and Q-test for heterogeneity              
>0.05; ​Table S6​) by a meta-analysis of standardized mean differences using a random-effects             
model on arcsine-square-root-transformed relative abundances (see ​Methods​). Association        
coefficients were also concordant with previous MetaPhlAn 2-based results using a fraction of the              
samples ​(Thomas et al., 2019)​, including the three species with the highest effect sizes:              
Fusobacterium nucleatum​, ​Parvimonas micra​, and ​Gemella morbillorum​. We also identified three           
additional species not present in the previous MetaPhlAn 2 database that were among those most               
strongly associated with CRC (effect size >0.35): ​Dialister pneumosintes​, ​Ruthenibacterium          
lactatiformans​, and ​Eisenbergiella tayi (​Fig. 2B​, ​Fig. S6​, ​Fig. S7A​). Among these species, ​Dialister              
pneumosintes is typically oral, further reinforcing the role of oral taxa in CRC, and ​R. lactatiformans                
was reported as part of a consortium of bacteria able to increase colonic IFNγ+ T-cells ​(Tanoue et                 
al., 2019)​. The expanded number of species detectable by MetaPhlAn 3 also strengthened the              
previously-observed pattern of increased richness in CRC-associated microbiomes - in contrast to            
the stereotype of decreased diversity during dysbiosis - in large part due to low-level addition of                
typically oral microbes to the baseline gut microbiome (​Fig. 2C​). 

Functional profiling of this expanded CRC meta-analysis with HUMAnN 3 identified 4.3M UniRef90             
gene families, corresponding to 549 MetaCyc pathways and 2,895 ECs. 120 MetaCyc pathways             
were significantly associated with CRC (Wilcoxon rank-sum test FDR q<0.05 and Q-test for             
heterogeneity >0.05) (​Fig. S7B​), of which 59 (49.1%) overlapped previous results, including e.g.             
the increased abundance of starch degradation V (​Table S6​) in healthy individuals. This pathway              
encodes functions for extracellular breakdown of starch by an amylopullulanase ​enzyme, which            
has both pullulanase and α-amylase activity ​(Flint et al., 2012)​. ​Bifidobacterium breve and other              
Bifidobacterium spp have been shown to encode amylopullulanases and attach to starch particles,             
and they have also been reported for their potential protective role against carcinogenesis here and               
previously ​(Sivan et al., 2015)​. Among the 20 disease-associated pathways with the highest             
significance, only 3 were present in the previous meta-analysis, with the majority exhibiting             
significant heterogeneity in the random effects model (possibly due to the inclusion of additional              
geographically distinct cohorts here). Large and diverse cohorts combined with improved           
taxonomic and functional profiling available via bioBakery 3 thus have the possibility to extend and               
refine microbiome biomarkers in CRC and other conditions. 
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Figure 2: Meta-analysis with MetaPhlAn 3 and HUMAnN 3 expands taxonomic and functional associations with               
the CRC microbiome. ​(A) We considered a total of nine independent datasets (1,262 total samples) that highly but not                   
completely overlap in composition based on ordination (multidimensional scaling) of weighted UniFrac distances             
(Lozupone and Knight, 2005) computed from the MetaPhlAn 3 species relative abundances. ​(B) Meta-analysis based on                
standardized mean differences and a random effects model yielded 11 MetaPhlAn 3 species significantly (Wilcoxon               
rank-sum test FDR P<0.05) associated with colorectal cancer at effect size>0.35 (see ​Methods​). ​(C) Species richness is                 
significantly higher in CRC samples compared to control (Wilcoxon rank-sum test P<0.05 in 7/9 datasets), and the                 
expanded MetaPhlAn 3 species catalog detects more species compared to MetaPhlAn 2 (CRC mean median increase                
37.1%, controls mean median increase 36.3%). ​(D) Distribution of ​cutC gene relative abundance (log10 count-per-million               
normalized) from HUMAnN 3 gene family profiles supporting the potential link between choline metabolism and CRC                
(Thomas et al., 2019)​. ​(E) Random forest (RF) classification using MetaPhlAn 3 features and HUMAnN 3 features ​(F)                  
confirms that CRC patients can be predicted at (treatment-naive) baseline from the composition of their gut microbiome                 
with performances reaching ~0.85 cross-validated or leave-one-dataset-out (LODO) ROC AUC (see ​Methods​). 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2020. ; https://doi.org/10.1101/2020.11.19.388223doi: bioRxiv preprint 

https://paperpile.com/c/Fte0wb/eB40
https://paperpile.com/c/Fte0wb/zbQC
https://doi.org/10.1101/2020.11.19.388223
http://creativecommons.org/licenses/by/4.0/


 

Improvements in HUMAnN 3 also allowed us to directly test functional hypotheses in the context of                
the CRC microbiome. Specifically, we previously showed that the abundance of the microbial gene              
encoding for the choline trimethylamine-lyase (​cutC​) is significantly higher in CRC patients            
(Thomas et al., 2019)​, using a customized ShortBRED database ​(Kaminski et al., 2015) due to               
incompleteness of reference sequences previously available to HUMAnN 2. HUMAnN 3 was            
instead able to directly profile relative abundances of 113 UniRef90 gene families annotated as              
cutC orthologs and identified 909 metagenomes in this data collection carrying at least one              
UniRef90 gene family annotated as ​cutC​. These confirmed an increase of ​cutC relative abundance              
in CRC samples compared to controls (Wilcoxon rank-sum test P<0.05 in 6 of the 9 datasets,                
meta-analysis P<0.0001) and thus a potential role of TMA-producing dietary choline metabolism in             
the gut for this malignancy. Interestingly, a meta-analysis performed on the relative abundances of              
the L-carnitine dioxygenase gene (​yeaW​), a gene also involved in the trimethylamine synthesis,             
revealed only weak associations with disease status (Wilcoxon rank-sum test P<0.05 in 3 of the 9                
datasets, meta-analysis P=0.095, ​Fig. S8​, ​Fig. S9​), possibly reflecting a stronger effect of dietary              
choline on CRC risk compared to carnitine. 

MetaPhlAn 3 and HUMAnN 3 also proved accurate when combining CRC microbiomes using more              
purely discriminative models such as random forests (RFs), reaching 0.85 average AUC for CRC              
(vs. control) sample classification in leave-one-dataset-out evaluations using taxonomic features          
(LODO, minimum 0.76 for the YachidaS_2019 and ThomasAM_2019_a datasets, maximum 0.97           
for the GuptaA_2019 dataset; ​Fig. 4F​, ​Fig. S10​). As in previous studies ​(Pasolli et al., 2016;                
Thomas et al., 2019)​, RFs using functional features performed similarly (0.69 Cross Validation and              
0.71 LODO ROC AUC on pathways relative abundance), indicating a tight link between             
strain-specific taxonomy and gene carriage in this setting. When the classification model was used              
for assessing features’ importance, several new taxa were identified compared to MetaPhlAn 2 and              
metabolic pathways or EC-numbers relative to HUMAnN 2 (​Fig. S10​), further confirming the             
relevance of the new reference sequences and annotations available to be profiled in bioBakery 3. 

Longitudinal taxonomic and functional meta-omics of IBD 
To further demonstrate the utility of MetaPhlAn 3 and HUMAnN 3 on combined meta-omic              
sequencing datasets, including identification of expression-level biomarkers, we applied the          
updated methods to 1,635 shotgun metagenomes (MGX) and 817 shotgun metatranscriptomes           
(MTX) derived from the stool samples of the HMP2 Inflammatory Bowel Disease Multi-omics             
Database (IBDMDB) cohort (​http://ibdmdb.org​; see ​Methods​). Compared with previously published          
profiles of the samples generated with MetaPhlAn 2 and HUMAnN 2 ​(Lloyd-Price et al., 2019) (​Fig.                
3A​), the v3 methods’ profiles 1) identified more species pangenomes (MGX medians 40 vs. 48,               
MTX medians 40 vs. 47); 2) explained larger fractions of sample reads by mapping to pangenomes                
(MGX medians 54 vs. 63%, MTX medians 12 vs. 22%); and 3) explained larger total fractions of                 
sample reads after falling back to translated search (MGX medians 69 vs. 75%, MTX medians 20                
vs. 31%). Note that reduced MTX mapping rates (relative to MGX rates) result from enrichment for                
high-quality but non-coding RNA reads, which are unmapped by design in both HUMAnN 2 and 3.                
The v3 profiles thus promise increased understanding even of an already well-characterized            
dataset. 
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Figure 3: Longitudinal taxonomic and functional meta-omics of IBD. ​(A) Comparison of MetaPhlAn and HUMAnN               
profiles of IBDMDB metagenomes and metatranscriptomes using v2 and v3 software (sequencing data and v2 profiles                
downloaded from ​http://ibdmdb.org ​). ​(B) >500 Enzyme Commission (EC) families were significantly [linear mixed-effects             
(LME) models, FDR q<0.05] differentially expressed in active CD relative to inactive CD; only a single EC met this                   
threshold for active UC. ECs (points) are colored to highlight large contributions from one or more species that were new                    
or newly classified in MetaPhlAn 3 (independent of the strength of their association with active IBD). ​(C) Selected                  
examples of EC families that were differentially expressed in active CD. Colored points correspond to active CD samples;                  
all other samples are gray. The first example (blue) is the only EC to be down-regulated in active CD (as indicated by CD                       
active samples falling below the best-fit RNA vs. DNA line). To match the associated LME models (see ​Methods​),                  
best-fit lines exclude samples where an EC’s RNA or DNA abundance was zero (such samples are shown as triangles in                    
the x:y margins). ​(D) Species contributions to RNA (top) and DNA (bottom) abundance of EC 1.12.1.3. The 7 strongest                   
contributing species are colored individually; bold names indicate new species in MetaPhlAn 3. Samples are sorted                
according to the most abundant contributor and then grouped by diagnosis. The tops of the stacked bars (representing                  
community total abundance) follow the logarithmic scale of the y-axis; species’ contributions are linearly scaled within                
that height. 
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To that end, we applied a mixed-effects model to identify microbial biomarkers of disease activity               
within the Crohn’s disease (CD) and ulcerative colitis (UC) subpopulations of the HMP2 cohort (see               
Methods​). More specifically, we examined abundance profiles of EC families from 817 paired             
HMP2 metagenomes and metatranscriptomes in search of differences in functional activity           
between active (dysbiotic) and inactive (non-dysbiotic) time points from longitudinally sampled CD            
and UC patients. We identified 558 ECs whose residual expression was significantly different (FDR              
q​<0.05) in active CD compared with inactive CD and a single EC that was differentially expressed                
in active UC (protein O-GlcNAcase, EC 3.2.1.169; ​Fig. 3B​). The relative absence of biomarkers for               
active UC may result both from its generally more benign phenotype ​(Lloyd-Price et al., 2019) and                
from the smaller number of active UC samples (n=23) compared with active CD samples (n=76);               
as a result, we focused our subsequent analyses on expression differences within the CD              
subcohort. 

