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. Abstract

> Identification of markers is an essential step in single-cell analytic. Current
s marker identification strategies typically rely on cluster assignments of cells.
+  Cluster assignment, in particular of development data, is non-trivial, potentially
s arbitrary and commonly relies on prior knowledge. Yet, cluster uncertainty is
s mnot commonly taken into account. In response, we present SEMITONES, a
7 principled method for cluster-free marker identification. We showcase its ap-
s plication on healthy haematopoiesis data as 1) a robust alternative to highly
o variable gene selection, 2) for marker gene and regulatory region identification,
1 and 3) for the construction of co-enrichment networks that reveal regulators of

un  cell identity.
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» Background

13 Since the inception of single-cell RNA sequencing (scRNA-seq) in 2009, single-
1 cell methods have become commonplace. scRNA-seq provides a snapshot of the
15 gene expression state of single cells and is a valuable resource to address ques-
16 tions on cell identity and cell lineage relationships. In recent years, single-cell
v assays for transposase-accessible chromatin using sequencing methods (scATAC-
18 seq) have also become available. scATAC-seq provides a snapshot of the chro-
19 matin accessibility profile of single cells and can be used to identify putative
2 cell-type-specific cis-regulatory regions.

2 The appearance of these novel, sparse data types sparked the development
2 of specialized single-cell analysis methods that cover the entire single-cell data
23 analysis workflow. In both scRNA-seq and scATAC-seq pipelines, feature identi-
2 fication is an essential step which is commonly performed twice. First for feature
5 selection to reduce the number of genes or accessible regions in the data, and
2 later to identify markers of cell identity [1]. Feature selection for dimension-
2z ality reduction is most commonly performed by the identification of a certain
;s number of the most variable or most common features. The number of features
20 depends on the task complexity and influences clustering accuracy [1, 2]. If too
» many features are chosen, spurious clusters of cells with no specific identity may
a1 occur. Contrarily, if too few genes are selected, clusters of cells from distinct
2 biological origins may cluster together. This is especially problematic since the
;3 ground truth of the cell types present in an experiment is commonly not avail-
s able. Additionally, these effects are propagated into the downstream analyses
s including marker identification, where commonly performed differential expres-
s sion methods rely on the premise that the cell identities are known without

w consideration for annotation uncertainty [3]. These observations illustrate the
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s interdependence between clustering accuracy and feature identification.

30 The aforementioned difficulties are aggravated when one considers develop-
« mental data, like whole-organism development [4] or haematopoiesis [5] data.
o In these datasets, cells are found along the full developmental axis, from omni-
« and pluripotent stem cells to fully differentiated cells. Thus, clustering the cells
s into distinct cell types becomes less meaningful. Pseudotime analysis is com-
« mon for data of this nature. In these analyses, marker feature identification
s is commonly performed by differential testing between branches, without con-
4 sidering the uncertainty in branching point determination. Thus, reservations
s considering annotation accuracy persist.

48 Finally, genes and cis-regulatory elements act in interaction with one an-
w0 other. It is the combination of expressed genes and/or open chromatin regions
so which determine the transcriptomic or cis-regulatory state of an individual cell.
st Thus, the identification of distinct regulatory (gene expression) networks is ex-
s pected to provide a clearer picture of cell identity than individual markers.

53 To address the aforementioned challenges, we have developed SEMITONES
s« (Single-cEll Marker IdentificaTiON by Enrichment Scoring). SEMITONES is
55 a method for the identification of informative features and/or feature sets in
ss  sScCRNA-seq and scATAC-seq data independent of data clustering. We illus-
57 trate the practical use of SEMITONES by application to published healthy
s haematopoiesis scRNA-seq and scATAC-seq data [5]. We show its application
5o to feature selection for dimensionality reduction, marker gene and cis-regulatory
o element identification, and signature gene set identification. In short, we present
&1 a flexible method for the identification of signatures of cell identity in single-cell

62 omics data.
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- Results

s SEMITONES identifies informative features in single-cell omics data. We con-
es sider a feature as informative if it is only present or absent in similar cells since
e both the presence and absence of a given feature are informative for cell identity.
o7 The standard SEMITONES workflow consists of three steps. First, it selects
e a set of diverse reference cells from the entire population of cells to serve as
o a representation of the cell states present in the sample (Figure la). Next, it
7 calculates the enrichment score of each feature for the reference cell neighbour-
7 hood using a linear regression framework (Figure 1b). Lastly, to decide whether
2= a future is informative or not, it performs statistical testing against a permu-
72 tation null distribution (Figure 1c). Besides single features, this procedure can
7 be followed for sets of features. The feature set enrichment scores can then be
» used to construct co-enrichment graphs where vertices represent features and
76 the edges between them are weighted by enrichment scores (Figure 1d).

77 We evaluate the application of SEMITONES on published scRNA-seq and
72 scATAC-seq data of healthy haematopoiesis [5]. The primary objective of SEMI-
7 TONES, the clustering-free identification of markers of cell identity by enrich-
s ment scoring, is explored for both scRNA-seq and scATAC-seq. Additionally,
s we explore the selection of significantly enriched genes for feature selection as
22 an alternative to the selection of highly variable genes. Lastly, we show how
ss SEMITONES can be used to construct co-enrichment networks which reveal

s regulators of cell identity.
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Figure 1: SEMITONES workflow. a) a two-dimensional embedding of all cells
where dark grey dots are the selected reference cells. In the green gradient, we
show the similarity to reference cell c;. b) Based on the assumption that informative
genes are only expressed in the reference cell neighbourhood, we identify informative
(orange) and uninformative (purple) genes in the reference cell (c1) neighbourhood.
The value of 8 is (proportional to) the enrichment score, so informative genes
get high scores and vice versa. c) Scores in the shaded orange area are declared
significant because they are more than n standard deviations away from the mean of
the null-distribution. This null-distribution is the distribution of enrichment scores
for the permuted feature vector of all features in the data. d) Given enrichment
scores for sets of genes, we construct co-enrichment graphs where vertices are genes
and the edges are weighted by the enrichment score of the gene set consisting of
the genes connected by this edge.
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s SEMITONES identifies marker genes

