

1 **Human fecal microbiota is associated with colorectal cancer**

2

3 **Authors**

4 Qiulin Yao^{1*}, Meifang Tang^{2,1*}, Liuhong Zeng¹, Zhonghua Chu³, Hui Sheng⁴, Yuyu

5 Zhang⁵, Yuan Zhou¹, Hongyun Zhang¹, Huayan Jiang⁵, Mingzhi Ye^{6,1,5#}

6

7 **Affiliations**

8 ¹Clinical laboratory of BGI Health, BGI-Shenzhen, Shenzhen 518083, China

9 ²BGI Education Center, University of Chinese Academy of Sciences, Shenzhen

10 518083, China

11 ³Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene

12 Regulation, Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital,

13 Sun Yat-sen University, Guangzhou 510060, China

14 ⁴Department of Experimental Research, State Key Laboratory of Oncology in South

15 China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University

16 Cancer Center, Guangzhou 510060, China

17 ⁵BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China

18 ⁶BGI-Guangzhou Medical Laboratory, BGI-Shenzhen, Guangzhou 510006, China

19

20 *These authors contributed equally to the work

21 #Address correspondence to: Mingzhi Ye, PHD

22 Zone B Room 401, Qinglan Street, Panyu District, Guangzhou 510006, China

23 E-mail: yemingzhi@genomics.cn

24

25 **Abstract**

26 **Background:** Colorectal cancer (CRC) is one of the most common cancers. In recent
27 studies, the gut microbiota has been reported to be potentially involved in aggravating
28 or favoring CRC development. However, little is known about the microbiota
29 composition in CRC patients after treatment. In this study, we explored the fecal
30 microbiota composition to obtain a periscope view of gut microbial communities. We
31 analyzed microbial 16S rRNA genes from 107 fecal samples of Chinese individuals
32 from three groups, including 33 healthy individuals (Normal), 38 CRC patients (Fa),
33 and 36 CRC post-surgery patients (Fb).

34 **Results:** Species richness and diversity were decreased in the Fa and Fb groups
35 compared with that of the Normal group. Partial least squares discrimination analysis
36 showed clustering of samples according to disease with an obvious separation
37 between the Fa and Normal, and Fb and Normal groups, as well as a partial separation
38 between the Fa and Fb groups. Based on linear discriminant analysis effect size
39 analysis and a receiver operating characteristic model, *Fusobacterium* was suggested
40 as a potential biomarker for CRC screening. Additionally, we found that surgery
41 greatly reduced the bacterial diversity of microbiota in CRC patients. Some
42 commensal beneficial bacteria of the intestinal canal, such as *Faecalibacterium* and
43 *Prevotella*, were decreased, whereas the drug-resistant *Enterococcus* was visibly
44 increased in CRC post-surgery group. Meanwhile, we observed a declining tendency

45 of *Fusobacterium* in the majority of follow-up CRC patients who were still alive
46 approximately 3 y after surgery. We also observed that beneficial bacteria
47 dramatically decreased in CRC patients that recidivated or died after surgery. This
48 revealed that important bacteria might be associated with prognosis.

49 **Conclusions:** The fecal bacterial diversity was diminished in CRC patients compared
50 with that in healthy individuals. Enrichment and depletion of several bacterial strains
51 associated with carcinomas and inflammation were detected in CRC samples.
52 *Fusobacterium* might be a potential biomarker for early screening of CRC in Chinese
53 or Asian populations. In summary, this study indicated that fecal microbiome-based
54 approaches could be a feasible method for detecting CRC and monitoring prognosis
55 post-surgery.

56

57 **Keywords:** Colorectal cancer, 16s rRNA gene sequencing, *Fusobacterium*,
58 *Faecalibacterium*, *Prevotella*, biomarker.

59

60 **1. Introduction**

61 Colorectal cancer (CRC) is the third most common cancer worldwide, with
62 the annual occurrence of 1 360 000 new cases and more than 600 000 deaths^{1,2}.
63 Because of its high incidence, increased difficulty in early diagnosis, and high
64 mortality rate, colorectal cancer has become a major public health issue,
65 especially in less developed regions. Moreover, survival and risk of recurrence
66 have been reported to vary based on the stage of the tumor. According to the

67 pathological classification, in cases of tumors confined to stages I and II, resection
68 surgery can be curative with a 5-y survival rate of up to 80 %; however, the
69 prognosis is dramatically decreased in tumors at a later stage, due to the increased
70 occurrence of metastasis³. Therefore, a new diagnostic method for the early
71 detection of lesions that would be noninvasive and easy to perform, is gaining
72 attention among researchers.

73 Gut microbiota have been suggested to be potentially involved in the
74 development of colorectal cancer. Bacteria and their related products might
75 participate in the initiation or progression of sporadic colorectal cancer by a
76 variety of mechanisms, including induction of inflammation, production of
77 mutagenic toxins and reactive oxygen species (ROS), and the conversion of
78 pro-carcinogenic dietary factors into carcinogens. These mechanisms have been
79 shown to result in DNA and RNA damage, directly or indirectly inhibit DNA
80 repair^{1,4,5}, affect specific signal pathways, and block antitumor immunity². Several
81 bacteria have been reported to exhibit a carcinogenic risk. *Escherichia coli*,
82 *Streptococcus bovis*, and *Bacteroides fragilis* are the bacteria most often described
83 to be associated with colonic neoplasia⁶. The colibactin-producing *E. coli* has been
84 reported to directly attack the host DNA, by introducing DNA breaks that lead to
85 genomic instability and increased mutation frequency^{4,7}. Whereas, *Enterococcus*
86 *faecalis* is known to indirectly lead to DNA damage in the epithelium by inducing
87 high levels of ROS^{8,9}, which are typically produced by host cells during
88 inflammation. *Fusobacterium nucleatum* has been reported to modulate the

89 tumor-immune microenvironment, potentiating intestinal tumorigenesis in mice¹⁰.

90 In addition, some studies have indicated that *F. nucleatum* is enriched in the gut of
91 CRC patients^{11,12} and have even suggested it as a putative prognostic factor in
92 CRC^{13,14,15}.

93 Changes in the abundance of some gut commensal bacteria have been linked
94 to dysbiosis observed in several human diseases. One such case regards
95 *Faecalibacterium prausnitzii*, a protective bacterium, which was found to be
96 decreased in CRC patients⁶. Culture supernatants of *F. prausnitzii* were shown to
97 protect mice against 2,4,6-trinitrobenzenesulfonic acid-induced colitis, a potent
98 risk factor for colon cancer¹⁶. The collection of fecal samples, in which the
99 microorganism composition is known to be highly correlated with the colonic
100 lumen and mucosa, seems to be an ideal approach, as this data can provide a
101 periscopic view of gut microbial communities¹⁷, without the need for invasive
102 procedures, such as colonoscopies.

103 To date, a large amount of research has focused on the gut microbiota of
104 CRC patients; however, the microenvironmental changes in the colorectum of
105 patients after therapy, such as surgery, chemotherapy, or radiotherapy, have not
106 been widely studied. As specific bacteria might drive tumorigenesis, we aimed to
107 identify whether the population of these bacteria were decreased after effective
108 treatment. If so, it would indicate that effective treatment might result in the
109 alteration of the microbiota of CRC patients to one more similar to that of normal
110 samples.

