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15 ABSTRACT

16  Calcium imaging is inherently susceptible to detection noise especially when imaging with
17  high frame rate or under low excitation dosage. We developed DeepCAD, a self-
18  supervised learning method for spatiotemporal enhancement of calcium imaging without
19  requiring any high signal-to-noise ratio (SNR) observations. Using this method, detection
20  noise can be effectively suppressed and the imaging SNR can be improved more than
21  tenfold, which massively improves the accuracy of neuron extraction and spike inference

22 and facilitate the functional analysis of neural circuits.

23 Calcium imaging enables parallel recordings of large neuronal ensembles in living animals'
24 and offers a new possibility for deciphering information propagation, integration, and
25  computation in neural circuits’. To obtain accurate neuron extraction and spike inference for
26  downstream neuroscience analysis, high-SNR calcium imaging is desired. However, due to the
27  paucity of fluorescence photons caused by low peak accumulations and fast dynamics of in
28  vivo calcium transients®’, calcium imaging is easy to be contaminated by detection noise (i.e.
29  photon shot noise and electronic noise), especially in functional imaging where high temporal

30  resolution is particularly important for analyzing neural activities®.

31 To capture sufficient fluorescence photons for high-SNR calcium imaging, the most direct
32 way is to use high excitation dosage, but concurrent photobleaching, phototoxicity>!’, and
33  tissue heating!' are detrimental for sample health and photosensitive biological processes,

34  which limits the maximal excitation power for long-term in vivo imaging'?. More effective
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3 and more sensitive photoelectric

35  strategies include using brighter calcium indicators”!
36 detectors'®, but their performances are still largely restricted in photon-limited conditions such
37  as dendritic imaging and deep-tissue imaging. Apart from these physical or biological
38  approaches, data-driven methods are promising to offer an alternative solution to recover
39  faithful signals from degraded recordings and reduce the photon budget of calcium imaging.
40  Asanintelligent signal processing technique, deep learning has been adopted by microscopists

118 However, calcium

41 and achieved impressive performance in fluorescence imaging
42  transients are highly dynamic, non-repetitive activities and a firing pattern cannot be
43  captured twice. Previous schemes for obtaining ground-truth images (i.e. clean images
44  without noise contamination or high-SNR images with the same underlying scene) by

45  extending integration time or averaging multiple noisy frames are no longer feasible,

46  posing an entrenched obstacle for conventional supervised learning methods.

47 In this paper, we present DeepCAD, a self-supervised learning method for calcium imaging
48  denoising by over tenfold SNR improvement without requiring any high-SNR observations for
49  training. DeepCAD is based on the insight that a deep neural network can converge to a mean
50  estimator even the target image used for training is another corrupted sampling of the same
51  scene”. When looking at calcium imaging data, we explored the temporal redundancy of
52 pervasive video-rate imaging and found that any two consecutive frames can be regarded as
53  two independent samplings of the same underlying firing pattern, which can be used for
54 training of denoising models. Furthermore, the input and output data are designed to be

55 3D volumes rather than 2D frames to fully exploit spatiotemporal information in the
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56  time-lapse stack. We show that such a 3D self-supervised method is extremely effective for
57  calcium imaging denoising and even the subtlest calcium fluctuations induced by a single
58 action potential (AP) can be restored from severely corrupted images. Finally, a Fiji-based
59  plugin along with a pre-trained model were released to make our method easy to access and

60  convenient to use.

61 The general principle of DeepCAD is schematized in Fig. 1a. For network architecture, we
62  employed 3D U-Net® to aggregate spatiotemporal information in multiple frames using
63 3D convolutional layers (Supplementary Fig. 1, Methods), which endows DeepCAD with
64  better denoising capability than 2D architecture or classical methods (Supplementary Fig. 2).
65  Benefiting from the self-supervised strategy, a single low-SNR stack of ~3500 frames is
66  sufficient to be a complete training set. To generate the training set, two sub-stacks consisting
67  of interlaced frames were split from the original low-SNR stack and 3D tiles were extracted
68  from these sub-stacks for training (Supplementary Fig. 3). They contain approximate identical
69  calcium transients when the original stack was imaged at near video rate, which is common for
70  commercial or customized microscopes. After proper training, interpretable features can be
71  learned (Supplementary Fig. 4) and the model can be applied to subsequent acquisitions
72 without extra training (Fig. 1b). Although the network was trained on specified spatial and
73 temporal resolution, we found that it had non-inferior performance on various frame rates
74 (Supplementary Fig. 5) and magnifications (Supplementary Fig. 6), indicating the great

