

1 **Single-colony sequencing reveals phylosymbiosis, co-phylogeny, and horizontal gene
2 transfer between the cyanobacterium *Microcystis* and its microbiome**

3

4 Olga M. Pérez-Carrascal¹, Nicolas Tomas¹, Yves Terrat¹, Elisa Moreno¹, Alessandra Giani², Laisa
5 Corrêa Braga Marques², Nathalie Fortin³, and B. Jesse Shapiro^{1,4,5}

6

7 ¹Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada;

8 ²Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; ³National Research

9 Council of Canada, Montreal, Québec, Canada; ⁴Department of Microbiology & Immunology,

10 McGill University, Montreal, Québec, Canada; ⁵McGill Genome Centre, McGill University,

11 Montreal, Québec, Canada.

12

13 O.M.P.C. and N.T. contributed equally to this work.

14

15 * Address correspondence to B. Jesse Shapiro, Olga M. Pérez-Carrascal or Nicolas Tomas,

16 ¹Département de Sciences Biologiques, Université de Montréal, Campus MIL, 1375 avenue

17 Thérèse-Lavoie-Roux, Montréal, QC, Canada H2V 0B3.

18 email: jesse.shapiro@mcgill.ca, olga.maria.perez-carrascal@umontreal.ca or

19 nicolas.tomas@umontreal.ca

20

21

22

23

24 **Abstract**

25

26 Cyanobacteria from the genus *Microcystis* can form large mucilaginous colonies with attached
27 heterotrophic bacteria – their microbiome. However, the nature of the relationship between
28 *Microcystis* and its microbiome remains unclear. Is it a long-term, evolutionarily stable
29 association? Which partners benefit? Here we report the genomic diversity of 109 individual
30 *Microcystis* colonies – including cyanobacteria and associated bacterial genomes – isolated *in situ*
31 and without culture from Lake Champlain, Canada and Pampulha Reservoir, Brazil. We found 14
32 distinct *Microcystis* genotypes from Canada, of which only two have been previously reported,
33 and four genotypes specific to Brazil. *Microcystis* genetic diversity was much greater between than
34 within colonies, consistent with colony growth by clonal expansion rather than aggregation of
35 *Microcystis* cells. We also identified 72 bacterial species in the microbiome. Each *Microcystis*
36 genotype had a distinct microbiome composition, and more closely-related genotypes had more
37 similar microbiomes. This pattern of phylosymbiosis could be explained by co-phylogeny in two
38 out of the nine most prevalent associated bacterial genera, *Roseomonas* and *Rhodobacter*,
39 suggesting long-term evolutionary associations. *Roseomonas* and *Rhodobacter* genomes encode
40 functions which could complement the metabolic repertoire of *Microcystis*, such as cobalamin and
41 carotenoid biosynthesis, and nitrogen fixation. In contrast, other colony-associated bacteria
42 showed weaker signals of co-phylogeny, but stronger evidence of horizontal gene transfer with
43 *Microcystis*. These observations suggest that acquired genes are more likely to be retained in both
44 partners (*Microcystis* and members of its microbiome) when they are loosely associated, whereas
45 one gene copy is sufficient when the association is physically tight and evolutionarily long-lasting.

46

47 Keywords: *Microcystis*, cyanobacteria, phylosymbiosis, co-phylogeny, microbiome.

48

49 Running head: Phylosymbiosis in the *Microcystis* microbiome

50

51 **Introduction**

52 Cyanobacteria occur naturally in aquatic ecosystems, often multiplying into harmful blooms and
53 producing a diversity of toxins, which can cause severe human illness¹. Many cyanobacteria and
54 eukaryotic algae grow in mucilaginous colonies surrounded by a zone, called the phycosphere,
55 rich in cell exudates, where metabolites are exchanged between numerous microorganisms^{2,3}. In
56 this microhabitat, the interactions between cyanobacteria and associated bacteria (AB) might
57 include mutualism (with all partners benefitting), competition (with all partners competing for
58 resources), antagonism (inhibiting one of the partners), commensalism (with one partner
59 benefitting) and parasitism (with one partner benefitting at the expense of the other)³⁻⁵. However,
60 the drivers shaping these associations are largely unknown. In some cases, AB may enhance algal
61 or cyanobacterial growth^{6,7}, aiding phosphorus acquisition in *Trichodesmium*^{8,9}. Understanding the
62 contributions of AB to cyanobacterial growth and toxin production has implications for our ability
63 to predict and control harmful blooms.

64

65 *Microcystis* is a globally-distributed, often toxicogenic bloom-forming freshwater cyanobacterium,
66 which forms macroscopic mucilaginous colonies. These colonies offer a nutrient-rich habitat for
67 other bacteria, while also providing physical protection against grazers¹⁰⁻¹². The *Microcystis*
68 colony microbiome is distinct from the surrounding lake bacterial community, enriched in
69 Proteobacteria and depleted in Actinobacteria^{13,14}. The microbiome composition has been
70 associated with temperature, seasonality, biogeography, *Microcystis* morphology and density^{13,15-}
71 ¹⁷. Lab experiments show the potential for AB to influence *Microcystis* growth and colony
72 formation¹⁸⁻²¹. Yet it remains unclear whether such interactions are relevant in natural settings, and
73 if they are the product of long-term associations over evolutionary time.

74

75 Phylosymbiosis, a pattern in which microbiome composition mirrors the host phylogeny²²,
76 provides a useful concept for the study of host-microbiome interactions. Phylosymbiosis could
77 arise from some combination of (1) vertical transmission of the microbiome from parent to
78 offspring, resulting in co-speciation and shared phylogenetic patterns (co-phylogeny), (2)
79 horizontal transmission of the microbiome, but with strong matching between hosts and
80 microbiomes at each generation, and (3) co-evolution, in which hosts and microbiomes mutually
81 impose selective pressures and adapt to each other. Distinguishing the relative importance of these
82 three possibilities can be challenging, but in all cases the associations between hosts and
83 microbiomes are non-random. Phylosymbiosis is typically studied between plant or animal hosts
84 and their microbiomes²³⁻²⁵ but *Microcystis* could also be considered a host, since it constructs the
85 mucilage environment – although it is unclear to what extent it selects its AB or *vice versa*.
86 *Microcystis* colonies are more open to the outside environment compared to mammalian guts, for
87 example. Consequently, they might behave more like coral mucus²⁵ or other animal surfaces which
88 seem to show weaker phylosymbiosis than guts²⁶. The enclosed nature of animal guts reduces
89 dispersal of microbiomes and favours vertical transmission, potentially leading to co-phylogeny
90 without the need to invoke co-evolution²⁷. In contrast, metagenomic sequencing suggests
91 *Microcystis* and its microbiome are globally distributed¹⁶, making it unlikely that phylosymbiosis
92 could arise due to common biogeography of *Microcystis* and its microbiome. On the other hand,
93 *Microcystis* may be geographically structured on shorter evolutionary time scales, due to local
94 adaptation or clonal expansions, and *Microcystis* genotypes might have distinct phenotypic
95 characteristics that could select for distinct microbiomes^{28,29}. Phylosymbiosis studies to date are

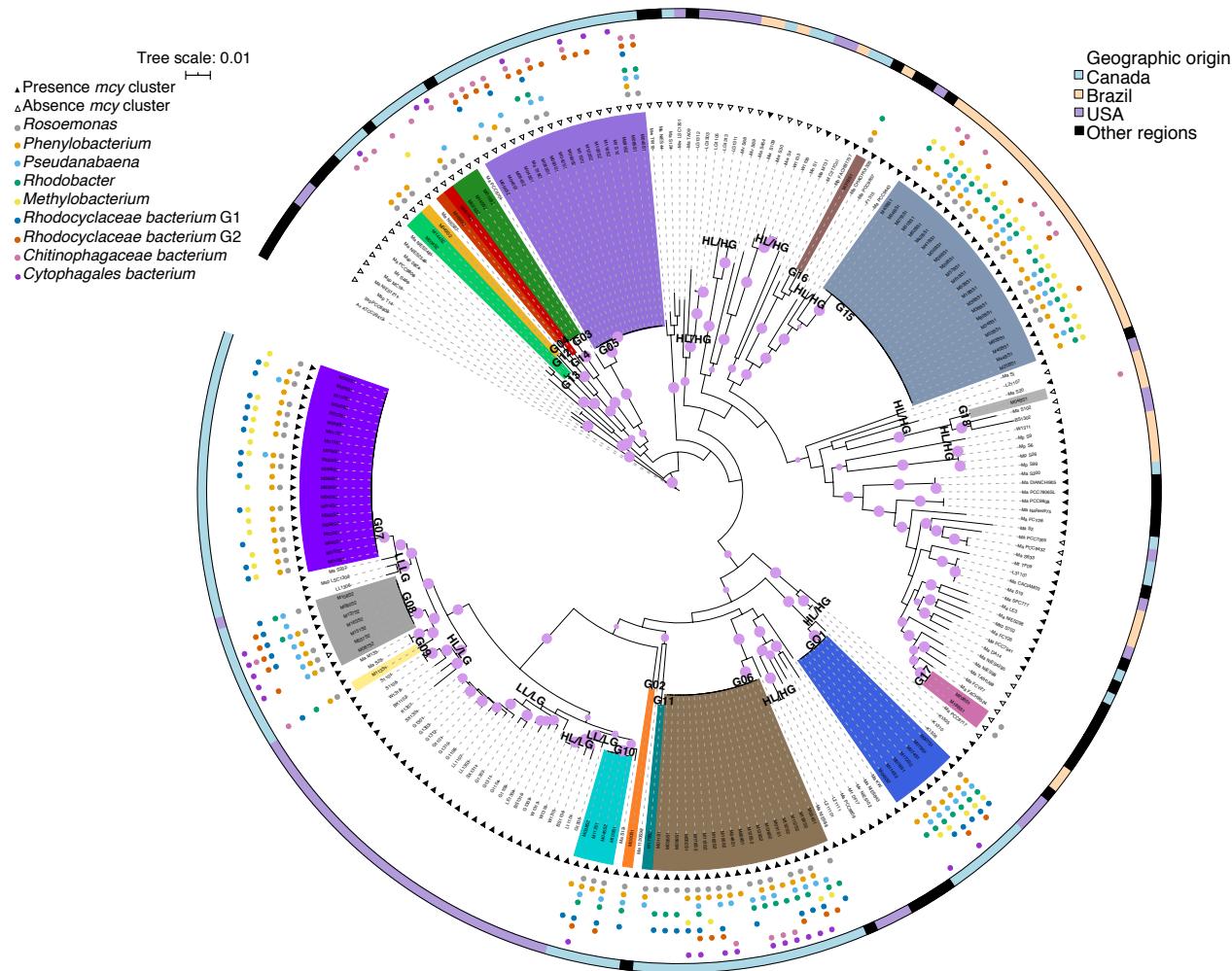
96 biased toward the gut relative to external host compartments²², and *Microcystis* colonies provide
97 an ideal model of a more 'external microbiome'.

98
99 Previous studies of the *Microcystis* microbiome have used either culture-independent
100 metagenomics from lakes, a bulk biomass collection method which cannot resolve fine-scale
101 spatial interaction within colonies (e.g.,¹⁶), or culture-based studies of *Microcystis* isolates, which
102 have found host-microbiome divergence according to phosphorous gradients and taxonomy³⁰, but
103 may not be representative of the natural diversity of *Microcystis* or AB as they occur in nature. To
104 combine the strengths of both these approaches, we developed a simple method for isolating
105 individual *Microcystis* colonies directly from lakes, followed by DNA extraction and sequencing
106 without a culture step²⁹. Here we applied this method to 109 individual colonies from Lake
107 Champlain, Canada and Pampulha Reservoir, Brazil, yielding 109 *Microcystis* genomes and 391
108 AB genomes.

109
110 Our findings reveal an expanded *Microcystis* genotypic diversity, and a *Microcystis* colony
111 microbiome shaped by the host genotype, resulting in a significant signature of phylosymbiosis.
112 We inferred co-speciation of *Microcystis* with two of the most prevalent genera in its microbiome
113 (*Rhodobacter* and *Roseomonas*) suggesting evolutionarily stable associations. We also inferred
114 extensive horizontal gene transfer (HGT) events among *Microcystis* and its microbiome, mainly
115 involving lower-fidelity partners than *Rhodobacter* and *Roseomonas*. Overall, our results suggest
116 ecologically and evolutionarily stable associations between *Microcystis* and members of its
117 microbiome.

