bioRxiv preprint doi: https://doi.org/10.1101/2020.11.16.383307; this version posted November 17, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Massively parallel phenotyping of variant impact in cancer with Perturb-seq reveals a shift

in the spectrum of cell states induced by somatic mutations

Oana Ursu*!, James T. Neal*!, Emily Shea', Pratiksha I. Thakore!, Livnat Jerby-Arnon'’, Lan
Nguyen'!, Danielle Dionne!, Celeste Diaz', Julia Bauman', Mariam Mounir Mosaad!, Christian
Fagre!, Andrew O. Giacomelli'3#, Seav Huong Ly'?, Orit Rozenblatt-Rosen!, William C. Hahn'>3,

Andrew J. Aguirre'3#, Alice H. Berger®, Aviv Regev!'2%*, Jesse S. Boehm!*

*equal contribution

#co-senior, co-corresponding authors

'Broad Institute of Harvard and MIT, Cambridge, MA, USA

Howard Hughes Medical Institute

3Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
“Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston,
MA, USA

SHuman Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
Current address: Genentech, 1 DNA Way, South San Francisco, CA

"Current address: Department of Genetics, Stanford University School of Medicine, Stanford,
California, USA

8Current address: Princess Margaret Cancer Centre, Toronto, ON, Canada

To whom correspondence should be addressed: aregev@broadinstitute.org (AR),

boehm@broadinstitute.org (JSB)



https://doi.org/10.1101/2020.11.16.383307
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.16.383307; this version posted November 17, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Abstract

Genome sequencing studies have identified millions of somatic variants in cancer, but their
phenotypic impact remains challenging to predict. Current experimental approaches to distinguish
between functionally impactful and neutral variants require customized phenotypic assays that
often report on average effects, and are not easily scaled. Here, we develop a generalizable, high-
dimensional, and scalable approach to functionally assess variant impact in single cells by pooled
Perturb-seq. Specifically, we assessed the impact of 200 TP53 and KRAS variants in >300,000
single lung cancer cells, and used the profiles to categorize variants into phenotypic subsets to
distinguish gain-of-function, loss-of-function and dominant negative variants, which we validated
by comparison to orthogonal assays. Surprisingly, KRAS variants did not merely fit into discrete
functional categories, but rather spanned a continuum of gain-of-function phenotypes driven by
quantitative shifts in cell composition at the single cell level. We further discovered novel gain-
of-function KRAS variants whose impact could not have been predicted solely by their occurrence
in patient samples. Our work provides a scalable, gene-agnostic method for coding variant impact
phenotyping, which can be applied in cancer and other diseases driven by somatic or germline

coding mutations.
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INTRODUCTION

Precision medicine requires the ability to predict how specific genetic variants function in each
patient (Rehm and Fowler, 2019). In cancer, one useful proxy to detect functionally selected
variants is by their occurrence within patient cohorts (e.g., KRAS G12V/D, TP53 R175H, BRAF
V600E). However, most coding variants detected by cancer genome sequencing are rare, even
within established cancer genes (Bailey et al., 2018; Lawrence et al., 2014; Tate et al., 2019; Zehir
et al., 2017). Even in the case of highly recurrent variants, their mechanistic effect on cancer
phenotype(s) is often undefined. As a result, distinguishing all variants that result in phenotypic
changes from those that have no discernible effect remains a challenging problem that limits the

interpretation of tumor genome sequencing.

Previous studies have used both computational and experimental assays to determine the putative
functional impact of variants, defined as a significant difference between a variant and the wildtype
allele. However, each approach has substantial limitations. Computationally, recurrent mutations
that are spatially localized (Chang et al., 2016; Kamburov et al., 2015) or evolutionarily conserved
(Figliuzzi et al., 2016; Hopf et al., 2017) are less likely to be functionally neutral. However,
detecting recurrence while correcting for the non-random imprint of wide ranging mutagenic
processes, which are only partly known (Giacomelli et al., 2018), requires substantial data sets to
achieve statistical power (Alexandrov et al., 2013, 2015; Lawrence et al., 2013). Moreover,
inference of positive selection on a given variant does not provide information about the specific
biological function(s) it affects. Experimentally, gene-by-gene functional genomics approaches
for variant impact phenotyping have assessed large numbers of alleles within a single gene, such

as ERK1/ERK2 (Brenan et al., 2016), BRCA1 (Findlay et al., 2018), PI3K (Dogruluk et al., 2015;
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Yu et al., 2020), MEK1/2 (Gao et al., 2018) and TP53 (Boettcher et al., 2019; Giacomelli et al.,
2018; Kotler et al., 2018). However, these have typically focused on specific signaling functions,
and thus rely on gene- and lab-specific bespoke cellular assays, with specialized phenotypes. Such
assays have limited generalizability and reproducibility, require some prior knowledge of the
gene’s function, and often distinguish variants only by one dimension, without extensive

information on their molecular functions.