s SEMITONES identifies known marker genes without preceding clustering (Fig-
& ure 2). To illustrate, the top 3 most highly enriched genes include the erythro-
s cyte markers AHSP, HBB, and CA1 [6], the plasma cell markers TNFRSF17
» [7] and GPRC5D [8], and the eosinophil /basophil/mast cell markers HDC' and
w CLC [9] (Figure 2a, see Supplementary Table 1, Additional File 2). This con-
o firms that SEMITONES identifies markers of specialized cell types. In addi-
o tion, SEMITONES identifies markers for stem- and progenitor cells, like the
i haematopoietic stem cell (HSC) markers AVP [10] and CRHBP [11], the HSC
o and multipotent progenitor (MPP) marker SPINK2 [12], and the transcription
s factor GATA2 associated with erythroid-megakaryocyte lineage commitment
o [6] (Figure 1b, see Supplementary Table 1, Additional File 2). SEMITONES
o7 can also identify markers for specialized subpopulations of highly similar cells,
o including the CD4™ T helper 17 (T,17) cell marker TNFRSF/ [9], the CD8T
» mucosal associated invariant T (MAIT) cell marker SLC4A10 [13], and the
wo transitional B cell specific DTX1 (Figure 2b, see Supplementary Table 1, Addi-
w0 tional File 2). These results illustrate that SEMITONES identifies markers of
w2 cell identity-specific marker genes for fully differentiated, progenitor, and rare
103 cell populations.

104 SEMITONES is also suited to retrieve markers of specialized subpopulations
s of highly similar cells, such as specific markers for different monocytic cell popu-
ws lations. To illustrate, SEMITONES identified relative enrichment markers that
w7 distinguish immature classical monocytes, classical monocytes, and intermediate
e monocytes (see supplementary Figure 1, Additional File 1, and Supplementary
wo Table 1, Additional File 2). Here, immature classical monocytes were identified
uwo by top 4 enrichment of S100A8, S100A9, and S100A12 and relatively lower
w enrichment of the classical monocyte markers CD1/ and VCAN. The S100A9
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2 and S100A8 genes have previously been described to be highly expressed in the
us  early stages of monocytic differentiation [14, 15, 16]. Additionally, these S100
us  genes are also markers for human monocytic myeloid-derived suppressor cells
us  (MDSCs) that develop from immature myeloid cells in disease states like chronic
us  inflammation [17], further corroborating this annotation. Using SEMITONES
w  we identify PLBD1, RBP7, and PADIJ as highly enriched in immature classical
us  monocytes (Figure lc, see Supplementary Table 1, Additional File 2). These
o three genes are not within the top 10 most highly enriched genes for other mono-
2o cytic subpopulations, and the co-expression of RBP7 and PADIj appears to be
m specific to immature classical monocytes (Figure 2b). Similarly, we identify
12 reference cells with high enrichment for LGALS2 in absence of top 10 enrich-
13 ment of the classical monocyte marker VCAN [9]. In line with observations
e of higher relative expression of LGALS2 in intermediate monocytes compared
s to non-classical monocytes [18], we suggest that this identifies a population of

126 intermediate monocytes.
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Figure 2: Application of SEMITONES for marker gene identification in

scRNA-seq data. a) Highly specific markers of well-characterized cell types (top
row: erythrocytes, plasma cells, eosinophil /basophil/mast cell lineage), progenitor
cells (middle row: haematopoietic stem cells, haematopoietic stem- and progenitor
cells, myeloid progenitors), and specific subpopulations (bottom row: Treg, CD8™
MAIT, and transitional B cells). b) The expression profile of the known immature
monocyte marker SI00A9 and the newly proposed immature classical monocyte
markers RBP7 and PAD41. c) The expression of markers along the B cell de-
velopmental trajectory. d) Reference cell annotations based on the marker genes
identified by SEMITONES.
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127 Similarly, SEMITONES identifies markers of developmental stages along the
s haematopoiesis axis, as we illustrate using the example of B-cell maturation
o (Figure 2c). Here, as the top-scoring gene in one reference cell, we identify
1o the DNTT gene which codes for the recombination substrate terminal deoxynu-
i cleotidyl transferase that is involved in immunoglobulin (Ig) and T-cell receptor
12 (TCR) recombination [19]. This gene is expressed in the lymphoid-primed pro-
13 genitor (LMPP) stage and upregulated in the common lymphoid progenitor
w  (CLP) stage [20]. Therefore, we can identify this cell as a CLP. In another
s cell for which high DNTT enrichment is found, the top-scoring enrichment is
s found for AKAPI12 (see Supplementary Table 1, Additional File 2), which is
wr expressed exclusively in pro-, pre-, and immature B lymphocytes [21]. Given
133 the combined enrichment of DNTT and AKAP12, we identify this cell as a
130 pro-B cell. Both these cells also show enrichment for the VPREBI gene, which
1o encodes the t polypeptide chain that is part of the pre-B cell receptor [22]. This
w gene is lowly expressed in CLPs and highly expressed in pro-B and pre-B cells
w2 [23], further confirming our annotations. Interestingly, the identification of a
sz cell stage with a strong cell cycle signature which includes the TOP2A, KIFC1,
w and NUSAPI genes, alongside VPREBI as the 19'" most enriched gene, allows
us for the identification of large-pre B cells, a highly proliferative cell state in B
us  cell development [24]. Furthermore, we find high DTX1 and BMPS enrichment
w7 for a cell that can now be annotated as a transitional B lymphocyte, the next
us  step in B lymphocyte development [25, 26]. Next, selective top 10 enrichment
uw of TCL1A, which is not expressed in memory B cells [27], and FCER2, which
150 is involved in B cell differentiation and regulates IgE production [22], indicates
151 cells that are immature B lymphocytes [9]. Lastly, top enrichment for MS/A1,
12 coding for the B-lymphocyte antigen CD20 which promotes calcium influx after

153 activation by the BCR [28], and FCER2 in the absence of TCL1A can be used
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15« to identify mature B cells [9, 27]. To conclude, SEMITONES identifies markers
155 of many cell identities along the developmental axis without the need to enforce
15 (arbitrary) cell identity boundaries.

