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Abstract1

Identification of markers is an essential step in single-cell analytic. Current2

marker identification strategies typically rely on cluster assignments of cells.3

Cluster assignment, in particular of development data, is non-trivial, potentially4

arbitrary and commonly relies on prior knowledge. Yet, cluster uncertainty is5

not commonly taken into account. In response, we present SEMITONES, a6

principled method for cluster-free marker identification. We showcase its ap-7

plication on healthy haematopoiesis data as 1) a robust alternative to highly8

variable gene selection, 2) for marker gene and regulatory region identification,9

and 3) for the construction of co-enrichment networks that reveal regulators of10

cell identity.11
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Background12

Since the inception of single-cell RNA sequencing (scRNA-seq) in 2009, single-13

cell methods have become commonplace. scRNA-seq provides a snapshot of the14

gene expression state of single cells and is a valuable resource to address ques-15

tions on cell identity and cell lineage relationships. In recent years, single-cell16

assays for transposase-accessible chromatin using sequencing methods (scATAC-17

seq) have also become available. scATAC-seq provides a snapshot of the chro-18

matin accessibility profile of single cells and can be used to identify putative19

cell-type-specific cis-regulatory regions.20

The appearance of these novel, sparse data types sparked the development21

of specialized single-cell analysis methods that cover the entire single-cell data22

analysis workflow. In both scRNA-seq and scATAC-seq pipelines, feature identi-23

fication is an essential step which is commonly performed twice. First for feature24

selection to reduce the number of genes or accessible regions in the data, and25

later to identify markers of cell identity [1]. Feature selection for dimension-26

ality reduction is most commonly performed by the identification of a certain27

number of the most variable or most common features. The number of features28

depends on the task complexity and influences clustering accuracy [1, 2]. If too29

many features are chosen, spurious clusters of cells with no specific identity may30

occur. Contrarily, if too few genes are selected, clusters of cells from distinct31

biological origins may cluster together. This is especially problematic since the32

ground truth of the cell types present in an experiment is commonly not avail-33

able. Additionally, these effects are propagated into the downstream analyses34

including marker identification, where commonly performed differential expres-35

sion methods rely on the premise that the cell identities are known without36

consideration for annotation uncertainty [3]. These observations illustrate the37
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interdependence between clustering accuracy and feature identification.38

The aforementioned difficulties are aggravated when one considers develop-39

mental data, like whole-organism development [4] or haematopoiesis [5] data.40

In these datasets, cells are found along the full developmental axis, from omni-41

and pluripotent stem cells to fully differentiated cells. Thus, clustering the cells42

into distinct cell types becomes less meaningful. Pseudotime analysis is com-43

mon for data of this nature. In these analyses, marker feature identification44

is commonly performed by differential testing between branches, without con-45

sidering the uncertainty in branching point determination. Thus, reservations46

considering annotation accuracy persist.47

Finally, genes and cis-regulatory elements act in interaction with one an-48

other. It is the combination of expressed genes and/or open chromatin regions49

which determine the transcriptomic or cis-regulatory state of an individual cell.50

Thus, the identification of distinct regulatory (gene expression) networks is ex-51

pected to provide a clearer picture of cell identity than individual markers.52

To address the aforementioned challenges, we have developed SEMITONES53

(Single-cEll Marker IdentificaTiON by Enrichment Scoring). SEMITONES is54

a method for the identification of informative features and/or feature sets in55

scRNA-seq and scATAC-seq data independent of data clustering. We illus-56

trate the practical use of SEMITONES by application to published healthy57

haematopoiesis scRNA-seq and scATAC-seq data [5]. We show its application58

to feature selection for dimensionality reduction, marker gene and cis-regulatory59

element identification, and signature gene set identification. In short, we present60

a flexible method for the identification of signatures of cell identity in single-cell61

omics data.62
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Results63

SEMITONES identifies informative features in single-cell omics data. We con-64

sider a feature as informative if it is only present or absent in similar cells since65

both the presence and absence of a given feature are informative for cell identity.66

The standard SEMITONES workflow consists of three steps. First, it selects67

a set of diverse reference cells from the entire population of cells to serve as68

a representation of the cell states present in the sample (Figure 1a). Next, it69

calculates the enrichment score of each feature for the reference cell neighbour-70

hood using a linear regression framework (Figure 1b). Lastly, to decide whether71

a future is informative or not, it performs statistical testing against a permu-72

tation null distribution (Figure 1c). Besides single features, this procedure can73

be followed for sets of features. The feature set enrichment scores can then be74

used to construct co-enrichment graphs where vertices represent features and75

the edges between them are weighted by enrichment scores (Figure 1d).76

We evaluate the application of SEMITONES on published scRNA-seq and77

scATAC-seq data of healthy haematopoiesis [5]. The primary objective of SEMI-78

TONES, the clustering-free identification of markers of cell identity by enrich-79

ment scoring, is explored for both scRNA-seq and scATAC-seq. Additionally,80

we explore the selection of significantly enriched genes for feature selection as81

an alternative to the selection of highly variable genes. Lastly, we show how82

SEMITONES can be used to construct co-enrichment networks which reveal83

regulators of cell identity.84
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Figure 1: SEMITONES workflow. a) a two-dimensional embedding of all cells
where dark grey dots are the selected reference cells. In the green gradient, we
show the similarity to reference cell c1. b) Based on the assumption that informative
genes are only expressed in the reference cell neighbourhood, we identify informative
(orange) and uninformative (purple) genes in the reference cell (c1) neighbourhood.
The value of β is (proportional to) the enrichment score, so informative genes
get high scores and vice versa. c) Scores in the shaded orange area are declared
significant because they are more than n standard deviations away from the mean of
the null-distribution. This null-distribution is the distribution of enrichment scores
for the permuted feature vector of all features in the data. d) Given enrichment
scores for sets of genes, we construct co-enrichment graphs where vertices are genes
and the edges are weighted by the enrichment score of the gene set consisting of
the genes connected by this edge.
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SEMITONES identifies marker genes85

