

Crystal and solution structures reveal oligomerization of individual capsid homology domains of *Drosophila* Arc

Running Title: Crystal structures of dArc capsid domain lobes

Erik I. Hallin^{1,¶}, Sigurbjörn Markússon^{1,¶}, Lev Böttger², Andrew E. Torda², Clive R. Bramham^{1,3}, Petri Kursula^{1,4,*}

11 ¹Department of Biomedicine, University of Bergen, Norway

12 ²Centre for Bioinformatics (ZBH), University of Hamburg, Germany

13 ³KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Norway

14 ⁴Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland

15

16 ¹equal contribution

17 *corresponding author; petri.kursula@uib.no

18

19 **Abstract**

20 Synaptic plasticity is vital for brain function and memory formation. One of the key proteins in long-term
21 synaptic plasticity and memory is the activity-regulated cytoskeleton-associated protein (Arc).
22 Mammalian Arc forms virus-like capsid-like structures in a process requiring the N-terminal domain and
23 contains two C-terminal lobes that are structural homologues to retroviral capsids. *Drosophila* has two
24 isoforms of Arc, dArc1 and dArc2, with low sequence similarity to mammalian Arc, but lacking the
25 mammalian Arc N-terminal domain. Both dArc isoforms have a capsid homology domain consisting of N-
26 and C-terminal lobes. We carried out structural characterization of the four individual dArc lobe
27 domains. As opposed to the corresponding mammalian Arc lobe domains, which are monomeric, the
28 dArc lobes were all oligomeric in solution, indicating a strong propensity for homophilic interactions. The
29 N-lobe from dArc2 formed a domain-swapped dimer in the crystal structure, resulting in a novel dimer
30 interaction that could be relevant for capsid assembly or other dArc functions. This domain-swapped
31 structure resembles the dimeric protein C of flavivirus capsids, as well as the structure of histones
32 dimers, domain-swapped transcription factors, and membrane-interacting BAK domains. The strong
33 oligomerization properties of the isolated dArc lobe domains explain the ability of dArc to form capsids
34 in the absence of any large N-terminal domain, in contrast to the mammalian protein.

35

36

37

38 **Introduction**

39 Memory formation in the brain is dependent on synaptic plasticity, and the activity-regulated
40 cytoskeleton-associated protein (Arc) plays an important role in this process [1,2]. Arc promotes the
41 endocytosis of AMPA receptors located on the post-synaptic membrane [3–5], regulates actin
42 cytoskeletal dynamics and dendritic spine structure [6–8], and enters the nucleus to regulate gene
43 expression [4,9,10]. The targeting of AMPA receptors may involve direct interactions of stargazin
44 (TARP γ 2) with both AMPA receptors and Arc [11–13]. Due to its many interaction partners, Arc
45 regulates several neuronal signalling processes as well as the structure of the postsynaptic density
46 scaffold [2,14].

47 Arc forms capsid-like structures that may transfer information from one neuron to another [15,16].
48 Mammalian Arc (mArc) has a C-terminal domain (Arc-CT) with close structural homology to the C-
49 terminal domain (CA-CTD) of the retroviral capsid (CA) protein [12], and mArc-CT consists of two
50 structurally similar lobe domains, N-lobe (NL) and C-lobe (CL) [12]. Viral CA has in addition an N-terminal
51 domain (CA-NTD), and both CA-NTD and CA-CTD are involved in viral capsid assembly. mArc has a large
52 N-terminal domain (Arc-NT) of unknown structure, which is absent in dArc. The Arc-NT is predicted to
53 have homology to the retroviral matrix domain and is required for the formation of large mArc
54 oligomers. Without its N-terminal domain, mArc is monomeric in solution [17]. In mArc, it is likely that
55 the presence of both mArc-NT and mArc-CT are required for high-order oligomerization and capsid
56 formation [18,19].

57 *Drosophila* has two Arc isoforms (dArc1 and dArc2), which share high sequence similarity. *Drosophila* Arc
58 (dArc) isoforms have a CT domain, containing tandem N-and C-lobes, but lack an Arc-NT found in mArc.
59 However, dArc is able to form capsids [16], whose structure has been determined by electron
60 cryomicroscopy [20]. Whether dArc functions similarly to mArc in neurons, even if the functionally

61 important mArc-NT is missing and the sequence similarity to mArc is low, is currently unknown.

62 Mammalian Arc also forms capsids [16], but the high-resolution structure remains to be solved.

63 We solved crystal structures of the individual dArc lobe domains. The CL of both dArc1 and dArc2 is

64 structurally homologous to the mArc lobe domains, confirming the connection to mArc and retroviral

65 capsids. The structure of dArc2-NL showed a domain-swapped dimer, resulting in a structure similar to

66 the flavivirus capsid protein and resembling histones as well as membrane-interacting BAK domains. All

67 individual dArc lobes are oligomeric in solution, in contrast to the monomeric mArc-CT. Such oligomeric

68 units could be building blocks during the assembly of virus-like capsids by full-length dArc, or they could

69 relate to its other functions.

70

71

72

73 Materials and methods

74 Recombinant protein production

75 Proteins were expressed in *Escherichia coli* BL21(DE3) with a TEV protease-cleavable His tag-maltose
76 binding protein (MBP) fusion at the N terminus. Cells were grown at +37 °C until an A_{600} of 0.6 was
77 reached. 1 mM isopropyl β-D-1-thiogalactopyranoside was added to start the induction, lasting 4 h at
78 +30 °C. The cells were lysed in HBS (40 mM Hepes, pH 7.5, 100 mM NaCl) containing 0.1 mg/ml
79 lysozyme, by one freeze-thaw cycle followed by sonication. The lysate was centrifuged at 16 000 g for 30
80 min at +4 °C and loaded onto a Ni-NTA resin. After washing with HBS containing 20 mM imidazole, the
81 protein was eluted with HBS containing 300 mM imidazole. His-tagged TEV protease [21] was added to
82 the eluate, and the sample was dialyzed against 20 mM Hepes (pH 7.5), 100 mM NaCl, and 1 mM
83 dithiothreitol for 20 h at +4 °C. The sample was passed through a Ni-NTA resin again to remove the TEV
84 protease and the cleaved His-MBP tag.

85 For the purification of dArc1-CL and dArc2-CL, an additional step was required to remove remains of the
86 cleaved MBP tag. This was done by passing the sample through an amylose resin, equilibrated with HBS
87 containing 1 mM EDTA.

88 The Ni-NTA or amylose flow-through was loaded on a Superdex S200 16/600 column, equilibrated with
89 TBS (20 mM Tris-HCl (pH 7.4), 150 mM NaCl). All proteins gave one major peak in the chromatogram.
90 Selected fractions were concentrated using spin concentrators to a final concentration of 10 mg/ml.
91 Protein purity was analyzed using sodium dodecyl sulphate–polyacrylamide gel electrophoresis, giving
92 one strong Coomassie-stained band of the expected size. Protein identity was confirmed using mass
93 spectrometry of trypsin-digested in-gel samples, as described [22].

94 The details of the protein constructs are given in S1 Table. The expression and purification of human Arc
95 NL and CL have been described [17].

96

97 **Size exclusion chromatography – multi-angle light scattering**

98 The absolute mass of the proteins was determined by SEC-MALS, using a miniDawn Treos instrument
99 (Wyatt). A Superdex S200 Increase 10/300 equilibrated with TBS was used for sample separation. The
100 system was calibrated using bovine serum albumin, and the protein concentration was measured using
101 an online refractometer. Data were analysed with ASTRA (Wyatt).

102

103 **Circular dichroism spectroscopy**

104 The ellipticity of the proteins was recorded using a Jasco J-810 spectropolarimeter and a 1-mm quartz
105 cuvette. The protein concentration was 0.2 mg/ml in 20 mM phosphate (pH 7). The experiments were
106 done at +20 °C.

107

108 **X-ray crystallography and structure analysis**

109 Crystals were obtained by sitting-drop vapor diffusion at +20 °C. The crystals of dArc2-NL were grown by
110 mixing 150 nl of dArc2-NL at 8 mg/ml with 150 nl of reservoir solution (200 mM ammonium chloride,
111 100 mM sodium acetate (pH 5), 20 % PEG 6000). The crystals of dArc2-CL were made by mixing 200 nl of
112 protein at 15 mg/ml with 100 nl of reservoir solution (1.25 M ammonium sulphate, 100 mM Tris (pH
113 8.5), 200 mM lithium sulphate). The crystals of dArc1-CL were made by mixing 150 nl of the protein at
114 12 mg/ml with 150 nl of a reservoir, consisting of 100 mM MIB buffer (malonic acid, imidazole, boric

115 acid) (pH 5) and 25% PEG 1500. The crystals of dArc1-CL used for phasing were grown by mixing 2 μ l of
116 the purified protein at 12 mg/ml with 2 μ l of a reservoir solution, consisting of 20% PEG 3350, by
117 hanging-drop vapour diffusion at +20 °C. These crystals were soaked in a solution of 20% PEG 3350 with
118 500 mM NaI for 20 s.

119 Crystals were mounted in loops and snap-frozen in liquid nitrogen. X-ray diffraction data for dArc2-NL
120 were collected on the I03 beamline at Diamond Light Source (Oxfordshire, UK), while the data for dArc1-
121 CL and dArc2-CL were collected on the P11 beamline [23] at PETRAIII/DESY (Hamburg, Germany). All
122 data were processed using XDS [24].

123 Phasing of dArc2-NL was done with molecular replacement in AMPLE [25] and *ab initio* models
124 generated by QUARK [26], on the CCP4 online server [27,28]. The phasing of dArc1-CL was done using
125 iodine single-wavelength anomalous dispersion (SAD) and the Auto-Rickshaw pipeline [29], with the
126 combined use of SHELX [30], PHASER [31], PARROT [32], and BUCCANEER [33]. The resulting near-
127 complete model was taken as a template for molecular replacement in PHASER [31], using atomic-
128 resolution data from a native crystal with a different space group. The phasing of dArc2-CL was done
129 using the dimeric structure of dArc1-CL as a search model in PHASER [31]. All structures were refined
130 with phenix.refine [34], and model building was done in Coot [35]. The quality of the structures was
131 assessed using MolProbity [36]. Data processing and refinement statistics are given in Table 1.

132

133 **Table 1. Data processing and structure refinement.** The values in parentheses refer to the highest-
134 resolution shell.
135

Sample	dArc1-CL (derivative)	dArc1-CL (native)	dArc2-NL	dArc2-CL
Space group	P2 ₁ 2 ₁ 2	C222 ₁	P222 ₁	P4 ₂ 2 ₁ 2
Unit cell dimensions (Å)	38.2, 82.5, 29.8	37.6, 51.1, 82.4	24.6, 33.4, 84.9	190.0, 190.0, 40.4
Wavelength (Å)	2.0662	1.0332	0.976	1.0332
Resolution range (Å)	50-2.30 (2.44-2.30)	50-1.05 (1.08-1.05)	50-1.90 (1.95-1.90)	50-2.80 (2.87-2.80)
< /σ()>	24.3 (16.0)	26.1 (1.6)	9.9 (1.0)	8.7 (0.9)
R _{sym} (%)	8.4 (10.3)	2.9 (29.5)	10.3 (143.2)	34.4 (303.6)
R _{meas} (%)	8.8 (10.8)	3.1 (39.0)	11.1 (156.8)	35.7 (315.2)
Completeness (%)	99.4 (96.6)	92.6 (45.5)	100 (100)	99.8 (98.3)
Redundancy	12.2 (10.9)	5.9 (1.6)	6.8 (6.1)	14.3 (13.9)
CC _{1/2} (%)	99.8 (99.7)	100 (91.3)	99.8 (39.5)	99.2 (43.3)
Wilson B factor (Å ²)	30.9	14.9	40.8	49.8
R _{cryst} (%)	-	13.0	23.8	23.1
R _{free} (%)	-	15.1	27.1	28.0
rmsd bond lengths (Å)	-	0.019	0.013	0.013
rmsd bond angles (°)	-	1.5	1.2	1.3
Ramachandran favoured/outliers (%) ; Molprobity score (percentile)	-	100/0; 1.77 (38 th)	93.4/0; 2.22 (49 th)	97.9/0; 2.02 (99 th)
PDB entry	-	6SID	6SIB	6SIE

136

137 **Structure analysis**

138 The PISA server [37] was used to calculate probable oligomeric states from crystal symmetry, and
139 PDBsum [38] and PISA were used for structural analysis and in-depth analysis of dimer interfaces.
140 Structural homologues were searched using DALI [39] and SALAMI [40], in addition to the known
141 homologues from literature and manual searches. Electrostatic potential maps were calculated with
142 PDB2PQR and APBS [41] and visualised in UCSF Chimera [42] or PyMOL. Sequence identity between the

143 dArc CA lobes and structural homologues was calculated using the EMBOSS needle server [43], and the
144 dArc1-NL homology model was generated using the SWISS-MODEL server [44], with the dArc2-NL crystal
145 structure as template.

146

147 **Small-angle X-ray scattering**

148 Synchrotron SAXS data for dArc1-NL and dArc2-NL were collected on the B21 beamline at Diamond Light
149 Source (Oxfordshire, UK) using a SEC-SAXS setup, where SAXS frames are collected as the sample elutes
150 from a SEC column. A Superdex S200 Increase 3.2 column equilibrated with TBS was used. The injected
151 sample was at 5 mg/ml, and the measurements were done at +10 °C. SEC-SAXS data for dArc1-CL and
152 dArc2-CL were similarly collected on the P12 beamline [45] at EMBL/DESY (Hamburg, Germany).

153 SAXS data were processed using ATSAS [46], and the frames showed no signs of aggregation or radiation
154 damage. *Ab initio* dummy atom and chain-like SAXS models were built with DAMMIN [47] and GASBOR
155 [48], respectively. CRYSTAL [49] was used to generate SAXS scattering profiles from 3D protein structures
156 and compare these to experimental SAXS data.