157 After confirming that SEMITONES identifies markers of cell identity, we
158 use the top 10 most highly enriched genes to annotate all reference cells (Figure
s 2d). To evaluate the cell-type retrieval of our data-driven selection approach,
1w we compare those annotations to the published cluster annotations from [5].
11 This comparison reveals that one cell of every annotation is present in our set of
2 75 reference cells (see supplementary Figure 2, Additional File 1), i.e., our sim-
13 ple data-driven selection procedure manages to include all cell types of interest
e by selecting just 0.2% of the total number of cells as reference cells. Besides,
s we identify additional cell types based on SEMITONES reference cell selection
s and enrichment scores, including intermediate monocytes, and several B- and
17 T-lymphocyte subsets. Further comparisons were made to a set of 75 man-
s ually selected reference cells (see supplementary Figure 3, Additional File 1),
1o annotated based on SEMITONES enrichment scores. One of these manually
o selected reference cells was identified to be a plasmablast, a cell type that is not
i part of the cluster-based or algorithmically selected reference cell annotations.
2 We note that the data-driven reference cell selection depends on the dissimilar-
w3 ity metric and the embedding over which the dissimilarity is determined (see
s supplementary Figure 4, Additional File 1). In general, given a descriptive sim-
s ilarity metric, the data-driven selection of reference cells will provide a sample
e of cells that is representative of the population.

177 The results described above relate to enrichment scores obtained using an
e RBF-kernel with y = 8 x 107! to represent the pairwise cell similarities be-
o cause this parameterization allows for the identification of selective cell identity

1o markers. However, by decreasing the value of v, one can also identify more glob-

10
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s ally enriched genes (see supplementary Figure 5, Additional File 1). Namely,
12 Y is the inverse of the radius of influence, which is proportional to the size of
183 the cell neighbourhood for which we want to retrieve marker genes. This illus-
184 trates how SEMITONES can flexibly infer highly specific or global cell identity

185 markers without relying on hard cluster boundaries.

s SEMITONES identifies transcriptional regulators

17 'To reveal co-enrichment relationships of genes in a given cell neighbourhood, we
188 construct co-enrichment graphs using SEMITONES co-enrichment scores. Since
o~ 143 x 109 possible pairwise gene sets of 16,900 expressed genes exist, we com-
10 pute pairwise enrichment scores for gene sets of significantly enriched genes in a
1 subset of reference cells. This subset of reference cells contains one cell of each
12 annotation, where we select the cell with the enrichment score for the primary
w3 annotation marker (see Supplementary Table 2, Additional File 3). Given this
e subset, we obtain 333974 possible pairwise sets of significantly enriched genes
s (ng = 25) per cell in the subset. Next, we perform enrichment scoring for all
s gene sets for each reference cell in the subset (see Methods). We then construct
17 co-enrichment graphs containing all gene sets that are significantly, positively
s co-enriched (ns = 30) in some reference cell. To unveil the crucial connections
wo in each co-enrichment graph, we evaluate the maximum spanning tree (MST)
20 of each graph.

201 The co-enrichment graphs contain paths that link together genes that inter-
22 act in specific stages of haematopoietic development. To illustrate, in the in-
203 teraction co-enrichment graph of the transitional B cell neighbourhood we find
20 that IGLLS is highly connected to its predicted interaction partner CD79B (see
205 supplementary Figure 6, Additional File 1, [29]). These genes encode proteins

205 (IgP, and Igh, respectively) that are involved in pre-B cell receptor signalling,

11
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27 which is an essential process in the development of immature B cells [30]. An-
28 other example concerns CDSE, CD3D and CDS8A, for which interactions are
2o found in the co-enrichment graph of naive CD8' (Figure 3a), which are pre-
20 dicted in the STRING database [29] and have a mechanistic basis. Namely,
au the T-cell surface glycoprotein CDS8 is thought to play a major role in the tar-
a2 geted delivery of the Lck protein to the CD3-complex, of which the CD3e chain
23 and CD3% chain are part, during T cell activation [31]. These results illustrate
2 that SEMITONES can identify biologically meaningful and cell identity specific

25 co-expression graphs from scRNA-seq data.
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e e 1510084

Figure 3: Gene co-enrichment graphs constructed from SEMITONES gene
set enrichment scores. a) The maximum spanning tree (MST) of the interaction
co-enrichment graph for naive CD8™ cells. b) The interaction co-enrichment graph
of TR17 cells shows a central role for the SI00A4 gene which is not selectively
expressed in regulatory T-cells. In both graphs, the vertex size is proportional to
their weighted degree.

216 Inspection of the interaction co-enrichment graphs for the monocytic cell
a7 populations reveals subtle differences in otherwise highly similar graphs. For
28 example, a central role for S100 genes are found for all populations. Notably,
20 the S100A9 gene plays a more central role in the co-enrichment graph of the

20 classical monocytes than that of the immature classical monocytes (see sup-

12
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21 plementary Figure 7, Additional File 1), whilst the S100A9 gene was found to
22 be more highly enriched in immature classical monocytes. Differences between
223 monocytic cell populations are also found regarding which other genes a highly
24 connected gene connects to. To illustrate, NEATI is a highly central node in
25 classical and intermediate monocytes but connects to different genes in each
26 subset (see supplementary Figure 7, Additional File 1). In classical monocytes,
27 NEAT1I is highly connected to S100A9 and S100A8, but in intermediate mono-
28 cytes it is highly connected to LGALS2, HLA-DRBI, and HLA-DRA. These
20 interactions are plausible based on higher expression of S100A8 and S100A9
20 in classical monocytes and HLA-DRA in intermediate monocytes compared to
21 other monocyte populations [32]. Descriptions of gene interactions in monocytic
22 subpopulations are only sparingly available in the literature, and we did not find
213 any mechanistic evidence for the interactions described above. In general, how-
2 ever, these results confirm that SEMITONES uncovers subtle differences in the
235 co-enrichment networks of highly similar cell populations. Based on the evidence
26 described for transitional B lymphocytes and naive CD8™ cells, we suggest that
27 these represent putative mechanistic distinctions.