75  scalability and generalization for versatile applications of DeepCAD.
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76 To quantitatively evaluate the performance of DeepCAD, we first validated it on simulated
77  calcium imaging data of different imaging SNRs (Supplementary Figs. 7-8 and Supplementary
78  Notes 1-2), which contains synchronous noise-free recordings as the ground truth for
79  comparison. The constrained nonnegative matrix factorization (CNMF) algorithm?' was
80 used for downstream neuron extractions (Methods). After the enhancement of
81  DeepCAD, more active neurons can be detected, especially when imaging SNR is low
82  (Fig. 1c). The accuracy of neuron extraction was also quantified with F1 score and
83  significant improvement was observed across a wide range of intersection-over-union (IoU)
84  thresholds (Fig. 1d,e). For a typical IoU threshold of 0.7, the segmentation accuracy was
85 improved by 2.4 folds (0.84 contrast to 0.35). Benefiting from the improved imaging
86  quality, calcium traces extracted from the denoised data possess higher fidelity. To
87  investigate the temporal enhancement of DeepCAD, we extracted calcium traces of all
88  neurons from both raw noisy data and the enhanced counterpart. The Pearson
89  correlation with the clean traces was significantly improved after denoising (Fig. 11).
90  Even the slightest calcium transients can be restored from the original noisy data (Fig.
91 1gand Supplementary Fig. 9). These facts suggest that the spatiotemporal enhancement
92  of DeepCAD can improve the accuracy of neuronal localization and trace extraction

93  and largely facilitate the analysis of neural circuits.

94 To verify the effectiveness and reliability of DeepCAD on neuroscience research, we then
95  demonstrated its performance on two-photon calcium imaging based on data released by

96  Svoboda lab’. In this dataset, simultaneous cell-attached electrophysiological recordings (Fig.
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97  2a)are synchronized with two-photon imaging and serve as the reference of calcium transients

98 and the ground truth of spike inference. Contaminated by detection noise, both the spatial

99  footprint and temporal traces of the neuron were severely corrupted in the original data (Fig.
100  2b). After we applied DeepCAD to enhance these data, the annular cytoplasm became
101  recognizable and calcium traces were liberated from noise (Fig. 2c and Supplementary Video
102 1). Even the most imperceptible calcium transients evoked by one AP, two APs, and three APs
103 were clearly distinguished and still maintain their original dynamics (Fig. 2d-g), which
104  otherwise would be submerged in noise. For further comparison, we extracted single-pixel
105  fluorescence from cytoplasmic pixels and found that calcium transients can be unveiled at a
106  single-pixel scale (Supplementary Fig. 10). Moreover, we performed spike inference (Methods)
107  ontraces extracted from the original data as well as the corresponding denoised data. Owing to
108  the improvement of imaging SNR, the error rate of spike inference was consequently decreased
109  (Fig. 2h and Supplementary Fig. 11). Among 107 independent calcium traces, 86% of them

110  were observed to have lower error rates.

111 Next, we employed DeepCAD for noise removal of calcium imaging of large neuronal
112 populations in awake mice. To obtain high-SNR recordings for validation of our method, we
113 designed and built a two-photon imaging system with the capability of simultaneous low-SNR
114 and high-SNR recording (Supplementary Fig. 12 and Methods). The high-SNR detection path
115  was strictly synchronized with the low-SNR detection path but with about 10-fold higher
116  imaging SNR (Supplementary Fig. 13), which can be used as the reference for our denoising