157

158 **Isothermal titration calorimetry**

159 A MicroCal iTC200 instrument (Malvern, UK) was used to determine the binding affinity of a stargazin
160 peptide (RIPSYRYR with N-terminal acetylation and C-terminal amidation) to the NL of *Drosophila* and
161 human Arc. Arc in the cell had a concentration either 0.5 mM (dArc N-lobes) or 0.25 mM (hArc N-lobe);
162 the peptide concentration in the syringe was 10-fold higher. The peptide was injected in 26 3- μ l
163 injections, with an initial injection of 0.5 μ l and a second 0.5- μ l injection after 14 injections due to

164 syringe refill. Both the protein and peptide were in TBS buffer. The experiments were done at +25 °C,
165 and the data were analyzed with MicroCal Origin 7, using a one-site binding model.

166

167 Sequence comparisons

168 For conservation calculations, homologues from the non-redundant sequence database were collected
169 using BLAST, accepting hits with an *e*-value less than 10^{-10} [50]. For larger sets and phylogenetic
170 speculation, homologues were collected using iterative PSI-BLAST in up to three stages, each with no
171 more than four iterations, accepting homologues with *e*-values less than 10^{-20} , 10^{-10} , and 10^{-8} [51]. Full
172 length proteins or the candidate ranges were re-aligned using MAFFT in its most accurate mode, with up
173 to 200 iterations [52]. Before alignment, redundancy amongst the sequences was removed by
174 calculating an alignment in fast mode, saving the matrix of distances between sequences, and sorting
175 the list of pair distances. Starting from the smallest distance, one member of each pair was removed
176 until the target number was reached. This removes redundancy and ensures the most even spread of
177 sequences within a set of homologues. For conservation calculations, search starting points were
178 NP_610955.1 (dArc1-NL and full-length dArc1), as well as PDB codes 6sib for dArc2-NL, 6sid for dArc1-
179 CL, and 6sie for dArc2-CL.

180 Sequence conservation/variability was calculated from the alignments using entropy,

$$181 S = \sum_{i=1}^{20} p_i \log_{20} p_i$$

182 where p_i is the frequency of amino acid type i at a given alignment position.

183

184 **Results and discussion**

185 Although mArc and dArc both contain similar lobe domains (Fig 1), In mArc, low solubility is caused by
186 the NT [17]. A construct containing both the NL and CL is soluble and fully monomeric for hArc [17].
187 dArcs lack an Arc-NT, but they are predicted to have an N-terminal helix that might play a role in
188 oligomerization. The isolated NL and CL domains of both dArc1 and dArc2 could be produced in soluble
189 form, while dArc constructs containing both lobes were insoluble (data not shown); this low solubility
190 resembles that of full-length mArc. The different behaviour of the isolated lobe domains suggests that
191 mArc and dArc differ in the mechanism, with which they form larger structures such as capsids. Our aim
192 was to understand the structural basis of these differences.

193

194 **Fig 1. Comparison of mArc and dArc domain structure.** The constructs used for structural studies on the
195 individual dArc lobe domains are indicated.

196

197 **Crystal structure of dArc2-NL presents a domain-swapped dimer** 198 **similar to nucleotide- and membrane-interacting proteins**

199 It has been suggested that viral CA-CTD domains employ different dimerization modes during capsid
200 assembly [53]. In the crystal, dArc2-NL is a domain-swapped dimer, in which the second and third
201 helices of the canonical lobe domain are fused, forming an extended helix (Fig 2A-C). One layer of the
202 dimer is formed by $\alpha 2$ of each subunit, which pack at a cross angle of 140.7° . The other layer is formed
203 by the remaining helices of the $\alpha 2$ bundle, and $\alpha 1$ lies in a groove formed between $\alpha 2$ and $\alpha 3$. The
204 subunit interface of the dimer spans 3440 \AA^2 of buried surface area. The interface consists exclusively π -

205 π and other van der Waals interactions, and the helices encapsulate a hydrophobic core between the
206 monomers, most prominently by Phe51, Val55, Pro74, Phe77, Ile80, Trp84, Trp95, Leu99, Leu102, and
207 Phe106 (Fig 2B). The solvent-exposed surface of the dimer is charged and polarised (Fig 2D); the
208 electrostatic surface potential of the side formed by the two coiled α 2 helices is highly positive, while
209 the opposing surface formed by α 1 and α 3 is mainly negative. In the extended crystal lattice (Fig S1),
210 these opposing charges take part in crystal contacts. The crystal packing does not, however, explain the
211 tetrameric oligomerization state of the protein in solution (see below).

212
213 **Fig 2. The crystal structure of dArc2-NL.** (A) The domain swapped dimer observed in the crystal, with
214 the three α -helices labeled. (B) The folded dimer encapsulates an extensive hydrophobic core, with no
215 polar interactions connecting the two dimers. Residues are only labelled in subunit A, but also seen in
216 subunit B. (C) Topology diagram of domain swapping. (D) The electrostatic surface of the dimer,
217 calculated using APBS. The longitudinal axes of α 2 and α 2' have a positive surface potential, in contrast
218 to the surface formed by α 1, α 3, α 1', and α 3'. The protein is in the same orientations as in (A).

219
220 The dArc2-NL domain-swapped dimer differs from the dimers of retroviral capsid CA-CTD seen with
221 crystallography and NMR [54] and might be functionally relevant for dArc oligomerization and capsid
222 formation. However, the cryo-EM structures of the dArc1 and dArc2 capsids [20] do not show such
223 domain swapping, and the dArc-NL forms penta- and hexameric rings instead (Fig 3A). In both capsids, a
224 kink is introduced in the extended α 2 (at Leu76, Phe77, and Lys78 in dArc2), resulting in breaking of the
225 helix into two to form a canonical lobe domain fold. As a result, the surface charges of the lobe are re-
226 oriented such that the negatively charged surface of α 1 can interact with α 2 (Fig 3A). Therefore, the turn
227 seems vital to the formation of the capsid hexa- and pentamers. An interesting discrepancy between the
228 domain-swapped dimer, the capsid structure, and the recently published crystal structure of the dArc1

229 CT domain [55], is the presence of the N-terminal tail preceding the NL (residues 29-44 in dArc2,
230 residues 41-57 in dArc1). In the capsid structures of both dArc isoforms, the tail packs into the exposed
231 hydrophobic core of the lobe (Fig 3B), and Phe32 and Phe39 are observed in two hydrophobic pockets
232 and Ser40 interacts directly with Lys78 and Ser79, of the α 2 kink, *via* hydrogen bonding. A part of the tail
233 (residues 37-45) was included in the dArc2-NL crystallized here. However, this fragment could not be
234 resolved, presumably due to flexibility. Therefore, it seems that the full N-terminal fragment, including
235 Phe32, is needed for the packing of the tail into the exposed hydrophobic core of the lobe and the
236 formation of the penta- and hexameric forms found in capsids. The binding surface for the N-terminal
237 segment is buried at the interface of the dArc2-NL domain-swapped dimer (Fig 2A-B). The structure of
238 dArc2-NL reveals an intrinsic property of the Arc lobe domain to form alternate dimers *via* domain
239 swapping, possibly regulated through interactions of the folded dArc2-NL core domain with the N-
240 terminal tail.

241

242 **Fig 3. The N-terminal region preceding dArc-NL packs into the hydrophobic core of the domain and**
243 **leads to the formation of the capsid hexamer.** (A) The hexameric form of dArc2-NL observed in the
244 capsid (PDB: 6TAQ; [20]), showing the electrostatic surface potential for half of the monomers. The
245 splitting of α 2 enables contact formation between the oppositely charged surfaces of each monomer.
246 The N-terminal tail is showed in orange. (B) Residues contributing to the packing of the N-terminal tail
247 (orange) into the capsid hexamer. Phe32 and Phe39 pack into two exposed pockets in the hydrophobic
248 core. Further interactions are observed from Ser40 which hydrogen bonds directly with Lys78 and Ser79
249 in the α 2 kink (interactions shown as yellow dashed lines).

250

251 In exploring the functional relevance of the domain swapped dArc2-NL dimer, we found that the overall
252 fold of the dimer resembles retroviral proteins known to exhibit domain swapping. dArc2-NL resembles

253 the flaviviral capsid C protein [56], which also forms domain-swapped dimers [57]. Despite low
254 sequence similarity with the dengue virus 2 C protein (16.2%) and the core protein of the Kunjin subtype
255 West-Nile virus (9.4%), the overall fold is surprisingly similar (Fig 4A-B) [56,58]. Both the dengue and
256 West-Nile virus are enveloped RNA viruses, and the proteins are essential for the formation of the viral
257 capsid. Despite different helix topology, the two proteins share fold similarity with dArc2-NL and have
258 highly positive electrostatic surfaces, indicated by the authors to have a role in the binding of
259 encapsulated genomic RNA [56,58]. Interestingly, in the crystal, the West-Nile virus core protein forms
260 tetramers [58]. In the tetrameric form, long helices from each monomer (homologous to α 2 in dArc2-
261 NL) form a four-helix bundle subunit interface. This could be similar to the dArc2-NL tetrameric form in
262 solution (see below). Moreover, the arrangement of dArc2-NL in the crystal bears some similarity to the
263 domain-swapped dimer of the HIV CA lobe domain, induced by the deletion of a single residue [59].

264

265 **Fig 4. The dArc2-NL domain-swapped dimer resembles flaviviral coat proteins and DNA-binding**
266 **proteins.** (A) The tetrameric coat protein of the Kunjin subtype West-Nile virus (WNc), where the
267 longest helix of each monomer (analogous to α 2 of dArc2-NL) contributes to a four-helix bundle
268 interface (PDB: 1SFK [58]) (left). Middle: a single dimer of the tetramer (yellow/orange) overlaid with
269 subunit A from dArc2-NL (grey). Right: the electrostatic surface potential of a WNc dimer, which
270 resembles that of dArc2-NL. (B) Structural comparison between the dArc2-NL and similar domain-
271 swapping proteins. Shown are the retroviral Dengue virus CA (green; PDB: 1R6R [56]) and the DNA
272 binding dimers of (HMfb)₂ histone (red; PDB: 5T5K [60]), a dimer of histones H3 and H4 (cyan; PDB: 5C3I
273 [61]), TAF_{II} transcription factor (blue; PDB: 1TAF [62]) and the foxhead domain of the FoxP2 transcription
274 factor (yellow; PDB: 2A07 [63]). Each chain in a dimer is coloured with a different shade, and the dArc2-
275 NL monomer is superimposed and shown in grey. (C) Domain swapping and conformational selection
276 in the apoptosis-induced BAK protein suggests a possible mechanism for dArc2-NL. Shown on the left is

277 the inactive monomeric form of BAK (PDB: 2IMT [64]), which has an orthogonal bundle fold similar to
278 Arc N-lobes. Binding of a BH3 domain causes partial unfolding and opening of the hinge region (middle,
279 PDB: 4U2U [65]), which leads to the formation of the membrane-binding domain-swapped dimer (right,
280 PDB: 4U2V [65]). Panel C is based on [66]. The two chains in the BAK dimer are coloured grey and
281 orange.

282

283 Domain swapping of modular proteins emerges as a common theme in capsid-forming proteins. The
284 dArc2-NL structure, with similarity to both retroviral and flaviviral capsid domain structures, shows that
285 it is possible, *via* an extended helix, to transform the canonical capsid domain to a domain-swapped
286 dimer. Whether such structures are related to the evolutionary history of capsid proteins, remains to be
287 studied. It is interesting to note that the nucleocapsid protein from SARS coronavirus [67] also dimerises
288 *via* domain swapping, while the sequence and structure are not similar to Arc.

289 In addition to viral capsid proteins, the structure of a single chain in the domain-swapped structure of
290 dArc2-NL resembles the structure of a histone core protein monomer, as well as that of TATA box-
291 binding protein-associated factors and the foxhead domain FoxP transcription factors (Fig 4B)
292 [14,62,63,68,69]. The foxhead domain exist both as monomers and DNA binding domain-swapped
293 dimers [63], which share significant fold topology with the dArc2-NL dimer. Moreover, upon
294 replacement of a crucial alanine residue in the hinge region with proline (A39P), the foxhead domain
295 lost all domain swapping ability [70]. The histone protein forms dimers, which combine to form
296 tetramers and finally an octamer, to which DNA binds to form the nucleosome [71]. The histone and
297 dArc2-NL dimer arrangements are different (Fig 4B), but the monomer structures are strikingly similar.
298 This observation could be related to either the propensity of certain protein sequences to form domain-
299 swapped structures or a functional similarity. The above observations on dArc2-NL are interesting in
300 light of the histone mimicry by Dengue virus protein C [72], which interferes with host histones to inhibit

301 nucleosome formation and gene transcription [9]. Whether such a mechanism could be important for
302 Arc function, as mArc accumulates in the nucleus, associates with specific histone-modifying complexes,
303 and is implicated in regulation of chromatin state and transcription [9,10,14,73] is a subject for future
304 studies.

305 The same is true for the membrane binding core domains of BAK and BAX. BAK and BAX are members of
306 the Bcl2 protein family and are important mediators of apoptosis. In its inactive form, BAK is monomeric
307 and fully soluble, and the core domain has an orthogonal bundle fold. Upon activation, mediated by
308 binding of certain BH3-only proteins into a hydrophobic groove in the core domain, the protein is partly
309 unfolded, which leads to separation of the core and latch domains. The core domain then dimerizes to
310 form amphipathic domain-swapped dimers [65,74]. These dimers can then further oligomerize and
311 partition to the outer mitochondrial membrane where they bind and cause permeabilization, leading to
312 the release of apoptosis factors such as cytochrome c into the cytosol [66]. Both the inactive and active
313 forms of BAK show strikingly similar fold topology to the monomeric and dimeric state of the dArc2-NL,
314 respectively. Additionally, the structure of the BAK intermediate, with the hinge region not fully open,
315 might suggest a similar mechanism for conformational selection in dArc (Fig 4C). This might give valuable
316 insight into the mechanism of domain swapping of dArc2-NL, in which interactions in the hydrophobic
317 peptide binding groove seem of importance. Specific interactions in the groove might lead to
318 dimerization, upon which the protein surface potential is rearranged to accommodate for nucleic acid or
319 membrane binding.