111 Thus, to understand the structure of the gut microbial community and the
112 changes post-surgery in CRC patients, we investigated the microbiota in the stools
113 of CRC patients, CRC patients after surgery, and healthy individuals using 16S
114 rDNA amplicon sequencing.

115

116

117 **2. Results**

118 **Summary of the study**

119 Our study population was composed of 33 healthy individuals (Normal), 38
120 CRC patients before treatment (Fa), and 36 CRC patients after surgery (Fb)
121 (**Table 1**).

122 **Table 1.** Demographic structure and clinical data of the study population

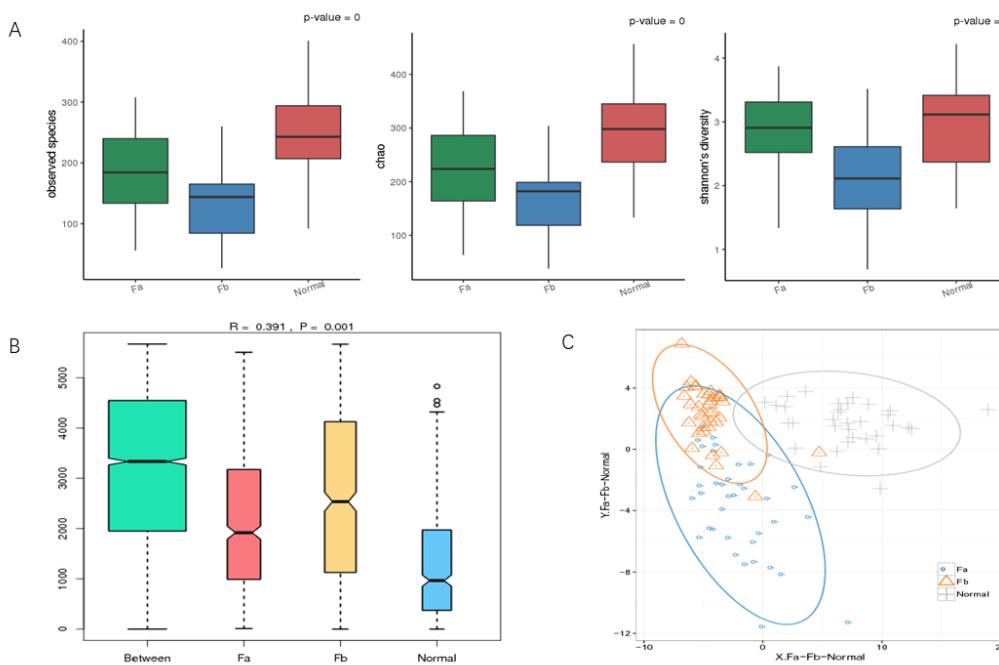
	Fa	Fb	Normal
Number	38	36	33
Male, n (%)	24 (63.16)	23 (63.89)	17 (51.52)
Mean age (±SD, y)	64.32 ± 11.14	63.19 ± 10.73	59.00 ± 4.94
Pathological stage			
I/II/III (%)	13.51/35.14/51.35	8.82/44.12/47.06	-

123 Fa, CRC patients before treatment; Fb, CRC patients after surgery.

124 We obtained a total of 4 992 311 16S rDNA sequences from 107 stool samples,
125 with an average of $46\,657 \pm 2955$ reads per sample in the whole cohort.

126 We generated 1108 total operational taxonomic units (OTUs) at a 97 %

127 similarity level, with an average of 244 ± 67 , 190 ± 74 , 130 ± 60 OTUs in the
128 Normal, Fa, and Fb groups, respectively. The maximum number of OTUs for a
129 single sample was 401, whereas the minimum, which was found in the Fb group,
130 was only 27 (**Table S1**). There were 495 common OTUs in all groups, with the Fa
131 group having the most specific OTUs, whereas the Fb group having the least
132 specific OTUs (**Figure S1**).


133

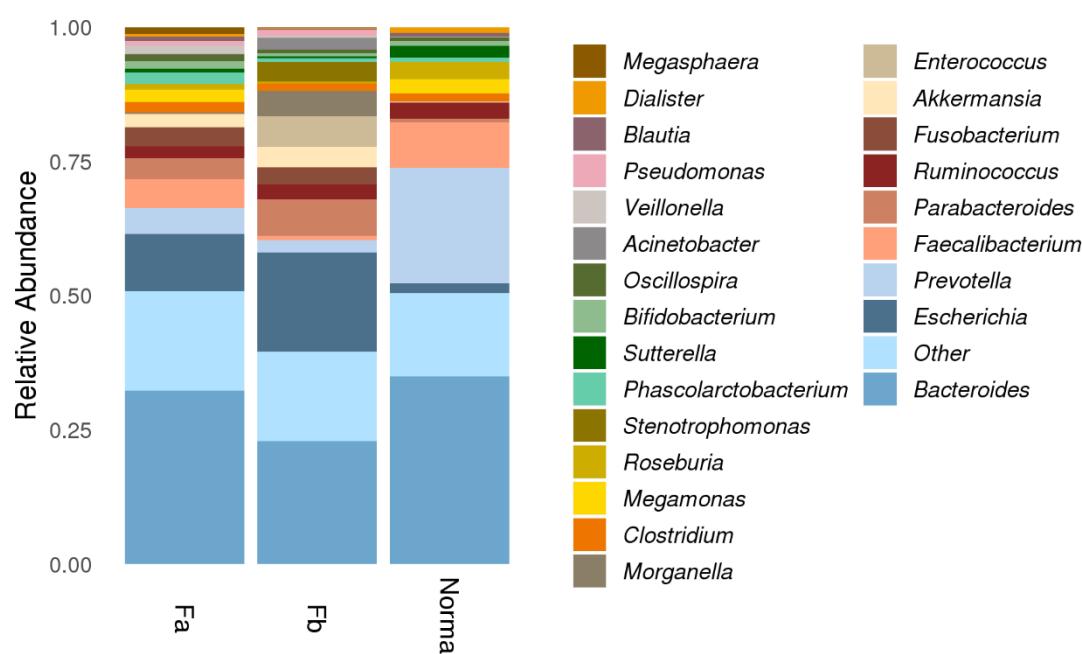
134 **Richness and diversity**

135 The observed species and Chao richness index, Shannon, and Simpson
136 diversity index were used to describe the alpha diversity features of the bacterial
137 communities in our samples. We observed that the species richness and diversity
138 in Fa and Fb were decreased compared with those in the Normal group. A strong
139 decrease in biodiversity was observed in the Fb group, especially in the stages II
140 and III subgroup of Fb, compared with that in the other groups (**Figures 1A, S2**).

