

1 Training with audio and video games improves audiospatial
2 performance in a "cocktail-party" task: A controlled intervention
3 study in young adults

4 Jonathan Barend Schuchert^{1,2} ¶, Jörg Lewald¹ ¶ *

5 1. Department of Cognitive Psychology, Faculty of Psychology, Ruhr University Bochum,
6 Bochum, Germany

7 2. Department of Biopsychology, Faculty of Psychology, Ruhr University Bochum, Bochum,
8 Germany

9 ¶ These authors contributed equally to this work.

10 * Joerg.Lewald@rub.de

11 Abstract

12 Computer game playing has been suggested to be an effective training to enhance
13 perceptual and cognitive abilities. Focusing on potential improvements in auditory selective
14 spatial attention induced by computer gaming, we compared a passive waiting-control group
15 with two gaming groups, playing either a first-person audio-only action game requiring spatial
16 attention and sound localization or a platform side-scroller video game without audiospatial
17 components, which has been shown to improve cognitive performance in previous studies.
18 Prior to and immediately after game training for 1 month for at least 30 min per day (total
19 training time ≥ 15 h), healthy young adults were tested in an audiospatial task simulating a
20 “cocktail-party” situation with multiple speakers at different positions. The proportion of
21 correct target localizations was significantly increased after audio and video gaming
22 compared with the control group. However, there were no significant differences between
23 gaming groups, with similarly strong effects of action audio game and non-action video game
24 trainings on auditory selective spatial attention. Thus, it seems as if successful training of
25 “cocktail-party” listening can be induced not only by modality-specific near-transfer learning
26 within the audiospatial domain, but also by far transfer of trained cognitive skills across
27 sensory modalities, which may enhance domain-general processes supporting selective
28 attention.

29 **Introduction**

30 Currently, video games are increasingly used as a training tool to enhance human
31 cognitive functions (for review, see [1–3]). In particular, application of video games has been
32 suggested to be beneficial for improving and preventing symptoms of neurodegenerative
33 disorders, such as Alzheimer's disease, for counteracting cognitive decline in healthy aging,
34 and for cognitive enhancement in normal healthy people [4,5]. It is assumed that the effects of
35 playing video games are related to processes of brain plasticity increasing volume of specific
36 areas and connectivity between regions [6–8].

37 In particular, video game players have been shown to be generally better than non-
38 players in perceiving small differences in grey scales, in processing speed, and visual
39 attentional performance, such as optimized use of attentional resources, improved top-down
40 and bottom-up attention, as well as superior selective visuo-spatial and peripheral attention
41 [7,9–11]. Furthermore, positive effects of video games on shifting, updating, and dual
42 processing as well as working memory performance have been reported (e.g. [8,12–14], for
43 review, see [15–17]). Especially players of action video games (i.e., games with high speed,
44 high information density, and often violence [14]), showed increased performance in
45 numerous cognitive tasks of different difficulty levels (for review, see [18,19]). The results of
46 cross-sectional studies with video game players, have been largely confirmed by controlled
47 intervention studies using a repeated measures design (i.e., with testing before and after a
48 period of gaming). In particular, these intervention studies demonstrated facilitation of
49 attentional functions and spatial cognition after game training [9,10,20–23].

50 Video games have been shown to induce specific processes of structural brain
51 plasticity that may be related to observations on the behavioral level. For example, in a
52 controlled intervention study, using a simple platform video game, Kühn et al. [6] found

53 significant gray matter increases in areas involved in spatial navigation, strategic planning,
54 and working memory, namely hippocampus and dorsolateral prefrontal cortex. Similarly, a
55 cross-sectional study by Kühn and Gallinat [24] demonstrated the amount of lifetime multi-
56 genre video gaming to be positively associated with gray matter volumes of entorhinal,
57 hippocampal, and occipital areas, thus suggesting adaptive neural plasticity related to
58 navigation and visual attention. Also, a cross-sectional study by Tanaka et al. [25] reported
59 significantly larger gray matter volume in right posterior parietal cortex of action video game
60 experts compared with non-experts.

61 While positive effects of computer games on cognitive performance have been clearly
62 established for the visual modality, the question of whether related effects also exist in the
63 auditory modality has, to our knowledge, not been investigated so far. Also, whether a cross-
64 modal transfer of training exists (that is, auditory improvement by video gaming or vice
65 versa) is still an unresolved issue. Recently, a cross-sectional study by Stewart et al. [26]
66 investigated effects of action video gaming on the participants' performance in auditory
67 cognitive and perceptual tasks, such as attention in listening, speech-in-noise perception, and
68 listening in spatialized noise sentences. However, these authors failed to find any association
69 between action video game play and auditory performance, although positive effects of video
70 game play on a visual task were observed, as known from previous studies. Stewart et al. [26]
71 concluded that action video game play does not result in cross-modal transfer learning, due to
72 the absence of the players' meaningful interaction with an acoustically relevant auditory
73 environment during play. Thus, on the one hand, it might seem reasonable to assume that
74 beneficial effects on auditory performance can only be induced by audio games. On the other
75 hand, several studies have argued against this view, rather supporting conceptions of cross-
76 modal or supra-modal learning. For example, Salminen et al. [27], using an adaptation
77 paradigm with magnetoencephalography recording, found that neural auditory spatial

78 selectivity was increased when participants were engaged in a visual task compared to passive
79 listening. Also, Zhang et al. [28] reported improved frequency discrimination and auditory
80 working memory when testing was alternated with playing *Tetris*, a visual puzzle game, in
81 silence. Starting from the assumption that video-game playing may enhance probabilistic
82 inference as a general learning mechanism, Green et al. [29] demonstrated improved
83 performance of video-game players compared with non-players in both visual and auditory
84 perceptual tasks requiring decision making based on probabilistic inference, thus suggesting
85 transfer of video game-induced learning effects to the auditory modality.

86 Effects of playing audio games on human cognitive abilities have, until now, received
87 only little attention. Audio games are games, in which all relevant information is provided
88 acoustically. In previous studies, audio games have mainly been used to enhance navigation
89 skills in blind persons [30,31]. Currently, recreational audio games increasingly incorporate
90 elements of high speed, such that some of them can be described as action audio games. As
91 increased visual attentional performance has been demonstrated in players of video action
92 games (see above), one might assume that audio action game training may have similar
93 effects in the auditory modality, but empirical research on this topic is missing so far. In a
94 more general context, auditory training protocols developed for people suffering from hearing
95 loss [32–34] or children [35] have been shown to be valid tools to improve auditory
96 communication skills (for review, see [36]).