238 To identify central genes in the co-enrichment networks, we calculate the
20 current flow betweenness centrality of the vertices in the MST (see Supplemen-
20 tary Table 3, Additional File 4). Inspection of the top 10 most central genes
an reveals known regulators of cell identities. For example, the known regulators
a2 of erythropoiesis GFIIB and HES6 are in the most central vertices of all ery-
23 throcyte co-enrichment graphs [33, 34]. Interestingly, these genes are ranked
24 only 31st and 46th most enriched in the erythrocyte neighbourhood. Similarly,
25 S100A/ is a highly central node in all T},17 co-enrichment graphs (Figure 3b,
25 see Supplementary Table 3, Additional File 4), but is only the 52nd most en-

27 riched gene in the T}, 17 neighbourhood. This rank is intuitively coherent with

13
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xs  the global expression profile of this gene, with high expression observed in all
20 monocyte, monocytic dendritic cells (mDC), natural killer (NK) cell, and ma-
250 ture T lymphocyte populations (Figure 3b). S100A4 is suggested as a regulator
21 of T 17 differentiation, albeit in Rheumatoid Arthritis mouse models [35]. An-
2 other S100 gene, S100A11, was found as a highly central node in minimum
23 expression-based co-enrichment graphs of Ty17 and Tyeg neighbourhoods (see
¢ Supplementary Table 3, Additional File 4), whilst ranking as 546th and 790th
25 most enriched, respectively. This gene has been implicated as a regulator of Treg
26 development [36]. Based on these results, SEMITONES co-enrichment analysis
»7  enables the identification of putative regulators of cell-type specialization, also
s in cases where these regulators are not restrictively expressed in a specific cell
9 neighbourhood.

260 Lastly, we qualitatively assess the robustness of biologically meaningful co-
s enrichment identification when using different approaches for gene set expres-
x%2  sion vectors. We find that some, but not all, connections are shared between
%3 all graphs for a given cell neighbourhood. For example, AHSP and GFI1B are
¢ found to be highly connected in all erythrocyte co-enrichment graphs (see sup-
s plementary Figure 8, Additional File labcd), whilst the connections of AHSP,
%6 HBB, and HBB are only found for interaction, maximum value-, and median
27 value-based co-enrichment graphs (see supplementary Figure 8, Additional File
s labc). Similarly, the interactions between ASHP, KLF1, HBA1 and HBA2
20 are only found in the minimum-value based graphs (see supplementary Fig-
oo ure 8, Additional File 1d). All these connections can be traced back to the
on biology of erythrocyte development and function. Namely, both AHSP and
on GFIIB are essential for erythrocyte development and function [33, 37], AHSP
a3 is a haemoglobin stabilizing protein and a chaperone of HBA1 and HBA2, and
on  KLF1 binds to the promoters of HBA1 and HBAZ2 [38]. Additionally, high
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s confidence interactions from experiments and curated databases were found be-
o tween AHSP, HBA1, HBA2, HBB, and HBD in STRING [29]. Overall, these
or results suggest that interaction, maximum value, and medium value-based co-
s enrichment are more similar to each other than the minimum expression-based
are co-enrichment graphs. This is readily explained by the relative focus on more
20 lowly expressed genes for the minimum value-based co-enrichment graphs, with
1 its stronger emphasis on lowly expressed genes. Importantly, independent of
2 the method of gene set expression vector construction, biological proof of the
23 co-enrichment identified SEMITONES can be found in curated databases and

2 the scientific literature [29].

s SEMITONES for feature selection

26 SEMITONES is also a highly effective approach for feature selection. Feature
a7 selection typically takes place at the beginning of the preprocessing, when little
28 information is available to aid the selection of a suitable similarity metric. We
20 therefore choose the standard cosine similarity to characterize the similarity be-
200 tween cells. Additionally, we compute the similarity over the top 50 principal
20 components instead of an optimized multi-dimensional UMAP. On the same
22 grounds, we use the manually curated reference for feature selection. These
203 reference cells were annotated when assessing the cell type retrieval in the data-
24 driven reference cell selection, and we will use the same annotations in this
25 section. We use SEMITONES to select 4000, 2000, 1000 and 500 significantly
26 enriched genes by adjusting the number of standard deviations away from the
27 null-distribution mean at which we declare significance. This approach is com-
28 pared to selecting the same numbers of highly variable genes (HVGs) with the
20 “Seurat-flavoured” HVG selection from Scanpy [39]. For each set of selected

w0 features, we perform LSI and construct a 2D UMAP using 35 nearest neigh-
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so bours with a minimum Euclidean distance of 0.3. The methods are evaluated
s2  based on the cell identity separation and marker gene localization in the UMAP
303 Space.

304 The separation of cell identities in the UMAP space is less affected by se-
w5 lecting a lower number of SEMITONES enriched genes than to selecting a lower
26 number of HVGs (see supplementary Figure 9, Additional File 1). To illustrate,
57 when selecting 4000 genes, the only difference is the reduced separation of ery-
28 throcytes and megakaryocyte-erythrocyte progenitor (MEP) cells when using
s HVGs. However, the discrepancies increase as we lower the number of genes we
s select. For example, when using the top 2000 HVGs, plasmablasts and plasma
s cells cluster together, and one CD8 ¢y is found within the naive CD8T cell
sz neighbourhood. There is no decreased separation when using 2000 most en-
a3 riched genes, and even lowering the number of genes to the 1000 most enriched
au genes does not impact the separation of cell identity in the 2D UMAP space.
ais In contrast, when using the 1000 most variable genes, one B cell is found in the
16 NK-cell neighbourhood, and one NK cell is found in the CD4T neighbourhood.
sz Additionally, granulocytes, plasmacytoid dendritic cells (pDCs), and granulo-
as  cyte and monocyte progenitors (GMP) are no longer as distinctly separated, and
a0 neither are the different monocyte subpopulations (Figure 4). Lastly, and per-
20 haps most apparent, the erythrocyte and eosinophil /basophil/mast cell popula-
= tions are not resolved. Strikingly, these erythrocyte, eosinophil/basophil/mast
2 cell and the granulocyte progenitor (moving towards neutrophils) branches that
23 contain only a few cells, are still resolved when using just the 500 most highly
24 enriched genes, but we observe the first loss of resolution, with the naive CD8%
25 cells merging with the CD4T and T, 17 cell neighbourhoods. The naive CD8F
16 population remains well separated when using the top 500 HVGs but at the cost

a7 of a further decrease in the separation of additional T cell subsets and mono-
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128 cyte subpopulations. Overall, these results demonstrate that a smaller number
»9  of SEMITONES selected features explains the same amount of biological vari-

;0 ation as a larger set of HVGs.