141 We used analysis of similarities (ANOSIM) to estimate the similarity among
142 groups. Our results indicated that differences among groups were more significant
143 than differences within groups (R -value = 0.164, P = 0.001) (**Figure 1B**). At the
144 same time, a beta diversity evaluation, represented by partial least squares
145 discrimination analysis (PLSDA), showed a clustering of samples according to
146 disease with an obvious separation between the Fa and Normal groups, and the Fb
147 and Normal groups, but a partial separation between the Fa and Fb groups.
148 Permutational multivariate analysis of variance confirmed this observation

149 (ADONIS, Fa-Normal, $R^2 = 0.11797$, $P = 0.001$; Fa-Fb, $R^2 = 0.05057$, $P = 0.001$;
150 Fb-Normal, $R^2 = 0.18593$, $P = 0.001$) (**Figure 1C**).

151
152 **Figure 1.** Microbiota biodiversity. (A) Alpha diversity. Bigger indexes of the observed species
153 and Chao reflect greater richness, whereas a bigger Shannon index reflects greater diversity.
154 (B) Similarities. "Between" shows the differences between groups, whereas the rest show
155 differences within groups, $R > 0$ indicates differences between groups were more obvious
156 than within groups, P value < 0.01 indicates significance. (C) OTUs based PLSDA. ADONIS,
157 Fa-Normal, $R^2 = 0.11797$, $P = 0.001$ (**); Fa-Fb, $R^2 = 0.05057$, $P = 0.001$ (**); Fb-Normal,
158 $R^2 = 0.18593$, $P = 0.001$ (**).
159 OTU, operational taxonomic unit; PLSDA, partial least squares discrimination analysis; Fa,
160 CRC patients before treatment; Fb, CRC patients after surgery.


161
162 **Bacterial microbiota composition**
163 We analyzed the composition and abundance of bacteria at all taxonomic

164 levels. As expected, we found that a large majority of the bacteria in the Fa, Fb,
165 and normal samples belonged to the phyla Bacteroidetes, Firmicutes,
166 Proteobacteria, Fusobacteria, and Actinobacteria. We further identified that the
167 distribution of the major phyla in the Normal group was consistent with published
168 data. Further comparison of the relative abundance revealed clear differences. The
169 most abundant phylum in the Normal group was Bacteroidetes, followed by
170 Firmicutes, Proteobacteria, and Actinobacteria. However, an increase in the
171 distribution of Proteobacteria, Fusobacteria, and Verrucomicrobia was observed in
172 the Fa group. Except for an increase in the distribution of Fusobacteria and
173 Verrucomicrobia, the Fb group was characterized by a notable increase in
174 Proteobacteria and a decrease in Firmicutes (**Figure S3**).

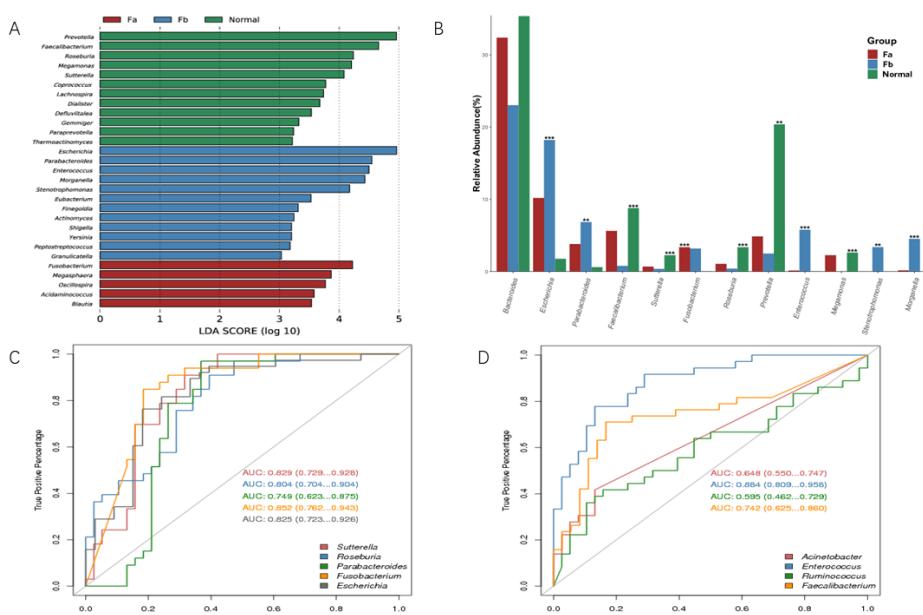
175 We identified a total of 173 genera at the genus level, with the dominant
176 genus among all groups being *Bacteroides* (34.89 %, 32.34 %, and 22.89 % in
177 Normal, Fa, and Fb groups, respectively). However, apart from this, the
178 composition and prevalence of genera was different among the three groups. In
179 the Normal group, we identified the following genera: *Prevotella* (21.49 %),
180 *Faecalibacterium* (8.58 %), *Roseburia* (3.28 %), and *Ruminococcus* (3.02 %). The
181 Fa group was characterized by the presence of *Escherichia* (10.69 %),
182 *Faecalibacterium* (5.49 %), *Prevotella* (4.78 %), and *Parabacteroides* (3.84 %);
183 whereas in the Fb group, we observed *Escherichia* (18.56 %), *Parabacteroides*
184 (6.81 %), *Enterococcus* (5.82 %), and *Morganella* (4.68 %) (**Table S2**).
185 Accordingly, *Escherichia* belonging to the phylum Proteobacteria, *Fusobacterium*

186 belonging to Fusobacteria, and *Parabacteroides* were found to be enriched in
187 CRC patients (Fa and Fb groups) compared with that in the Normal group,
188 whereas *Prevotella* was demonstrated to be overrepresented in the Normal group.
189 The presence of *Faecalibacterium* was scarce, whereas *Enterococcus* was
190 abundant in the Fb group (Figure 2). Although *Bacteroides* exhibited a similar
191 relative abundance at the genus level, at the species level, the abundance of *B.*
192 *fragilis* was shown to vary among groups (Figure S4), being enriched in the Fa
193 and Fb groups.

194

195

196 **Figure 2.** Microbiota composition in every group at the genus level. Relative abundances of
197 less than 0.5 % were combined and shown as other.
198 Fa, CRC patients before treatment; Fb, CRC patients after surgery.


