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ABSTRACT  15 

Calcium imaging is inherently susceptible to detection noise especially when imaging with 16 

high frame rate or under low excitation dosage. We developed DeepCAD, a self-17 

supervised learning method for spatiotemporal enhancement of calcium imaging without 18 

requiring any high signal-to-noise ratio (SNR) observations. Using this method, detection 19 

noise can be effectively suppressed and the imaging SNR can be improved more than 20 

tenfold, which massively improves the accuracy of neuron extraction and spike inference 21 

and facilitate the functional analysis of neural circuits.  22 

Calcium imaging enables parallel recordings of large neuronal ensembles in living animals1-4 23 

and offers a new possibility for deciphering information propagation, integration, and 24 

computation in neural circuits5. To obtain accurate neuron extraction and spike inference for 25 

downstream neuroscience analysis, high-SNR calcium imaging is desired. However, due to the 26 

paucity of fluorescence photons caused by low peak accumulations and fast dynamics of in 27 

vivo calcium transients6,7, calcium imaging is easy to be contaminated by detection noise (i.e. 28 

photon shot noise and electronic noise), especially in functional imaging where high temporal 29 

resolution is particularly important for analyzing neural activities8.  30 

To capture sufficient fluorescence photons for high-SNR calcium imaging, the most direct 31 

way is to use high excitation dosage, but concurrent photobleaching, phototoxicity9,10, and 32 

tissue heating11 are detrimental for sample health and photosensitive biological processes, 33 

which limits the maximal excitation power for long-term in vivo imaging12. More effective 34 
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strategies include using brighter calcium indicators7,13 and more sensitive photoelectric 35 

detectors14, but their performances are still largely restricted in photon-limited conditions such 36 

as dendritic imaging and deep-tissue imaging. Apart from these physical or biological 37 

approaches, data-driven methods are promising to offer an alternative solution to recover 38 

faithful signals from degraded recordings and reduce the photon budget of calcium imaging. 39 

As an intelligent signal processing technique, deep learning has been adopted by microscopists 40 

and achieved impressive performance in fluorescence imaging15-18. However, calcium 41 

transients are highly dynamic, non-repetitive activities and a firing pattern cannot be 42 

captured twice. Previous schemes for obtaining ground-truth images (i.e. clean images 43 

without noise contamination or high-SNR images with the same underlying scene) by 44 

extending integration time or averaging multiple noisy frames are no longer feasible, 45 

posing an entrenched obstacle for conventional supervised learning methods.  46 

In this paper, we present DeepCAD, a self-supervised learning method for calcium imaging 47 

denoising by over tenfold SNR improvement without requiring any high-SNR observations for 48 

training. DeepCAD is based on the insight that a deep neural network can converge to a mean 49 

estimator even the target image used for training is another corrupted sampling of the same 50 

scene19. When looking at calcium imaging data, we explored the temporal redundancy of 51 

pervasive video-rate imaging and found that any two consecutive frames can be regarded as 52 

two independent samplings of the same underlying firing pattern, which can be used for 53 

training of denoising models. Furthermore, the input and output data are designed to be 54 

3D volumes rather than 2D frames to fully exploit spatiotemporal information in the 55 
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time-lapse stack. We show that such a 3D self-supervised method is extremely effective for 56 

calcium imaging denoising and even the subtlest calcium fluctuations induced by a single 57 

action potential (AP) can be restored from severely corrupted images. Finally, a Fiji-based 58 

plugin along with a pre-trained model were released to make our method easy to access and 59 

convenient to use. 60 

The general principle of DeepCAD is schematized in Fig. 1a. For network architecture, we 61 

employed 3D U-Net20 to aggregate spatiotemporal information in multiple frames using 62 

3D convolutional layers (Supplementary Fig. 1, Methods), which endows DeepCAD with 63 

better denoising capability than 2D architecture or classical methods (Supplementary Fig. 2). 64 