320

321 **Evolutionary aspects of dArc2-NL domain swapping**

322 Fig 5A shows the sequence entropy (opposite of conservation) of Arc NL and CL. In dArc2-NL, the most
323 conserved residues are Ala81, Trp84, and Trp85, which sit on the hydrophobic side of the long α 2 helix,

324 corresponding to a conserved hydrophobic core in the domain family. Most interesting is Ser79 of
325 dArc2, given its possible role in domain swapping. In all Arc-CL structures, the corresponding residue is a
326 glycine in a β -turn, with a positive φ angle. In the dArc2-NL structure, there is no β -turn, and the
327 corresponding residue, Ser79, is in the middle of a long regular α -helix.

328

329 **Fig 5. Sequence conservation analysis of the central lobe region.** (A) Sequence variability in Arc N- and
330 C-lobes (left and right, respectively). S is sequence entropy / variability. Numbering follows dArc2.
331 Values are only shown for sites present in 50% or more of the sequences. dArc2 denotes 220 Arc2
332 homologues from *Drosophila*, dArc1+dArc2 a combined group of 250 homologues and
333 dArc1+dArc2+*Rattus* has the group expanded to 699 sequences with homologues of the *Rattus*
334 sequences. (B) Sequence logo for Ser79 of dArc2-NL compared to corresponding residues from dArc1
335 and *Rattus norvegicus* homologues. (C) Mapping of conservation onto the dArc2-NL dimer. Blue
336 corresponds to conserved and red to non-conserved sites.

337

338 In evolutionary terms, Ser79 of dArc2-NL is an outlier, as clearly shown by a sequence logo of the region
339 (Fig 5B). The window around Ser79 in dArc2 is lfkSiav, but whether one looks at homologues of
340 dArc1, dArc2, or mArc, the site corresponding to Ser79 is most often a Gly, Asp, or Asn. These are
341 common residues in a β turn [75], but Ser and Thr are also possible [76]; this changes the interpretation.
342 In the dArc2-NL structure, one has a domain-swapped dimer and an α helix, where related structures
343 have a β turn. Looking at the sequence homologues, the proteins have kept residues, which can adopt
344 positive φ angles and are likely to adopt turns. Looking at the conservation mapped onto the dArc2-NL
345 structure, no clear cues are observed; rather, conserved residues are evenly dispersed along the folded
346 structure (Fig 5C). In the structures of the dArc1 and dArc2 capsid [20] as well as the crystal structure of

347 a longer dArc1 construct [55], the NL has the canonical fold without domain swapping. These features
348 imply that the domain-swapped dArc2-NL structure might be due to crystallization of one domain alone,
349 but it confirms the general capability of CA domains to dimerize through different modes, including
350 domain swapping [53,54,59,77].

351

352 **Structures of dArc C-lobes**

353 Both dArc1 and dArc2 CL crystallized as homodimers (Fig 6A-B, S2, S3), and each monomer consists of
354 five helices in an orthogonal bundle fold. The structures are highly similar (Fig 6C). The dimer interface is
355 in both cases formed by α 1 and α 3 from each monomer, and the total buried surface area at the
356 interface is similar, \sim 1400 Å² (Fig 6D). Both interfaces contain four hydrogen bonds and four salt bridges.
357 The interface is conserved, displaying only three conservative replacements (A125/L170/F172 in dArc1
358 to S112/F157/Y159 in dArc2). The dArc-CL dimers resemble the domain in the dArc capsids (Fig 6E), with
359 an all-atom RMSD of 1.75 Å for dArc1 and 1.13 Å for dArc2. The intact CA domain of dArc1 is dimeric in
360 solution [55]. Conservation of the dimer interface suggests a vital function of this mode of
361 oligomerization in dArc function, both as a capsid and dimeric in solution.

362

363 **Fig 6. Crystal structures of the dArc1 and dArc2 C-lobes reveal dimeric orthogonal bundles.** (A) dArc1-
364 CL. (B) dArc2-CL. (C) The two structures, which deviate with an all-atom RMSD of 0.48 Å, aligned. (D)
365 Residues contributing to the dimer interface in dArc2-CL. dArc1-CL residues are marked in blue, and
366 residues of dArc2-CL are marked in orange. Altering residues are indicated in italics. All residues
367 contributing to the dimer interface are highly conserved, with the exception of A125 (dArc1) which
368 corresponds to S112 (dArc2). Polar interactions are shown with red dashed lines. (E) A comparison of
369 the dArc C-lobe crystal structures with the same domains in the viral-like capsids formed by the protein.

370 Both the dArc1 and dArc2 C-lobes closely resemble their counterparts in the capsids, with an all-atom
371 RMSD of 1.75 \AA^2 and 1.13 \AA^2 , respectively.

372
373 The dArc CL domains are dimeric also in solution (see below). This behaviour of the dArc C-lobes is
374 different to the monomeric mArc C-lobe [17], while both share the same core structure [12]. The dimer
375 interface in dArc-CL, which corresponds to that in retroviral CA-CTD [54], contains mainly hydrophobic
376 interactions; half of these hydrophobic residues are polar in the rat Arc CL, and the first helix of the
377 dArc-CL, a major part of the dimer interface, is tilted away in mArc, explaining the monomeric state of
378 mArc-CL in solution [17].

379 The crystal structures of the dArc C-lobes resemble those of mArc and retroviral capsid proteins (Fig 7A).
380 The dimerization of the retroviral CA-CTD is similar to that of dArc-CL; $\alpha 1$ and $\alpha 3$ of each five-helix
381 bundle contribute to the subunit interface (Fig 7B). However, in both HIV and bovine leukemia virus
382 (BLV) CTDs, the N-terminal segment differs from Arc, consisting of a seven- and six-helix orthogonal
383 bundle, respectively. HIV forms elongated conical capsids, and HIV-1 CA assembles spontaneously into
384 helical tubes *in vitro* [78]. Thus, despite high similarity of individual domains within the fold family, the
385 assembly mechanisms into larger structures may be different and depend on additional domain modules
386 in the corresponding protein.

387
388 **Fig 7. The structure of dArc-CL resembles that of mArc and retroviral capsid proteins.** (A) Structures
389 similar to dArc1-CL. dArc1-CL (grey) is shown aligned with crystal structures of the rat Arc C-lobe (yellow;
390 PDB: 4X3X) [12], HIV C-terminal domain (green; PDB:1A43) [79], bovine leukemia virus (BLV) C-terminal
391 domain (black; PDB:4PH0) [80], the rous sarcoma virus (RSV) C-terminal domain crystallized at pH 4.6
392 (purple; PDB: 3G21) [81], and the C-terminal domain of the Ty3 retrotransposon capsid (cyan; PDB:

393 6R23) [82]. Also shown are the scoring criteria obtained from the Dali server. (B) Comparison of CT
394 dimerization. Shown are the dimer interfaces of the structural homologues in (A) and dArc2-CL, as
395 calculated by PISA [37] from the crystalline states, apart from the BSV-CTD, which was not dimeric.
396 Buried surface area (BSA) of each interface is shown below each structure.

397

398 Both the intact mArc-CT and the mArc-CL alone are monomeric in solution [12,17,83]. The crystal
399 structure of the rat Arc CL suggests a monomeric state [12], and a dimer similar to dArc-CL cannot be
400 found in the crystal symmetry. However, a likely dimeric state of the protein was found in the crystal
401 lattice by PISA (Fig 7B). Despite the high structural similarity to both the dArc C-lobes, oligomerization
402 differs in mArc. In this putative dimer, the interface is formed by α 1 and α 2 of each monomer. The total
403 buried surface area at the interface is similar to both dArc1-CL and dArc2-CL, being composed of 75 van
404 der Waals and π - π contacts, 2 hydrogen bonds, and 4 salt bridges.

405 Conservation within the Arc-CL (Fig 5A) raises some questions. The most conserved residue (Gln124 in
406 dArc2) is structurally important, forming hydrogen bonds and contacts with many neighbours, including
407 the conserved residues Phe133 and Met162. Arg138 and Asp151 are surface-exposed, but highly
408 conserved in both insects and mammals. Therefore, they could be central in a network of salt bridge
409 interactions on the CL surface. It is likely that such conserved residues are required for the correct
410 folding of the Arc lobe structure.

411

412 All dArc lobe domains are oligomeric in solution

413 The structure and oligomeric state of the dArc lobe domains were analyzed in solution by SEC-MALS,
414 SAXS, and CD (Fig 8, Table 2). Both dArc1-CL and dArc2-CL are compact and slightly elongated, fitting the
415 crystallographic dimers (Fig 8A-B). dArc1-NL is similar, being the size of a dimer. dArc2-NL is twice the

416 size of dArc1-NL in solution, suggesting a tetramer. The details of the latter arrangement are currently
417 unknown, since no symmetric tetrameric assemblies can be deduced from the crystal structure, but the
418 assembly could be similar to the West Nile virus C protein [58]. The tetrameric C protein resembles the
419 dArc2-NL (Fig 4A), in that it is a dimer of domain-swapped dimers similar to the dArc2-NL homodimer.
420 SAXS data for dArc2-NL in solution fit the structure of a similar tetrameric assembly (Fig 8C-D). Hence, it
421 is possible that the observed dArc2-NL tetramers in solution assemble in the same way as those for the
422 C protein.

423

424 **Fig 8. Solution structures of dArc lobe domains.** (A) SAXS scattering plots of dArc lobes in solution (left)
425 and distance distribution plots (right). (B) Dammin models of dArc lobes with corresponding structures
426 located inside. The dimeric structures of the C-lobes inside the C-lobe Dammin models and the assumed
427 tetrameric structure of dArc2 N-lobe in the dArc2 N-lobe Dammin model, and the structure of dimeric
428 dArc2 N-lobe in the Dammin model of dArc1 N-lobe. (C) SAXS data for of dArc2-NL (dots) with crysol fit
429 using the possible tetrameric structure of dArc2 N-lobe based on the West Nile virus tetramer structure
430 (red) seen in panel (D). (D) Tetrameric organisation of the West Nile virus protein C (yellow) and aligned
431 structure of two dArc2 N-lobe dimers (red) showing a possible tetrameric structure. (E) SEC-MALS on
432 human and *Drosophila* N-lobes. (F) CD data of dArc lobes and human Arc lobes. (G) SEC-MALS on human
433 and *Drosophila* C-lobes.

434

435 **Table 2. Dimensions and oligomeric state for different dArc constructs.**

436

Protein	R _g (nm)	D _{max} (nm)	MM from SAXS envelope volume (kDa)	MW estimated from SAXS data(kDa)	MM from MALS (kDa)	Monomeric mass (kDa)	Oligomeric state

dArc1-NL	2.0	7.4	26	15	24	8.2	Dimer
dArc2-NL	2.4	7.8	40	30	37	8.4	Tetramer
dArc1-CL	2.0	7.1	22	17	22	11	Dimer
dArc2-CL	2.0	7.9	21	20	23	10	Dimer

437

438 Arc-NL domains have various oligomeric states. mArc-NL is monomeric in solution [17], whereas the
439 dArc-NL forms dimers (dArc1) and tetramers (dArc2) (Fig 8E). While the crystal structure of dArc2-NL
440 shows a dimer, a tetrameric assembly is not present in the crystal. This is remarkable, as the sequences
441 of dArc1-NL and dArc2-NL are very similar (Fig 9A). The dArc2-NL dimer surface is electrostatically
442 polarised (Fig 2). By threading the sequence of dArc1 onto the dArc2-NL structure, the varying residues
443 are mainly located on the surface of the long helices ($\alpha 2$ and $\alpha 2'$, Fig 2), suggesting that this region is
444 responsible for dArc2-NL tetramerization. Presumably, a tetramer of dArc2-NL is achieved either by
445 formation of a four-helix interface bundle, similar to the West-Nile virus coat protein (Fig 4A) or via
446 interaction of the contrasting surface potentials on each side of the dimer. The lack of this electrostatic
447 polarisation in dArc1-NL could be linked to oligomerisation (Fig 9B). Furthermore, additional polar
448 interactions are observed at the interface of a dArc1-NL domain-swapped homology model (Fig 9C),
449 compared to the dArc2-NL interface, which only consists of nonpolar contacts. These different
450 interactions could also be linked to dArc-NL isoform-specific oligomerisation.

451

452 **Fig 9. dArc1-NL homology model.** (A) Sequence alignment between dArc1-NL and dArc2-NL. (B) The
453 homology model of dArc1-NL displays contrasting electrostatic surface potential, where the highly
454 positive character of dArc2-NL along $\alpha 2$ and $\alpha 2'$ (Fig 2) is replaced with a more modest surface potential.
455 (C) Additional monomer-monomer interactions observed in the dArc1-NL model, not observed in the
456 dArc2-NL crystal structure. Polar interactions are shown with purple dashed lines.

457

458 CD spectroscopy showed that all four dArc lobes are α -helical (Fig 8F), with some variations in spectral
459 shape and amplitude. dArc2-NL has a higher 222-to-208-nm ratio compared to dArc1-NL. This could be
460 related to differences in dimerization (domain swapping) or tetramer formation. Tetramerization may
461 involve interactions between the long helices of dArc2-NL, and coiled-coil interactions increase the 222-
462 to-208-nm ratio [84–86]. CD spectra of the dArc C-lobes are similar but differ in intensity, suggesting
463 that dArc1-CL is less folded in solution, despite the very similar crystal structures. In line with the CD
464 data, SEC showed (Fig 8G) a higher hydrodynamic radius for dArc1-CL. Kratky plots also indicate that
465 dArc1-CL is more flexible than dArc2-CL. The CD spectrum of monomeric hArc-CL is similar to dArc-CL
466 but shows less helical structure (Fig 8F). The monomeric hArc-NL has unique CD features, possibly arising
467 from interactions between aromatic side chains. Hence, different methods for following protein folding
468 and shape suggest that each of the dArc lobes has unique properties compared to each other and to
469 homologues.