199

200 **Identification of differential microbes and key taxa (biomarkers)**

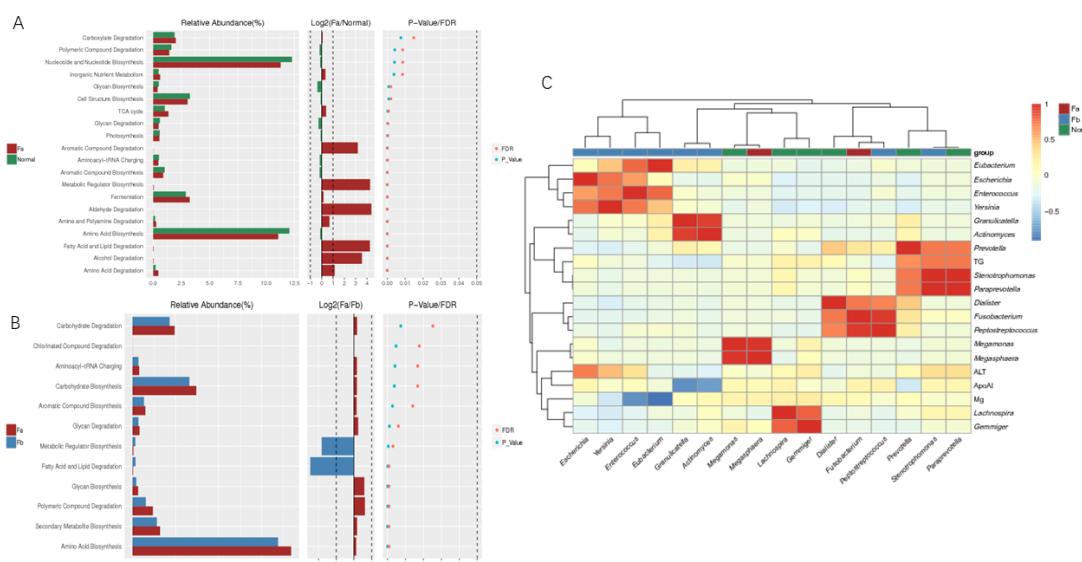
201 To identify the key bacteria causing divergence between different groups, we
202 used the linear discriminant analysis (LDA) effect size (LEfSe) biomarker
203 discovery tool, which could compare two or more groups, and search for
204 biomarkers showing statistical differences. We performed LEfSe analysis at both
205 the family and genus levels, and found 52 discriminative features using a
206 threshold of LDA score of 2 (P value <0.01) at the genus level (**Table S3**). We
207 observed that *Prevotella* (LDA = 4.95, P < 0.01), *Faecalibacterium* (LDA = 4.66,
208 P < 0.001), *Roseburia* (LDA = 4.23, P < 0.001), *Megamonas* (LDA = 4.21, P <
209 0.001), and *Sutterella* (LDA = 4.08, P < 0.001) were the dominant microbes in the
210 Normal group; *Fusobacterium* (LDA = 4.22, P < 0.001) was the dominant genus
211 in the Fa group, whereas *Escherichia* (LDA = 4.96, P < 0.001), *Enterococcus*
212 (LDA = 4.49, P < 0.001), and *Stenotrophomonas* (LDA = 4.17, P < 0.01) were the
213 dominant genera in the Fb group. The genera with an LDA score higher than 3 are
214 displayed in **Figure 3A**. To further compare the relative abundance of these
215 primary biomarkers in all groups, we evaluated the average relative abundance of
216 bacteria with an LDA score higher than 4 in every group. Except for *Bacteroides*,
217 all other bacteria showed significant differences (P < 0.01) (**Figure 3B**).

218 Consecutively, to explore whether these differential microbes were suitable
219 for CRC detection, or classification of CRC samples before or after treatment, we
220 used the receiver operating characteristic (ROC) curve to evaluate their predictive
221 power. First, we calculated the area under the ROC curve (AUC) of the microbes
222 between the Fa and Normal groups, and found that the most discriminative genus

223 was that of *Fusobacterium* with an AUC of 0.852 (**Figure 3C**). Consistent with
224 previous studies suggesting *Fusobacterium* as prevalent in the gut of CRC
225 patients^{11,12}, potentially accelerating tumorigenesis¹⁰, our results further confirmed
226 this enrichment and indicated a potential biomarker for detecting CRC. Following,
227 we evaluated the classification model comparing samples from before (Fa group)
228 and after (Fb group) treatment. Our results revealed that the most discriminative
229 microbe, which was shown to be enriched in the Fb group, with an AUC value of
230 0.884, was *Enterococcus* (**Figure 3D**).
231

232
233 **Figure 3.** (A) LEfSe analysis for taxonomic biomarkers on the genus level among the three
234 groups. Each color represents one group. (B) Differential comparison of key microbes. ***, P
235 < 0.001; **, 0.001 ≤ P ≤ 0.01; *, 0.01 ≤ P ≤ 0.05. (C) ROC curves for evaluation of the
236 classification model between Fa and normal samples. (D) ROC curves for evaluation of the
237 classification model between Fa and Fb samples.

238 LEfSe, linear discriminant analysis effect size; ROC, receiver operating characteristic; AUC,
239 area under the ROC curve; Fa, CRC patients before treatment; Fb, CRC patients after surgery.

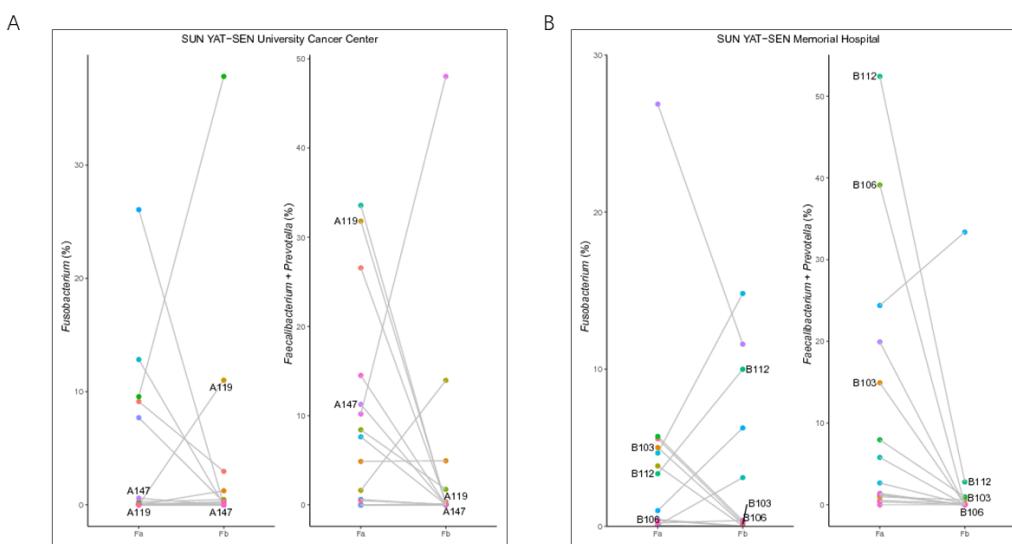

240

241 **Function analysis and correlation with clinic data**

242 We used Picrust2 to predict the MetaCyc pathways of microbiota in every
243 sample. This analysis revealed the differential functions between CRC patients
244 and healthy individuals and between CRC patients before and after treatment. We
245 observed that the pathways enriched in the Fa group compared with those of the
246 Normal group were those of lipid, fatty acid, amino acid, aldehyde, alcohol, and
247 aromatic compound degradation (**Figure 4A**). Only the metabolic regulator
248 biosynthesis as well as fatty acid and lipid degradation pathways were identified
249 to be significantly ($P < 0.01$, $|\log_{2}FC| > 1$) different in the Fa and Fb groups.
250 (**Figure 4B**).