Benefiting from the self-supervised strategy, a single low-SNR stack of ~3500 frames is 65 

sufficient to be a complete training set. To generate the training set, two sub-stacks consisting 66 

of interlaced frames were split from the original low-SNR stack and 3D tiles were extracted 67 

from these sub-stacks for training (Supplementary Fig. 3). They contain approximate identical 68 

calcium transients when the original stack was imaged at near video rate, which is common for 69 

commercial or customized microscopes. After proper training, interpretable features can be 70 

learned (Supplementary Fig. 4) and the model can be applied to subsequent acquisitions 71 

without extra training (Fig. 1b). Although the network was trained on specified spatial and 72 

temporal resolution, we found that it had non-inferior performance on various frame rates 73 

(Supplementary Fig. 5) and magnifications (Supplementary Fig. 6), indicating the great 74 

scalability and generalization for versatile applications of DeepCAD.   75 
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To quantitatively evaluate the performance of DeepCAD, we first validated it on simulated 76 

calcium imaging data of different imaging SNRs (Supplementary Figs. 7-8 and Supplementary 77 

Notes 1-2), which contains synchronous noise-free recordings as the ground truth for 78 

comparison. The constrained nonnegative matrix factorization (CNMF) algorithm21 was 79 

used for downstream neuron extractions (Methods). After the enhancement of 80 

DeepCAD, more active neurons can be detected, especially when imaging SNR is low 81 

(Fig. 1c). The accuracy of neuron extraction was also quantified with F1 score and 82 

significant improvement was observed across a wide range of intersection-over-union (IoU) 83 

thresholds (Fig. 1d,e). For a typical IoU threshold of 0.7, the segmentation accuracy was 84 

improved by 2.4 folds (0.84 contrast to 0.35). Benefiting from the improved imaging 85 

quality, calcium traces extracted from the denoised data possess higher fidelity. To 86 

investigate the temporal enhancement of DeepCAD, we extracted calcium traces of all 87 

neurons from both raw noisy data and the enhanced counterpart. The Pearson 88 

correlation with the clean traces was significantly improved after denoising (Fig. 1f). 89 

Even the slightest calcium transients can be restored from the original noisy data (Fig. 90 

1g and Supplementary Fig. 9). These facts suggest that the spatiotemporal enhancement 91 

of DeepCAD can improve the accuracy of neuronal localization and trace extraction 92 

and largely facilitate the analysis of neural circuits. 93 

To verify the effectiveness and reliability of DeepCAD on neuroscience research, we then 94 

demonstrated its performance on two-photon calcium imaging based on data released by 95 

Svoboda lab7. In this dataset, simultaneous cell-attached electrophysiological recordings (Fig. 96 
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2a) are synchronized with two-photon imaging and serve as the reference of calcium transients 97 

and the ground truth of spike inference. Contaminated by detection noise, both the spatial 98 

footprint and temporal traces of the neuron were severely corrupted in the original data (Fig. 99 

2b). After we applied DeepCAD to enhance these data, the annular cytoplasm became 100 

recognizable and calcium traces were liberated from noise (Fig. 2c and Supplementary Video 101 

1). Even the most imperceptible calcium transients evoked by one AP, two APs, and three APs 102 

were clearly distinguished and still maintain their original dynamics (Fig. 2d-g), which 103 

otherwise would be submerged in noise. For further comparison, we extracted single-pixel 104 

fluorescence from cytoplasmic pixels and found that calcium transients can be unveiled at a 105 

single-pixel scale (Supplementary Fig. 10). Moreover, we performed spike inference (Methods) 106 

on traces extracted from the original data as well as the corresponding denoised data. Owing to 107 

the improvement of imaging SNR, the error rate of spike inference was consequently decreased 108 