By contrast, gene expression profiles (Berger et al., 2016; Dogruluk et al., 2015; Kim et al., 2016;
Yu et al., 2020) and multi-parameter cellular imaging (Rohban et al., 2017) provide generalized
phenotypes, are theoretically applicable to any gene, and yield high-dimensional phenotypes that
are readily interpretable. However, to date, such approaches required arrayed, one-by-one
measurements of variant impact, and were thus limited in scale. Moreover, bulk profiling could
not distinguish between two types of variant impact — a uniform (or unimodal) effect across the

cells, or diverse effects — multi-modal or otherwise.

Here we modified Perturb-Seq for pooled genetic screens with single cell RNA-Seq readout
(Adamson et al., 2016; Dixit et al., 2016) to phenotype coding variants in a highly scalable
approach for single-cell Expression-based Variant Impact Phenotyping (sc-eVIP). We
benchmarked this approach by studying 200 variants of the TP53 and KRAS genes in 300,000
single cells, introduced computational methods for distinguishing the functional impact of specific
variants, and demonstrated how population-based measurements may fail to capture the impact of

variants on single cell heterogeneity.
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RESULTS

A Perturb-Seq assay for coding variant phenotyping

To assess the impact of coding variants at scale, we modified Perturb-Seq to simultaneously
resolve the identity of an exogenously introduced cancer variant tagged with a DNA barcode
together with the induced expression state at the single cell level (Fig. 1a, Methods). Building on
our prior work (Berger et al., 2016), we reasoned that variant function could be assessed by
comparing gene expression in cells with each of the tested variant constructs to that of cells with
the WT gene construct (Fig. 1a). We annotated variants as neutral if they were indistinguishable
from the WT construct, and putatively impactful if they deviated significantly. To do this in a
pooled setting, we cloned the coding sequence of each variant tested, each tagged with a distinct
10bp-long DNA barcode, into a modified Perturb-seq vector (Methods), and recovered both the
expression profile of each cell and the identity of the variant(s) it overexpresses by 3” scRNA-seq

(Fig. 1a).

As a first test case, we assessed 75 cancer-associated coding variants in TP53, compared to
synonymous controls and non-synonymous common variants. To this end, we selected and
synthesized 100 TP53 variants (99 passed QC; Extended Data Fig. 1a, Extended Data Table 1).
These included (1) the 75 most recurrent TP53 mutations from TCGA (Bailey et al., 2018),
MSKCC-IMPACT (Zehir et al., 2017), and GENIE (AACR Project GENIE Consortium, 2017),
which are predicted to be uniformly loss-of-function (Tate et al., 2019); (2) 15 synonymous
variants as controls (expected to be indistinguishable from the wildtype allele); and (3) 10 non-

synonymous variants from healthy cohorts (ExAC, (Lek et al., 2016)). We transduced the 99
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pooled TP53 variants into A549 lung cancer cells, a known suitable biosensor for TP53 function
(Giacomelli et al., 2018) at low MOI to favor single variants per cell (estimated MOI 0.77 and
detection probability 0.78). We selected for successfully infected cells, and performed scRNA-seq
(Fig. 1a). Because the expression level of the variants was sufficiently high, we did not perform a

dial-out PCR (Dicxit et al., 2016) to enrich variant barcodes.

Overall, we associated variants and profiles reliably. Specifically, we recovered 162,314 high
quality cells of which 84% had detectable variant barcodes and 62% were confidently annotated
with a single expressed variant (median 926 high confidence cells per variant; Extended Data
Fig. 1b,c). In >70% of cases, a variant overexpressed in a cell was supported by at least 2 barcode
UMIs (Extended Data Fig. 1d). Furthermore, each of the TP53 variants was expressed at levels
comparable to the wild type construct with only two variants exceeding a 1.5-fold expression
difference (Fig. 1d, Extended Data Fig. 1e,f, M2371 and Y236C). To reduce potential biases due

to variant overexpression levels, we regressed out the variant barcode expression in each cell.

Single-cell expression variant impact scores correctly distinguish TP53 loss-of-function
variants

To score and categorize variants by their expression profiles we used two complementary
approaches: scoring the distance between the mean profiles of variants and the WT construct by
extending our previous expression-based variant impact phenotyping (eVIP) approach (Berger et
al., 2016), and unsupervised clustering of variants by their mean profiles. Our “single cell eVIP”
scores (sc-eVIP) quantify the extent to which cells overexpressing a variant deviate from the mean

expression profile of cells overexpressing the wildtype allele (Methods) using Hotelling’s T? test
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(Hotelling, 1931), a multivariate generalization of a t-test applied to a low-dimensional
representation of cells in principal component (PC) space (Methods). This statistical test yielded
highly concordant results, even when we down-sampled the cells ~10-fold to 100 cells/variant;
(Extended Data Fig. 1i). We then called impactful variants at a 1% FDR by comparison to an
empirical null distribution generated from comparisons between control synonymous variants
(Methods). As a complementary unsupervised approach, we hierarchically clustered the variants
using an L1 distance and complete linkage, applied to the correlation matrix of average expression
profiles (Methods, Fig. 1b,e). Finally, we investigated the gene programs underlying the different
classes of variants tested, by clustering the average gene expression profiles across variants to
identify sets of genes with similar behaviors across variants (Extended Data Fig. 2f, Methods)

or by principal component analysis (Methods, Extended Data Fig. 2g-k).