Of the >500 significantly differentially expressed ECs in active CD, all but one were              
“over-expressed” (i.e. their residual expression after controlling for DNA copy number was higher             
than expected in active CD; see ​Fig. 3B​). Hence, while many species (and their encoded               
functions) are known to be lost entirely during active IBD ​(Lloyd-Price et al., 2019)​, it seems to be                  
rare for functions to be maintained by the community but not utilized. The one notable example of                 
an “under-expressed” function was galactonate dehydratase (EC 4.2.1.6; ​Fig. 3C​). This enzyme            
was encoded and highly expressed by ​Faecalibacterium prausnitzii in both control and inactive CD              
samples. While galactonate dehydratase was still metagenomically abundant in active CD (where it             
was contributed primarily by ​Escherichia coli​), it was not highly expressed under those conditions.              
Related observations were made previously using a mouse model of colitis monocolonized with             
commensal ​E. coli ​(Patwa et al., 2011)​. There, microarray-based measurements found a number of              
enzymes in the galactonate utilization pathway, including galactonate dehydratase, to be among            
the most strongly down-regulated in comparison with wild-type mice. These results suggest that             
galactonate metabolism is either infeasible (e.g. due to low bioavailability) or otherwise suboptimal             
(e.g. due to the presence of preferred energy sources) in the inflamed gut, thus leading to its                 
down-regulation by “generalist” pathobionts like ​E. coli​. 

From the many over-expressed functions in active CD, we focused for illustrative purposes on              
examples that were encoded non-trivially by species either new or newly classified in MetaPhlAn 3               
(“3.0-new species”; ​Fig. 3C​). To aid in this process, we defined an ​h​-index-inspired “novelty” score               
(​s​) ​for each EC equal to the largest percentile ​p of samples with the EC in which ​p percent of its                     
copies were contributed by 3.0-new species. For example, an EC with ​s​=0.25 indicates that at least                
25% of the EC’s copies were from 3.0-new species in at least 25% of samples with the EC. The                   
previously mentioned galactonate dehydratase thus had a low novelty score (s=0.11) resulting            
from dominant contributions of ​F. prausnitzii​ and ​E. coli​ (which are not new to MetaPhlAn 3). 

Conversely, the highest novelty score was observed for glutamyl-tRNA reductase (EC 1.2.1.70,            
s=0.46), a highly-transcribed housekeeping gene that received large contributions from the           
3.0-new species ​Roseburia faecis​, ​Phascolarctobacterium faecium​, and ​Ruminococcus bicirculans​.         
Betaine reductase (EC 1.21.4.4, s=0.43), conversely, is much more specific and was contributed in              
part by 3.0-new species ​Hungatella hathewayi​; this is notable as a rare example of a function that                 
was often detectable from community RNA but not DNA (indicating high expression from a small               
pool of gene copies). Pyruvate, water dikinase (EC: 2.7.9.2) and Ribonuclease E (EC 3.1.26.12)              
were among the strongest signals of over-expression in active CD by both effect size and statistical                
significance; these functions were also characterized by large contributions of 3.0-new species            
(s=0.36 and 0.38, respectively). Ribonuclease E and a final example, hydrogen dehydrogenase            
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NADP(+) (EC 1.12.1.3), are also representative of the degree to which metagenomic copy number              
(DNA abundance) tends to be a strong driver of transcription (RNA abundance) in the gut               
microbiome, and thus the need to account for the former when estimating functional activity. The               
3.0-new ​H. hathewayi expresses this enzyme highly in a subset of active CD samples, thus               
contributing to the enzyme’s overall association with active CD. 

Population-scale subspecies genetics (StrainPhlAn) and pangenomics (PanPhlAn) of        
Ruminococcus bromii 
Strain-level characterization of taxa directly from metagenomes is an effective cultivation-free           
means to profile the population structure of a microbial species across geography or other              
conditions ​(Scholz et al., 2016; Truong et al., 2017) and to track strain transmission ​(Ferretti et al.,                 
2018)​. These functionalities are incorporated into (i) StrainPhlAn 3, which infers strain-level            
genotypes by reconstructing sample-specific consensus sequences from MetaPhlAn 3 markers          
(Zolfo et al., 2019) (ii) PanPhlAn 3, which identifies strain-specific combination of genes from              
species’ pangenomes; and (iii) PhyloPhlAn 3, which performs precise phylogenetic placement of            
isolate and metagenome-assembled genomes (MAGs) using global and species-specific core          
genes ​(Asnicar et al., 2020) (see ​Methods​). ChocoPhlAn 3 automatically quantifies and annotates             
the distinct types of conservation metrics necessary to identify these markers, all updated in              
bioBakery 3 (​Table S2​). 

Ruminococcus bromii is a common gut microbe that is surprisingly understudied due to its              
fastidious anaerobicity and general non-pathogenicity ​(Ze et al., 2012) but it is prevalent in over               
half of typical gut microbiomes. This made its population genetics, geographic association, and             
genomic variability of particular interest to assess via StrainPhlAn and PanPhlAn. From the             
meta-analysis of 7,783 gut metagenomes integrated for a previous study ​(Pasolli et al., 2019)​, we               
considered the 4,077 metagenomes in which ​R. bromii was found present with a relative              
abundance above 0.05% according to MetaPhlAn 3. StrainPhlAn SNV-based analysis of the 124             
R. bromii​-specific marker genes across the 3,375 samples with sufficient markers’ coverage (see             
Methods​) revealed a complex population structure not previously recapitulated by the only fifteen             
genomes available from isolate sequencing (​Fig. 4A​). Sub-clade prediction (see ​Methods​)           
highlighted two sub-species clades that are particularly divergent within the phylogeny (​Fig.            
S11C-D​); interestingly, the first one (Cluster 1) is mainly composed of strains retrieved from              
Chinese subjects and from cohorts with a non-Westernized lifestyle (​Fig. 4A​; Cluster 1).             
StrainPhlAn 3 can thus rapidly reconstruct complex strain-level phylogenies from metagenomes           
(5,700 seconds using 20 CPUs), and with the integration of PhyloPhlAn 3’s improvements             
specifically for strain-level manipulation of alignments and phylogenies ​(Asnicar et al., 2020)​,            
surpasses the previous version of the software in accuracy and sensitivity (67.4% more strain              
profiled, ​Fig. S11A-B​). 
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Figure 4: Population-scale strain-level phylogenetic and pangenomic analyses of ​Ruminococcus bromii from            
over 4,000 human gut metagenomes. ​(A) StrainPhlAn 3 profiling revealed stratification of ​Ruminococcus bromii clades               
with genetic content and variants frequently structured with respect to geographic origin and lifestyle. Genetically               
divergent subclades were identified, labeled as “Cluster 1” (mainly composed of strains retrieved from Chinese subjects)                
and a subspecies-like Cluster 2. ​(B) Strain tracking of ​R. bromii ​. While unrelated individuals from diverse populations                 
very rarely share highly genetically similar strains, pairs of related strains are readily detected by StrainPhlAn from                 
longitudinal samples from the same individuals (quantifying short- and medium-term strain retention at about 75%) and in                 
mother-infant pairs (confirming this species is at least partially vertically transmitted). Normalized phylogenetic distances              
(nPD) were computed on the StrainPhlAn tree. ​(C) PanPhlAn 3 gene profiles of ​R. bromii strains from metagenomes                  
highlights the variability and the structure of the accessory genes across datasets (core genes were removed for clarity).                  
A total of 6,151 UniRef90 gene families from the ​R. bromii pangenome were detected across the 2,679 of the 4,077                    
samples in which a strain of this species was present at a sufficient abundance to be profiled by PanPhlAn. The 13                     
highest-rooted gene clusters are shown, highlighting co-occurrence of blocks likely to be functionally related. The most                
common GO annotations are also reported together with two operons containing genes verified to be on the same locus                   
by analysis of the reference genomes in the PanPhlAn 3 database. ​(D) Genetic (SNV on marker genes from StrainPhlAn                   
3) and genomic (gene presence/absence from PanPhlAn 3) distances between ​R. bromii strains are correlated               
(Pearson's r=0.632, p-value<2.2e-16) pointing at generally consistent functional divergence in this species.  
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StrainPhlAn 3 also extends the ability of reference-based approaches to infer the genetic identity of               
strains across samples as previously explored ​(Ferretti et al., 2018; Truong et al., 2017)​.              
Specifically for ​R. bromii​, different individuals tend to carry different strains diverged with a roughly               
normal distribution of genetic identities (mean 3.54e-3 normalized phylogenetic distance, ​Fig. 4B​).            
However, the genetic differences between Cluster 1 and Cluster 2 were generally greater, with a               
lower peak and higher distances (mean 6.1e-3, ​Fig. 4B​). For carriers of either clade, within-subject               
strain retention tended to be high as expected (i.e. low divergence); at distinct time points (average                
261.35 s.d. 239.86 days, first quartile 72 days, third quartile 386 days, 3,537 comparisons in total),                
most of the strain distances (76.4%) approached zero (compared to 1% of comparisons for              
inter-individual differences, ​Fig. 4B​). In addition to detecting these two genetically distinct clades             
and quantifying within-individual strain retention, a final distribution of higher intra-individual           
distances clearly captured (rare) strain replacement by ​R. bromii strains (i) in the same or (ii) in a                  
different main cluster in the species’ phylogeny. Mother-infant pairs showed a similar dynamic (​Fig.              
4B​), with sporadic vertical transmission (~33.3%) ​(Ferretti et al., 2018; Korpela et al., 2018;              
Yassour et al., 2018) mixed with strain loss, replacement, and acquisition from other environmental              
or human sources ​(Korpela et al., 2018)​. This analysis highlighted the high precision of StrainPhlAn               
3 in detecting strain identity across samples and thus the potential of using it for tracking the                 
transmission network of specific individual strains within and between subjects. 