470

471 **Understanding higher-order oligomerization**

472 We determined the crystal structure of three of the four dArc lobe domains: both C-lobes and dArc2-NL;
473 a crystal structure for dArc1-NL could not be obtained. However, the high sequence similarity between
474 dArc1-NL and dArc2-NL (Fig 9A) suggests that the structure of dArc1-NL is similar to dArc2-NL.
475 Furthermore, secondary structure analysis using CD shows similar spectra for both proteins (Fig 8F), and
476 the structure of the dArc2-NL dimer fits well with the SAXS data for dArc1-NL (Fig 8C-D). However, other
477 dimeric arrangements for dArc1-NL are possible. In this respect, it is interesting to note the loss of a
478 conserved Gly residue in the canonical β 2- β 3 loop in dArc2-NL, which could be related to the extension
479 of the dArc2-NL helix. Replacement of a Gly residue in such a loop is a common means to induce domain
480 swapping [87,88]. The recent crystal structure of dArc1-CT containing both lobes showed dArc1-NL in

481 the orthogonal bundle fold, being similar to mArc-NL [55]. No significant interactions were observed
482 between the NL and CL in dArc1-CA, and interlobal interactions are an unlikely cause of the different
483 fold. Neither CD nor SAXS can determine if dArc1-NL has the same domain-swapped structure as dArc2-
484 NL or a non-domain-swapped dimer as seen for dArc-CL.

485 All four lobe domains of dArc are homo-oligomeric in solution. In full-length dArc, the NL is connected
486 with the CL, and to test for interactions between the dArc N- and C-lobes, we mixed the individual lobes
487 and looked for complexes using SEC. No new complexes were observed (data not shown), indicating that
488 the isolated NL and CL do not interact with high affinity. However, when both lobes are within the same
489 polypeptide chain, larger assemblies do form – reflected by the insolubility of the corresponding
490 constructs and the ability of dArc to form capsids [15,20].

491

492 **dArc sequence properties**

493 Arc may not be a universal protein, but it is truly ancient. Related proteins appear in eukaryotes, from
494 insects to fungi and plants [89]. At the same time, Arc-like proteins are coded for by the Ty3/gypsy
495 transposons, and its relatives appear in viral capsids. This means the domain is widespread because of
496 duplications and movements within and between genomes, rather than its age. This invites some
497 speculation about the history of Arc, or at least the history of the N- and C-lobes.

498 The NL and CL are sequence-related, suggesting a duplication. They are related to viral capsid (Gag)
499 proteins, but the Gag protein in flavi- and other viruses has only one unit, or lobe. One might expect to
500 see either the NL or CL by itself in some cellular organism. A long, iterated search starting from either
501 *Drosophila* or *Rattus* full sequences only gives proteins with both NL and CL, even amongst distantly
502 related proteins from plants. This is not surprising. Database scores are such that a long weak similarity
503 will score higher than a short hit, and one will see proteins with both lobes. The correct procedure is to

504 do a comprehensive database search starting from the CL, retrieve and align full length sequences, and
505 see if any are missing the NL. This should then be repeated starting from the NL. Unfortunately, this
506 does not give a clear result. Starting from the rat Arc-CL, one can collect a set of 706 sequences with an
507 e -value $\leq 1.4 \times 10^{-5}$. The set runs from mammals to insects and even the first homologues from plants
508 (*Oryza sativa* and *Nicotiana tabacum*). We find 26 sequences with an incomplete NL. More than a third
509 (9) of these are annotated as partial sequences. Of the remaining sequences, none are confirmed to
510 exist, and there is no clear domain boundary in the alignment. Similar results are obtained starting from
511 an NL sequence. This does, however, not prove conclusively that the NL and CL are always found
512 together in eukaryotes, and we might even expect some related transposon sequences to be lurking
513 with only one lobe.

514 In eukaryotes from mammals to insects and plants, the overwhelming majority of Arc-like proteins have
515 both NL and CL. This has implications for the Arc evolutionary history. It appears that a functional
516 protein has both lobes, and there are no clear examples of a system with two copies of just an NL or CL.
517 The obvious interpretation is that after a duplication event, the two halves adopted different roles and
518 sites in the two halves have experienced differential evolutionary pressure, as suggested by the
519 conservation plots (Fig 5A) and the observation [20] that both dArc lobes are necessary for capsid
520 assembly.

521 It was suggested that Arc entered the realm of animals *via* two separate events [16]. The earlier work
522 relied on a small set of DNA sequences. When we align larger sets of proteins including mammals,
523 insects, birds, and plants, one always finds the insect sequences forming a close group including both
524 dArc1 and dArc2. Even a cursory look at the alignment (Fig 9A) shows the similarity of dArc1 and dArc2.
525 This leads to a parsimonious interpretation. The combined NL and CL protein was inserted once, leading
526 to the tandem arrangement nearly always seen. This protein has had much time to evolve between
527 insects and mammals. At a much later stage, a duplication led to the multiple copies seen in insects.

528

529 **Functional considerations**

530 Arc is critical to the nervous system, but the protein fold is related to capsid proteins and, at least at the
531 sequence level, even to proteins found in plants. A functional property of the mArc-NL is a peptide
532 binding site, shown to interact with several proteins [12]. Protein ligand binding could be a way of
533 regulating Arc oligomerization [83], its function in the PSD organization, and/or capsid assembly. Using
534 ITC, we tested if the dArc N-lobes bind the stargazin peptide like the mArc-NL (Fig 10) [12]. The peptide
535 binds to hArc-NL, but not to the two dArc N-lobes, and the peptide binding site is not conserved. In the
536 domain-swapped structure of dArc2-NL, the putative peptide binding site would be buried within the
537 fold. Whether dArc N-lobes bind other peptides/proteins, and how this process might affect capsid
538 formation, remains to be studied. Given that the dArc N-lobe forms the pentamers and hexamers in the
539 capsid [20], and that the site corresponding to the mArc peptide binding site is in the middle of these
540 assemblies, it seems likely that protein ligand binding to the same site would be mutually exclusive with
541 capsid formation. Such aspects remain to be studied both for dArc and mArc.

542

543 **Figure 9. Binding of human and *Drosophila* Arc N-lobes to a Stargazin peptide.**

544

545 **Conclusions**

546 We have shown that both lobes of dArc1 and dArc2 are oligomeric in solution, the mechanism of which
547 was further explored in atomic detail. The isolated lobes of the C-terminal domain of mammalian Arc do
548 not exhibit the same propensity for oligomerization [17]. Absent in both dArc isoforms is the N-terminal
549 domain, which is involved in capsid formation and likely mediates interactions of mammalian Arc with

550 negatively charged membranes [17,18]. Therefore, oligomerization of the dArc lobes likely represents
551 functional compensation for the lack of the N-terminal domain. In accordance with this, dimerization of
552 the C-lobe observed here is identical to that observed in a recent crystal structure of dimeric full-length
553 dArc1 [55] and structures of the capsids formed by dArc [20]. Our C-lobe structures showed striking
554 homology with retroviral CA proteins, further supporting theories on the retroviral origin of Arc.
555 However, the homologous retroviruses form capsids of greatly varying morphology. This suggests a
556 decisive role of the N-terminal lobe, and its mechanism of oligomerization, in the formation of these
557 viral capsids.

558 Furthermore, we presented a novel dimeric state of dArc2-NL. This domain-swapped dimer may have a
559 role in the non-capsid functions of dArc. It shares structural similarity with nucleotide- and membrane-
560 interacting proteins, suggesting a similar function for the fold. How homotetramerization of this lobe,
561 which we observed in solution, might affect its function, remains to be studied. Overall, the strikingly
562 different behaviour of the purified lobe domains from dArc and mArc points towards different
563 mechanisms in their molecular function and oligomeric assembly.

564

565 Acknowledgements

566 Parts of this research were carried out on beamline P11 at DESY, a member of the Helmholtz Association
567 (HGF). We wish to thank EMBL/DESY for access to beamline P12 and acknowledge Diamond Light Source
568 for time on Beamlines I03 and B21 under Proposal MX18666. We would like to thank all beamline staff
569 for assistance during the experiments. The research leading to this result has been supported by the
570 project CALIPSOplus under the Grant Agreement 730872, as well as by iNEXT, grant number 653706,
571 from the EU Framework Programme for Research and Innovation HORIZON 2020. This work was
572 supported by a Research Council of Norway TOPPFORSK grant (249951) to CRB and a grant from the
573 Meltzer Foundation to PK. The authors wish to express their gratitude to Ju Xu for technical assistance.

574

575

576

577

578 **Supporting information**

579 S1 Table. The expression constructs used in the current study.

580 S1 Fig. Crystal packing in dArc2-NL.

581 S2 Fig. Crystal packing in dArc1-CL.

582 S3 Fig. Crystal packing in dArc2-CL.

583

584

585 References

- 586 1. Bramham CR, Alme MN, Bittins M, Kuipers SD, Nair RR, Pai B et al. (2010) The Arc of
587 synaptic memory. *Exp Brain Res* 200: 125-140.
- 588 2. Shepherd JD, Bear MF (2011) New views of Arc, a master regulator of synaptic plasticity.
589 *Nat Neurosci* 14: 279-284.
- 590 3. Chowdhury S, Shepherd JD, Okuno H, Lyford G, Petralia RS, Plath N et al. (2006)
591 Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking.
592 *Neuron* 52: 445-459.
- 593 4. Rial Verde EM, Lee-Osbourne J, Worley PF, Malinow R, Cline HT (2006) Increased
594 expression of the immediate-early gene arc/arg3.1 reduces AMPA receptor-mediated
595 synaptic transmission. *Neuron* 52: 461-474.
- 596 5. Shepherd JD, Rumbaugh G, Wu J, Chowdhury S, Plath N, Kuhl D et al. (2006) Arc/Arg3.1
597 mediates homeostatic synaptic scaling of AMPA receptors. *Neuron* 52: 475-484.
- 598 6. Messaoudi E, Kanhema T, Soulé J, Tiron A, Dagyte G, da Silva B et al. (2007) Sustained
599 Arc/Arg3.1 synthesis controls long-term potentiation consolidation through regulation of
600 local actin polymerization in the dentate gyrus *in vivo*. *J Neurosci* 27: 10445-10455.
- 601 7. Peebles CL, Yoo J, Thwin MT, Palop JJ, Noebels JL, Finkbeiner S (2010) Arc regulates
602 spine morphology and maintains network stability *in vivo*. *Proc Natl Acad Sci U S A* 107:
603 18173-18178.
- 604 8. Zhang H, Bramham CR (2020) Arc/Arg3.1 function in long-term synaptic plasticity:
605 Emerging mechanisms and unresolved issues. *Eur J Neurosci*
- 606 9. Korb E, Wilkinson CL, Delgado RN, Lovero KL, Finkbeiner S (2013) Arc in the nucleus
607 regulates PML-dependent GluA1 transcription and homeostatic plasticity. *Nat Neurosci* 16:
608 874-883.
- 609 10. Wee CL, Teo S, Oey NE, Wright GD, VanDongen HM, VanDongen AM (2014) Nuclear Arc
610 Interacts with the Histone Acetyltransferase Tip60 to Modify H4K12 Acetylation(1,2,3).
611 *eNeuro* 1:
- 612 11. Jackson AC, Nicoll RA (2011) Stargazing from a new vantage--TARP modulation of AMPA
613 receptor pharmacology. *J Physiol* 589: 5909-5910.
- 614 12. Zhang W, Wu J, Ward MD, Yang S, Chuang YA, Xiao M et al. (2015) Structural basis of
615 arc binding to synaptic proteins: implications for cognitive disease. *Neuron* 86: 490-500.
- 616 13. Zhao Y, Chen S, Yoshioka C, Baconguis I, Gouaux E (2016) Architecture of fully occupied
617 GluA2 AMPA receptor-TARP complex elucidated by cryo-EM. *Nature* 536: 108-111.
- 618 14. Nikolaienko O, Patil S, Eriksen MS, Bramham CR (2018) Arc protein: a flexible hub for
619 synaptic plasticity and cognition. *Semin Cell Dev Biol* 77: 33-42.
- 620 15. Ashley J, Cordy B, Lucia D, Fradkin LG, Budnik V, Thomson T (2018) Retrovirus-like Gag
621 Protein Arc1 Binds RNA and Traffics across Synaptic Boutons. *Cell* 172: 262-274.e11.
- 622 16. Pastuzyn ED, Day CE, Kearns RB, Kyrke-Smith M, Taibi AV, McCormick J et al. (2018)
623 The Neuronal Gene Arc Encodes a Repurposed Retrotransposon Gag Protein that
624 Mediates Intercellular RNA Transfer. *Cell* 173: 275.
- 625 17. Hallin EI, Eriksen MS, Baryshnikov S, Nikolaienko O, Grødem S, Hosokawa T et al. (2018)
626 Structure of monomeric full-length ARC sheds light on molecular flexibility, protein
627 interactions, and functional modalities. *J Neurochem* 147: 323-343.
- 628 18. Eriksen MS, Nikolaienko O, Hallin EI, Grødem S, Bustad HJ, Flydal MI et al. (2020) Arc
629 self-association and formation of virus-like capsids are mediated by an N-terminal helical
630 coil motif. *FEBS J*

631 19. Zhang W, Chuang YA, Na Y, Ye Z, Yang L, Lin R et al. (2019) Arc Oligomerization Is
632 Regulated by CaMKII Phosphorylation of the GAG Domain: An Essential Mechanism for
633 Plasticity and Memory Formation. *Mol Cell* 75: 13-25.e5.