97 The present controlled intervention study started from the hypothesis that sensory
98 training by playing an audio-only action game over a period of several weeks may
99 significantly improve aspects of auditory selective spatial attention. For intervention, we
100 chose the game *The Blind Swordsman* (Evil-Dog Productions, Montreal, Canada;
101 <http://www.evil-dog.com/the-blind-swordsman.html>), in which the player had to identify a
102 target sound source (an enemy) moving in a 3D virtual auditory environment among

103 distractors and to guess its location, distance, and speed. To asses selective auditory spatial
104 attention before and after the period of gaming, we used a paradigm simulating a so-called
105 “cocktail-party” situation [37], in which participants had to localize the position of a non-
106 verbal predefined target source among three distractor sources [38]. Given the open question
107 of whether video games can have positive effects on auditory performance, as mentioned
108 above, we also included a second intervention group, which played a well-established video
109 non-action platform game (*Mega Mario*; A. Weber, Berlin, Germany;
110 <http://mmario.sourceforge.net/>). Several previous studies have demonstrated non-auditory
111 cognitive effects for this type of video game, such as enhancements of processing speed,
112 reasoning, visuospatial coordination functions, visuomotor coordination, working memory,
113 antisaccadic inhibition, and general cognitive performance, as well as structural brain
114 plasticity in hippocampus, frontal eye field, and dorsolateral prefrontal cortex [6,39–42]. We
115 hypothesized that auditory game training may result in significant enhancement of auditory
116 selective spatial attention compared with a non-playing control group. Furthermore, if
117 auditory performance could be exclusively improved by modality-specific training, we
118 assumed that audio-game training will result in stronger improvements in the auditory task
119 than video-game training over the same period. Alternatively, similar effects of both these
120 interventions would rather argue in favor of cross-modal transfer of learning processes
121 induced by video gaming to the auditory modality.

122 Materials and Methods

123 A pre-post parallel-groups design was employed. Three groups of subjects were tested:
124 (1) an audio-only game group; (2) a video game group; and (3) a passive control group. All
125 subjects were tested in two experimental sessions, immediately before and after a period of
126 about 1 month, during which both gaming groups played the assigned game daily for 30 min

127 and the control group did not play computer games. Thus, for the two active groups the
128 minimum amount of total game training time was 15 h.

129 **Subjects**

130 Fifty-seven subjects (39 women, 18 men; mean age 23.6, SE 0.5, range 19-34 years)
131 participated in the experiment. As assessed by the Edinburgh Handedness Inventory [43], 41
132 subjects were right-handed (laterality quotient, $LQ \geq 30$), 12 were left-handed ($LQ \leq 30$), and
133 four were ambidextrous ($|LQ| < 30$). Subjects were randomly assigned to three groups (audio
134 game; video game; passive control) of equal sizes, with equal proportions of women and men
135 in each group (see below), as sex is known to be a factor in cocktail-party listening
136 performance [44]. There were no significant differences between groups in mean age ($H(2) =$
137 1.72, $p = 0.42$) and mean handedness LQ ($H(2) = 0.10$, $p = 0.95$; Kruskal-Wallis tests). None
138 of the subjects had any experience with playing audio-only games, while 49 subjects (86.0%)
139 had experience with playing video games. Experienced gamers, playing more than 1 h per
140 week over the last 2 months, were not recruited. All subjects had normal hearing (mean
141 hearing level ≤ 25 dB; 0.125-8 kHz), as assessed by audiometric testing, and did not report
142 any neurological or psychiatric disorders. In addition, a minimum of at least 70% correct
143 responses in the single-source localization task of the first experimental session was chosen as
144 inclusion criterion, since localization errors, such as front-back reversals and lack of
145 externalization, can occur due to the presentation of virtual sound sources via headphones
146 [45], as was used in the auditory tasks (see below). Twenty-four further participants were
147 excluded from the data analysis. Of these, 13 subjects did not meet the inclusion criterion of at
148 least 70% correct responses in the single-source localization task, and eleven subjects did not
149 complete the training. Subjects were paid for participation in the tests or received course
150 credits. All subjects gave their written informed consent to participate in this study, which
151 was approved by the Ethical Committee of the Faculty of Psychology of the Ruhr University

152 Bochum. This study conformed to the Code of Ethics of the World Medical Association
153 (Declaration of Helsinki), printed in the British Medical Journal (18 July 1964).

154 **Auditory tasks**

155 During the auditory tasks, the subject sat on a comfortable chair in front of a desk in a
156 dimly illuminated, sound-attenuating room. Auditory stimuli were presented via open,
157 circumaural stereo headphones (HD650, Sennheiser, Wedemark, Germany). Two tasks had to
158 be completed: (1) the single-source task, in which an isolated sound source had to be
159 localized; (2) the multiple-sources task, in which four different sound sources were presented
160 simultaneously at different locations, one of these a predefined target that had to be localized.
161 The multiple-sources task largely resembled that described in [38], with the exception that we
162 used virtual sound sources and not loudspeakers. Four different animal vocalizations ('birds
163 chirping'; 'dog barking'; 'frog'; 'sheep'; taken from [46]), were adjusted to four different
164 durations (300 ms; 600 ms; 900 ms; 1200 ms) by cutting out parts of the sound file using the
165 software Cool Edit 2000 (Syntrillium Software Corporation, Phoenix, AZ, USA). For
166 presentation of virtual sources, sound files were convolved with generic head related transfer
167 function (HRTF) filters [47]. Using a procedure described elsewhere in detail [48,49], each
168 sound was passed through HRTF filters delivered by Tucker-Davis Technologies (TDT,
169 Alachua, FL, USA), using the RPvds graphical design tool software in combination with a
170 TDT RP2.1 real-time processor system. HRTF filter coefficients were derived from
171 measurements conducted by Gardner and Martin [50,51] with a Knowles Electronic
172 Mannequin for Acoustic Research (KEMAR; size 14 cm from ear to ear) under anechoic
173 conditions, and each HRTF was stored as a 256-tap FIR filter.

174 Virtual source locations were implemented at four different azimuth positions at 0°
175 elevation: 60° and 20° to the left, and 20° and 60° to the right (Fig 1). Simultaneous
176 presentation of four virtual locations in the multiple-sources task was created by digitally

177 mixing four different waveforms, each at a different virtual location. Multiple sound sources
178 were always presented with the same duration. Sources were either presented with identical
179 levels for all four sound sources, or with the target source presented at a 6 dB higher or lower
180 level with reference to the level of each of the three distractor sources. That is, target level and
181 stimulus duration were varied between trials. This was done to have a wider range of task
182 difficulty levels (increasing with decreasing duration and target level), as individual
183 differences in baseline performance were relatively large (see Fig 2). Stimuli were converted
184 to analog form via a PC-controlled, 16-bit soundcard (Audigy 2NX, Creative Labs,
185 Singapore) and were presented at a mean sound pressure level of 62 dB(A).

186 **Fig 1. Sound-localization tasks.** In the multiple-sources task, four stimuli (four different
187 animal vocalizations, one target and three distractors) were presented simultaneously from
188 four virtual sound locations at 60° and 20° to the left and right. Subjects were instructed to
189 indicate the location of the predefined target vocalizations using a response box with four
190 keys. In the single-source task, the target was presented without distractors. Apart from that
191 both tasks were identical.

192 **Fig 2. Effects of audio gaming and video gaming on sound-localization performance in**
193 **single-source and multiple-sources conditions.** Percentages of correct responses obtained in
194 first (pre) and second (post) testing sessions are shown separately for the two tasks and the
195 three groups (audio game; video game; passive control). Symbols and lines indicate individual
196 results; bars indicate mean values (error bars, standard errors).

