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5 Abstract

16 Understanding the functional consequence of noncoding variants is of great interest. Though genome-wide

17 association studies (GWAS) or quantitative trait locus (QTL) analyses have identified variants associated with
18 traits or molecular phenotypes, most of them are located in the noncoding regions, making the identification
v of causal variants a particular challenge. Existing computational approaches developed for for prioritizing non-
20 coding variants produce inconsistent and even conflicting results. To address these challenges, we propose a
21 novel statistical learning framework, which directly integrates the precomputed functional scores from represen-
22 tative scoring methods. It will maximize the usage of integrated methods by automatically learning the relative
23 contribution of each method and produce an ensemble score as the final prediction. The framework consists
24 of two modes. The first “context-free” mode is trained using curated causal regulatory variants from a wide
25 range of context and is applicable to predict noncoding variants of unknown and diverse context. The second
26 “context-dependent” mode further improves the prediction when the training and testing variants are from the
27 same context. By evaluating the framework via both simulation and empirical studies, we demonstrate that it
25 outperforms integrated scoring methods and the ensemble score successfully prioritizes experimentally validated
29 regulatory variants in multiple risk loci.
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Introduction

w

2 In the past decade, genome-wide association studies (GWAS) have been widely used to identify tens of
33 thousands of genome-wide significant tag SNPs associated with complex traits. However, tag SNPs may
3« not be causal as the association is possibly mediated by a causal SNP associated with both the tag SNP and
55 the trait. Nevertheless, it is difficult to determine the underlying causal variants due to complex patterns
36 of LD among SNPs. Moreover, quantitative trait locus (QTL) analyses have successfully identified variants
7 associated with molecular phenotypes i.e. gene expression, DNA methylation, chromatin accessibility [1, 2,
3 3,4, 5]. These molecular QTL studies enable the understanding of molecular basis of GWAS SNPs via colo-
39 calization. However, the high sequencing cost leads to QTL studies with modest sample sizes, limiting the
w0 power to uncover QTLs with small effects. Therefore, identification of these functional noncoding variants
41 that have direct functional consequence on complex traits and molecular phenotypes remains challenging
« in human genetics research.

43 Several studies suggest that functional noncoding variants are believed to disrupt the normal regulatory
44 activity in promoter and enhancer regions in order to impact the downstream gene expression in a tissue or
45 cell type specific manner and thus result in the onset of disease such as the prevalence of TERT promoter
4+ mutations has been established in melanoma, gliomas and bladder cancer [6]; novel MYB-binding motifs,
<7 which are generated by somatic mutations in the intergenetic regions, creates a super-enhancer upstream
s of the TAL1 oncogene in a subset of T cell acute lymphoblastic leukaemia [7]. Moreover, more than 90% of
49 GWAS identified SNPs are noncoding and are enriched in regulatory elements (REs). A recent exploratory
5o study demonstrates that active chromatin marks (e.g. H3K27ac and H3K4me1), and repressive chromatin
si marks (e.g. H3Kgme3 and H3K27me3) show different regulatory activities between a risk variant rs3024505
s2  associated with type 1 diabetes and a benign variant rs114490664 [8]. This example indicates that RE activity
53 can be used to distinguish the causal and non-causal SNPs.

54 The rapid development of massively parallel sequencing technologies enables the generation of thou-
ss - sands of “multi-omics” data, which are publicly available at large national and international consortia such

ss as the Encyclopedia of DNA Elements (ENCODE) [9], Roadmap Epigenomics [10] and International Hu-
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57 man Epigenome Consortium [11]. These multi-omics data measures genome-wide regulatory activities
ss such as histone modifications (e.g. ChIP-seq), methylation (e.g. methylation array, whole-genome bisulfite
59 sequencing), chromatin accessibility (e.g. DNase-seq, ATAC-seq) and chromatin interactions (e.g. Hi-C)
so across hundreds of tissues and cell types. Using standard sequencing data processing protocols such as
si  peak-calling, tissue- or cell type-specific REs and RE activities can be detected. Variant annotations are
62 further created by overlapping variants and REs where the variant fall in [8, 12, 13, 14]. These annotations
s3 have been widely used as predictive features to develop computational methods for predicting functional
s« noncoding variants [15, 16, 17, 18, 19, 20, 21], which adopt different computational methodologies, use dif-
ss ferent training variants and utilize different variant annotations. Among these methods, supervised learning
ss approaches, such as GWAVA [15], CADD [16], DANN [17], FATHMM-MKL [18]), LINSIGHT [19]), Fun-
&7 Seq2 [20], are trained using labelled non-causal variants and causal ones, either putative or experimentally
ss  validated, to predict the probability of a give variant for being causal. Different from the supervised learn-
s ing methods, a common practice of unsupervised learning approaches such as Eigen [21] performs direct
70 aggregation of multi-dimensional variant annotations into one single functional score, which measures the
71 functional importance of the variant, without a training step. Importantly, for most of the existing meth-
72 ods, genome-wide precomputed functional scores for known variants from 1000 Genomes Project [22] or
73 gnomAD [23] are publicly available. Without the need to retrain the model, users can obtain these scores
74 efficiently by providing a list of variants identifiers or genomic coordinates and utilize these scores directly
75 for post-GWAS study i.e. fine mapping analysis. Usually, a larger score indicates the variant could poten-
76 tially be more functional and the variant with the highest score is prioritized in a risk locus with LD-linked
77 variants.

78 Nevertheless, without strong prior knowledge, it is difficult to choose which scoring method in real ap-
79 plication among multiple methods developed for the same purpose. It is even more challenging to make
so the choice considering prediction performance of existing scoring methods has been shown poor concor-
si dance on the state-of-the-art benchmark datasets [24]. There are two possible reasons to explain the poor
sz consistency. First, these methods are trained using different training variants and variant annotations to
g3 predict functional noncoding variants from different context (i.e. disease, tissue or cell types), making one
s« method trained using variants from one context have suboptimal prediction for variants from another con-

ss  text. Second, they adopt different algorithms tailored to specific scenarios, limiting the generality. For exam-
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ss  ple, GWAVA is developed using pathogenic regulatory variants from The Human Gene Mutation Database
sz (HGMD) [25] and is thus used to predict pathogenic regulatory variants; FunSeq2 is trained using recur-
g8 rence cancer somatic variants and is therefore specifically designed to predict noncoding regulatory variants
s9  in cancer. Considering the above challenge, given a variant without prior knowledge about its context and
90 functional consequence, an ensemble approach that combines the predictions of all these methods in a
91 weighted scheme could offer a more powerful prediction than each method. The weight of each individ-
92 ual scoring method, which reflects their contributions in the prediction task, can be adaptively learnt in
93 different context, which improves the generality and flexibility.