117  results. We first imaged spontaneous neuropil activities in cortical layer 1 of a transgenic mouse
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118  expressing GCaMP6f and found that calcium fluctuations indiscernible in original low-SNR
119  recordings can be effectively recovered by DeepCAD (Fig. 3a-c and Supplementary Video 2).
120 The imaging SNR was improved more than 10 folds considering that the SNR of enhanced
121  recordings even surpasses corresponding high-SNR reference. Fluorescence traces of dendritic
122 pixels can be accurately resolved and keep high consistency with the high-SNR reference (Fig.
123 3d-e and Supplementary Fig. 14). We also applied DeepCAD to enhance calcium imaging of
124 somatic signals. After denoising, neuronal distribution and circuit dynamics can be recognized
125  from a single frame (Fig. 3f-h and Supplementary Video 3). Using CNMF as the downstream
126  source extraction method, 52.6% (229 contrast to 150) more active neurons can be extracted
127  (Fig. 3i,j and Supplementary Fig. 15) and the trace peak SNR of extracted neurons was also
128  improved more than two folds (9.9 contrast to 4.8, median value) (Fig. 3k), indicating that the
129  functional analysis of large neuronal populations can be effectively strengthened due to

130  improved SNR.

131 In summary, we demonstrate DeepCAD, a deep self-supervised learning-based method for
132 spatiotemporal enhancement of calcium imaging. Quantitative evaluation on both simulated
133 and experimental data shows that the accuracy of neuron extraction and spike inference can be
134 largely reinforced after denoising. To fully evaluate the capability and reliability of our method,
135  a customized two-photon microscope was built to capture synchronized low-SNR and high-
136  SNR recordings, which indicates that DeepCAD enables a more than tenfold improvement in
137 imaging SNR. To maximize its accessibility, we released an open-source Fiji plugin

138 (Supplementary Fig. 16 and Supplementary Notes 3) and a pre-trained DeepCAD model for
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139  two-photon imaging of neuron populations. Our method can be efficiently configured on a
140  common desktop and achieve comparable performance on different imaging systems
141  regardless of objectives and detectors (Supplementary Fig. 17 and Supplementary Video 4).
142 Although DeepCAD is currently investigated only on two-photon microscopy, it can be easily
143 extended to other imaging modalities such as wide-field microscopy and light-sheet
144 microscopy. We anticipate that this method could serve as a general processing step for calcium
145  imaging in photon-limited conditions and promote long-term and high-fidelity recording of

146  neural activities.
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147 Methods

148  Optical setup. A two-photon imaging system was designed to capture strictly
149  synchronized low-SNR and high-SNR calcium recordings for validation of our method.
150  Our system was based on a standard two-photon laser scanning microscope (2PLSM)
151  and the detection path was specially designed to split the fluorescence in a ratio of 1:10.
152  All components of our imaging system are commercially available or easy to fabricate.
153  The schematic of the custom-built two-photon microscope is shown in Supplementary
154  Fig. 12. At the forefront of the optical path, a titanium-sapphire laser system with tunable
155  wavelength (Mai Tai HP, Spectra-Physics) was used as the illumination source to emit
156  the linearly polarized, femtosecond-pulsed Gaussian excitation beam (920 nm central
157  wavelength, pulse width <100 fs, 80 MHz repetition rate). A half-wave plate
158 (AQWP10M-980, Thorlabs) was used to adjust the polarization of the laser beam. Then
159  the laser beam went through an electro-optic modulator (350-80LA-02, Conoptics) to
160  modulate the excitation power and the half-wave plate was rotated to make the electro-
161  optic modulator have maximal extinction ratio. A 4f system composed of two
162  achromatic lenses (AC508-200-B, Thorlabs) with the same focal length was followed
163  to collimate the laser beam. Another 4f system (AC508-100-B and AC508-400-B,
164  Thorlabs) with a fourfold magnification was used to expand the laser beam and guide
165  the beam into a galvo-resonant scanner (8315K/CRS8K, Cambridge Technology) for
166  fast optical scanning. The scanner mount was optimally designed for reliable and

167  distortion-free scanning. Then the beam went through a scan lens (SL50-2P2, Thorlabs)
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168  and a tube lens (TTL200MP, Thorlabs) and converged into a tight focus through a high
169  numerical aperture (NA) water-dipping objective (25%/1.05 NA, XLPLN25XWMP2,
170  Olympus). A high-precision piezo actuator (P-725, Physik Instrumente) was
171  additionally used to drive the objective for fast axial scanning. The beam size at the
172 back aperture of the objective was further restricted with an iris set behind the beam
173 expander (L4) to keep the back aperture of the objective underfilled. The effective

174  excitation NA was about 0.5 in our imaging experiments.