a b s HBB c
A cLe cic
Plasma
HSC - _'__7_AAAA>J: Eo/baso/mast Mafure 8
* Mature B IGLL5 IGLLS
*ONK
HSC
DC . H
Neut & Plasma Naive {CylotT =~ *
. mDe To o cDs* o Y ;
o GNLY GNLY # Ery *
b oo ; £ : b8 :
i Naive T ﬁ .
4 4 pDC
: ’ Naive CD4*
,,,,,,,,,,,, i S PTGDS PTGDS 2

HSC e Erythrocyte
o MPP o GWP
o P e GP
o MEP Basophils

Naive CD4* Naive CD8* o CDB%

o coarT7 o cosy mbe
o T o CD8*MAIT poc

TNFRSF4 TNFRSF4

S100A9 S100A9

Ea
}‘:s

Figure 4: SEMITONES is a more sensitive alternative to highly variable
gene selection. a) UMAP embedding of the scRNA-seq data based on the top 1000
most enriched genes. b) Marker gene expression visualized on the top enriched gene
UMAP (left column, panel a) and the highly variable gene UMAP (right column,
panel c). The border colours correspond to the annotation label colours of the label
for which this gene is a marker. ¢) UMAP embedding of the scRNA-seq data based
on the top 1000 most variable genes.

331 The decreased separation of cell identities when using HVGs compared to
s highly enriched genes can be linked to the absence of marker genes in the HVG
s3 sets: the erythrocyte markers AHSP and HBB are absent from the top 4000
s HVGs onward, and the plasmablast marker /GLL5 and the CD8 y and NK-cell
15 expressed CCLS are absent from the top 2000 HVGs. Additionally, differences
16 in the separation of cell identity can be linked to differences in marker gene

37 localization in the UMAP space as illustrated in Figure 4 for 1000 enriched
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a8 versus 1000 HVG genes. There are also genes that are more localized in UMAPs
;9 constructed using the top HVGs, e.g. the T}, 17 marker TNFRSF/ when using
a0 1000 (Figure 4) or 500 (see supplementary Figure 10, Additional File 1) genes. In
sa general, however, gene expression appears more localized in UM APs constructed
s using the top SEMITONES enriched genes. Overall, these results suggest that
s SEMITONES feature selection reduces the gene space to a small set of highly

s informative genes.

s SEMITONES identifies cell-specific cis-regulatory elements

us  Since SEMITONES is readily compatible with the scATAC-seq input matrices,
w7 we also explore its application for the identification of enriched ATAC peaks for
us  7H algorithmically selected reference cells. Visual inspection of top and bottom
s scoring regions reveals that SEMITONES accurately identifies peaks that are
30 specifically present or absent in specific cell neighbourhoods (Figure 5a). Rarely,
s these significantly enriched peaks correspond to known cis-regulatory regions,
32 like the PID1-DNER Intergenic CAGE-Defined Monocyte Enhancer (chromo-
353 some 2, 230147763-230148263bp, Figure 5a). Therefore, we use GREAT (v4.0.4)
3¢ [40] to identify associated genes and enriched GO terms for the significantly
35 enriched peaks (n, = 20). Based on this, we confirm that the peaks are in
36 regions responsible for haematopoietic (e.g. HSC differentiation) and immune
7 (e.g. leukocyte degranulation) processes. Many of these terms were cell type-
s specific and enabled us to directly annotate 74 out of 75 reference cells based
30 on the GO terms and their associated genes (Figure 5b), without having to fall
w0 back on complementary data such as from scRNA-seq. Most of the annotations
;1 are concordant with the annotations in [5], which were obtained using Seurat’s
2 canonical correlation analysis with scRNA-seq based annotations, with the ex-

3 ception of resolving all monocyte and T lymphocyte subpopulations. However,
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4 in turn, we reveal additional signatures, including a Notch signalling signature
s indicative of a pre-T lymphocyte fate in a CLP and a dendritic signature in
w6 a subset of reference cells. These observations may be related to the selection
7 and representation of the reference cells and their neighbourhoods, and they
s support the notion that early cis-regulatory signatures reveal lineage commit-
0 ments before they can be identified on the RNA level. Separate inference on the
s chromatin level is thus essential to gain novel insights from scATAC-seq data.
371 Significantly enriched peaks are enriched for the transcription factor binding
sz motifs that one would expect to find in the annotated cell types. For example,
sz HOX motifs are enriched in stem and progenitor cells, GATA motifs are enriched
s in the myeloid lineage, and PRDM1 and IRF4 motifs are enriched in the B
ars  cell lineages. We also identify cell type-specific motifs. For example, we find
s enrichment for motifs of the known regulators of B cell differentiation E2A,
7w EBF, PAX5, PU.1 and IRF8 [41] in pre-B and transitional B cells (Figure 5¢),
s and for GATA3, which is indispensable for T helper 2 (T},2) cell differentiation
70 [42], in the CD4" memory cell neighbourhood. These results further suggest
s0 that SEMITONES identifies distinct and import features (i.e. open chromatin
s regions) of cell identity.

382 Finally, we evaluate whether certain cis-regulatory elements are overrepre-
;3 sented in the significantly enriched peaks. Selectively inaccessible regions are
s more often promoter regions than any other cis-regulatory regions (Figure 5d).
s In the same vein, peaks with a positive enrichment score are, on average, most
s likely to fall in enhancer regions. Both these trends fit prior analyses that
sr  showed that in general, promoters per default are open across conditions, while
ss  many distal regulatory regions are specifically opened [43]. Lastly, we identify a
w0 relative overrepresentation of enhancer regions in monocytes and T lymphocytes

30 (see supplementary Figure 11, Additional File 1), although this might be related
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Figure 5: Application of SEMITONES for marker region identification in
scATAC-seq data. a) The accessibility profile of several highly enriched regions
visualized in a UMAP embedding. Region chr2:230147763-230148263 contains the
PID1-DNER Intergenic CAGE-Defined Monocyte Enhancer. b) Reference cell an-
notations based on enriched GO-terms and associated genes, identified by HOMER,
in significantly enriched marker regions identified by SEMITONES. c) Motifs that
were found to be enriched in regions that SEMITONES identified as significantly en-
riched in transitional B cells. d) The normalized percentage of significantly enriched

regions that have a certain annotation in HOMER or FANTOMS5.
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s to a relative overrepresentation of certain cell types in the FANTOMS5 data.
s Overall, these results illustrate how the identification of cell type-specific open
33 chromatin regions is invaluable to the elucidation of the role of cis-regulatory

s element accessibility in the acquisition and maintenance of cell identity.

