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Abstract15

Understanding the functional consequence of noncoding variants is of great interest. Though genome-wide16

association studies (GWAS) or quantitative trait locus (QTL) analyses have identified variants associated with17

traits or molecular phenotypes, most of them are located in the noncoding regions, making the identification18

of causal variants a particular challenge. Existing computational approaches developed for for prioritizing non-19

coding variants produce inconsistent and even conflicting results. To address these challenges, we propose a20

novel statistical learning framework, which directly integrates the precomputed functional scores from represen-21

tative scoring methods. It will maximize the usage of integrated methods by automatically learning the relative22

contribution of each method and produce an ensemble score as the final prediction. The framework consists23

of two modes. The first “context-free” mode is trained using curated causal regulatory variants from a wide24

range of context and is applicable to predict noncoding variants of unknown and diverse context. The second25

“context-dependent” mode further improves the prediction when the training and testing variants are from the26

same context. By evaluating the framework via both simulation and empirical studies, we demonstrate that it27

outperforms integrated scoring methods and the ensemble score successfully prioritizes experimentally validated28

regulatory variants in multiple risk loci.29
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Introduction31

In the past decade, genome-wide association studies (GWAS) have been widely used to identify tens of32

thousands of genome-wide significant tag SNPs associated with complex traits. However, tag SNPs may33

not be causal as the association is possibly mediated by a causal SNP associated with both the tag SNP and34

the trait. Nevertheless, it is difficult to determine the underlying causal variants due to complex patterns35

of LD among SNPs. Moreover, quantitative trait locus (QTL) analyses have successfully identified variants36

associated with molecular phenotypes i.e. gene expression, DNAmethylation, chromatin accessibility [1, 2,37

3, 4, 5]. These molecular QTL studies enable the understanding of molecular basis of GWAS SNPs via colo-38

calization. However, the high sequencing cost leads to QTL studies with modest sample sizes, limiting the39

power to uncover QTLs with small effects. Therefore, identification of these functional noncoding variants40

that have direct functional consequence on complex traits and molecular phenotypes remains challenging41

in human genetics research.42

Several studies suggest that functional noncoding variants are believed to disrupt the normal regulatory43

activity in promoter and enhancer regions in order to impact the downstream gene expression in a tissue or44

cell type specific manner and thus result in the onset of disease such as the prevalence of TERT promoter45

mutations has been established in melanoma, gliomas and bladder cancer [6]; novel MYB-binding motifs,46

which are generated by somatic mutations in the intergenetic regions, creates a super-enhancer upstream47

of the TAL1 oncogene in a subset of T cell acute lymphoblastic leukaemia [7]. Moreover, more than 90% of48

GWAS identified SNPs are noncoding and are enriched in regulatory elements (REs). A recent exploratory49

study demonstrates that active chromatin marks (e.g. H3K27ac and H3K4me1), and repressive chromatin50

marks (e.g. H3K9me3 andH3K27me3) showdifferent regulatory activities between a risk variant rs302450551

associatedwith type 1 diabetes and a benign variant rs114490664 [8]. This example indicates that RE activity52

can be used to distinguish the causal and non-causal SNPs.53

The rapid development of massively parallel sequencing technologies enables the generation of thou-54

sands of “multi-omics” data, which are publicly available at large national and international consortia such55

as the Encyclopedia of DNA Elements (ENCODE) [9], Roadmap Epigenomics [10] and International Hu-56
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man Epigenome Consortium [11]. These multi-omics data measures genome-wide regulatory activities57

such as histone modifications (e.g. ChIP-seq), methylation (e.g. methylation array, whole-genome bisulfite58

sequencing), chromatin accessibility (e.g. DNase-seq, ATAC-seq) and chromatin interactions (e.g. Hi-C)59

across hundreds of tissues and cell types. Using standard sequencing data processing protocols such as60

peak-calling, tissue- or cell type-specific REs and RE activities can be detected. Variant annotations are61

further created by overlapping variants and REs where the variant fall in [8, 12, 13, 14]. These annotations62

have been widely used as predictive features to develop computational methods for predicting functional63

noncoding variants [15, 16, 17, 18, 19, 20, 21], which adopt different computational methodologies, use dif-64

ferent training variants andutilize different variant annotations. Among thesemethods, supervised learning65

approaches, such as GWAVA [15], CADD [16], DANN [17], FATHMM-MKL [18]), LINSIGHT [19]), Fun-66

Seq2 [20], are trained using labelled non-causal variants and causal ones, either putative or experimentally67

validated, to predict the probability of a give variant for being causal. Different from the supervised learn-68

ing methods, a common practice of unsupervised learning approaches such as Eigen [21] performs direct69

aggregation of multi-dimensional variant annotations into one single functional score, which measures the70

functional importance of the variant, without a training step. Importantly, for most of the existing meth-71

ods, genome-wide precomputed functional scores for known variants from 1000 Genomes Project [22] or72

gnomAD [23] are publicly available. Without the need to retrain the model, users can obtain these scores73

efficiently by providing a list of variants identifiers or genomic coordinates and utilize these scores directly74

for post-GWAS study i.e. fine mapping analysis. Usually, a larger score indicates the variant could poten-75

tially be more functional and the variant with the highest score is prioritized in a risk locus with LD-linked76

variants.77

Nevertheless, without strong prior knowledge, it is difficult to choose which scoring method in real ap-78

plication among multiple methods developed for the same purpose. It is even more challenging to make79

the choice considering prediction performance of existing scoring methods has been shown poor concor-80

dance on the state-of-the-art benchmark datasets [24]. There are two possible reasons to explain the poor81

consistency. First, these methods are trained using different training variants and variant annotations to82

predict functional noncoding variants from different context (i.e. disease, tissue or cell types), making one83

method trained using variants from one context have suboptimal prediction for variants from another con-84

text. Second, they adopt different algorithms tailored to specific scenarios, limiting the generality. For exam-85
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ple, GWAVA is developed using pathogenic regulatory variants fromThe Human Gene Mutation Database86

(HGMD) [25] and is thus used to predict pathogenic regulatory variants; FunSeq2 is trained using recur-87

rence cancer somatic variants and is therefore specifically designed to predict noncoding regulatory variants88

in cancer. Considering the above challenge, given a variant without prior knowledge about its context and89

functional consequence, an ensemble approach that combines the predictions of all these methods in a90

weighted scheme could offer a more powerful prediction than each method. The weight of each individ-91

ual scoring method, which reflects their contributions in the prediction task, can be adaptively learnt in92

different context, which improves the generality and flexibility.93

We hereby developed a statistical learning framework “WEVar” (Weighted Ensemble framework for94

predicting functional regulatory Variants) by integrating representative scoring methods in a constrained95

optimization approach, where the precomputed functional scores of these methods are treated as predictive96

features with two constraints: i) the summation of weights of existing methods are required to be one; ii) a97