175 For the detection path, fluorescence excited by the Gaussian focus was first
176  collected by the objective. High-NA detection is helpful to detect more fluorescence
177  photons and improve the signal intensity. A long-pass dichroic mirror (DMLP650L,
178  Thorlabs) was used to separate fluorescence by reflecting the fluorescence signals and
179  transmitting the excitation light. A 1:9 (reflectance: Transmission) non-polarizing plate
180  beam splitter (BSN10, Thorlabs) was then placed in the detection path. All fluorescence
181  going through the beam splitter will be split into a 10% component (low-SNR path) and
182 a 90% component (high-SNR path), propagating in two orthogonal directions and
183  detected by two photomultiplier tubes (PMT1001, Thorlabs). A pair of fluorescence
184  filters (MF525-39, Thorlabs; ET510/80M, Chroma) was configured in front of each
185  PMT to fully block wavelengths outside the emission passband of green fluorescent
186  protein (GFP). To improve detection efficiency, we conjugated the back aperture of the
187  objective to the sensor planes of the two PMTs using two 4f systems (TTL200-A and

188  AC254-050-A, Thorlabs). The two detection paths recorded synchronized fluorescence
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189  signals but with quite different imaging SNR. Although the high-SNR recording still
190  suffers from noise, it can be used as the reference to identify underlying structures and
191  calcium fluctuations. The field-of-view (FOV) of our two-photon imaging system is

192 about 600 pm and the frame rate is about 30 Hz.

193 System calibration. To confirm the fluorescence intensity ratio between the high-SNR
194  detection path and the low-SNR detection path, we imaged 1 pm green-fluorescent
195  beads (G0100, ThermoFisher) for system calibration. The beads suspension was first
196  diluted and embedded in 1.0% agarose and then mounted on a microscope slide to form
197  a single beads layer composed of sparse beads. A specified region was continuously
198  scanned to acquire 500 consecutive frames. These frames can be regarded as
199  independent samplings of the same underlying scene. To reduce the impact of detection
200 noise, we averaged these frames to obtain the noise-free image of each path
201  (Supplementary Fig. 13). All beads in the FOV were manually segmented and the
202  intensity of each bead was calculated by averaging all pixels inside its segmentation
203  mask. According to our statistical analysis, the fluorescence intensity of the high-SNR
204  detection path was approximately tenfold higher than that of the low-SNR detection

205  path.

206 Mouse preparation and calcium imaging. All experiments involving mice were
207  performed in accordance with institutional guidelines for animal welfare and have been
208  approved by the Institutional Animal Care and Use Committee (IACUC) of Tsinghua

209  University.
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210 Adult transgenic mice (Ail48D/Rasgrf2-dCre) at 8-12 postnatal weeks were
211  anesthetized with 1.5% isoflurane and craniotomy surgeries were conducted using a
212 stereotaxic instrument (68018, RWD Life Science) under a bright-field binocular
213 microscope (77001S, RWD Life Science). A custom-made coverslip fitting the shape
214  of the cranial window (~6 mm in diameter) was embedded and cemented to the skull.
215 A biocompatible titanium headpost was then cemented to the skull for stable head
216  fixation. The edge of the cranial window was enclosed with dental cement to hold the
217  immersion water of the objective. After the surgery, 0.25mg/g body weight of
218  Trimethoprim (TMP) was intraperitoneally injected to induce the expression of
219  GCaMPeof genetically encoded calcium indicator (GECI) in layer 2/3 neurons across
220  the whole brain. To reduce potential inflammation, 5 mg/kg body weight of Ketoprofen
221  was injected subcutaneously. Each mouse was housed in a separate cage for 1-2 weeks
222 of postoperative recovery.

223 Imaging experiments were carried out when the cranial window became clear and
224 no inflammation occurred. Mice were first rapidly anesthetized with 3.0% isoflurane
225  and then fixed onto a custom-made holder with the headpost. The mouse holder was
226  mounted on a precision translation stage with three motorized axes (M-VP-25XA-
227  XYZL, Newport) to find the region of interest (ROI) for imaging. The correction ring
228  of the objective was adjusted to compensate for the coverslip thickness and eliminate
229  spherical aberrations. The excitation power after the objective was kept below 140 mW

230  in all experiments to avoid potential laser-induced tissue damage. Gaseous anesthesia
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231  was switch off and the mice kept awake during the whole imaging process.