PanPhlAn 3 provides a complementary form of strain analysis by constructing pangenome            
presence-absence (rather than individual nucleotide variant) genotypes (see ​Methods​). Using          
eight ​R. bromii reference genomes, PanPhlAn 3 revealed the presence of 6,151 UniRef90             
pangenes across 2,679 samples with sufficient depth to permit confident strain-specific gene            
repertoire reconstruction (​Fig. 4C​). This mirrored the genetic divergence of ​R. bromii Clusters 1              
and 2, while also highlighting a range of functional differences annotatable to genes unique to the                
two clusters: Cluster 1 and Cluster 2 showed a total of 797 and 601 UniRef90 families specific to                  
them (Fisher's exact test, FDR q<0.05). Although most of these gene families do not have precise                
functional annotations, these sets of genes should be prioritized in experimental characterization            
efforts to unravel the sub-species diversity of ​R. bromii​, and UnireRef90-to-GO ID mapping also              
highlighted an enrichment of membrane proteins in Cluster 2. Interestingly, other clusters of             
co-occurring genes were independent of phylogenetic structure and also verified to be on the same               
locus on at least two reference genomes in the PanPhlAn 3 database (​Fig. 4C​) providing a new                 
approach at identifying and annotating potential laterally-mobile elements.  

StrainPhlan 3 and PanPhlAn 3 can thus be combined with PhyloPhlAn 3 ​(Asnicar et al., 2020) and                 
HUMAnN 3 to provide multiple, complementary, culture-independent means to investigate the           
strain-level diversity of taxa in the microbiome, from new data or by re-using thousands of publicly                
available metagenomes. It is notable that these approaches tend to be consistent with each other               
(e.g. for ​R. bromii, Pearson’s r=0.632, P<2.2e-16, ​Fig. 4D​), while providing different benefits and              
drawbacks: PanPhlAn used with HUMAnN input is computationally efficient, used from whole            
pangenomes has higher sensitivity, and StrainPhlAn tends to have higher specificity. Together, the             
bioBakery 3 components provide an integrated platform for applying strain-level comparative           
genomics, taxonomic, and functional profiling to meta-omic microbial community studies. 
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Discussion 
Here, we introduce and validate the set of expanded microbial community profiling methods             
making up the bioBakery 3 platform, including quality control (KneadData), taxonomic profiling            
(MetaPhlAn), strain profiling (StrainPhlAn and PanPhlAn), functional profiling (HUMAnN), and          
phylogenetics (PhyloPhlAn), largely relying on the underlying data resource of ChocoPhlAn 3            
genomes and pangenomes. These modules are each more accurate and, often, more efficient than              
their previous versions and current alternatives, particularly for challenging (e.g.          
non-human-associated) metagenomes and for multi-omics (e.g. metatranscriptomes). In the         
process of these evaluations, we detected three species newly associated with CRC (​Dialister             
pneumosintes​, ​Ruthenibacterium lactatiformans​, and ​Eisenbergiella tayi​), over 500 enzyme         
families metatranscriptomically upregulated by diverse microbes in IBD, and two new           
phylogenetically, genomically, and biogeographically distinct subclades of ​Ruminococcus bromii​. 

These results highlight the degree to which meta-omic approaches can now realize the potential of               
culture-independent sequencing for characterizing microbial community dynamics, interactions,        
and evolution that are only active ​in situ and not ​in vitro​. Since early studies of environmental and                  
host-associated microbial communities ​(Gill et al., 2006; Tyson et al., 2004; Venter et al., 2004)​, it                
has been clear that many aspects of intercellular and inter-species signaling, short- and long-term              
evolution, and regulatory programs are exercised by microbes in their natural settings and             
extremely difficult to recapitulate in a controlled setting. This is supported by the extent to which                
“dark matter” not previously characterized in the laboratory pervades host-associated and           
(especially) environmental metagenomes ​(Parks et al., 2017)​, with most communities containing a            
plurality, majority, or sometimes supermajority of novel and/or uncharacterized sequences          
(Almeida et al., 2019; Pasolli et al., 2019)​. The bioBakery 3 begins to overcome this challenge by                 
combining a greatly expanded set of reference sequences with ways of “falling back” gracefully              
when encountering new sequences, while also paving the way for further integration of             
assembly-based discovery in the future (discussed below). Critically, this now permits large            
collections of meta-omes to be used in ways only previously possible with large isolate genome or                
transcriptome collections, e.g. strain-level integrative comparative genomics, near-real-time        
epidemiology and evolution, and detailed gene content prediction and metabolic modeling. Results            
such as the heterogeneity of maternal-infant strain transmission and retention, or the globally             
stratified distribution of subspecies clades, would be extremely challenging to discover by other             
means. 

Methodologically, it is notable that these new meta-omic analysis types have been enabled by              
several years of improved experimental fidelity, denoising, and quality control approaches. These            
effectively retain only the “best” subset of reads from large, noisy meta-omes for each analysis of                
interest, e.g. only the most unique sequences for taxonomic identification, or only the most              
evolutionarily informative loci for phylogeny. Meta-omes are uniquely positioned for broad reuse            
and discovery since different “best” subsets of each dataset can be used to answer different               
questions. The development of meta-omic analysis methods thus parallels that of genome-wide            
association studies or transcriptomics, inasmuch as early methods were later refined to provide             
much greater accuracy and scalability through removal of low-quality measurements, within- and            
between-study normalization approaches, statistical methods to reliably separate signal from noise,           
and biological annotation of previously uncharacterized loci. Similarly, methods for amplicon-based           
community profiling have progressed from noise- and chimera-prone stitching and clustering to            
near-exact sequence variant tracking ​(Callahan et al., 2016)​. Fortunately, continued decreases in            
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sequencing prices and increases in protocol efficiency have now made shotgun meta-omics nearly             
as affordable as amplicon sequencing in many settings. The challenge, of course, is that each               
metagenome combines many different noise sources: there is no single, whole genome to finish;              
host, microbial, and contaminant sequences are not always easily differentiated; there is no one              
set of “true” underlying variants (since each organism might be represented by multiple strains);              
and millions of microbial gene products remain functionally uncharacterized ​(Thomas and Segata,            
2019)​. 

Notably, the bioBakery provides one of very few environments currently capable of integrating both              
metagenomes and metatranscriptomes to begin overcoming these uncertainties ​(Franzosa et al.,           
2018)​. As introduced above, microbial community transcriptomes can be highly unintuitive to            
interpret, as transcript abundance is always influenced both by expression level and by underlying              
DNA copy number, i.e. abundance of the expressing taxon. Since both sequence-based DNA and              
RNA profiles are typically compositional (relative, not absolute, abundances), there is not always a              
simple way to account for these effects. HUMAnN 3 provides initial within- and between-species              
normalization options that can be combined with the statistical models of differential expression             
described here, making e.g. the >500 transcripts overexpressed in Crohn’s disease particularly            
noteworthy. ​Hungatella hathewayi was uniquely responsible for many of these, an organism not             
previously associated with IBD in humans ​(Schaubeck et al., 2016)​. While many of its              
overexpressed transcripts are core or housekeeping processes, indicative of general bioactivity in            
the inflamed gut (comparable to that of e.g. ​Escherichia coli ​(Lloyd-Price et al., 2019)​), others such                
as betaine reductase are much more specific. This enzyme contributes directly to trimethylamine             
(TMA) formation ​(Rath et al., 2019)​, one of the more noteworthy microbial metabolites implicated in               
human disease via its transformation to proatherogenic trimethylamine-oxide (TMAO) ​(Tang et al.,            
2013)​. Conversely, the only transcript differentially regulated in ulcerative colitis, underexpressed           
F. prausnitzii galactonate dehydratase, contrasts its utility in polysaccharide degradation under           
non-inflamed conditions with the upregulation of alternative, more host-antagonistic energy sources           
in ​E. coli during inflammation ​(Lloyd-Price et al., 2019)​. Both of these examples are only analyzable                
due to the highly specific assignment of meta-omic reads to individual community members’ gene              
families, in combination with appropriate downstream statistical methods for multi-omics. 

Finally, it is striking that metagenomically-derived comparative genomics has only recently been            
able to reach the scale and scope previously possible with microbial isolates. The genomic              
epidemiology of pathogens has driven the latter - recently in viral outbreaks such as COVID-19 ​(Lu                
et al., 2020) and Ebola ​(Gire et al., 2014)​, and in many bacterial conditions such as cholera ​(Weill                  
et al., 2017) or pneumonia ​(Croucher et al., 2011)​. Since metagenomes can simultaneously access              
all community members with relatively little bias, such studies are now possible with organisms              
previously overlooked due to the absence of obviously associated phenotypes or convenient            
culture techniques ​(Manara et al., 2019; Pasolli et al., 2019)​. ​Ruminococcus bromii is one such               
example; despite being over 50% prevalent among typical human gut communities, only 15             
isolates were previously sequenced, precluding epidemiology or phylogenetics. In addition to           
making a novel sub-species phylogenetic and biogeographic structure apparent, the combination of            
MetaPhlAn, HUMAnN, PanPhlAn, StrainPhlAn, and PhyloPhlAn together confirmed that most ​R.           
bromii strains are “personal” (i.e. specific to and retained within individuals, like most microbiome              
members), rarely transmissible across hosts, and that genomic differences characterize each           
subspecies (suggesting a degree of functional adaptation and specialization). Such results are in             
principle possible with any combination of metagenomic and isolate taxa and genes of interest,              
richly integrating culture-independent data with hundreds or thousands of isolate genomes. 
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Of course, many challenges remain both for improvement of the bioBakery platform and for the               
field as a whole. Both experimental and computational accessibility of non-bacterial microbial            
community members remains limited. While accurate, bioBakery 3’s capacity for non-bacterial           
profiling is only slightly improved from the previous version by the expansion of available eukaryotic               
microbial reference sequences. These components of metagenomes - and, for RNA viruses,            
metatranscriptomes - are often measured with surprising heterogeneity during the initial generation            
of sequencing data themselves ​(Zolfo et al., 2019)​, suggesting necessary improvements in            
analytical quality control and normalization as well. The visibility of species with particularly high              
genetic diversity within individual communities also remains limited; in most cases, only the most              
dominant strain of each taxon per community is currently analyzable, again for both experimental              
(e.g. sequencing depth) and analytical reasons ​(Quince et al., 2017)​. This is true both for               
reference-based and for assembly-based approaches, the latter of which are often also stymied by              
highly diverse taxa ​(Pasolli et al., 2019)​. A final area of improvement for the bioBakery, relatedly, is                 
the increased integration between reference-based and assembly-based approaches - begun here           
via PhyloPhlAn 3 - in order to better leverage MAGs ​(Almeida et al., 2020)​, SGBs ​(Pasolli et al.,                  
2019)​, and novel gene families. 