L2-norm is further imposed on the weights for smoothing the weight estimation. There are several advan-98

tages of WEVar. First, WEVar is developed directly on top of precomputed functional score, which is an99

optimally integrative metric that represents for thousands of multi-omics functional annotations used by100

each scoring method. Using these functional scores directly will decrease the number of predictive features101

dramatically and thus avoid the challenge of high-dimensional data in the model development, that is, the102

sample size of labelled causal variants is fewer than the number of variant annotations. Second, WEVar103

leverages individual scoring method by adaptively learning the contribution of each one, which will up-104

weight the methods fit more in the current context and down-weight the others, and thus optimizes the105

prediction performance. Last but most importantly, WEVar has two modes: “context-free” and “context-106

dependent”. Context-free WEVar is used to predict functional noncoding variants from unknown or het-107

erogeneous context. Context-dependent WEVar can further improve the functional prediction when the108

variants come from the same context in both training and testing set. Using simulation and real data stud-109

ies, we demonstrate bothWEVarmodes outperform each individual scoringmethod on the state-of-the-art110

benchmark datasets. Importantly, context-dependent WEVar can further improve the functional predic-111

tion. We also show that WEVar can successfully prioritize experimentally validated regulatory variants112

associated with different traits and located in different risk loci.113
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Constrained	ensemble	model
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Calculate	transformed	score
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Figure 1. Overview of the WEVar. WEVar aims to predict functional noncoding variants, which has two modes:
“context-free” and “context-dependent”. For “context-free” mode, the training variant set is chosen from a curated
set of functional regulatory variants from diverse context to train a model for functional prediction of variants from
unknown or heterogeneous context. For “Context-dependent” mode, the training variant set is selected from one
specific context of interest (i.e. disease, tissue, cell type), to train a model for functional prediction of variants from
the same context. In the training phase, WEVar compiles the training set with labelled functional and non-functional
variants and annotate all variants with precomputed functional scores from representative scoring methods. For
each method, the raw scores are transformed using kernel density function (KDE) for both functional and non-
functional variant sets respectively. Using these transformed scores as predictive features, a constrained ensemble
model is trained. In the testing phase, precomputed functional scores of testing variants are transformed based on
the estimated KDE in the training phase and then serve as input features for trained ensemble model to predict the
ensemble WEVar score.

Results114

Theoverview ofWEVar is shown in Figure 1. First, we will perform a simulation study to evaluate the accu-115

racy of weight estimation byWEVar for all integrated scoring methods and investigate whether the predic-116

tion performance of WEVar is improved compared to individual scoring method. Second, we will evaluate117

the context-free functional prediction and context-dependent functional prediction on the state-of-the-art118

benchmark datasets respectively. Third, we will apply WEVar to prioritize experimentally validated causal119

regulatory variants in multiple risk loci associated with multiple traits.120

Evaluation of WEVar in a simulation study121

Evaluation metrics122

The performance of all scoring methods is evaluated using area under the receiver operating characteristics123

curve (AUROC), the area under the precision-recall curve (AUPR) and Pearson correlation between pre-124

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.16.385633doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.16.385633
http://creativecommons.org/licenses/by-nc-nd/4.0/


CADD

Eigen

LINSIGHT

DANN

GWAVA_Unmatched

GWAVA_TSS

GWAVA_Region

FunSeq2

FATHMM_MKL

CADD

Eigen

LINSIGHT

DANN

GWAVA_Unmatched

GWAVA_TSS

GWAVA_Region

FunSeq2

FATHMM_MKL

-0.75

-0.5
-0.25

0

0.5

0.25

0.75

1

-1

Height

0.
2

0.
4

0.
6

0.
8

1.
0

Height

1.
0

0.
8

0.
6

0.
4

0.
2  0 0.1 0.30.2 0.4 0.5 0.6

β1(0.0)

β2(0.6)

β3(0.0)

β4(0.0)

β5(0.1)

β6(0.3)

β7(0.0)

β8(0.0)

β9(0.0)

A B C

Figure 2. (A) Pairwise Pearson correlations between precomputed functional scores among scoring methods for the
integrated causal regulatory variants collected from Li et al. [26]. (B) Average regression coefficient estimated by
WEVar in the training phase in 50 simulations. (C) Average prediction performance by WEVar on the independent
testing datasets. X axis presents AUPR; Y axis presents AUROC; the bubble size represents COR. AUPR, AUROC
and COR are averaged in the testing phase in 50 simulations.

dicted and true labels (COR). AUROC and AUPR are metrics based on the ranks of the predicted scores.125

CORhas the additional ability tomeasure how the predicted values are correlatedwith the true labels. Using126

different probability cutoffs, AUROC measures the trade-off between the true positive rate and false posi-127

tive rate. AUPR compares the trade-off between the true positive rate and precision. AUROC is preferred128

for balanced class, whereas AUPR is more appropriate for imbalanced class. Since we have both balanced129

and unbalanced testing datasets, we present both metrics.130

Simulating correlated functional scores and variant labels131

We conduct a simulation study to evaluate whether WEVar can estimate contribution of each individual132

scoring method accurately and whether WEVar can improve prediction performance compared to each133

individual scoring method. Since the functional scores of different methods have an overall positive cor-134

relation (Figure 2A), we simulate functional scores of all scoring methods with consideration of the score135

correlation. Using the simulated scores, we generate a total 10, 000 variants with an equal size of functional136

and nonfunctional variants in the training set. Similarly, we independently generate an equal number of137

10, 000 variants in the testing set for prediction evaluation. We then applyWEVar to retrain a model in the138

training set and predict WEVar scores in the testing set. Using WEVar scores and true labels in the testing139

set, we will calculate AUROC, AUPR and COR. We repeat the whole procedure 50 times and obtain the140
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average of all evaluation metrics.141

Specifically, using the integrated causal regulatory variant set collected from Li et al. [26], we calculate142

a p×p variance-covariance matrixR of precomputed functional scores among all integrated scoring meth-143

ods, where p is the number of scoringmethods. We cluster thesemethods based on Pearson correlation and144

find that these methods have different levels of disagreement, indicating that performance of these meth-145

ods show poor concordance on the benchmark dataset (Figure 2A). Not surprisingly, GWAVA_Unmatched,146

GWAVA_Region and GWAVA_TSS are clustered together since they use the same positive training variant147

set. Surprisingly, FATHMM-MKL has the lowest correlation with all the othermethods. Indeed, this obser-148

vation highlights the rationale why aweighted ensemble strategy proposed byWEVar is essential to improve149

the prediction because it is able to upweight the scoring methods fit in current context while down-weight150

the unfit others. We further perform Cholesky decomposition onR as:151

R = C · C> (1)152

where C is a p× p lower triangular matrix with real positive diagonal entries. To maintain the correlations153

of simulated scores, we generate the correlated functional scoresX as the product betweenC> and random154

variable d, which is sampled from an independent normal distribution as:155

X = d · C>, d ∼ N(0, 1). (2)156

where xij as the functional score of ith noncoding variant in jth scoring method. ηi, which is the weighted157

average score of ith variant, can be generated as:158

ηi =

p∑
j=1

xij · βj (3)159

where βj is the weight associated with jth method. Without loss of generality, we manually assign 0.6 to160