SEMITONES identifies known marker genes without preceding clustering (Fig-86

ure 2). To illustrate, the top 3 most highly enriched genes include the erythro-87

cyte markers AHSP, HBB, and CA1 [6], the plasma cell markers TNFRSF1788

[7] and GPRC5D [8], and the eosinophil/basophil/mast cell markers HDC and89

CLC [9] (Figure 2a, see Supplementary Table 1, Additional File 2). This con-90

firms that SEMITONES identifies markers of specialized cell types. In addi-91

tion, SEMITONES identifies markers for stem- and progenitor cells, like the92

haematopoietic stem cell (HSC) markers AVP [10] and CRHBP [11], the HSC93

and multipotent progenitor (MPP) marker SPINK2 [12], and the transcription94

factor GATA2 associated with erythroid-megakaryocyte lineage commitment95

[6] (Figure 1b, see Supplementary Table 1, Additional File 2). SEMITONES96

can also identify markers for specialized subpopulations of highly similar cells,97

including the CD4+ T helper 17 (Th17) cell marker TNFRSF4 [9], the CD8+98

mucosal associated invariant T (MAIT) cell marker SLC4A10 [13], and the99

transitional B cell specific DTX1 (Figure 2b, see Supplementary Table 1, Addi-100

tional File 2). These results illustrate that SEMITONES identifies markers of101

cell identity-specific marker genes for fully differentiated, progenitor, and rare102

cell populations.103

SEMITONES is also suited to retrieve markers of specialized subpopulations104

of highly similar cells, such as specific markers for different monocytic cell popu-105

lations. To illustrate, SEMITONES identified relative enrichment markers that106

distinguish immature classical monocytes, classical monocytes, and intermediate107

monocytes (see supplementary Figure 1, Additional File 1, and Supplementary108

Table 1, Additional File 2). Here, immature classical monocytes were identified109

by top 4 enrichment of S100A8, S100A9, and S100A12 and relatively lower110

enrichment of the classical monocyte markers CD14 and VCAN. The S100A9111
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and S100A8 genes have previously been described to be highly expressed in the112

early stages of monocytic differentiation [14, 15, 16]. Additionally, these S100113

genes are also markers for human monocytic myeloid-derived suppressor cells114

(MDSCs) that develop from immature myeloid cells in disease states like chronic115

inflammation [17], further corroborating this annotation. Using SEMITONES116

we identify PLBD1, RBP7, and PADI4 as highly enriched in immature classical117

monocytes (Figure 1c, see Supplementary Table 1, Additional File 2). These118

three genes are not within the top 10 most highly enriched genes for other mono-119

cytic subpopulations, and the co-expression of RBP7 and PADI4 appears to be120

specific to immature classical monocytes (Figure 2b). Similarly, we identify121

reference cells with high enrichment for LGALS2 in absence of top 10 enrich-122

ment of the classical monocyte marker VCAN [9]. In line with observations123

of higher relative expression of LGALS2 in intermediate monocytes compared124

to non-classical monocytes [18], we suggest that this identifies a population of125

intermediate monocytes.126
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Figure 2: Application of SEMITONES for marker gene identification in
scRNA-seq data. a) Highly specific markers of well-characterized cell types (top
row: erythrocytes, plasma cells, eosinophil/basophil/mast cell lineage), progenitor
cells (middle row: haematopoietic stem cells, haematopoietic stem- and progenitor
cells, myeloid progenitors), and specific subpopulations (bottom row: Treg, CD8+

MAIT, and transitional B cells). b) The expression profile of the known immature
monocyte marker S100A9 and the newly proposed immature classical monocyte
markers RBP7 and PAD41. c) The expression of markers along the B cell de-
velopmental trajectory. d) Reference cell annotations based on the marker genes
identified by SEMITONES.
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Similarly, SEMITONES identifies markers of developmental stages along the127

haematopoiesis axis, as we illustrate using the example of B-cell maturation128

(Figure 2c). Here, as the top-scoring gene in one reference cell, we identify129

the DNTT gene which codes for the recombination substrate terminal deoxynu-130

cleotidyl transferase that is involved in immunoglobulin (Ig) and T-cell receptor131

(TCR) recombination [19]. This gene is expressed in the lymphoid-primed pro-132

genitor (LMPP) stage and upregulated in the common lymphoid progenitor133

(CLP) stage [20]. Therefore, we can identify this cell as a CLP. In another134

cell for which high DNTT enrichment is found, the top-scoring enrichment is135

found for AKAP12 (see Supplementary Table 1, Additional File 2), which is136

expressed exclusively in pro-, pre-, and immature B lymphocytes [21]. Given137

the combined enrichment of DNTT and AKAP12, we identify this cell as a138

pro-B cell. Both these cells also show enrichment for the VPREB1 gene, which139

encodes the ι polypeptide chain that is part of the pre-B cell receptor [22]. This140

gene is lowly expressed in CLPs and highly expressed in pro-B and pre-B cells141

[23], further confirming our annotations. Interestingly, the identification of a142

cell stage with a strong cell cycle signature which includes the TOP2A, KIFC1,143

and NUSAP1 genes, alongside VPREB1 as the 19th most enriched gene, allows144

for the identification of large-pre B cells, a highly proliferative cell state in B145

cell development [24]. Furthermore, we find high DTX1 and BMP3 enrichment146

for a cell that can now be annotated as a transitional B lymphocyte, the next147

step in B lymphocyte development [25, 26]. Next, selective top 10 enrichment148

of TCL1A, which is not expressed in memory B cells [27], and FCER2, which149

is involved in B cell differentiation and regulates IgE production [22], indicates150

cells that are immature B lymphocytes [9]. Lastly, top enrichment for MS4A1,151

coding for the B-lymphocyte antigen CD20 which promotes calcium influx after152

activation by the BCR [28], and FCER2 in the absence of TCL1A can be used153
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to identify mature B cells [9, 27]. To conclude, SEMITONES identifies markers154

of many cell identities along the developmental axis without the need to enforce155