(Fig. 2h and Supplementary Fig. 11). Among 107 independent calcium traces, 86% of them 109 

were observed to have lower error rates. 110 

Next, we employed DeepCAD for noise removal of calcium imaging of large neuronal 111 

populations in awake mice. To obtain high-SNR recordings for validation of our method, we 112 

designed and built a two-photon imaging system with the capability of simultaneous low-SNR 113 

and high-SNR recording (Supplementary Fig. 12 and Methods). The high-SNR detection path 114 

was strictly synchronized with the low-SNR detection path but with about 10-fold higher 115 

imaging SNR (Supplementary Fig. 13), which can be used as the reference for our denoising 116 

results. We first imaged spontaneous neuropil activities in cortical layer 1 of a transgenic mouse 117 
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expressing GCaMP6f and found that calcium fluctuations indiscernible in original low-SNR 118 

recordings can be effectively recovered by DeepCAD (Fig. 3a-c and Supplementary Video 2). 119 

The imaging SNR was improved more than 10 folds considering that the SNR of enhanced 120 

recordings even surpasses corresponding high-SNR reference. Fluorescence traces of dendritic 121 

pixels can be accurately resolved and keep high consistency with the high-SNR reference (Fig. 122 

3d-e and Supplementary Fig. 14). We also applied DeepCAD to enhance calcium imaging of 123 

somatic signals. After denoising, neuronal distribution and circuit dynamics can be recognized 124 

from a single frame (Fig. 3f-h and Supplementary Video 3). Using CNMF as the downstream 125 

source extraction method, 52.6% (229 contrast to 150) more active neurons can be extracted 126 

(Fig. 3i,j and Supplementary Fig. 15) and the trace peak SNR of extracted neurons was also 127 

improved more than two folds (9.9 contrast to 4.8, median value) (Fig. 3k), indicating that the 128 

functional analysis of large neuronal populations can be effectively strengthened due to 129 

improved SNR. 130 

In summary, we demonstrate DeepCAD, a deep self-supervised learning-based method for 131 

spatiotemporal enhancement of calcium imaging. Quantitative evaluation on both simulated 132 

and experimental data shows that the accuracy of neuron extraction and spike inference can be 133 

largely reinforced after denoising. To fully evaluate the capability and reliability of our method, 134 

a customized two-photon microscope was built to capture synchronized low-SNR and high-135 

SNR recordings, which indicates that DeepCAD enables a more than tenfold improvement in 136 

imaging SNR. To maximize its accessibility, we released an open-source Fiji plugin 137 

(Supplementary Fig. 16 and Supplementary Notes 3) and a pre-trained DeepCAD model for 138 
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two-photon imaging of neuron populations. Our method can be efficiently configured on a 139 

common desktop and achieve comparable performance on different imaging systems 140 

regardless of objectives and detectors (Supplementary Fig. 17 and Supplementary Video 4). 141 

Although DeepCAD is currently investigated only on two-photon microscopy, it can be easily 142 

extended to other imaging modalities such as wide-field microscopy and light-sheet 143 

microscopy. We anticipate that this method could serve as a general processing step for calcium 144 

imaging in photon-limited conditions and promote long-term and high-fidelity recording of 145 

neural activities.  146 
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Methods 147 

Optical setup. A two-photon imaging system was designed to capture strictly 148 

synchronized low-SNR and high-SNR calcium recordings for validation of our method. 149 

Our system was based on a standard two-photon laser scanning microscope (2PLSM) 150 

and the detection path was specially designed to split the fluorescence in a ratio of 1:10. 151 

All components of our imaging system are commercially available or easy to fabricate. 152 

The schematic of the custom-built two-photon microscope is shown in Supplementary 153 