634 20. Erlendsson S, Morado DR, Cullen HB, Feschotte C, Shepherd JD, Briggs JAG (2020)
635 Structures of virus-like capsids formed by the *Drosophila* neuronal Arc proteins. *Nat
636 Neurosci*

637 21. van den Berg S, Löfdahl PA, Härd T, Berglund H (2006) Improved solubility of TEV
638 protease by directed evolution. *J Biotechnol* 121: 291-298.

639 22. Raasakka A, Myllykoski M, Laulumaa S, Lehtimäki M, Härtlein M, Moulin M et al. (2015)
640 Determinants of ligand binding and catalytic activity in the myelin enzyme 2',3'-cyclic
641 nucleotide 3'-phosphodiesterase. *Sci Rep* 5: 16520.

642 23. Burkhardt A, Pakendorf T, Reime B, Meyer J, Fischer P, Stübe N et al. (2016) Status of
643 the crystallography beamlines at PETRA III. *The European Physical Journal Plus* 131: 56.

644 24. Kabsch W (2010) XDS. *Acta Crystallogr D Biol Crystallogr* 66: 125-132.

645 25. Bibby J, Keegan RM, Mayans O, Winn MD, Rigden DJ (2012) AMPLE: a cluster-and-
646 truncate approach to solve the crystal structures of small proteins using rapidly computed
647 ab initio models. *Acta Crystallogr D Biol Crystallogr* 68: 1622-1631.

648 26. Xu D, Zhang Y (2012) Ab initio protein structure assembly using continuous structure
649 fragments and optimized knowledge-based force field. *Proteins* 80: 1715-1735.

650 27. Krissinel E, Uski V, Lebedev A, Winn M, Ballard C (2018) Distributed computing for
651 macromolecular crystallography. *Acta Crystallogr D Struct Biol* 74: 143-151.

652 28. Potterton L, Agirre J, Ballard C, Cowtan K, Dodson E, Evans PR et al. (2018) CCP4i2: the
653 new graphical user interface to the CCP4 program suite. *Acta Crystallogr D Struct Biol* 74:
654 68-84.

655 29. Panjikar S, Parthasarathy V, Lamzin VS, Weiss MS, Tucker PA (2005) Auto-rickshaw: an
656 automated crystal structure determination platform as an efficient tool for the validation of
657 an X-ray diffraction experiment. *Acta Crystallogr D Biol Crystallogr* 61: 449-457.

658 30. Sheldrick GM (2008) A short history of SHELX. *Acta Crystallogr A* 64: 112-122.

659 31. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007)
660 Phaser crystallographic software. *J Appl Crystallogr* 40: 658-674.

661 32. Cowtan K (2010) Recent developments in classical density modification. *Acta Crystallogr
662 D Biol Crystallogr* 66: 470-478.

663 33. Cowtan K (2012) Completion of autobuilt protein models using a database of protein
664 fragments. *Acta Crystallogr D Biol Crystallogr* 68: 328-335.

665 34. Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M et
666 al. (2012) Towards automated crystallographic structure refinement with phenix.refine.
667 *Acta Crystallogr D Biol Crystallogr* 68: 352-367.

668 35. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot.
669 *Acta Crystallogr D Biol Crystallogr* 66: 486-501.

670 36. Williams CJ, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deis LN et al. (2018)
671 MolProbity: More and better reference data for improved all-atom structure validation.
672 *Protein Sci* 27: 293-315.

673 37. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline
674 state. *J Mol Biol* 372: 774-797.

675 38. Laskowski RA, Jabłońska J, Pravda L, Vařeková RS, Thornton JM (2018) PDBsum:
676 Structural summaries of PDB entries. *Protein Sci* 27: 129-134.

677 39. Holm L, Rosenström P (2010) Dali server: conservation mapping in 3D. *Nucleic Acids Res*
678 38: W545-9.

679 40. Margraf T, Schenk G, Torda AE (2009) The SALAMI protein structure search server.
680 *Nucleic Acids Res* 37: W480-4.

681 41. Unni S, Huang Y, Hanson RM, Tobias M, Krishnan S, Li WW et al. (2011) Web servers
682 and services for electrostatics calculations with APBS and PDB2PQR. *J Comput Chem*
683 32: 1488-1491.

684 42. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC et al. (2004)
685 UCSF Chimera--a visualization system for exploratory research and analysis. *J Comput*
686 *Chem* 25: 1605-1612.

687 43. Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N et al. (2019) The EMBL-
688 EBI search and sequence analysis tools APIs in 2019. *Nucleic Acids Res* 47: W636-W641.

689 44. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R et al. (2018)
690 SWISS-MODEL: homology modelling of protein structures and complexes. *Nucleic Acids*
691 *Res* 46: W296-W303.

692 45. Blanchet CE, Spilotros A, Schwemmer F, Graewert MA, Kikhney A, Jeffries CM et al.
693 (2015) Versatile sample environments and automation for biological solution X-ray
694 scattering experiments at the P12 beamline (PETRA III, DESY). *J Appl Crystallogr* 48:
695 431-443.

696 46. Franke D, Petoukhov MV, Konarev PV, Panjkovich A, Tuukkanen A, Mertens HDT et al.
697 (2017) ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from
698 macromolecular solutions. *J Appl Crystallogr* 50: 1212-1225.

699 47. Svergun DI (1999) Restoring low resolution structure of biological macromolecules from
700 solution scattering using simulated annealing. *Biophys J* 76: 2879-2886.

701 48. Svergun DI, Petoukhov MV, Koch MH (2001) Determination of domain structure of
702 proteins from X-ray solution scattering. *Biophys J* 80: 2946-2953.

703 49. Svergun DIBC, Barberato C, Koch MHJ (1995) CRYSTOL—a program to evaluate X-ray
704 solution scattering of biological macromolecules from atomic coordinates. *Journal of*
705 *applied crystallography* 28: 768-773.

706 50. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search
707 tool. *J Mol Biol* 215: 403-410.

708 51. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W et al. (1997) Gapped
709 BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic*
710 *Acids Res* 25: 3389-3402.

711 52. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7:
712 improvements in performance and usability. *Mol Biol Evol* 30: 772-780.

713 53. Wong HC, Shin R, Krishna NR (2008) Solution structure of a double mutant of the
714 carboxy-terminal dimerization domain of the HIV-1 capsid protein. *Biochemistry* 47: 2289-
715 2297.

716 54. Byeon IJ, Meng X, Jung J, Zhao G, Yang R, Ahn J et al. (2009) Structural convergence
717 between Cryo-EM and NMR reveals intersubunit interactions critical for HIV-1 capsid
718 function. *Cell* 139: 780-790.

719 55. Cottee MA, Letham SC, Young GR, Stoye JP, Taylor IA (2020) Structure of *Drosophila*
720 *melanogaster* ARC1 reveals a repurposed molecule with characteristics of retroviral Gag.
721 *Sci Adv* 6: eaay6354.

722 56. Ma L, Jones CT, Groesch TD, Kuhn RJ, Post CB (2004) Solution structure of dengue virus
723 capsid protein reveals another fold. *Proc Natl Acad Sci U S A* 101: 3414-3419.

724 57. Oliveira ERA, Mohana-Borges R, de Alencastro RB, Horta BAC (2017) The flavivirus
725 capsid protein: Structure, function and perspectives towards drug design. *Virus Res* 227:
726 115-123.

727 58. Dokland T, Walsh M, Mackenzie JM, Khromykh AA, Ee KH, Wang S (2004) West Nile
728 virus core protein; tetramer structure and ribbon formation. *Structure* 12: 1157-1163.

729 59. Ivanov D, Tsodikov OV, Kasanov J, Ellenberger T, Wagner G, Collins T (2007) Domain-
730 swapped dimerization of the HIV-1 capsid C-terminal domain. *Proc Natl Acad Sci U S A*
731 104: 4353-4358.

732 60. Mattioli F, Bhattacharyya S, Dyer PN, White AE, Sandman K, Burkhardt BW et al. (2017)
733 Structure of histone-based chromatin in Archaea. *Science* 357: 609-612.

734 61. Wang H, Wang M, Yang N, Xu RM (2015) Structure of the quaternary complex of histone
735 H3-H4 heterodimer with chaperone ASF1 and the replicative helicase subunit MCM2.
736 *Protein Cell* 6: 693-697.

737 62. Xie X, Kokubo T, Cohen SL, Mirza UA, Hoffmann A, Chait BT et al. (1996) Structural
738 similarity between TAFs and the heterotetrameric core of the histone octamer. *Nature* 380:
739 316-322.

740 63. Stroud JC, Wu Y, Bates DL, Han A, Nowick K, Paabo S et al. (2006) Structure of the
741 forkhead domain of FOXP2 bound to DNA. *Structure* 14: 159-166.

742 64. Moldoveanu T, Liu Q, Tocilj A, Watson M, Shore G, Gehring K (2006) The X-ray structure
743 of a BAK homodimer reveals an inhibitory zinc binding site. *Mol Cell* 24: 677-688.

744 65. Brouwer JM, Westphal D, Dewson G, Robin AY, Uren RT, Bartolo R et al. (2014) Bak core
745 and latch domains separate during activation, and freed core domains form symmetric
746 homodimers. *Mol Cell* 55: 938-946.

747 66. Cowan AD, Smith NA, Sandow JJ, Kapp EA, Rustam YH, Murphy JM et al. (2020) BAK
748 core dimers bind lipids and can be bridged by them. *Nat Struct Mol Biol*

749 67. Chang CK, Hou MH, Chang CF, Hsiao CD, Huang TH (2014) The SARS coronavirus
750 nucleocapsid protein--forms and functions. *Antiviral Res* 103: 39-50.

751 68. Sandman K, Reeve JN (2006) Archaeal histones and the origin of the histone fold. *Curr
752 Opin Microbiol* 9: 520-525.

753 69. Venkatesh S, Workman JL (2015) Histone exchange, chromatin structure and the
754 regulation of transcription. *Nat Rev Mol Cell Biol* 16: 178-189.

755 70. Chu YP, Chang CH, Shiu JH, Chang YT, Chen CY, Chuang WJ (2011) Solution structure
756 and backbone dynamics of the DNA-binding domain of FOXP1: insight into its domain
757 swapping and DNA binding. *Protein Sci* 20: 908-924.

758 71. Volle C, Dalal Y (2014) Histone variants: the tricksters of the chromatin world. *Curr Opin
759 Genet Dev* 25: 8-14,138.

760 72. Colpitts TM, Barthel S, Wang P, Fikrig E (2011) Dengue virus capsid protein binds core
761 histones and inhibits nucleosome formation in human liver cells. *PLoS One* 6: e24365.

762 73. Salery M, Dos Santos M, Saint-Jour E, Moumne L, Pagès C, Kappès V et al. (2017)
763 Activity-Regulated Cytoskeleton-Associated Protein Accumulates in the Nucleus in
764 Response to Cocaine and Acts as a Brake on Chromatin Remodeling and Long-Term
765 Behavioral Alterations. *Biol Psychiatry* 81: 573-584.

766 74. Czabotar PE, Westphal D, Dewson G, Ma S, Hockings C, Fairlie WD et al. (2013) Bax
767 crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to
768 induce apoptosis. *Cell* 152: 519-531.

769 75. Sibanda BL, Thornton JM (1985) Beta-hairpin families in globular proteins. *Nature* 316:
770 170-174.

771 76. Duddy WJ, Nissink JW, Allen FH, Milner-White EJ (2004) Mimicry by asx- and ST-turns of
772 the four main types of beta-turn in proteins. *Protein Sci* 13: 3051-3055.

773 77. Ivanov D, Stone JR, Maki JL, Collins T, Wagner G (2005) Mammalian SCAN domain
774 dimer is a domain-swapped homolog of the HIV capsid C-terminal domain. *Mol Cell* 17:
775 137-143.

776 78. Zhao G, Perilla JR, Yufenyuy EL, Meng X, Chen B, Ning J et al. (2013) Mature HIV-1
777 capsid structure by cryo-electron microscopy and all-atom molecular dynamics. *Nature*
778 497: 643-646.

779 79. Worthylake DK, Wang H, Yoo S, Sundquist WI, Hill CP (1999) Structures of the HIV-1
780 capsid protein dimerization domain at 2.6 Å resolution. *Acta Crystallogr D Biol Crystallogr*
781 55: 85-92.

782 80. Obal G, Trajtenberg F, Carrión F, Tomé L, Larrieux N, Zhang X et al. (2015)
783 STRUCTURAL VIROLOGY. Conformational plasticity of a native retroviral capsid revealed
784 by x-ray crystallography. *Science* 349: 95-98.

785 81. Bailey GD, Hyun JK, Mitra AK, Kingston RL (2009) Proton-linked dimerization of a
786 retroviral capsid protein initiates capsid assembly. *Structure* 17: 737-748.