(arbitrary) cell identity boundaries.156

After confirming that SEMITONES identifies markers of cell identity, we157

use the top 10 most highly enriched genes to annotate all reference cells (Figure158

2d). To evaluate the cell-type retrieval of our data-driven selection approach,159

we compare those annotations to the published cluster annotations from [5].160

This comparison reveals that one cell of every annotation is present in our set of161

75 reference cells (see supplementary Figure 2, Additional File 1), i.e., our sim-162

ple data-driven selection procedure manages to include all cell types of interest163

by selecting just 0.2% of the total number of cells as reference cells. Besides,164

we identify additional cell types based on SEMITONES reference cell selection165

and enrichment scores, including intermediate monocytes, and several B- and166

T-lymphocyte subsets. Further comparisons were made to a set of 75 man-167

ually selected reference cells (see supplementary Figure 3, Additional File 1),168

annotated based on SEMITONES enrichment scores. One of these manually169

selected reference cells was identified to be a plasmablast, a cell type that is not170

part of the cluster-based or algorithmically selected reference cell annotations.171

We note that the data-driven reference cell selection depends on the dissimilar-172

ity metric and the embedding over which the dissimilarity is determined (see173

supplementary Figure 4, Additional File 1). In general, given a descriptive sim-174

ilarity metric, the data-driven selection of reference cells will provide a sample175

of cells that is representative of the population.176

The results described above relate to enrichment scores obtained using an177

RBF-kernel with γ = 8 × 10–1 to represent the pairwise cell similarities be-178

cause this parameterization allows for the identification of selective cell identity179

markers. However, by decreasing the value of γ, one can also identify more glob-180
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ally enriched genes (see supplementary Figure 5, Additional File 1). Namely,181

γ is the inverse of the radius of influence, which is proportional to the size of182

the cell neighbourhood for which we want to retrieve marker genes. This illus-183

trates how SEMITONES can flexibly infer highly specific or global cell identity184

markers without relying on hard cluster boundaries.185

SEMITONES identifies transcriptional regulators186

To reveal co-enrichment relationships of genes in a given cell neighbourhood, we187

construct co-enrichment graphs using SEMITONES co-enrichment scores. Since188

∼ 143×106 possible pairwise gene sets of 16,900 expressed genes exist, we com-189

pute pairwise enrichment scores for gene sets of significantly enriched genes in a190

subset of reference cells. This subset of reference cells contains one cell of each191

annotation, where we select the cell with the enrichment score for the primary192

annotation marker (see Supplementary Table 2, Additional File 3). Given this193

subset, we obtain 333974 possible pairwise sets of significantly enriched genes194

(nσ = 25) per cell in the subset. Next, we perform enrichment scoring for all195

gene sets for each reference cell in the subset (see Methods). We then construct196

co-enrichment graphs containing all gene sets that are significantly, positively197

co-enriched (nσ = 30) in some reference cell. To unveil the crucial connections198

in each co-enrichment graph, we evaluate the maximum spanning tree (MST)199

of each graph.200

The co-enrichment graphs contain paths that link together genes that inter-201

act in specific stages of haematopoietic development. To illustrate, in the in-202

teraction co-enrichment graph of the transitional B cell neighbourhood we find203

that IGLL5 is highly connected to its predicted interaction partnerCD79B (see204

supplementary Figure 6, Additional File 1, [29]). These genes encode proteins205

(Igβ, and Igλ, respectively) that are involved in pre-B cell receptor signalling,206
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which is an essential process in the development of immature B cells [30]. An-207

other example concerns CD3E, CD3D and CD8A, for which interactions are208

found in the co-enrichment graph of naive CD8+ (Figure 3a), which are pre-209

dicted in the STRING database [29] and have a mechanistic basis. Namely,210

the T-cell surface glycoprotein CD8 is thought to play a major role in the tar-211

geted delivery of the Lck protein to the CD3-complex, of which the CD3ε chain212

and CD3δ chain are part, during T cell activation [31]. These results illustrate213

that SEMITONES can identify biologically meaningful and cell identity specific214

co-expression graphs from scRNA-seq data.215

Figure 3: Gene co-enrichment graphs constructed from SEMITONES gene
set enrichment scores. a) The maximum spanning tree (MST) of the interaction
co-enrichment graph for naive CD8+ cells. b) The interaction co-enrichment graph
of Th17 cells shows a central role for the S100A4 gene which is not selectively
expressed in regulatory T-cells. In both graphs, the vertex size is proportional to
their weighted degree.

Inspection of the interaction co-enrichment graphs for the monocytic cell216

populations reveals subtle differences in otherwise highly similar graphs. For217

example, a central role for S100 genes are found for all populations. Notably,218

the S100A9 gene plays a more central role in the co-enrichment graph of the219

classical monocytes than that of the immature classical monocytes (see sup-220
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plementary Figure 7, Additional File 1), whilst the S100A9 gene was found to221

be more highly enriched in immature classical monocytes. Differences between222

monocytic cell populations are also found regarding which other genes a highly223

connected gene connects to. To illustrate, NEAT1 is a highly central node in224

classical and intermediate monocytes but connects to different genes in each225

subset (see supplementary Figure 7, Additional File 1). In classical monocytes,226

NEAT1 is highly connected to S100A9 and S100A8, but in intermediate mono-227

cytes it is highly connected to LGALS2, HLA-DRB1, and HLA-DRA. These228

interactions are plausible based on higher expression of S100A8 and S100A9229

in classical monocytes and HLA-DRA in intermediate monocytes compared to230

other monocyte populations [32]. Descriptions of gene interactions in monocytic231

subpopulations are only sparingly available in the literature, and we did not find232

any mechanistic evidence for the interactions described above. In general, how-233

ever, these results confirm that SEMITONES uncovers subtle differences in the234

co-enrichment networks of highly similar cell populations. Based on the evidence235

described for transitional B lymphocytes and naive CD8+ cells, we suggest that236

these represent putative mechanistic distinctions.237

To identify central genes in the co-enrichment networks, we calculate the238

current flow betweenness centrality of the vertices in the MST (see Supplemen-239