Fig. 12. At the forefront of the optical path, a titanium-sapphire laser system with tunable 154 

wavelength (Mai Tai HP, Spectra-Physics) was used as the illumination source to emit 155 

the linearly polarized, femtosecond-pulsed Gaussian excitation beam (920 nm central 156 

wavelength, pulse width <100 fs, 80 MHz repetition rate). A half-wave plate 157 

(AQWP10M-980, Thorlabs) was used to adjust the polarization of the laser beam. Then 158 

the laser beam went through an electro-optic modulator (350-80LA-02, Conoptics) to 159 

modulate the excitation power and the half-wave plate was rotated to make the electro-160 

optic modulator have maximal extinction ratio. A 4f system composed of two 161 

achromatic lenses (AC508-200-B, Thorlabs) with the same focal length was followed 162 

to collimate the laser beam. Another 4f system (AC508-100-B and AC508-400-B, 163 

Thorlabs) with a fourfold magnification was used to expand the laser beam and guide 164 

the beam into a galvo-resonant scanner (8315K/CRS8K, Cambridge Technology) for 165 

fast optical scanning. The scanner mount was optimally designed for reliable and 166 

distortion-free scanning. Then the beam went through a scan lens (SL50-2P2, Thorlabs) 167 
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and a tube lens (TTL200MP, Thorlabs) and converged into a tight focus through a high 168 

numerical aperture (NA) water-dipping objective (25×/1.05 NA, XLPLN25XWMP2, 169 

Olympus). A high-precision piezo actuator (P-725, Physik Instrumente) was 170 

additionally used to drive the objective for fast axial scanning. The beam size at the 171 

back aperture of the objective was further restricted with an iris set behind the beam 172 

expander (L4) to keep the back aperture of the objective underfilled. The effective 173 

excitation NA was about 0.5 in our imaging experiments. 174 

For the detection path, fluorescence excited by the Gaussian focus was first 175 

collected by the objective. High-NA detection is helpful to detect more fluorescence 176 

photons and improve the signal intensity. A long-pass dichroic mirror (DMLP650L, 177 

Thorlabs) was used to separate fluorescence by reflecting the fluorescence signals and 178 

transmitting the excitation light. A 1:9 (reflectance: Transmission) non-polarizing plate 179 

beam splitter (BSN10, Thorlabs) was then placed in the detection path. All fluorescence 180 

going through the beam splitter will be split into a 10% component (low-SNR path) and 181 

a 90% component (high-SNR path), propagating in two orthogonal directions and 182 

detected by two photomultiplier tubes (PMT1001, Thorlabs). A pair of fluorescence 183 

filters (MF525-39, Thorlabs; ET510/80M, Chroma) was configured in front of each 184 

PMT to fully block wavelengths outside the emission passband of green fluorescent 185 

protein (GFP). To improve detection efficiency, we conjugated the back aperture of the 186 

objective to the sensor planes of the two PMTs using two 4f systems (TTL200-A and 187 

AC254-050-A, Thorlabs). The two detection paths recorded synchronized fluorescence 188 
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signals but with quite different imaging SNR. Although the high-SNR recording still 189 

suffers from noise, it can be used as the reference to identify underlying structures and 190 

calcium fluctuations. The field-of-view (FOV) of our two-photon imaging system is 191 

about 600 μm and the frame rate is about 30 Hz. 192 

System calibration. To confirm the fluorescence intensity ratio between the high-SNR 193 

detection path and the low-SNR detection path, we imaged 1 μm green-fluorescent 194 

beads (G0100, ThermoFisher) for system calibration. The beads suspension was first 195 

diluted and embedded in 1.0% agarose and then mounted on a microscope slide to form 196 

a single beads layer composed of sparse beads. A specified region was continuously 197 

scanned to acquire 500 consecutive frames. These frames can be regarded as 198 

independent samplings of the same underlying scene. To reduce the impact of detection 199 

noise, we averaged these frames to obtain the noise-free image of each path 200 

(Supplementary Fig. 13). All beads in the FOV were manually segmented and the 201 

intensity of each bead was calculated by averaging all pixels inside its segmentation 202 

mask. According to our statistical analysis, the fluorescence intensity of the high-SNR 203 

detection path was approximately tenfold higher than that of the low-SNR detection 204 

path. 205 

Mouse preparation and calcium imaging. All experiments involving mice were 206 

performed in accordance with institutional guidelines for animal welfare and have been 207 

approved by the Institutional Animal Care and Use Committee (IACUC) of Tsinghua 208 