118

119 **Results**


120

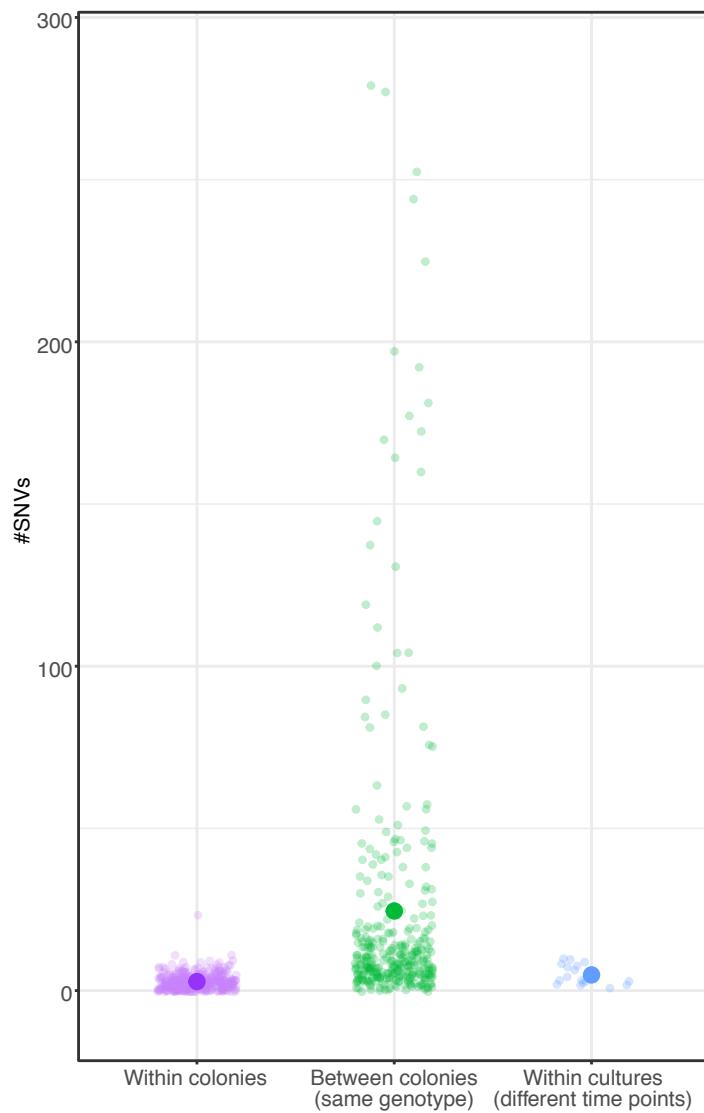
121 **Genotypic diversity of *Microcystis* colonies in Lake Champlain and Pampulha Reservoir.**

122 To study the relationship between *Microcystis* and its AB in natural settings, we sequenced 109
123 individual *Microcystis* colonies from 16 lake samples (82 colonies from Lake Champlain, Quebec,
124 Canada and 27 from Pampulha Reservoir, Minas Gerais, Brazil; Supplementary Table 1).
125 *Microcystis* genomes were assembled and binned separately from AB genomes (Methods), which
126 we will describe below. Consistent with our previous study of *Microcystis* isolate genomes²⁹,
127 nearly all *Microcystis* genomes share $\geq 95\%$ average nucleotide identity (ANI), with the exception
128 of 14/53,381 genome pairs with ANI $< 94.5\%$. The 95% ANI threshold is typically used to define
129 bacterial species, but we previously found significant phylogenetic substructure above 95% ANI,
130 coherent with multiple species or ecotypes within *Microcystis*²⁹. Consistent with such fine genetic
131 structure within our sampled colonies, we identified 18 monophyletic, closely-related genotypes
132 of *Microcystis* ($\geq 99\%$ ANI; Supplementary Table 2 and Fig. 1). These genotypes (highlighted
133 clades in Fig. 1) are nested within the phylogeny of 122 isolate genomes previously sampled from
134 North America, Brazil, and worldwide. However, only two genotypes (G05 and G10) have been
135 observed in culture previously, possibly due to the fine-grained definition of genotypes ($\geq 99\%$
136 ANI) combined with undersampling of natural diversity in culture collections³¹. Consistent with
137 previously observed biogeographic patterns between North and South America²⁹, we found 14
138 genotypes unique to Lake Champlain, and four unique to Pampulha, with no genotypes found in
139 both locations.

140

141 *Microcystis* is thought to be adapted to high nutrient conditions, since it often blooms in eutrophic
142 waters such as Champlain and Pampulha (Supplementary Table 3). However, a recent sampling
143 of Michigan lakes identified *Microcystis* isolates adapted to low-phosphorus (low-phosphorus
144 genotypes, LG), which occur in both high- and low-phosphorus lakes³⁰. Genotypes G07, G08, G09
145 and G10 from Lake Champlain are nested within the LG clade with high bootstrap support (Fig.
146 1), indicating that low-phosphorus-adapted genotypes also occur in high-phosphorus lakes.
147 Notably, most of the genomes within the LG clade (66 out of 67) encode the *mcy* gene cluster
148 required for the biosynthesis of the cyanotoxin microcystin³². In contrast to the single LG clade,
149 high-phosphorus genotypes (HG), are broadly distributed across the phylogenetic tree, recovered
150 from multiple geographic locations, and some but not all encode *mcy* (Fig. 1). This pattern of *mcy*
151 presence/absence is consistent with multiple *mcy* gene gain/loss events, mostly occurring in deep
152 internal branches of the phylogeny, such that closely-related genotypes tend have identical *mcy*
153 gene profiles.

154


155 **Figure 1. Maximum likelihood phylogenetic tree of 109 *Microcystis* colony genomes and previously**
156 **sequenced reference genomes.** *Microcystis* genomes were classified in 18 genotypes based on Average
157 Nucleotide Identity (ANI) greater or equal to 99%. A core genome was inferred based on 109 *Microcystis*
158 genomes and 122 *Microcystis* reference genomes downloaded from NCBI. The alignment of the 115 core
159 genes (68,145 bp in total after excluding positions with gaps) was used to infer the Maximum Likelihood
160 phylogeny. The tree was rooted using two cyanobacteria (*Anabaena variabilis* ATCC29413 and
161 *Synechocystis* sp. PCC6803) as outgroups. The clades highlighted in different colours indicate *Microcystis*
162 genotypes (G01 to G18) from this study; uncolored clades are other reference genomes from the literature.
163 The purple circles on the tree branches indicate bootstrap values greater or equal to 70%. The empty and

164 filled triangles around the tree indicate absence and presence of the *mcy* cluster, respectively. The small
165 colored and filled dots indicate the most prevalent associated bacteria genera related to each *Microcystis*
166 genome. The outermost circle indicates the geographic origin of the *Microcystis* genomes. Several
167 references genomes of *Microcystis* genotypes recovered from environments with high- and low phosphorus
168 are indicated as LL/LG (Low Phosphorus Lake/Low Phosphorus genotype), HL/LG (High Phosphorus
169 Lake/Low Phosphorus Genotype) and HL/HG (High Phosphorus Lake/High Phosphorus Genotype).

170

171 **Lower *Microcystis* diversity within than between colonies of the same genotype suggests**
172 **clonal colony formation.**

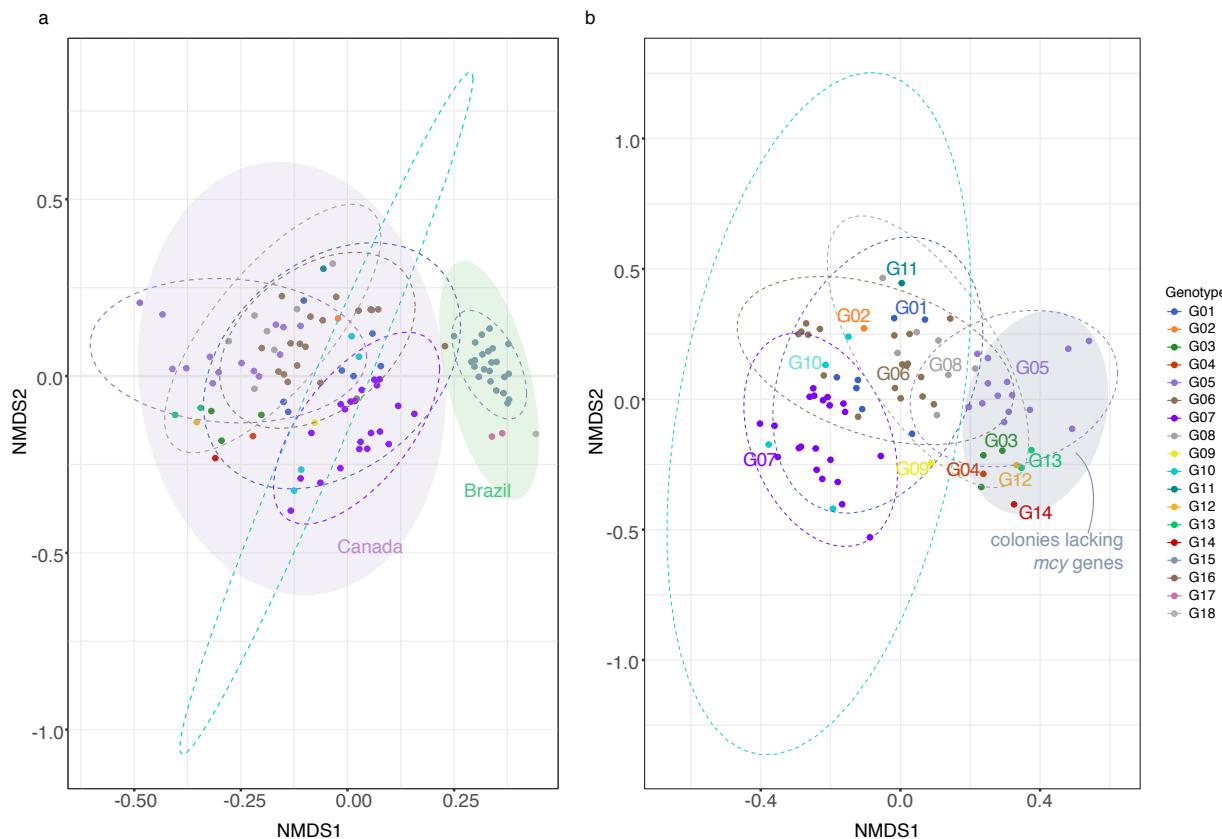
173 A previous study of Michigan lakes supported clonal colony formation (by cell division) in isolates
174 from high-phosphorus lakes, but suggested a preponderance of nonclonal colonies (by
175 agglomeration of distantly related cell) in low-phosphorus lakes³⁰. To distinguish between clonal
176 and nonclonal colony formation, we compared genetic diversity within and between colonies.
177 Within colonies, the number of single nucleotide variants (SNVs) was significantly lower (mean
178 of 3 SNVs) than between colonies (mean of 25) of the same genotype (Two-tailed Wilcoxon Rank
179 Sum Test, $P < 0.05$; twelve outliers with more than 300 variants between colonies were excluded,
180 making the test conservative) (Fig. 2 and Supplementary Table 4). These outliers were found in
181 colonies within the genotypes G05, G06, G08 and G13. To put these results in context, *Microcystis*
182 evolved an average of 5 SNVs after ~6 years of culture, slightly more variation than observed
183 within a colony but still ~5X less than observed between colonies of the same genotype (Two-
184 tailed Wilcoxon Rank Sum Test, $P < 0.05$). Overall, these results are consistent with colony
185 formation occurring mainly by clonal cell division in Lake Champlain and Pampulha – at least
186 under the sampled environmental conditions.

187

188 **Figure 2. Greater genetic diversity between than within *Microcystis* colonies.** The number of single
189 nucleotide variants (SNVs) within and between *Microcystis* colonies of the same genotype are shown,
190 compared to SNVs that occurred over ~6 years of *Microcystis* culture in the laboratory (Methods). Large
191 points show mean values.

192

193 **Evidence for phylosymbiosis between *Microcystis* and its microbiome.**


194 Having characterized the genetic diversity of *Microcystis* genomes, we turned our attention to the
195 colony-associated bacteria (AB). We recovered a total of 391 high-quality non-*Microcystis*

196 genomes (Completeness \geq 70 and contamination $<$ 10%) from the 109 colonies (Supplementary
197 Table 1 and 5), classified into 72 putative species (ANI $>$ 95%) and 37 genera. Only five AB
198 species were shared among colonies from Canada and Brazil: *Pseudanabaena* sp. A06,
199 *Methylobacterium* sp. A30, *Roseomonas* sp. A21, *Burkholderia* sp. A55 (a likely contaminant, as
200 discussed below) and *Gemmimonas* sp. A63 (Supplementary Fig. 2). Because certain low-
201 abundance AB might be present in a colony but fail to assemble into a high-quality genome, we
202 mapped reads from each colony to a database of all the AB genome assemblies and estimated AB
203 genome coverages; each colony contained an average of six AB (genome coverage greater or equal
204 to 1X), with a range of 0 to 15 (Supplementary Fig. 3). We found no strict "core" of AB present in
205 all colonies, either at the species or genus level. However, several genera were quite prevalent.
206 These include *Phenylobacterium* (present in 73.40% of colonies), *Roseomonas* (70.64%),
207 *Pseudanabaena* (43.12%), *Rhodobacter* (46.79%), *Methylobacterium* (44.04%), *Rhodocyclaceae*
208 G1 (unclassified genus) (39.45%), *Rhodocyclaceae* G2 (unclassified genus) (31.19%),
209 *Chitinophagaceae* (unclassified genus) (26.60%) and *Cytophagales* (unclassified genus)
210 (22.94%).