197 As in previous studies (e.g. [38]), localization performance was assessed using a
198 spatial four-alternative forced-choice method. The subjects were informed that there were
199 four possible positions of the target (slightly to the left; farther to the left; slightly to the right;

200 farther to the right). They were instructed to indicate the location of the target by pressing one
201 out of four response keys on a response box within about 1 s after each stimulus presentation.
202 On the response box, the four keys were arranged in a semicircle, corresponding to the four
203 possible positions of the target. Subjects were instructed to respond in each trial, without
204 omissions, and were encouraged to guess when they were unsure about the correct position.
205 Trial durations depended on the subject's response time: The next stimulus was always
206 presented 1 s after the response, thus usually resulting in trial durations of about 3 s. If the
207 subject's response was given earlier than 0.2 s or later than 5 s after stimulus onset, the trial
208 was automatically repeated at the end of sub-blocks of 48 trials or at the end of the block,
209 until the complete set of responses was recorded.

210 Each session comprised eight blocks, with each of the four animal vocalizations
211 presented as target in both tasks. Each target was first presented in the single-source task and
212 then in the multiple-sources task (with a short break between the two blocks), such that the
213 subject was sufficiently familiar with the target when the multiple-sources task began. After
214 the completion of the two blocks with the same target, the subject was allowed to rest for a
215 few minutes, if required. The sequence of the targets was balanced across subjects for each
216 group. In the single-source task, 96 trials (4 target positions \times 3 target levels \times 4 durations \times 2
217 repetitions) were presented for each target. In the multiple-sources task, 288 trials (4 target
218 positions \times 3 target levels \times 4 durations \times 6 distractor combinations) were presented. In both
219 tasks, target location, target level, and stimulus duration were varied following a fixed
220 pseudorandom order. The timing of the auditory stimuli and the recording of the subjects'
221 responses were controlled by custom-written software. No feedback was given to the subjects
222 about their performance.

223 Computer Games

224 The audio-game group ($n = 19$; mean age 22.8 yrs, SE 0.8, range 19-30 yrs; 6 women,
225 13 men) was instructed to play the audio-only action game *The Blind Swordsman* (Evil-Dog
226 Productions, Montreal, Canada; <http://www.evil-dog.com/the-blind-swordsman.html>). All
227 information necessary to play this game is presented auditorily. The participant is playing
228 from a first-person perspective as a blind swordsman who, on his quest to regain his eyesight,
229 has to defeat enemies at several levels of increasing difficulty. The player is only able to
230 identify the enemies' actions and directions via auditory cues and has to react without
231 receiving any visual information. Participants were familiarized with the game after
232 completion of the tests in the first experimental session and received a detailed description of
233 the game. They installed the free game software on their private PCs or laptops. The subjects
234 were instructed to play the game daily for at least 30 min.

235 The audio-game group ($n = 19$; mean age 24.2 yrs, SE 0.8, range 19-30 yrs; 6 women,
236 13 men) was instructed to play the non-action video game *Mega Mario* (A. Weber, Berlin,
237 Germany; <http://mmario.sourceforge.net/>), which is a clone of the well-known *Super Mario*
238 *Bros 1* game (Nintendo, Kyoto, Japan). *Mega Mario* is a two-dimensional platform game, in
239 which the player advances through different levels of increasing difficulty, overcoming
240 obstacles and enemies in order to complete the main quest. The subjects were instructed to
241 play the game daily for at least 30 min.

242 The passive control group ($n = 19$; mean age 23.7 yrs, SE 0.9, range 19-34 yrs; 6
243 women, 13 men) underwent the same procedures of testing as the gaming groups about one
244 month apart. Control subjects did neither receive any information about the actual background
245 of the study, nor about the fact that they were part of a control group. The actual durations of
246 the time intervals between pre- and post-testing did not significantly differ between groups
247 (audio group: mean 30.9 days, SE 0.6, range 28-37 days; video group: mean 30.42 days, SE

248 0.3, range 27-33 days; control group: mean: 31.6 days, SE 0.6, range 27-37 days; $H(2) = 1.55$,
249 $p = 0.46$; Kruskal-Wallis test).

250 **Data Analysis**

251 As in a related study [52], for the main analysis the percentages of correct responses
252 were transformed into rationalized arcsine units (RAUs; [53,54]). RAUs have a greater range
253 than the corresponding percent-correct scores for extreme values (< 20%; > 80%), such that
254 the variance of RAU values is more uniform than that of percent-correct scores. Individual
255 RAUs obtained with post-testing were normalized with reference to pre-testing. Pre-
256 normalized RAU values were pooled across target stimuli, positions and levels and submitted
257 to a two-factor repeated-measures ANOVA with task (single source; multiple sources) as
258 within-subject factor and group (audio game; video game; passive control) as between-
259 subjects factor. Post-hoc ANOVAs and *t*-tests were applied to investigate effects in detail.
260 One-tailed testing was used for post-hoc comparisons between groups, as the primary goal
261 was to determine if the pre-normalized performance of the audio-game group was improved
262 compared with the video-game group and the control group. If appropriate, Bonferroni-
263 corrected α -levels were used to determine statistical significance.

264 **Results**

265 The participants' percentages of correct responses assessed in the baseline sessions
266 were analyzed using a two-factor ANOVA, with task (single source; multiple sources) as
267 within-subject factor and group (audio game; video game; passive control) as between-
268 subjects factor. The ANOVA did neither indicate differences between groups ($F(2,54) = 1.69$,
269 $p = 0.19$, $\eta_p^2 = 0.06$), nor an interaction ($F(2,54) = 0.41$, $p = 0.66$, $\eta_p^2 = 0.02$). As was to be
270 expected from the substantial differences in task difficulty, subjects performed better in the

271 single-source, than in the multiple-sources, task ($F(1,54) = 388.13, p < 0.0001, \eta_p^2 = 0.88$).
272 Individual levels of baseline performance were quite variable (Fig 2), but clearly above
273 chance level (25%) for all subjects in both the single-source task (mean 84.86%, SE 1.03%,
274 range 70.05–98.44%; $p < 0.0001$, binomial test) and the multiple-sources task (mean 69.05%,
275 SE 1.29%, range 49.22–88.80%; $p < 0.0001$, binomial test).

276 For the main analysis, the percentages of correct responses were transformed into
277 RAU values (see Data analysis). Then, individual data were normalized with reference to
278 baseline performance (Fig 3). Across groups, these values were significantly above zero in
279 both tasks, thus indicating generally better performance in the post-sessions with reference to
280 baseline (single-source task: $t(56) = 3.60, p = 0.0006$; multiple-sources task: $t(56) = 5.71, p <$
281 0.0001; one-sample t -tests). The pre-normalized RAU values were analyzed using a two-
282 factor repeated-measures ANOVA with task (single source; multiple sources) as within-
283 subject factor and group (audio game; video game; passive control) as between-subjects
284 factor. There was a significant task \times group interaction ($F(2,54) = 4.56, p = 0.015, \eta_p^2 =$
285 0.14), but no main effects of task ($F(1,54) = 1.88, p = 0.18, \eta_p^2 = 0.03$) or group ($F(2,54) =$
286 0.87, $p = 0.42, \eta_p^2 = 0.03$). Post-hoc testing was conducted using two one-factor ANOVAs
287 (separately for each task) with group as between-subjects factor. An effect of group was found
288 for the multiple-sources task ($F(2,54) = 4.47, p = 0.016, \eta_p^2 = 0.14$; Fig 3B), but not for the
289 single-source task ($F(2,54) = 0.03, p = 0.97, \eta_p^2 < 0.01$; Bonferroni-corrected $\alpha = 0.025$; Fig
290 3A). Subsequent post-hoc comparisons between groups for the multiple-sources task using t -
291 tests (one-tailed) revealed that both the audio-game group (mean difference 4.93 RAU, SE
292 1.76 RAU; $t(36) = 2.79, p = 0.004, d = 0.91$, achieved power $1 - \beta = 0.72$, calculated with
293 G*Power 3.1.9.2 [55]) and the video-game group (mean difference 5.28 RAU, SE 1.99 RAU;
294 $t(36) = 2.65, p = 0.006, d = 0.86, 1 - \beta = 0.67$) showed stronger improvements in performance
295 than the passive control group, while there was no significant difference between active