94 We hereby developed a statistical learning framework “WEVar” (Weighted Ensemble framework for
95 predicting functional regulatory Variants) by integrating representative scoring methods in a constrained
ss optimization approach, where the precomputed functional scores of these methods are treated as predictive
97 features with two constraints: i) the summation of weights of existing methods are required to be one; ii) a
ss  Lo-norm is further imposed on the weights for smoothing the weight estimation. There are several advan-
99 tages of WEVar. First, WEVar is developed directly on top of precomputed functional score, which is an
0o optimally integrative metric that represents for thousands of multi-omics functional annotations used by
o each scoring method. Using these functional scores directly will decrease the number of predictive features
w02 dramatically and thus avoid the challenge of high-dimensional data in the model development, that is, the
03 sample size of labelled causal variants is fewer than the number of variant annotations. Second, WEVar
04+ leverages individual scoring method by adaptively learning the contribution of each one, which will up-
s weight the methods fit more in the current context and down-weight the others, and thus optimizes the
s prediction performance. Last but most importantly, WEVar has two modes: “context-free” and “context-
07 dependent”. Context-free WEVar is used to predict functional noncoding variants from unknown or het-
s erogeneous context. Context-dependent WEVar can further improve the functional prediction when the
09 variants come from the same context in both training and testing set. Using simulation and real data stud-
1o ies, we demonstrate both WEVar modes outperform each individual scoring method on the state-of-the-art
i benchmark datasets. Importantly, context-dependent WEVar can further improve the functional predic-
1z tion. We also show that WEVar can successfully prioritize experimentally validated regulatory variants

113 associated with different traits and located in different risk loci.
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Figure 1. Overview of the WEVar. WEVar aims to predict functional noncoding variants, which has two modes:
“context-free” and “context-dependent”. For “context-free” mode, the training variant set is chosen from a curated
set of functional regulatory variants from diverse context to train a model for functional prediction of variants from
unknown or heterogeneous context. For “Context-dependent” mode, the training variant set is selected from one
specific context of interest (i.e. disease, tissue, cell type), to train a model for functional prediction of variants from
the same context. In the training phase, WEVar compiles the training set with labelled functional and non-functional
variants and annotate all variants with precomputed functional scores from representative scoring methods. For
each method, the raw scores are transformed using kernel density function (KDE) for both functional and non-
functional variant sets respectively. Using these transformed scores as predictive features, a constrained ensemble
model is trained. In the testing phase, precomputed functional scores of testing variants are transformed based on
the estimated KDE in the training phase and then serve as input features for trained ensemble model to predict the
ensemble WEVar score.

1+ Results

s The overview of WEVar is shown in Figure 1. First, we will perform a simulation study to evaluate the accu-
e racy of weight estimation by WEVar for all integrated scoring methods and investigate whether the predic-
17 tion performance of WEVar is improved compared to individual scoring method. Second, we will evaluate
s the context-free functional prediction and context-dependent functional prediction on the state-of-the-art
s benchmark datasets respectively. Third, we will apply WEVar to prioritize experimentally validated causal

120 regulatory variants in multiple risk loci associated with multiple traits.
iz Evaluation of WEVar in a simulation study

122 Evaluation metrics

123 The performance of all scoring methods is evaluated using area under the receiver operating characteristics

12+ curve (AUROC), the area under the precision-recall curve (AUPR) and Pearson correlation between pre-
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Figure 2. (A) Pairwise Pearson correlations between precomputed functional scores among scoring methods for the
integrated causal regulatory variants collected from Li et al. [26]. (B) Average regression coeflicient estimated by
WEVar in the training phase in 5o simulations. (C) Average prediction performance by WEVar on the independent
testing datasets. X axis presents AUPR; Y axis presents AUROC; the bubble size represents COR. AUPR, AUROC
and COR are averaged in the testing phase in 50 simulations.

125 dicted and true labels (COR). AUROC and AUPR are metrics based on the ranks of the predicted scores.
126 COR has the additional ability to measure how the predicted values are correlated with the true labels. Using
127 different probability cutoffs, AUROC measures the trade-off between the true positive rate and false posi-
128 tive rate. AUPR compares the trade-off between the true positive rate and precision. AUROC is preferred
129 for balanced class, whereas AUPR is more appropriate for imbalanced class. Since we have both balanced

150 and unbalanced testing datasets, we present both metrics.

131 Simulating correlated functional scores and variant labels

12 We conduct a simulation study to evaluate whether WEVar can estimate contribution of each individual
133 scoring method accurately and whether WEVar can improve prediction performance compared to each
i3+ individual scoring method. Since the functional scores of different methods have an overall positive cor-
155 relation (Figure 2A), we simulate functional scores of all scoring methods with consideration of the score
136 correlation. Using the simulated scores, we generate a total 10, 000 variants with an equal size of functional
157 and nonfunctional variants in the training set. Similarly, we independently generate an equal number of
e 10, 000 variants in the testing set for prediction evaluation. We then apply WEVar to retrain a model in the
139 training set and predict WEVar scores in the testing set. Using WEVar scores and true labels in the testing

o set, we will calculate AUROC, AUPR and COR. We repeat the whole procedure 50 times and obtain the
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4 average of all evaluation metrics.

142 Specifically, using the integrated causal regulatory variant set collected from Li et al. [26], we calculate
143 ap X pvariance-covariance matrix R of precomputed functional scores among all integrated scoring meth-
s ods, where p is the number of scoring methods. We cluster these methods based on Pearson correlation and
s find that these methods have different levels of disagreement, indicating that performance of these meth-
146 0ds show poor concordance on the benchmark dataset (Figure 2A). Not surprisingly, GWAVA_Unmatched,
147 GWAVA_Region and GWAVA_TSS are clustered together since they use the same positive training variant
s set. Surprisingly, FATHMM-MKL has the lowest correlation with all the other methods. Indeed, this obser-
149 vation highlights the rationale why a weighted ensemble strategy proposed by WEVar is essential to improve
5o the prediction because it is able to upweight the scoring methods fit in current context while down-weight

151 the unfit others. We further perform Cholesky decomposition on R as:

R=cC.CT (1)

153 where C'is a p x p lower triangular matrix with real positive diagonal entries. To maintain the correlations
s« of simulated scores, we generate the correlated functional scores X as the product between C'" and random

155 variable d, which is sampled from an independent normal distribution as:

X=d-C", d~ N(0,1). (2)

157 where x;; as the functional score of ith noncoding variant in jth scoring method. 7;, which is the weighted

iss average score of ith variant, can be generated as:
P
159 ni = E Tij - Bj (3)
J=1

1o where 3; is the weight associated with jth method. Without loss of generality, we manually assign 0.6 to
i B2, 0.3 to B, 0.1 to 85, and O to the rest. We then perform inverse logit transformation to 7; to obtain
162 probability 7;, based on which the binary label y; for ith variant is generated from a Bernoulli distribution

163 aS:
eni

1+em’

(4)

164 y; ~ Bern(m;), wherem; =
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Figure 3. Evaluation of context-free WEVar and integrated scoring methods. Context-free WEVar is trained us-
ing the integrated functional regulatory variants collected by Li et al. [26], which include variants in HGMD, Clin-
Var, OregAnno and fine-mapping candidate causal SNPs for 39 immune and non-immune diseases with a total of
5,247 positive variants and 55,923 negative variants. Context-free WEVar is tested on the state-of-the-art benchmark
datasets, which include i) Allelic imbalanced SNPs in chromatin accessibility with a total of 8,592 positive variants
and 9,678 negative variants (Allelic imbalanced SNPs); ii) Uniformly processed fine-mapping eQTLs from 11 studies
with a total of 31,118 positive variants and 36,540 negative variants (Fine mapping eQTLs); iii) GWAS noncoding
SNPs with a total of 19,797 positive variants and twice number of negative variants (GWAS SNPs) [27]; iv) Manually
curated experimentally validated regulatory SNPs with a total of 76 positive variants and 156 negative variants (Exper-
imentally validated regulatory SNPs); v) MPRA validated variants in lymphoblastoid cells with a total of 693 positive
variants and 2,772 negative variants (MPRA variants in GM12878 lymphoblastoid); vi) MPRA validated variants in
erythrocytic leukemia cells with a total of 342 positive variants and 1,368 negative variants (MPRA variants in K562
leukemia). We further remove variants on sex chromosome or with missing precomputed scores. X axis presents
AUPR; Y axis presents AUROC; the bubble size represents COR.