211
212 To assess the evidence for phylosymbiosis, we first asked if different *Microcystis* genotypes had
213 distinct colony microbiomes. The phylogeny illustrates how certain *Microcystis* genotypes
214 appeared to be preferentially associated with particular AB (Fig. 1). For example,
215 *Phenylobacterium* and *Methylobacterium* were present in all the colonies of genotype G15, while
216 *Rhodobacter* and *Phenylobacterium* occur in all colonies of genotype G01. These anecdotal
217 patterns are borne out in analyses of colony community structure, which show that *Microcystis*
218 genotypes have distinct microbiomes (Fig. 3a). Genotype explains more variation in community

219 structure (PERMANOVA on Bray-Curtis distances, $R^2 = 0.387$, $P < 0.01$; Supplementary Table
220 6) than any other measured variable including pH ($R^2 < 0.05$) or temperature at the sampling site
221 ($R^2 < 0.05$), presence of microcystin (*mcy*) genes in the genotype ($R^2 < 0.05$), or sampling site (R^2
222 = 0.11). Genotype was still the best explanatory variable when the analysis was performed on Lake
223 Champlain samples only (Fig. 3b, PERMANOVA, $R^2 = 0.309$, $P = 0.001$). A key piece of evidence
224 for phylosymbiosis is not only for microbiomes to differ among host lineages, but for microbiome
225 composition to change proportionally to host phylogeny. To test this, we converted the *Microcystis*
226 host phylogeny into a distance matrix, which we correlated with the colony microbiome Bray-
227 Curtis dissimilarity matrix. Consistent with phylosymbiosis, we found that microbiome
228 composition changes were correlated with the host phylogeny according to a Mantel test ($r = 0.5$,
229 $P = 0.001$) confirmed with Procrustean superimposition ($r = 0.6$, $P = 0.001$)³³.

230

231

232 **Figure 3. *Microcystis* genotypes have distinct microbiomes.** Non-metric multidimensional scaling
233 (NMDS) plots are based on the coverage of the non-*Microcystis* metagenome-assembled genomes (MAGs)
234 per colony (Bray–Curtis distance). **a)** All samples, including those from Pampulha, Brazil and Lake
235 Champlain, Canada. Ellipses show 95% confidence intervals (stress = 0.202). **b)** Samples from Lake
236 Champlain only (stress = 0.225). The grey shaded ellipse shows *Microcystis* colonies that do not encode
237 the *mcy* cluster for microcystin toxin production.

238

239 ***Microcystis* genotype abundances vary over time in Lake Champlain and are correlated with
240 prevalent members of the microbiome.**

241 *Microcystis* producers and non-producers of the cyanotoxin microcystin are known to change in
242 relative abundance within lakes over time^{31,34,35}. More generally, to what extent different

243 genotypes of *Microcystis* vary over time, along with their colony-associated bacteria, is less well
244 known. We investigated the *Microcystis* genotype diversity in metagenomes from Lake Champlain
245 based on 14 *Microcystis* genotypes identified in colonies from 2017 and 2018 (Fig. 1). Using a
246 gene marker database of these 14 *Microcystis* genotypes (Methods), we estimated the relative
247 abundance and read coverage of each genotype in 72 metagenomes from 2006 to 2018, sampled
248 during the summer months (Supplementary Fig. 4). It is possible that these 14 genotypes do not
249 represent the total genotypic diversity of *Microcystis* occurring in the lake. However, mapping
250 metagenomic reads from the lake to these genotypes with a 99% sequence identity threshold
251 allowed us to recover 93.5% of *Microcystis* reads (defining *Microcystis* at 96% sequence identity).

252

253 Using a distance-based redundancy analysis (dbRDA), we estimated the effect of total
254 phosphorous, total nitrogen, dissolve phosphorous, dissolved nitrogen, mean temperature and time
255 (years, months and season) on the *Microcystis* genotype community composition in the 42 Lake
256 Champlain metagenomes with complete metadata, and with *Microcystis* genome coverage greater
257 or equal to 1X. *Microcystis* genotype diversity in environmental metagenomes was best explained
258 by yearly temporal variation ($R^2 = 0.511$, $P = 0.002$; Supplementary Fig. 5). Years did not differ
259 significantly in their dispersion (PERMDISP $P > 0.05$; Supplementary Table 6). Environmental
260 variables such as nitrogen and phosphorus did not have a significant effect on the community
261 composition. In a shorter time series (April to November of one year) in Pampulha, a more diverse
262 community of four *Microcystis* genotypes eventually came to be dominated by one genotype (G15)
263 encoding the *mcy* toxin biosynthesis gene cluster (Supplementary Fig. 6). However, more
264 extensive sampling is required to estimate the effect of other environmental variables (i.e.,
265 phosphorus) on the community composition in Brazil.

266

267 Similarly to *Microcystis* genotypes, the composition of AB in Lake Champlain also varied
268 significantly across years (PERMANOVA, on Bray-Curtis distances, $R^2 = 0.43$, $P < 0.01$;
269 Supplementary Fig. 7, stress = 0.1569). We asked if the presence of dominant *Microcystis*
270 genotypes could explain the variation in the AB community composition. A significant effect of
271 the genotype was observed using PERMANOVA ($R^2 = 0.14$, $P < 0.01$), but not using dbRDA (R^2
272 = 1.2, $P > 0.05$). Years and *Microcystis* genotypes were the best explanatory variables for AB
273 composition; however, their dispersions were significantly different ($P < 0.01$) making the
274 PERMANOVA results difficult to interpret. In addition, the AB community sampled from
275 metagenomes includes both free-living and colony-attached AB, possibly adding noise to any
276 signal of *Microcystis* genotypes selecting for specific AB within colonies.

277

278 We further hypothesized that the most prevalent AB in *Microcystis* microbiome should co-occur
279 with *Microcystis* in lake metagenomes. In contrast, they should not co-occur with another
280 cyanobacterium frequently observed in Lake Champlain, *Dolichospermum*, which serves as a
281 negative control. We first estimated normalized read counts and coverage of *Microcystis*,
282 *Dolichospermum* in the 72 metagenomes from the Lake Champlain time series (Supplementary
283 Fig. 8). We then estimated the Spearman correlations between *Microcystis* or *Dolichospermum*
284 and each AB species or genus. The two cyanobacteria were weakly correlated across the
285 environmental metagenomes ($r = 0.29$ and $Q\text{-value} = 0.027$, Spearman rank-based correlation test).
286 As expected, the nine most prevalent AB genera in the *Microcystis* microbiome were strongly
287 correlated with *Microcystis* ($r > 0.7$, $Q\text{-value} < 0.001$), and only weakly with *Dolichospermum* (r
288 < 0.4, $Q\text{-value} > 0.001$) with the exception of *Phenylobacterium* ($r = 0.47$, $Q\text{-value} < 0.001$) which

289 is nevertheless more strongly associated with *Microcystis* (Supplementary Fig. 9). The positive
290 correlation between the most prevalent AB genera and *Microcystis* was also supported using an
291 alternative correlation method, SparCC, which corrects for compositional effects in the data ($r >$
292 0.4 , $Q\text{-value} < 0.05$) (Supplementary Table 7 and Fig. 9c). These significant positive correlations
293 are consistent with close interaction between *Microcystis* and the most prevalent genera related to
294 their microbiome. Genera found at lower prevalence in *Microcystis* colonies (e.g., *Phycisphaerales*
295 *bacterium* (unclassified genus) and *Telmatospirillum*) were poorly correlated with both
296 *Microcystis* and *Dolichospermum* (Supplementary Table 7 and Fig. 9a). Another AB belonging to
297 the genus *Burkholderia* was quite prevalent in colonies but poorly correlated with *Microcystis* in
298 metagenomes (present in the 40.37% of the colonies; $r = -0.16$, $Q\text{-value} = 0.343$) suggesting likely
299 contamination of colonies rather than a true ecological association. However, such a signal of
300 contamination was rare, suggesting that most of the data reflect true associations.

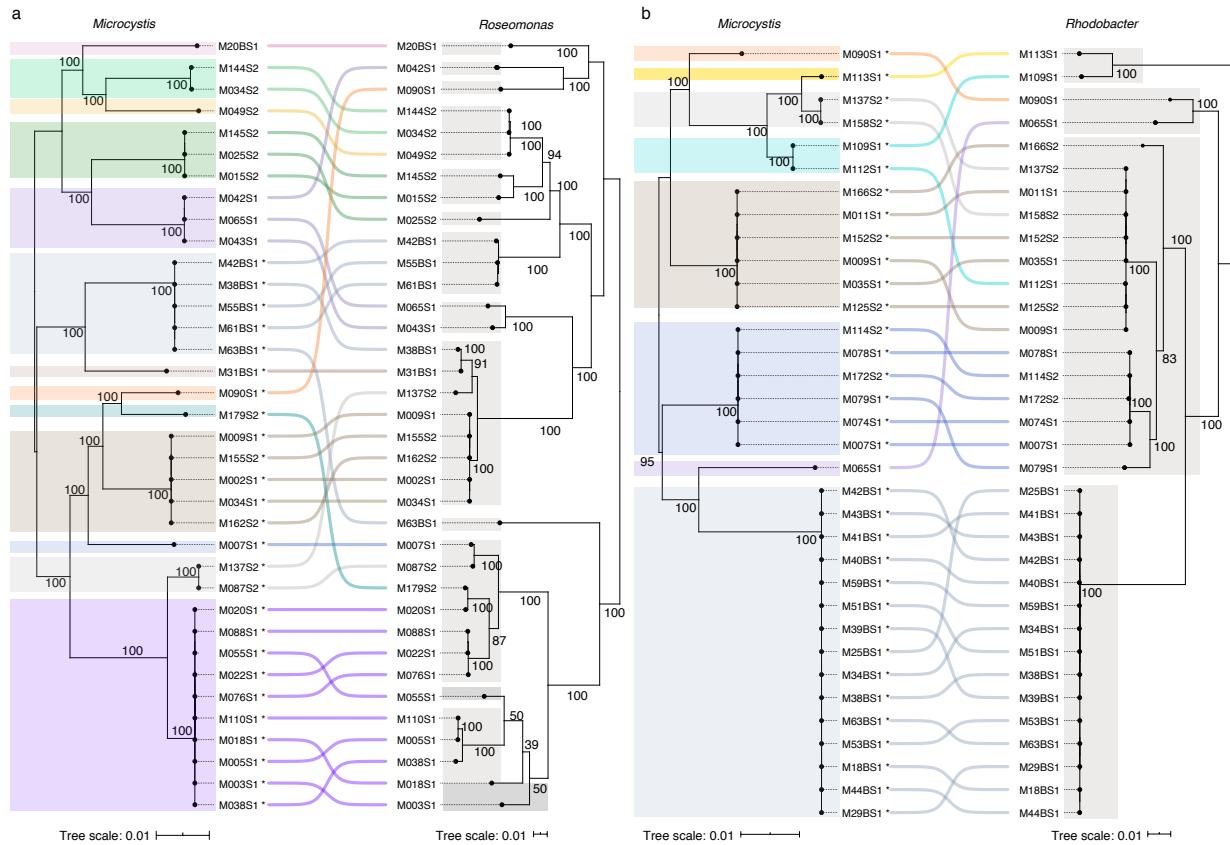
301

302 Finally, we asked if specific *Microcystis* genotypes were correlated with the presence of specific
303 AB species (Supplementary Fig. 10) observed in *Microcystis* colonies. For example,
304 *Rhodocyclaceae bacterium* G2 A13 was better correlated with genotype G05 than other
305 *Microcystis* genotypes, consistent with the prevalence of this species in 13 out of 14 colonies of
306 genotype G05. In contrast, genotype G10 was poorly correlated with certain species within the
307 genera *Roseomonas* and *Methylobacterium* ($r < 0.38$, $Q\text{-value} > 0.001$). Overall, this is consistent
308 with certain *Microcystis* genotypes having strong preferences for certain AB, while being
309 unselective for others.