296 groups (mean difference 0.35 RAU, SE 2.15 RAU; $t(36) = 0.16, p = 0.44, d = 0.05, 1 - \beta =$
297 0.02; Bonferroni-corrected $\alpha = 0.0167$; Fig 3).

298 **Fig 3. Pre-normalized performances in localization after audio and video gaming and**
299 **for the passive control group.** (A) Single-source condition. (B) Multiple-sources condition.
300 The original percentages of correct responses were transformed into rationalized arcsine units
301 (RAU values). Symbols indicate individual results; bars indicate mean values for each group
302 (error bars, standard errors). Asterisks indicate significant improvement compared with the
303 control group ($p \leq 0.006$, one-tailed; Bonferroni-corrected $\alpha = 0.0167$).

304 **Discussion**

305 We found improving effects with similarly strong effect sizes of both action audio
306 game and non-action video game training on auditory selective spatial attention, while no
307 effects were revealed for single-source localization. There was no significant difference in
308 improvements in multiple-sources localization obtained after both types of game training. On
309 the one hand, these results clearly confirmed our hypothesis that playing an action audio game
310 with spatial interaction is an effective near-transfer training enhancing audiospatial
311 performance in complex listening situations. On the other hand, the finding that playing a
312 non-action platform video game, which demanded spatial attention to a much lesser degree
313 and in a different sensory modality, was about equally effective as the action audio game, was
314 in apparent contrast to the view that learning processes during game play are modality-
315 specific, without transfer from the visual to the auditory domain [26]. It seems as if successful
316 training of “cocktail-party” listening depended on the enhancement of domain-general
317 cognitive aspects of selective attention, which may have been induced by both games to a
318 similar extent, rather than modality-specific factors of auditory spatial perception.

319 As a main finding, this study demonstrated for the first time a beneficial effect of
320 playing an audio-only action game on audiospatial performance. This may parallel previous
321 results from the visual domain, showing improving effects of action and non-action video
322 games on visual attentional functions, in particular visual selective spatial attention [2,10,20].
323 Action audio game and non-action video game trainings had quite similar effects on selective
324 auditory spatial attention. There was merely a non-significant numerical trend of stronger
325 increase in performance after audio-game, compared with video-game, training, rather
326 suggesting equality of effect sizes (cf. Fig 3B). This negative finding was not necessarily
327 expected, given the recent cross-sectional study by Stewart et al. [26], who did not find any
328 association between action video game play and auditory performance in tasks requiring
329 attention in listening, speech-in-noise perception, and listening in spatialized noise sentences.
330 The conclusion of these authors that action video game play does not result in cross-modal
331 transfer learning seems to be in opposition to the result of the present intervention study,
332 which demonstrated a causal relation of non-action video-game playing and improvement in
333 selective auditory spatial attention. Thus, this outcome might argue in favor of a cross-modal
334 transfer of the attentional skills trained by video gaming to the auditory domain. For the type
335 of platform video game used here, previous research showed enhancements in several
336 cognitive domains, such as processing speed, reasoning, visuospatial coordination functions,
337 visuomotor coordination and working memory [39] as well as antisaccadic inhibition as a
338 measure of frontal inhibition due to increased grey matter volume in frontal eye field [42] and
339 increased short term memory performance and Montreal Cognitive Assessment scores in
340 conjunction with increased hippocampal and cerebellar grey matter volumes [40] for its 3D-
341 counterpart. In particular, there is evidence that playing a related platform video game can
342 induce structural brain plasticity, with increases of hippocampus, entorhinal-cortex, and
343 occipital-cortex volume found after a few months to several years of training [6,24,40,41].
344 Whether audio game training over longer periods can induce similar plastic changes is an

345 open question that has to be answered empirically. The brain regions involved in the
346 audiospatial task used here to assess selective auditory spatial attention have recently been
347 described in great detail. The main areas were planum temporale, posterior superior temporal
348 gyrus, inferior parietal lobule, superior parietal lobule/precuneus, inferior frontal gyrus, and
349 dorso-frontal cortex [38,44,49,52,56–58]. Interestingly, the occipital cortex, which was shown
350 to be increased in volume after video game playing [24], has been shown to be involved also
351 in audiospatial functions (e.g., [59,60]). Most importantly, there is broad evidence that the
352 frontal eye-field region is specifically concerned with functions of auditory selective
353 attention, including audiospatial processing in “cocktail-party situations”, as was tested here
354 [49,56,61–65]. Since the grey matter volume of frontal eye field has been found to be
355 increased due to video game training with *Super Mario* [42] and *Tetris* [66], it seems possible
356 that the improvement in audiospatial performance, as was observed in both the video-game
357 and the audio-game groups of the present study, was related to plastic changes in this region.
358 Further studies might use brain imaging techniques to investigate potential effects of audio
359 game and video game trainings on audiospatial processing in cortical areas concerned with
360 hearing in “cocktail-party” situations.

361 It has been proposed that action video games generally enhance a learning mechanism
362 of probabilistic inference, thus allowing also for far transfer of learned cognitive skills across
363 sensory modalities [29]. Green et al. [29] provided support for this hypothesis by
364 demonstrating improved performance of video-game players compared with non-players in
365 both visual and auditory perceptual tasks requiring decision making based on probabilistic
366 inference. In this context, it has to be noted that the “cocktail-party” task used here required a
367 spatial decision about the position of the target source presented among distractors. Thus, one
368 could assume that improvement of probabilistic inference should have a beneficial effect on
369 the performance in this task. Also, the two games used here may require probabilistic

370 inference and may induce related learning processes. This may hold true not only for the
371 action audio game, but also for the platform video game since playing requires, in either case,
372 quick decisions in response to unforeseen events. In this regard, the present results can not
373 only be explained by assuming that game training enhanced domain-general attentional skills
374 related to the task, as discussed above, but also by improvement of probabilistic inference
375 with game training. On the basis of the results, it is not possible to decide which of these
376 explanations is more likely.