»  Scalability of SEMITONES

s SEMITONES calculates enrichment scores of 30,000 features for a single refer-
se7  ence cells in just a few minutes when the number of non-zero values is representa-
ws  tive of scRNA-seq (~ 10% non-zero values) or scATAC-seq (~ 2% non-zero val-
w0 ues, Figure 6bc). When applying SEMITONES to large and sparse data with a
w0 density representative of scATAC-seq data, parallel processing is needed to limit
s runtime (Figure 6d). Runtime increases decidedly when applying SEMITONES
w2 to larger numbers of features and reference cells, or combinations thereof (see
w3 supplementary Figure 12, Additional File 1). Currently, the main bottleneck
ss  lies in the memory demand for large numbers of reference cells, because the sim-
ws ilarity matrix is dense and of the dimension |cells| x |reference cells|. Therefore,
w6 it is advisable to use multiple cores when using a large number of features for
w7 very sparse data, and submitting individual jobs for subsets of reference cells

w8 when applying semitones to large numbers of reference cells.

w Discussion

a0 We present SEMITONES; a tool for the de novo identification of informative
m features in single-cell omics data. We illustrate that SEMITONES identifies
a2 marker genes and regulators of cell identity without first clustering the cells.
as This way, we aim to mitigate the propagation of errors or biases from cluster
ss assignments. Additionally, we show that SEMITONES is an effective alterna-

a5 tive to highly variable genes for feature selection in scRNA-seq preprocessing.
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Figure 6: Runtime scalability of SEMITONES. The runtime of SEMITONES
when applied to a) data with all non-zero values, b) data with a density representa-
tive of scRNA-seq data (10% non-zero values), and c) a data density representative
of scATAC-seq data (2% non-zero values) for a maximum of 30,000 features. d)
The runtime of SEMITONES when applied to data with 2% non-zero values with a
maximum of 600,000 features, which isrepresentative for a large scATAC-seq data
set that was not filtered for highly variably/commonly accessible regions. The pur-
ple lines show the runtime with respect to the number of reference cells and the
orange lines show the runtime with respect to the number of features. The dotted
lines represent the runtime when parallelizing over 30 CPUs and the solid lines show
the runtime when using 1 CPU. All results were obtained for a dataset containing
100,000 rows, simulating a data set of 100,000 cells in total.
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a6 Here, SEMITONES identifies a smaller number of genes that captures the same
a7 biological diversity as a larger number of HVGs. Lastly, we show that SEMI-
as TONES can also be readily applied to the identification of relevant peaks from
a0 scATAC-seq data. In short, SEMITONES is a flexible tool aiding the identifi-
a0 cation of biologically relevant features from single-cell omics data.

1 SEMITONES accurately retrieves marker genes of cell identity. Since refer-
a2 ence cell annotations based on these markers largely overlap with the published
w23 annotations [5], we conclude that SEMITONES accurately retrieves cell identity
a4 specific markers, and propose highly enriched genes for which we did not find
a5 literature evidence, like PADI/ in immature classical monocytes, as putative
a6 novel markers. These highly specific marker genes also annotated subpopula-
27 tions of cells that are otherwise highly similar, like monocytes and T cells. The
s use of an RBF-kernel to describe cell similarities enables the identification across
29 a broad range of specificity because we can use the parameter vy to define the cell
w0 neighbourhood range for which we identify informative genes (see supplemen-
a1 tary Figure 5, Additional File 1). By performing regression to these similarities,
2 we remove the need to assign cells to groups of the same identity but instead
.3 allow cells to be part of multiple cell neighbourhoods. This way, we identify
s marker genes along the haematopoietic axis, as was illustrated for the B cell
a5 lineage. On the other hand, the dependence on the similarity metric is a poten-
s6  tial limitation of SEMITONES, especially when no prior knowledge is available
a7 to evaluate the adequacy of the similarity metric. Importantly, an adequate
s similarity metric is essential for the data-driven selection of a set of reference
a0 cells that is representative of the biological cell diversity. Ultimately, given an
wuo accurate similarity metric, SEMITONES identifies highly specific markers of
a1 cell identity, illustrated here for the haematopoietic axis. We also explore using

w2 highly enriched genes, identified by SEMITONES, as an alternative to using
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w3 HVGs. Cell identity separation and localization of marker gene expression in
ws the 2D UMAP space improves when using highly enriched genes compared to
ws  HVGs. Thus, we conclude that n highly enriched genes capture more biolog-
ws ical variability than n HVGs. This is of particular interest in light of recent
w7 developments in targeted scRNA-seq, for which the need to select a set of a few
ws  hundred genes arises that contain sufficient transcriptomic information regard-
we ing the biological system. The adequate performance while using the cosine
w0 similarity over the top 50 principal components instead of an RBF-kernel over
s 25 UMAP dimensions illustrates that SEMITONES also identifies informative
42 genes when using a non-specialized similarity metric. However, the performance
3 of SEMITONES will depend on the provided reference cells since SEMITONES
ssa only identifies highly enriched genes in reference-cell neighbourhoods. From
5 simulations (see supplementary Figure 4, Additional File 1) we conclude that
w6 reference cell sets obtained using suboptimal similarity metric-embedding com-
s7  binations do not represent all cell identities. In this case, the highly enriched
s genes will only capture the variability for cell identities present in the reference
w0 cells. Based on the same simulations, we recommend using the Euclidean dis-
w0 tance over a reasonable number (e.g. 50) of principal components if using the
w61 SEMITONES data-driven reference cell selection. Besides marker gene identi-
w2 fication, SEMITONES can be used to construct co-enrichment graphs. These
w3 co-enrichment graphs revealed several interactions indicative of mechanistic as-
s pects of gene regulation and cellular function. For example, high co-enrichment
ws of CD8A, CD3E, and CD3D in CD8' T lymphocytes is substantiated by the
ws role of CD8A as a chaperone to the CD3-complex (Figure 3a). Highly central
w7 nodes (i.e. genes) in these networks represent putative regulators of cell identity,
ws  even if they are not individually enriched in a cell neighbourhood, as seen for

w0 S100A4 gene in Ty, 17 cells (Figure 3b, [35]).
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470 The SEMITONES workflow is readily transferable to the identification of
wm marker peaks from scATAC-seq [peak x cell] matrices. Based on GO term
a2 enrichment of associated genes and enrichment for known transcription factor
a3 binding motifs, we conclude that SEMITONES retrieves biologically relevant
an peaks. Additionally, we identify biological signatures that we did not unveil in
s the marker genes. This illustrates the benefit of analysing scATAC-seq data
a6 independently of scRNA-seq data, although we cautiously note that this obser-
a7 vation may be a result of differences in the cell identities represented by the
s reference cells. Besides using the enriched peaks to annotate cell identities, we
ao also use significantly enriched peaks to identify global patterns of chromatin
a0 accessibility and cis-regulatory regions. Most notably, we find that selectively
w1 inaccessible regions are most likely promoters and selectively accessible regions
a2 are most likely enhancers, once more indicating the higher cell type-specificity
a3 of enhancers. However, these results are limited to a small number of reference

s cells and were not subjected to rigorous statistical analysis.