Both the sc-eVIP scores and unsupervised clustering correctly distinguished expected loss-of-
function variants from the WT and control variants. Specifically, all (25/25; 100%) synonymous
and ExAC control variants exhibited sc-eVIP scores similar to WT (FDR 1%, Fig. 1¢), and formed
a separate cluster, together with R337C (Fig. 1e, black). The remaining 73/74 variants (98.6%),
including those at hotspot positions 175, 248 and 273 (top 3 most frequent variants in COSMIC
(Tate et al., 2019), Fig. 1e, blue) exhibited significant sc-eVIP scores and formed a distinct cluster
from the neutral controls (Fig 1. b,e). This cluster included the average profile from all unassigned
cells (cells without a detected variant barcode), suggesting the variants in this cluster were likely
loss-of-function. The 25 control TP53 variants significantly induced canonical signatures of TP53
overexpression compared to unassigned cells (Fischer, 2017; Jeay et al., 2015), including induction

of CDKNIA and RPS27L expression (Fig. 1g), and showed the expected increases in the
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proportion of non-cycling cells, consistent with cell cycle arrest, as assessed from their single-cell

expression signatures (Fig. 1m, Extended Data Fig. 3g).

In this cellular context, the variants that were not in the neutral cluster further partitioned into two
groups (Loss I and Loss II) by both increasing sc-eVIP scores (Fig. 1¢) and as sub-clusters (Fig.
le, light and dark blue). The groups varied in the strength of impact on canonical TP53 signatures,
such that Loss I variants induced canonical TP53 signatures to a lesser degree than neutral variants,
whereas Loss II variants did not affect (or repressed) TP53 signatures relative to unassigned cells
(Fig. 1g, t-test between 13-gene and 300-gene signature scores: neutral vs Loss I p=2.9*10"'%, and
7.4%10"7 and Loss I vs Loss II: 1.4*%1071° and 2.7*107!%). The repression of canonical TP53-
induced genes CDKN1A and RPS27L, and to a lower degree TP53 signatures in a majority of Loss
I and II variants is consistent with the annotation of 71/74 of these variants as having dominant
negative effects in previous work (Giacomelli et al., 2018) (all Loss I and II variants except R337L,
R280K and G105C, as defined by a functional assay of growth upon treatment with Nutlin-3 in a
TP53-WT background, z-score higher than 0.61(Giacomelli et al., 2018)). Specifically, 68/71 and
62/71 of dominant negative variants show significant repression of CDKNI1A and RPS27L and

40/71 and 10/71 for 13-gene and 300-gene TP53 signatures respectively.

As expected, loss of function and neutral variants had diametrically-opposed effects on multiple
programs (Methods) compared to unassigned cells: program 0 (G1/S checkpoint, DNA damage
response and metabolism) and 2 (adhesion, differentiation, migration) were repressed by loss of

function variants and activated by neutral variants (Fig. 1i,j, Extended Data Fig. 2a-e), whereas
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program 7 (cell cycle G2/M, chromatin remodeling) was activated by loss-of-function variants and

repressed by neutral ones (Fig. 1i,j, Extended Data Fig. 2a-e).

Our sc-eVIP scores and the associated gene programs from Perturb-Seq were highly concordant
with those from an optimized TP53-specific cellular assay for growth under Nutlin-3 treatment, in
a TP53-null background which was previously conducted with the same cell line and over-
expression constructs (Giacomelli et al., 2018) (Spearman p=0.73, p=3.2*10"'7, Fig. 1h, Extended

Data Fig. 3a), as well as additional assays (Extended Data Fig. 3a-f)

At the single cell level, neutral and loss-of-function variants did not occupy mutually exclusive
cell states (Fig. 1k, Extended Data Fig. 4g), and the two groups showed extensive cell state
overlap, but differed in their distribution across these states, especially in cell cycle phase
distribution (Fig. 1k,l,m, Extended Data Fig 3g). As a result, a logistic regression classifier using
gene expression to predict if any individual cell harbors a loss-of-function or neutral variant had
limited accuracy (area under the precision-recall curve (AUPRC) = 0.78 on a test set of 50% of
variants) (Fig. 1n), but overall variant classification using the proportions of cells in each of 15
cell subsets (as defined by Louvain clustering) was highly accurate (AUPRC=1), suggesting that

our TP53 variant phenotypes mostly reflect a shift in cell state distributions (Fig. 1n).

Perturb-Seq for KRAS coding variants identifies rare, gain-of-function mutations and
annotates additional KRAS mutations
Given the recent success in therapeutically targeting specific KRAS variants (Hong et al., 2020),

we next evaluated the utility of coding variants Perturb-seq for a series of 98 KRAS variants.
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Although A549 cells harbor a KRAS G128 allele, we previously found that expression of KRAS
alleles in this cell line permits the discrimination of the function of exogenously expressed KRAS

alleles in functional assays (Berger et al., 2016; Kim et al., 2016; Singh et al., 2009).