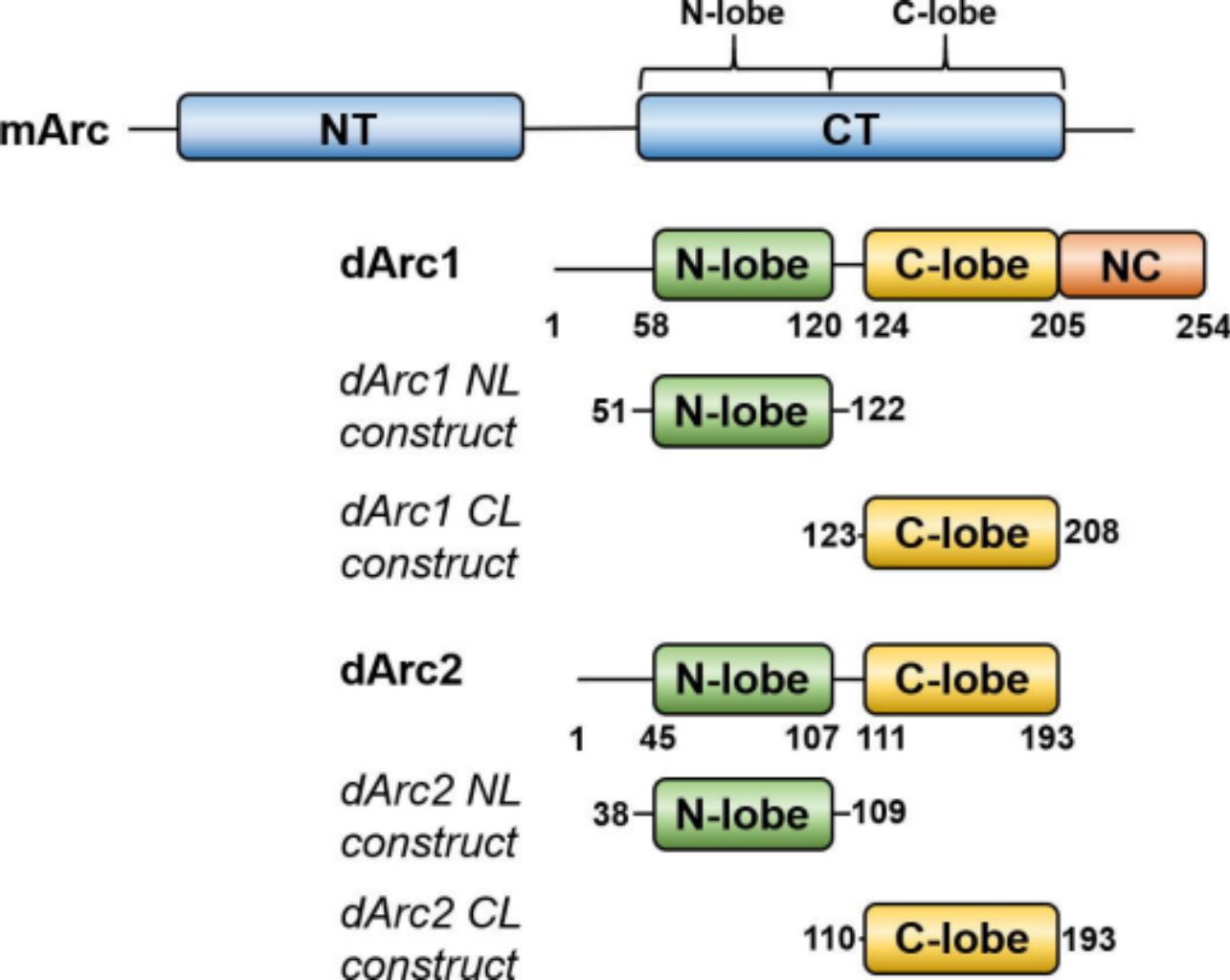
787 82. Dodonova SO, Prinz S, Bilanchone V, Sandmeyer S, Briggs JAG (2019) Structure of the
788 Ty3/Gypsy retrotransposon capsid and the evolution of retroviruses. *Proc Natl Acad Sci U*
789 *S A* 116: 10048-10057.

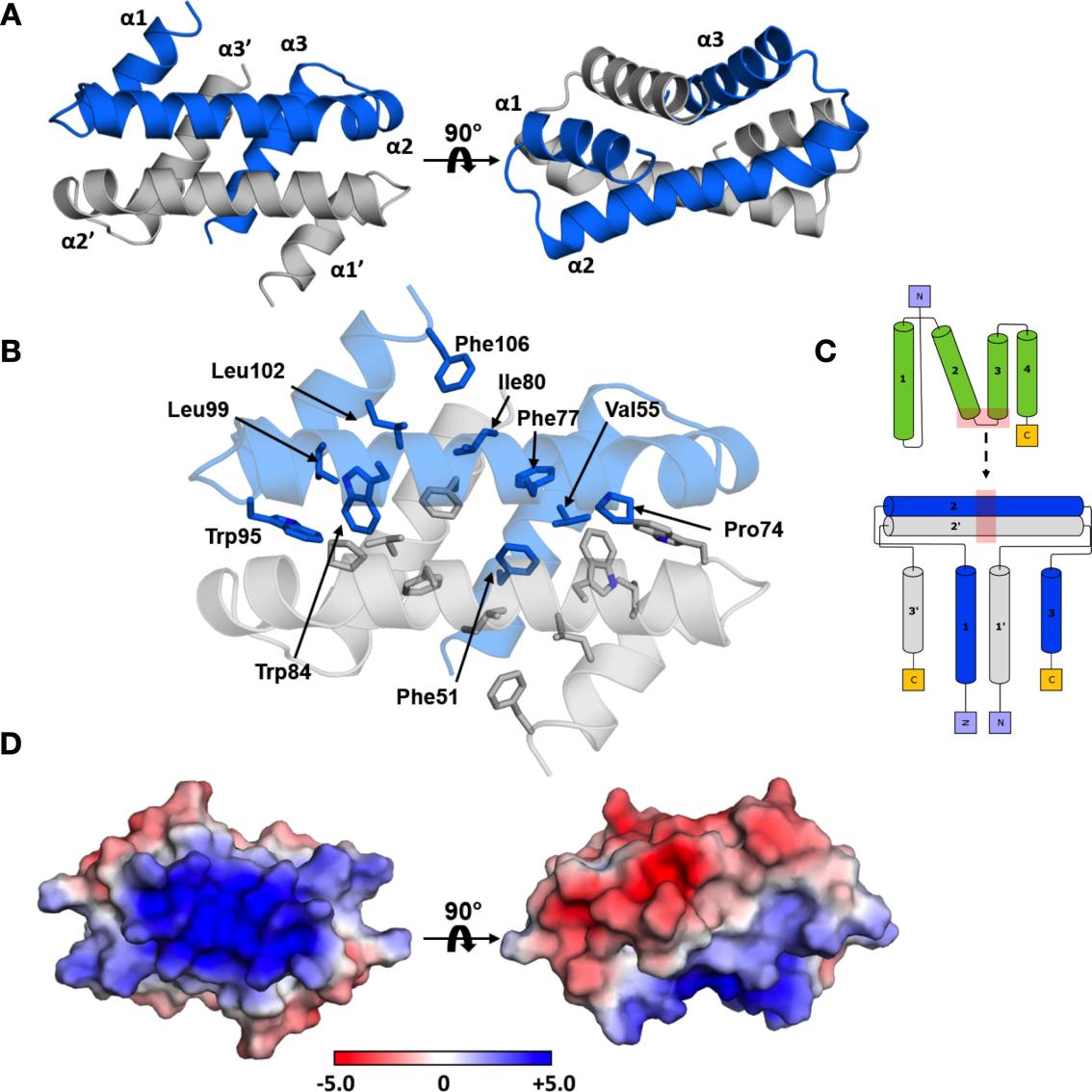
790 83. Nielsen LD, Pedersen CP, Erlendsson S, Teilum K (2019) The Capsid Domain of Arc
791 Changes Its Oligomerization Propensity through Direct Interaction with the NMDA
792 Receptor. *Structure* 27: 1071-1081.e5.

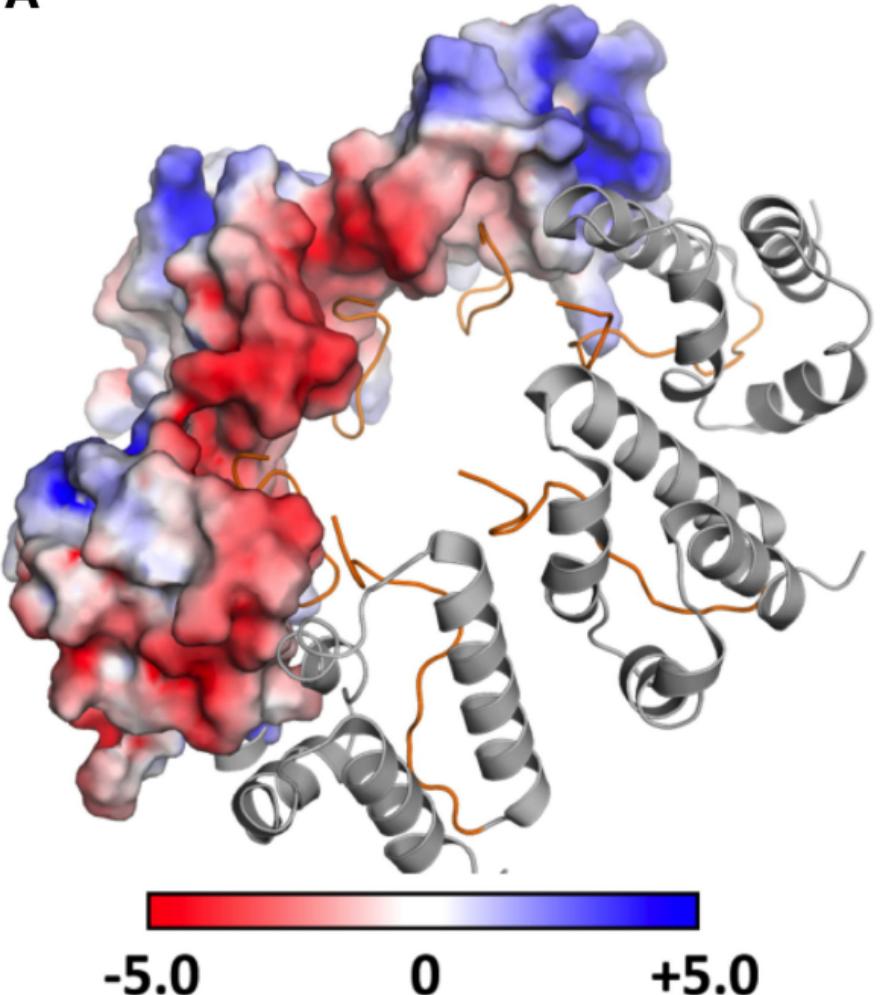
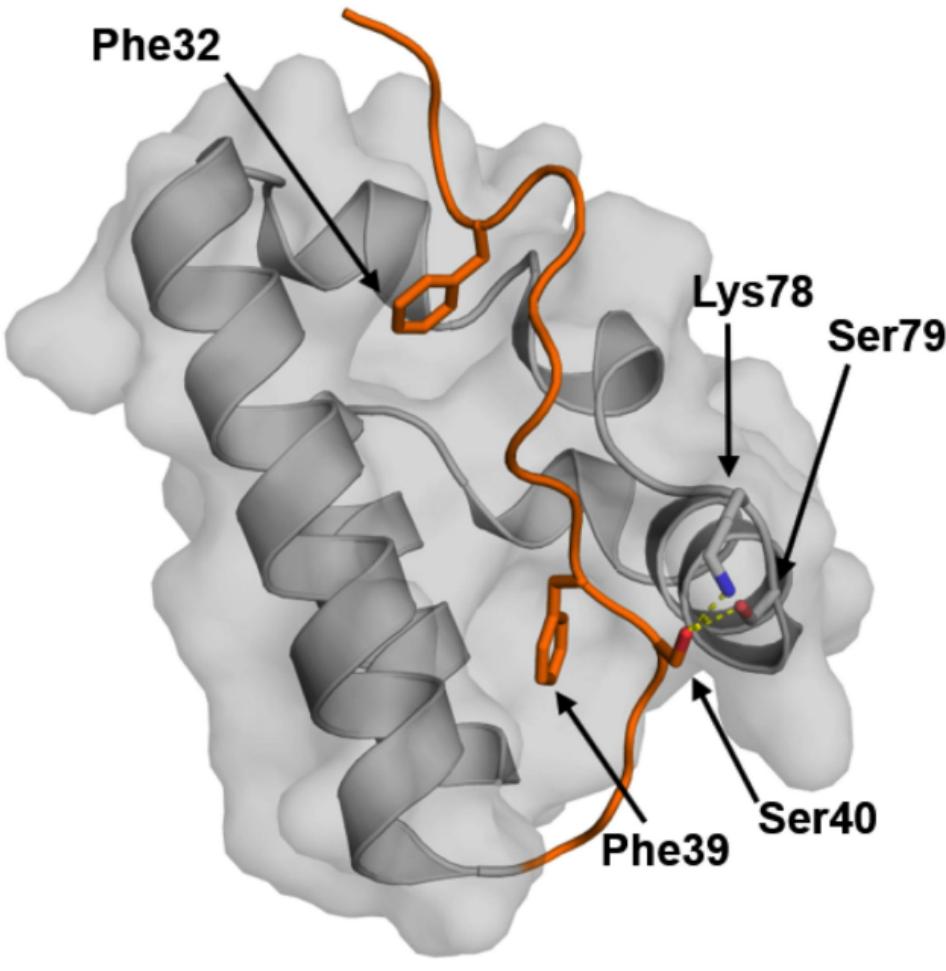
793 84. Alfadhl A, Steel E, Finlay L, Bächinger HP, Barklis E (2002) Hantavirus nucleocapsid
794 protein coiled-coil domains. *J Biol Chem* 277: 27103-27108.