Results of the simulation study

In the simulation study, we will evaluate whether WEVar can truly discover the contributions of individual
scoring method by comparing the estimated regression coefficients (3) with the assigned true values (£).
To fit a WEVar model, the optimal tuning parameter for Ly-norm is selected using fivefold cross-validation
(5-CV), where the whole training set is divided into five-folds, where four-folds is used to train the model

and one-fold is used to obtain the evaluation metric i.e. AUROC. The optimal tuning parameter is chosen
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171 based on the average AUROC from 5-CV, and a final model is fitted using the whole training set with the
172 optimal tuning parameter. To evaluate the performance of the final model an independent testing set, we
173 use all evaluation metrics AUROC, AUPR and COR.

174 As a result, we find that the estimated weights are nearly unbiased to the underlying truths (Figure 2B),
175 which suggests that WEVar can discover the contribution of each individual scoring method correctly when
176 the functional scores of these methods are correlated. With accurate contribution estimation, WEVar can
177 significantly improve the prediction performance in the independent testing (Figure 2C) by achieving the
i7s highest AUROC, AUPR and COR. Overall, the simulation results validate the benefit of exploiting different

179 scoring methods in an integrative weighted scheme.

0 Context-free functional prediction
s Overview of context-free WEVar

iz We first introduce context-free WEVar, which is trained using integrated causal regulatory variants col-
83 lected from Li et al. [26]. We call this WEVar mode “context-free” because these variants are not limited
1s«  to a specific context but have a broad definition of functionality across a wide range of context. These vari-
s ants are either experimentally validated or highly putative causal variants associated with different diseases,
16 molecular phenotypes or clinical outcomes, which are located in different noncoding regions such as pro-
1e7 moters, enhancers, 5’UTRs and 3’UTRs. The diverse context and widespread genomic locations of these
iss  variants make it potentially powerful to predict functional noncoding variants when the context is unknown
s or heterogeneous. To demonstrate the generality of context-free WEVar, we evaluate it on the independent
1o benchmark datasets containing noncoding variants of different functionalities and from diverse context.
191 We also remove any duplicated variants overlapped with training dataset from each independent testing
192 dataset, which can prevent potential overfitting. To verify the effectiveness of the weight strategy, besides
193 all scoring methods WEVar integrates, we also include “Unweighted average” as a comparison, which is the
194 unweighted average of min-max normalized precomputed functional scores from the integrated methods.
s In the training phase of WEVar, tuning parameter for Lo-norm is selected using 5-CV. For all methods,

196 AURPC, AUCPR and COR are reported on each independent testing dataset.
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Figure 4. Evaluation of context-dependent WEVar and integrated scoring methods on state-of-the-art benchmark
datasets, which include Allelic imbalanced SNPs, Fine mapping eQTLs, GWAS noncoding SNPs, Experimentally
validated SNPs, MPRA validated variants in GM12878 lymphoblastoid cells and MPRA validated variants in K562
leukemia cells. We further remove variants on sex chromosome or with missing precomputed scores. To restrict the
training and testing variants are from the same context, for each dataset, we randomly split the dataset into ten-folds
with nine-folds as the training set and one-fold as the testing set. Context-dependent WEVar is trained on the nine-
folds and independently evaluated on the left one-fold. AUC, AUCPR and COR are calculated and averaged in the
ten replicates for each method. X axis presents AUPR; Y axis presents AUROC; the bubble size represents COR.

Results of functional prediction between context-free WEVar and integrated scoring methods

We start to compare the prediction performance between WEVar and its integrated scoring methods on
three datasets, which consist of putatively functional variants based on statistical association (Figure 3).
The first dataset, which is produced by Maurano et al. [28] and processed by Li et al. [26], contains
8,592 significant allelic imbalanced SNPs of chromatin accessibility (FDR<o0.1) as the positive set and 9,678
frequency-matched background SNPs around nearest transcription start sites of randomly selected genes as
the negative set. We observe that WEVar obtains the largest AUROC, AUPR and COR (0.894, 0.852, 0.644)
with substantial improvements over each individual scoring method (Table S1). Following WEVar, LIN-

SIGHT, GWAVA_Unmatched and Unweighted average have an overall comparable performance. However,

10
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206 the COR of LINSIGHT is much lower (0.255) compared to GWAVA_Unmatched (0.535) and Unweighted
207 average (0.559). Surprisingly, FATHMM_MKL also has the lowest COR (0.053). Moreover, CADD and
20 DANN, which utilize the same training set, have comparable but poorest performance among all meth-
209 0ds (CADD: 0.639, 0.610, 0.228; DANN: 0.634, 0.563, 0.236). Interestingly, the prediction performance of
210 GWAVA_Unmatched, GWAVA_TSS and GWAVA_Region are discordant even if they use the same positive
211 training set (GWAVA_Unmatched: 0.875, 0.823, 0.535; GWAVA_TSS: 0.840, 0.796 0.559; GWAVA_Region:
212 0.723,0.691, 0.382).

213 The second dataset consists of eQTLs in 11 studies across 7 tissues identified from Brown et al. [29] and
214 processed by Li et al. [26]. The positive set consists of 31,118 significant eQTL SNPs (FDR<o0.1) and the
215 negative set contains 36,540 frequency-matched background SNPs around nearest TSS of randomly selected
216 genes. We observe that WEVar has the largest COR and comparable AUROC and AUPR to GWAVA_Un-
217 matched (WEVar: 0.816, 0.781, 0.509; GWAVA_Unmatched: 0.821, 0.781, 0.476) (Table S2). Moreover,
215 both WEVar and GWAVA_Unmatched have clearly advantages over other scoring methods. For example,
219 they improve nearly 0.04 AUROC and 0.09 AUPR over LINSIGHT, and 0.07 AUROC and 0.07 AUPR over
20 Unweighted average. Particularly, there is substantial improvement of nearly 0.1 COR to Unweighted av-
221 erage and over 0.3 to LINSIGHT. Notably, the relative performance of GWAVA_Region drops dramatically
222 and it has the lowest AUROC (0.574). FATHMM_MKL still has the lowest COR (0.047) followed by CADD
225 and DANN (0.126, 0.1500).

224 The third dataset collects 19,797 GWAS significant noncoding SNPs from NHGRI-EBI GWAS Catalog
225 [30] as positive set and twice number of variants in the negative set, which are randomly sampled from all
26 noncoding variants in 1000 Genomes project with minor allele frequency (MAF) > 5% [27]. The relative
227 prediction performance of all methods are similar to the first dataset of allelic imbalanced SNPs. WEVar
28 outperforms all scoring methods by obtaining the highest AUROC, AUPR, and COR. FATHMM_MKL
229 have the lowest COR, while CADD and DANN have the lowest AUROC and AUPR (Table S3).