We selected the 75 most recurrent KRAS alleles in cancer cohorts and 26 negative control alleles,
including 16 synonymous variants and 10 common, non-synonymous variants from ExAC (98
passed QC; Extended Data Fig. 5a, Extended Data Table 2). These alleles included those
reported frequently in cancers (n=1,782, 1,539, 1,110 for G12D, V, C, respectively) as well as 34
rare alleles observed in fewer than 5 individuals among TCGA (Bailey et al., 2018), MSKCC-
IMPACT (Zehir et al., 2017), and GENIE (AACR Project GENIE Consortium, 2017) databases.
We analyzed 150,044 high-quality single cell profiles (68% annotated to a single variant, a median
of 1,058 cells per variant, Extended Data Fig. Sb,c,d, e). As for TP53, most variant constructs
were expressed at similar levels (Extended Data Fig. 5f), with only 2 outlier constructs with
reduced expression, both at position 61 (Q61K and Q6I1L, respectively), and no apparent
relationship between variant expression levels and sc-eVIP scores (Fig. 2¢, Spearman p=-0.04,

p=0.72).

Both impact scores (Fig. 2b, Extended Data Fig. 5i) and clustering by mean expression profiles
(Fig. 2a,d) correctly distinguished control synonymous KRAS alleles from known gain-of-
function variants at hotspot positions 12, 13 and 61 (Fig. 2b, P<8.9*107, t-test). Based on both
scores and clusters, we annotated another 19 variants as neutral, including 9 of 10 EXAC control
variants and 10 variants observed in patients at low frequency (Y166H, T58A, C118S, K176Q,

R135T, R164Q, L791, R149K and 163S; each in fewer than 4 patients, Fig. 2e). Previously well-
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characterized gain-of-function variants at positions 12, 13 and 61 had higher sc-eVIP scores than
neutral alleles and separated in distinct clusters (Fig. 2a,b,d). Moreover, in evaluating data from
the Broad Cancer Dependency Map (Meyers et al., 2017), cell lines with impactful variants were
more sensitive to loss of KRAS by CRISPR/Cas9 knockout than those with a wildtype allele (Fig.
2f, p<8.3*107'47 t-test). Finally, there was good correlation (Fig. 2g, Spearman correlation 0.75,
p=1.93*10"'%) between sc-eVIP scores and those from a phenotypic assay measuring growth in
low attachment (GILA (Rotem et al., 2015), z-scores) in human embryonic kidney cells (HA1E)
overexpressing KRAS alleles (Ly, 2018). Variants deemed impactful by GILA had higher sc-eVIP
scores (p<3.2*107, t-test) and sc-eVIP scores were predictive of GILA high-scoring variants (z-

score, AUPRC= 0.92).

KRAS variants partition to several classes by their impact on expression

To further understand the range of KRAS variants and the gene expression programs that underlie
their functional impact, we defined five variant clusters by correlation between mean single cell
profiles (pseudo-bulk) (Fig. 2a,d), as well as used Louvain clustering of the pseudo-bulk
expression profiles across variants to identify expression programs associated with variants
independent of cluster (Fig. 2h, i, Extended Data Fig. 6a-g). In most (10 of 14) positions with
more than one non-synonymous variant tested, the different non-synonymous variants were in the
same cluster (Fig. 2k). One cluster captured gain-of-function variants, including those at known
hotspot positions 12, 13, and 61, and had the highest sc-eVIP scores (Fig. 2a,d, red text, Extended
Data Fig. 8a). A second cluster contained all synonymous (WT) variants and 9 of 10 common
non-synonymous (ExAC) variants, suggesting it captured the group of neutral variants in our set

(Fig 2a,d, black). Three remaining clusters had lower sc-eVIP scores though not as low as for the

11
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WT cluster (p<2.5*%1071%,9.4*%10°14, 1.5*10-2° compared to WT cluster; t test), and included variants
with increasing distinction by sc-eVIP scores (Fig 2a,b,d, green, purple, yellow, Extended Data

Fig. 8a).

Variants in the gain-of-function cluster included positions 12, 13, 22, 59, 61, 146, 117 and 119
(Fig. 2d), which largely fall either at or near nucleotide binding domains (UniProt Consortium,
2019) (Fig. 2k, Extended Data Fig. 8f). All of these variants significantly induced program 0
(senescence, inflammation, development) (Fig. 2h,i), as well as program 1 (response to stimulus,
apoptosis, secretion) and all but one induced program 4 (hypoxia, immune, stress, G2M, cell
polarity) (Extended Data Fig. 6a-e). These alleles also repressed programs 10 (metabolic, G1/S,
adhesion, regulation of senescence), 12 (signaling, MAPK, metabolic, development) and 13
(metabolism), and all but two additionally repressed program 11 (adhesion, signaling, endocytosis)

(Fig 2h,i, Extended Data Fig. 6a-e).