tary Table 3, Additional File 4). Inspection of the top 10 most central genes240

reveals known regulators of cell identities. For example, the known regulators241

of erythropoiesis GFI1B and HES6 are in the most central vertices of all ery-242

throcyte co-enrichment graphs [33, 34]. Interestingly, these genes are ranked243

only 31st and 46th most enriched in the erythrocyte neighbourhood. Similarly,244

S100A4 is a highly central node in all Th17 co-enrichment graphs (Figure 3b,245

see Supplementary Table 3, Additional File 4), but is only the 52nd most en-246

riched gene in the Th17 neighbourhood. This rank is intuitively coherent with247
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the global expression profile of this gene, with high expression observed in all248

monocyte, monocytic dendritic cells (mDC), natural killer (NK) cell, and ma-249

ture T lymphocyte populations (Figure 3b). S100A4 is suggested as a regulator250

of Th17 differentiation, albeit in Rheumatoid Arthritis mouse models [35]. An-251

other S100 gene, S100A11, was found as a highly central node in minimum252

expression-based co-enrichment graphs of Th17 and Treg neighbourhoods (see253

Supplementary Table 3, Additional File 4), whilst ranking as 546th and 790th254

most enriched, respectively. This gene has been implicated as a regulator of Treg255

development [36]. Based on these results, SEMITONES co-enrichment analysis256

enables the identification of putative regulators of cell-type specialization, also257

in cases where these regulators are not restrictively expressed in a specific cell258

neighbourhood.259

Lastly, we qualitatively assess the robustness of biologically meaningful co-260

enrichment identification when using different approaches for gene set expres-261

sion vectors. We find that some, but not all, connections are shared between262

all graphs for a given cell neighbourhood. For example, AHSP and GFI1B are263

found to be highly connected in all erythrocyte co-enrichment graphs (see sup-264

plementary Figure 8, Additional File 1abcd), whilst the connections of AHSP,265

HBB, and HBB are only found for interaction, maximum value-, and median266

value-based co-enrichment graphs (see supplementary Figure 8, Additional File267

1abc). Similarly, the interactions between ASHP, KLF1, HBA1 and HBA2268

are only found in the minimum-value based graphs (see supplementary Fig-269

ure 8, Additional File 1d). All these connections can be traced back to the270

biology of erythrocyte development and function. Namely, both AHSP and271

GFI1B are essential for erythrocyte development and function [33, 37], AHSP272

is a haemoglobin stabilizing protein and a chaperone of HBA1 and HBA2, and273

KLF1 binds to the promoters of HBA1 and HBA2 [38]. Additionally, high274

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.17.386664doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.17.386664
http://creativecommons.org/licenses/by-nc-nd/4.0/


confidence interactions from experiments and curated databases were found be-275

tween AHSP, HBA1, HBA2, HBB, and HBD in STRING [29]. Overall, these276

results suggest that interaction, maximum value, and medium value-based co-277

enrichment are more similar to each other than the minimum expression-based278

co-enrichment graphs. This is readily explained by the relative focus on more279

lowly expressed genes for the minimum value-based co-enrichment graphs, with280

its stronger emphasis on lowly expressed genes. Importantly, independent of281

the method of gene set expression vector construction, biological proof of the282

co-enrichment identified SEMITONES can be found in curated databases and283

the scientific literature [29].284

SEMITONES for feature selection285

SEMITONES is also a highly effective approach for feature selection. Feature286

selection typically takes place at the beginning of the preprocessing, when little287

information is available to aid the selection of a suitable similarity metric. We288

therefore choose the standard cosine similarity to characterize the similarity be-289

tween cells. Additionally, we compute the similarity over the top 50 principal290

components instead of an optimized multi-dimensional UMAP. On the same291

grounds, we use the manually curated reference for feature selection. These292

reference cells were annotated when assessing the cell type retrieval in the data-293

driven reference cell selection, and we will use the same annotations in this294

section. We use SEMITONES to select 4000, 2000, 1000 and 500 significantly295

enriched genes by adjusting the number of standard deviations away from the296

null-distribution mean at which we declare significance. This approach is com-297

pared to selecting the same numbers of highly variable genes (HVGs) with the298

“Seurat-flavoured” HVG selection from Scanpy [39]. For each set of selected299

features, we perform LSI and construct a 2D UMAP using 35 nearest neigh-300
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bours with a minimum Euclidean distance of 0.3. The methods are evaluated301

based on the cell identity separation and marker gene localization in the UMAP302

space.303

The separation of cell identities in the UMAP space is less affected by se-304

lecting a lower number of SEMITONES enriched genes than to selecting a lower305

number of HVGs (see supplementary Figure 9, Additional File 1). To illustrate,306

when selecting 4000 genes, the only difference is the reduced separation of ery-307

throcytes and megakaryocyte-erythrocyte progenitor (MEP) cells when using308

HVGs. However, the discrepancies increase as we lower the number of genes we309

select. For example, when using the top 2000 HVGs, plasmablasts and plasma310

cells cluster together, and one CD8+CM is found within the naive CD8+ cell311

neighbourhood. There is no decreased separation when using 2000 most en-312

riched genes, and even lowering the number of genes to the 1000 most enriched313

genes does not impact the separation of cell identity in the 2D UMAP space.314

In contrast, when using the 1000 most variable genes, one B cell is found in the315

NK-cell neighbourhood, and one NK cell is found in the CD4+ neighbourhood.316

Additionally, granulocytes, plasmacytoid dendritic cells (pDCs), and granulo-317

cyte and monocyte progenitors (GMP) are no longer as distinctly separated, and318

neither are the different monocyte subpopulations (Figure 4). Lastly, and per-319

haps most apparent, the erythrocyte and eosinophil/basophil/mast cell popula-320

tions are not resolved. Strikingly, these erythrocyte, eosinophil/basophil/mast321

cell and the granulocyte progenitor (moving towards neutrophils) branches that322

contain only a few cells, are still resolved when using just the 500 most highly323

enriched genes, but we observe the first loss of resolution, with the naive CD8+324

cells merging with the CD4+ and Th17 cell neighbourhoods. The naive CD8+325

population remains well separated when using the top 500 HVGs but at the cost326

of a further decrease in the separation of additional T cell subsets and mono-327
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cyte subpopulations. Overall, these results demonstrate that a smaller number328

of SEMITONES selected features explains the same amount of biological vari-329

ation as a larger set of HVGs.330

Figure 4: SEMITONES is a more sensitive alternative to highly variable
gene selection. a) UMAP embedding of the scRNA-seq data based on the top 1000
most enriched genes. b) Marker gene expression visualized on the top enriched gene
UMAP (left column, panel a) and the highly variable gene UMAP (right column,
panel c). The border colours correspond to the annotation label colours of the label
for which this gene is a marker. c) UMAP embedding of the scRNA-seq data based
on the top 1000 most variable genes.