University.  209 
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Adult transgenic mice (Ai148D/Rasgrf2-dCre) at 8-12 postnatal weeks were 210 

anesthetized with 1.5% isoflurane and craniotomy surgeries were conducted using a 211 

stereotaxic instrument (68018, RWD Life Science) under a bright-field binocular 212 

microscope (77001S, RWD Life Science). A custom-made coverslip fitting the shape 213 

of the cranial window (~6 mm in diameter) was embedded and cemented to the skull. 214 

A biocompatible titanium headpost was then cemented to the skull for stable head 215 

fixation. The edge of the cranial window was enclosed with dental cement to hold the 216 

immersion water of the objective. After the surgery, 0.25mg/g body weight of 217 

Trimethoprim (TMP) was intraperitoneally injected to induce the expression of 218 

GCaMP6f genetically encoded calcium indicator (GECI) in layer 2/3 neurons across 219 

the whole brain. To reduce potential inflammation, 5 mg/kg body weight of Ketoprofen 220 

was injected subcutaneously. Each mouse was housed in a separate cage for 1-2 weeks 221 

of postoperative recovery.  222 

Imaging experiments were carried out when the cranial window became clear and 223 

no inflammation occurred. Mice were first rapidly anesthetized with 3.0% isoflurane 224 

and then fixed onto a custom-made holder with the headpost. The mouse holder was 225 

mounted on a precision translation stage with three motorized axes (M-VP-25XA-226 

XYZL, Newport) to find the region of interest (ROI) for imaging. The correction ring 227 

of the objective was adjusted to compensate for the coverslip thickness and eliminate 228 

spherical aberrations. The excitation power after the objective was kept below 140 mW 229 

in all experiments to avoid potential laser-induced tissue damage. Gaseous anesthesia 230 
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was switch off and the mice kept awake during the whole imaging process.  231 

Network architecture and training details. The network architecture of DeepCAD 232 

employs 3D U-Net, which is reported to have superior performance on the segmentation 233 

of volumetric data20. In general, the network is composed of a 3D encoder module (the 234 

contracting path), a 3D decoder module (the expanding path), and three skip 235 

connections from the encoder module to the decoder module (Supplementary Fig. 1). In 236 

the 3D encoder module, there are three encoder blocks. Each block consists of two 237 

3×3×3 convolutional layers followed by a leaky rectified linear unit (LeakyReLU) and 238 

a 2×2×2 max pooling with strides of two in three dimensions. In the decoder module, 239 

there are three decoder blocks, each of which contains two 3×3×3 convolutional layers 240 

followed by a LeakyReLU and a 3D nearest interpolation. A group normalization22 241 

layer is configured after each convolutional layer. The skip connections link low-level 242 

features and high-level features by concatenating their feature maps. All operations 243 

(convolutions, max poolings, and interpolations) in the network are in 3D to aggregate 244 

spatial information and temporal information. For the loss function, we used the 245 

arithmetic average of a L1-norm loss term and a L2-norm loss term. The model was 246 

trained on 3D tiles with a spatial size of 64×64 pixels and a temporal size of 300 frames. 247 

Small spatial size can lower memory requirements and reduce the training time, and 248 

large temporal size is helpful to make full use of temporal information.  249 

Adam optimizer23 was used for network training with a learning rate of 0.00005 and 250 

exponential decay rates of 0.5 for the first moment and 0.9 for the second moment. We 251 
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used Graphics Processing Units (GPU) to accelerate the training and test process. It 252 

took about 12 hours to train our model for 20 epochs on a typical training set (about 253 