β2, 0.3 to β6, 0.1 to β5, and 0 to the rest. We then perform inverse logit transformation to ηi to obtain161

probability πi, based on which the binary label yi for ith variant is generated from a Bernoulli distribution162

as:163

yi ∼ Bern(πi), where πi =
eηi

1 + eηi
. (4)164
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Figure 3. Evaluation of context-free WEVar and integrated scoring methods. Context-free WEVar is trained us-
ing the integrated functional regulatory variants collected by Li et al. [26], which include variants in HGMD, Clin-
Var, OregAnno and fine-mapping candidate causal SNPs for 39 immune and non-immune diseases with a total of
5,247 positive variants and 55,923 negative variants. Context-free WEVar is tested on the state-of-the-art benchmark
datasets, which include i) Allelic imbalanced SNPs in chromatin accessibility with a total of 8,592 positive variants
and 9,678 negative variants (Allelic imbalanced SNPs); ii) Uniformly processed fine-mapping eQTLs from 11 studies
with a total of 31,118 positive variants and 36,540 negative variants (Fine mapping eQTLs); iii) GWAS noncoding
SNPs with a total of 19,797 positive variants and twice number of negative variants (GWAS SNPs) [27]; iv) Manually
curated experimentally validated regulatory SNPs with a total of 76 positive variants and 156 negative variants (Exper-
imentally validated regulatory SNPs); v) MPRA validated variants in lymphoblastoid cells with a total of 693 positive
variants and 2,772 negative variants (MPRA variants in GM12878 lymphoblastoid); vi) MPRA validated variants in
erythrocytic leukemia cells with a total of 342 positive variants and 1,368 negative variants (MPRA variants in K562
leukemia). We further remove variants on sex chromosome or with missing precomputed scores. X axis presents
AUPR; Y axis presents AUROC; the bubble size represents COR.

Results of the simulation study165

In the simulation study, we will evaluate whether WEVar can truly discover the contributions of individual166

scoring method by comparing the estimated regression coefficients (β̂) with the assigned true values (β).167

To fit aWEVar model, the optimal tuning parameter forL2-norm is selected using fivefold cross-validation168

(5-CV), where the whole training set is divided into five-folds, where four-folds is used to train the model169

and one-fold is used to obtain the evaluation metric i.e. AUROC. The optimal tuning parameter is chosen170
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based on the average AUROC from 5-CV, and a final model is fitted using the whole training set with the171

optimal tuning parameter. To evaluate the performance of the final model an independent testing set, we172

use all evaluation metrics AUROC, AUPR and COR.173

As a result, we find that the estimated weights are nearly unbiased to the underlying truths (Figure 2B),174

which suggests thatWEVar can discover the contribution of each individual scoringmethod correctly when175

the functional scores of these methods are correlated. With accurate contribution estimation, WEVar can176

significantly improve the prediction performance in the independent testing (Figure 2C) by achieving the177

highest AUROC, AUPR and COR. Overall, the simulation results validate the benefit of exploiting different178

scoring methods in an integrative weighted scheme.179

Context-free functional prediction180

Overview of context-free WEVar181

We first introduce context-free WEVar, which is trained using integrated causal regulatory variants col-182

lected from Li et al. [26]. We call this WEVar mode “context-free” because these variants are not limited183

to a specific context but have a broad definition of functionality across a wide range of context. These vari-184

ants are either experimentally validated or highly putative causal variants associated with different diseases,185

molecular phenotypes or clinical outcomes, which are located in different noncoding regions such as pro-186

moters, enhancers, 5’UTRs and 3’UTRs. The diverse context and widespread genomic locations of these187

variantsmake it potentially powerful to predict functional noncoding variants when the context is unknown188

or heterogeneous. To demonstrate the generality of context-free WEVar, we evaluate it on the independent189

benchmark datasets containing noncoding variants of different functionalities and from diverse context.190

We also remove any duplicated variants overlapped with training dataset from each independent testing191

dataset, which can prevent potential overfitting. To verify the effectiveness of the weight strategy, besides192

all scoring methodsWEVar integrates, we also include “Unweighted average” as a comparison, which is the193

unweighted average of min-max normalized precomputed functional scores from the integrated methods.194

In the training phase of WEVar, tuning parameter for L2-norm is selected using 5-CV. For all methods,195

AURPC, AUCPR and COR are reported on each independent testing dataset.196
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Figure 4. Evaluation of context-dependent WEVar and integrated scoring methods on state-of-the-art benchmark
datasets, which include Allelic imbalanced SNPs, Fine mapping eQTLs, GWAS noncoding SNPs, Experimentally
validated SNPs, MPRA validated variants in GM12878 lymphoblastoid cells and MPRA validated variants in K562
leukemia cells. We further remove variants on sex chromosome or with missing precomputed scores. To restrict the
training and testing variants are from the same context, for each dataset, we randomly split the dataset into ten-folds
with nine-folds as the training set and one-fold as the testing set. Context-dependent WEVar is trained on the nine-
folds and independently evaluated on the left one-fold. AUC, AUCPR and COR are calculated and averaged in the
ten replicates for each method. X axis presents AUPR; Y axis presents AUROC; the bubble size represents COR.

Results of functional prediction between context-free WEVar and integrated scoring methods197

We start to compare the prediction performance between WEVar and its integrated scoring methods on198

three datasets, which consist of putatively functional variants based on statistical association (Figure 3).199

The first dataset, which is produced by Maurano et al. [28] and processed by Li et al. [26], contains200

8,592 significant allelic imbalanced SNPs of chromatin accessibility (FDR<0.1) as the positive set and 9,678201

frequency-matched background SNPs around nearest transcription start sites of randomly selected genes as202

the negative set. We observe thatWEVar obtains the largest AUROC, AUPR and COR (0.894, 0.852, 0.644)203

with substantial improvements over each individual scoring method (Table S1). Following WEVar, LIN-204

SIGHT, GWAVA_Unmatched and Unweighted average have an overall comparable performance. However,205
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the COR of LINSIGHT is much lower (0.255) compared to GWAVA_Unmatched (0.535) and Unweighted206

average (0.559). Surprisingly, FATHMM_MKL also has the lowest COR (0.053). Moreover, CADD and207

DANN, which utilize the same training set, have comparable but poorest performance among all meth-208

ods (CADD: 0.639, 0.610, 0.228; DANN: 0.634, 0.563, 0.236). Interestingly, the prediction performance of209

GWAVA_Unmatched, GWAVA_TSS and GWAVA_Region are discordant even if they use the same positive210

training set (GWAVA_Unmatched: 0.875, 0.823, 0.535; GWAVA_TSS: 0.840, 0.796 0.559; GWAVA_Region:211