« Conclusion

s SEMITONES is a diverse and flexible tool for the identification of informa-
w7 tive features from single-cell omics data, readily applicable to expression and
ss  chromatin-related data. Its possible limitations include the need for an ade-
w0 quate cell similarity metric and a set of reference cells that is representative of
w0 the cell population. Therefore, in future research, we will explore deterministic
w1 approaches and the use of geometric sketching [44] to select an optimal set of
w2 reference cells. Additionally, we aim to improve the run time for many features
23 and the memory demand for large numbers of reference cells. Namely, the appli-
w4 cation of SEMITONES to large numbers of reference cells currently requires the

a5 user to perform computations for subsets of reference cells due to limitations in
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w6 the multiprocessing setup. On a biological level, we will explore the integration
w7 of scRNA-seq and scATAC-seq data on the cell level. As such, we aim to keep
w0 SEMITONES up to date as single-cell data grows and diversifies, to aid the
w0 elucidation of regulatory mechanisms underlying the acquisition of cell identity

soo  in health and disease.

« Methods

s Reference cell selection

s In this article, we use two reference cell selection methods: an automated data-
sos  driven cell selection method, and manual selection of a set of reference cells from
sos  a 2D cell embedding. For the manual selection of cells from any 2D embed-
sos  ding, we provide a figure widget implementation. The data-driven cell selection

sov  method is presented in Algorithm 1 and described below.

Algorithm 1 Data-driven iterative selection of dissimilar cells.
s« [i]
e+ [i

N-n

n
d; « distances(X, x;)
append k— NN of i to e
append argmax(d;) to e and s
while k— NN < n - |e|]) do
dg[ 1] - distances(X, xg[1])
append k— NN of s[-1] to e
append argmax(dg_1)) to e and s
end while

k +

508 In addition to the methods applied in this study, we provide the options
so0 o use the sklearn k-means++ implementation and a fixed-grid search. In the
s fixed-grid search, a lattice graph of a user-defined size n X n is placed over the

su 2D embedding of single cells, as illustrated in Supplementary Figure 13, Addi-
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s tional File 1. Then, the cells closest to the intersections of the horizontal and
s vertical grid lines are selected. The method avoids selecting a disproportionate
su. number of cells at the edge of the 2D-embedding by putting a constraint on the
sis. minimum distance between each pair of selected cells. The implementations of

sis  these methods can be found in the cell selection module of SEMITONES.

sz Enrichment scoring

sis  Given a set of reference cells (Figure 1a), we identify informative features in
s these cells. From the idea of an informative feature as being only expressed
s20 Or absent in similar cells, we can derive the formal definition that informative
sa1 features harbour a strong linear relationship with the similarity to the reference
s2  cell (Figure 1b).

523 In SEMITONES, we infer informative features using a simple linear regres-
s sion framework (Equation 1). Here, y, is a vector representing each cell by its
s»s  similarity to some reference cell ¢ using any suitable metric. As example, we use
s an RBF-kernel with v = 8 x 107! over a multidimensional UMAP embedding
s7  in applications for marker selection. For applications to feature selection, we
s:s  use the cosine similarity over the top n principal components. The vector x;
s20  represents the value of the feature g in each cell. When applying the method
s20  to scRNA-seq data, this feature vector x; contains the gene expression level in
sn each cell. For applications to scATAC-seq data, x; is a binary feature vector
s indicating whether the chromatin at a certain location in a cell is accessible (1)
ss3 or not (0). The regression coefficient 3 ¢, which is estimated using the ordinary
s least squares method, describes the strength of the linear relationship between
sy and xg. Thus, the value of B ¢ can be interpreted as a score of the enrichment
s of some feature f in some reference cell c. High positive enrichment scores will

s be obtained for features which are only observed in cells similar to some cell ¢
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s (Figure 1b). Inversely, low negative scores will be obtained for features which

s are only observed in cells which are dissimilar to some cell ¢ (Figure 1b).

Vo = Xef X Bt + e, €c ~ N(0,6?) (1)

s In addition to single feature enrichment scores, one can also opt to calculate
sa enrichment scores for sets of features. In this case, x¢ is a vector representing
se2  the combined values of all features in the set. In the case of continuous feature
si3 values, like in gene expression values in scRNA-seq, we provide four different
s approaches to representing a set of features in a single vector. The first ap-
ses  proach is the multiplication of the vectors, like an interaction term in multiple
ss6  regression. The second and third approaches are to select the lowest or highest
se7  expression value of the features in a set as the representative expression value,
sis  respectively. Lastly, the fourth approach is to take the median expression of the
sa0  features in the set as the representative value. For binary feature vectors, like
sso0 in SCATAC-seq, we can also readily take the median feature values to present
ss1 the feature set expression vector. Additionally, we implement the strategy of
s2  annotation a feature set as present (1) if one or all of the features in a set are
3 present and absent (0) if none of the features is present.