377 It is notable that training-induced improvements were found in the multiple-sources,
378 but not in the single-source, condition. One possible explanation might be that game training
379 had effects on higher-order cognitive functions of spatial hearing, as were relevant in a
380 “cocktail-party” situation, rather than the more basic mechanisms of sound localization
381 required for successfully completing the single-source task. The single-source task could be
382 resolved primarily by evaluation of interaural differences in time and level and allocation of
383 these cues to the egocentric spatial frame of reference (for review, see [45]), whereas the
384 “cocktail-party” task was much more demanding insofar as it additionally involved processes
385 of selective attention, in particular extraction of relevant information and inhibition of
386 distractors. It seems as if repetitive gaming selectively modulated the latter, higher-level
387 processes. However, one has also to consider that the performances already measured in the
388 baseline session of the single-source task were substantially higher than in the multiple-
389 sources task, with individual percentages of correct responses of more than 80% in the
390 majority of participants (cf. Fig 2). Although a RAU transformation was used to correct
391 scores for extreme values (cf. Fig 3), this null result must thus be interpreted with some
392 caution since one cannot completely exclude that it was due to a ceiling effect.

393 In conclusion, we provided first evidence from data obtained in a controlled
394 intervention study that an action audio game enhanced audiospatial performance in healthy

395 young adults. Thus, on the one hand, action audio games may be suitable training
396 interventions in the auditory domain. On the other hand, effects of non-action video game
397 training were quite similar, suggesting cross- or supramodal processes associated with
398 computer game training. The results left open the question of whether any form of computer
399 game-based training can improve selective auditory spatial attention, independent of the
400 sensory modality within which skills are trained, or improvements can be optimized by
401 interventions requiring intramodal (near) transfer of learned skills. This issue has to be
402 investigated in subsequent studies, using training interventions over longer periods than in the
403 present study. From an application-oriented point of view, both audio and video game-based
404 could lead to effective intervention programs for persons suffering from deficits in “cocktail-
405 party” listening, namely healthy older people and individuals using hearing aids or cochlea
406 implants. Also, these results suggested that action audio-only game training could be a
407 promising tool for improving spatial abilities in blind or visually impaired persons who were
408 unable to benefit from visual game training (cf. [30]). Moreover, it seems reasonable to
409 assume that patients with visual field defects, such as hemianopia (cf. [67–69]), or
410 visuospatial attention deficits, such as neglect (cf. [70]), could specifically benefit from audio-
411 game training. This possibility should be considered by future research.

412 **Acknowledgements**

413 The authors are grateful to Peter Dillmann for preparing software and stimuli used for
414 testing. We acknowledge support by the German Federal Ministry of Education and Research
415 in the framework of the TRAIN-STIM project (01GQ1424E) and by a donation from Sorg
416 Hörsysteme Hörgeräte - Akustik GmbH, Schonach im Schwarzwald, Germany.

417 References

- 418 1. Bavelier D, Green CS, Han DH, Renshaw PF, Merzenich MM, Gentile DA. Brains on
419 video games. *Nat Rev Neurosci*. 2011; 12:763–8. doi: 10.1038/nrn3135 PMID:
420 22095065.
- 421 2. Green CS, Gorman T, Bavelier D. Action video-game training and its effects on
422 perception and attentional control. In: Strobach T, Karbach J, editors. *Cognitive training*.
423 Cham: Springer International Publishing; 2016. pp. 107–16.
- 424 3. Strobach T, Karbach J, editors. *Cognitive training*. Cham: Springer International
425 Publishing; 2016.
- 426 4. Lampit A, Hallock H, Valenzuela M. Computerized cognitive training in cognitively
427 healthy older adults: a systematic review and meta-analysis of effect modifiers. *PLoS
428 Med*. 2014; 11:e1001756. doi: 10.1371/journal.pmed.1001756 PMID: 25405755.
- 429 5. Brilliant T D, Nouchi R, Kawashima R. Does video gaming have impacts on the brain:
430 Evidence from a systematic review. *Brain Sci*. 2019; 9. doi: 10.3390/brainsci9100251.
431 PMID: 31557907.
- 432 6. Kühn S, Gleich T, Lorenz RC, Lindenberger U, Gallinat J. Playing Super Mario induces
433 structural brain plasticity: Gray matter changes resulting from training with a
434 commercial video game. *Mol Psychiatry*. 2014; 19:265–71. doi: 10.1038/mp.2013.120
435 PMID: 24166407.
- 436 7. Palaus M, Marron EM, Viejo-Sobera R, Redolar-Ripoll D. Neural basis of video gaming:
437 A systematic review. *Front Hum Neurosci*. 2017; 11:248.
438 doi: 10.3389/fnhum.2017.00248 PMID: 28588464.
- 439 8. Anguera JA, Boccanfuso J, Rintoul JL, Al-Hashimi O, Faraji F, Janowich J, et al. Video
440 game training enhances cognitive control in older adults. *Nature*. 2013; 501:97–101.
441 doi: 10.1038/nature12486 PMID: 24005416.

442 9. Toril P, Reales JM, Mayas J, Ballesteros S. Video game training enhances visuospatial
443 working memory and episodic memory in older adults. *Front Hum Neurosci*. 2016;
444 10:206. doi: 10.3389/fnhum.2016.00206 PMID: 27199723.

445 10. Green CS, Bavelier D. Action video game modifies visual selective attention. *Nature*.
446 2003; 423:534–7. doi: 10.1038/nature01647 PMID: 12774121.

447 11. Green CS, Bavelier D. Action video game training for cognitive enhancement. *Current
448 Opinion in Behavioral Sciences*. 2015; 4:103–8. doi: 10.1016/j.cobeha.2015.04.012.

449 12. Clemenson GD, Stark CEL. Virtual environmental enrichment through video games
450 improves hippocampal-associated memory. *J Neurosci*. 2015; 35:16116–25.
451 doi: 10.1523/JNEUROSCI.2580-15.2015 PMID: 26658864.

452 13. Strobach T, Frensch PA, Schubert T. Video game practice optimizes executive control
453 skills in dual-task and task switching situations. *Acta Psychol (Amst)*. 2012; 140:13–24.
454 doi: 10.1016/j.actpsy.2012.02.001 PMID: 22426427.

455 14. Strobach T, Huestegge L. Evaluating the effectiveness of commercial brain game training
456 with working-memory tasks. *J Cogn Enhanc*. 2017; 1:539–58. doi: 10.1007/s41465-017-
457 0053-0.

458 15. Spence I, Feng J. Video games and spatial cognition. *Rev Gen Psychol*. 2010; 14:92–
459 104. doi: 10.1037/a0019491.

460 16. Strobach T, Schubert T. Video game training and effects on executive functions. In:
461 Strobach T, Karbach J, editors. *Cognitive training*. Cham: Springer International
462 Publishing; 2016. pp. 117–25.

463 17. Feng J, Spence I. Playing action video games boosts visual attention. In: Ferguson CJ,
464 editor. *Video game influences on aggression, cognition, and attention*. Cham: Springer
465 International Publishing; 2018. pp. 93–104.

466 18. Bavelier D, Achtman RL, Mani M, Föcker J. Neural bases of selective attention in action
467 video game players. *Vision Res.* 2012; 61:132–43. doi: 10.1016/j.visres.2011.08.007
468 PMID: 21864560.

469 19. Bavelier D, Green CS. Enhancing attentional control: Lessons from action video games.
470 *Neuron.* 2019; 104:147–63. doi: 10.1016/j.neuron.2019.09.031 PMID: 31600511.