310

311 **Signatures of co-speciation between *Microcystis* and members of its microbiome.**

312 Phylosymbiosis can arise due to vertical inheritance of microbiomes, or horizontal acquisition of
313 microbiomes at each generation, provided that host lineages are matched with distinct
314 microbiomes. To assess the evidence for vertical inheritance of *Microcystis* AB, we used ParaFit
315 to test for similarity between the *Microcystis* phylogeny and the phylogenies of the nine most
316 prevalent AB genera strongly correlated with *Microcystis* but not with *Dolichospermum* in Lake
317 Champlain (Supplementary Fig. 9). Each of these genera was represented by at least 12 high-
318 quality draft genomes and was found in at least five different *Microcystis* genotypes. Significant
319 co-phylogenetic signal suggests co-speciation of hosts and symbionts, consistent with a relatively
320 long evolutionary history of association (e.g., vertical descent). We found that *Roseomonas*, the
321 second most prevalent AB genus in colonies, and *Rhodobacter*, the third most prevalent, had
322 significant signatures of co-phylogeny (Fig. 4), while *Phenylobacterium* and *Chitinophagaceae*
323 were borderline cases (Table 1). Overall, there was no clear tendency for stronger co-phylogeny
324 with more prevalent AB, or with AB most correlated with *Microcystis* over time in Lake
325 Champlain metagenomes (Table 1). However, such tendencies would be hard to discern in this
326 relatively small sample size. As expected, the likely contaminant *Burkholderia* A55 (*Burkholderia*
327 *cepacia*) present in 40.37% of colonies, was poorly correlated with the presence of *Microcystis* in
328 environmental metagenomes ($r = -0.16$, $Q\text{-value} = 0.343$), with no signal of co-phylogeny ($P\text{-value}$
329 = 0.732). Although co-phylogenetic signal was detectable in at least two of the most prevalent AB,
330 the phylogenies are not identical (Fig. 4), suggesting a mixture of vertical and horizontal
331 transmission. Even if horizontal transmission of AB among *Microcystis* lineages is likely, some
332 degree of host-microbiome matching must be occurring to explain the co-phylogenetic signal.
333
334


335 **Table 1.** Co-phylogeny analysis between *Microcystis* and the nine most prevalent associated bacterial
336 genera within the *Microcystis* microbiome.

Associated bacteria (AB) genus	Number of species per genus	Number of AB genomes used in the phylogeny	Prevalence of AB in colonies from Canada and Brazil	Correlation with <i>Microcystis</i> in Canada metagenomes (r^2)	ParaFit test (P -values)
<i>Phenylbacterium</i>	5	60	73.40%	0.759 *	0.072 (0.008)
<i>Roseomonas</i>	13	36	70.64%	0.835 *	0.009** (0.001)
<i>Rhodobacter</i>	4	34	46.79%	0.779 *	0.0018** (0.0002)
<i>Methylobacterium</i>	3	29	44.04%	0.809 *	0.729 (0.081)
<i>Pseudanabaena</i>	2	20	43.12%	0.766 *	0.153 (0.017)
<i>Rhodocyclaceae bacterium G1</i>	2	19	39.45%	0.769 *	0.225 (0.025)
<i>Rhodocyclaceae bacterium G2</i>	2	21	31.19%	0.776 *	5.355 (0.595)
<i>Chitinophagaceae bacterium</i>	3	22	26.60%	0.795 *	0.081 (0.009)
<i>Cytophagales bacterium</i>	3	16	22.94%	0.740 *	0.702 (0.078)

337 * significant correlation coefficients ($Q < 0.01$).

338 ** significant P -values ($P < 0.01$) (Bonferroni correction). Uncorrected P -values are shown between
339 parentheses.

340

341

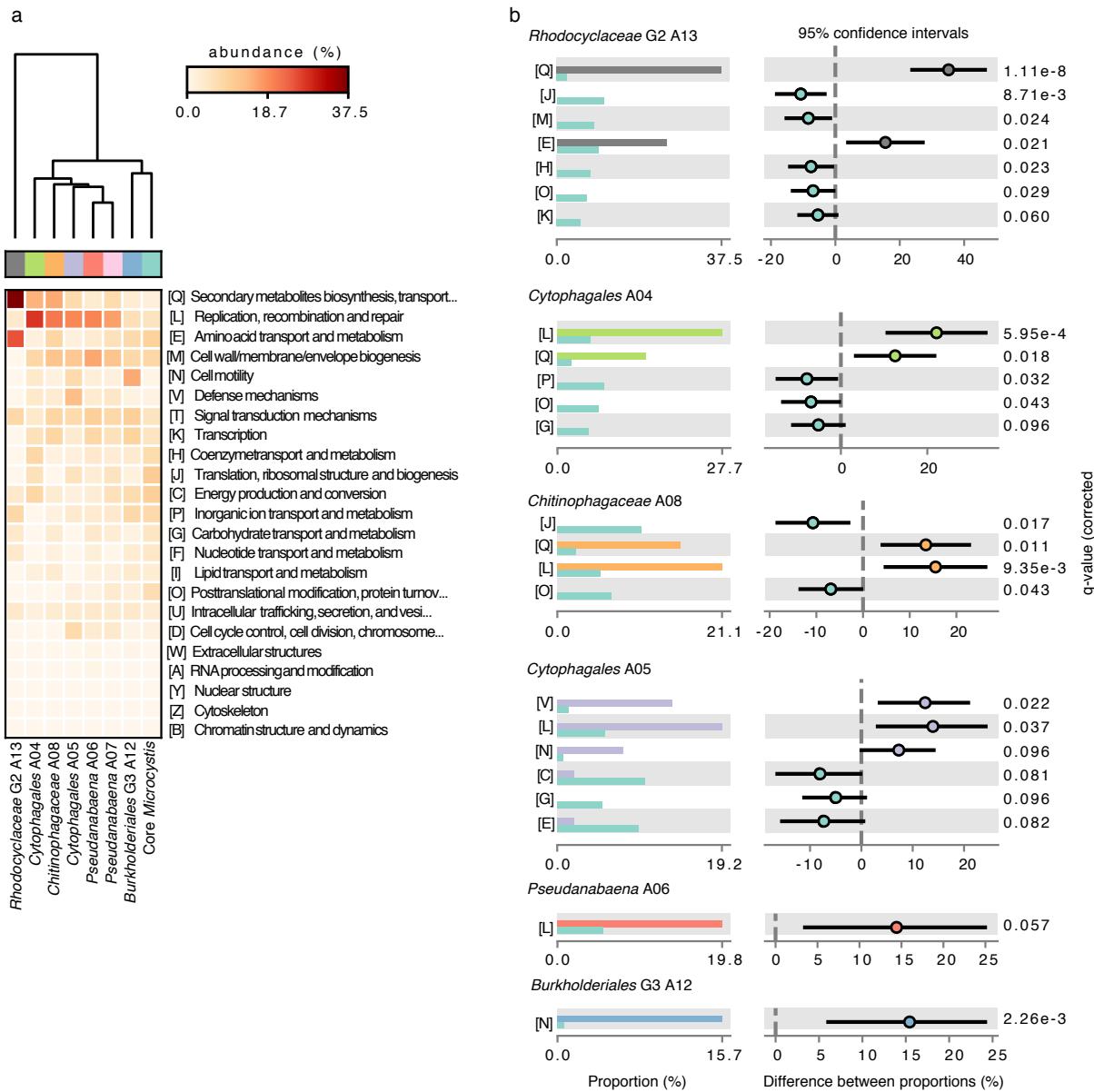
342 **Figure 4.** Co-phylogeny between *Microcystis* and two prevalent associated bacteria. (a) *Roseomonas* and
 343 (b) *Rhodobacter* core genome phylogenies were compared to the *Microcystis* core phylogeny. The lines
 344 between the two phylogenies connect genomes coming from the same *Microcystis* colony. The
 345 phylogenetic trees for *Microcystis*, *Roseomonas* and *Rhodobacter* were based on 706, 135 and 470 core
 346 genes, respectively. The different *Microcystis* genotypes are highlighted in colour, and the *Roseomonas* or
 347 *Rhodobacter* species in gray. The asterisks indicate the presence of the *mcy* cluster. The co-phylogenetic
 348 similarity is greater than expected by chance (ParaFit Global test, $P\text{-value} < 0.01$).

349

350 **Horizontal gene transfer (HGT) between *Microcystis* and its associated bacteria**

351 Unrelated bacteria sharing a common environment, such as the human gut, are known to engage
 352 in frequent horizontal gene transfer³⁶. We hypothesized that *Microcystis* would also exchange
 353 genes with members of its microbiome, which share a similar ecological niche – the colony milieu

354 – for at least some period of time. We began by using a simple heuristic to look for similar gene
355 sequences ($\geq 99\%$ amino acid identity) occurring in the *Microcystis* genome and at least one AB
356 genome, as a proxy for relatively recent HGT events. Genome assembly and binning could affect
357 this analysis by misplacing identical sequences either in *Microcystis* or in an AB genome, but not
358 in both. To reduce this bias, we only considered a gene to be involved in HGT if it was present in
359 at least four genomes. We identified a total of 1909 genes involved in HGT between *Microcystis*
360 and one of seven AB species: *Pseudanabaena* A06, *Pseudanabaena* A07, *Burkholderiales*
361 *bacterium* G3 A12, *Rhodocyclaceae bacterium* G2 A13, *Chitinophagaceae bacterium* A08,
362 *Cytophagales bacterium* A04 and *Cytophagales bacterium* A05. Compared to the *Microcystis* core
363 genome, these genes are enriched in functions related to secondary metabolite biosynthesis,
364 replication and recombination, and defense mechanisms (Fig. 5). As a control, we repeated the
365 analysis of HGT using the likely contaminant *Burkholderia* A55 genome instead of *Microcystis*.
366 We identified 558 putative HGT events, of which 523 involving species not found to engage in
367 HGT with *Microcystis*: *Methylobacterium* A30, *Rhodocyclaceae bacterium* G1 A54 and
368 *Cupriavidus* A44. This suggests that *Microcystis* engages in more HGT with its microbiome than
369 a random expectation (*i.e.* with a contaminant genome), and allows us to conservatively estimate
370 the false-positive rate of HGT detection at 523/(523+1909), or 22%. Despite the significant noise,
371 we expect the broad gene functional categories and specific AB involved in HGT with *Microcystis*
372 to be relatively robust (Fig. 5). Surprisingly, prevalent AB with evidence of co-phylogeny with
373 *Microcystis* (*Roseomonas* and *Rhodobacter*) shared relatively few (less than seven) HGT events
374 with *Microcystis*. This counter-intuitive result could be explained if these co-phylogenetic
375 associations are relatively ancient, but our HGT detection is biased toward recent events.
376 Alternatively, it is possible that HGT is more likely among less intimately associated bacteria,


377 whereas an intimate association would select for only one, but not both partners, to encode the
378 gene. This would also require that metabolites are shared between partners. Further work will be
379 needed to thoroughly test this hypothesis.

380

381 As an additional validation of our HGT heuristic, we used Metachip, which uses phylogenetic
382 incongruence in addition to a sequence identity threshold³⁷. Metachip identified the same seven
383 AB genera involved in HGT with *Microcysis* based on our simple heuristic, except for
384 *Rhodocyclaceae bacterium* G2. However, Metachip is much more conservative, identifying only
385 46 gene families involved in HGT (Supplementary Table 8). Of these gene families 31 were also
386 identified by our heuristic method, suggesting they are high-quality candidates.

387

388

389

390 **Figure 5. Inferred recent HGT between *Microcystis* and associated bacteria.** Horizontal transferred
 391 genes between *Microcystis* and each AB species were inferred with a simple heuristic and annotated in 23
 392 Clusters of Orthologous Groups (COGs) functional categories using EggNOG mapper (Methods). **a)**
 393 Clustering analysis based on the relative abundance of the genes for each functional category, compared to
 394 the genes in the *Microcystis* core genome. **b)** COG functions showing differential abundance between
 395 *Microcystis* core genes (turquoise) and the set of putative HGTs (other colors).

396

397 **Cellular functions encoded by members of the *Microcystis* microbiome.**

398 In contrast to genes shared by HGT, there may be a genetic division of labour between *Microcystis*
399 and its microbiome, which would then be expected to encode different and complementary sets of
400 gene functions. To compare these gene functions, we first characterized orthologous genes using
401 the Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologues (KO) in both *Microcystis*
402 and its microbiome. Then, using the software ANTISMASH, we identified gene clusters involved
403 in the biosynthesis of cyanopeptides and other pathways of interest. As expected for distantly
404 related bacteria, *Microcystis* genotypes and AB encode distinct sets of gene functions
405 (Supplementary Fig. 11). Bacteria from the same Phylum tend to cluster together in terms of their
406 functional gene content. For example, *Microcystis* genotypes cluster with its fellow cyanobacteria
407 *Pseudanabaena*, while Bacteroidetes (*i.e.* *Cytophagales* *bacterium* and *Chitinophagaceae*
408 *bacterium*) formed a distinct cluster (Supplementary Fig. 11).