The decreased separation of cell identities when using HVGs compared to331

highly enriched genes can be linked to the absence of marker genes in the HVG332

sets: the erythrocyte markers AHSP and HBB are absent from the top 4000333

HVGs onward, and the plasmablast marker IGLL5 and the CD8+M and NK-cell334

expressed CCL5 are absent from the top 2000 HVGs. Additionally, differences335

in the separation of cell identity can be linked to differences in marker gene336

localization in the UMAP space as illustrated in Figure 4 for 1000 enriched337
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versus 1000 HVG genes. There are also genes that are more localized in UMAPs338

constructed using the top HVGs, e.g. the Th17 marker TNFRSF4 when using339

1000 (Figure 4) or 500 (see supplementary Figure 10, Additional File 1) genes. In340

general, however, gene expression appears more localized in UMAPs constructed341

using the top SEMITONES enriched genes. Overall, these results suggest that342

SEMITONES feature selection reduces the gene space to a small set of highly343

informative genes.344

SEMITONES identifies cell-specific cis-regulatory elements345

Since SEMITONES is readily compatible with the scATAC-seq input matrices,346

we also explore its application for the identification of enriched ATAC peaks for347

75 algorithmically selected reference cells. Visual inspection of top and bottom348

scoring regions reveals that SEMITONES accurately identifies peaks that are349

specifically present or absent in specific cell neighbourhoods (Figure 5a). Rarely,350

these significantly enriched peaks correspond to known cis-regulatory regions,351

like the PID1-DNER Intergenic CAGE-Defined Monocyte Enhancer (chromo-352

some 2, 230147763-230148263bp, Figure 5a). Therefore, we use GREAT (v4.0.4)353

[40] to identify associated genes and enriched GO terms for the significantly354

enriched peaks (nσ = 20). Based on this, we confirm that the peaks are in355

regions responsible for haematopoietic (e.g. HSC differentiation) and immune356

(e.g. leukocyte degranulation) processes. Many of these terms were cell type-357

specific and enabled us to directly annotate 74 out of 75 reference cells based358

on the GO terms and their associated genes (Figure 5b), without having to fall359

back on complementary data such as from scRNA-seq. Most of the annotations360

are concordant with the annotations in [5], which were obtained using Seurat’s361

canonical correlation analysis with scRNA-seq based annotations, with the ex-362

ception of resolving all monocyte and T lymphocyte subpopulations. However,363
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in turn, we reveal additional signatures, including a Notch signalling signature364

indicative of a pre-T lymphocyte fate in a CLP and a dendritic signature in365

a subset of reference cells. These observations may be related to the selection366

and representation of the reference cells and their neighbourhoods, and they367

support the notion that early cis-regulatory signatures reveal lineage commit-368

ments before they can be identified on the RNA level. Separate inference on the369

chromatin level is thus essential to gain novel insights from scATAC-seq data.370

Significantly enriched peaks are enriched for the transcription factor binding371

motifs that one would expect to find in the annotated cell types. For example,372

HOX motifs are enriched in stem and progenitor cells, GATA motifs are enriched373

in the myeloid lineage, and PRDM1 and IRF4 motifs are enriched in the B374

cell lineages. We also identify cell type-specific motifs. For example, we find375

enrichment for motifs of the known regulators of B cell differentiation E2A,376

EBF, PAX5, PU.1 and IRF8 [41] in pre-B and transitional B cells (Figure 5c),377

and for GATA3, which is indispensable for T helper 2 (Th2) cell differentiation378

[42], in the CD4+ memory cell neighbourhood. These results further suggest379

that SEMITONES identifies distinct and import features (i.e. open chromatin380

regions) of cell identity.381

Finally, we evaluate whether certain cis-regulatory elements are overrepre-382

sented in the significantly enriched peaks. Selectively inaccessible regions are383

more often promoter regions than any other cis-regulatory regions (Figure 5d).384

In the same vein, peaks with a positive enrichment score are, on average, most385

likely to fall in enhancer regions. Both these trends fit prior analyses that386

showed that in general, promoters per default are open across conditions, while387

many distal regulatory regions are specifically opened [43]. Lastly, we identify a388

relative overrepresentation of enhancer regions in monocytes and T lymphocytes389

(see supplementary Figure 11, Additional File 1), although this might be related390
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Figure 5: Application of SEMITONES for marker region identification in
scATAC-seq data. a) The accessibility profile of several highly enriched regions
visualized in a UMAP embedding. Region chr2:230147763-230148263 contains the
PID1-DNER Intergenic CAGE-Defined Monocyte Enhancer. b) Reference cell an-
notations based on enriched GO-terms and associated genes, identified by HOMER,
in significantly enriched marker regions identified by SEMITONES. c) Motifs that
were found to be enriched in regions that SEMITONES identified as significantly en-
riched in transitional B cells. d) The normalized percentage of significantly enriched
regions that have a certain annotation in HOMER or FANTOM5.
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to a relative overrepresentation of certain cell types in the FANTOM5 data.391