230 In addition to the three datasets comprised of putatively functional noncoding variants derived from
231 association analyses, we compare the prediction performance between WEVar and all scoring methods on
232 three datasets consisting of experimentally validated regulatory variants. The first dataset include 81 exper-
233 imentally validated regulatory SNPs curated by Li et al. [26]. We find the trends of prediction performance

234 for all methods still holds similarly to allelic imbalanced SNPs and GWAS significant noncoding SNPs,
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235 where WEVar obtains the largest AUROC, AUPR and COR (0.912, 0.865, 0.718) followed by GWAVA_Un-
236 matched (0.901, 0.828, 0.649) and Unweighted average(0.883, 0.789, 0.617) (Table S4).

237 The other two datasets contain processed causal regulatory variants validated by MPRAs in two cell
238 lines [31]. The first MPRA dataset includes 665 variants with genomic loci annotation in Ensembl database
239 as positive set, which are selected out of 842 expression-modulating variants that show significantly dif-
240 ferential allelic expression in GM12878 lymphoblastoid cells [32]. The negative set contains 2,772 control
241 variants tested by MPRA but neither allele showed significant effects on expression (Bonferroni corrected
22 pvalue>o0.1). The second MPRA dataset consists of 339 positive variants that cause significant change of
243 expression via targeted motif disruption in enhancers in K562 erythrocytic leukemia cells (pvalues<o.05)
244 [33]. The negative set contains 1,359 control variants without causing significant change (pvalues>o.1).
245 As a result, WEVar has comparable performance with top-performed GWAVA_Unmatched in predict-
246 ing MPRA validated regulatory variants in GM12878 lymphoblastoid cells (WEVar: 0.674, 0.412, 0.286
2e7 - v$ GWAVA_Unmatched: 0.677, 0.445, 0.317) (Table S5). WEVar achieves largest AUROC and AUPR in
25 predicting MPRAs validated regulatory variants in K562 leukemia cells (Table S6).

249 Clearly, context-free WEVar has the overall best performance on the state-of-the-art independent test-
250 ing datasets, which demonstrate its robustness and generality to predict functional noncoding variants
251 across a wide range of context. Following WEVar, GWAVA_Unmatched, Unweighted average and FunSeq2
252 have superior performance to others. In contrast, CADD, DANN and FATHMM_MKL perform poorly.
253 Particularly, FATHMM_MKL suffers from a low COR. Notably, integrating scores in a weighted scheme in-
254+ deed boosts the prediction performance as demonstrated by the improvement of WEVar over Unweighted

255 average.

¢ Context-dependent functional prediction
257 Overview of context-dependent WEVar

258 Different from context-free functional prediction, context-dependent functional prediction happens when
259 a context-dependent WEVar is trained and the training and testing variants are from the same context.
20 We develop “context-dependent” mode for WEVar because functional variants are usually studied in a cell
261 type/tissue-specific way. The context-matching between training and testing variants may improve the pre-

262 diction power. We demonstrate the prediction performance of context-free WEVar first, followed by a
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263 comparison between context-free and context-dependent WEVar to demonstrate the advantage for WEVar

264 by being context-dependent.

25 Results of functional prediction between context-dependent WEVar and integrated scoring methods

266 We use the same benchmark datasets to evaluate context-free functional prediction. To restrict the training
267 and testing variants from the same context, we randomly split each dataset into ten-folds with nine-folds
25 as the training set and one-fold as the testing set. Tuning parameter for Lo-norm is selected in the training
29 set using 5-CV with AUROC as the evaluation metric. A final context-dependent WEVar is fitted using the
270 whole training set with the selected tuning parameter and makes the functional prediction on the testing
271 set. AUROC, AUPR and COR are calculated by comparing prediction scores and true labels of variants in
272 the testing set. We use leave-one-fold-out by selecting nine-folds as training set and one-fold as testing set
273 ten times. Accordingly, the whole procedure is repeated ten times and all evaluation metrics are reported
274 as average.

275 We observe that context-dependent WEVar outperforms all scoring methods by obtaining the highest
276 AUROC, AUPR and COR across all the benchmark datasets (Figure 4 and Table S1-S6). Moreover, we
277 observe similar trends between context-dependent and context-free functional prediction, where WEVar,
272 GWAVA_Unmatched and Unweighted average are the top-performed methods, while CADD, DANN and
279 FATHMM_MKL have overall poor performance.

280 To further objectively gauge the performance of context-dependent WEVar, we utilize the training and
281 testing variant set in the first part of challenge of Critical Assessment of Genome Interpretation eQTL chal-
262 lenge (CAGI) [34] derived from MPRA validated regulatory variants from GM12878 lymphoblastoid cells
263 [32]. The variants selected by CAGI show significant level of transcriptional activity for either of two alleles.
264 Specifically, the level of transcriptional activity is measured by differential abundance of transcripts versus
265 plasmid input. Based on the FDR cutoff 0.01, a binary label is generated to indicate whether or not at least
26 one of the two alleles of the variant exhibits a significantly high transcriptional activity (i.e. labeling 1 if
27 FDR<0.01, otherwise, 0). As a result, the training set consists a total of 2,873 SNVs with 345 as positive set
265 and 2,528 as negative set. The testing set contains a total of 2,808 SNVs with 348 positive variants and 2,460
269 negative variants. We further remove SNVs on sex chromosome or with missing precomputed scores in

250 both sets. Besides following the original training and testing procedure, we further carry out an additional

13


https://doi.org/10.1101/2020.11.16.385633
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.16.385633; this version posted November 18, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

CAGI (A) CAGI (B)
0.64
0.64 [ ) ®
0.62
0.62 o .‘ ®
Y ([ 0.60
Z 0.60 8
& &
i 3 0.58
0.58 [ )
0.56
0.56
0.54 ®
0.54 d d
0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.150 0.175 0.200 0.225 0.250 0.275 0.300
AUPR AUPR
CADD ® LINSIGHT ® GWAVA Unmatched GWAVA_Region FATHMM_MKL WEVar
® Eigen ® DANN ® GWAVA_TSS ® FunSeq2 Unweighted average

Figure 5. Prediction performance comparison between context-dependent WEVar and integrated scoring methods
on the CAGI benchmark datasets. In CAGI, 2,873 SNVs with 345 as positive set and 2,528 as negative set. The testing
set contains a total of 2,808 SN'Vs with 348 positive variants and 2,460 negative variants. We further remove SNVs on
sex chromosome or with missing precomputed scores in both sets. (A) Context-dependent WEVar is first trained on
the training set and evaluated on the testing set. (B) Similarly, we switch the training and testing set and perform an
additional independent evaluation. The figure presents the AUPR, AUROC, and COR. X axis presents AUPR; Y axis
presents AUROC; bubble size represents COR.

comparison by switching the training and testing set.

Consistent with our previous findings, context-dependent WEVar has superior performance to other
scoring methods in both comparisons by achieving the highest AUROC, AUPR and COR, followed by
GWAVA_Unmatched and Unweighted average (Figure 5, Table S7-8). Moreover, CADD and DANN have
the overall poorest performance. The additional independent evaluation further strengthens the advan-
tage of context-dependent WEVar in predicting functional noncoding variants by benefiting from matched
context in training and testing set.