251 We collected 56 clinical indexes of CRC patients, including biochemical
252 criteria and routine blood examinations. At the genus level, 27 differentially
253 abundant microbes ($LDA \text{ score} > 3$, $P < 0.01$) were selected and related to the
254 clinical data. We calculated the Pearson coefficient of pairwise correlation
255 between microbes and clinical indexes, and characters exhibiting a high
256 correlation (Pearson coefficient ≥ 0.7) are displayed on a heatmap (**Figure 4C**). A
257 similar abundance model and very strong correlation could be observed in some
258 microbes, such as *Escherichia*, *Enterococcus*, *Yersinia*, and *Eubacterium*, which
259 were enriched and clustered well in the Fb group, whereas *Fusobacterium* and

260 *Peptostreptococcus* were found to be clustered together, with a Pearson coefficient
261 of 0.95. We selected ALT, ApoA1, Mg²⁺, and TG, among all the clinical indexes.
262 ALT was shown to be positively related to *Escherichia* ($R = 0.7303$), TG was
263 positively related to *Stenotrophomonas* ($R = 0.7333$) and *Paraprevotella* ($R =$
264 0.7328), whereas Mg²⁺ was negatively related to *Eubacterium* ($R = 0.9096$) and
265 *Enterococcus* ($R = 0.7795$), and ApoA1 was negatively related to *Granulicatella*
266 ($R = 0.7785$).



267
268 **Figure 4.** (A) Comparison of differential functional pathways in the Fa and Normal groups.
269 (B) Comparison of differential functional pathways in the Fa and Fb groups. (C) Heatmap of
270 correlation.
271 Fa, CRC patients before treatment; Fb, CRC patients after surgery.

273 Biomarkers and prognosis

274 We followed-up 32 CRC patients who had provided pre- and post-treatment

stool samples, and recorded their current living state (approximately 3 y after surgery). We evaluated the changes in important bacteria in paired stool samples. We observed a decrease in the presence of *Fusobacterium* in most patients treated at the SUN YAT-SEN University Cancer Center after surgery, except for two cases of distinct increases. One CRC patient died after surgery, while the other had chronic enteritis (**Figure 5A**). Meanwhile, most patients treated at the SUN YAT-SEN Memorial Hospital exhibited the same decrease in *Fusobacterium* after surgery (**Figure 5B**). Five patients (A147, A119, B103, B106, B112) either developed postoperative recidivation or died. We observed that most of the samples showed an abnormal increase in *Fusobacterium*, and all of them exhibited an obvious decrease in beneficial bacteria (*Faecalibacterium* and *Prevotella*) (**Figure 5**). This finding suggested that an abnormal increase in *Fusobacterium* and a distinct reduction of probiotic might indicate poor prognosis. This supposition should be followed by a large cohort and more stages of postoperative sampling, such as one month after surgery, three months after surgery, and so on.

291 **Figure 5.** Relative abundance of *Fusobacterium*, *Faecalibacterium*, and *Prevotella* in every
292 paired sample before and after surgery. (A) Samples collected from the SUN YAT-SEN
293 University Cancer Center. (B) Samples collected from the SUN YAT-SEN Memorial Hospital.
294 Fa, CRC patients before treatment; Fb, CRC patients after surgery.

295

296 **3. Discussion**

297 In this study, we compared the fecal microbiota of CRC patients to those of
298 healthy individuals and CRC patients that underwent surgery. We observed
299 changes in the microbiota in all three groups. Moreover, the richness and
300 biodiversity among these groups was found to differ. In particular, we found a
301 decrease in biodiversity in the Fa group, and a strong decrease in biodiversity in
302 CRC patients who had undergone surgical operation (Fb group, approximately 1
303 wk after surgery), indicating that surgery might lead to serious microbiota
304 dysbiosis. However, as patients in the Fb group were administered antibiotics after
305 surgery, we could not eliminate the effect of antibiotics on biodiversity.

306 We also observed obvious differences in bacterial composition. The
307 composition of fecal microbiota in the Fa and Fb groups was clearly different
308 from the microbiota of healthy individuals, with a clear increase in the abundance
309 of *Escherichia*, *Parabacteroides*, and *Fusobacterium* being observed in both the
310 Fa and Fb groups. Previous studies have reported a number of microbial species
311 found in CRC patients, most of which were present in our dataset as well. For
312 instance, *Fusobacterium* was reported to coexist with tumors, and was considered

313 to positively regulate tumor cell propagation^{12,13}. *F. nucleatum* was demonstrated
314 to increase the tumor burden and selectively expand myeloid derived immune
315 cells, such as CD11b⁺, and myeloid derived suppressor cells in an *Apc*^{Min/+} mouse
316 model¹⁰. Other studies suggested that through the recruitment of tumor-infiltrating
317 immune cells, *Fusobacteria* might generate a proinflammatory microenvironment
318 that is conducive for colorectal neoplasia progression. In accordance with these
319 findings, our results showed that *Fusobacterium* was identified to be the principal
320 genus in the Fa group. Moreover, the classification model between the Fa and
321 Normal groups was credible with an AUC of 0.852, suggesting that
322 *Fusobacterium* could be used as a potential biomarker for CRC patients. Thus, the
323 increased abundance of *Fusobacterium* could be linked with a high risk of CRC.
324 Enterotoxigenic *B. fragilis* has been identified as a potential driver of CRC in both
325 human and mouse studies^{18,19,20}. The toxin of *B. fragilis* is known to cause human
326 inflammatory diarrhea. However, it can also asymptotically colonize a
327 proportion of the human population, thereby triggering colitis and strongly
328 inducing colonic tumors via activation of the T-helper type 17 T-cell responses²⁰.
329 In our dataset, we found that the species of *B. fragilis* was prominent in CRC
330 patients either before or after surgery, especially in the Fb group. *E. coli* is a
331 commensal bacterium of the human gut microbiota, but some pathogenic strains
332 have acquired the ability to induce chronic inflammation or produce toxins, such
333 as cyclomodulins, which could participate in carcinogenesis processes^{1,21,22}. We
334 also tested the enrichment of *Escherichia* in CRC patients, especially in the Fb

335 group. At the species level, the presence of *E. coli* was shown to be obviously
336 increased in the Fa and Fb groups than in the Normal group. All the
337 aforementioned bacteria involved in CRC are known to be
338 proinflammatory-associated, and hence might colonize faster in an inflammatory
339 conducive environment. As the fecal samples of the Fb group in this study were
340 obtained from CRC patients who had recently undergone surgery, their intestinal
341 microenvironments were probably unstable, with some potentially exhibiting an
342 inflammatory response, and some may have bad prognosis. Therefore, our
343 findings that the abundance of *B. fragilis* and *E. coli* was the largest in the Fb
344 group, whereas *Fusobacterium* showed a slight decrease compared with that in the
345 Fa group, was justified. The distribution trend of these bacteria after surgery
346 should be analyzed in different stages post-surgery, and thus further research is
347 needed.