We thus anticipate improved integration of reference- and assembly-based meta-omic analyses to            
be one of the main areas of future development for the bioBakery, along with expanded methods                
for other types of multi-omics in addition to transcription. There will also be a continued focus on                 
quality control and precision, enabling new types of functional analysis within microbial            
communities (e.g. bioactivity and gene function prediction) without sacrificing sensitivity to rare or             
novel community members. Finally, we are also committed to the platform’s availability with             
well-documented, open-source implementations, training material, and pre-built locally-executable        
and cloud-deployable packaging. Feedback on any aspect of the methods or their applications in              
diverse host-associated or environmental microbiome settings can be submitted at          
https://forum.biobakery.org​, and we hope the bioBakery will continue to provide a flexible,            
convenient, reproducible, and accurate discovery platform for microbial community biology. 
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Methods 
The bioBakery 3 is a set of computational methods for the analysis of microbial communities from                
meta-omic data that produce taxonomic, functional, phylogenetic, and strain-level profiles to be            
interpreted directly or included in downstream statistical analyses (​Fig. 1A​). After read-level quality             
control by KneadData, MetaPhlAn 3 estimates the set of microbial species (and corresponding             
higher taxonomic clades) present in a sample and their relative abundances. StrainPhlAn 3             
deepens genetic characterization by refining strain-level genotypes of species identified by           
MetaPhlAn 3. HUMAnN 3 focuses instead on the identification and quantification of the molecular              
functions encoded in the metagenome or expressed in the metatranscriptome, which can be             
resolved by PanPhlAn 3 into gene presence-absence strain-level genotypes. PhyloPhlAn 3, as            
previously reported ​(Asnicar et al., 2020)​, provides a comprehensive means to interpret the draft              
genomes produced by assembly-based metagenomic tools. These bioBakery 3 modules are           
generally based on an underlying dataset of functionally-annotated isolate microbial genes and            
genomes produced by ChocoPhlAn 3 to quality-control and annotated UniProt derivatives. This            
currently includes 99,227 genomes and 87.3M gene families, almost 100-fold greater than the data              
types included in the first bioBakery release ​(Segata and Huttenhower, 2011)​. 

The AnADAMA scientific workflow manager 
Most bioBakery 3 tools are integrated into reproducible workflows (the “bioBakery workflows”,            
http://huttenhower.sph.harvard.edu/biobakery_workflows​) using the AnADAMA (Another     
Automated Data Analysis Management Application) task manager, currently v2         
(​http://huttenhower.sph.harvard.edu/anadama2​). Briefly, this wraps doit (​http://pydoit.org​), a       
Python-based dependency manager, to provide a simple but scalable language for analysis task             
definition, version and provenance tracking, change management, documentation, grid and cloud           
deployment of large compute tasks, and automated reporting. AnADAMA operates in a make-like             
manner using targets and dependencies of each task to allow for parallelization. In cases where a                
workflow is modified or input files change, only those tasks impacted by the changes will be rerun.                 
Essential information from all tasks is recorded, using the default logger and command line              
reporters, to ensure reproducibility. The information logged includes command line options           
provided to the workflow, the function or command executed for each data modification task,              
versions of tracked executables, and any output and data products from each task. It can optionally                
be used to chain together subsequent bioBakery 3 tasks and/or to parallelize them efficiently              
across multiple files or datasets. 

KneadData read-level quality control 
The bioBakery 3 includes a simple quality control module for raw sequences, KneadData             
(​http://huttenhower.sph.harvard.edu/kneaddata​), which automates a set of typical best practices for          
raw metagenome and metatranscriptome read cleaning and validation. These include: 

● Trimming of 1) low-quality bases (default: 4-mer windows with mean Phred quality <20), 2)              
truncated reads (default: <50% of pre-trimmed length), and 3) adapter and barcode            
contaminants using Trimmomatic ​(Bolger et al., 2014)​. 

● Removal of overrepresented sequences (default: > 0.1% frequency) using FastQC          
(Andrews and Others, 2010)​ and low-complexity sequences using TRF ​(Benson, 1999)​. 
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● Depletion of host-derived sequences by mapping with bowtie2 ​(Langmead and Salzberg,           
2012) against an expanded human reference genome (including known “decoy” and           
contaminant sequences ​(Breitwieser et al., 2019)​) and optionally other hosts (e.g. mouse)            
reference genomes and/or transcriptomes. 

● Depletion of microbial ribosomal and structural RNAs by mapping against SILVA ​(Yilmaz et             
al., 2014)​ in metatranscriptomes. 

It is recommended that KneadData be applied to raw sequences prior to further analyses, and the                
bioBakery workflows do this for all sequence types by default. 

The ChocoPhlAn 3 pipeline 
We developed the ChocoPhlAn pipeline to organize microbial reference genomes according to            
their taxonomy and to compute the relevant sequence and annotation data for subsequent             
bioBakery modules. At a high level, after retrieval of UniProt genomes and gene annotations,              
species-specific pangenomes (i.e. the set of gene families of a species present in at least one of its                  
genomes) are generated using all the microbial reference genomes passing initial quality control.             
Core genomes (i.e. gene families present in all the genomes of a species) are then identified from                 
the whole set of pangenomes and used as markers in PhyloPhlAn 3. Core genomes are also                
processed for the extraction of unique marker genes (i.e. core gene families uniquely associated              
with one species) that constitute the marker database for MetaPhlAn 3 and StrainPhlAn 3. Finally,               
functionally annotated pangenomes are processed to serve as references for PanPhlAn 3 and             
HUMAnN 3. 

Data retrieval 
ChocoPhlAn relies on the UniProt core data resources ​(UniProt Consortium, 2019) (release            
January 2019) and on the NCBI taxonomy and genomes repositories ​(NCBI Resource            
Coordinators, 2014) (release January 2019). The two basic sequence data types considered in             
ChocoPhlAn are the raw genomes of all available microbes and all the microbial proteins/genes              
identified on these genomes. The main supporting structure for a genome is the underlying              
microbial taxonomy, whereas the microbial proteins are organized in protein families clustered at             
multiple stringency parameters.  

We adopted the NCBI taxonomy database ​(NCBI Resource Coordinators, 2014) for use by             
ChocoPhlAn as it is the one on which our genomic repository, UniProt, is also based. The full                 
taxonomy was downloaded from the NCBI FTP server (ftp.ncbi.nlm.nih.gov/pub/taxonomy/) on          
January 24 2019. We identified and tagged species with “unidentified”, “sp.”, “Candidatus”, “             
bacterium “, and several other keywords as low-quality species. Specifically, the regular            
expressions used to filter low-quality taxonomic annotations are:  

“ (C|c)andidat(e|us) | _sp(_.*|$) | (.*_|^)(b|B)acterium(_.*|) | .*(eury|)archaeo(n_|te|n$).* |         
.*(endo|)symbiont.* | .*genomosp_.* | .*unidentified.* | .*_bacteria_.* | .*_taxon_.* | .*_et_al_.* |            
.*_and_.* | .*(cyano|proteo|actino)bacterium_.*) ” 

All reference genomes available through UniProt Proteomes and linked to the public DDBJ, ENA,              
and GenBank repositories were then considered. Genomes are included by UniProt into UniProt             
Proteomes only if they are fully annotated and have a number of predicted CDSs falling within a                 
statistically defined range of published proteomes from neighbouring species ​(“What are           
proteomes?,” 2020)​. We considered all UniProt Proteomes genomes assigned to the archaeal and             
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bacterial domain. For micro-eukaryotes, we considered all genomes assigned to the following            
manually selected genera: ​Blastocystis, Candida, Saccharomyces, Cryptosporidium, Entamoeba,        
Aspergillus, Cryptococcus, Cyclospora, Cystoisospora, Giardia, Leishmania, Malassezia,       
Neosartorya, Pneumocystis, Toxoplasma, Trachipleistophora, Trichinella, Trichomonas, and       
Trypanosoma​. 

Reference genomes (‘fasta’ format, suffix ‘.fna’) and the associated genomic annotation (‘.gff’) of             
each proteome were downloaded from the NCBI GenBank FTP server          
(ftp.ncbi.nlm.nih.gov/genomes/all/GCA) by retrieving URLs from the      
assembly_summary_genbank.txt file  
(ftp.ncbi.nlm.nih.gov/genomes/genbank/assembly_summary_genbank.txt) using the GCA    
accession included in the UniProt Proteomes resource (01/24/2019). Starting from a total of             
111,825 UniProt Proteomes entries, we discarded 12,598 proteomes missing the GenBank           
accession, ending up with 99,227 genomes (997 Archaea, 97,941 Bacteria, 339 Eukaryota). 

The microbial proteins (and genes) associated to at least one UniProt Proteome and considered by               
ChocoPhlAn are retrieved from the UniProt Knowledgebase (UniProtKB) and the UniProt Archive            
(UniParc) databases. Proteins included in UniProtKB have been derived from the translation of the              
CDSs of all available reference genomes included in UniProt Proteomes. ChocoPhlAn 3 also             
retrieves and includes relevant data present in the UniProtKB entries (retrieved from            
ftp.uniprot.org/pub/databases/uniprot/ as XML files uniprot_sprot.xml.gz, uniprot_trembl.xml.gz,      
uniparc_all.xml.gz) such as functional, phylogenomic, and protein domain annotations (KEGG, KO,           
EggNOG, GO, EC, Pfam) ​(El-Gebali et al., 2019; Huerta-Cepas et al., 2016; Kanehisa and Goto,               
2000; The Gene Ontology Consortium, 2019)​, accessions for cross-referencing entries with           
external databases (GenBank, ENA, and BioCyc) ​(Clark et al., 2016; Karp et al., 2019; Leinonen et                
al., 2011)​, name of the gene that encodes for the protein, and proteome accession. 

We processed a total of 203.9M proteins included in both UniProtKB and UniParc, and 126.9M of                
them were associated with a UniProt Proteome entry. The Bacteria domain tallied the highest              
number of proteins (194.8M), whereas Archaea and Eukaryotes accounted for 5.0M and 4.0M             
proteins respectively. 