Besides improving the functional prediction, another important characteristic of WEVar is that it can
identify the informative predictors that play the major contribution to the functional prediction among all
integrated scoring methods. Consequently, we find that sets of informative predictors are different across
benchmark datasets (Figure S1, Table Sg). In most cases, WEVar identifies a parsimonious set of scoring
methods that dominate the functional prediction especially FunSeq2 and GWAVA_Unmatched are two
ubiquitous major contributors. Moreover, GWAVA_TSS is an additional major contributor for Allele im-
balanced SNPs, Experimentally validated regulatory SNPs and integrated causal regulatory variants used
by context-free WEVar. Regarding MPRA validated regulatory variants in GM12878 lymphoblastoid cells,

Eigen is the additional method that has a major contribution. Similarly, GWAVA_Region and Eigen are two
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3507 additional major contributors for two comparisons for CAGI training and testing variants. However, for
508 GWAS noncoding SNPs and MPRA validated regulatory variants in K562 leukemia cells, there is a ubiq-
309 uitous solution, where the contributions of all methods are relative uniform. These findings demonstrate
310 that considering context-specificity in WEVar leads to different weight estimates and result in different
si - sets of informative predictors. These observations also suggest that it is important to obtain an optimal
iz weights when integrating different scoring methods, as the non-uniform weights estimated by WEVar lead
313 improved functional prediction across benchmark datasets. Additionally, this point has been validated by

31+ both simulation and real data applications that WEVar outperforms the Unweighted average.

315 Results of comparison between context-free and context-dependent functional prediction

315 We hypothesize that considering context-specificity and context-matching context between training and
317 testing variants in “context-dependent” WEVar will likely improve the predictive power for functional pre-
515 diction. To validate this hypothesis, we directly compare the results of functional predictions between
319 context-free and context-dependent WEVar on the aforementioned state-of-the-art benchmarking datasets
320 (Figure S2, Table S1-56).

321 For MPRA validated variants in GM12878 lymphoblastoid cells, context-dependent WEVar signifi-
322 cantly outperforms context-free WEVar with large performance gain in around 5% AUPR and 8% COR
323 but modest gain in AUROC. Similarly, context-dependent WEVar also achieves a large improvement by
524 increasing about 4% AUPR and 4% COR but slightly improvement of AUROC for MPRA validated variants
s in K562 leukemia cells. Moreover, the improvement of context-dependent WEVar is evident demonstrated
526 by nearly 5% and 3% increase in COR but slightly increase in AUROC and AUPR for both Fine mapping
327 €QTLs and Allele imbalanced SNPs. In addition, context-dependent WEVar has a modest improvement of
28 all metrics for GWAS noncoding SNPs. However, there is a lack of improvement on Experimentally vali-
529 dated regulatory SNPs, which could be explained by the small sample size of training set. This observation
30 indicates that a large training set is necessary to improve the predictive power for context-dependent func-
31 tional prediction. Overall, the comparisons between context-dependent and context-free WEVar validate
sz the hypothesize that considering context-specificity and context-matching will improve the functional pre-
333 diction. However, this improvement depends on the availability of enough sample size for training a robust

3+ context-dependent WEVar.
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s Prioritization of causal regulatory variants by WEVar on benchmarking datasets

«N

136 To demonstrate the application of WEVar in studying complex traits, we apply genome-wide functional
337 scores of all noncoding variants in 1000 Genomes Project precomputed by context-free WEVar for fine-
133 mapping analysis in risk loci. The diverse benchmarking datasets are generated from different experiments
33 and study different traits, which are able to test the robustness of WEVar in prioritizing causal regulatory

340 variants in risk loci.

;a1 Noncoding variants modulating gene expression

3.2 We evaluate WEVar on reported “expression-modulating variants” (emVars), which have been validated to
se3  show differential gene expression between alleles, from the MPRA study in GM 12878 lymphoblastoid cells
a4 [32]. To assess whether these emVars with a strong linkage to GWAS SNPs can be prioritized by WEVar
s score, we create an extended LD block (2 >o.2) utilizing Idproxy [35] to extract variants from all reference
345 populations within the LD block, which are further assigned WEVar score.

347 Consequently, WEVar is able to prioritize emVars in exampled LD blocks (Figure S3 and Table S10).
3.5 For example, emVar rs4790718 (chr17:4870893) scores higher than three LD-linked GWAS SNPs rs106043 1
39 (chri17:4840868, pvalue=2x 10726), rs6065 (chr17:4836381, pvalue=2x 10~ '?)and rs571461910 (chr17:4869143,
550 pvalue=3.98 x 107Y), which are mapped to SPAG7 and associated with Platelet counts. Similarly, em-
351 Varrs922483 (chr8:11351912) is successfully prioritized by the highest score among all LD-linked variants
2 including GWAS SNP rs2736340 (chr8:11343973, pvalue=6.03 x 10720) associated with Systemic lupus
353 erythematosus. Moreover, emVar rs56316188 (chr8:59323811) scores higher than GWAS SNP rs2859998
154 (chr8:59324162, pvalue=1 x 10~7), which is mapped to UBXN2B and associated with narcolepsy with cat-
355 aplexy. Additionally, emVar rs306587 (chr10:30722908) is prioritized among LD-linked variants including
15c  one GWAS SNP rs1042058 (chr10:30728101, pvalue=6 x 10~11). Overall, these examples demonstrate that
357 WEVar can successfully prioritize experimentally validated regulatory variants that modulate gene expres-
58 sion among LD-linked putatively causal GWAS SNPs, indicating that WEVar can potentially aid the fine

359 mapping analysis.
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10 Causal regulatory variants associated with Schizophrenia

361 Schizophrenia, typically diagnosed in the late teens years to early thirties, is a mental disorder character-
32 ized by disruptions in thought processes, perceptions, emotional responsiveness, and social interactions.
363 Schizophrenia is one of the top 15 leading causes of disability worldwide [36, 37] and estimated interna-
364+ tional prevalence of schizophrenia among non-institutionalized persons is 0.33% to 0.75% [38]. Although
365 GWAS has identified numerous noncoding schizophrenia-associated variants hypothesized to affect gene
366 transcription, the causal regulatory variants are still elusive. To experimentally evaluate the regulatory po-
37 tential of these GWAS SNPs and LD-linked variants, a recent study [39] screens several schizophrenia loci
36s  from a large GWAS cohort-Schizophrenia Working Group of the Psychiatric Genomics Consortium, using
39 MPRA experiments in both K562 leukemia cells and SK-SY5Y neuroblastoma cells.