409

410 We identified several examples of possible functional complementarity between *Microcystis* and
411 members of its microbiome. For example, *Microcystis* encodes incomplete pathways for the
412 synthesis of biotin (M00123; pimeloyl-ACP/CoA => biotin) and cobalamin (M00122; cobinamide
413 => cobalamin), suggesting that these functions might be subject to gene loss if the functions are
414 provided by the microbiome. Consistent with this idea, AB encode complete pathways for both
415 biotin (in *Cytophagales*, *Chitinophagaceae* and *Rhodocyclaceae*) and cobalamin (in *Rhodobacter*,
416 *Azospirillum*, and *Bradyrhizobium*). Other AB (*e.g.*, *Roseomonas*, *Rhodobacter* and
417 *Methylobacterium*) encoded genes involved in the anoxygenic photosynthesis (Supplementary
418 Table 9) and genes related with the transport of rhamnose, D-xylose, fructose, glycerol and a-

419 glucoside, which could also complement the metabolic repertoire of *Microcystis*¹⁶, although this
420 deserves further study.

421

422 *Roseomonas* and *Rhodobacter*, which show co-phylogeny with *Microcystis* but appear not to
423 engage in significant amounts of HGT, are prime candidates for functional complementarity to
424 have evolved and be maintained with high partner fidelity. Both these genera encode genes for the
425 biosynthesis of carotenoids (phytoene desaturase (*crtI*) and phytoene synthase (*crtB*)). Carotenoid
426 pigments like zeaxanthin are generally produced by *Microcystis* for their photoprotective
427 properties and their capacity to improve the efficiency of photosynthesis.³⁸ Indeed, in our
428 *Microcystis* genomes, we found genes encoding for phytoene synthase (*crtB*) and zeaxanthin
429 glucosyltransferase (*crtX*). However, genes like (*crtI*), lycopene cyclase (*crtY*) and beta-carotene
430 hydroxylase (*crtZ*) were only found in other AB genomes (e.g., *Cytophagales*). It is tempting to
431 speculate that the *Microcystis* microbiome may also be involved in the production of these
432 carotenoids. *Roseomonas* and *Rhodobacter* also have metabolic pathways for nitrogen fixation.
433 *Microcystis* is unable to fix nitrogen, and previous studies have suggested it may rely on its
434 microbiome for nitrogen^{16,39}. The co-phylogenetic signal between *Microcystis* and these genera
435 might thus be explained by these complementary functions.

436

437 **Discussion**

438

439 By combining single colony sequencing and metagenome analysis, we explored the genetic
440 diversity of both *Microcystis* and its microbiome, and their variation over time in Lake Champlain,
441 Canada and the Pampulha reservoir in Brazil. We revealed a higher diversity of *Microcystis*

442 genotypes than previously described⁴⁰, and patterns of cophylogeny, phylosymbiosis and HGT
443 between the host and its microbiome. Despite the absence of a core microbiome, several of the
444 associations between *Microcystis* and its attached bacteria, notably *Roseomonas* and *Rhodobacter*,
445 appear to be relatively stable over evolutionary time. These two genera have been previously
446 reported to be correlated with *Microcystis* in environmental samples^{41,42}. Whether these
447 associations are beneficial to one or both partners remain to be seen, and deserve further study as
448 possible targets for better predicting and controlling harmful *Microcystis* bloom events. For
449 example, small filamentous cyanobacteria *Pseudanabaena* and members of the order
450 *Cytophagales* have been previously reported as bloom biomarkers⁴³.

451

452 There has been some debate about whether *Microcystis* colonies form by clonal cell division, or
453 by aggregation of (potentially distantly related) cyanobacterial cells^{21,44}. Consistent with another
454 recent study in eutrophic lakes³⁰, we conclude that clonal cell division is more likely, based on our
455 observation of much greater genetic variation in the *Microcystis* genome between than within
456 colonies of the same genotype. One caveat to this conclusion is that our limited and possibly biased
457 sample of *Microcystis* colonies means that aggregated colonies could exist, but were unsampled
458 due to small colony size (resulting in failure of DNA extraction). However, 93.5% of *Microcystis*
459 metagenomic reads from Lake Champlain were recruited to our collection of colony genomes at
460 99% nucleotide sequence identity, suggesting that the majority of natural *Microcystis* diversity is
461 represented in our sample of colonies. Of course, these results are specific to Lake Champlain and
462 should be replicated in other lakes under different environmental conditions (e.g., oligotrophic
463 lakes).

464

465 Phylosymbiosis and co-speciation appear to be relatively common and strong in mammalian gut
466 microbiomes^{22,23}, and even in the more environmentally-exposed coral microbiome^{22,23}. It is
467 unclear if such tight and evolutionarily stable associations would apply to *Microcystis* and its
468 associated bacteria, or if more transient interactions would prevail. While the idea of a *Microcystis*
469 microbiome has been suggested previously based on bulk metagenomic and amplicon sequencing
470 from lakes^{16,45}, here we refine the *Microcystis* microbiome concept beyond co-occurrence patterns
471 to physical association within a colony. We found that the most prevalent associated bacteria from
472 individual *Microcystis* colonies also tend to co-occur with *Microcystis* over time in Lake
473 Champlain. The composition of the microbiome varies along the *Microcystis* phylogenetic tree,
474 consistent with phylosymbiosis and relatively long-term associations. At least two associated
475 bacteria show significant co-phylogenetic signal, suggesting co-speciation with *Microcystis*.
476 Therefore, although possibly not as strong as in mammals or even coral, phylosymbiosis and co-
477 phylogeny are features of the *Microcystis* microbiome. Phylosymbiosis can arise as a consequence
478 of shared biogeography between hosts and microbiomes⁴⁶, and we do observe distinct
479 microbiomes in Brazil and Canada. However, we found evidence for phylosymbiosis within a
480 single lake in Canada, suggesting that other factors – such as host-microbiome trait matching – are
481 likely at play.

482

483 As expected for distantly related bacteria, *Microcystis* and its associated bacteria encode different
484 functional gene repertoires, some of which could be complementary and mutually beneficial. For
485 example, we found that associated bacteria may complement biosynthetic functions that were lost
486 or never present in *Microcystis*, such as biotin, cobalamin, or carotenoid synthesis. Carotenoids
487 act as antioxidants and may increase the photosynthetic light absorption spectrum^{47,48}. Some

488 associated bacteria, including the co-speciating *Roseomonas* and *Rhodobacter*, have metabolic
489 pathways for nitrogen fixation and phosphonate transport. *Microcystis* is unable to fix nitrogen,
490 and studies suggest that it may rely on nitrogen-fixing members of its microbiota^{16,39}. While it
491 remains unclear if metabolites are actually exchanged between *Microcystis* and members of its
492 microbiome, these hypotheses could be tested experimentally.

493

494 Horizontal gene transfer (HGT) is relatively common in bacteria, and may occur among unrelated
495 bacteria⁴⁹ particularly when they share an ecological niche such as the human gut³⁶. *Microcystis* is
496 physically associated with its microbiome for at least part of the colony life cycle, and we
497 hypothesized that HGT could occur within colonies. Using two methods to detect HGT, we found
498 evidence for gene transfers between *Microcystis* and at least six different species of associated
499 bacteria: two species of *Pseudanabaena*, two *Cytophagales*, one *Burkholderiales*, and one
500 *Chitinophagaceae* species. Notably, we did not find evidence for HGT between *Microcystis* and
501 its two most co-phylogenetically associated bacteria, *Roseomonas* and *Rhodobacter*. To explain
502 this result, we hypothesize that such long-term associations might favour the loss of redundant
503 genes, as predicted by the Black Queen Hypothesis⁵⁰. In other words, a gene needs to be encoded
504 by only one partner, provided that gene products or metabolites are shared between partners.
505 Therefore, even if HGT does occur between partners, we would not expect to find the same gene
506 redundantly encoded in both partners. These evolved co-dependencies would further reinforce
507 partner fidelity and could help explain the co-phylogenetic signal between them.

508

509 Overall, our results provide evidence for long-lasting eco-evolutionary associations between
510 *Microcystis* and its microbiome. Some members of the microbiome may be more tightly associated

511 than others, and based on their gene content we hypothesize that they may provide beneficial and
512 complementary functions to *Microcystis*. These hypotheses could be tested in experimental co-
513 cultures, which have recently shown how the *Microcystis* microbiome can alter its competitive
514 fitness against eukaryotic algae⁵¹. These experiments could be extended to the combinations of
515 *Microcystis* genotypes and associated bacteria which we have shown to be intimately associated
516 in nature.

517

518 **Methods**

519

520 **Sample collection and DNA extraction for colonies and metagenomes**

521 To access to the genomic diversity of *Microcystis* in Lake Champlain and Pampulha reservoir, 346
522 individual *Microcystis* colonies were isolated across the bloom season (July to October in Quebec,
523 Canada (45°02'44.86"N, 73°07'57.60"W) and April to November in Minas Gerais, Brazil
524 (19°55'09"S and 43°56'47"W)). Colonies were isolated from surface water samples (~50 cm
525 depth) after concentration using a plankton net (mesh size 20 µm). One liter of concentrated water
526 was collected and stored at 4 °C for a maximum of 36 hours until colony isolation. Colonies were
527 isolated using micropipes, sterile medium (Z8 medium) and a microscope (Nikon E200 Eclipse).
528 Each colony was washed 15-20 times using sterile Z8 medium and stored at -80 C until DNA
529 extraction. The DNA extraction was performed directly on each colony using the ChargeSwitch®
530 gDNA Mini Bacteria Kit. Two additional steps were added to ensure the rupture of the *Microcystis*
531 colonies and cells (See Supplementary Methods). Briefly, each colony was added to a tube
532 containing 50 mg of beads (PowerBead tubes, glass 0.1 mm- Mo-bio), incubated with lysis
533 solutions, and then vortexed using the TissueLyser LT (Qiagen) for three minutes at 45 oscillation

534 per second. The tube was then centrifuged for 1 minute at 9000 rcf. This procedure yielded DNA
535 for 109 colonies, sequenced as described below. Matched water samples were collected at the same
536 place and time as colonies, spanning 16 time points (Supplementary Table 10). Water temperature
537 and pH were also measured at each sampling point.

538

539 For metagenomic sequencing, a total of 72 lake water samples were collected over 10 years (2006
540 to 2018) during the ice-free season (April to November) from the photic zone of Missisquoi Bay
541 at two different sites (littoral and pelagic) of Lake Champlain, Quebec, Canada (45°02'45"N,
542 73°07'58"W). Lake water was filtered and DNA was extracted using a Zymo Kit (Zymo, D4023)
543 as described previously⁴³. The filtration was performed the same day of the sampling, using
544 between 50 and 250 mL of water samples, depending on the amount of biomass, onto 0.2 µm
545 hydrophilic polyethersulfone membranes (Millipore, Etobicoke, ON). Samples were obtained at
546 relatively low frequency between 2006 and 2016, and at higher frequency (approximately weekly
547 or more often) during bloom periods between 2015 and 2016 (Supplementary Table 3). Water
548 samples corresponding to six sampling points from Minas Gerais Brazil were also collected for
549 DNA extraction and metagenome sequencing. Environmental variables were measured for each
550 sample. Sample water were collected (50 ml) for measuring nutrients (DN, DP, TP and TN), except
551 for the samples from Brazil (Supplementary Table 3)⁴³.

552

553 **DNA sequencing of single colonies and metagenomes**

554 DNA extracted from *Microcystis* single colonies was sequenced using the Illumina HiSeq 4000
555 platform with 150bp paired-end reads. The sequencing libraries (with average fragment size
556 360bp) were prepared using the NEB (New England Biolabs®) low input protocol. The DNA

557 extracted from filtered bulk lake water for each sampling point (2017 and 2018) from Canada and
558 Brazil were sequenced using Illumina NovaSeq 6000 S4 platform with 150bp paired-end reads.
559 The earlier lake water samples from a previous long-term experiment in Lake Champlain (2006 to
560 2016) were sequenced using Illumina Hiseq2500 with 125 paired-end reads (Supplementary Table
561 3).