The variants in the neutral cluster (Fig. 2d, black) included 18 variants observed in patients, 8 of
which had low but significant sc-eVIP scores (P110S, L159S, Q25H, K147N, K147T, E63K,
V141, T50I) including variants appearing seven (V14I) or eight (E63K) times in patient cohorts
(Fig. 2e). Although members of the same cluster, these variants had distinguishing features, as
many repressed gene program 11 (adhesion, signaling, endocytosis) (Fig. 2h), although their

impact on other programs was the same as neutral variants (Fig. 2h).

We denoted the three clusters of variants that more closely, but not precisely, phenocopied neutral

as ‘“‘semi-neutral” (green), “atypical” (purple) and “semi-neutral-gain” (purple) based on the

12


https://doi.org/10.1101/2020.11.16.383307
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.16.383307; this version posted November 17, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

gradual progression of their sc-eVIP scores from neutral to gain of function (Extended Data Fig.
8a). Both the semi-neutral and semi-neutral-gain groups included variants near nucleotide binding
sites, effector binding, and the allosteric lobe (Fig. 2k, Extended Data Fig. 8f), and induced an
adhesion, signaling and endocytosis program (program 11, Fig. 2h), which was lower in both gain-
of-function and neutral variants. However, semi-neutral-gain variants had higher levels of gain-
of-function-associated programs for senescence, inflammation, development (program 0),
response to stimulus, apoptosis and secretion (program 1) and hypoxia, immune, stress, G2M, cell
polarity (program 4), and lower levels of neutral-associated programs metabolic, G1/S, adhesion
and regulation of senescence (program 10), signaling, MAPK, metabolic and development
(program 12) and metabolism (program 13), suggesting these alleles resemble gain-of-function

cell states (Fig. 2h).

Variants in the final “atypical” cluster (Fig. 2a,d, purple) showed a mixture of features from other
variant groups: repression of program 0 (as in neutral and semi-neutral variants), and of programs
12 and 13 (as in gain-of-function) (Fig. 2h). Of these variants, D33E has tumorigenic potential
(Kim et al, 2016), due to altered protein dynamics including changes in the switch 1
conformational state (Lu et al., 2018); and L19F conferred fitness in NIH3T3 cells (Akagi et al.,

2007) and scored highly in the GILA assay.

KRAS variants form a gradual functional gradient within and across groups
We further examined the KRAS variants that scored as impactful, leveraging the single cell
profiles. We performed Principal Component Analysis (PCA) of all cells and searched for PCs

that were significantly higher in cells carrying previously known gain-of-function variants from
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hotspot positions 12, 13 and 61 compared to cells carrying synonymous variants. Of 32
significantly different PCs (by t-test, 1% FDR), PC3 and PC4 scores (Fig. 3b) were particularly
good at distinguishing between individual cells with activating vs. neutral variants (AUROC on
balanced data 0.9 and 0.8 respectively, compared to the next best performance of 0.67 for PCS5,
Extended Data Fig. 6h-k). Top ranked genes for PC3 were enriched in oncogene-induced
senescence, regulation of apoptosis and multiple metabolic pathways, while top genes for PC4

were enriched for adhesion.

Although PC3 scores of all neutral variants were mostly comparable to wildtype overexpressing
cells (Extended Data Fig. 6j,k), other variants arranged on a continuum of increasing strength, as
reflected by the increasing separation of the distribution of PC3 scores (Fig. 3¢,d, Extended Data
Fig. 8¢), gradually shifting from the mildest separation appearing in variants in the neutral cluster
that have significant sc-eVIP scores (e.g., V14I) to the strong separation in the full gain-of-function
variants. Even within the gain-of-function cluster, PC3 scores varied continuously. This continuum
was not explained by technical considerations, such as differences in variant overexpression levels
(Fig. 3e, Spearman correlation -0.14, p=0.18) and was consistent with GILA assay (Ly, 2018)
scores (Fig. 3f, Spearman correlation 0.73, p=1.3*10"'%), for which it had high predictive power
(auPRC 0.91), with only 5 of 24 variants scoring high in GILA (z-score > 3) not showing the
expected increases in PC3 (Q61K, K177R, L19F, G12Y, F) (Fig. 3f, Extended Data Fig. 8c).
PC4 scores varied most within the gain-of-function cluster, with neutral and semi-neutral variants
showing similar levels, and atypical and semi-neutral-gain falling between neutral and gain-of-
function levels. This suggests that two sources of variation may be at play, as also indicated by

gene program scores (Fig. 3b,g-j, Extended Data Fig. 8c).
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KRAS gain-of-function variants largely redistribute cells within an existing phenotypic
landscape

These continuous differences between variants can arise because variants lead to a new cell state,
not observed in the context of WT KRAS, because of a redistribution in the same phenotypic space,
or both. To distinguish these possibilities, we embedded all the single cell profiles from our
experiment in two dimensions (Fig. 31, Methods) and compared the distribution of single cell

profiles from variants in the five categories to those from either WT or unassigned cells (Fig. 3n).