In order to reduce the redundancy of the database, we use the UniRef90 clustering of UniProtKB                
proteins provided by UniProt. In brief, UniProtKB are clustered at different thresholds of sequence              
identity (100, 90, 50) and made available through the UniProt Reference Clusters (UniRef)             
resource ​(Suzek et al., 2015)​. UniRef90 clusters are generated by clustering unique sequences             
(UniRef100, which combines identical UniProtKB proteins in a single cluster) via CD-HIT ​(Li and              
Godzik, 2006) until August 2019, and via MMseqs2 ​(Steinegger and Söding, 2018) afterward.             
Sequences in UniRef90 clusters have at least 90% sequence identity ​(Suzek et al., 2015)​.              
UniRef50 clusters are generated by clustering the UniRef90 cluster seed sequences, and each             
cluster contains proteins with at least 50% identity. Both UniRef90 and UniRef50 require each              
protein to overlap at least 80% with the cluster's longest sequence. UniRef entries considered in               
ChocoPhlAn 3 contain the sequence of a representative protein, the accession IDs of all the entries                
included in the cluster, the accessions to the UniProtKB and UniParc records, and the accessions               
of the other associated UniRef cluster are included in the UniProt entries. 

A total of 292.1M UniRef clusters were processed (172.3M, 87.3M, and 32.5M for UniRef100,              
UniRef90, and UniRef50, respectively) and associated with each protein and each genome in             
ChocoPhlAn 3. 
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Pan-proteome generation 
We then generate pan-proteomes for each species represented at least by one UniProt Proteome.              
We define a species’ pan-proteome as the non-redundant representation of the species’            
protein-coding potential. These are obtained for each species by considering the unique UniRef90             
and UniRef50 protein families present in the genomes assigned at the species level and below. 

For each pan-protein, we compute several scores. We define a ‘coreness’ score for a UniRef90               
family as the number of genomes included in the species’ pan-proteome having a protein              
belonging to the UniRef family, and the ‘uniqueness’ score as the number of pan-proteomes of               
other species possessing the same pan-protein. We then also considered a ‘uniqueness_sp’ score,             
a variant of the ‘uniqueness’ score obtained excluding those species that were previously tagged              
as low-quality species. Alongside the ‘uniqueness’ score, we compute the ‘external_genomes’ as            
the number of genomes (rather than species or species’ pan-proteomes) of other species’             
pan-proteomes possessing the same pan-protein. These scores were computed for both UniRef50            
and UniRef90 protein families.  

In ChocoPhlAn 3 we consider a total of 22,096 species’ pan-proteomes and a total of 87.3M                
UniRef90 core proteins (i.e. with coreness > 0.7, avg. 3,952 s.d. 6,311 per species). 

Generation of MetaPhlAn 3 markers 
MetaPhlAn relies on a set of unique and species-specific nucleotide markers that were updated in               
MetaPhlAn 3 starting from the ChocoPhlAn 3 pan-proteomes. We initially filtered out species             
having taxonomies previously tagged as low quality using the species-level genome bin (SGB)             
system ​(Pasolli et al., 2019)​. “​Low-quality” species that were assigned to the same SGB were               
merged and only the representative SGB was taken into account​.  

This merging procedure occurred for a total of 1,328 species (6%) that were merged as they were                 
unlikely to be distinguishable in metagenomic samples and would potentially lead to false-positive             
taxonomic assignments (see ​Table S7 for the merged species). For the cases in which multiple               
species included by the NCBI taxonomy into a “species-group” showed a high number of markers               
with a high ‘uniqueness’ score (>30), we proceeded to identify unique markers for the whole               
species groups. This occurred for the following species groups: ​Streptococcus anginosus group,            
Lactobacillus casei group, ​Bacillus subtilis group, ​Enterobacter cloacae complex, ​Pseudomonas          
syringae group, ​Pseudomonas stutzeri group, ​Pseudomonas putida group, ​Pseudomonas         
fluorescens group, ​Pseudomonas aeruginosa group, ​Streptococcus dysgalactiae group, and         
Bacillus cereus group. In all these cases, the pangenomes were built by merging all the               
species-level pangenomes and treating them as a single species.  

In the first step of the marker discovery procedure, we use the pan-proteome built using the                
UniRef90 clusters considering all proteins with a length between 150 and 1,500 amino acids.              
Starting from the coreness and uniqueness scores, we applied an iterative approach in order to               
find up to 150 unique markers whenever possible and retaining only those species with a minimum                
of 10 unique markers. We classify candidate markers into unique and quasi-markers according to              
the ‘uniqueness’ value: markers having zero ‘uniqueness’ are reported as ‘unique markers’. When             
no unique markers can be identified, the less-stringent thresholds used in the marker discovery              
procedure allows the identification of the so-called ‘quasi-markers’, markers having non-null values            
of ‘uniqueness’. 
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The iterative approach started with the definition of four tiers of unique markers according to a                
combination of the values of ‘coreness’, ‘uniqueness’, and ‘external_genomes’. Tier ‘A’ includes            
pan-proteins with a coreness score higher than 80%, not shared with more than 2 other               
pan-proteomes considering both UniRef90 and UniRef50 clustering score (‘Uniqueness_NR90’ and          
‘Uniqueness_NR50’), and not present in more than 10 single genomes when considering the             
UniRef90 and 5 single genomes when considering UniRef50 (‘External_genomes_NR90’ and          
‘External_genomes_NR50’), respectively. Tier ‘B’ includes markers with ‘coreness’ values between          
70% and 80%, ‘Uniqueness_NR90’, and ‘Uniqueness_NR50’ values of 5, and values of            
‘External_genomes_NR90’ and ‘External_genomes_NR50’ lower than 15 and 10 genomes,         
respectively. Markers that did not meet the previous criteria were included in the ‘C’ tier, which                
includes markers with ‘coreness’ values between 50% and 70%, ‘Uniqueness_NR90’ less than 10,             
‘Uniqueness_NR50’ less than 15, ‘External_genomes_NR90’ less than 25, and         
‘External_genomes_NR50’ less than 20. Markers for the species having only one genome included             
in the pan-proteome, for which the definition of coreness is trivial, were classified as tier ‘U’,                
provided that they have zero ‘Uniqueness’. 

The definition of specific tiers allows the retrieval of the maximum number of unique markers.               
Marker discovery procedure was performed iteratively for each tier. Candidate markers that meet             
the tier-defined thresholds were ranked using a score function defined as follows: 

core SS = Scoreness *  uniqueness50 * Suniqueness90  

Where 

Scoreness = √coreness%  

− og(1 )Suniqueness90 = l −
10 −104 −4

10  − min(10 ,uniqueness )4 4
90 * 5

1  

− og(1 )Suniqueness50 = l −
10 −104 −4

10  − min(10 ,uniqueness )4 4
50 * 5

1  

The score function as defined will prioritize the selection of candidate markers highly conserved in               
the clade (high ‘coreness’ value) but shared with the smallest possible number of other species               
(low values of ‘uniqueness’ ). Tier type is assigned to each candidate marker, and if more than 50                  
candidate markers were identified, we selected up to 150 markers from the ranked list. If not                
enough markers were identified (less than 50), the procedure was repeated using the subsequent              
tier’s thresholds. If no markers were identified using tier C thresholds, the species was discarded. 

Nucleotide sequences for each marker selected with this procedure are then considered as entries              
for the MetaPhlAn database. To refine the number of species estimated by the ‘uniqueness’              
parameter, marker sequences were split into non-overlapping chunks of 150bp and mapped versus             
an index built using all the reference genomes used for the marker identification process using               
bowtie2 (version 2.3.4.3, parameters ‘-a --very-sensitive --no-unal --no-hq --no-sq’). We accounted           
for a newly identified species based on the ‘uniqueness’ parameter if at least 150 consecutive               
nucleotides of the marker sequence were found in the identified target reference genome. 

We performed an additional step of curation for markers for species with genomes obtained with               
Co-Abundance gene Groups (CAGs) ​(Nielsen et al., 2014)​. To reduce the number of false              
positives, we removed the CAG species if more than 50% of its markers were shared with the                 
species that gave the taxonomy to the CAG genome. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2020. ; https://doi.org/10.1101/2020.11.19.388223doi: bioRxiv preprint 

https://paperpile.com/c/Fte0wb/oLdM
https://doi.org/10.1101/2020.11.19.388223
http://creativecommons.org/licenses/by/4.0/


 

Each marker has associated an entry in the MetaPhlAn database which includes the species for               
which the sequence is a marker, the list of species sharing the marker, the sequence length, and                 
the taxonomy of the species. Viral markers were taken from the v20_m200 MetaPhlAn2 database. 

Altogether, this identified a total of 1.1M markers for 13,475 species (​Table S8​). 

MetaPhlAn 3 taxonomic profiling  

The raw reads in a metagenomic sample are mapped by MetaPhlAn 3 to a database of 1.1M                 
markers using bowtie2 ​(Langmead and Salzberg, 2012)​. The default bowtie2 mapping parameters            
are those of the ‘very-sensitive’ preset but are customizable via the MetaPhlAn 3 settings. In               
MetaPhlAn 3 the input can be provided as a single FASTQ file (optionally compressed), multiple               
FASTQs in a single archive, or as a pre-performed mapping. Internally, MetaPhlAn 3 estimates the               
coverage of each marker and computes the clade’s coverage as the robust average of the               
coverage across the markers of the same clade. The clade’s coverages are then normalized              
across all detected clades to obtain the relative abundance of each taxon as previously described               
(Segata et al., 2012; Truong et al., 2015)​. 

In version 3, we further optimized the parameter of the robust average which excludes the top and                 
bottom quantiles of the marker abundances (“stat_q” parameter). This is now set by default to 0.2                
(i.e. excludes the 20% of markers with the highest abundance as well as the 20% of markers with                  
the lowest abundance). To further improve the quality of the read mapping, we adopted quality               
controls before and after mapping by discarding low-quality sequences and alignments (reads            
shorter than 70bp and alignment with a MAPQ value less than 5). 

We also introduced a new feature for estimating the “unknown” portion of the taxonomic profile that                
would correspond with taxa not present in current databases; this is computed by subtracting from               
the total number of reads the average read depth of each taxon normalized by its taxon-specific                
average genome length. Additionally, the new output format for MetaPhlAn 3 by default includes              
the NCBI taxonomy ID of each profiled clade, allowing for better comparisons between tools and               
tracking of the species name in case of taxonomic reassignment. 