0.723, 0.691, 0.382).212

The second dataset consists of eQTLs in 11 studies across 7 tissues identified from Brown et al. [29] and213

processed by Li et al. [26]. The positive set consists of 31,118 significant eQTL SNPs (FDR<0.1) and the214

negative set contains 36,540 frequency-matched background SNPs aroundnearest TSS of randomly selected215

genes. We observe that WEVar has the largest COR and comparable AUROC and AUPR to GWAVA_Un-216

matched (WEVar: 0.816, 0.781, 0.509; GWAVA_Unmatched: 0.821, 0.781, 0.476) (Table S2). Moreover,217

both WEVar and GWAVA_Unmatched have clearly advantages over other scoring methods. For example,218

they improve nearly 0.04 AUROC and 0.09 AUPR over LINSIGHT, and 0.07 AUROC and 0.07 AUPR over219

Unweighted average. Particularly, there is substantial improvement of nearly 0.1 COR to Unweighted av-220

erage and over 0.3 to LINSIGHT. Notably, the relative performance of GWAVA_Region drops dramatically221

and it has the lowest AUROC (0.574). FATHMM_MKL still has the lowest COR (0.047) followed by CADD222

and DANN (0.126, 0.1500).223

The third dataset collects 19,797 GWAS significant noncoding SNPs from NHGRI-EBI GWAS Catalog224

[30] as positive set and twice number of variants in the negative set, which are randomly sampled from all225

noncoding variants in 1000 Genomes project with minor allele frequency (MAF) ≥ 5% [27]. The relative226

prediction performance of all methods are similar to the first dataset of allelic imbalanced SNPs. WEVar227

outperforms all scoring methods by obtaining the highest AUROC, AUPR, and COR. FATHMM_MKL228

have the lowest COR, while CADD and DANN have the lowest AUROC and AUPR (Table S3).229

In addition to the three datasets comprised of putatively functional noncoding variants derived from230

association analyses, we compare the prediction performance between WEVar and all scoring methods on231

three datasets consisting of experimentally validated regulatory variants. The first dataset include 81 exper-232

imentally validated regulatory SNPs curated by Li et al. [26]. We find the trends of prediction performance233

for all methods still holds similarly to allelic imbalanced SNPs and GWAS significant noncoding SNPs,234
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whereWEVar obtains the largest AUROC, AUPR and COR (0.912, 0.865, 0.718) followed by GWAVA_Un-235

matched (0.901, 0.828, 0.649) and Unweighted average(0.883, 0.789, 0.617) (Table S4).236

The other two datasets contain processed causal regulatory variants validated by MPRAs in two cell237

lines [31]. The first MPRA dataset includes 665 variants with genomic loci annotation in Ensembl database238

as positive set, which are selected out of 842 expression-modulating variants that show significantly dif-239

ferential allelic expression in GM12878 lymphoblastoid cells [32]. The negative set contains 2,772 control240

variants tested by MPRA but neither allele showed significant effects on expression (Bonferroni corrected241

pvalue>0.1). The second MPRA dataset consists of 339 positive variants that cause significant change of242

expression via targeted motif disruption in enhancers in K562 erythrocytic leukemia cells (pvalues<0.05)243

[33]. The negative set contains 1,359 control variants without causing significant change (pvalues>0.1).244

As a result, WEVar has comparable performance with top-performed GWAVA_Unmatched in predict-245

ing MPRA validated regulatory variants in GM12878 lymphoblastoid cells (WEVar: 0.674, 0.412, 0.286246

vs GWAVA_Unmatched: 0.677, 0.445, 0.317) (Table S5). WEVar achieves largest AUROC and AUPR in247

predicting MPRAs validated regulatory variants in K562 leukemia cells (Table S6).248

Clearly, context-free WEVar has the overall best performance on the state-of-the-art independent test-249

ing datasets, which demonstrate its robustness and generality to predict functional noncoding variants250

across a wide range of context. FollowingWEVar, GWAVA_Unmatched, Unweighted average and FunSeq2251

have superior performance to others. In contrast, CADD, DANN and FATHMM_MKL perform poorly.252

Particularly, FATHMM_MKL suffers from a low COR. Notably, integrating scores in a weighted scheme in-253

deed boosts the prediction performance as demonstrated by the improvement of WEVar over Unweighted254

average.255

Context-dependent functional prediction256

Overview of context-dependent WEVar257

Different from context-free functional prediction, context-dependent functional prediction happens when258

a context-dependent WEVar is trained and the training and testing variants are from the same context.259

We develop “context-dependent” mode for WEVar because functional variants are usually studied in a cell260

type/tissue-specific way. The context-matching between training and testing variants may improve the pre-261

diction power. We demonstrate the prediction performance of context-free WEVar first, followed by a262
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comparison between context-free and context-dependentWEVar to demonstrate the advantage forWEVar263

by being context-dependent.264

Results of functional prediction between context-dependent WEVar and integrated scoring methods265

We use the same benchmark datasets to evaluate context-free functional prediction. To restrict the training266

and testing variants from the same context, we randomly split each dataset into ten-folds with nine-folds267

as the training set and one-fold as the testing set. Tuning parameter for L2-norm is selected in the training268

set using 5-CV with AUROC as the evaluation metric. A final context-dependentWEVar is fitted using the269

whole training set with the selected tuning parameter and makes the functional prediction on the testing270

set. AUROC, AUPR and COR are calculated by comparing prediction scores and true labels of variants in271

the testing set. We use leave-one-fold-out by selecting nine-folds as training set and one-fold as testing set272

ten times. Accordingly, the whole procedure is repeated ten times and all evaluation metrics are reported273

as average.274

We observe that context-dependent WEVar outperforms all scoring methods by obtaining the highest275

AUROC, AUPR and COR across all the benchmark datasets (Figure 4 and Table S1-S6). Moreover, we276

observe similar trends between context-dependent and context-free functional prediction, where WEVar,277

GWAVA_Unmatched and Unweighted average are the top-performed methods, while CADD, DANN and278

FATHMM_MKL have overall poor performance.279

To further objectively gauge the performance of context-dependent WEVar, we utilize the training and280

testing variant set in the first part of challenge of Critical Assessment of Genome Interpretation eQTL chal-281

lenge (CAGI) [34] derived from MPRA validated regulatory variants from GM12878 lymphoblastoid cells282

[32]. The variants selected by CAGI show significant level of transcriptional activity for either of two alleles.283

Specifically, the level of transcriptional activity is measured by differential abundance of transcripts versus284

plasmid input. Based on the FDR cutoff 0.01, a binary label is generated to indicate whether or not at least285

one of the two alleles of the variant exhibits a significantly high transcriptional activity (i.e. labeling 1 if286