562

563 **Metagenome assembly and genome binning**

564 For the *Microcystis* colonies, the sequencing reads were filtered and trimmed using Trimmomatic
565 (v0.36)⁵² then assembled with MEGA-HIT (v1.1.1)⁵³, producing contigs belonging to both
566 *Microcystis* and associated bacteria. We then used Anvi'o (v3.5) to filter, cluster and bin the
567 contigs longer than 2,500 bp as was previously^{29,54}. The quality of each resulting metagenome-
568 assembled genome (MAG) was estimated using CheckM (v1.0.13)⁵⁵. From the 109 colonies, 500
569 medium and high-quality MAGS were identified (completeness \geq 70% and contamination \leq 10%)
570 (Supplementary Table 1 and 5)⁵⁶. MAGs were annotated using Prokka (v1.14.0)⁵⁷. Pairwise
571 average nucleotide identity (ANI) values between genomes were estimated using FastANI (v1.2)
572 and pyani^{58,59}. MAGs were classified into different taxonomic groups at a threshold of ANI \geq 96%
573 (Supplementary Table 5 and 11). MAGs were assigned to genera and species using Blastp of the
574 recA and RpoB proteins against the NCBI database, and refined using the Genome Taxonomy
575 Database Toolkit (GTDB-Tk) (v1.0.2), which uses a set 120 universal bacterial gene markers⁶⁰.

576

577 For each taxonomic group, we selected at least two representative sequence types (for a total of
578 138 genomes), from which we inferred a Maximum likelihood phylogenetic tree based on the core
579 gene alignment using RAxML (v8.2.11)⁶¹. The core genome was estimated using panX (v1.5.1).

580 Core genes were defined as those genes present in at least the 80% of sampled genomes (e-value
581 < 0.005)⁶². Each of the resulting 62 core genes was alignment using muscle (v3.8.3)⁶³. Filter.seqs
582 from mothur (v1.41.3) was used to remove the gaps per each gene alignment⁶⁴. Individual
583 alignments were concatenated into a single alignment (16,400 bp long) input into RAxML.

584

585 **Assessment of the *Microcystis* genotype diversity in freshwater colonies**

586 A core genome was also estimated for the 109 *Microcystis* genomes and 122 NCBI references
587 genomes (Supplementary Table 1 and 12). The resulting alignment of the 115 core genes was
588 degaped (68,145 bp long) and used to infer an ML phylogeny using RAxML. Two outgroups
589 (*Anabaena variabilis* ATCC29413 and *Synechocystis* sp. PCC6803) were included. Based on ANI
590 values greater or equal to 99%, the monophyletic clades of *Microcystis* genomes were classified
591 into 18 genotypes (Supplementary Table 2).

592

593 **Assessment of the *Microcystis* genomic (within-colonies) variation versus intra-genotype
594 variation (between colonies)**

595 We first confirmed that *Microcystis* is haploid, as polyploidy has been observed among other
596 cyanobacteria⁶⁵. We estimated ploidy variation in *Microcystis* colonies using k-mer frequencies
597 and raw sequences. We first mapped the reads of each colony (containing reads from both
598 *Microcystis* and its microbiome) to a *Microcystis* reference genome using BBmap with minimum
599 nucleotide identity of 99%⁶⁶. Mapped reads were extracted using Picard
600 (<http://broadinstitute.github.io/picard/>) and analyzed using Genomescope and Smudgeplot
601 (<https://github.com/tbenavil/genomescope2.0>; <https://github.com/KamilSJaron/smudgeplot>). All
602 colonies appeared to be haploid, with a low rate of heterozygosity that could be due paralogs.

603

604 To determine whether *Microcystis* colonies likely formed by clonal cell division or cell
605 aggregation, we called single nucleotide variants (SNVs) within colonies and between colonies of
606 the same genotype. As a point of comparison, we also called SNVs that occurred over a period of
607 approximately six years in laboratory cultures of *Microcystis* with genome sequences reported
608 previously²⁹. We used snippy (v4.4.0) (<https://github.com/tseemann/snippy>) with default
609 parameters to call SNVs. Genotypes represented by only one sampled colony were excluded from
610 the analysis (G02, G04, G09, G11, G12, G16, and G18).

611

612 SNV calling within and between colonies was executed by mapping reads against reference
613 genomes. This was done independently for each genotype. We selected at least four reference
614 genomes per genotype when possible. SNVs within colonies were detected by mapping the reads
615 of the references to their respective genome assemblies. SNVs between colonies were detected by
616 mapping the reads of different colonies of the same genotype to the genome assemblies of the
617 references. We ignored positions where the reference nucleotide was poorly supported (threshold
618 percentage for the minor variant <14.4%; mean = 1.1%) by the reads in both the within- and
619 between-colony read mapping analyses because these were considered to be assembly errors.

620

621 **Identifying associated bacterial genomes in colonies**

622 Non-*Microcystis* MAGs from each colony were classified in 72 species based on taxonomical
623 analysis and ANI values $\geq 96\%$. Because individual assemblies could affect MAG completeness,
624 we created a custom database of the 59 associated bacterial genomes from Quebec, and another
625 database for the 18 species from Brazil. Using MIDAS (v1.3.0)⁶⁷, we mapped the reads from each

626 colony (downsampled to 8,000,000 reads per colony) against the custom databases to estimate the
627 relative abundance and coverage for each of the 72 associated bacterial species. We defined a
628 species to be present when it had a genome-wide average coverage of 1X or more. This allowed
629 us to generate a matrix of associated bacteria presence or absence across colonies.

630

631 ***Microcystis*' microbiome composition variation according to environmental variables and**
632 **host genotype**

633 We first performed a distance-based RDA with the square root of the Bray-Curtis distance from a
634 coverage table describing the composition of the *Microcystis* microbiome for each genotype. The
635 variables included genotype information, presence/absence of *mcy* genes, temperature, pH, site
636 (Canada or Brazil) and the temporal variables years and months. In a second approach, we
637 calculated the beta diversity using the same dissimilarity distance and tested *Microcystis*
638 microbiome composition variation using adonis() and betadisper().

639

640 We quantified phylosymbiosis by comparing the phylogenetic distance matrix of *Microcystis*
641 genotypes and the microbiome composition distance matrix using a Mantel test (999 permutations,
642 Spearman correlation) and the protest() R function to test the non-randomness between these two
643 matrices (999 permutations) (vegan R package). The pairwise phylogenetic distances matrix was
644 estimated using the RAxML tree of the *Microcystis* core genome and the cophenetic.phylo
645 function of the ape R-package (v5.3)⁶⁸.

646

647 ***Microcystis* genotypic diversity from metagenomic samples**

648 *Microcystis* genomes from Quebec and Brazil were classified into 14 and four genotypes,
649 respectively. This genotype classification was based on pairwise genome similarities greater or
650 equal to 99%. Using the *Microcystis* genotypes and the software MIDAS (v1.3.0)⁶⁷, we built two
651 custom gene marker databases for the *Microcystis* genotypes (15 universal single-copy gene
652 families), one for genotypes from Quebec and the other for genotypes from Brazil.

653

654 Using MIDAS and the custom databases, we estimated the relative abundances, the read counts
655 and the read coverage of the *Microcystis* genotypes in 72 shotgun metagenomes from Lake
656 Champlain, Quebec (62 metagenomes from a long-term experiment (2006 to 2016, excluding 2007
657 and 2014), plus 10 metagenomes from 2017 and 2018). Due the low number of *Microcystis*
658 genotypes and metagenomes (6 sampling points for Brazil during 2018) from Brazil, these samples
659 were not formally analyzed. Metagenomic reads with similarity greater or equal to 99% were
660 mapped against the MIDAS database of *Microcystis* genotypes. We used 14,000,000 reads per
661 metagenome after downsampling to the lowest-coverage metagenome (Supplementary Table 3).
662 The metagenome sequencing from Brazil were mapped against a separate MIDAS database of the
663 four *Microcystis* genotypes from Brazil (Supplementary Fig. 12).

664

665 To test if the 14 *Microcystis* genotypes represented in the colony genomes representative of the
666 diversity present in the Lake Champlain metagenomes, we first mapped the downsampled
667 metagenomic reads to a custom database including a single reference *Microcystis* genome
668 (M083S1) (alignment identity cutoff = 96%), and also mapped the reads to the database including
669 all the 14 genotypes (alignment identity cutoff = 99%). By using a cutoff value equal to 96%, we
670 expect to recover most sequences from the *Microcystis* genus, regardless of which genotype the

671 reads come from. We recovered 102,608 reads at 99% identity and 109,729 at 96%, showing that
672 the 14 genotypes (defined at 99% identity) account for 93.5% of the *Microcystis* reads in the
673 metagenome samples. Additionally, we observed that the total coverage using all the *Microcystis*
674 genotypes (alignment identity cutoff = 99%) and the total coverage using a single *Microcystis*
675 genome as a reference (alignment identity cutoff = 96%) are nearly perfectly correlated
676 (correlation coefficient $R^2 = 1$, $P < 2.2\text{e-}16$) (Spearman correlation) (Supplementary Fig. 13).

677

678 ***Microcystis* genotypic diversity variation according to environmental variables**

679 To determine the variables that explain the variation in *Microcystis* community composition, we
680 used a dataset of 42 metagenomes and 14 genotypes from Lake Champlain. Metagenomes with
681 incomplete metadata were excluded. We focused on Lake Champlain as we observed a greater
682 diversity of *Microcystis* genotypes compared to Brazil, including both microcystin-producing and
683 non-producing genotypes. We first used a distance-based redundancy analysis (dbRDA) with the
684 square root of the Bray Curtis distance matrix to investigate *Microcystis*–environment
685 relationships^{69,70} (capscale function from vegan R package, (v2.5.6l)⁷¹). Variables were pre-
686 selected using the ordiR2step R function⁷² (See Supplementary Methods). The environmental
687 matrix variables included: total phosphorus in $\mu\text{g/l}$ (TP), total nitrogen in $\mu\text{g/l}$ (TN), soluble
688 reactive phosphorus in $\mu\text{g/l}$ (DP), dissolved nitrogen in $\mu\text{g/l}$ (DN), 1-week-cumulative
689 precipitation in mm, 1-week-average air temperature in Celsius, temporal variables (Years,
690 Months and Season) and sampling sites within Lake Champlain (Pelagic or Littoral)
691 (Supplementary Table 3)⁴³. To determine the significance of constraints, we used the anova.cca()
692 function from the R vegan package.

693 We also calculated the beta diversity between groups of samples using the Phyloseq R package
694 (v1.30.0) and the square root of Bray Curtis distance. We used nonmetric multi- dimensional
695 scaling (NMDS, from the phyloseq package that incorporates the metaMDS() function from the R
696 vegan^{71,73,74} package to ordinate the data. Differences in community structure between groups were
697 tested using permutational multivariate analysis of variance (PERMANOVA⁷⁵) with the adonis()
698 function. As PERMANOVA tests might be sensitive to dispersion, we also tested for dispersion
699 by performing an analysis of multivariate homogeneity (PERMDISP⁷⁶) with the permuted
700 betadisper() function.

701

702 **Identifying the correlation between microbiome members and *Microcystis* in freshwater
703 samples from Canada**

704 Using the 59 species identified in the *Microcystis* microbiome from Canada and the software
705 MIDAS (v1.3.0), we built a custom gene marker database of 15 universal single-copy gene
706 families. This database also included a reference genome from *Microcystis* (M083S1) and two
707 *Dolichospermum* reference genomes (*D. circinale* AWQC131C and AWQC310F). Using MIDAS,
708 we estimated the relative abundances, reads count, and the read coverage of each associated
709 bacterial species in 72 shotgun metagenomes from Quebec, Canada. Reads were mapped against
710 the custom database including the associated bacteria species. A cuff-off value of nucleotide
711 identity greater or equal to 96% was used for the read mapping. By merging the values (coverage
712 and read counts) for species within the same genus, obtained coverage and read counts at the genus
713 level, for 32 genera of associated bacteria. We used the Spearman rank-based correlation to
714 investigate patterns of co-occurrence between *Microcystis*, *Dolichospermum* and the associated
715 bacterial species and genera in environmental metagenomes. First, the read counts in the matrices

716 containing the genera and species were used to estimate the correlation values (r) and p-values
717 between pair of species or genera by using the rcorr() function of the Hmisc (v4.3.0) R package⁷⁷.
718 We also calculated Spearman correlations on the coverage values, yielding similar results. P -
719 values were corrected to control the false discovery rate using the qvalue() function from the
720 qvalue (v2.18.0) R package. We also estimated the correlation between *Microcystis* and the AB
721 using the software FastSpar (v0.0.10)⁷⁸. This method is a faster implementation of the Sparse
722 Correlation for Compositional Data algorithm (SparCC)⁷⁹. The significance of the test was
723 evaluated using 100 permutations and a bootstrap of 1000. In general, the most prevalent AB taxa
724 in *Microcystis* colonies had significant correlation ($P < 0.05$) with *Microcystis* using both
725 Spearman and SparCC.