471 20. Green CS, Bavelier D. Effect of action video games on the spatial distribution of
472 visuospatial attention. *J Exp Psychol Hum Percept Perform.* 2006; 32:1465–78.
473 doi: 10.1037/0096-1523.32.6.1465 PMID: 17154785.

474 21. Feng J, Spence I, Pratt J. Playing an action video game reduces gender differences in
475 spatial cognition. *Psychol Sci.* 2007; 18:850–5. doi: 10.1111/j.1467-9280.2007.01990.x
476 PMID: 17894600.

477 22. Ballesteros S, Prieto A, Mayas J, Toril P, Pita C, Ponce de León L, et al. Brain training
478 with non-action video games enhances aspects of cognition in older adults: a randomized
479 controlled trial. *Front Aging Neurosci.* 2014; 6:277. doi: 10.3389/fnagi.2014.00277
480 PMID: 25352805.

481 23. Mayas J, Parmentier FBR, Andrés P, Ballesteros S. Plasticity of attentional functions in
482 older adults after non-action video game training: a randomized controlled trial. *PLoS*
483 *One.* 2014; 9:e92269. doi: 10.1371/journal.pone.0092269 PMID: 24647551.

484 24. Kühn S, Gallinat J. Amount of lifetime video gaming is positively associated with
485 entorhinal, hippocampal and occipital volume. *Mol Psychiatry.* 2014; 19:842–7.
486 doi: 10.1038/mp.2013.100 PMID: 23958958.

487 25. Tanaka S, Ikeda H, Kasahara K, Kato R, Tsubomi H, Sugawara SK, Mori M, Hanakawa
488 T, Sadato N, Honda M, Watanabe K. Larger right posterior parietal volume in action
489 video game experts: a behavioral and voxel-based morphometry (VBM) study. *PLoS*
490 *One.* 2013 Jun 11;8(6):e66998. doi: 10.1371/journal.pone.0066998. PMID: 23776706

491 26. Stewart HJ, Martinez JL, Perdew A, Green CS, Moore DR. Auditory cognition and
492 perception of action video game players. *Sci Rep.* 2020; 10:14410. doi: 10.1038/s41598-
493 020-71235-z PMID: 32873819.

494 27. Salminen NH, Aho J, Sams M. Visual task enhances spatial selectivity in the human
495 auditory cortex. *Front Neurosci.* 2013; 7:44. doi: 10.3389/fnins.2013.00044 PMID:
496 23543781.

497 28. Zhang Y-X, Tang D-L, Moore DR, Amitay S. Supramodal enhancement of auditory
498 perceptual and cognitive learning by video game playing. *Front Psychol.* 2017; 8:1086.
499 doi: 10.3389/fpsyg.2017.01086 PMID: 28701989.

500 29. Green CS, Pouget A, Bavelier D. Improved probabilistic inference as a general learning
501 mechanism with action video games. *Curr Biol.* 2010; 20:1573–9.
502 doi: 10.1016/j.cub.2010.07.040 PMID: 20833324.

503 30. Connors EC, Yazzolino LA, Sánchez J, Merabet LB. Development of an audio-based
504 virtual gaming environment to assist with navigation skills in the blind. *J Vis Exp.* 2013.
505 doi: 10.3791/50272 PMID: 23568182.

506 31. Sánchez J, Sáenz M, Pascual-Leone A, Merabet L. Enhancing navigation skills through
507 audio gaming. *Ext Abstr Hum Factors Computing Syst.* 2010; 2010:3991–6.
508 doi: 10.1145/1753846.1754091 PMID: 25505796.

509 32. Ferguson MA, Henshaw H, Clark DPA, Moore DR. Benefits of phoneme discrimination
510 training in a randomized controlled trial of 50- to 74-year-olds with mild hearing loss.
511 *Ear Hear.* 2014; 35:e110-21. doi: 10.1097/AUD.000000000000020 PMID: 24752284.

512 33. Saunders GH, Smith SL, Chisolm TH, Frederick MT, McArdle RA, Wilson RH. A
513 randomized control trial: Supplementing hearing aid use with listening and
514 communication enhancement (LACE) auditory training. *Ear Hear.* 2016; 37:381–96.
515 doi: 10.1097/AUD.0000000000000283 PMID: 26901263.

516 34. Moradi S, Wahlin A, Häggren M, Rönnberg J, Lidestam B. The efficacy of short-term
517 gated audiovisual speech training for improving auditory sentence identification in noise
518 in elderly hearing aid users. *Front Psychol.* 2017; 8:368. doi: 10.3389/fpsyg.2017.00368
519 PMID: 28348542.

520 35. Moore DR, Rosenberg JF, Coleman JS. Discrimination training of phonemic contrasts
521 enhances phonological processing in mainstream school children. *Brain Lang.* 2005;
522 94:72–85. doi: 10.1016/j.bandl.2004.11.009 PMID: 15896385.

523 36. Stropahl M, Besser J, Launer S. Auditory training supports auditory rehabilitation: A
524 state-of-the-art review. *Ear Hear.* 2020; 41:697–704.
525 doi: 10.1097/AUD.0000000000000806 PMID: 31613823.

526 37. Cherry EC. Some experiments on the recognition of speech, with one and with two ears.
527 *J Acoust Soc Am.* 1953; 25:975–9. doi: 10.1121/1.1907229.

528 38. Lewald J. Modulation of human auditory spatial scene analysis by transcranial direct
529 current stimulation. *Neuropsychologia.* 2016; 84:282–93.
530 doi: 10.1016/j.neuropsychologia.2016.01.030 PMID: 26825012.

531 39. Perrot A, Maillet P, Hartley A. Cognitive training game versus action videogame: Effects
532 on cognitive functions in older adults. *Games Health J.* 2019; 8:35–40.
533 doi: 10.1089/g4h.2018.0010 PMID: 30376364.

534 40. West GL, Zendel BR, Konishi K, Benady-Chorney J, Bohbot VD, Peretz I, et al. Playing
535 Super Mario 64 increases hippocampal grey matter in older adults. *PLoS One.* 2017;
536 12:e0187779. doi: 10.1371/journal.pone.0187779 PMID: 29211727.

537 41. West GL, Konishi K, Diarra M, Benady-Chorney J, Drisdelle BL, Dahmani L, et al.
538 Impact of video games on plasticity of the hippocampus. *Mol Psychiatry.* 2018;
539 23:1566–74. doi: 10.1038/mp.2017.155 PMID: 28785110.

540 42. Diarra M, Zendel BR, Benady-Chorney J, Blanchette C-A, Lepore F, Peretz I, et al.
541 Playing Super Mario increases oculomotor inhibition and frontal eye field grey matter in

542 older adults. *Exp Brain Res.* 2019; 237:723–33. doi: 10.1007/s00221-018-5453-6 PMID: 30554255.

543

544 43. Oldfield RC. The assessment and analysis of handedness: The Edinburgh inventory.

545 *Neuropsychologia.* 1971; 9:97–113. doi: 10.1016/0028-3932(71)90067-4.

546 44. Zündorf IC, Karnath H-O, Lewald J. Male advantage in sound localization at cocktail

547 parties. *Cortex.* 2011; 47:741–9. doi: 10.1016/j.cortex.2010.08.002 PMID: 20828679.