232 Network architecture and training details. The network architecture of DeepCAD
233 employs 3D U-Net, which is reported to have superior performance on the segmentation
234 of volumetric data®. In general, the network is composed of a 3D encoder module (the
235  contracting path), a 3D decoder module (the expanding path), and three skip
236  connections from the encoder module to the decoder module (Supplementary Fig. 1). In
237  the 3D encoder module, there are three encoder blocks. Each block consists of two
238  3x3x3 convolutional layers followed by a leaky rectified linear unit (LeakyReLLU) and
239  a 2x2x2 max pooling with strides of two in three dimensions. In the decoder module,
240  there are three decoder blocks, each of which contains two 3%3x3 convolutional layers
241  followed by a LeakyReLU and a 3D nearest interpolation. A group normalization
242 layer is configured after each convolutional layer. The skip connections link low-level
243  features and high-level features by concatenating their feature maps. All operations
244 (convolutions, max poolings, and interpolations) in the network are in 3D to aggregate
245  spatial information and temporal information. For the loss function, we used the
246  arithmetic average of a L1-norm loss term and a L2-norm loss term. The model was
247  trained on 3D tiles with a spatial size of 64x64 pixels and a temporal size of 300 frames.
248  Small spatial size can lower memory requirements and reduce the training time, and
249  large temporal size is helpful to make full use of temporal information.

250 Adam optimizer®® was used for network training with a learning rate of 0.00005 and

251  exponential decay rates of 0.5 for the first moment and 0.9 for the second moment. We
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252 used Graphics Processing Units (GPU) to accelerate the training and test process. It
253  took about 12 hours to train our model for 20 epochs on a typical training set (about
254 1200 3D tiles) with a single GPU (Nvidia TITAN RTX, 24 GB memory). Training time
255  can be further shortened by using a more powerful GPU or parallelizing the training
256  process on multiple GPUs.

257 The full 3D architecture of DeepCAD makes it easy to overfit because 3D
258  convolutions usually involve more parameters than the 2D counterpart. The best
259  denoising performance is only achieved at the point where there is neither underfitting
260  nor overfitting. To screen out the model with the best generalization ability, we saved
261  the network snapshot after each training epoch and evaluated its performance on a
262  holdout validation set. We fed the validation data into each model and calculated the
263  standard deviation projection of the output stack of each model. Then, the average pixel
264  intensity was calculated on a small dark region (e.g. blood vessels or a small region
265  without neural activity during the recording) of all standard deviation projections. The

266  best model was selected to be the one with the smallest dark standard deviation.

267  Data simulation. Our simulation program includes a step for synthesizing the noise-
268  free video (ground truth) and a step for adding the Mixed Poisson-Gaussian (MPG)
269  noise (Supplementary Notes 1-2). Firstly, to generate realistic simulated calcium imaging
270  data, we constructed a neuron library containing the spatial profiles of 517 neurons.
271  These neurons were extracted using the constrained nonnegative matrix factorization

272 algorithm?! (CNMF) from an experimentally obtained two-photon calcium imaging
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273  data of a virus-transfected wild-type mouse expressing GCaMP6f (layer 2/3 at the
274  primary somatosensory cortex). For the spatial component that defines the location of
275  each neuron, 120 neurons were randomly selected from the library to keep the sparsity
276  of neurons. For the temporal component that defines the fluorescence fluctuations of
277  each neuron, MLspike** was employed to generate calcium traces with GCaMP6f
278  kinetics. Then, these two components were reshaped into 2D matrices and the simulated
279  noise-free data (1 um/pixel spatial sampling rate, 30 Hz frame rate) was synthesized as
280  the product of the spatial matrix and the temporal matrix. The noise-contaminated
281  counterpart was ultimately generated by adding the content-related MPG noise. Data
282  with different imaging SNRs were simulated with different relative photon numbers.
283  Their relationship was investigated in Supplementary Fig. 7. All images were saved as
284  uncompressed tif files with the format of unsigned 16-bit integer (uint16). More details
285  of data simulation and related mathematical models are described in Supplementary

286  Notes 1-2.

287  Single-neuron recordings. The data of simultaneous two-photon imaging and
288  electrophysiological recordings of single-neuron activities were released by the
289  Svoboda lab®® and were downloaded from the Collaborative Research in Computational
290  Neuroscience (CRCNS) platform. Only recordings of GCaMP6f neurons were used in
291  this study. The image stacks were fourfold downsampled to reduce the sampling rate
292 and some outlier recordings with very sparse spikes and low electrophysiological SNR

293  were excluded. Fluorescence traces were extracted from temporal stacks using
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294  manually annotated cytoplasmic masks. For spike inference, we used the MLspike
295  algorithm?*, which was reported to rank first in the Spikefinder challenge?®. All traces
296  were divided by their mean values for normalization before fed into the spike inference
297  pipeline. Recommended model parameters for GCaMP6f indicator were used to ensure

298  optimal performance of spike inference.