Impactful and neutral variants occupied a largely overlapping cell state space, but with a
continuous shift in the distribution of cells across this space (Fig. 3k), from neutral, to semi-
neutral, semi-neutral-gain, atypical then followed by the continuum of gain of function variant
spectrum. Only the strongest gain-of-function variants occupied almost exclusively a cell state
space (Fig. 3k,1,n, cell state “0") barely occupied by WT-overexpressing cells (<2%), but present
in some of the unassigned cells (11.7%). For example, >81% of the cells with the strongest gain-
of-function variant, G13R, are in this space (Fig. 3k). This cell state is associated with high
expression of gain-of-function programs 0 and 1 (Extended Data Fig. 6g). The proportion of cells
in this portion of the cell state space corresponds to the observed continuum of variant activating
levels by GILA (Spearman correlation = 0.78, P-value=1.8*102%, Fig. 3f, Extended Data Figure
7c-d). While the gain-of-function variants also have a higher proportion of cells in M phase, and
a lower proportion in S phase (Extended Data Fig. 7e), these changes are modest and, unlike in

TP53, are not a major contributor to the difference between variants.
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Consistent with a model of redistribution of cells across an existing state space (Fig. 3k), when we
trained a multi-class logistic regression model to classify each individual cell into its corresponding
variant class as defined by unsupervised clustering, we found a broad swath of misclassifications
(Fig. 30, left). The best performance is for gain-of-function variants, due to the high enrichment
of cells in cell state 0 largely depleted of other variants (Fig. 3k-m, Extended Data Fig. 7f).
Conversely, a model trained and tested on mean expression profiles has near-perfect performance,

in all but two classes, suggesting that variants impact cell composition (Fig. 30, right).

Expression impact can help predict mutation frequencies, but mutation frequency alone does
not always predict impact for rare KRAS variants

In principle, variants exerting stronger functional effects would be under stronger selective
pressure in tumors and in many cases would be found to be mutated at higher frequencies across
patients. Thus, we related our functional characterization of variants to observed mutation
frequencies in cancer cohorts, to test if functional effects can help predict mutation frequency, and
conversely, to understand the degree to which variant impact in our assay can be ascertained based
on mutation frequency alone. There were significant correlations between the number of times a
variant occurred in patient cohorts and either our sc-eVIP scores or cellular growth assays (Fig.
4a-d, TP53: Spearman correlation = 0.73, P=3.1*10""> with growth in Nutlin-3, TP53-null,
Spearman correlation = 0.68, P=8.1*10"13 with sc-eVIP scores; KRAS: Spearman correlation=
0.63, p=7.7*10"'? with GILA assay and Spearman correlation= 0.74, P=3.3*10"'7 with sc-eVIP

SCOres).

16


https://doi.org/10.1101/2020.11.16.383307
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.16.383307; this version posted November 17, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

For TP53, previous work has shown that integrating functional assay results with mutational
signatures accurately predicted the frequency of somatic variation across patient cohorts
(Giacomelli et al., 2018). Following on this, we partitioned the variants into training and test sets
by position (such that variants at the same position will not be shared between the training and test
sets) 10 times, and quantified the extent to which sc-eVIP impact scores or functional assays are
predictive of TP53 variant frequency, when combined with mutational signatures in a generalized
linear model. All models trained performed better than random (t-test comparing each group with
shuffled p. adj. <0.05), with similar performance for models using sc-eVIP scores as features, as
compared to those using functional assays (Fig. 4e,f, Extended Data Figure 9a-c). As expected,
models trained on the restricted set of 99 variants profiled in this work had higher variance than
those trained on a larger training set, due to the model’s need for sufficient dynamic range of effect

in the positions assigned to the training set.

For KRAS, models using either sc-eVIP scores or GILA scores to predict variant frequency
performed significantly better than a shuffled model (t-test comparing each group with shuffled p.
adj. <3.92*10*) and had similar performance to each other, with the exception of models trained
on a larger set of variants than present in our dataset, which had a significantly better performance
than models using sc-eVIP features (p. adj. 7.51*107, Fig, 4g,h, Extended Data Figure 9d-f).
Overall, variants with the largest sc-eVIP impact score in our experiment also tended to be the
most commonly mutated in cancers (Fig. 4j). Other gain of function variants (e.g., Q22K,
A59G,E, T T58I, V14L, D119G) with somewhat lower frequencies, also had lower sc-eVIP scores
within the gain-of-function cluster, as well as lower GILA scores. However, mutation frequency

did not resolve well impactful variants that occur at a lower frequency (<20 observations),
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highlighting the distinct value of functional profiles. For example, variants at known gain-of-
function hotspot positions 12, 13 and 61 that occur more rarely due to the requirement for multiple
base changes (e.g., G121, G12Y, G13E, Q61A, Q61P) are still detected as impactful with our assay.
Additionally, ultra rare variants requiring single base changes (such as V14L and D119G) were
also found to be gain-of-function, albeit at the low end of the gain-of-function continuum. Finally,
several variants that arise from single base mutation (A146P, G13R) and are comparable in
frequency to the neutral group (Fig. 4j, left), score as gain-of-function in our assay (Fig. 4j, right).
Together, these observations highlight interesting disconnects between mutation prevalence in
patients and mutation function, highlighting the importance of generating functional data as a

complementary approach to cancer genome sequencing.