FDR<0.01, otherwise, 0). As a result, the training set consists a total of 2,873 SNVs with 345 as positive set287

and 2,528 as negative set. The testing set contains a total of 2,808 SNVs with 348 positive variants and 2,460288

negative variants. We further remove SNVs on sex chromosome or with missing precomputed scores in289

both sets. Besides following the original training and testing procedure, we further carry out an additional290
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Figure 5. Prediction performance comparison between context-dependent WEVar and integrated scoring methods
on the CAGI benchmark datasets. In CAGI, 2,873 SNVs with 345 as positive set and 2,528 as negative set. The testing
set contains a total of 2,808 SNVs with 348 positive variants and 2,460 negative variants. We further remove SNVs on
sex chromosome or with missing precomputed scores in both sets. (A) Context-dependent WEVar is first trained on
the training set and evaluated on the testing set. (B) Similarly, we switch the training and testing set and perform an
additional independent evaluation. The figure presents the AUPR, AUROC, and COR. X axis presents AUPR; Y axis
presents AUROC; bubble size represents COR.

comparison by switching the training and testing set.291

Consistent with our previous findings, context-dependent WEVar has superior performance to other292

scoring methods in both comparisons by achieving the highest AUROC, AUPR and COR, followed by293

GWAVA_Unmatched and Unweighted average (Figure 5, Table S7-8). Moreover, CADD and DANN have294

the overall poorest performance. The additional independent evaluation further strengthens the advan-295

tage of context-dependentWEVar in predicting functional noncoding variants by benefiting frommatched296

context in training and testing set.297

Besides improving the functional prediction, another important characteristic of WEVar is that it can298

identify the informative predictors that play the major contribution to the functional prediction among all299

integrated scoring methods. Consequently, we find that sets of informative predictors are different across300

benchmark datasets (Figure S1, Table S9). In most cases, WEVar identifies a parsimonious set of scoring301

methods that dominate the functional prediction especially FunSeq2 and GWAVA_Unmatched are two302

ubiquitous major contributors. Moreover, GWAVA_TSS is an additional major contributor for Allele im-303

balanced SNPs, Experimentally validated regulatory SNPs and integrated causal regulatory variants used304

by context-free WEVar. Regarding MPRA validated regulatory variants in GM12878 lymphoblastoid cells,305

Eigen is the additional method that has a major contribution. Similarly, GWAVA_Region and Eigen are two306
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additional major contributors for two comparisons for CAGI training and testing variants. However, for307

GWAS noncoding SNPs and MPRA validated regulatory variants in K562 leukemia cells, there is a ubiq-308

uitous solution, where the contributions of all methods are relative uniform. These findings demonstrate309

that considering context-specificity in WEVar leads to different weight estimates and result in different310

sets of informative predictors. These observations also suggest that it is important to obtain an optimal311

weights when integrating different scoring methods, as the non-uniform weights estimated byWEVar lead312

improved functional prediction across benchmark datasets. Additionally, this point has been validated by313

both simulation and real data applications that WEVar outperforms the Unweighted average.314

Results of comparison between context-free and context-dependent functional prediction315

We hypothesize that considering context-specificity and context-matching context between training and316

testing variants in “context-dependent” WEVar will likely improve the predictive power for functional pre-317

diction. To validate this hypothesis, we directly compare the results of functional predictions between318

context-free and context-dependentWEVar on the aforementioned state-of-the-art benchmarking datasets319

(Figure S2, Table S1-S6).320

For MPRA validated variants in GM12878 lymphoblastoid cells, context-dependent WEVar signifi-321

cantly outperforms context-free WEVar with large performance gain in around 5% AUPR and 8% COR322

but modest gain in AUROC. Similarly, context-dependent WEVar also achieves a large improvement by323

increasing about 4%AUPR and 4%COR but slightly improvement of AUROC forMPRA validated variants324

in K562 leukemia cells. Moreover, the improvement of context-dependent WEVar is evident demonstrated325

by nearly 5% and 3% increase in COR but slightly increase in AUROC and AUPR for both Fine mapping326

eQTLs and Allele imbalanced SNPs. In addition, context-dependent WEVar has a modest improvement of327

all metrics for GWAS noncoding SNPs. However, there is a lack of improvement on Experimentally vali-328

dated regulatory SNPs, which could be explained by the small sample size of training set. This observation329

indicates that a large training set is necessary to improve the predictive power for context-dependent func-330

tional prediction. Overall, the comparisons between context-dependent and context-free WEVar validate331

the hypothesize that considering context-specificity and context-matching will improve the functional pre-332

diction. However, this improvement depends on the availability of enough sample size for training a robust333

context-dependent WEVar.334
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Prioritization of causal regulatory variants by WEVar on benchmarking datasets335

To demonstrate the application of WEVar in studying complex traits, we apply genome-wide functional336

scores of all noncoding variants in 1000 Genomes Project precomputed by context-free WEVar for fine-337

mapping analysis in risk loci. The diverse benchmarking datasets are generated from different experiments338

and study different traits, which are able to test the robustness of WEVar in prioritizing causal regulatory339

variants in risk loci.340

Noncoding variants modulating gene expression341

We evaluate WEVar on reported “expression-modulating variants” (emVars), which have been validated to342

show differential gene expression between alleles, from the MPRA study in GM12878 lymphoblastoid cells343

[32]. To assess whether these emVars with a strong linkage to GWAS SNPs can be prioritized by WEVar344

score, we create an extended LD block (r2 >0.2) utilizing ldproxy [35] to extract variants from all reference345

populations within the LD block, which are further assigned WEVar score.346

Consequently, WEVar is able to prioritize emVars in exampled LD blocks (Figure S3 and Table S10).347

For example, emVar rs4790718 (chr17:4870893) scores higher than three LD-linkedGWASSNPs rs1060431348

(chr17:4840868, pvalue=2×10−26), rs6065 (chr17:4836381, pvalue=2×10−12) and rs571461910 (chr17:4869143,349

pvalue=3.98 × 10−9), which are mapped to SPAG7 and associated with Platelet counts. Similarly, em-350

Var rs922483 (chr8:11351912) is successfully prioritized by the highest score among all LD-linked variants351

including GWAS SNP rs2736340 (chr8:11343973, pvalue=6.03 × 10−20) associated with Systemic lupus352

erythematosus. Moreover, emVar rs56316188 (chr8:59323811) scores higher than GWAS SNP rs2859998353

(chr8:59324162, pvalue=1× 10−7), which is mapped to UBXN2B and associated with narcolepsy with cat-354

aplexy. Additionally, emVar rs306587 (chr10:30722908) is prioritized among LD-linked variants including355

one GWAS SNP rs1042058 (chr10:30728101, pvalue=6×10−11). Overall, these examples demonstrate that356

WEVar can successfully prioritize experimentally validated regulatory variants that modulate gene expres-357

sion among LD-linked putatively causal GWAS SNPs, indicating that WEVar can potentially aid the fine358

mapping analysis.359
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Causal regulatory variants associated with Schizophrenia360

Schizophrenia, typically diagnosed in the late teens years to early thirties, is a mental disorder character-361

ized by disruptions in thought processes, perceptions, emotional responsiveness, and social interactions.362

Schizophrenia is one of the top 15 leading causes of disability worldwide [36, 37] and estimated interna-363

tional prevalence of schizophrenia among non-institutionalized persons is 0.33% to 0.75% [38]. Although364