726

727 **Co-phylogeny between *Microcystis* and the associated microbiome**

728 The nine most prevalent associated bacterial genera were selected for co-phylogeny analysis,
729 which would be underpowered to detect phylogenetic associations with low-prevalence bacteria
730 (i.e. small phylogenies). Core genomes were generated using panX and core alignments were
731 computed as described above, for each associated bacterial genus. Phylogenetic core genome trees
732 were built individually for each genus using RAxML⁶¹. Patristic distances (pairwise distances
733 between pairs of tips on a tree) for the *Microcystis* and associated bacteria phylogenies were
734 estimated using the cophenetic.phylo() function from the ape R-package⁶⁸. The *Microcystis* core
735 genome tree and the tree of the associated bacteria were compared using Parafit test (parafit()
736 function of the ape R package) (See Supplementary Methods)^{68,80}. Co-phylogeny trees were built
737 using the function cophylo() from the phytools R package⁸¹.

738

739 **Recent HGT between *Microcystis* and associated bacteria (AB)**

740 To infer recent horizontal gene transfer (HGT) events between *Microcystis* and associated bacteria,
741 we first inferred the pangenomes for each combination of one AB and *Microcystis*, and repeated
742 this for the 72 associated bacterial species. Core and accessory genes with a minimum percentage
743 identity for blastp equal to 99% were identified. We retained those clusters of genes present in at
744 least four genomes, and present in both AB and *Microcystis*. The remaining putatively horizontal
745 transferred genes were annotated in 23 COG (clusters of orthologous groups) categories using
746 eggNOG-mapper (v2.0.1)⁸². Using the package STAMP (v2.1.3) and a chi-square test, we
747 estimated if there were statistical differences in the COG categories between *Microcystis* core
748 genes and the putative horizontally transferred genes⁸³. P-values were corrected using Benjamini-
749 Hochberg (controlling the false discovery rate) method. We also estimated HGT events between
750 *Microcystis* and associated species using a second method, Metachip (v1.8.2) (default parameters).
751 The Metachip approach uses both the best match approach (blastn) and a phylogenetic approach
752 to infer HGT (reconciliation between a gene tree and its species tree)³⁷.

753

754 **Gene functional annotation**

755 The *Microcystis* and associated bacteria genomes were functionally annotated using enrichM
756 (v0.5.0) (<https://github.com/geronimp/enrichM>)⁸⁴. A PCA based on the presence/absence of
757 KEGG Orthologous genes (KO) in *Microcystis* and associated bacteria genera was generated using
758 the option 'enrichment' in enrichM. Genome groups (*Microcystis* vs each associated bacteria
759 genus) were compared using the same option. KEGG modules differentially abundant in
760 *Microcystis* or the associated bacteria genus were filtered based on a completeness greater or equal
761 to 70%.

762

763 *Microcystis* and associated bacterial genomes (109 *Microcystis* and 391 associated genomes) were
764 annotated using Roary (v3.13.0). The resulting genomes in GenBank format were used to predict
765 the biosynthetic gene clusters (BGCs) using default parameters (--taxon bacteria --cb-general --
766 cb-knownclusters --cb-subclusters --ASF --pfam2go --smcog-trees --genefinding-tool prodigal-m)
767 in antiSMASH (v5.1.2)^{85,86}. The BiG-SCAPE package (v1.0.1) with default parameters analysed
768 the ANTISMASH BGCs and based on a similarity network classified them into Gene Cluster
769 Families (GCFs)⁸⁷. BGCs were classified in BiG-SCAPE classes (e.g., polyketide synthases
770 nonribosomal peptide synthetases (NRPSs), post-translationally modified peptides (RiPPs) and
771 terpenes. A total of 2,395 BGCs were identified in 415 genomes.

772

773 **Data availability**

774

775 Raw sequences and metagenome assembled genomes (MAGs) are available in NCBI under
776 Bioproject numbers PRJNA507251 and PRJNA662092.

777

778 **References**

779

- 780 1 Levesque, B. *et al.* Prospective study of acute health effects in relation to exposure to
781 cyanobacteria. *Sci Total Environ* **466-467**, 397-403, doi:10.1016/j.scitotenv.2013.07.045
782 (2014).
- 783 2 Bell, W. & Mitchell, R. Chemotactic and growth responses of marine bacteria to algal
784 extracellular products. *Biological Bulletin* **143**, 265-277, doi:10.2307/1540052 (1972).

785 3 Seymour, J. R., Amin, S. A., Raina, J. B. & Stocker, R. Zooming in on the phycosphere:
786 the ecological interface for phytoplankton-bacteria relationships. *Nat Microbiol* **2**, 17065,
787 doi:10.1038/nmicrobiol.2017.65 (2017).

788 4 Amin, S. A., Parker, M. S. & Armbrust, E. V. Interactions between diatoms and bacteria.
789 *Microbiol Mol Biol Rev* **76**, 667-684, doi:10.1128/MMBR.00007-12 (2012).

790 5 Paerl, H. W. Microscale physiological and ecological studies of aquatic cyanobacteria:
791 macroscale implications. *Microsc Res Tech* **33**, 47-72, doi:10.1002/(SICI)1097-
792 0029(199601)33:1<47::AID-JEMT6>3.0.CO;2-Y (1996).

793 6 Cho, D. H. *et al.* Enhancing microalgal biomass productivity by engineering a microalgal-
794 bacterial community. *Bioresour Technol* **175**, 578-585,
795 doi:10.1016/j.biortech.2014.10.159 (2015).

796 7 Amin, S. A. *et al.* Interaction and signalling between a cosmopolitan phytoplankton and
797 associated bacteria. *Nature* **522**, 98-101, doi:10.1038/nature14488 (2015).

798 8 Van Mooy, B. A. *et al.* Quorum sensing control of phosphorus acquisition in
799 *Trichodesmium* consortia. *ISME J* **6**, 422-429, doi:10.1038/ismej.2011.115 (2012).

800 9 Frischkorn, K. R., Rouco, M., Van Mooy, B. A. S. & Dyhrman, S. T. Epibionts dominate
801 metabolic functional potential of *Trichodesmium* colonies from the oligotrophic ocean.
802 *ISME J* **11**, 2090-2101, doi:10.1038/ismej.2017.74 (2017).

803 10 Paerl, H. W. Growth and reproductive strategies of freshwater blue-green algae
804 (Cyanobacteria). *Growth and reproductive strategies of freshwater phytoplankton*, 261-
805 315 (1988).

806 11 Worm, J. & Sondergaard, M. Dynamics of heterotrophic bacteria attached to *Microcystis*
807 spp. (Cyanobacteria). *Aquat Microb Ecol* **14**, 19-28, doi:10.3354/ame014019 (1998).

808 12 Brunberg, A. K. Contribution of bacteria in the mucilage of *Microcystis* spp.
809 (Cyanobacteria) to benthic and pelagic bacterial production in a hypereutrophic lake. *Fems*
810 *Microbiol Ecol* **29**, 13-22, doi:10.1016/S0168-6496(98)00126-3 (1999).

811 13 Parveen, B. *et al.* Bacterial communities associated with *Microcystis* colonies differ from
812 free-living communities living in the same ecosystem. *Environ Microbiol Rep* **5**, 716-724,
813 doi:10.1111/1758-2229.12071 (2013).

814 14 Jankowiak, J. G. & Gobler, C. J. The composition and function of microbiomes within
815 *Microcystis* colonies are significantly different than native bacterial assemblages in two
816 North American lakes. *Front Microbiol* **11**, doi:10.3389/fmicb.2020.01016 (2020).

817 15 Dziallas, C. & Grossart, H. P. Temperature and biotic factors influence bacterial
818 communities associated with the cyanobacterium *Microcystis* sp. *Environ Microbiol* **13**,
819 1632-1641, doi:10.1111/j.1462-2920.2011.02479.x (2011).

820 16 Cook, K. V. *et al.* The global *Microcystis* interactome. *Limnol Oceanogr* **65**, S194-S207,
821 doi:10.1002/lno.11361 (2020).

822 17 Shia, L. M. *et al.* Community structure of bacteria associated with *Microcystis* colonies
823 from cyanobacterial blooms. *J Freshwater Ecol* **25**, 193-203,
824 doi:10.1080/02705060.2010.9665068 (2010).

825 18 Berg, K. A. *et al.* High diversity of cultivable heterotrophic bacteria in association with
826 cyanobacterial water blooms. *ISME J* **3**, 314-325, doi:10.1038/ismej.2008.110 (2009).

827 19 Shen, H., Niu, Y., Xie, P., Tao, M. & Yang, X. Morphological and physiological changes
828 in *Microcystis aeruginosa* as a result of interactions with heterotrophic bacteria.
829 *Freshwater Biol* **56**, 1065-1080, doi:10.1111/j.1365-2427.2010.02551.x (2011).

830 20 Wang, W. J. *et al.* Experimental evidence for the role of heterotrophic bacteria in the
831 formation of *Microcystis* colonies. *J Appl Phycol* **28**, 1111-1123, doi:10.1007/s10811-015-
832 0659-5 (2016).

833 21 Xiao, M., Willis, A., Burford, M. A. & Li, M. Review: a meta-analysis comparing cell-
834 division and cell-adhesion in *Microcystis* colony formation. *Harmful Algae* **67**, 85-91,
835 doi:10.1016/j.hal.2017.06.007 (2017).

836 22 Lim, S. J. & Bordenstein, S. R. An introduction to phylosymbiosis. *Proc Biol Sci* **287**,
837 20192900, doi:10.1098/rspb.2019.2900 (2020).

838 23 Groussin, M. *et al.* Unraveling the processes shaping mammalian gut microbiomes over
839 evolutionary time. *Nat Commun* **8**, 14319, doi:10.1038/ncomms14319 (2017).

840 24 Yeoh, Y. K. *et al.* Evolutionary conservation of a core root microbiome across plant phyla
841 along a tropical soil chronosequence. *Nat Commun* **8**, 215, doi:10.1038/s41467-017-
842 00262-8 (2017).

843 25 Pollock, F. J. *et al.* Coral-associated bacteria demonstrate phylosymbiosis and
844 cophylogeny. *Nat Commun* **9**, 4921, doi:10.1038/s41467-018-07275-x (2018).

845 26 Mazel, F. *et al.* Is host filtering the main driver of phylosymbiosis across the tree of life?
846 *mSystems* **3**, doi:10.1128/mSystems.00097-18 (2018).

847 27 Groussin, M., Mazel, F. & Alm, E. J. Co-evolution and co-speciation of host-gut bacteria
848 systems. *Cell Host Microbe* **28**, 12-22, doi:10.1016/j.chom.2020.06.013 (2020).

849 28 Harke, M. J. *et al.* A review of the global ecology, genomics, and biogeography of the toxic
850 cyanobacterium, *Microcystis* spp. *Harmful Algae* **54**, 4-20, doi:10.1016/j.hal.2015.12.007
851 (2016).

852 29 Perez-Carrascal, O. M. *et al.* Coherence of *Microcystis* species revealed through population
853 genomics. *ISME J* **13**, 2887-2900, doi:10.1038/s41396-019-0481-1 (2019).

854 30 Jackrel, S. L. *et al.* Genome evolution and host-microbiome shifts correspond with
855 intraspecific niche divergence within harmful algal bloom-forming *Microcystis*
856 *aeruginosa*. *Mol Ecol* **28**, 3994-4011, doi:10.1111/mec.15198 (2019).

857 31 Wilson, A. E. *et al.* Genetic variation of the bloom-forming cyanobacterium *Microcystis*
858 *aeruginosa* within and among lakes: implications for harmful algal blooms. *Appl Environ*
859 *Microbiol* **71**, 6126-6133, doi:10.1128/AEM.71.10.6126-6133.2005 (2005).

860 32 Dittmann, E., Neilan, B. A., Erhard, M., vonDohren, H. & Borner, T. Insertional
861 mutagenesis of a peptide synthetase gene that is responsible for hepatotoxin production in
862 the cyanobacterium *Microcystis aeruginosa* PCC 7806. *Mol Microbiol* **26**, 779-787,
863 doi:10.1046/j.1365-2958.1997.6131982.x (1997).

864 33 Peres-Neto, P. R. & Jackson, D. A. How well do multivariate data sets match? The
865 advantages of a Procrustean superimposition approach over the Mantel test. *Oecologia* **129**,
866 169-178, doi:10.1007/s004420100720 (2001).

867 34 Kurmayer, R., Dittmann, E., Fastner, J. & Chorus, I. Diversity of microcystin genes within
868 a population of the toxic cyanobacterium *Microcystis* spp. in Lake Wannsee (Berlin,
869 Germany). *Microb Ecol* **43**, 107-118, doi:10.1007/s00248-001-0039-3 (2002).

870 35 Briand, E. *et al.* Spatiotemporal changes in the genetic diversity of a bloom-forming
871 *Microcystis aeruginosa* (cyanobacteria) population. *ISME J* **3**, 419-429,
872 doi:10.1038/ismej.2008.121 (2009).