348 *Fa. prausnitzii* is one of the most abundant bacteria in the human intestinal
349 microbiota of healthy individuals, and the most important butyrate-producing
350 bacteria in the human colon²³, representing more than 5 % of the total bacterial
351 population¹⁶. Further, this bacterium has shown potential to function as a probiotic
352 in the treatment of Crohn's disease²⁴. Changes in the abundance of *Fa. prausnitzii*
353 have been linked to dysbiosis in several human disorders. To date, this commensal
354 bacterium has been considered as a bioindicator of human health. *Prevotella*, a
355 commensal bacterial genus known to produce short chain fatty acids and that
356 possesses potent anti-inflammatory effects, has been reported to be more

357 commonly found in non-Westerners, who prefer a plant-rich diet^{25,26}. Studies have
358 confirmed that maternal carriage of *Prevotella* during pregnancy was associated
359 with protection against food allergies in the offspring²⁶. In our study, the numbers
360 of *Faecalibacterium* and *Prevotella* were reduced in CRC patients, especially in
361 the Fb group. We further noted that this reduction was more notable in patients
362 who recrudesced or died after surgery.

363 The genus *Enterococcus* is of great relevance to human health because of its
364 role as a major causative agent of healthcare-associated infections; it includes
365 resilient and versatile species able to survive under harsh conditions, most
366 demonstrating intrinsic resistance to common antibiotics, such as virtually all
367 cephalosporins, aminoglycosides and clindamycin²⁷. As individuals in the Fb
368 group had recently undergone resection, and were administered antibiotics, serious
369 microbial dysbiosis might have occurred in their gut. As *Enterococcus* is known to
370 exhibit versatility and drug-resistance, it could still adapt to the post-operation
371 environment. Thus, the increase in the numbers of this bacteria in the Fb group
372 was justified.

373

374 **4. Conclusions**

375 In conclusion, this study showed the different composition of fecal
376 microbiota among Chinese healthy individuals and CRC patients before and after
377 surgery. We also identified *Fusobacterium* as a potential biomarker for CRC
378 screening. We also found changes in the numbers of *Fusobacterium*,

379 *Faecalibacterium*, and *Prevotella*, which were shown to be related to prognosis
380 after surgery. This finding could contribute to CRC early screening and prognosis
381 monitoring in Chinese or Asian populations, in combination with multiple factors
382 of cfDNA methylation and alteration.

383

384 **5. Materials and Methods**

385 **Samples**

386 CRC patients were selected from Sun Yat-sen University Cancer Center and
387 Sun Yat-sen Memorial Hospital, China. All CRC patients were diagnosed
388 according to endoscopic and histological parameters. None of the patients had
389 undergone any treatment, such as radiotherapy or chemotherapy, before
390 enrollment. Exclusion criteria included other neoplasms, other tumor history,
391 tuberculosis, infection by hepatitis B (HBV), hepatitis C (HCV), or HIV, and the
392 use of antibiotics 1 mo prior to hospitalization. The cancer stage was identified
393 according to the TNM classification of malignant tumors. CRC patients were first
394 enrolled and hospitalized; then, their fecal samples were collected before surgery
395 (approximately 2-3 d before surgery). CRC patients underwent operative
396 treatment, then administered cefminox sodium for 3 d in a row. Following
397 collection of their fecal samples approximately 1 wk after resection surgery, they
398 were allowed to leave the hospital. Normal samples were collected from healthy
399 individuals with no history of cancer, chronic enteritis, chronic constipation,
400 bloody stools, chronic appendicitis, or chronic cholecystitis.

401 In total, 107 stool samples were collected and divided into the following
402 three groups: 33 samples from healthy individuals, named Normal group; 38
403 samples from CRC patients before surgery, named Fa group; 36 samples from
404 CRC patients approximately 1 wk after surgery, named Fb group. Basic
405 information regarding this study population is listed in **Table 1**. Among them,
406 32-paired samples, each paired with pre- and post-treatment stool samples was
407 obtained from the same patient. The current survival state of these 32 patients was
408 recorded (**Table S4**).

409 Clinical data were also collected simultaneously. In total, 56 clinical indexes
410 of CRC patients (pre- and post-surgery corresponding to 72 stool samples) were
411 collected, including biochemical criteria and routine blood examinations.

412

413 **Sample preparation and genomic DNA extraction**

414 None of the patients were subjected to any invasive operation, such as
415 endoscopic or clyster, at least 5 d before sampling. A light diet was suggested 3 d
416 before sampling. About 5 g of fresh stool samples were collected by patients
417 themselves immediately after defecation using stool collection devices, and then
418 shipped on dry ice in insulated containers to a central lab, where the samples were
419 immediately stored at -80 °C until further processing. The microbiota DNA was
420 extracted as previously described²⁸. Samples were treated with lysozyme,
421 proteinase K, and SDS, then purified with phenol-chloroform-isoamylalcohol,
422 precipitated using glycogen, sodium acetate and cold isopropanol, washed with 75%

423 ethanol and resuspended in 1× TE buffer. DNA integrity and purification were
424 detected by agarose gel electrophoresis (1 %, 150 V, 40 min).

425

426 **Library construction and next generation sequencing (NGS)**

427 Qualified samples were used for the library preparation process. The
428 microbiota DNA was amplified by polymerase chain reaction (PCR) with a
429 bacterial 16S rDNA V4 region universe primer pair (515F:
430 5'-GTGCCAGCMGCCGCGGTAA-3' and 806R:
431 5'-GGACTACHVGGGTWTCTAAT-3'). PCR was performed using the following
432 conditions: 3 min denaturation at 94 °C; 25 cycles of denaturation at 94 °C for 45
433 s, annealing at 50 °C for 60 s, elongation at 72 °C for 90 s; and final extension at
434 72 °C for 10 min. The PCR products were purified using AMPure XP beads
435 (Axygen). Barcoded libraries were generated by emulsion PCR and quantitated in
436 the following two ways: the average molecule length was determined using the
437 Agilent 2100 bioanalyzer instrument and the library was quantified by real-time
438 quantitative PCR (QPCR).

439 The qualified libraries were sequenced using the Illumina HiSeq2500
440 platform with the PE250 sequencing strategy (PE251 + 8 + 8 + 251).

441

442 **Sequence processing**

443 Raw sequences were assigned to each sample based on their unique barcode
444 and primer; subsequently, the barcodes and primers were removed. At the same

445 time, paired-end low-quality reads were filtered based on quality score, adapter
446 contamination, and N base ratio.

447 Paired-end clean reads were merged using FLASH (fast length adjustment of
448 short reads, v1.2.11)²⁹ according to the relationship of the overlap between
449 paired-end reads. This was done when at least 15 bp of the read overlapped the
450 read generated from the opposite end of the same DNA fragment, the maximum
451 allowable error ratio of an overlap region was set as 0.1, and merged sequences
452 were called clean tags.

453 Tags were assigned to OTUs using USEARCH (v7.0.1090) software³⁰, and
454 tags with $\geq 97\%$ similarity were clustered to the same OTU. It has been reported
455 that a singleton OTU could be obtained due to sequencing errors or chimeras
456 generated during PCR; therefore, chimeric sequences were detected and removed
457 using UCHIME (v4.2.40)³¹ according to the match of representative OTUs to the
458 gold database (v20110519). The abundance of each OTU was quantified using
459 usearch_global algorithm by matching all clean tags to final OTUs, and
460 normalized using a standard number corresponding to the sample with the least
461 sequences.