Finally, alongside the default MetaPhlAn output format, profiles can be now reported using the              
CAMI output format defined by ​(Belmann et al., 2015; “BioBoxes RFC,” 2020) that can be used for                 
performing benchmarks with the OPAL framework ​(Meyer et al., 2019)​. To support post-profiling             
analyses, a convenience R script for computing weighted and unweighted UniFrac distances            
(Lozupone and Knight, 2005) from MetaPhlAn profiles is now available in the software repository              
(metaphlan/utils/calculate_unifrac.R), alongside the phylogeny (in Newick format) comprising all         
MetaPhlAn 3 taxa. The improvements and addition in MetaPhlAn 3 compared to the previous              
MetaPhlAn 2 version are summarized in ​Supplementary Table 2​. 

StrainPhlAn 3 strain profiling 
StrainPhlAn performs genotyping at the strain level by reconstructing sample-specific consensus           
sequences of MetaPhlAn markers and using them for multiple-sequence alignment and           
phylogenetic modeling ​(Truong et al., 2017)​. StrainPhlAn 3 improves the original implementation in             
several aspects: (i) the integration of an improved and validated pipeline for consensus sequence              
generation ​(Zolfo et al., 2019)​, (ii) the integration of PhyloPhlAn 3 ​(Asnicar et al., 2020) which                
improves the quality of the phylogenetic modeling and the flexibility of the analysis, and (iii) a                
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refined algorithm for filtering samples not supported by enough species’ markers and markers not              
enough conserved across strains and samples. 

StrainPhlAn 3 takes as input the alignment results from the MetaPhlAn 3 profiling (i.e. the mapping                
of the metagenomic samples against the MetaPhlAn species-specific markers) as well as the             
MetaPhlAn 3 markers’ database. For each sample, StrainPhlAn 3 reconstructs high-quality           
consensus sequences of the species-specific markers by considering, at each position of the             
marker, the nucleotide with the highest frequency among the reads mapping against the marker              
and covering that position. By default, consensus markers reconstructed with less than 8 reads or               
with a breadth of coverage (i.e. fraction of the marker covered by reads) lower than 80% are                 
discarded (“--breadth_threshold” parameter). Ambiguous bases are defined as positions in the           
alignment with quality lower than 30 or high polymorphisms (major allele dominance lower than              
80%) and are considered for the threshold on the breadth of coverage as unmapped positions. 

After marker reconstruction, the filtering algorithm discards samples with less than 20 markers, as              
well as markers present in less than 80% of the samples (“--sample_with_n_markers” and             
“--marker_in_n_samples” parameters, respectively). Then, markers are trimmed by removing the          
leading and trailing 50 bases (“--trim_sequences” parameter), since these are usually supported by             
lower coverage due to the boundary effect during mapping, and a polymorphic rates report is               
generated for optional inspection by the user. Finally, filtered samples and markers are processed              
by PhyloPhlAn 3 for phylogenetic reconstruction. By default, reconstructed sequences are mapped            
against the markers database using BLASTn ​(Altschul et al., 1990)​, multiple sequence alignment is              
performed by MAFFT ​(Katoh and Standley, 2013) and phylogenetic trees are produced by RAxML              
(Stamatakis, 2014) Due to the reconstruction of a strain-level phylogeny, PhyloPhlAn was set to              
run with “--diversity low” parameter. 

Phylogenetic trees produced by StrainPhlan 3 can also be used to identify identical strains across               
samples, which can be exploited, for example, in strain transmission analyses ​(Ferretti et al., 2018;               
Shao et al., 2019)​. This is now supported by the newly-added “strain_transmission.py” script. This              
script processes the phylogenetic tree produced by StrainPhAn together with metadata describing            
relations between the samples (e.g. longitudinal samples or samples with a relation of interest such               
as mother/infant pairings) to infer strain transmission events. First, using the phylogenetic tree, a              
pairwise distance matrix is generated and normalized by the total branch length of the tree. Using                
the distance matrix and the associated metadata, a threshold defining identical strains is inferred              
selecting the first percentile of the distribution of the non-related-samples distances (i.e. setting an              
upper bound on the theoretical false-discovery rate at 1%). If longitudinal samples are provided,              
only one is considered per subject, and samples not included in the metadata are considered as                
non-related. Finally, related sample pairs with a distance smaller than the inferred threshold are              
reported as potential transmission events. 

HUMAnN 3 data and algorithm updates 
Functional potential profiling of microbial communities is performed by HUMAnN using           
pangenomes annotated with UniRef90 on all species detectable per sample with MetaPhlAn.            
ChocoPhlAn pangenomes used by HUMAnN for functional profiling are directly available as the             
species pan-proteomes annotated with the UniRef90 clusters. To obtain a nucleotide           
representation of each pan-proteome, we identified a representative of the cluster for each             
pan-protein by selecting a UniProtKB or UniParc entry taxonomically assigned to the desired             
species. Each cluster representative was used for extracting the nucleotide sequence from the             
source reference genome and the several functional annotations from different systems (GO terms             
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(Ashburner et al., 2000)​, KEGG modules ​(Kanehisa et al., 2014)​, KO identifiers, Pfam accessions              
(Finn et al., 2014)​, EC numbers ​(Bairoch, 2000)​, and eggNOG accessions ​(Powell et al., 2014)​)               
associated with the UniProtKB entry. Alongside the functional annotations, we associated each            
UniRef90 cluster with its corresponding UniRef50 cluster in order to provide multiple levels of              
functional resolution. 

HUMAnN 3 implements a number of new options for fine-tuning the steps in its tiered search (e.g.                 
passing custom search parameters to bowtie2 ​(Langmead and Salzberg, 2012) and DIAMOND            
(Buchfink et al., 2015) in the pangenome and translated search steps, respectively). We performed              
a round of additional accuracy and performance tuning on these new parameters prior to the main                
evaluations of the paper. To minimize overfitting potential, we conducted initial tuning of HUMAnN              
3 on the above-described human-like synthetic metagenome, which featured a structure and            
species composition that were distinct from those of the CAMI and nonhuman synthetic             
metagenomes used in downstream inter-method comparisons (​Fig. 1​). 

We first considered two new options when assigning reads to species pangenomes: 1) requiring              
pangene sequences to be covered above a threshold fraction of sites before any alignments to               
those sequences were accepted (“database sequence coverage filtering”) and 2) allowing a read to              
align to multiple pangenes instead of the single target favored by bowtie2’s default settings (as               
used in HUMAnN 2). Coverage filtering (new option 1) was already implemented in HUMAnN 2 for                
post-processing translated search results, where it was shown to increase UniRef90-level           
specificity considerably at a small cost to sensitivity ​(Franzosa et al., 2018)​. We observed similar               
results here in the context of pangenome search; as a result, HUMAnN 3 now imposes (separately                
tunable) database-sequence coverage filters during its pangenome and translated search steps           
(both default to 50%; ​Fig. S4​). Conversely, allowing a read to hit up to 5 pangenes (new option 2,                   
as implemented via bowtie2’s “-k 5” setting) had very little impact on accuracy and is not enabled                 
by default in HUMAnN 3. 

We additionally considered new options to tune the stringency and memory usage of DIAMOND              
0.9 during translated search. The most impactful of these was reducing the identity threshold for               
per-read alignment to UniRef90 from 90% (the HUMAnN 2 default) to 80% (the new default for                
HUMAnN 3; ​Fig. S4​). While the former value was chosen to respect the average identity among                
UniRef90 family members, the 80% threshold is more forgiving of variation within read-length             
windows of a protein-level UniRef90 alignment. Coupled with HUMAnN’s database sequence           
coverage filter, the 80% threshold correctly aligns considerably more reads during translated            
search without compromising specificity. 

While HUMAnN 2 accepted DIAMOND’s (default) top-20 database targets per query read, we             
newly evaluated the top 1 and top 5 targets, as well as any targets within 1, 2, or 10% of the best                      
hit’s score. We selected the “within 1% score of the best hit” filter (DIAMOND’s “--top 1” option) as                  
a new default for HUMAnN 3 on the basis of a marked increase in UniRef90 specificity with                 
minimal loss of sensitivity. Finally, we explored tuning DIAMOND’s memory via the “--block-size             
(-b)” and “--index-chunks (-c)” flags. We found the achievable increases in speed to be small               
relative to their corresponding memory requirements, and so HUMAnN 3 continues to favor             
DIAMOND’s default, lower-memory configuration. 

PanPhlAn 3 with expanded databases and functional annotations 
PanPhlAn performs strain-level metagenomic profiling by identifying the species-specific gene          
repertoire composition inside individual metagenomic samples ​(Scholz et al., 2016)​. It maps            
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metagenomes against the pangenome of a species of interest using bowtie2 ​(Langmead and             
Salzberg, 2012)​. After coverage normalization (by summing the gene coverage of all genes in a               
gene family and dividing it by the average gene length of that family), PanPhlAn builds a coverage                 
curve of genes’ families across each sample and assesses which of these gene families are               
present or absent. This leads to the creation of a binary matrix of gene family presence/absence                
across all samples. 

Compared to the previous versions, in PanPhlAn 3 we adopt a new ChocoPhlAn 3 pre-computed               
pangenome database of 2,298 species built from species included in MetaPhlAn 3 for which at               
least 2 reference genomes are available. For species having more than 200 reference genomes              
available, the pangenome is made using a representative subset of 200 genomes maximizing the              
Mash distances between them ​(Ondov et al., 2016)​. PanPhlAn pangenomes from the database are              
composed of a FASTA file of all contigs, pre-computed bowtie2 indexes and a tab-separated              
values file containing the UniRef90 ID of the gene family as well as gene name, position in                 
genomes, on contigs, and functional and structural annotations 

Moreover, new functionalities include a script for quick visualization of the presence/absence            
matrix with functionalities for clustering of gene family’s profiles across samples. An empirical             
p-value can be computed for each cluster based on the ratio between the sum of the genes’                 
lengths of one group and its total span along the contig. Thus a significantly “close” genes group                 
can be identified and computation of empirical p-values assessing whether or not the genetic              
proximity of these families along the contigs could be considered significant. This eases the              
detection and identification of mobile elements in metagenomic samples.  

PhyloPhlAn 3  
PhyloPhlAn 3 is an easy-to-use method to perform taxonomic contextualization and phylogenetic            
analysis of microbial genomes and of metagenome-assembled genomes (MAGs). PhyloPhlAn          
among its databases exploits both the set of core genes and of reference genomes identified by                
ChocoPhlAn 3 and extracted from the 111,825 UniProt Proteomes for each taxonomic species.             
The methods, performance, and examples of PhyloPhlAn are described elsewhere ​(Asnicar et al.,             
2020) and refers to the same version incorporated into bioBakery 3. In brief, the core genes                
included in the PhyloPhlAn 3 database are used to identify sequence homologs in the input               
genomes and MAGs that are then aligned, concatenated, and used for phylogeny reconstruction. A              
set of MAGs previously analyzed ​(Pasolli et al., 2019) can also be included to provide phylogenetic                
contextualization of newly assembled MAGs. PhyloPhlAn 3 thus provides the methodology to            
integrate assembly-based methods and phylogenetic analysis into the bioBakery 3 analysis           
framework.  