GWAS has identified numerous noncoding schizophrenia-associated variants hypothesized to affect gene365

transcription, the causal regulatory variants are still elusive. To experimentally evaluate the regulatory po-366

tential of these GWAS SNPs and LD-linked variants, a recent study [39] screens several schizophrenia loci367

from a large GWAS cohort-Schizophrenia Working Group of the Psychiatric Genomics Consortium, using368

MPRA experiments in both K562 leukemia cells and SK-SY5Y neuroblastoma cells.369

We apply context-free WEVar functional scores to discover causal regulatory variants associated with370

Schizophrenia. Briefly, we define “causal regulatory variants” as variants with significant differential expres-371

sion between two alleles with a FDR cutoff 0.2. For each causal regulatory variant, we extend the risk locus372

by considering all variants in LD (r2 > 0.2). We further obtain precomputed context-free WEVar score373

for all variants in the risk locus. As a result, WEVar successfully prioritizes causal regulatory variants in the374

risk loci by assigning them the highest WEVar score (Figure 6 and Table S11). For example, rs34877519375

(chr3:2554612) is successfully prioritized by obtaining the score higher than any variant in the risk locus376

including GWAS SNPs rs11708578 (chr3:2515894, pvalue=7.08× 10−11) and rs17194490 (chr3:2547786,377

pvalue=1.00×10−11); rs7927437 (chr11:123395987) receives the highest score among all variants in the risk378

locus includingGWAS SNP rs77502336 (chr11:123394636, pvalue= 3.98−10); rs7779548 (chr7:137074540)379

scores higher than any variant in the risk locus includingGWASSNP rs3735025 (chr7:137074844, pvalue=3.98×380

10−12); rs6498914 (chr16:63699425) obtains the highest score among all variants in the risk locus including381

GWAS SNP rs2018916 (chr16:63700508, pvalue=7.08 × 10−9). Overall, these findings demonstrates that382

causal regulatory variants are not necessary the GWAS lead SNPs but the LD-linked variants. In addition,383

WEVar is a powerful tool in post-GWAS analysis to pinpoint the causal regulatory variants in the risk loci,384

which cannot be identified by a standard GWAS approach.385
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Figure 6. WEVar can prioritize causal regulatory variants associated with Schizophrenia. Causal regulatory variants
are defined as variants with significant differential expression between two alleles (FDR<0.2) in MPRA experiments
in both K562 leukemia cells and SK-SY5Y neuroblastoma cells. For each causal regulatory variant, we extend the risk
locus by considering all variants in LD (r2 >0.2). As a result, rs34877519 (chr3:2554612) is successfully prioritized
by obtaining the score higher than any variant in the risk locus including GWAS SNPs rs11708578 (chr3:2515894,
pvalue=7.08 × 10−11) and rs17194490 (chr3:2547786, pvalue=1.00 × 10−11); rs7927437 (chr11:123395987) re-
ceives the highest score among all variants in the risk locus including GWAS SNP rs77502336 (chr11:123394636,
pvalue=3.98×10−10); rs7779548 (chr7:137074540) scores higher than any variant in the risk locus including GWAS
SNP rs3735025 (chr7:137074844, pvalue=3.98 × 10−12); rs6498914 (chr16:63699425) achieves the highest score
among all variants in the risk locus including GWAS SNP rs2018916 (chr16:63700508, pvalue=7.08 × 10−9). The
causal regulatory variants validated by MPRA are marked purple. LD-linked GWAS SNPs are marked red.

Causal regulatory variants associated with multiple traits and validated by multiple platforms386

We benchmarkWEVar on state-of-the-art datasets, which are generated frommultiple studies for different387

traits such as Cleft lip/palate, heart, hair color and breast cancer and consists of regulatory variants exper-388

imentally validated by different functional assays. Similar to previous analyses, we define the risk locus389

by considering all variants in LD (r2 >0.2) for each regulatory variant. Consequently, WEVar is able to390

prioritize regulatory variants in each risk locus (Figure S4 and Table S12).391

Specifically, rs6801957 (chr3:38767315, pvalue=9 × 10−9), located in intronic region of SCN10A, has392

been validated by BAC reporter system and 4C-seq tomodulate cardiac SCN5A expression [40]. Consistent393

with the experimental validation,WEVar assigns the highest score to rs6801957 in the risk locus, which also394

includes multiple GWAS SNPs rs6795970 (chr3:38766675, pvalue=1× 10−58), rs7433306 (chr3:38770639,395
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pvalue=1×10−14), rs6790396 (chr3:38771925, pvalue=2×10−39), rs6599255 (chr3:38796415, pvalue=2×396

10−10) rs6798015 (chr3:38798836, pvalue=2×10−12) and rs10428132 (chr3:38777554, pvalue=1×10−68).397

We further evaluate another variant rs227727 (chr17:54776955, pvalue=7.3 × 10−8), which is mapped to398

17q22 NOG locus and found associated with Cleft lip/palate. The NSCL/P-associated allele of rs227727399

significantly decreases the nearby enhancer activity compared to the unassociated allele, which is experi-400

mentally validated by quantitative reporter assays transfected with a luciferase reporter vector [41]. Sim-401

ilarly, rs227727 is prioritized with the highest score in the risk locus. The next evaluated variant rs12821256402

(chr12:89328335, pvalue=4×10−30) is located in a regulatory enhancer in the upstreamof lncRNALINC02458.403

It has been experimentally validated that rs12821256 is associated with hair color by altering the binding404

site of lymphoid enhancer-binding factor1 (LEF1) transcription factor. The altered binding site of LEF will405

reduce LEF responsiveness and enhancer activity in cultured human keratinocytes [42]. Again, rs12821256406

scores highest in the risk locus, which is supported by the experimental finding. The last investigated vari-407

ant is a breast cancer risk SNP rs11055880 (chr12:14410734), which resides in an intergenetic enhancer and408

validated by CRISPR-Cas9 approach [43] to have endogenous regulatory activities on expression of ATF7IP.409

Consistently, rs11055880 obtains the highest score among all variants in the risk locus.410

Overall, the consistency between experimental validations and prioritization results based on WEVar411

score demonstrates the capability and robustness ofWEVar to prioritize functional noncoding variants in a412

LD-linked risk locus. The robustness is reflected by the successful prioritization of heterogeneous variants,413

which are located in various genomic regions, associated with different traits, and validated by different414

functional assays.415

Discussion416

In this work, we develop a statistical learning framework “WEVar” to predict functional noncoding vari-417

ants by integrating representative scoring methods in an optimized weighted scheme. The development of418