Coding variant Perturb-Seq as a scalable variant phenotyping platform

Finally, we performed power analysis by subsampling to evaluate the scalability of our approach
for phenotyping thousands or more of cancer variants (Fig. 5). The impact of variants with large
effect sizes could be detected with as few as 20-100 cells per variant, whereas smaller effect sizes
mostly required 100-300 cells per variant (Fig. 5a-c¢). Thus, with ~8.3 million single cells, one
could conceivably study all ~270,000 possible variants in each 1kb cancer gene in the Foundation
Medicine Panel ([CSL STYLE ERROR: reference with no printed form.]), and with ~71 million
cells, one could create a draft cancer variant functional atlas of ~2.3 million possible variants in
the ~200 actionable cancer genes with cDNA sizes under 3kb (Fig. Sd,e). These calculations
account for a 65% rate of variant barcode detection (as observed in our study), 20 cells per variant
(sufficient for detecting the largest effect sizes per variant), and would amount to 400 cells per

amino acid position, allowing us to detect lower impact variants by transferring information across
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similar variants when modeling variant impact. As both large-scale single cell profiling and DNA
synthesis technologies are rapidly increasing in scale, at lower costs (Datlinger et al., 2019; Ma et

al., 2020; Sidore et al., 2019), such comprehensive experiments are now within reach.

Discussion

Our study shows the feasibility of a scalable, general platform for variant impact phenotyping in
which pooled variants across different genes can be evaluated simultaneously for function. The
single unified readout of single cell gene expression does not only provide an efficient
experimental approach, but is also a rich and interpretable molecular phenotype. For example, the
same readout allowed us to show that the cell cycle is the main underlying signal for differences
between TP53 variants, but not for KRAS variants. In KRAS, the high-dimensional, continuous,
and high-resolution profiles identified a continuum from neutral to highly impactful variants and
categorized this continuum into variant classes, each distributing differently along a broad
phenotypic space, and associated with specific gene expression programs which shift gradually.
Such quantitative shifts of the cellular landscape at the single cell level are consistent with studies
on the effects of variants affecting cellular compositions (Brodin et al., 2015; Dubovik et al., 2018;

Li et al., 2018).

The single cell nature of our approach allowed us to move beyond average gene expression profiles
of variants to study their effect on distributions of cells. Specifically, in the cellular context
explored in this work, it revealed that variants do not simply fall in discrete categories of loss-of-
function or gain-of-function but rather show quantitative shifts in cell compositions. The observed

re-distribution of cells across the phenotypic landscape, enriching and depleting specific cellular

19


https://doi.org/10.1101/2020.11.16.383307
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.16.383307; this version posted November 17, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

states for each variant, provides hypotheses for explaining the quantitative behavior of such
variants in orthogonal assays. Moreover, the learned gene programs across single cells provide a
step towards decoupling potentially multiple functionalities of variants for a gene, as is the case
for KRAS where we observe a gain-of-function continuum as well as additional separate gene
programs separating variant classes that may capture other aspects of KRAS biology to be further

characterized.

While expression-based variant phenotyping can help predict mutation frequencies, some
mutations present in lower frequencies can nonetheless be highly impactful in our assays, showing
the power and complementarity of functional, expression-based phenotyping. In particular, certain
variants in KRAS had stronger phenotypic effects than we would have predicted based on
recurrence in patient samples, while others had weaker effects than we would have predicted. Such
discrepancies can be explained, at least partially, by the mutability of the underlying nucleic acid
residues, consistent with prior observations with TP53 (Giacomelli et al., 2018). Future work will
determine if models can be trained to better incorporate mutational signatures to predict the extent

of functional impact without experimental assays.

The observation that a cancer variant induces a gene expression change relative to the WT allele
(defined as an impactful variant in this work) is highly suggestive of its biological function, but is
not a definitive assessment of the induction of a cancer phenotype, such as tumorigenesis or drug
sensitivity in models or patients. It is possible for impactful variants, as defined using gene
expression profiling to not be consequential for human tumors. Nevertheless, our analysis showed

high concordance between expression-based phenotyping and dedicated, highly optimized gene-
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specific functional assays. This suggests that an expression-based cancer variant impact atlas
should be a useful first draft for annotating allele function. Comparisons to more physiological
assays as they are developed would help properly calibrate false positive and false negative rates,
and help interpret expression patterns in terms of their physiological relevance. With recent
advances in pooled optical screens (Feldman et al., 2019), matched reference maps with both

genomics and cell biology readouts should help facilitate this interpretation.