Overall, these results illustrate how the identification of cell type-specific open392

chromatin regions is invaluable to the elucidation of the role of cis-regulatory393

element accessibility in the acquisition and maintenance of cell identity.394

Scalability of SEMITONES395

SEMITONES calculates enrichment scores of 30,000 features for a single refer-396

ence cells in just a few minutes when the number of non-zero values is representa-397

tive of scRNA-seq (∼ 10% non-zero values) or scATAC-seq (∼ 2% non-zero val-398

ues, Figure 6bc). When applying SEMITONES to large and sparse data with a399

density representative of scATAC-seq data, parallel processing is needed to limit400

runtime (Figure 6d). Runtime increases decidedly when applying SEMITONES401

to larger numbers of features and reference cells, or combinations thereof (see402

supplementary Figure 12, Additional File 1). Currently, the main bottleneck403

lies in the memory demand for large numbers of reference cells, because the sim-404

ilarity matrix is dense and of the dimension |cells| × |reference cells|. Therefore,405

it is advisable to use multiple cores when using a large number of features for406

very sparse data, and submitting individual jobs for subsets of reference cells407

when applying semitones to large numbers of reference cells.408

Discussion409

We present SEMITONES; a tool for the de novo identification of informative410

features in single-cell omics data. We illustrate that SEMITONES identifies411

marker genes and regulators of cell identity without first clustering the cells.412

This way, we aim to mitigate the propagation of errors or biases from cluster413

assignments. Additionally, we show that SEMITONES is an effective alterna-414

tive to highly variable genes for feature selection in scRNA-seq preprocessing.415
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Figure 6: Runtime scalability of SEMITONES. The runtime of SEMITONES
when applied to a) data with all non-zero values, b) data with a density representa-
tive of scRNA-seq data (10% non-zero values), and c) a data density representative
of scATAC-seq data (2% non-zero values) for a maximum of 30,000 features. d)
The runtime of SEMITONES when applied to data with 2% non-zero values with a
maximum of 600,000 features, which isrepresentative for a large scATAC-seq data
set that was not filtered for highly variably/commonly accessible regions. The pur-
ple lines show the runtime with respect to the number of reference cells and the
orange lines show the runtime with respect to the number of features. The dotted
lines represent the runtime when parallelizing over 30 CPUs and the solid lines show
the runtime when using 1 CPU. All results were obtained for a dataset containing
100,000 rows, simulating a data set of 100,000 cells in total.

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.17.386664doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.17.386664
http://creativecommons.org/licenses/by-nc-nd/4.0/


Here, SEMITONES identifies a smaller number of genes that captures the same416

biological diversity as a larger number of HVGs. Lastly, we show that SEMI-417

TONES can also be readily applied to the identification of relevant peaks from418

scATAC-seq data. In short, SEMITONES is a flexible tool aiding the identifi-419

cation of biologically relevant features from single-cell omics data.420

SEMITONES accurately retrieves marker genes of cell identity. Since refer-421

ence cell annotations based on these markers largely overlap with the published422

annotations [5], we conclude that SEMITONES accurately retrieves cell identity423

specific markers, and propose highly enriched genes for which we did not find424

literature evidence, like PADI4 in immature classical monocytes, as putative425

novel markers. These highly specific marker genes also annotated subpopula-426

tions of cells that are otherwise highly similar, like monocytes and T cells. The427

use of an RBF-kernel to describe cell similarities enables the identification across428

a broad range of specificity because we can use the parameter γ to define the cell429

neighbourhood range for which we identify informative genes (see supplemen-430

tary Figure 5, Additional File 1). By performing regression to these similarities,431

we remove the need to assign cells to groups of the same identity but instead432

allow cells to be part of multiple cell neighbourhoods. This way, we identify433

marker genes along the haematopoietic axis, as was illustrated for the B cell434

lineage. On the other hand, the dependence on the similarity metric is a poten-435

tial limitation of SEMITONES, especially when no prior knowledge is available436

to evaluate the adequacy of the similarity metric. Importantly, an adequate437

similarity metric is essential for the data-driven selection of a set of reference438

cells that is representative of the biological cell diversity. Ultimately, given an439

accurate similarity metric, SEMITONES identifies highly specific markers of440

cell identity, illustrated here for the haematopoietic axis. We also explore using441

highly enriched genes, identified by SEMITONES, as an alternative to using442
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HVGs. Cell identity separation and localization of marker gene expression in443

the 2D UMAP space improves when using highly enriched genes compared to444

HVGs. Thus, we conclude that n highly enriched genes capture more biolog-445

ical variability than n HVGs. This is of particular interest in light of recent446

developments in targeted scRNA-seq, for which the need to select a set of a few447

hundred genes arises that contain sufficient transcriptomic information regard-448

ing the biological system. The adequate performance while using the cosine449

similarity over the top 50 principal components instead of an RBF-kernel over450

25 UMAP dimensions illustrates that SEMITONES also identifies informative451

genes when using a non-specialized similarity metric. However, the performance452

of SEMITONES will depend on the provided reference cells since SEMITONES453

only identifies highly enriched genes in reference-cell neighbourhoods. From454

simulations (see supplementary Figure 4, Additional File 1) we conclude that455

reference cell sets obtained using suboptimal similarity metric-embedding com-456

binations do not represent all cell identities. In this case, the highly enriched457

genes will only capture the variability for cell identities present in the reference458

cells. Based on the same simulations, we recommend using the Euclidean dis-459

tance over a reasonable number (e.g. 50) of principal components if using the460

SEMITONES data-driven reference cell selection. Besides marker gene identi-461

fication, SEMITONES can be used to construct co-enrichment graphs. These462

co-enrichment graphs revealed several interactions indicative of mechanistic as-463

pects of gene regulation and cellular function. For example, high co-enrichment464

of CD8A, CD3E, and CD3D in CD8+ T lymphocytes is substantiated by the465

role of CD8A as a chaperone to the CD3-complex (Figure 3a). Highly central466

nodes (i.e. genes) in these networks represent putative regulators of cell identity,467

even if they are not individually enriched in a cell neighbourhood, as seen for468