299  Data analysis of neuronal populations. Calcium imaging data of large neuronal
300  populations were first registered with a non-rigid motion correction method?’ and the
301  black edges of registered images were clipped. Then, CNMF?!' was employed as the
302  source extraction method for neuron segmentation and trace extraction. A spatial matrix
303  and a temporal matrix can be obtained from each video, storing the spatial footprints
304  and corresponding calcium traces of all active neurons, respectively. The same set of
305  parameters was used for the original low-SNR recording and corresponding DeepCAD
306  enhanced counterpart, as well as the high-SNR recording. Simulated data were analyzed
307  following the same pipeline except motion correction. Along with automatic neuron
308  extraction, we also performed manual annotations to inspect our results. High-SNR
309 recordings were tenfold downsampled along the time axis by averaging each
310 consecutive ten frames, which reduced the disturbance of detection noise and was
311  helpful to improve annotation accuracy. Boundaries of all active components were
312 annotated using the ROI Manager toolbox of Fiji. The final segmentation masks were
313  generated through subsequent morphological operations of images and connected

314  domain extraction implemented with customized MATLAB scripts.
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315  Performance metrics. Two types of metrics were used for quantitative evaluation of
316  the spatial and temporal performance of DeepCAD. For synthetic calcium imaging data,
317  corresponding clean images and ground-truth calcium traces were available. SNR and
318 PSNR were used as the spatial metric to evaluate pixel-level similarity between
319  DeepCAD enhanced images and ground-truth images. Pearson correlation coefficient
320  (R) was used as the temporal metric to reflect the similarity between enhanced traces
321  and ground-truth traces. The Pearson correlation between signal x and the reference

322  signal y is defined as

_ Bl =)y =u)]

0.0,

323 R

324  where ux and uy are the mean values of signal x and y, respectively; ox and oy are the
325  standard deviations of signal x and y, respectively; E represents arithmetic mean.

326 Furthermore, we also evaluated the performance of DeepCAD based on more
327  complex downstream tasks such as neuron extraction and spike inference, which are
328  the most crucial prerequisites in functional analysis of neural circuits from calcium
329  imaging data. We considered neuron extraction as an instance segmentation problem
330  and adopted an object-level metric to evaluate segmentation performance?®. Different
331 intersection-over-union (IoU, defined as the intersection area divided by the union area
332 of two objects) thresholds were selected to determine correctly segmented objects. For
333 a specified IoU threshold, the segmentation accuracy (F1 score) was defined as the

334  harmonic mean of sensitivity and precision, which can be formulated as
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2TP

335 ) [ LL
2TP + FP + FN

336 Here, TP, FP, and FN are the number of true positives, false positives, and false
337  negatives, respectively. When applied CNMF as the source extraction method, the SNR
338  of calcium traces was quantified with the peak SNR automatically calculated by the
339  CalmAn toolbox? with infinite outliers eliminated. For spike inference, we used the
340  error rate (ER) to quantify the performance of spike inference, which is defined as ER
341 = 1-F1. Spikes detected from simultaneous electrophysiological recordings were used
342 as the ground truth for ER calculation. The evaluation process was implemented with
343  customized MATLAB scripts. SNR, PSNR, Pearson correlation coefficient, and loU

344  were computed using built-in functions.