370 We apply context-free WEVar functional scores to discover causal regulatory variants associated with
371 Schizophrenia. Briefly, we define “causal regulatory variants” as variants with significant differential expres-
372 sion between two alleles with a FDR cutoft 0.2. For each causal regulatory variant, we extend the risk locus
w3 by considering all variants in LD (r? > 0.2). We further obtain precomputed context-free WEVar score
374 for all variants in the risk locus. As a result, WEVar successfully prioritizes causal regulatory variants in the
575 risk loci by assigning them the highest WEVar score (Figure 6 and Table S11). For example, rs34877519
376 (chr3:2554612) is successfully prioritized by obtaining the score higher than any variant in the risk locus
7 including GWAS SNPs rs11708578 (chr3:2515894, pvalue=7.08 x 10~!!) and rs17194490 (chr3:2547786,
s7s pvalue=1.00x10~ 11y 1s7927437 (chr11:123395987) receives the highest score among all variants in the risk
379 locus including GWAS SNP rs77502336 (chr11:123394636, pvalue= 3.98710); rs7779548 (chr7:137074540)
30 scores higher than any variant in the risklocus including GWAS SNP rs3735025 (chr7:137074844, pvalue=3.98 x
551 10712); 156498914 (chr16:63699425) obtains the highest score among all variants in the risk locus including
w2 GWAS SNP rs2018916 (chr16:63700508, pvalue=7.08 x 10~Y). Overall, these findings demonstrates that
33 causal regulatory variants are not necessary the GWAS lead SNPs but the LD-linked variants. In addition,
s« WEVar is a powerful tool in post-GWAS analysis to pinpoint the causal regulatory variants in the risk loci,

sss which cannot be identified by a standard GWAS approach.

17


https://doi.org/10.1101/2020.11.16.385633
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.16.385633; this version posted November 18, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

rs34877519 rs7927437
104 100 105 100
¢ rs7927437
08 80 7 08 805
H
¢ rs34877519 = g
5 ® 577502336 3
s ° s
g 06 60 2 5 06 60 &
o 8 o s
*» o » 4
] 17194490 o 5 ] 5
z ' Bew o B $ s s
Wos 98 ° 8g Lao & W04 a0 8
B $ 0 . & >s 2 & £ s 5
B8 ? bl Fo% ‘B2 & » & © £ £
rs11708578 g S
02 L2o @ 02+ k20 @
00 ‘J\ A —— 00 o
245 250 255 260 123.34 123.36 123.38 123.40 123.42 123.44

Chromosome 3 (Mb) Chromosome 11 (Mb)

rs7779548 rs6498914
10 100 0.6+ 100
4rs7779548
1s3735025 s ¢ rsea98914
08 Leo & 1 Leo 5
H
H rs2018916 =
s 0.4 L L
e Py e e
§ 08 60 2 § Leo 2
@ L3 » L
5 5 §° ° 5
@ ’ ° F o 2 @ 2
H 04 of © £ o pa0 g g 40
2o ¢ L g 2 02 -
00 Tee 5 s
§ g
0.2 20 F20
I\J‘)\A J J x N z
o 4&}\\ n 00 . N
137.00 137.05 137.10 63.68 63.70 63.72 63.74 63.76
Chromosome 7 (Mb) Chromosome 16 (Mb)

Figure 6. WEVar can prioritize causal regulatory variants associated with Schizophrenia. Causal regulatory variants
are defined as variants with significant differential expression between two alleles (FDR<o0.2) in MPRA experiments
in both K562 leukemia cells and SK-SY5Y neuroblastoma cells. For each causal regulatory variant, we extend the risk
locus by considering all variants in LD (r? >0.2). As a result, rs34877519 (chr3:2554612) is successfully prioritized
by obtaining the score higher than any variant in the risk locus including GWAS SNPs rs11708578 (chr3:2515894,
pvalue=7.08 x 10~!!) and rs17194490 (chr3:2547786, pvalue=1.00 x 10711); rs7927437 (chr11:123395987) re-
ceives the highest score among all variants in the risk locus including GWAS SNP rs77502336 (chr11:123394636,
pvalue=3.98 x 10719); rs7779548 (chry:137074540) scores higher than any variant in the risk locus including GWAS
SNP rs3735025 (chr7:137074844, pvalue=3.98 x 10712); rs6498914 (chr16:63699425) achieves the highest score
among all variants in the risk locus including GWAS SNP rs2018916 (chr16:63700508, pvalue=7.08 x 10~7). The
causal regulatory variants validated by MPRA are marked purple. LD-linked GWAS SNPs are marked red.

1s¢ Causal regulatory variants associated with multiple traits and validated by multiple platforms

357 We benchmark WEVar on state-of-the-art datasets, which are generated from multiple studies for different
ses  traits such as Cleft lip/palate, heart, hair color and breast cancer and consists of regulatory variants exper-
339 imentally validated by different functional assays. Similar to previous analyses, we define the risk locus
w5 by considering all variants in LD (r? >o0.2) for each regulatory variant. Consequently, WEVar is able to
391 prioritize regulatory variants in each risk locus (Figure S4 and Table S12).

392 Specifically, rs6801957 (chr3:38767315, pvalue=9 x 10~Y), located in intronic region of SCN10A, has
393 been validated by BAC reporter system and 4C-seq to modulate cardiac SCN5A expression [40]. Consistent
39« with the experimental validation, WEVar assigns the highest score to rs6801957 in the risk locus, which also

s includes multiple GWAS SNPs rs6795970 (chr3:38766675, pvalue=1 x 107°%), rs7433306 (chr3:38770639,
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396 pvalue=1 x 1071%), rs6790396 (chr3:38771925, pvalue=2 x 10739), rs6599255 (chr3:38796415, pvalue=2 x
397 10710) rs6798015 (chr3:38798836, pvalue=2 x 10~ '2)and rs10428132 (chr3:38777554, pvalue=1x 10798).
1w We further evaluate another variant rs227727 (chri7:54776955, pvalue=7.3 x 10~%), which is mapped to
399 17q22 NOG locus and found associated with Cleft lip/palate. The NSCL/P-associated allele of rs227727
a0 significantly decreases the nearby enhancer activity compared to the unassociated allele, which is experi-
s« mentally validated by quantitative reporter assays transfected with a luciferase reporter vector [41]. Sim-
a2 ilarly, rs227727 is prioritized with the highest score in the risk locus. The next evaluated variant rs12821256
w03 (chr12:89328335, pvalue=4x 1073) islocated ina regulatory enhancer in the upstream of IncRNA LINCo2458.
w04 It has been experimentally validated that rs12821256 is associated with hair color by altering the binding
a5 site of lymphoid enhancer-binding factor1 (LEF1) transcription factor. The altered binding site of LEF will
s0s reduce LEF responsiveness and enhancer activity in cultured human keratinocytes [42]. Again, rs12821256
407 scores highest in the risk locus, which is supported by the experimental finding. The last investigated vari-
408 antis a breast cancer risk SNP rs11055880 (chri12:14410734), which resides in an intergenetic enhancer and
409 validated by CRISPR-Casg approach [43] to have endogenous regulatory activities on expression of ATF7IP.
a0 Consistently, rs11055880 obtains the highest score among all variants in the risk locus.

at Opverall, the consistency between experimental validations and prioritization results based on WEVar
412 score demonstrates the capability and robustness of WEVar to prioritize functional noncoding variants in a
a3 LD-linked risk locus. The robustness is reflected by the successful prioritization of heterogeneous variants,
s+ which are located in various genomic regions, associated with different traits, and validated by different

a5 functional assays.

«s  Discussion

«17  In this work, we develop a statistical learning framework “WEVar” to predict functional noncoding vari-
«1s  ants by integrating representative scoring methods in an optimized weighted scheme. The development of
419 WEVar is motivated by the existing gap of strong discordant performance of existing methods on state-of-
w20 the-art benchmark datasets, as shown by the inconsistent prediction performance of these methods on the
421 integrated causal regulatory SNPs (Figure 2A).