WEVar is motivated by the existing gap of strong discordant performance of existing methods on state-of-419

the-art benchmark datasets, as shown by the inconsistent prediction performance of these methods on the420

integrated causal regulatory SNPs (Figure 2A).421

Overall, the advantages of WEVar lies on several aspects. First, existing approaches, either supervised422

or unsupervised, are developed using thousands of functional annotations derived from multi-omics data423
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deposited in large national consortia such as ENCODE and Roadmap Epigenomics. Different from exist-424

ing methods, WEVar is developed on top of these methods by directly utilizing genome-wide precomputed425

functional scores, which collapse multi-dimensional functional annotations into a single score. Therefore,426

without losing information of functional annotations, direct application of the functional scores of exist-427

ing approaches significantly reduces the dimensionality of feature space in model development of WEVar.428

Second, WEVar will identify informative predictors in an optimized weighted scheme and thus can lever-429

age the advantages of different approaches, which likely lead to improved prediction performance com-430

pared to each integrated individual scoring method. Third, WEVar offers two modes: “context-free” and431

“context-dependent”. Each mode has its favorite scenario. We adopt a comprehensive training set [26],432

which integrates curated causal SNPs, located in different genomic regions, collected from different sources433

and associated with different traits to develop context-free WEVar. The large sample size, diverse context434

and genomic locations as well as heterogeneous trait association of these training variants make context-435

freeWEVar powerful to predict functional noncoding variants with unknown or heterogeneous context. In436

contrast, training variant set of context-dependentWEVar is derived from the same context i.e. tissue-, cell437

type-, disease-specific. The context-specificity of training set makes context-dependent WEVar prefer the438

scenario when noncoding variants in training and testing set are from the same context, which may lead to439

improvement of functional prediction.440

Weperform a real data-based simulation study by considering the inherent correlations of precomputed441

functional scores among integrated scoring methods. The results demonstrate that WEVar outperforms442

individual scoring method and can estimate the contributions of integrated scoring methods accurately,443

which may explain the improved performance of WEVar. Next, we evaluate context-free functional pre-444

diction and context-dependent functional prediction respectively on state-of-the-art benchmark datasets,445

which include three variant sets containing putatively causal regulatory variants derived from statistical as-446

sociations (i.e. Allelic imbalanced SNPs, Fine mapping eQTLs, GWAS significant noncoding SNPs), and447

three datasets consisting of experimentally validated regulatory variants (i.e. Experimentally validated reg-448

ulatory SNPs, MPRA validated variants in GM12878 lymphoblastoid cells, MPRA validated variants in449

K562 leukemia cells). Besides evaluating context-dependent WEVar in each benchmark dataset by divid-450

ing it into training and testing set, we adapt an independent training and testing set from CAGI. Conse-451

quently, both context-free and context-dependent WEVar achieve an overall improvement of functional452
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prediction compared to integrated scoring methods across all datasets. Specifically, WEVar outperforms453

Unweighted average, indicating the benefit of exploiting the optimized contributions of individual scoring454

method. GWAVA_Unmatched and Unweighted average are top-performed. In contrast, DANN, CADD455

and FATHMM_MKL always perform poorly. By comparing context-free and context-dependent WEVar456

on the same benchmark datasets, we find that context-dependent WEVar improve the functional predic-457

tion compared to context-free WEVar except for Experimentally validated regulatory SNPs possibly to the458

small sample size of training set. This observation indicates that being context-dependent improves the459

functional prediction and a large sample size is needed for make this improvement.460

Another important characteristic ofWEVar is that it can identify predictors that playmajor contribution461

to the functional prediction. As a result, major contributors are different across benchmark datasets. In462

most cases,WEVar identifies a parsimonious set of scoringmethods that dominate the functional prediction463

especially FunSeq2 and GWAVA_Unmatched are two ubiquitous major contributors. However, for GWAS464

noncoding SNPs and MPRA validated regulatory variants in K562 leukemia cells, there is a ubiquitous465

solution, where the contributions of all methods are relative uniform. These findings demonstrate that both466

estimated weights and major contributors vary from context to context. Thus, it is important to obtain467

an optimal weights when integrating different scoring methods, as the non-uniform weights estimated by468

WEVar lead improved functional prediction across benchmark datasets. Additionally, this point is validated469

by both simulation and real data applications thatWEVar outperforms the unweighted average of functional470

scores.471

To demonstrate the application ofWEVar in complex traits, we applyWEVar in the finemapping analy-472

sis to evaluate whether it can successfully prioritize causal regulatory variants among LD-linked noncoding473

variants. By using precomputed WEVar score directly, variants assigned the highest score in a risk locus is474

considered to be prioritized. By using three benchmarking datasets of experimentally validated regulatory475

variants, we find that WEVar can prioritize regulatory variants modulating gene expression in GM12878476

lymphoblastoid cells, associated with Schizophrenia and multiple traits such as Cleft lip/palate, heart, hair477

color and breast cancer. These findings demonstrate that WEVar can prioritize functional noncoding vari-478

ants in risk loci and therefore alleviate the limitation of current GWAS, where the true causal SNPs may be479

masked by LD.480

WEVar is a flexible approach, which can be further extended and improved by both integrated scoring481
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methods and training variant set. In the current implementation, we include several representative scor-482

ing methods that are most popular in this field. With the rapid development post-GWAS analysis, there483

are other powerful methods developed or developing can be integrated into WEVar to further improve the484

prediction performance. The flexibility of WEVar is also reflected on the training variant set. With the485

affordability and popularity of functional assays such as massively parallel reporter assays (MPRAs) and486

clustered regularly interspaced short palindromic repeats (CRISPR)-based gene editing, more experimen-487

tally validated functional variants can be discovered and integrated into WEVar to improve the predictive488

power.489

Methods490

WEVar is developed directly on top of precomputed functional score, which is an optimally integrativemet-491

ric representing for thousands of functional annotations, frommultiple individual scoring methods. Using492

these integrative functional scores directly will decrease the number of features in the model development493

and thus avoid the challenge high-dimensional data and multicollinearity. We will outline the details of494

WEVar in the following sessions.495

Obtaining precomputed functional scores496

We download base-level genome-wide precomputed functional scores from all possible substitutions of497

single nucleotide variants (SNVs) in the human reference genome (GRCh37/hg19) from scoring methods498

including CADD [16], DANN [17], FunSeq2 [20], FATHMM-MKL [18], Eigen [21] and LINSIGHT [19].499

In addition, we use three sets of precomputed scores from GWAVA (i.e. GWAVA_region, GWAVA_TSS,500