345  Data availability

346  Our data will be made publicly available post peer-review.

347  Code availability

348  Our python code and Fiji plugin will be made publicly available post peer-review.
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436  Fig. 1 | General principle and validation of DeepCAD. a, Self-supervised training
437  strategy of DeepCAD. Consecutive frames in the original low-SNR stack are divided
438  into two sub-stacks, used as the input volume and corresponding target volume to train
439  adeep neural network (3D U-Net). After training, a denoising model can be established
440  and memorized in network parameters. b, Application of the DeepCAD model. For
441  subsequent acquisitions, a 3D (x-y-f) window traverses the entire stack and 3D tiles are
442 sequentially fed into the pre-trained model. Denoised recordings will be obtained after
443  the processing of the model. ¢, The number of neurons extracted under different
444  imaging SNRs before and after the enhancement of DeepCAD. N=120 active neurons
445  were simulated in the field of view (FOV). d, Accuracy of neuron segmentation
446  quantified with F1 score at different intersection-over-union (IoU) thresholds (imaging
447  SNR=-0.7 dB, indicated by the red dashed line in ¢). e, Spatial profiles of extracted
448  neurons (imaging SNR=-0.7 dB). Correctly segmented regions (true positive) are
449  colored green. Missing (false negative) and extra regions (false positive) are colored
450  red and blue, respectively. Neuron extraction was implemented with CNMF?!. f, Left:
451  boxplot showing the distribution of Pearson correlation coefficients with clean traces
452  before and after denoising (N=120). Right: increases of trace correlations. Each line
453  represents one of 120 calcium traces and correlation coefficients of all neurons were
454  observed improved. g, Calcium transients indiscernible from noise (gray) can be
455  restored by DeepCAD (blue). Traces without noise contamination (red) serve as the
456  ground truth for comparison.
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458  Fig. 2 | Spatiotemporal enhancement of DeepCAD. a, Electrophysiological
459  recordings of neural activities from a single neuron. Detected spikes are marked with
460  black dots. b, Two-photon calcium imaging of the same neuron synchronized with cell-
461  attached electrophysiology. Both spatial footprints and temporal traces of the neuron
462  were severely corrupted in detection noise. Representative frames indicated with
463  orange triangles are presented below the trace. ¢, Fluorescence traces and representative
464  frames after the enhancement of DeepCAD. d-f, The most imperceptible calcium
465  transients evoked by three APs (d), two APs (e), and one AP (f) can be resolved and
466  still keep their original dynamics noise removal. g, Calcium fluctuations evoked by 61
467  isolated action potentials. All spikes were normalized and temporally aligned with the
468  red bar. Zoom-in traces are shown in the right panel. h, Left: Boxplot showing the
469  distribution of error rates (lower is better) of spike inference for calcium traces extracted
470  from enhanced data compared with those extracted from the original data (N=107).
471  Real spike timings were revealed by simultaneous cell-attached recordings. Right:
472  decreases of the error rate of spike inference. Each line represents one of 107 recordings,
473  using green for decreased error rates and red for increased error rates.
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475  Fig. 3 | DeepCAD reinforces the recording of large neuronal populations. a,
476  Spontaneous neuropil activities in layer 1 of the mouse cortex captured by the low-SNR
477  detection path. b, Images restored from the low-SNR recording using DeepCAD. ¢,
478  Synchronized recording acquired by the high-SNR detection path (10-fold imaging
479  SNR). Magnified views of the boxed regions show calcium transients in a ~0.8 s time
480  window. Scale bar 100 um. d, Fluorescence traces extracted from 40 dendritic pixels.
481  Top: low-SNR recording, Middle: DeepCAD enhanced recording, Bottom: high-SNR
482  recording. e, Pearson correlation coefficients of single-pixel calcium traces before and
483  after denoising (left). High-SNR traces were used as the reference for correlation
484  calculation. Improvements were observed in all 40 traces (right). f, Low-SNR recording
485  of somatic signals in cortical layer 2/3. g, DeepCAD enhanced recording. h,
486  Synchronized high-SNR recording (10-fold imaging SNR). Orange arrows point to two
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487  neurons. Magnified views of the boxed regions show calcium transients in a ~1.4 s time
488  window. Scale bar 100 um. i, Neurons extracted from the original low-SNR recording
489  (N=150). j, Neurons extracted from the DeepCAD enhanced recording (N=229).
490  Manual annotations served as the ground truth. Correctly segmented regions (true
491  positive) are colored green. Missing (false negative) and extra regions (false positive)
492  are colored red and blue, respectively. k, Distribution of peak SNRs of extracted
493  calcium traces. CNMF was used for source extraction and peak SNR estimation.
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