873 36 Smillie, C. S. *et al.* Ecology drives a global network of gene exchange connecting the
874 human microbiome. *Nature* **480**, 241-244, doi:10.1038/nature10571 (2011).

875 37 Song, W., Wemheuer, B., Zhang, S., Steensen, K. & Thomas, T. MetaCHIP: community-
876 level horizontal gene transfer identification through the combination of best-match and
877 phylogenetic approaches. *Microbiome* **7**, 36, doi:10.1186/s40168-019-0649-y (2019).

878 38 Paerl, H. W., Tucker, J. & Bland, P. T. Carotenoid enhancement and its role in maintaining
879 blue-green algal (*Microcystis aeruginosa*) surface blooms1. *Limnol Oceanogr* **28**, 847-857,
880 doi:10.4319/lo.1983.28.5.0847 (1983).

881 39 Gerloff, G. C., Fitzgerald, G. P. & Skoog, F. The mineral nutrition of *Microcystis*
882 *aeruginosa*. *Am J Bot* **39**, 26-32, doi:10.2307/2438090 (1952).

883 40 Tromas, N. *et al.* Niche separation increases with genetic distance among bloom-forming
884 cyanobacteria. *Front Microbiol* **9**, 438, doi:10.3389/fmicb.2018.00438 (2018).

885 41 Chun, S. J. *et al.* Characterization of distinct cyanoHABs-related modules in microbial
886 recurrent association network. *Front Microbiol* **10**, doi:10.3389/fmicb.2019.01637 (2019).

887 42 Zhang, Z. *et al.* Alteration of dominant cyanobacteria in different bloom periods caused by
888 abiotic factors and species interactions. *J Environ Sci* **99**, 1-9,
889 doi:10.1016/j.jes.2020.06.001 (2021).

890 43 Tromas, N. *et al.* Characterising and predicting cyanobacterial blooms in an 8-year
891 amplicon sequencing time course. *ISME J* **11**, 1746-1763, doi:10.1038/ismej.2017.58
892 (2017).

893 44 Xiao, M., Li, M. & Reynolds, C. S. Colony formation in the cyanobacterium *Microcystis*.
894 *Biol Rev* **93**, 1399-1420, doi:10.1111/brv.12401 (2018).

895 45 Li, Q. *et al.* A large-scale comparative metagenomic study reveals the functional
896 interactions in six bloom-forming *Microcystis*-epibiont communities. *Front Microbiol* **9**,
897 746, doi:10.3389/fmicb.2018.00746 (2018).

898 46 Douglas, A. E. & Werren, J. H. Holes in the Hologenome: Why Host-Microbe Symbioses
899 Are Not Holobionts. *mBio* **7**, e02099, doi:10.1128/mBio.02099-15 (2016).

900 47 Kosourov, S., Murukesan, G., Jokela, J. & Allahverdiyeva, Y. Carotenoid biosynthesis in
901 *Calothrix* sp. 336/3: Composition of carotenoids on full medium, during diazotrophic
902 growth and after long-term H₂ photoproduction. *Plant Cell Physiol* **57**, 2269-2282,
903 doi:10.1093/pcp/pcw143 (2016).

904 48 Pattanaik, B. & Lindberg, P. Terpenoids and their biosynthesis in cyanobacteria. *Life* **5**,
905 doi:10.3390/life5010269 (2015).

906 49 Beiko, R. G., Harlow, T. J. & Ragan, M. A. Highways of gene sharing in prokaryotes. *Proc
907 Natl Acad Sci USA* **102**, 14332-14337, doi:10.1073/pnas.0504068102 (2005).

908 50 Morris, J. J., Lenski, R. E. & Zinser, E. R. The Black Queen Hypothesis: evolution of
909 dependencies through adaptive gene loss. *mBio* **3**, doi:10.1128/mBio.00036-12 (2012).

910 51 Schmidt, K. C., Jackrel, S. L., Smith, D. J., Dick, G. J. & Denef, V. J. Genotype and host
911 microbiome alter competitive interactions between *Microcystis aeruginosa* and *Chlorella
912 sorokiniana*. *Harmful Algae* **99**, 101939, doi:<https://doi.org/10.1016/j.hal.2020.101939>
913 (2020).

914 52 Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina
915 sequence data. *Bioinformatics* **30**, 2114-2120, doi:10.1093/bioinformatics/btu170 (2014).

916 53 Li, D. *et al.* MEGAHIT v1.0: A fast and scalable metagenome assembler driven by
917 advanced methodologies and community practices. *Methods* **102**, 3-11,
918 doi:10.1016/j.ymeth.2016.02.020 (2016).

919 54 Eren, A. M. *et al.* Anvi'o: an advanced analysis and visualization platform for 'omics data.
920 *PeerJ* **3**, e1319, doi:10.7717/peerj.1319 (2015).

921 55 Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM:
922 assessing the quality of microbial genomes recovered from isolates, single cells, and
923 metagenomes. *Genome Res* **25**, 1043-1055, doi:10.1101/gr.186072.114 (2015).

924 56 Bowers, R. M. *et al.* Minimum information about a single amplified genome (MISAG) and
925 a metagenome-assembled genome (MIMAG) of bacteria and archaea. *Nat Biotechnol* **35**,
926 725-731, doi:10.1038/nbt.3893 (2017).

927 57 Seemann, T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* **30**, 2068-2069,
928 doi:10.1093/bioinformatics/btu153 (2014).

929 58 Jain, C., Rodriguez, R. L., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High
930 throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. *Nat*
931 *Commun* **9**, 5114, doi:10.1038/s41467-018-07641-9 (2018).

932 59 Pritchard, L., Glover, R. H., Humphris, S., Elphinstone, J. G. & Toth, I. K. Genomics and
933 taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens.
934 *Analytical Methods* **8**, 12-24, doi:10.1039/C5AY02550H (2016).

935 60 Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to
936 classify genomes with the Genome Taxonomy Database. *Bioinformatics*,
937 doi:10.1093/bioinformatics/btz848 (2019).

938 61 Stamatakis, A. *et al.* RAxML-Light: a tool for computing terabyte phylogenies.
939 *Bioinformatics* **28**, 2064-2066, doi:10.1093/bioinformatics/bts309 (2012).

940 62 Ding, W., Baumdicker, F. & Neher, R. A. panX: pan-genome analysis and exploration.
941 *Nucleic Acids Res* **46**, e5, doi:10.1093/nar/gkx977 (2018).

942 63 Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and
943 space complexity. *BMC Bioinformatics* **5**, 113, doi:10.1186/1471-2105-5-113 (2004).

944 64 Schloss, P. D. *et al.* Introducing mothur: open-source, platform-independent, community-
945 supported software for describing and comparing microbial communities. *Appl Environ
946 Microbiol* **75**, 7537-7541, doi:10.1128/AEM.01541-09 (2009).

947 65 Griese, M., Lange, C. & Soppa, J. Ploidy in cyanobacteria. *Fems Microbiol Lett* **323**, 124-
948 131, doi:10.1111/j.1574-6968.2011.02368.x (2011).

949 66 Bushnell, B. *BBMap: A Fast, Accurate, Splice-Aware Aligner*. (Lawrence Berkeley
950 National Lab (LBNL), Berkeley, CA, 2014).

951 67 Nayfach, S., Rodriguez-Mueller, B., Garud, N. & Pollard, K. S. An integrated
952 metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission
953 and biogeography. *Genome Res* **26**, 1612-1625, doi:10.1101/gr.201863.115 (2016).

954 68 Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R
955 language. *Bioinformatics* **20**, 289-290, doi:10.1093/bioinformatics/btg412 (2004).

956 69 Bray, J. R. & Curtis, J. T. An ordination of the upland forest communities of southern
957 Wisconsin. *Ecol Monogr* **27**, 325-349, doi:10.2307/1942268 (1957).

958 70 Legendre, P. & Anderson, M. J. Distance-based redundancy analysis: testing multispecies
959 responses in multifactorial ecological experiments. *Ecol Monogr* **69**, 1-24,
960 doi:10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2 (1999).

961 71 Oksanen, J. *et al.* Vegan: Community Ecology Package. (2019).

962 72 Blanchet, F. G., Legendre, P. & Borcard, D. Forward selection of explanatory variables.
963 *Ecology* **89**, 2623-2632, doi:Doi 10.1890/07-0986.1 (2008).

964 73 Shepard, R. N. The Analysis of Proximities - Multidimensional-Scaling with an Unknown
965 Distance Function .1. *Psychometrika* **27**, 125-140, doi:Doi 10.1007/Bf02289630 (1962).

966 74 Kruskal, J. B. Multidimensional-Scaling by Optimizing Goodness of Fit to a Nonmetric
967 Hypothesis. *Psychometrika* **29**, 1-27, doi:Doi 10.1007/Bf02289565 (1964).

968 75 Anderson, M. J. A new method for non-parametric multivariate analysis of variance.
969 *Austral Ecol* **26**, 32-46, doi:DOI 10.1046/j.1442-9993.2001.01070.x (2001).

970 76 Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions.
971 *Biometrics* **62**, 245-253, doi:10.1111/j.1541-0420.2005.00440.x (2006).

972 77 Harrell, J. F. & Dupont, C. *Hmisc: harrell miscellaneous. R package version 4.1-1*.
973 <https://CRAN.R-project.org/package=Hmisc>.

974 78 Watts, S. C., Ritchie, S. C., Inouye, M. & Holt, K. E. FastSpar: rapid and scalable
975 correlation estimation for compositional data. *Bioinformatics* **35**, 1064-1066,
976 doi:10.1093/bioinformatics/bty734 (2019).

977 79 Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. *PLoS
978 Comput Biol* **8**, e1002687, doi:10.1371/journal.pcbi.1002687 (2012).

979 80 Legendre, P., Desdevises, Y. & Bazin, E. A statistical test for host-parasite coevolution.
980 *Syst Biol* **51**, 217-234, doi:10.1080/10635150252899734 (2002).

981 81 Revell, L. J. Phytools: an R package for phylogenetic comparative biology (and other
982 things). *Methods Ecol Evol* **3**, 217-223, doi:10.1111/j.2041-210X.2011.00169.x (2012).

983 82 Huerta-Cepas, J. *et al.* eggNOG 5.0: a hierarchical, functionally and phylogenetically
984 annotated orthology resource based on 5090 organisms and 2502 viruses. *Nucleic Acids
985 Res* **47**, D309-D314, doi:10.1093/nar/gky1085 (2019).

986 83 Parks, D. H., Tyson, G. W., Hugenholtz, P. & Beiko, R. G. STAMP: statistical analysis of
987 taxonomic and functional profiles. *Bioinformatics* **30**, 3123-3124,
988 doi:10.1093/bioinformatics/btu494 (2014).

989 84 Boyd, J. A. *et al.* Divergent methyl-coenzyme M reductase genes in a deep-subseafloor
990 Archaeoglobi. *ISME J* **13**, 1269-1279, doi:10.1038/s41396-018-0343-2 (2019).
991 85 Blin, K. *et al.* antiSMASH 4.0-improvements in chemistry prediction and gene cluster
992 boundary identification. *Nucleic Acids Res* **45**, W36-W41, doi:10.1093/nar/gkx319 (2017).
993 86 Blin, K. *et al.* antiSMASH 5.0: updates to the secondary metabolite genome mining
994 pipeline. *Nucleic Acids Res* **47**, W81-W87, doi:10.1093/nar/gkz310 (2019).
995 87 Navarro-Munoz, J. C. *et al.* A computational framework to explore large-scale biosynthetic
996 diversity. *Nat Chem Biol* **16**, 60-68, doi:10.1038/s41589-019-0400-9 (2020).
997

998 **Acknowledgements**

999
1000 We are grateful to Julie Marleau, Miria Elias and Alberto Mazza for assistance in the sampling.
1001 This work was supported by the Genome Québec and Genome Canada-funded ATRAPP Project
1002 (Algal blooms, Treatment, Risk Assessment, Prediction and Prevention). Colonies and water
1003 samples from Brazil were obtained thanks to a FAPEMIG grant to A.G. We also want to
1004 acknowledge the financial support of the National Research Council.
1005

1006 **Author contributions**

1007
1008 B.J.S., N.T. and O.M.P.C. designed the study. O.M.P.C., N.T., A.G., L.C.B.M. and N.F. performed
1009 the lab experiments. N.T. and O.M.P.C. performed the data analyses. E.M. and O.M.P.C.
1010 performed the cophylogeny. B.J.S., N.T. and O.M.P.C. wrote the manuscript. B.J.S., N.T.,
1011 O.M.P.C., A.G., Y.T. and N.F. contributed to its reviewing and editing.

1012

1013 **Competing interests**

1014 The authors declare no conflict of interest.

1015