GWAVA_unmatched) for all SNVs in 1000 Genomes Project [22]. We choose these scoring methods to501

integrate intoWEVar because they are widely used andmostly representative. Since the precomputed score502

of LINSIGHT is on region level, we assign all variants in the region with the same region-level score. More503

details for the source of these precomputed scores can be found in Table S13.504

Assembling variants in training and testing set505

For context-free WEVar, the training variant set compiles a curated set of 5,247 causal regulatory vari-506

ants including i) deleterious or pathogenic noncoding variants from the Human Gene Mutation Database507
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(HGMD) [25] and ClinVar [44] ii) validated regulatory noncoding variants from the OregAnno [45] and508

iii) candidate causal SNPs for 39 immune and non-immune diseases in the fine-mapping study [46] ob-509

tained from Li et al. [26]. The compiled variants are associated with different traits, have functional con-510

sequence in different tissues and cell types, and reside in different noncoding regions such as promoters,511

enhancers, 5’UTRs and 3’UTRs, making them ideal as a training set to predict functional consequence of512

noncoding variants from unknown or heterogeneous context. Accordingly, we collect six state-of-the-art513

benchmark independent variant sets from a wide range of context. Among them, three variant sets are514

collected from Li et al. [26], which include experimentally validated regulatory variants, expression quanti-515

tative trait loci (eQTL) [29] (FDR<0.1%) and allelic imbalanced SNPs [28] (FDR<0.1%) Moreover, GWAS516

significant noncoding SNPs are collected from NHGRI-EBI GWAS Catalog [30] (pvalue<10−5). Further-517

more, two collected regulatory variant sets are validated by massively parallel reporter assays (MPRAs) in518

GM12878 lymphoblastoid cells [32] and K562 leukemia cells [33]. For context-free WEVar, these variant519

sets are used for independent testing. For context-dependent WEVar, we divide each variant set into ten520

folds with nine-folds as training set and one-fold as testing set.521

Statistical learning framework of WEVar522

The workflow of WEVar is illustrated in Figure 1, which consists of four steps: (i) Creating the compiled523

training variant set (ii) Obtaining the precomputed functional scores for training variants (iii) Transforming524

the functional scores (iv) Training a constraint ensemble model.525

Creating compiled training variant set526

Depending on the purpose, we compile the training set for either ”context-free” or ”context-dependent”527

WEVar, as described in the section “Assembling variants in training and testing set”.528

Obtaining precomputed functional scores for training variants529

Precomputed functional scores are retrieved from representative scoringmethods includingCADD,DANN,530

Eigen, FunSeq2, FATHMM-MKL, LINSIGHT and GWAVA for variants in the training set, as described in531

the section “Obtaining precomputed functional scores”.532
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Transforming precomputed functional scores533

Precomputed functional scores of integrated scoring methods are on different scales, which may result in534

different effect sizes of weight estimates byWEVar. However, the resulted different weight estimates are not535

due to different contributions of integrated scoring methods but because of the systematic bias induced by536

score scale. Therefore, it is important to perform a normalization step tomake functional scores fromdiffer-537

ent scales comparable. To integrate different scores are on the same scale, for each jth scoring method, we538

estimate two probability density functions (PDF) using kernel density estimation (KDE) based on the em-539

pirical distribution of the normalized scores for positive variant set and negative set respectively. As a result,540

PDF of the positive set denoted as pj(s|+) approximates the probability that a variant will have a prediction541

score s given the variant is functional (+), while PDF of the negative set denoted as pj(s|−) approximates542

the probability that a variant will have the same prediction score s given the variant is nonfunctional (-).543

Therefore, we use the ratio of two PDFs for the given ith variant, which is essentially the Bayes factor, to rep-544

resent the likelihood the variant is functional versus nonfunctional. To stabilize the scale of the likelihood,545

we further take a logarithm of the ratio as the transformed score xNij as:546

xNij = log
pj(xij |+)

pj(xij |−)
(5)547

where xij is the raw functional score of the ith variant in the jth scoring method; pj(xij |+) and pj(xij |−)548

are probability density of xij in positive and negative set respectively.549

Training a constraint ensemble model550

Using the transformed scores, we will fit a constraint ensemble model, which is essentially a Constrained551

Penalized Logistic Regression model. Let xN ∈ Rp be the transformed scores of a variant for all scoring552

methods and y ∈ {−1,+1} be the variant label. The conditional probability of the variant being functional553

given xN can be formulated as:554

p(y = 1|xN ) =
1

1 + exp(−y(w>xN ) + b)
(6)555

where w ∈ Rp is a weight vector, which contains the regression coefficients, and b ∈ R is the intercept.556

The likelihood function for n variants from both positive and negative set is defined as
∏n

i=1 p(yi|xNi ). The557
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objective function, which is the average of negative log-likelihood, is defined as:558

f(w, b) = − 1

n
log

n∏
i=1

p(yi|xNi ) (7)559

By minimizing the objective function, we can estimate w and b as:560

minimize
w,b

f(w, b) (8)561

We further apply two constraints to the log-likelihood function. First, the weight of each scoring method562

is larger or equal to 0, indicating all scoring methods will contribute neutrally or positively to the predic-563

tion. Second, the sum of all weights equals to 1, which is a reasonable assumption for the summation of564

contributions from all scoring methods. In addition, to leverage all scoring methods by avoiding a sparse565

solution, we add an L2-norm to the objective function. Finally, we have the L2-norm regularized objective566

function with the two constraints as:567

minimize
w,b

f(w, b) + λ||w||2

subject to
p∑

j=1

wj = 1

wj ≥ 0, j = 1, . . . , p.

(9)568

where λ ≥ 0 is the tuning parameter for L2-norm, which can be optimized from cross-validation in the569

training phase.570

Tominimize the loss function with equality and inequality constraints, we first rewrite the loss function571

as the standard form:572

minimize
w,b

f(w, b) + λ||w||2

subject to hk(w) ≤ 0, k = 1, . . . , p.

l(w) = 0

(10)573

We then introduce Generalized Lagrange function to relax two constraints, which is formulated as:574

L(w, b, α, β) = f(w, b) + λ||w||2 +
p∑

k=1

αkhk(w) + βl(w) (11)575
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In this way, the dual problem is easier to solve compared with the primal problem. The primal solution can576

be constructed from the dual solution as:577

g(α, β) = minL(w, b, α, β) (12)578

The Lagrange dual function can be considered as a pointwise maximization of some affine functions so it is579

always concave. The dual problem is always convex even if the primal problem is not convex, which can be580

easily solved by gradient-based methods.581

Testing phase582

In the testing phase, given variants be annotated precomputed functional scores from all scoring methods,583

whichwill be further transformed through the estimatedKDE in the training phase. The transformed scores584

will serve as input features for trained ensemble model to predict the ensemble WEVar score.585

Implementation586

We adopt the SciPy [47], a Python scientific computing library, to perform the kernel density estimations,587

and CVXPY [48], a Python-embedded modeling library for convex optimization, to estimate constrained588

weights from the objective function.589

Software availability590

WEVar is implemented in a standalone software toolkit available at (https://github.com/lichen-lab/591

WEVar), which mainly consists of i) a compiled data package including precomputed scores for all SNVs592

(GRCh37/hg19) in 1000 Genomes Project across all integrated scoringmethods; ii) a model package of pre-593

trained context-free and context-dependent WEVar models; and iii) a Python software package to perform594

the functional prediction using pre-trained models or re-train a new model. To use a pre-trained model,595

WEVar will take compiled data package and genomic coordinates of testing variants as input. Alternatively,596

WEVar will take compiled data package and genomic coordinates of training variants to re-train a new597

WEVar model.598
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