548 45. Blauert J. *Spatial hearing: The psychophysics of human sound localization.* Cambridge,

549 MA: MIT Press; 1997.

550 46. Marcell MM, Borella D, Greene M, Kerr E, Rogers S. Confrontation naming of

551 environmental sounds. *J Clin Exp Neuropsychol.* 2000; 22:830–64.

552 doi: 10.1076/jcen.22.6.830.949 PMID: 11320440.

553 47. Wightman FL, Kistler DJ. Headphone simulation of free-field listening. I: Stimulus

554 synthesis. *J Acoust Soc Am.* 1989; 85:858–67. doi: 10.1121/1.397557 PMID: 2926000.

555 48. Getzmann S, Lewald J. Effects of natural versus artificial spatial cues on

556 electrophysiological correlates of auditory motion. *Hear Res.* 2010; 259:44–54.

557 doi: 10.1016/j.heares.2009.09.021 PMID: 19800957.

558 49. Zündorf IC, Lewald J, Karnath H-O. Neural correlates of sound localization in complex

559 acoustic environments. *PLoS One.* 2013; 8:e64259. doi: 10.1371/journal.pone.0064259

560 PMID: 23691185.

561 50. Gardner WG, Martin KD. HRTF measurements of a KEMAR. *J Acoust Soc Am.* 1995;

562 97:3907–8. doi: 10.1121/1.412407.

563 51. Gardner WG, Martin KD. HRTF measurements of a KEMAR dummy head microphone.

564 MIT Media Lab Perceptual Computing Technical Report #280. 1994.

565 52. Lewald J. Bihemispheric anodal transcranial direct-current stimulation over temporal

566 cortex enhances auditory selective spatial attention. *Exp Brain Res.* 2019; 237:1539–49.

567 doi: 10.1007/s00221-019-05525-y PMID: 30927041.

568 53. Studebaker GA. A "rationalized" arcsine transform. *J Speech Hear Res.* 1985; 28:455–
569 62. doi: 10.1044/jshr.2803.455 PMID: 4046587.

570 54. Sherbecoe RL, Studebaker GA. Supplementary formulas and tables for calculating and
571 interconverting speech recognition scores in transformed arcsine units. *Int J Audiol.*
572 2004; 43:442–8. doi: 10.1080/14992020400050056 PMID: 15643737.

573 55. Faul F, Erdfelder E, Lang A-G, Buchner A. G*Power 3: A flexible statistical power
574 analysis program for the social, behavioral, and biomedical sciences. *Behav Res*
575 *Methods.* 2007; 39:175–91. doi: 10.3758/BF03193146 PMID: 17695343

576 56. Lewald J, Hanenberg C, Getzmann S. Brain correlates of the orientation of auditory
577 spatial attention onto speaker location in a "cocktail-party" situation. *Psychophysiology.*
578 2016; 53:1484–95. doi: 10.1111/psyp.12692 PMID: 27333881.

579 57. Zündorf IC, Karnath H-O, Lewald J. The effect of brain lesions on sound localization in
580 complex acoustic environments. *Brain.* 2014; 137:1410–8. doi: 10.1093/brain/awu044
581 PMID: 24618271.

582 58. Hanenberg C, Getzmann S, Lewald J. Transcranial direct current stimulation of posterior
583 temporal cortex modulates electrophysiological correlates of auditory selective spatial
584 attention in posterior parietal cortex. *Neuropsychologia.* 2019; 131:160–70.
585 doi: 10.1016/j.neuropsychologia.2019.05.023 PMID: 31145907.

586 59. Lewald J, Meister IG, Weidemann J, Töpper R. Involvement of the superior temporal
587 cortex and the occipital cortex in spatial hearing: evidence from repetitive transcranial
588 magnetic stimulation. *J Cogn Neurosci.* 2004; 16:828–38.
589 doi: 10.1162/089892904970834 PMID: 15200710.

590 60. Zimmer U, Lewald J, Erb M, Grodd W, Karnath H-O. Is there a role of visual cortex in
591 spatial hearing. *Eur J Neurosci.* 2004; 20:3148–56. doi: 10.1111/j.1460-
592 9568.2004.03766.x PMID: 15579169.

593 61. Kong L, Michalka SW, Rosen ML, Sheremata SL, Swisher JD, Shinn-Cunningham BG,
594 et al. Auditory spatial attention representations in the human cerebral cortex. *Cereb
595 Cortex*. 2014; 24:773–84. doi: 10.1093/cercor/bhs359 PMID: 23180753.

596 62. Larson E, Lee AKC. The cortical dynamics underlying effective switching of auditory
597 spatial attention. *Neuroimage*. 2013; 64:365–70. doi: 10.1016/j.neuroimage.2012.09.006
598 PMID: 22974974.

599 63. Larson E, Lee AKC. Switching auditory attention using spatial and non-spatial features
600 recruits different cortical networks. *Neuroimage*. 2014; 84:681–7.
601 doi: 10.1016/j.neuroimage.2013.09.061 PMID: 24096028.

602 64. Lee AKC, Larson E, Maddox RK, Shinn-Cunningham BG. Using neuroimaging to
603 understand the cortical mechanisms of auditory selective attention. *Hear Res*. 2014;
604 307:111–20. doi: 10.1016/j.heares.2013.06.010 PMID: 23850664.

605 65. Bharadwaj HM, Lee AKC, Shinn-Cunningham BG. Measuring auditory selective
606 attention using frequency tagging. *Front Integr Neurosci*. 2014; 8:6.
607 doi: 10.3389/fnint.2014.00006 PMID: 24550794.

608 66. Haier RJ, Karama S, Leyba L, Jung RE. MRI assessment of cortical thickness and
609 functional activity changes in adolescent girls following three months of practice on a
610 visual-spatial task. *BMC Res Notes*. 2009; 2:174. doi: 10.1186/1756-0500-2-174 PMID:
611 19723307.

612 67. Lewald J, Peters S, Tegenthoff M, Hausmann M. Distortion of auditory space in
613 hemianopia. *Eur J Neurosci*. 2009; 30:1401–11. doi: 10.1111/j.1460-9568.2009.06905.x
614 PMID: 19769592

615 68. Lewald J, Tegenthoff M, Peters S, Hausmann M. Passive auditory stimulation improves
616 vision in hemianopia. *PLoS One*. 2012; 7:e31603. doi: 10.1371/journal.pone.0031603
617 PMID: 22666311

618 69. Lewald J, Kentridge RW, Peters S, Tegenthoff M, Heywood CA, Hausmann M.

619 Auditory-visual localization in hemianopia. *Neuropsychology*. 2013; 27:573–82.

620 <https://doi.org/10.1037/a0033451> PMID: 23937478

621 70. Zimmer U, Lewald J, Karnath H-O. Disturbed sound lateralization in patients with spatial

622 neglect. *J Cogn Neurosci*. 2003; 15:694–703. doi: 10.1162/jocn.2003.15.5.694.