Synthetic metagenomes and gold standards for bioBakery 3 evaluations 
We tuned and evaluated MetaPhlAn 3 and HUMAnN 3 using multiple different synthetic             
metagenomes of known species and gene content. The first set included synthetic metagenomes             
and gold-standard taxonomic profiles from the CAMI challenge representing five human body            
site-specific microbiomes and the murine gut microbiome ​(Fritz et al., 2019; Sczyrba et al., 2017)​.               
All such CAMI metagenomes were used for the evaluation of taxonomic profiling methods             
(including MetaPhlAn 3) while the first five lexically ordered metagenomes from each environment             
(human body sites and mouse gut) were used for the evaluation of functional profiling methods               
(including HUMAnN 3). 
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Second, because gold standard functional profiles were not provided for the CAMI metagenomes,             
we generated them ourselves by 1) functionally annotating the genomes sampled to build the              
CAMI metagenomes (and then 2) weighting their functional contributions according to mean            
coverage depth per “sample”. Notably, this approach to gold-standard construction does not            
account for gene-to-gene variation in read sampling along the length of community genomes. As a               
result, comparing the gold standards with functional profiles derived directly from the metagenome             
underestimates the profiles’ accuracy (by ~0.1 units of Bray-Curtis distance at the UniRef90 level). 

We applied procedures for community genome annotation developed during HUMAnN2          
benchmarking to aid in gold-standard construction ​(Franzosa et al., 2018)​. Briefly, we first identified              
and translated open reading frames (ORFs) within the CAMI genomes using Prodigal ​(Hyatt et al.,               
2010)​, and then aligned the translated ORFs against the v3 UniRef90 and UniRef50 sequence              
databases using DIAMOND ​(Buchfink et al., 2015)​. Each ORF was assigned to the best-scoring              
UniRef90 family to which it aligned with at least 90% identity and 80% mutual coverage (if any);                 
similarly, ORFs were assigned to the best-scoring UniRef50 family to which they aligned with at               
least 50% identity. Functional annotations were then transferred from UniRef90 and UniRef50            
representatives to the corresponding ORFs, with UniRef90-derived, enzyme commission (EC)          
annotations forming the basis for the main functional profiling evaluation (​Fig. 1​ and ​Fig. S3​). 

We constructed additional synthetic metagenomes by sampling sequencing reads from curated           
microbial genome sets using ART ​(Huang et al., 2012) with an Illumina HiSeq 2500 error model.                
One such group of metagenomes (abbreviated synphlan-nonhuman) was designed to mirror the            
sequencing depth and community structure of the CAMI metagenomes: i.e. inclusive of 30-million,             
150-nt paired-end sequencing reads sampled from species genomes with a log-normal abundance            
distribution. However, the synphlan-nonhuman metagenomes are distinct from the CAMI          
metagenomes in that they exclude genomes of human-associated microbial species (defined as            
species detected in MetaPhlAn 3 profiles of metagenomes from the Expanded Human Microbiome             
Project, HMP1-II ​(Lloyd-Price et al., 2017)​). In addition, 50% of species sampled for the              
synphlan-nonhuman metagenomes were associated with at least two sequenced isolate genomes           
and 50% of species pairs were congeneric sisters. We constructed an additional synthetic             
metagenome (synphlan-humanoid) based on the top-50 most abundant species detected from           
HMP1-II metagenomes to use for initial tuning of HUMAnN 3 (​Fig. S4​). This metagenome              
contained 10-million, 100-nt paired-end reads sampled evenly from underlying species genomes.           
We constructed gold standard taxonomic profiles for these metagenomes based on the sampled             
genomes’ taxonomic annotations and target sampling coverage; we constructed gold standard           
functional profiles based on UniProt-derived annotations of the species’ protein-coding genes.  

Evaluation of MetaPhlAn 3 and HUMAnN 3 on synthetic data 
To assess the performance of MetaPhlAn 3, we compared it with its previous version, MetaPhlAn 2                
(Truong et al., 2015)​, alongside mOTUs2 ​(Milanese et al., 2019) and Bracken ​(Lu et al., 2017;                
Wood et al., 2019)​. We profiled a total of 118 synthetic metagenomes spanning different              
ecosystems: (i) 49 synthetic metagenomes (10 Airways, 10 Gastrointestinal Tract, 10 Oral, 10             
Skin, 9 Urogenital tract) provided by the 2nd CAMI challenge ​(Sczyrba et al., 2017) resemble the                
composition of the Human Microbiome as described by the Human Microbiome Project ​(Turnbaugh             
et al., 2007)​; (ii) 64 synthetic metagenomes generated by CAMISIM and modeled after the murine               
gut microbiome ​(Fritz et al., 2019)​; (iii) 5 synthetic metagenomes including non-human associated             
species (see above). 
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Each software was run using default parameters as described in their respective user manuals.              
Additionally, mOTUs2 was run with parameters “-C recall” and “-C precision” in order to increase               
precision and recall, respectively. When not directly available from the tool (MetaPhlAn 2 and              
Bracken), output profiles were converted into the CAMI output format as described by the              
BioBoxes RFC ​(Belmann et al., 2015; “BioBoxes RFC,” 2020) in order to benchmark with the               
OPAL framework ​(Meyer et al., 2019)​ (version 1.0.5). 

From the panel of measures computed by OPAL, we selected a subset (precision, recall, F1 score)                
for comparisons (​Table S9​). Additionally to these measures, we computed the Pearson Correlation             
Coefficient between the predicted and expected relative abundance and the Bray-Curtis similarity            
index using arcsin square-root normalized relative abundances (​Table S3​). 

MetaPhlAn 3 includes markers describing species groups, a case is not taken into account by               
OPAL. To perform the evaluation, we expanded the species group to represent all contained              
species and considered a true positive if the expected species matches one species taxonomically              
placed under the species group. In case of no matches, we consider as false positive only one                 
species. 

We also assessed the performance in terms of run-time and memory usage. We profiled five HMP                
samples (SRS014235, SRS011271, SRS064645, SRS023346, SRS048870) with all the         
aforementioned software (using only one thread) and tracked every second of the execution till the               
end of process the resident set size (RSS) memory usage using ps. 

We evaluated HUMAnN 3, HUMAnN 2 ​(Franzosa et al., 2018)​, and Carnelian ​(Nazeen et al., 2020)                
on 30 CAMI metagenomes and the 5 synphlan-nonhuman metagenomes. Evaluations of HUMAnN            
3 were carried out using version 3.0.0-alpha of the software, MetaPhlAn 3, bowtie2 version 2.3.5.1,               
and DIAMOND version 0.9.24. Evaluations on HUMAnN 2 were carried out using version 0.11.1 of               
the software, MetaPhlAn version 2.7.5, bowtie2 version 2.3.5.1, and DIAMOND version 0.8.36            
(HUMAnN 2 is not compatible with DIAMOND version 0.9). HUMAnN 3 and 2 were run with their                 
default settings and full-size databases alongside the “--threads 6” option. UniRef90 abundance            
profiles were converted to EC abundance profiles (to facilitate comparisons with Carnelian) using             
the “uniref90_level4ec” option of the humann_regroup_table script. 

We evaluated Carnelian version 1.0.0 following installation and usage instructions given at            
http://cb.csail.mit.edu/cb/carnelian/ and ​https://github.com/snz20/carnelian​. Specifically, we first      
converted synthetic metagenome reads to FASTA format (this step was not counted toward the              
total runtime of the Carnelian method). Reads were then scanned for peptide fragments using              
“carnelian.py translate” wrapping FragGeneScan ​(Rho et al., 2010) version 1.31 with the “-n 3”              
option. Peptides were then assigned to EC categories using “carnelian.py predict” wrapping            
Vowpal Wabbit 8.1.1 and the EC-2010-DB model supplied at the above URLs. Finally, adjusted EC               
abundances were estimated using “carnelian.py abundance” and the average EC family gene            
lengths supplied with the software and a fragment size of 150 (to match the reads of the CAMI and                   
synphlan-nonhuman metagenomes). 

All method calls were made with the humann_benchmark utility script to track total runtime and               
memory usage (maximum resident set size, MaxRSS). Runtimes were converted to equivalent            
CPU-hours. For multi-step computations, CPU-hours were summed while the overall maximum           
MaxRSS was retained. Predicted EC abundances were sum-normalized to 1.0 at the community             
and per-species levels prior to Bray-Curtis dissimilarity computations. 
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Colorectal cancer microbiome meta-analysis  
We applied the new MetaPhlAn 3 and HUMAnN 3 on a set of human gut metagenomes profiling                 
colorectal cancer patients and controls, updating our previous meta-analyses performed with           
MetaPhlAn 2 and HUMAnN 2 ​(Thomas et al., 2019; Wirbel et al., 2019)​. To the previous                
meta-analysis, we added two more datasets that became available afterward ​(Gupta et al., 2019;              
Yachida et al., 2019)​. In total, we analyzed 1,262 metagenomes from 10 datasets (for a total of                 
CRC metagenomes and 600 controls, ​Table S10​). The dataset was stratified by country of origin               
with the exception of the two Italian cohorts published in ​(Thomas et al., 2019) which were kept                 
separate due to differences in the DNA extraction protocols. Results were thus computed on nine               
distinct sub-cohorts. 

MetaPhlAn 3 and HUMAnN 3 were used for the taxonomic and functional profiling of all               
sub-cohorts. Meta-analysis on the species-level, pathways, UniRef90 gene families, and enzyme           
commission (EC) categories relative abundances were performed on the sub-cohorts as previously            
described ​(Thomas et al., 2019)​. In brief, relative abundances were arcsine-square-root           
transformed, Cohen’s D was computed by the escalc function (metafor R package ​(Viechtbauer,             
2010) to model random effects, and I​2 estimates and Cochran’s Q-test were used for quantifying               
study-heterogeneity and assessing their statistical significance. Multidimensional scaling analysis         
was performed on the Weighted UniFrac distance (vegan “cmdscale” and rbiom “unifrac” function             
(Oksanen et al., 2008) computed on the relative abundance data adjusted for study batch effect               
with MMUPHin ​(Ma, 2019) and normalized using arcsin-square root. Alpha-diversity analysis was            
performed on the data after being rarefied to the 10th percentile of the read depth in each cohort. 