462 Representative OTUs were annotated using the RDP classifier (v2.2)
463 software³² based on the homolog of the Greengene database (v201305), with the
464 confidence threshold set to 0.8. OTUs without annotation or annotated to polluted
465 species were removed, and the number of effective tags and information regarding
466 OTU taxonomic synthesis were recorded in a table for the next analysis. The

467 structure of the bacterial community of each sample was analyzed at all levels of
468 taxonomy, with the relative abundance less than 0.5 % in all samples combined
469 with others.

470

471 **Statistical Analysis**

472 Common and specific OTUs among groups were compared and displayed
473 using VennDiagram R (v3.1.1). Analysis of similarities were performed using
474 Bray-Curtis in the vegan package of R (v3.5.1); comparison of differences
475 between and within the groups was available, thereby allowing testing of the
476 availability of grouping.

477 Alpha diversity was applied to analyze the complexity of species diversity of
478 a sample using many indexes, such as observed species, Chao, Ace, Shannon, and
479 Simpson. All indices of our samples were calculated using Mothur (v1.31.2)³³, and
480 comparisons among groups were performed using the Kruskal test. Observed
481 species and Chao were selected to identify community richness, whereas Shannon
482 was used to identify community diversity. Beta diversity^{34,35} was used to evaluate
483 the differences in species complexity among different samples, and was calculated
484 on both weighted and unweighted UniFrac using QIIME (v1.80). Partial least
485 squares discrimination analysis (PLS-DA) was built using the mixOmics library of
486 R (v3.2.1), which was used to estimate the classification of samples and assess the
487 variation in study groups.

488 We analyzed the differential abundance at the phylum, class, order, family,

489 genus, and species levels. Differential abundance analysis was performed using
490 LEfSe³⁶, with the P value less than 0.01 and an LDA score more than 2 being
491 considered significant. To quantify the effective size of the differential taxa, we
492 used the fold change of the mean relative abundance between groups.
493 Comparisons between probabilities, as well as overall differences in the mean
494 relative abundance of each taxon between the two groups were evaluated using a
495 paired Wilcoxon rank sum test. Comparisons among three or more groups were
496 performed using the Kruskal-Wallis test.

497 The ROC curve was used to assess the confidence level of the classification
498 model. Accordingly, ROC analysis and the AUC values were calculated using the
499 pROC package of R.

500 MetaCyc pathway prediction was performed using Picrust2, MetaCyc
501 (<https://metacyc.org/>) containing pathways involved in primary and secondary
502 metabolism, related metabolites, and enzymatic reactions. Differential functions
503 were analyzed using the Wilcox-test between the two groups. Correlation was
504 tested by Pearson's coefficient using the R package.

505

506 **Abbreviations:**

507 CRC: colorectal cancer
508 ROS: reactive oxidative species
509 OTUs: operational taxonomic units
510 LDA: linear discriminant analysis

511 LEfSe: linear discriminant analysis effect size

512 ROC: receiver operating characteristic

513 AUC: area under the ROC curve

514 NGS: next generation sequencing

515 PCR: polymerase chain reaction

516 QPCR: quantitative PCR

517 FLASH: fast length adjustment of short reads

518 PLS-DA: partial least squares discrimination analysis

519 ALT: alanine transaminase

520 ApoA1: apolipoprotein A1

521 TG: triglyceride

522

523 **Acknowledgements**

524 We acknowledge the volunteers who participated in our study.

525

526 **Authors' contributions**

527 Qiulin Yao: Methodology, Data curation, Formal analysis, Visualization,

528 Writing-Original draft preparation. Meifang Tang: Conceptualization, Methodology,

529 Supervision, Writing-Review & Editing. LiuHong Zeng: Methodology, Selecting

530 samples, Communication. Zhonghua Chu: Conceptualization, Resources. Hui Sheng:

531 Resources. Yuyu Zhang: Resources. Yuan Zhou: Library preparation. Hongyun Zhang:

532 Review. Huayan Jiang: Providing information. Mingzhi Ye: Funding acquisition,

533 Resources.

534

535 **Funding**

536 This research was supported by the Guangzhou Science and Technology Plan Projects

537 (Health Medical Collaborative Innovation Program of Guangzhou) (grant No.

538 201803040019, 201400000004-5), and Guangzhou Key Laboratory of Cancer

539 Trans-Omics Research (GZ2012, NO348).

540

541 **Availability of data and materials**

542 The data reported in this study are also available in the CNGB Nucleotide Sequence

543 Archive (CNSA: <https://db.cngb.org/cnsa>; accession number CNP0001385).

544

545 **Ethics approval and consent to participate**

546 The study was approved by appropriate Institutional Review Boards (IRB) of the BGI

547 (NO. BGI-IRB15100-T1).

548

549 **Consent for publication**

550 Not applicable.

551

552 **Competing Interests**

553 Authors declare no conflicts of interests.

554

555 **Author details**

556 ¹Clinical laboratory of BGI Health, BGI-Shenzhen, Shenzhen 518083, China. ²BGI
557 Education Center, University of Chinese Academy of Sciences, Shenzhen 518083,
558 China. ³Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and
559 Gene Regulation, Department of Gastrointestinal Surgery, Sun Yat-sen Memorial
560 Hospital, Sun Yat-sen University, Guangzhou 510060, China. ⁴Department of
561 Experimental Research, State Key Laboratory of Oncology in South China,
562 Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer
563 Center, Guangzhou 510060, China. ⁵BGI Genomics, BGI-Shenzhen, Shenzhen
564 518083, China. ⁶BGI-Guangzhou Medical Laboratory, BGI-Shenzhen, Guangzhou
565 510006, China

566

567 **References**

568 [1] Bonnet M, Buc E, Sauvanet P, Darcha C, Dubois D, Pereira B, et al. Colonization
569 of the human gut by *E. coli* and colorectal cancer risk. *Clin Cancer Res.* 2014;20:859–
570 67. doi:10.1158/1078-0432.CCR-13-1343.

571 [2] Brennan CA, Garrett WS. Gut Microbiota, Inflammation, and Colorectal Cancer.
572 *Annu Rev Microbiol.* 2016;70:395–411. doi:10.1146/annurev-micro-102215-095513.

573 [3] O'Connell JB, Maggard MA, Liu JH, Etzioni DA, Ko CY. Are survival rates
574 different for young and older patients with rectal cancer? *Dis Colon Rectum.*
575 2004;47:2064–9.

576 [4] Collins D, Hogan AM, Winter DC. Microbial and viral pathogens in colorectal

577 cancer. *Lancet Oncol.* 2010;12:504–12.

578 [5] Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ, et
579 al. Intestinal inflammation targets cancer-inducing activity of the microbiota. *Science*.
580 2012;338:120–3.

581 [6] Mathias LR, Giuseppina L, Bruno L, et al. Mucosa-associated microbiota
582 dysbiosis in colitis associated cancer. *Gut Microbes*. 2018;2:131–42.

583 [7] Cuevas-Ramos G, Petit CR, Marcq I, Boury M, Oswald E, Nougayrede J-P.
584 *Escherichia coli* induces DNA damage in vivo and triggers genomic instability in
585 mammalian cells. *Proc Natl Acad Sci USA*. 2010;107:11537–42.