1200 3D tiles) with a single GPU (Nvidia TITAN RTX, 24 GB memory). Training time 254 

can be further shortened by using a more powerful GPU or parallelizing the training 255 

process on multiple GPUs. 256 

 The full 3D architecture of DeepCAD makes it easy to overfit because 3D 257 

convolutions usually involve more parameters than the 2D counterpart. The best 258 

denoising performance is only achieved at the point where there is neither underfitting 259 

nor overfitting. To screen out the model with the best generalization ability, we saved 260 

the network snapshot after each training epoch and evaluated its performance on a 261 

holdout validation set. We fed the validation data into each model and calculated the 262 

standard deviation projection of the output stack of each model. Then, the average pixel 263 

intensity was calculated on a small dark region (e.g. blood vessels or a small region 264 

without neural activity during the recording) of all standard deviation projections. The 265 

best model was selected to be the one with the smallest dark standard deviation.  266 

Data simulation. Our simulation program includes a step for synthesizing the noise-267 

free video (ground truth) and a step for adding the Mixed Poisson-Gaussian (MPG) 268 

noise (Supplementary Notes 1-2). Firstly, to generate realistic simulated calcium imaging 269 

data, we constructed a neuron library containing the spatial profiles of 517 neurons. 270 

These neurons were extracted using the constrained nonnegative matrix factorization 271 

algorithm21 (CNMF) from an experimentally obtained two-photon calcium imaging 272 
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data of a virus-transfected wild-type mouse expressing GCaMP6f (layer 2/3 at the 273 

primary somatosensory cortex). For the spatial component that defines the location of 274 

each neuron, 120 neurons were randomly selected from the library to keep the sparsity 275 

of neurons. For the temporal component that defines the fluorescence fluctuations of 276 

each neuron, MLspike24 was employed to generate calcium traces with GCaMP6f 277 

kinetics. Then, these two components were reshaped into 2D matrices and the simulated 278 

noise-free data (1 μm/pixel spatial sampling rate, 30 Hz frame rate) was synthesized as 279 

the product of the spatial matrix and the temporal matrix. The noise-contaminated 280 

counterpart was ultimately generated by adding the content-related MPG noise. Data 281 

with different imaging SNRs were simulated with different relative photon numbers. 282 

Their relationship was investigated in Supplementary Fig. 7. All images were saved as 283 

uncompressed tif files with the format of unsigned 16-bit integer (uint16). More details 284 

of data simulation and related mathematical models are described in Supplementary 285 

Notes 1-2. 286 

Single-neuron recordings. The data of simultaneous two-photon imaging and 287 

electrophysiological recordings of single-neuron activities were released by the 288 

Svoboda lab25 and were downloaded from the Collaborative Research in Computational 289 

Neuroscience (CRCNS) platform. Only recordings of GCaMP6f neurons were used in 290 

this study. The image stacks were fourfold downsampled to reduce the sampling rate 291 

and some outlier recordings with very sparse spikes and low electrophysiological SNR 292 

were excluded. Fluorescence traces were extracted from temporal stacks using 293 
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manually annotated cytoplasmic masks. For spike inference, we used the MLspike 294 

algorithm24, which was reported to rank first in the Spikefinder challenge26. All traces 295 

were divided by their mean values for normalization before fed into the spike inference 296 

pipeline. Recommended model parameters for GCaMP6f indicator were used to ensure 297 

optimal performance of spike inference. 298 

Data analysis of neuronal populations. Calcium imaging data of large neuronal 299 

populations were first registered with a non-rigid motion correction method27 and the 300 

black edges of registered images were clipped. Then, CNMF21 was employed as the 301 

source extraction method for neuron segmentation and trace extraction. A spatial matrix 302 

and a temporal matrix can be obtained from each video, storing the spatial footprints 303 

and corresponding calcium traces of all active neurons, respectively. The same set of 304 