422 Overall, the advantages of WEVar lies on several aspects. First, existing approaches, either supervised

423 or unsupervised, are developed using thousands of functional annotations derived from multi-omics data
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w24 deposited in large national consortia such as ENCODE and Roadmap Epigenomics. Different from exist-
25 ing methods, WEVar is developed on top of these methods by directly utilizing genome-wide precomputed
w26 functional scores, which collapse multi-dimensional functional annotations into a single score. Therefore,
27 without losing information of functional annotations, direct application of the functional scores of exist-
s ing approaches significantly reduces the dimensionality of feature space in model development of WEVar.
w29 Second, WEVar will identify informative predictors in an optimized weighted scheme and thus can lever-
s30 age the advantages of different approaches, which likely lead to improved prediction performance com-
431 pared to each integrated individual scoring method. Third, WEVar offers two modes: “context-free” and
a2 “context-dependent”. Each mode has its favorite scenario. We adopt a comprehensive training set [26],
433 which integrates curated causal SNPs, located in different genomic regions, collected from different sources
s34 and associated with different traits to develop context-free WEVar. The large sample size, diverse context
35 and genomic locations as well as heterogeneous trait association of these training variants make context-
s3s  free WEVar powerful to predict functional noncoding variants with unknown or heterogeneous context. In
437 contrast, training variant set of context-dependent WEVar is derived from the same context i.e. tissue-, cell
s3s  type-, disease-specific. The context-specificity of training set makes context-dependent WEVar prefer the
39 scenario when noncoding variants in training and testing set are from the same context, which may lead to
40 improvement of functional prediction.

441 We perform a real data-based simulation study by considering the inherent correlations of precomputed
42 functional scores among integrated scoring methods. The results demonstrate that WEVar outperforms
443 individual scoring method and can estimate the contributions of integrated scoring methods accurately,
s« which may explain the improved performance of WEVar. Next, we evaluate context-free functional pre-
s diction and context-dependent functional prediction respectively on state-of-the-art benchmark datasets,
445 which include three variant sets containing putatively causal regulatory variants derived from statistical as-
47 sociations (i.e. Allelic imbalanced SNPs, Fine mapping eQTLs, GWAS significant noncoding SNPs), and
s three datasets consisting of experimentally validated regulatory variants (i.e. Experimentally validated reg-
449 ulatory SNPs, MPRA validated variants in GM12878 lymphoblastoid cells, MPRA validated variants in
0 K562 leukemia cells). Besides evaluating context-dependent WEVar in each benchmark dataset by divid-
451 ing it into training and testing set, we adapt an independent training and testing set from CAGI. Conse-

2 quently, both context-free and context-dependent WEVar achieve an overall improvement of functional
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453 prediction compared to integrated scoring methods across all datasets. Specifically, WEVar outperforms
s« Unweighted average, indicating the benefit of exploiting the optimized contributions of individual scoring
55 method. GWAVA_Unmatched and Unweighted average are top-performed. In contrast, DANN, CADD
s and FATHMM_MKL always perform poorly. By comparing context-free and context-dependent WEVar
457 on the same benchmark datasets, we find that context-dependent WEVar improve the functional predic-
s tion compared to context-free WEVar except for Experimentally validated regulatory SNPs possibly to the
459 small sample size of training set. This observation indicates that being context-dependent improves the
0 functional prediction and a large sample size is needed for make this improvement.

481 Another important characteristic of WEVar is that it can identify predictors that play major contribution
a6z to the functional prediction. As a result, major contributors are different across benchmark datasets. In
43 most cases, WEVar identifies a parsimonious set of scoring methods that dominate the functional prediction
a4 especially FunSeq2 and GWAVA_Unmatched are two ubiquitous major contributors. However, for GWAS
465 noncoding SNPs and MPRA validated regulatory variants in K562 leukemia cells, there is a ubiquitous
455 solution, where the contributions of all methods are relative uniform. These findings demonstrate that both
467 estimated weights and major contributors vary from context to context. Thus, it is important to obtain
s an optimal weights when integrating different scoring methods, as the non-uniform weights estimated by
49 WEVarlead improved functional prediction across benchmark datasets. Additionally, this point is validated
70 by both simulation and real data applications that WEVar outperforms the unweighted average of functional
471 scores.

472 To demonstrate the application of WEVar in complex traits, we apply WEVar in the fine mapping analy-
473 sis to evaluate whether it can successfully prioritize causal regulatory variants among LD-linked noncoding
74 variants. By using precomputed WEVar score directly, variants assigned the highest score in a risk locus is
475 considered to be prioritized. By using three benchmarking datasets of experimentally validated regulatory
76 variants, we find that WEVar can prioritize regulatory variants modulating gene expression in GM12878
477 lymphoblastoid cells, associated with Schizophrenia and multiple traits such as Cleft lip/palate, heart, hair
a7s  color and breast cancer. These findings demonstrate that WEVar can prioritize functional noncoding vari-
479 ants in risk loci and therefore alleviate the limitation of current GWAS, where the true causal SNPs may be
0 masked by LD.

481 WEVar is a flexible approach, which can be further extended and improved by both integrated scoring
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sz methods and training variant set. In the current implementation, we include several representative scor-
43 ing methods that are most popular in this field. With the rapid development post-GWAS analysis, there
ss4  are other powerful methods developed or developing can be integrated into WEVar to further improve the
sss prediction performance. The flexibility of WEVar is also reflected on the training variant set. With the
sss  affordability and popularity of functional assays such as massively parallel reporter assays (MPRAs) and
a7 clustered regularly interspaced short palindromic repeats (CRISPR)-based gene editing, more experimen-
sss  tally validated functional variants can be discovered and integrated into WEVar to improve the predictive

489  PpOWEer.

490 MethOdS

s91 - WEVar is developed directly on top of precomputed functional score, which is an optimally integrative met-
492 ric representing for thousands of functional annotations, from multiple individual scoring methods. Using
493 these integrative functional scores directly will decrease the number of features in the model development
s+ and thus avoid the challenge high-dimensional data and multicollinearity. We will outline the details of

455 WEVar in the following sessions.

»¢  Obtaining precomputed functional scores

497 We download base-level genome-wide precomputed functional scores from all possible substitutions of
455 single nucleotide variants (SNVs) in the human reference genome (GRCh37/hg19) from scoring methods
499 including CADD [16], DANN [17], FunSeq2 [20], FATHMM-MKL [18], Eigen [21] and LINSIGHT [19].
soo  In addition, we use three sets of precomputed scores from GWAVA (i.e. GWAVA_region, GWAVA_TSS,
so  GWAVA_unmatched) for all SNVs in 1000 Genomes Project [22]. We choose these scoring methods to
sz integrate into WEVar because they are widely used and mostly representative. Since the precomputed score
so3  of LINSIGHT is on region level, we assign all variants in the region with the same region-level score. More

so« details for the source of these precomputed scores can be found in Table S13.