586 [8] Wang X, Allen TD, May RJ, Lightfoot S, Houchen CW, Huycke MM.
587 *Enterococcus faecalis* induces aneuploidy and tetraploidy in colonic epithelial cells
588 through a bystander effect. *Cancer Res.* 2008;68:9909–17.

589 [9] Wang X, Yang Y, Moore DR, Nimmo SL, Lightfoot SA, Huycke MM.
590 4-hydroxy-2-nonenal mediates genotoxicity and bystander effects caused by
591 *Enterococcus faecalis*-infected macrophages. *Gastroenterology*. 2012;142:543–47.

592 [10] Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, et al.
593 *Fusobacterium nucleatum* potentiates intestinal tumorigenesis and modulates the
594 tumor-immune microenvironment. *Cell Host Microbe*. 2013;14: 207–15.

595 [11] Gao R, Kong C, Huang L, Li H, Qu X, Liu Z, et al. Mucosa-associated
596 microbiota signature in colorectal cancer. *Eur J Clin Microbiol Infect Dis.* 2017;
597 doi:10.1007/s10096-017-3026-4.

598 [12] Zackular JP, Rogers MA, Ruffin MT 4th, Schloss PD. The Human Gut

599 Microbiome as a Screening Tool for Colorectal Cancer. *Cancer Prev Res.*
600 2014;7:1112-21.

601 [13] Mima K, Cao Y, Chan AT, Qian ZR, Nowak JA, Masugi Y, et al. *Fusobacterium*
602 *nucleatum* in Colorectal Carcinoma Tissue According to Tumor Location. *Clin Transl*
603 *Gastroenterol.* 2016;7:e200. doi:10.1038/ctg.2016.53.

604 [14] Zeller G, Tap J, Voigt AY, Sunagawa S, Kultima JR, Costea PI, et al. Potential of
605 fecal microbiota for early-stage detection of colorectal cancer. *Mol Syst Biol.*
606 2014;10:766. doi:10.15252/msb.20145645.

607 [15] Mima K, Nishihara R, Qian ZR, Cao Y, Sukawa Y, Nowak JA, et al.
608 *Fusobacterium nucleatum* in colorectal carcinoma tissue and patient prognosis. *Gut.*
609 2016;65:1973–80. doi:10.1136/gutjnl-2015-310101.

610 [16] Miquel S, Martin R, Rossi O, Bermudez-Humaran LG, Chatel JM, Sokol H, et al.
611 *Faecalibacterium prausnitzii* and human intestinal health. *Curr Opin Microbiol.*
612 2013;16:255–61. doi:10.1016/j.mib.2013.06.003. PMID:23831042.

613 [17] Yasuda K, Oh K, Ren B, Tickle TL, Franzosa EA, Wachtman LM, et al.
614 Biogeography of the intestinal mucosal and lumenal microbiome in the rhesus
615 macaque. *Cell Host Microbe.* 2015;17:385–91.

616 [18] Geis AL, Fan H, Wu X, Wu S, Huso DL, Wolfe JL, et al. Regulatory T-cell
617 response to enterotoxigenic *Bacteroides fragilis* colonization triggers IL17-dependent
618 colon carcinogenesis. *Cancer Discov.* 2015;5:1098–1109.

619 [19] Goodwin AC, Destefano Shields CE, Wu S, Huso DL, Wu X, Murray-Stewart
620 TR, et al. Polyamine catabolism contributes to enterotoxigenic *Bacteroides*

621 fragilis-induced colon tumorigenesis. *Proc Natl Acad Sci USA*. 2011;108:15354–9.

622 [20] Wu S, Rhee K-J, Albesiano E, Rabizadeh S, Wu X, Yen HR, et al. A human
623 colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T
624 cell responses. *Nat. Med.* 2009;15:1016–22.

625 [21] Swidsinski A, Khilkina M, Kerjaschki D, Schreiber S, Ortner M, Weber J, et al.
626 Association between intraepithelial *Escherichia coli* and colorectal cancer.
627 *Gastroenterology*. 1998;115:281–6.

628 [22] Martin HM, Campbell BJ, Hart CA, Mpofu C, Nayar M, Singh R, et al.
629 Enhanced *Escherichia coli* adherence and invasion in Crohn's disease and colon
630 cancer. *Gastroenterology*. 2004;127:80–93.

631 [23] Ferreira-Halder CV, Faria AVS, Andrade SS. Action and function of
632 *Faecalibacterium prausnitzii* in health and disease. *Best Pract Res Clin Gastroenterol*.
633 2017;31:643–8.

634 [24] Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG,
635 Gratadoux JJ, et al. *Faecalibacterium prausnitzii* is an antiinflammatory commensal
636 bacterium identified by gut microbiota analysis of Crohn disease patients. *Proc Natl
637 Acad Sci USA*. 2008;105:16731–6.

638 [25] Martínez I, Stegen JC, Maldonado-Gómez MX, Eren AM, Siba PM, Greenhill
639 AR, et al. The gut microbiota of rural Papua New Guineans: Composition, diversity
640 patterns, and ecological processes. *Cell Rep.* 2015;11:527–38.

641 [26] Vuillermin PJ, O'Hely M, Collier F, Allen KJ, Tang MLK, Harrison LC, et al.
642 Maternal carriage of *Prevotella* during pregnancy associates with protection against

643 food allergy in the offspring. *Nat Commun.* 2020;11:1452.

644 [27] Garcia-Solache M, Rice LB. The Enterococcus: a Model of Adaptability to Its
645 Environment. *Clin Microbiol Rev.* 2019;32:e00058-18. doi:10.1128/CMR.00058-18.

646 [28] Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association
647 study of gut microbiota in type 2 diabetes. *Nature.* 2012;490:55–60.

648 [29] Magoc T, Salzberg S. FLASH: Fast length adjustment of short reads to improve
649 genome assemblies. *Bioinformatics.* 2011;27:2957–63.

650 [30] Edgar RC. Search and clustering orders of magnitude faster than BLAST.
651 *Bioinformatics.* 2010;26:2460–1. doi:10.1093/bioinformatics/btq461.

652 [31] Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves
653 sensitivity and speed of chimera detection. *Bioinformatics.* 2011;27:2194–2200.

654 [32] Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid
655 assignment of rRNA sequences into the new bacterial taxonomy. *Appl Environ
656 Microbiol.* 2007;73:5261–7.

657 [33] Patrick DS, Sarah LW, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al.
658 Introducing mothur: Open-Source, Platform- Independent, Community-Supported
659 Software for Describing and Comparing Microbial Communities. *Appl Environ
660 Microbiol.* 2009;75:7537–41.

661 [34] Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R. UniFrac: an
662 effective distance metric for microbial community comparison. *ISME J.* 2011;5:169–
663 72.

664 [35] Lozupone C, Hamady M, Kelley ST, Knight R. Quantitative and qualitative β

665 diversity measures lead to different insights into factors that structure microbial
666 communities. *Appl Environ Microbiol.* 2007;73:1576–85.
667 [36] Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al.
668 Metagenomic biomarker discovery and explanation. *Genome Biol.* 2011;12:R60.
669