S100A4 gene in Th17 cells (Figure 3b, [35]).469
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The SEMITONES workflow is readily transferable to the identification of470

marker peaks from scATAC-seq [peak x cell] matrices. Based on GO term471

enrichment of associated genes and enrichment for known transcription factor472

binding motifs, we conclude that SEMITONES retrieves biologically relevant473

peaks. Additionally, we identify biological signatures that we did not unveil in474

the marker genes. This illustrates the benefit of analysing scATAC-seq data475

independently of scRNA-seq data, although we cautiously note that this obser-476

vation may be a result of differences in the cell identities represented by the477

reference cells. Besides using the enriched peaks to annotate cell identities, we478

also use significantly enriched peaks to identify global patterns of chromatin479

accessibility and cis-regulatory regions. Most notably, we find that selectively480

inaccessible regions are most likely promoters and selectively accessible regions481

are most likely enhancers, once more indicating the higher cell type-specificity482

of enhancers. However, these results are limited to a small number of reference483

cells and were not subjected to rigorous statistical analysis.484

Conclusion485

SEMITONES is a diverse and flexible tool for the identification of informa-486

tive features from single-cell omics data, readily applicable to expression and487

chromatin-related data. Its possible limitations include the need for an ade-488

quate cell similarity metric and a set of reference cells that is representative of489

the cell population. Therefore, in future research, we will explore deterministic490

approaches and the use of geometric sketching [44] to select an optimal set of491

reference cells. Additionally, we aim to improve the run time for many features492

and the memory demand for large numbers of reference cells. Namely, the appli-493

cation of SEMITONES to large numbers of reference cells currently requires the494

user to perform computations for subsets of reference cells due to limitations in495
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the multiprocessing setup. On a biological level, we will explore the integration496

of scRNA-seq and scATAC-seq data on the cell level. As such, we aim to keep497

SEMITONES up to date as single-cell data grows and diversifies, to aid the498

elucidation of regulatory mechanisms underlying the acquisition of cell identity499

in health and disease.500

Methods501

Reference cell selection502

In this article, we use two reference cell selection methods: an automated data-503

driven cell selection method, and manual selection of a set of reference cells from504

a 2D cell embedding. For the manual selection of cells from any 2D embed-505

ding, we provide a figure widget implementation. The data-driven cell selection506

method is presented in Algorithm 1 and described below.507

Algorithm 1 Data-driven iterative selection of dissimilar cells.

s← [i]
e← [i]

k←
⌈
N–n
n

⌉
di ← distances(X, xi)
append k – NN of i to e
append argmax(di) to e and s
while k – NN < n – |e|) do

ds[–1] ← distances(X, xs[–1])

append k – NN of s[–1] to e
append argmax(ds[–1]) to e and s

end while

In addition to the methods applied in this study, we provide the options508

to use the sklearn k-means++ implementation and a fixed-grid search. In the509

fixed-grid search, a lattice graph of a user-defined size n× n is placed over the510

2D embedding of single cells, as illustrated in Supplementary Figure 13, Addi-511
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tional File 1. Then, the cells closest to the intersections of the horizontal and512

vertical grid lines are selected. The method avoids selecting a disproportionate513

number of cells at the edge of the 2D-embedding by putting a constraint on the514

minimum distance between each pair of selected cells. The implementations of515

these methods can be found in the cell selection module of SEMITONES.516

Enrichment scoring517

Given a set of reference cells (Figure 1a), we identify informative features in518

these cells. From the idea of an informative feature as being only expressed519

or absent in similar cells, we can derive the formal definition that informative520

features harbour a strong linear relationship with the similarity to the reference521

cell (Figure 1b).522

In SEMITONES, we infer informative features using a simple linear regres-523

sion framework (Equation 1). Here, yc is a vector representing each cell by its524

similarity to some reference cell c using any suitable metric. As example, we use525

an RBF-kernel with γ = 8 × 10–1 over a multidimensional UMAP embedding526

in applications for marker selection. For applications to feature selection, we527

use the cosine similarity over the top n principal components. The vector xf528

represents the value of the feature g in each cell. When applying the method529

to scRNA-seq data, this feature vector xf contains the gene expression level in530

each cell. For applications to scATAC-seq data, xf is a binary feature vector531

indicating whether the chromatin at a certain location in a cell is accessible (1)532

or not (0). The regression coefficient βc,f , which is estimated using the ordinary533

least squares method, describes the strength of the linear relationship between534

yc and xf . Thus, the value of βc,f can be interpreted as a score of the enrichment535

of some feature f in some reference cell c. High positive enrichment scores will536

be obtained for features which are only observed in cells similar to some cell c537
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(Figure 1b). Inversely, low negative scores will be obtained for features which538

are only observed in cells which are dissimilar to some cell c (Figure 1b).539

yc = xcf × βf + εc, εc ∼ N (0,σ2) (1)

In addition to single feature enrichment scores, one can also opt to calculate540

enrichment scores for sets of features. In this case, xf is a vector representing541

the combined values of all features in the set. In the case of continuous feature542

values, like in gene expression values in scRNA-seq, we provide four different543

approaches to representing a set of features in a single vector. The first ap-544

proach is the multiplication of the vectors, like an interaction term in multiple545

regression. The second and third approaches are to select the lowest or highest546

expression value of the features in a set as the representative expression value,547

respectively. Lastly, the fourth approach is to take the median expression of the548

features in the set as the representative value. For binary feature vectors, like549

in scATAC-seq, we can also readily take the median feature values to present550

the feature set expression vector. Additionally, we implement the strategy of551

annotation a feature set as present (1) if one or all of the features in a set are552

present and absent (0) if none of the features is present.553

The pairwise feature set enrichment scores can be used to construct co-554

enrichment graphs, where vertices (i.e. features) are connected by edges that555

are weighted by the feature set enrichment scores (Figure 1d). To improve556

interpretability we then infer the maximum spanning tree of these graphs, in557

which all vertices are connected using the least number of edges with a maximum558

total weight, using networkx (v2.4) [45]. The current flow betweenness centrality559

measure is used as a measure of the importance of a feature in the co-enrichment560

network. Visualization of graphs is performed in Netwulf [46].561
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Significance testing562