s0s Assembling variants in training and testing set

sos For context-free WEVar, the training variant set compiles a curated set of 5,247 causal regulatory vari-

so7  ants including i) deleterious or pathogenic noncoding variants from the Human Gene Mutation Database
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sos. (HGMD) [25] and ClinVar [44] ii) validated regulatory noncoding variants from the OregAnno [45] and
so9 iii) candidate causal SNPs for 39 immune and non-immune diseases in the fine-mapping study [46] ob-
sio tained from Li et al. [26]. The compiled variants are associated with different traits, have functional con-
si sequence in different tissues and cell types, and reside in different noncoding regions such as promoters,
siz  enhancers, 5’"UTRs and 3’'UTRs, making them ideal as a training set to predict functional consequence of
si3 noncoding variants from unknown or heterogeneous context. Accordingly, we collect six state-of-the-art
sis - benchmark independent variant sets from a wide range of context. Among them, three variant sets are
sis collected from Li et al. [26], which include experimentally validated regulatory variants, expression quanti-
si6 tative trait loci (eQTL) [29] (FDR<0.1%) and allelic imbalanced SNPs [28] (FDR<0.1%) Moreover, GWAS
si7 - significant noncoding SNPs are collected from NHGRI-EBI GWAS Catalog [30] (pvalue< 107°). Further-
sis - more, two collected regulatory variant sets are validated by massively parallel reporter assays (MPRAs) in
si9. GM12878 lymphoblastoid cells [32] and K562 leukemia cells [33]. For context-free WEVar, these variant
20 sets are used for independent testing. For context-dependent WEVar, we divide each variant set into ten

s2i folds with nine-folds as training set and one-fold as testing set.

s22  Statistical learning framework of WEVar

525 ' The workflow of WEVar is illustrated in Figure 1, which consists of four steps: (i) Creating the compiled
s training variant set (ii) Obtaining the precomputed functional scores for training variants (iii) Transforming
s2s the functional scores (iv) Training a constraint ensemble model.

s26  Creating compiled training variant set

s27 Depending on the purpose, we compile the training set for either “context-free” or "context-dependent”
s2s - WEVar, as described in the section “Assembling variants in training and testing set”.

29 Obtaining precomputed functional scores for training variants

s30  Precomputed functional scores are retrieved from representative scoring methods including CADD, DANN,
s31 - Eigen, FunSeq2, FATHMM-MKL, LINSIGHT and GWAVA for variants in the training set, as described in

sz the section “Obtaining precomputed functional scores”.
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533 Transforming precomputed functional scores

s3« - Precomputed functional scores of integrated scoring methods are on different scales, which may result in
s35 different effect sizes of weight estimates by WEVar. However, the resulted different weight estimates are not
s3s due to different contributions of integrated scoring methods but because of the systematic bias induced by
s37 - score scale. Therefore, it is important to perform a normalization step to make functional scores from differ-
s33 ent scales comparable. To integrate different scores are on the same scale, for each jth scoring method, we
539 estimate two probability density functions (PDF) using kernel density estimation (KDE) based on the em-
s«0  pirical distribution of the normalized scores for positive variant set and negative set respectively. Asa result,
ss1 - PDF of the positive set denoted as p;(s|+) approximates the probability that a variant will have a prediction
s22 score s given the variant is functional (+), while PDF of the negative set denoted as p;(s|—) approximates
s¢3  the probability that a variant will have the same prediction score s given the variant is nonfunctional (-).
se« Therefore, we use the ratio of two PDFs for the given ith variant, which is essentially the Bayes factor, to rep-
s4s resent the likelihood the variant is functional versus nonfunctional. To stabilize the scale of the likelihood,
N

; as:

sis - we further take a logarithm of the ratio as the transformed score ;;

N logw (5)

v T =08 ()

se5 where x;; is the raw functional score of the ith variant in the jth scoring method; p;(z;;|+) and p;(z;|—)

s#» are probability density of z;; in positive and negative set respectively.

sso ' Training a constraint ensemble model

ssi Using the transformed scores, we will fit a constraint ensemble model, which is essentially a Constrained
52 Penalized Logistic Regression model. Let X’V € R be the transformed scores of a variant for all scoring

ss3 methodsand y € {—1, 41} be the variant label. The conditional probability of the variant being functional

N

s« given X can be formulated as:

1
_ Ny _
555 p(y - 1|X ) - 1+ exp(—y(wTXN) + b) (6)

sss where w € RP is a weight vector, which contains the regression coefficients, and b € R is the intercept.

557 The likelihood function for n variants from both positive and negative set is defined as [ [\, p(v;|xY). The
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sss objective function, which is the average of negative log-likelihood, is defined as:

1 n
559 fw,b) = ——log] [ p(uilx") )
=1

sso By minimizing the objective function, we can estimate w and b as:

561 minirglize f(w,b) (8)

ss2 We further apply two constraints to the log-likelihood function. First, the weight of each scoring method
ss3 s larger or equal to 0, indicating all scoring methods will contribute neutrally or positively to the predic-
ss« tion. Second, the sum of all weights equals to 1, which is a reasonable assumption for the summation of
sss  contributions from all scoring methods. In addition, to leverage all scoring methods by avoiding a sparse
sss solution, we add an Lo-norm to the objective function. Finally, we have the Lo-norm regularized objective
s¢7 function with the two constraints as:

minirglize J(w,b) + Al[w]|2
w,

p
568 subject to Z w; = 1 (9)
j=1

w;>0,7=1,...,p.
ss9 where A > 0 is the tuning parameter for La-norm, which can be optimized from cross-validation in the
s70  training phase.

571 To minimize the loss function with equality and inequality constraints, we first rewrite the loss function
s72 - as the standard form:

minillquize F(w,b) + Aljw]|2
w,

573 subjectto  hg(w) <0,k =1,...,p. (10)
lw)=0
57+ We then introduce Generalized Lagrange function to relax two constraints, which is formulated as:

p
L(w,b,, 8) = f(w,b) + Al[wlla + > arhi(w) + Bl(w) (11)
k=1
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In this way, the dual problem is easier to solve compared with the primal problem. The primal solution can

be constructed from the dual solution as:

g(a, B) = min L(w, b, o, B) (12)

The Lagrange dual function can be considered as a pointwise maximization of some affine functions so it is
always concave. The dual problem is always convex even if the primal problem is not convex, which can be

easily solved by gradient-based methods.

Testing phase

In the testing phase, given variants be annotated precomputed functional scores from all scoring methods,
which will be further transformed through the estimated KDE in the training phase. The transformed scores

will serve as input features for trained ensemble model to predict the ensemble WEVar score.

Implementation

We adopt the SciPy [47], a Python scientific computing library, to perform the kernel density estimations,
and CVXPY [48], a Python-embedded modeling library for convex optimization, to estimate constrained

weights from the objective function.

Software availability

WEVar is implemented in a standalone software toolkit available at (https: //github.com/lichen-lab/
WEVar), which mainly consists of i) a compiled data package including precomputed scores for all SNV's
(GRCh37/hg19) in 1000 Genomes Project across all integrated scoring methods; ii) a model package of pre-
trained context-free and context-dependent WEVar models; and iii) a Python software package to perform
the functional prediction using pre-trained models or re-train a new model. To use a pre-trained model,
WEVar will take compiled data package and genomic coordinates of testing variants as input. Alternatively,
WEVar will take compiled data package and genomic coordinates of training variants to re-train a new

WEVar model.
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