parameters was used for the original low-SNR recording and corresponding DeepCAD 305 

enhanced counterpart, as well as the high-SNR recording. Simulated data were analyzed 306 

following the same pipeline except motion correction. Along with automatic neuron 307 

extraction, we also performed manual annotations to inspect our results. High-SNR 308 

recordings were tenfold downsampled along the time axis by averaging each 309 

consecutive ten frames, which reduced the disturbance of detection noise and was 310 

helpful to improve annotation accuracy. Boundaries of all active components were 311 

annotated using the ROI Manager toolbox of Fiji. The final segmentation masks were 312 

generated through subsequent morphological operations of images and connected 313 

domain extraction implemented with customized MATLAB scripts.  314 
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Performance metrics. Two types of metrics were used for quantitative evaluation of 315 

the spatial and temporal performance of DeepCAD. For synthetic calcium imaging data, 316 

corresponding clean images and ground-truth calcium traces were available. SNR and 317 

PSNR were used as the spatial metric to evaluate pixel-level similarity between 318 

DeepCAD enhanced images and ground-truth images. Pearson correlation coefficient 319 

(R) was used as the temporal metric to reflect the similarity between enhanced traces 320 

and ground-truth traces. The Pearson correlation between signal x and the reference 321 

signal y is defined as 322 

E[( )( )]
= x y

x y

x y
R

 
 

 
 323 

where μx and μy are the mean values of signal x and y, respectively; σx and σy are the 324 

standard deviations of signal x and y, respectively; E represents arithmetic mean. 325 

Furthermore, we also evaluated the performance of DeepCAD based on more 326 

complex downstream tasks such as neuron extraction and spike inference, which are 327 

the most crucial prerequisites in functional analysis of neural circuits from calcium 328 

imaging data. We considered neuron extraction as an instance segmentation problem 329 

and adopted an object-level metric to evaluate segmentation performance28. Different 330 

intersection-over-union (IoU, defined as the intersection area divided by the union area 331 

of two objects) thresholds were selected to determine correctly segmented objects. For 332 

a specified IoU threshold, the segmentation accuracy (F1 score) was defined as the 333 

harmonic mean of sensitivity and precision, which can be formulated as 334 
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2TP
F1 =

2TP FP FN 
. 335 

Here, TP, FP, and FN are the number of true positives, false positives, and false 336 

negatives, respectively. When applied CNMF as the source extraction method, the SNR 337 

of calcium traces was quantified with the peak SNR automatically calculated by the 338 

CaImAn toolbox29 with infinite outliers eliminated. For spike inference, we used the 339 

error rate (ER) to quantify the performance of spike inference, which is defined as ER 340 

= 1- F1. Spikes detected from simultaneous electrophysiological recordings were used 341 

as the ground truth for ER calculation. The evaluation process was implemented with 342 

customized MATLAB scripts. SNR, PSNR, Pearson correlation coefficient, and IoU 343 

were computed using built-in functions. 344 

Data availability 345 

Our data will be made publicly available post peer-review. 346 

Code availability 347 

Our python code and Fiji plugin will be made publicly available post peer-review.  348 
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 435 