We used MetAML ​(Pasolli et al., 2016) to feed species-level and pathway-level relative             
abundances to a Random Forest model ​(Breiman, 2001)​. Age was also added to the feature-set,               
as this covariate has been shown to improve microbiome predictions in CRC ​(Ghosh et al., 2020)​.                
MetAML executed the Random-Forest implementation by Scikit-Learn v.0.22.2 with the following           
parameters: 10,000 estimator trees, square-root as the proportion of feature sampled in entrance             
to each estimator, no-maximum depth for the trees, 1 sample as the minimum amount for each leaf                 
of each tree, “gini” as impurity criterion. Considering each cohort, we tested the taxonomical and               
the functional potential profiles in the CRC prediction problem in a standard cohort-specific             
cross-validation as well as on the more reproducible leave-one-dataset-out (LODO) setting           
(Thomas et al., 2019; Wirbel et al., 2019)​. 

UniRef90 ​cutC gene family IDs were selected from the UniRef90 database included in HUMAnN 3.               
Species richness was calculated by tallying species with non zero relative abundance. Differential             
species richness and ​cutC abundance tests were performed using the Wilcoxon rank-sum test,             
wilcox.test, as implemented in the ‘stats’ R package.  

HMP2 IBD metagenome and metatranscriptome profiling 
We applied MetaPhlAn 3 and HUMAnN 3 to 1,635 metagenomes and 817 metatranscriptomes             
from the HMP2 Inflammatory Bowel Disease (IBD) Multi-omics Database (IBDMDB) ​(Lloyd-Price et            
al., 2019)​. We took advantage of previously quality-controlled sequencing data from this cohort as              
downloaded from ​http://ibdmdb.org (June 2020). Following the standard bioBakery workflow          
(McIver et al., 2018) for combined meta-omic sequencing data, we processed the HMP2             
metagenomes using HUMAnN 3.0.0.alpha.1 (including taxonomic prescreening performed by         
MetaPhlAn 3). We then processed the paired HMP2 metatranscriptomes using their corresponding            
metagenomic taxonomic profiles as guides for pangenome selection. To quantify improved           
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performance in bioBakery 3, we compared the HUMAnN logs produced during the runs described              
above with logs downloaded from ​http://ibdmdb.org describing analyses of the same samples using             
MetaPhlAn 2.6.0 and HUMAnN 2.11.0. 

To identify expression-level microbial metabolic biomarkers of IBD activity from the HMP2 dataset,             
we sum-normalized UniRef90 gene family abundance profiles to “copies per million” (CPM) units             
and then summed UniRef90 CPMs according to enzyme commission (EC) annotations using            
HUMAnN utility scripts. We then compared community-level EC expression with other sample            
properties using a mixed effects model implemented in R’s lmerTest package ​(Kuznetsova et al.,              
2017)​ (using subject as a random effect to account for repeated longitudinal sampling): 

og(RNA) ∼ log(DNA) diagnosis diagnosis ctive age antibiotics (1|subject)l +  +  : a +  +  +   

For a given EC, we evaluated the above model over paired meta-omes in which the EC’s                
metatranscriptomic abundance (RNA) and metagenomic abundance (DNA) were both non-zero;          
ECs were excluded if they failed to satisfy this condition in at least 10% of paired meta-omes. This                  
approach avoids interpreting RNA non-detection as strong evidence of “down-regulation” (relative           
to DNA abundance, identifying zero RNA reads for a feature is more common due to the wide                 
dynamic range of gene expression values and the large fraction of sequencing depth absorbed by               
non-coding RNAs). 

The inclusion of DNA abundance as a covariate in the above model accounts for the strong                
dependence between a function’s gene (metagenomic) copy number and its metatranscriptomic           
abundance. Thus, associations between EC RNA and other covariates can be interpreted as             
associations with “residual expression” (potentially reflecting up- or down-regulation of community           
genes independent of changes in metagenome structure). Subject age at study enrollment and             
per-sample antibiotics exposure were included as additional clinical covariates. The statistical           
significance of model covariates was assessed after performing Benjamini-Hochberg FDR          
correction on model p-values batched by covariate and level. 

We focused on associations between residual EC expression and subject diagnosis and disease             
activity with diagnosis. Here, subject diagnosis was divided broadly into Crohn’s disease (CD;             
n=49), ulcerative colitis (UC; n=30), and non-IBD controls (n=27). Due to the longitudinal nature of               
the HMP2 dataset, subjects diagnosed with CD and UC experienced variation in disease severity              
over the course of the study. The effects of disease activity on the microbiome were previously                
quantified as a “dysbiosis score” ​(Lloyd-Price et al., 2019) measuring ecological deviation from the              
control microbiome population. Samples from CD and UC patients that deviated most strongly by              
this measure were classified as “active.” Of 788 paired meta-omes considered here, 363 were from               
CD patients (76 with “active” CD), 227 were from UC patients (23 with “active” UC”), and 198 were                  
from non-IBD controls. Consistent with earlier analyses of the HMP2 dataset ​(Lloyd-Price et al.,              
2019)​, we did not detect significant differences in EC expression as a function of diagnosis alone                
(i.e. independent of disease activity), as non-active IBD meta-omes tend to be similar to those from                
control patients. 

Strain-level analysis of ​Ruminococcus bromii 
For ​Ruminococcus bromii population genetic analysis, from the 9,316 metagenomes spanning 46            
datasets considered by Pasolli et al. ​(Pasolli et al., 2019)​, we selected 4,077 samples in which ​R.                 
bromii was found present with a relative abundance above 0.05%. Strain-level profiling with             
StrainPhlAn 3 was performed using default parameters. 702 samples were discarded due to the              
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low number and/or poor quality of the reconstructed markers (samples having less than 20 markers               
and markers present in less than the 80% of the samples are excluded). 124 ​R. bromii MetaPhlAn                 
3 markers were used to generate a multiple sequence alignment. A phylogenetic distance matrix              
was produced by the dismat function from the EMBOSS package ​(Rice et al., 2000) (Kimura               
2-parameter distance correction) using the multiple sequence alignment file produced by           
StrainPhlAn. Prediction strength analysis performed on the phylogenetic distance matrix using the            
prediction.strength function included in the “fpc” R package ​(Hennig, 2010) version 2.2 revealed             
the presence of 4 optimal clusters (strength threshold 0.8). PAM clustering was subsequently             
applied on the phylogenetic distance matrix using the “cluster” R package ​(Kaufman and             
Rousseeuw, 2009) version 2.1. The phylogenetic tree generated by PhyloPhlAn was plotted with             
GraPhlAn ​(Asnicar et al., 2015)​. For visualization purposes, European countries were grouped into             
the EUR group. Tree cluster colors were assigned by considering the most common cluster              
assigned to leaves, and clusters 3 and 4 were joined into the “Others” group for the sake of                  
discussion. In order to detect possible events of vertical transmission of R. bromii, we executed the                
“strain_transmission.py” script using as input the phylogenetic tree produced by StrainPhlAn. 

Pangenome-based strain-level analysis was performed on the same selected set of samples using             
PanPhlAn 3 with the ​R. bromii pangenome composed of 8 reference genomes available on NCBI               
(GCA_002834165, GCA_002834225, GCA_002834235, GCA_003466165, GCA_003466205,     
GCA_003466225, GCA_900101355, and GCA_900291485). After mapping the metagenomic        
samples to the pangenome, a binary matrix of presence/absence was built using the PanPhlAn              
profiling script with default options for strain detection and filtering (--min_coverage 2 --left_max             
1.25 --right_min 0.75). The resulting matrix describes the presence/absence of 6,151 UniRef90            
families across 2,679 metagenomics samples and 8 reference genomes.  

In order to simplify the visualization of these results, we first discarded the genes families present                
in less than 2 samples or absent in 5 or less samples. Then, the Jaccard distance based on                  
presence/absence fingerprint was computed for both genes families and samples. Hierarchical           
clustering was built using the Ward criterion (“ward.D2” in R “hclust” function). A second more               
stringent filtering removed all genes families present in more than 95% or less than 5% of the                 
remaining samples.  

For assessing the correlation between the strain-level genomics and pangenomics results, we            
compared the phylogenetic distance distributions retrieved from the StrainPhlAn and PanPhlAn           
analyses. We used RAxML version 8.2.4 ​(Stamatakis, 2014) to generate phylogenetic distances            
between samples from PanPhlAN results. PanPhlAn information was coded as the           
presence-absence fingerprint of each sample and distances were computed using the substitution            
model based on these two states (argument -m MULTICAT of RAxML). One outlier sample was               
discarded due to mislabelled genomes. The StrainPhlAn phylogenetic distances were produced           
during the execution of the “strain_transmission.py” script. Correlation between PanPhlAn and           
StrainPhlAn pairwise distances was calculated using the Pearson correlation Coefficient. 

Data Availability 
Human and murine synthetic metagenomes and gold standards provided by the CAMI Challenge             
are available at ​https://data.cami-challenge.org/participate​. 

Non-human synthetic metagenomes and gold standards are available at         
http://segatalab.cibio.unitn.it/tools/biobakery/​. CRC metagenomic datasets analyzed in the       
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meta-analysis are available in the Sequence Read Archive under accession numbers PRJEB7774,            
PRJNA531273, PRJNA447983, PRJDB4176, PRJEB12449, PRJEB27928, PRJDB4176,      
PRJEB10878, and PRJEB6070. Sequences and data for the Integrative Human Microbiome           
Project are available at the IBDMDB website (​https://ibdmdb.org/​) and deposited in SRA under             
accession number PRJNA398089. 

Taxonomic profiles, functional profiles, and sample metadata of the CRC datasets are available as              
Table S5 and ​Table S10​. Taxonomic profiles and functional profiles of the HMP IBDMDB dataset               
are newly available at ​https://ibdmdb.org/​. 

Profiles are also available through the curatedMetagenomicData R package ​(Pasolli et al., 2017)​.            
The full list of metagenomic datasets and samples used for the strain-level analysis of              
Ruminococcus bromii is reported in ​Table S1 from ​(Pasolli et al., 2019)​. ​Ruminococcus bromii              
reference genomes are deposited in GenBank under accession GCA_002834165,         
GCA_002834225, GCA_002834235, GCA_003466165, GCA_003466205, GCA_003466225,     
GCA_900101355 and GCA_900291485. 
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