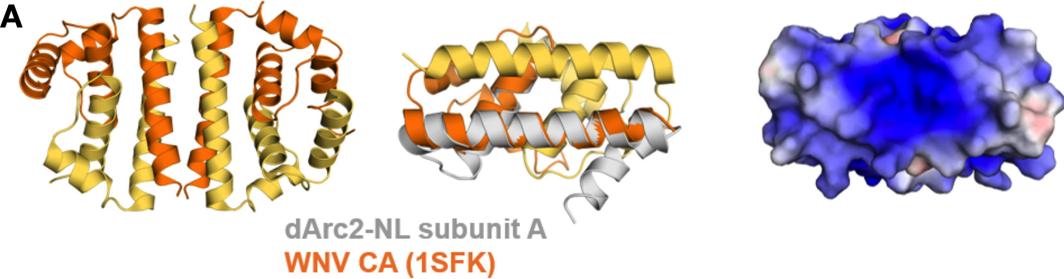
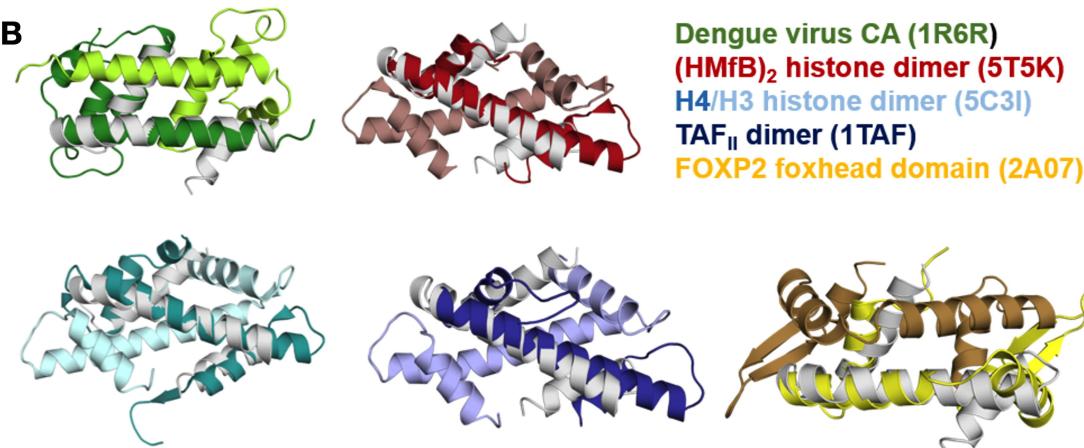
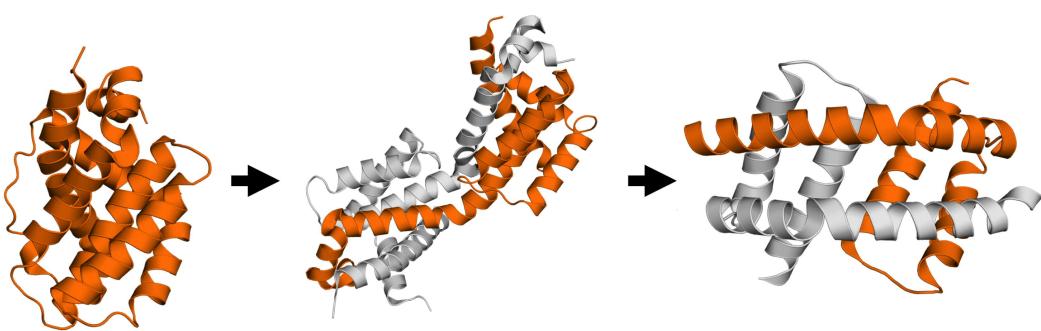
795 85. Kammerer RA, Schulthess T, Landwehr R, Lustig A, Engel J, Aebi U et al. (1998) An
796 autonomous folding unit mediates the assembly of two-stranded coiled coils. *Proc Natl*
797 *Acad Sci U S A* 95: 13419-13424.

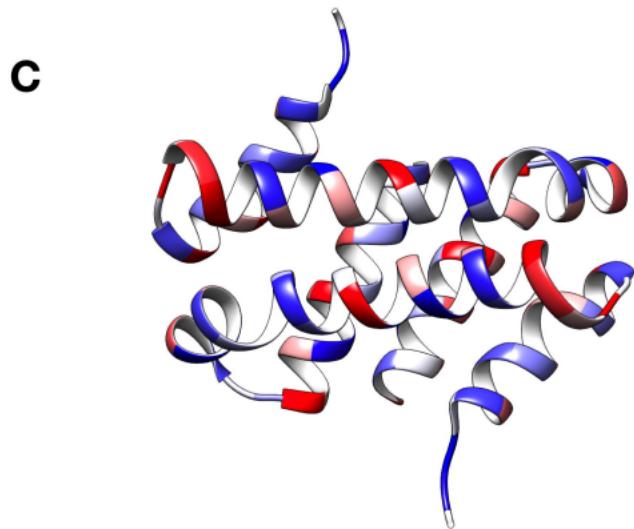
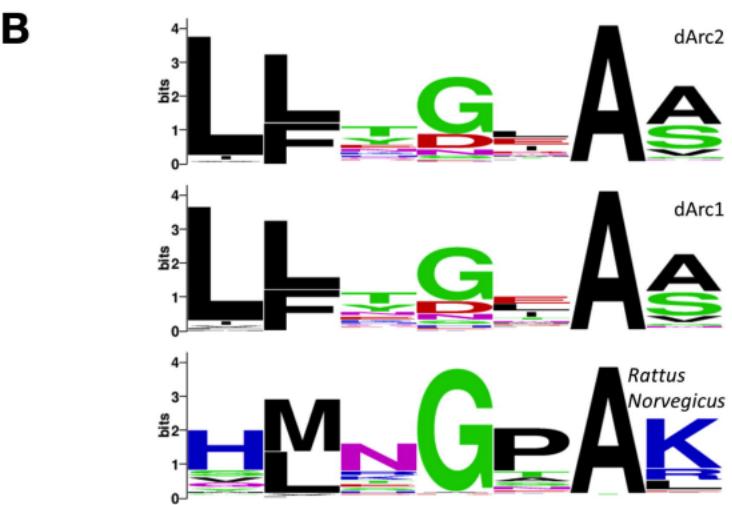
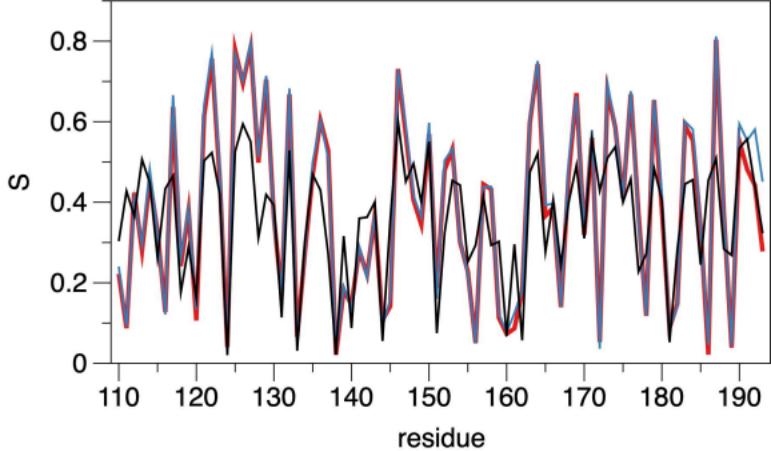
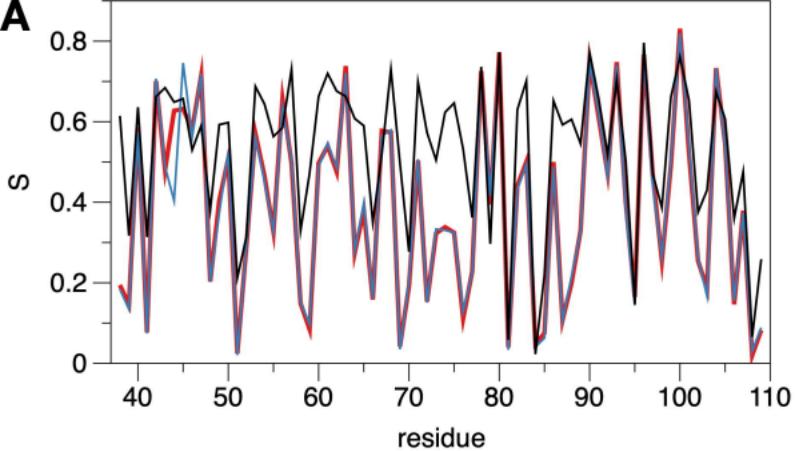
798 86. Steinmetz MO, Jelesarov I, Matousek WM, Honnappa S, Jahnke W, Missimer JH et al.
799 (2007) Molecular basis of coiled-coil formation. *Proc Natl Acad Sci U S A* 104: 7062-7067.

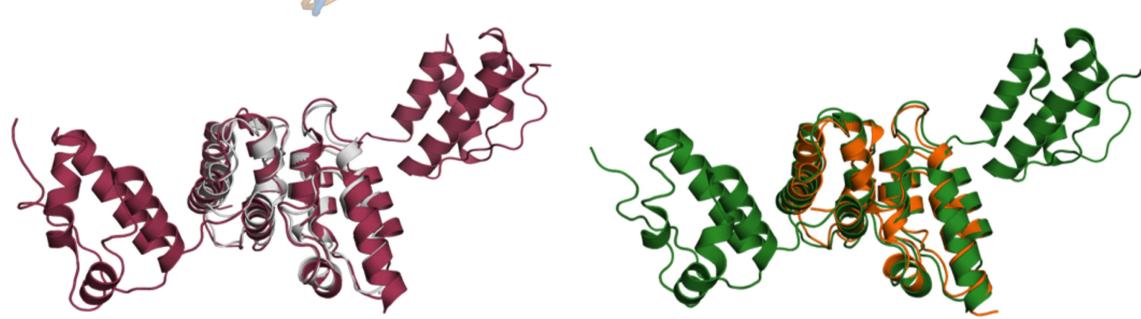
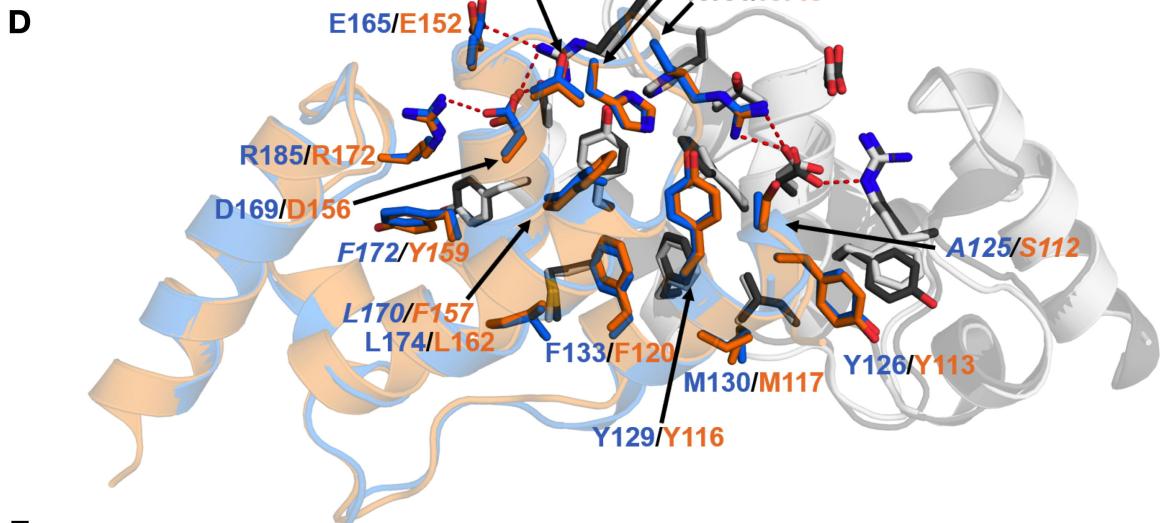
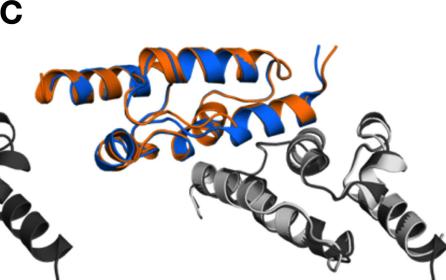
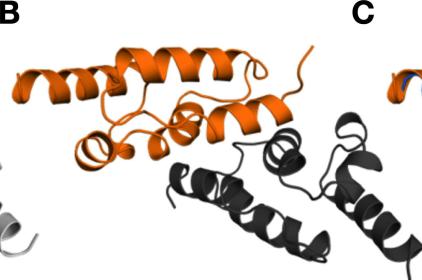
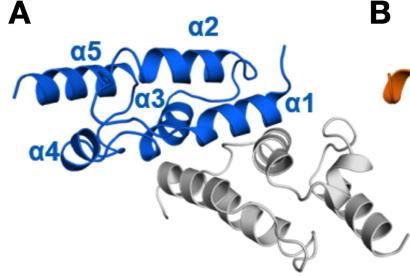

800 87. Bhargav SP, Vahokoski J, Kallio JP, Torda AE, Kursula P, Kursula I (2015) Two
801 independently folding units of Plasmodium profilin suggest evolution via gene fusion. *Cell*
802 *Mol Life Sci* 72: 4193-4203.

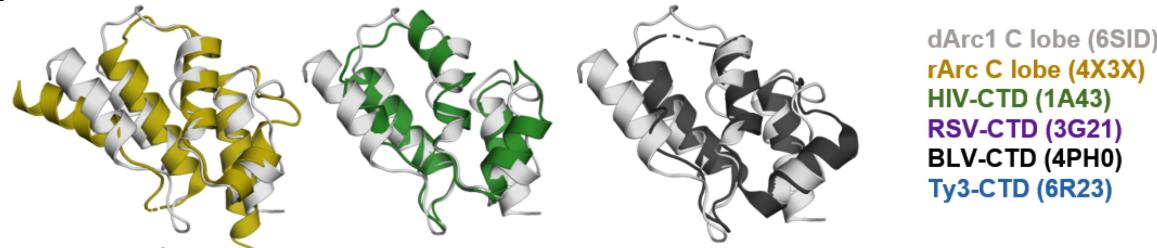

803 88. Han H, Kursula P (2014) Periaxin and AHNAK nucleoprotein 2 form intertwined
804 homodimers through domain swapping. *J Biol Chem* 289: 14121-14131.