554 The pairwise feature set enrichment scores can be used to construct co-
55 enrichment graphs, where vertices (i.e. features) are connected by edges that
56 are weighted by the feature set enrichment scores (Figure 1d). To improve
ss7  interpretability we then infer the maximum spanning tree of these graphs, in
sss  which all vertices are connected using the least number of edges with a maximum
ss0  total weight, using networkx (v2.4) [45]. The current flow betweenness centrality
s measure is used as a measure of the importance of a feature in the co-enrichment

s network. Visualization of graphs is performed in Netwulf [46].
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s Significance testing

sss ' The null distribution for significance testing is obtained by repeating the scoring
sse  procedure using n times permuted feature vectors. Due to the permutation of
sss  the feature vectors, the feature values are randomized while still resembling the
sss  original data. Significance is declared at a user-defined number of standard
sev  deviations (ns) away from the mean of this null distribution (Figure 1c). Here,

ss  we always use n = 256.

s Data processing

so The practical use of SEMITONES is illustrated by its application to healthy
sn  haematopoiesis scRNA-seq and scATAC-seq data published by [5]. The scRNA-
s2  seq count matrices were obtained from the GEO database (GSE139369, accessed
s February 28 2020). The scATAC-seq count matrix was downloaded from the
s GitHub page linked to the original data publication ([47], accessed on 3 March
s5 2020).

576 The scRNA-seq data covers a total of 35582 cells obtained from six different
s7  samples, including two samples of CD34%1 enriched BMMCs, two samples of
sts - non-enriched BMMCs and two samples of PBMCs. First, we removed any cells
sro  for which the ratio between the number of genes expressed over the count-depth
se0 1s greater than or equal to 0.3. Next, we performed scran deconvolution nor-
ssi.  malization using the computeSumFactors function using clusters obtained from
sz the quickCluster function [48, 49]. The normalized counts were log-transformed
s using an alternative pseudo-count as proposed by Lun et al. (2018) [50]. Inspec-
s tion of the count depth of cells in a 2D UMAP embedding (computed over the
sss  top 10 principal components) revealed a cluster of cells with low count depth
s in one of the CD341 samples, which was removed. This leaves a total of 35156

se7 - cells.
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588 The (non-normalized) count data from all cells that passed quality control
ss0  were combined, and scran deconvolution normalization was performed on the
so combined data. The data were log-transformed using an alternative pseudo-
s count [50] for use in enrichment scoring. We then performed latent semantic
s indexing for the reduction of the normalized count data to a 50-dimensional
s3 embedding. A 2D and 25D uniform manifold approximation and projection
s« (UMAP, 30 neighbours and a minimum distance of 0.3) over the LSI space were
s computed for visualization and similarity calculations, respectively.

596 The scATAC-seq data contains a total of 35038 DC34™" enriched BMMC,
sov non-enriched BMMC, and PBMC cells. We performed quality control on the
ss combined data as follows. Cells were removed if their peak depth exceeds
so9 200,000 or more than 60,000 peaks were called in this cell, and peaks were
so removed if their count exceeds 40,000, leaving 35022 cells. Next, we binarized
s the peak by cell-matrix and perform LSI to reduce the feature space to 50 dimen-
s2 sions. We computed a 2D and 35D UMAP (50 neighbours, minimum distance of
03 0.5) over the 50-dimensional space for visualization and similarity calculations,

04 respectively.

«s Evaluation references

s For the annotation of the scRNA-seq reference cells we look at the top 10 most
sor highly enriched genes (according to SEMITONES). The Human Blood Atlas
sz [9], with a special focus on the Monaco scaled dataset [51], served as a primary
s00 reference. Additional markers were obtained from the literature (see Supple-
a0 mentary Table 2, Additional File 3). The STRING (v11.0) database ([29], [52])
sn  was used for qualitative evaluation of co-enrichment graphs. The assessment of
sz SEMITONES as a method for feature selection in scRNA-seq was performed in

s13 comparison to the retrieval of highly variable genes as implemented in Scanpy
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s (v1.4.5) [39]. For the annotation of scATAC-seq reference cells, we obtain GO-
e1s  term enrichments and associated genes for significantly enriched peaks using
s  GREAT (v4.0.4) [40]. We provide all peaks in the clean scATAC-seq data as a
sz background set and select the “basal plus extension” association rule to charac-
eis  terize the regulatory domain. According to this association rule, the proximal
s10  domain is 5 kilobases upstream and 1 kilobase downstream of the transcrip-
o0 tion start site (TSS), and the distal domain is defined as up to 1000 kilobases
s from the TSS. cis-Regulatory element annotations were obtained from HOMER
2 (v10.4) (promoter, exon, 5’ UTR, 3’ UTR, intronic, intergenic, transcription ter-
s mination side) and the permissive enhancer annotations in FANTOM 5 phase
¢ 2.6. In HOMER (v10.4), a region is annotated as a promoter of it lies within
s -1000 and +100 base pairs from the TSS as annotated in RefSeq. Motif enrich-
26 ment of known transcript factor (TF) binding motifs was performed using the
s findMotifsGenome function from HOMER (v10.4). We consider motifs enriched

ss if their (Benjamini) g-value < 0.01.

2 Scalability of run time

60 The run time scalability was assessed for different numbers of cells, numbers
s of features, data densities, and the number of core processing units (CPUs).
s2  Random data sets with 100%, 10%, or 2% nonzero values were constructed. The
s13  decision for 10% and 2% nonzero values were based on the sparsity character of
e« the data used in the application example. In all experiments, the total number
65 of cells was set to be 100,000. Run time was compared between computations
3 using one CPU and 30 CPUs. Parallelization over rows or columns was selected

s based on whether the number of rows or columns was greater, respectively.
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= Availability of data and materials

s9  The datasets supporting the conclusions of this article are available from public
sa0  sources. The healthy haematopoiesis scRNA-seq dataset was downloaded from
s1  the Gene Expression Omnibus (GSE139369). The healthy scATAC-seq dataset
s was downloaded from GitHub, accessed on 3 March 2020 [47, 5]. The SEMI-
ss  TONES software is freely available from GitHub [53] under the GPL-3.0 license.
eas  The scripts and notebooks used for data processing and analyses are published

os on GitHub [54].
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« Additional Files

= Additional file 1 — Supplemental Figures

e This file (.pdf) contains all supplemental figures that were referenced within the

&2 main text.

«: Additional file 2 — Table S1

&2 Table S1 (.csv) lists the top 10 most highly enriched genes for all data-driven selected

a5 reference cells.

«s Additional file 3 — Table S2

sz Table S2 (.csv) lists the marker genes used for the annotation of reference cells

228 based on the top 10 most highly enriched genes.

=0 Additional file 4 — Table S3

s Table S3 (.csv) lists the most central nodes in the co-enrichment graphs constructed
s using enrichment scores for interaction vectors, maximum-value vectors, median-

sz value vectors, minimum-value vectors.
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