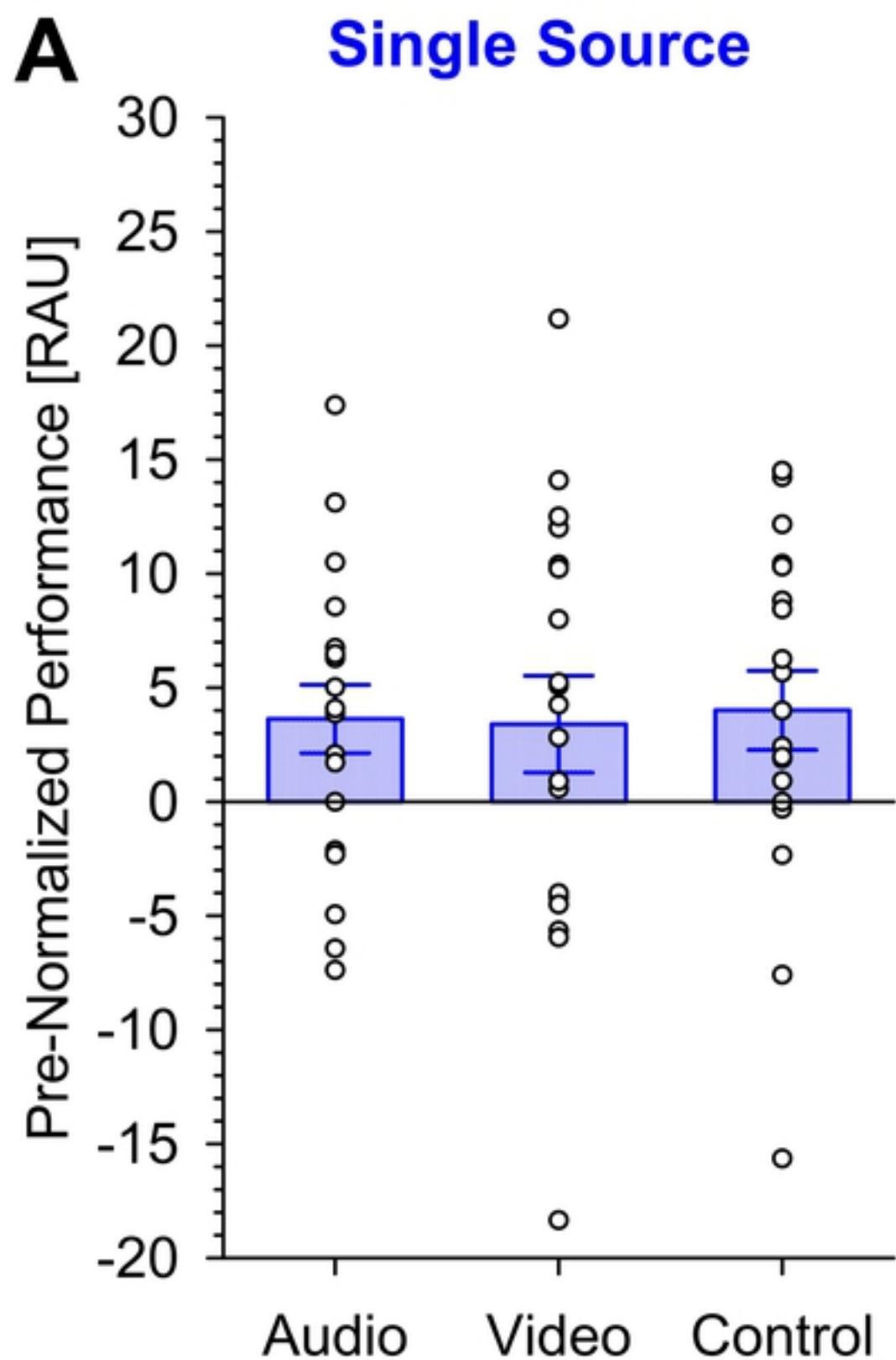



Figure 3

Figure 1

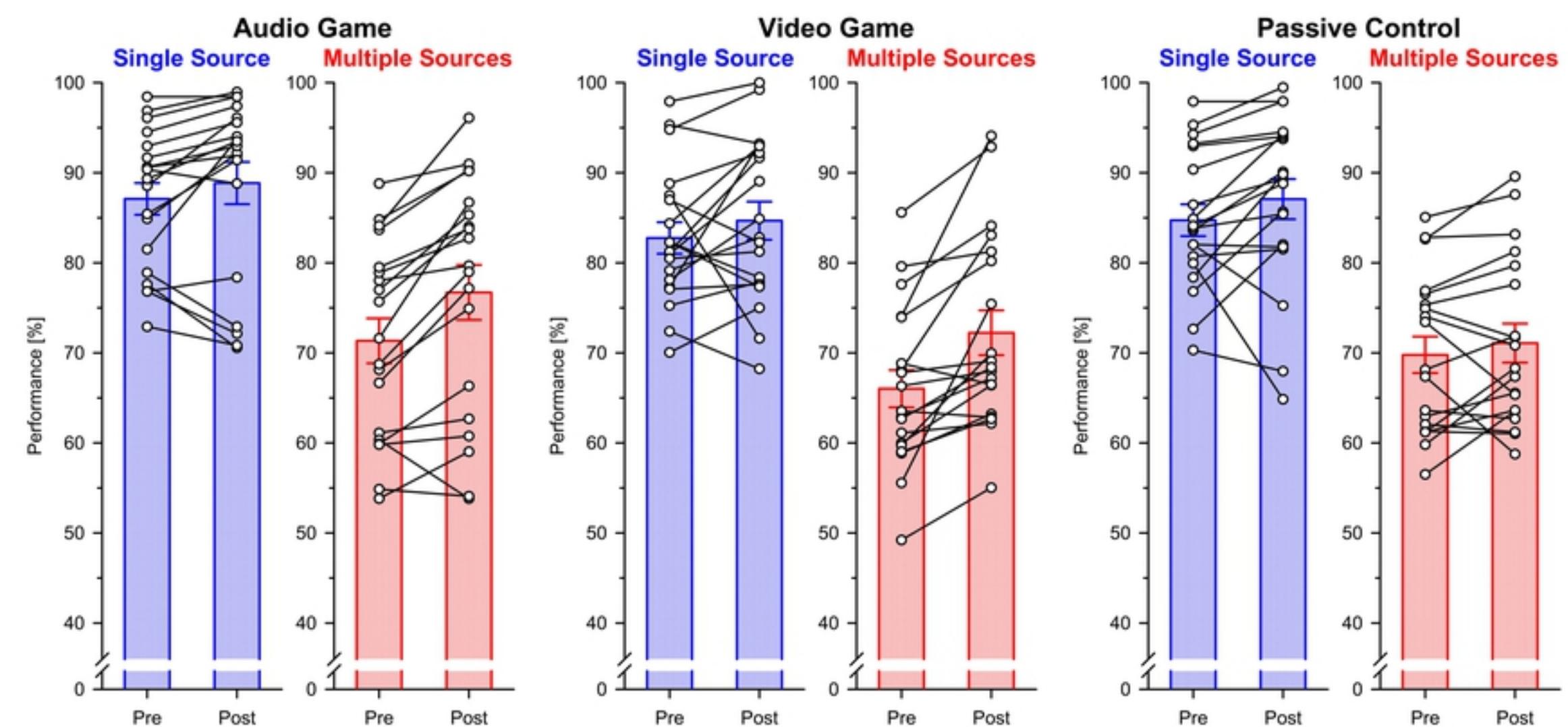


Figure 2