805 89. Smyth DR, Kalitsis P, Joseph JL, Sentry JW (1989) Plant retrotransposon from *Lilium*
806 *henryi* is related to Ty3 of yeast and the gypsy group of *Drosophila*. *Proc Natl Acad Sci U*
807 *S A* 86: 5015-5019.

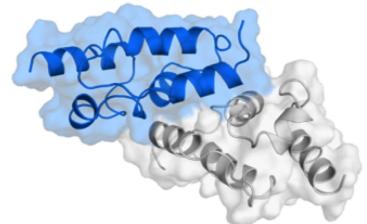
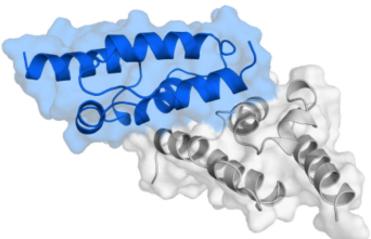
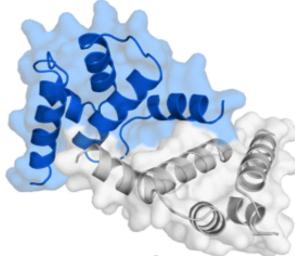
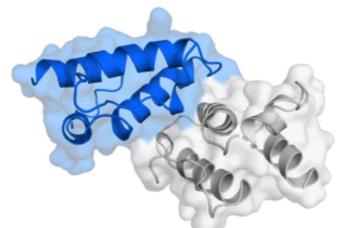
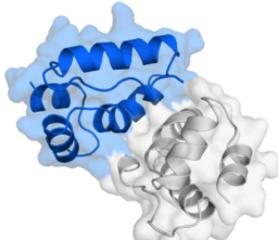
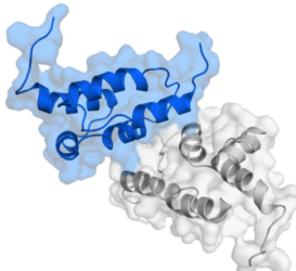



808

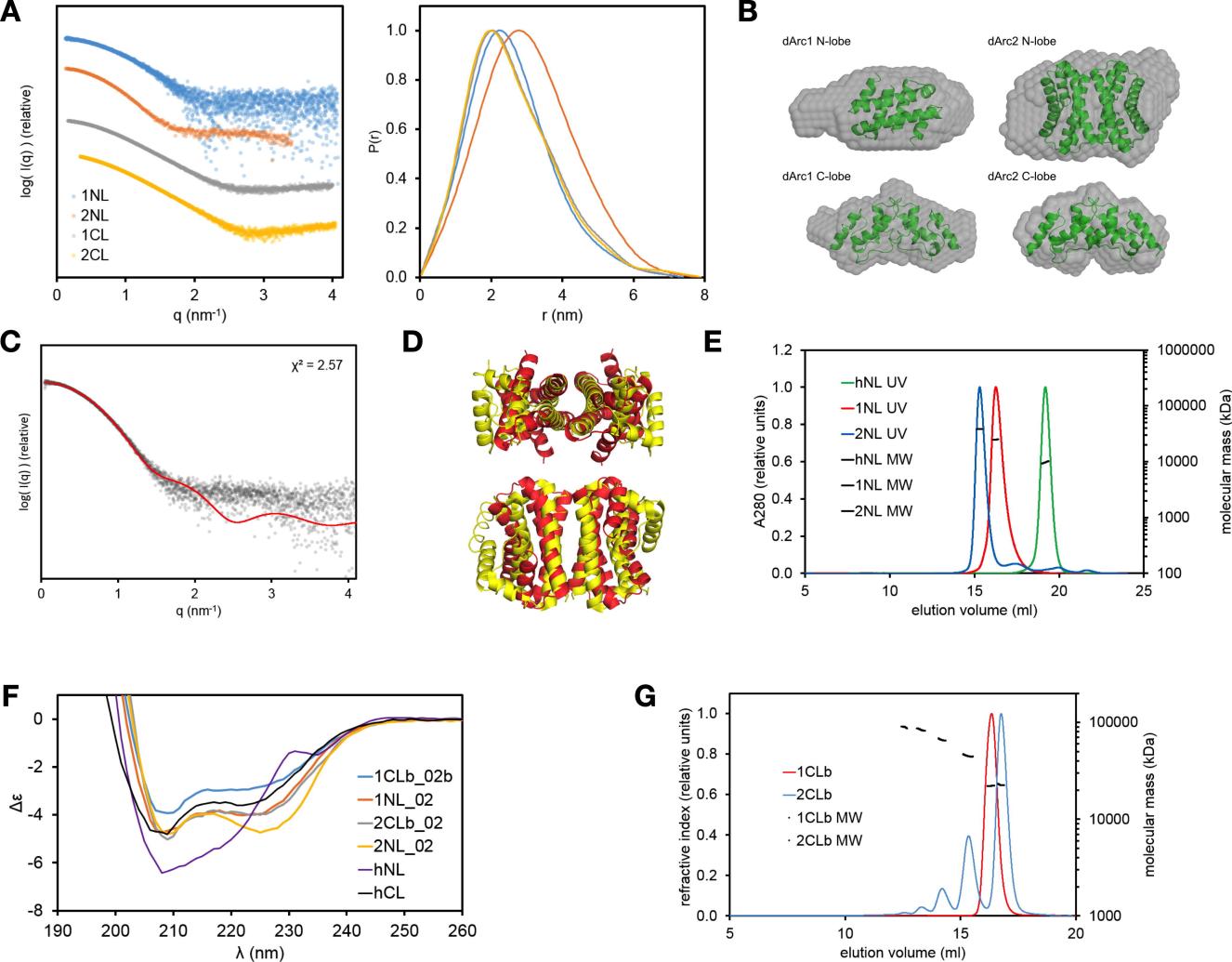




809


A**B**

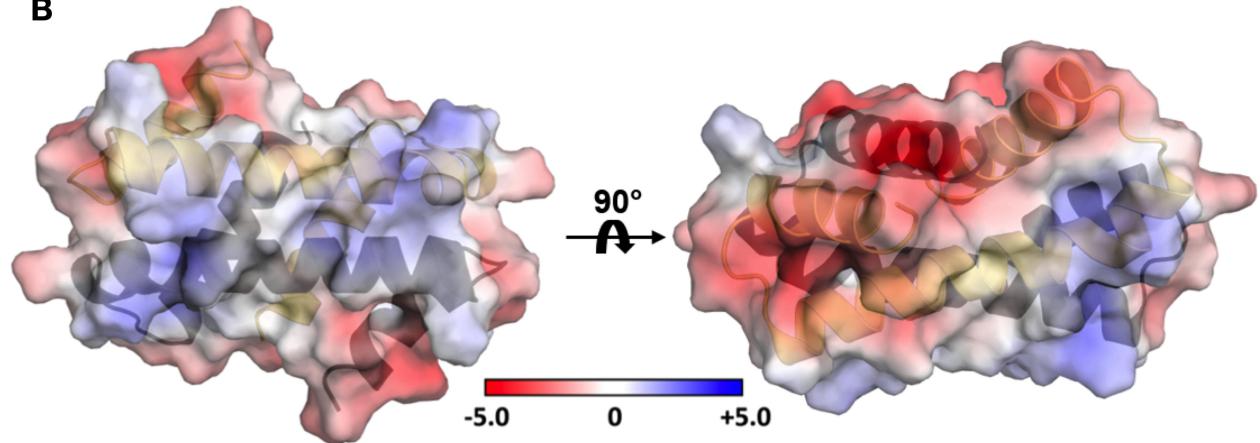
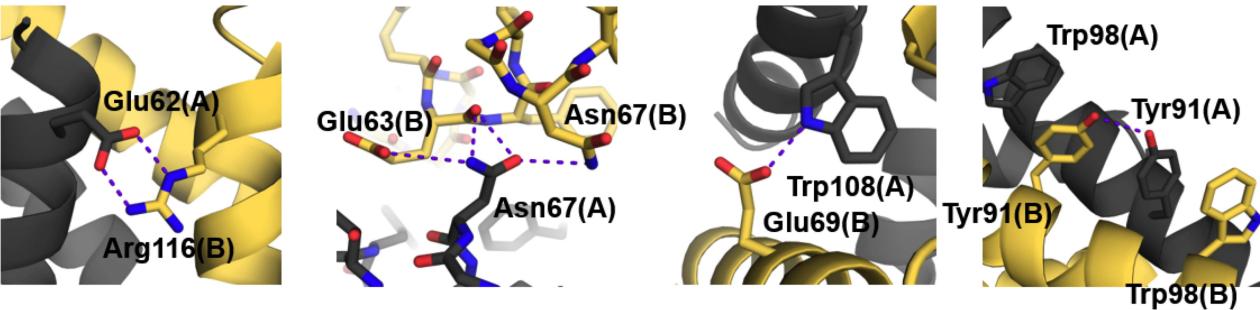
A**B****C**

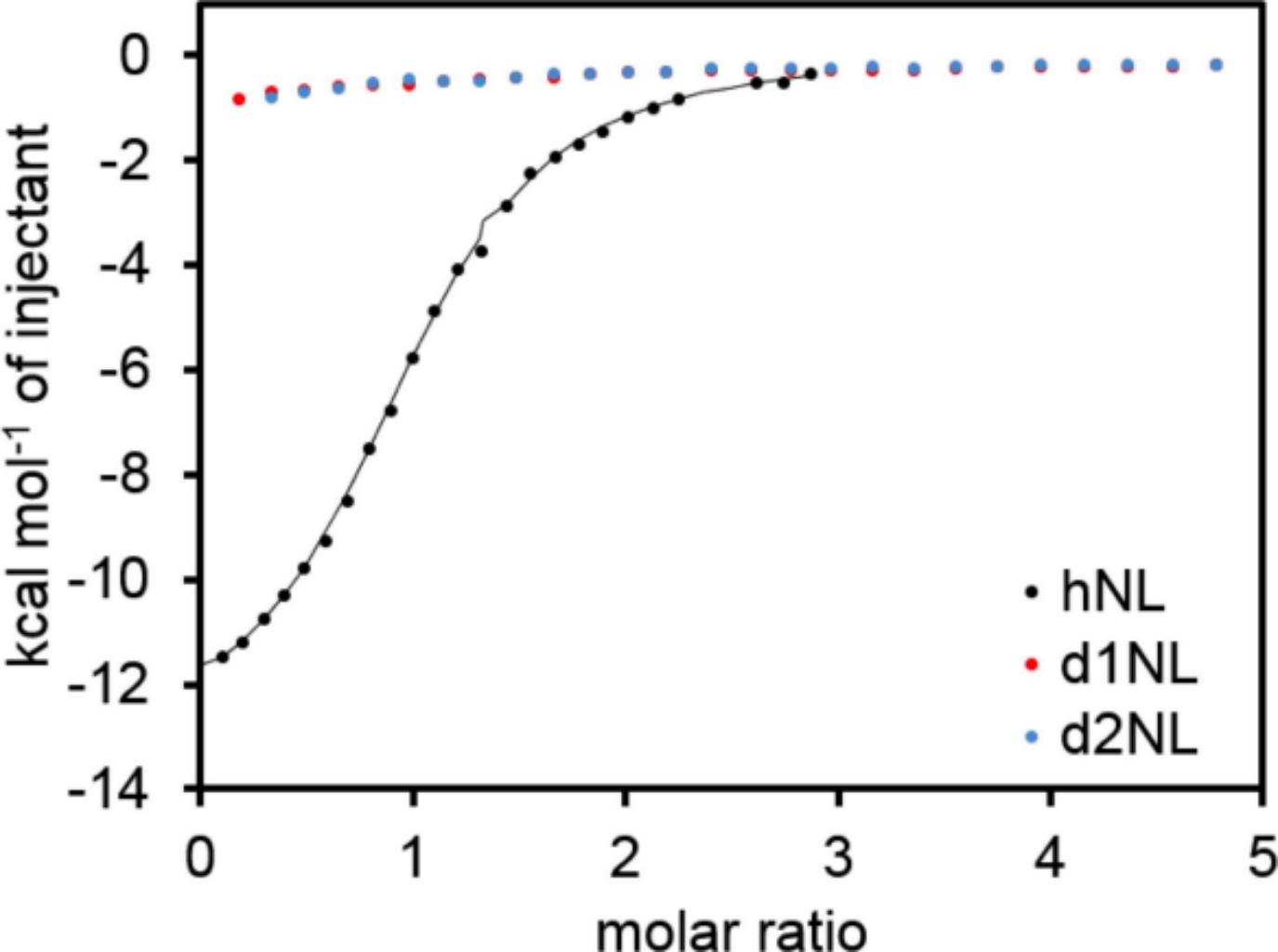









dArc2 C lobe
dArc2 capsid dimer (6TAQ)

A**B**



	Z-score	RMSD	#C _α -pairs	Seq. ID (%)
4X3X	9.1	2.6	82	24
1A43	8.0	2.1	72	12
3G21	8.0	2.3	71	7
6R23	9.0	2.6	91	16
4PH0	8.5	2.9	199	18


dArc1 C-lobe1480 Å² BSA**dArc2 C-lobe**1421 Å² BSA**rArc C-lobe**1420 Å² BSA**RSV-CTD, pH 4.6**1480 Å² BSA**HIV-CTD**1840 Å² BSA**Ty3-CTD**1046 Å² BSA

A

dArc1NL FGGTRDHDVVEEFIGNIETYKDVEGISDENALKGISLLFYGMASWWQGVRKEATTWKEAIALIREHFSPT
 dArc2NL FSGQRDHDAVDEFINAVETYKEVEGISDKDALKGLPLLFKSIAVWWKGVRRAKTTWSDALQLLRDHFSPT
 . *.*.*:***. :***:*****:*****: *** .*: ***:***:***.***:***: *:***:*****

B**C**