The null distribution for significance testing is obtained by repeating the scoring563

procedure using n times permuted feature vectors. Due to the permutation of564

the feature vectors, the feature values are randomized while still resembling the565

original data. Significance is declared at a user-defined number of standard566

deviations (nσ) away from the mean of this null distribution (Figure 1c). Here,567

we always use n = 256.568

Data processing569

The practical use of SEMITONES is illustrated by its application to healthy570

haematopoiesis scRNA-seq and scATAC-seq data published by [5]. The scRNA-571

seq count matrices were obtained from the GEO database (GSE139369, accessed572

February 28 2020). The scATAC-seq count matrix was downloaded from the573

GitHub page linked to the original data publication ([47], accessed on 3 March574

2020).575

The scRNA-seq data covers a total of 35582 cells obtained from six different576

samples, including two samples of CD34+ enriched BMMCs, two samples of577

non-enriched BMMCs and two samples of PBMCs. First, we removed any cells578

for which the ratio between the number of genes expressed over the count-depth579

is greater than or equal to 0.3. Next, we performed scran deconvolution nor-580

malization using the computeSumFactors function using clusters obtained from581

the quickCluster function [48, 49]. The normalized counts were log-transformed582

using an alternative pseudo-count as proposed by Lun et al. (2018) [50]. Inspec-583

tion of the count depth of cells in a 2D UMAP embedding (computed over the584

top 10 principal components) revealed a cluster of cells with low count depth585

in one of the CD34+ samples, which was removed. This leaves a total of 35156586

cells.587
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The (non-normalized) count data from all cells that passed quality control588

were combined, and scran deconvolution normalization was performed on the589

combined data. The data were log-transformed using an alternative pseudo-590

count [50] for use in enrichment scoring. We then performed latent semantic591

indexing for the reduction of the normalized count data to a 50-dimensional592

embedding. A 2D and 25D uniform manifold approximation and projection593

(UMAP, 30 neighbours and a minimum distance of 0.3) over the LSI space were594

computed for visualization and similarity calculations, respectively.595

The scATAC-seq data contains a total of 35038 DC34+ enriched BMMC,596

non-enriched BMMC, and PBMC cells. We performed quality control on the597

combined data as follows. Cells were removed if their peak depth exceeds598

200,000 or more than 60,000 peaks were called in this cell, and peaks were599

removed if their count exceeds 40,000, leaving 35022 cells. Next, we binarized600

the peak by cell-matrix and perform LSI to reduce the feature space to 50 dimen-601

sions. We computed a 2D and 35D UMAP (50 neighbours, minimum distance of602

0.5) over the 50-dimensional space for visualization and similarity calculations,603

respectively.604

Evaluation references605

For the annotation of the scRNA-seq reference cells we look at the top 10 most606

highly enriched genes (according to SEMITONES). The Human Blood Atlas607

[9], with a special focus on the Monaco scaled dataset [51], served as a primary608

reference. Additional markers were obtained from the literature (see Supple-609

mentary Table 2, Additional File 3). The STRING (v11.0) database ([29], [52])610

was used for qualitative evaluation of co-enrichment graphs. The assessment of611

SEMITONES as a method for feature selection in scRNA-seq was performed in612

comparison to the retrieval of highly variable genes as implemented in Scanpy613
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(v1.4.5) [39]. For the annotation of scATAC-seq reference cells, we obtain GO-614

term enrichments and associated genes for significantly enriched peaks using615

GREAT (v4.0.4) [40]. We provide all peaks in the clean scATAC-seq data as a616

background set and select the “basal plus extension” association rule to charac-617

terize the regulatory domain. According to this association rule, the proximal618

domain is 5 kilobases upstream and 1 kilobase downstream of the transcrip-619

tion start site (TSS), and the distal domain is defined as up to 1000 kilobases620

from the TSS. cis-Regulatory element annotations were obtained from HOMER621

(v10.4) (promoter, exon, 5’ UTR, 3’ UTR, intronic, intergenic, transcription ter-622

mination side) and the permissive enhancer annotations in FANTOM 5 phase623

2.6. In HOMER (v10.4), a region is annotated as a promoter of it lies within624

-1000 and +100 base pairs from the TSS as annotated in RefSeq. Motif enrich-625

ment of known transcript factor (TF) binding motifs was performed using the626

findMotifsGenome function from HOMER (v10.4). We consider motifs enriched627

if their (Benjamini) q-value < 0.01.628

Scalability of run time629

The run time scalability was assessed for different numbers of cells, numbers630

of features, data densities, and the number of core processing units (CPUs).631

Random data sets with 100%, 10%, or 2% nonzero values were constructed. The632

decision for 10% and 2% nonzero values were based on the sparsity character of633

the data used in the application example. In all experiments, the total number634

of cells was set to be 100,000. Run time was compared between computations635

using one CPU and 30 CPUs. Parallelization over rows or columns was selected636

based on whether the number of rows or columns was greater, respectively.637
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Availability of data and materials638

The datasets supporting the conclusions of this article are available from public639

sources. The healthy haematopoiesis scRNA-seq dataset was downloaded from640

the Gene Expression Omnibus (GSE139369). The healthy scATAC-seq dataset641

was downloaded from GitHub, accessed on 3 March 2020 [47, 5]. The SEMI-642

TONES software is freely available from GitHub [53] under the GPL-3.0 license.643

The scripts and notebooks used for data processing and analyses are published644

on GitHub [54].645
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Additional Files819

Additional file 1 — Supplemental Figures820

This file (.pdf) contains all supplemental figures that were referenced within the821

main text.822

Additional file 2 — Table S1823

Table S1 (.csv) lists the top 10 most highly enriched genes for all data-driven selected824

reference cells.825

Additional file 3 — Table S2826

Table S2 (.csv) lists the marker genes used for the annotation of reference cells827

based on the top 10 most highly enriched genes.828

Additional file 4 — Table S3829

Table S3 (.csv) lists the most central nodes in the co-enrichment graphs constructed830

using enrichment scores for interaction vectors, maximum-value vectors, median-831

value vectors, minimum-value vectors.832
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