Fig. 1 | General principle and validation of DeepCAD. a, Self-supervised training 436 
strategy of DeepCAD. Consecutive frames in the original low-SNR stack are divided 437 
into two sub-stacks, used as the input volume and corresponding target volume to train 438 
a deep neural network (3D U-Net). After training, a denoising model can be established 439 
and memorized in network parameters. b, Application of the DeepCAD model. For 440 
subsequent acquisitions, a 3D (x-y-t) window traverses the entire stack and 3D tiles are 441 
sequentially fed into the pre-trained model. Denoised recordings will be obtained after 442 
the processing of the model. c, The number of neurons extracted under different 443 
imaging SNRs before and after the enhancement of DeepCAD. N=120 active neurons 444 
were simulated in the field of view (FOV). d, Accuracy of neuron segmentation 445 
quantified with F1 score at different intersection-over-union (IoU) thresholds (imaging 446 
SNR=-0.7 dB, indicated by the red dashed line in c). e, Spatial profiles of extracted 447 
neurons (imaging SNR=-0.7 dB). Correctly segmented regions (true positive) are 448 
colored green. Missing (false negative) and extra regions (false positive) are colored 449 
red and blue, respectively. Neuron extraction was implemented with CNMF21. f, Left: 450 
boxplot showing the distribution of Pearson correlation coefficients with clean traces 451 
before and after denoising (N=120). Right: increases of trace correlations. Each line 452 
represents one of 120 calcium traces and correlation coefficients of all neurons were 453 
observed improved. g, Calcium transients indiscernible from noise (gray) can be 454 
restored by DeepCAD (blue). Traces without noise contamination (red) serve as the 455 
ground truth for comparison.  456 
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 457 

Fig. 2 | Spatiotemporal enhancement of DeepCAD. a, Electrophysiological 458 
recordings of neural activities from a single neuron. Detected spikes are marked with 459 
black dots. b, Two-photon calcium imaging of the same neuron synchronized with cell-460 
attached electrophysiology. Both spatial footprints and temporal traces of the neuron 461 
were severely corrupted in detection noise. Representative frames indicated with 462 
orange triangles are presented below the trace. c, Fluorescence traces and representative 463 
frames after the enhancement of DeepCAD. d-f, The most imperceptible calcium 464 
transients evoked by three APs (d), two APs (e), and one AP (f) can be resolved and 465 
still keep their original dynamics noise removal. g, Calcium fluctuations evoked by 61 466 
isolated action potentials. All spikes were normalized and temporally aligned with the 467 
red bar. Zoom-in traces are shown in the right panel. h, Left: Boxplot showing the 468 
distribution of error rates (lower is better) of spike inference for calcium traces extracted 469 
from enhanced data compared with those extracted from the original data (N=107). 470 
Real spike timings were revealed by simultaneous cell-attached recordings. Right: 471 
decreases of the error rate of spike inference. Each line represents one of 107 recordings, 472 
using green for decreased error rates and red for increased error rates.  473 
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 474 

Fig. 3 | DeepCAD reinforces the recording of large neuronal populations. a, 475 
Spontaneous neuropil activities in layer 1 of the mouse cortex captured by the low-SNR 476 
detection path. b, Images restored from the low-SNR recording using DeepCAD. c, 477 
Synchronized recording acquired by the high-SNR detection path (10-fold imaging 478 
SNR). Magnified views of the boxed regions show calcium transients in a ~0.8 s time 479 
window. Scale bar 100 μm. d, Fluorescence traces extracted from 40 dendritic pixels. 480 
Top: low-SNR recording, Middle: DeepCAD enhanced recording, Bottom: high-SNR 481 
recording. e, Pearson correlation coefficients of single-pixel calcium traces before and 482 
after denoising (left). High-SNR traces were used as the reference for correlation 483 
calculation. Improvements were observed in all 40 traces (right). f, Low-SNR recording 484 
of somatic signals in cortical layer 2/3. g, DeepCAD enhanced recording. h, 485 
Synchronized high-SNR recording (10-fold imaging SNR). Orange arrows point to two 486 
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neurons. Magnified views of the boxed regions show calcium transients in a ~1.4 s time 487 
window. Scale bar 100 μm. i, Neurons extracted from the original low-SNR recording 488 
(N=150). j, Neurons extracted from the DeepCAD enhanced recording (N=229). 489 
Manual annotations served as the ground truth. Correctly segmented regions (true 490 
positive) are colored green. Missing (false negative) and extra regions (false positive) 491 
are colored red and blue, respectively. k, Distribution of peak SNRs of extracted 492 
calcium traces. CNMF was used for source extraction and peak SNR estimation. 493 
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