Our experimental approach can be expanded and improved in several ways. First, we focused on
one cellular context, A549 lung cancer cells, but our previous work (Berger et al., 2016; Kim et
al., 2016), showed that additional cellular contexts can add sensitivity regarding the mechanism of
loss-of-function (e.g., a WT endogenous allele is required for distinguishing dominant negative
from LOF effects). The pooled nature of Perturb-Seq should allow us to readily extend this work
to many cell lines, including existing pools of cell lines such as PRISM (Kinker et al., 2019;
McFarland et al., 2020). Second, we used exogenously expressed cDNA constructs, where viral
packaging limits the interrogation of longer (>3.5kb) genes, and where some variants may be
expressed at non-physiologic levels. New approaches for base editing (Gaudelli et al., 2017;
Komor et al.,, 2016) and prime editing (Anzalone et al., 2019) should help overcome this
bottleneck. Third, we were limited by variant-level barcoding at the 3’ end of each construct for
scRNA-seq detection. Advances in long-read scRNA-seq methods (Lebrigand et al., 2020; Volden
and Vollmers, 2020) should allow direct sequencing readout of individual RNA variants. Finally,
our scale is impacted by the costs of sScRNA-seq. Advances in massively parallel scRNA-Seq, such
as scifi (Datlinger et al., 2019) and combinatorial barcoding (Cao et al., 2017; Ma et al., 2020;

Rosenberg et al., 2018) have substantially reduced such costs and can be efficiently applied to cell
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lines. Efficiency can be further enhanced by using “compressed” designs (Cleary et al., 2017),
such as introducing multiple distant mutations in one construct, multiple constructs in one cell, or

multiple cells profiled together.

Our proof-of-concept demonstrated the ability of sc-eVIP to read out variant impact across
multiple distinct genes. The generalizability of this approach across genes will depend on whether
engineered variants induce cell state changes that can be recorded at the transcriptomic level. We
expect the approach to be particularly useful for variants in genes that affect many gene programs
and elicit cell state changes, as for example those that result in signaling cascades or cell cycle
changes. On the other hand, it may be more challenging to use gene expression based variant
impact phenotyping for genes that result in transient effects or that have effect sizes comparable
to the noise levels in these data. While the current work and previous research (Berger et al., 2016;
Kim et al., 2016) have observed sc-eVIP to be versatile across a variety of cancer genes, future

work will determine the extent to which sc-eVIP can be applied across all genes.

Overall, coding variants Perturb-Seq combined with the associated sc-eVIP analytical framework
represents a versatile and powerful approach for assessing the phenotypic impact of coding
variants. In contrast to existing methods, it provides a high-content and highly interpretable readout
about the functional impact of overexpressed variants and does not require the development of
bespoke phenotypic assays for each gene of interest. At its current scale, it can be immediately
deployed to assess medium-sized libraries of hundreds of disease-related variants, important for
both basic biological understanding and therapeutic applications. With improvements, it should be

amenable to the assessment of tens of thousands of variants and deep mutational scans of entire
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disease-related genes in cancer and beyond, including coding variants in common diseases, and to
construct general predictive models from variants to functions. Such an atlas of variant impact
across all key cancer genes and contexts would be a foundational resource for translational cancer

research.

METHODS

EXPERIMENTAL APPROACHES

Variant pool construction for TP53 and KRAS variant pools

Clinically observed variants of KRAS and TP53 were downloaded from cBioportal on October
20™, 2017 from the TCGA (Bailey et al., 2018), MSKCC-IMPACT (Zehir et al., 2017), and
GENIE (AACR Project GENIE Consortium, 2017) pan-cancer datasets and merged into a single
list. We selected the 75 most frequently observed missense alterations for each gene from this list.
The goal was diversity of amino acid variants; for amino acid changes that exhibited multiple
possible nucleotide alterations, we selected a single variant (with priority given to single nucleotide
variants). 25 negative control variants were also selected, comprising 10 missense and 15
synonymous variants from ExAC that were not observed in the aforementioned cancer sequencing
studies. We obtained wild-type TP53 (NM_000546.5) and KRAS (NM_004985.4) sequences from

GenBank (Benson et al., 2013).

Variants were synthesized by Twist Bioscience, appended with unique 10 bp barcodes generated

by the ‘DNAbarcodes’ R package (Buschmann and Bystrykh, 2013) using a Hamming distance of

5 between barcodes, and cloned into a modified Perturb-seq (Dixit et al., 2016) vector.
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Perturb-seq: transduction, selection, and scRNA-Seq

10 A549 cells (ATCC CCL-185) were transduced with either KRAS or TP53 lentiviral pools at
an MOI of 0.1 to attain a single integration event per cell, and selected with 2 pg/mL puromycin
for 2 days to obtain a final library representation of ~1,000 cells per variant for both KRAS and
TP53. Cells were allowed to recover for 2 days after selection and then loaded onto a 10X
Chromium chip using the 10X Chromium Single Cell 3” v2 kit (10X Genomics #120237). We
loaded 7,000 cells per channel across 32 channels for each cDNA library to obtain a total of
224,000 cells per library (448,000 total). Paired-end libraries were sequenced over 32 lanes on an
[llumina Hiseq 2500 per sequencing parameters recommended by 10X Genomics: cell barcode
read length 26 bp, index read length 8 bp and transcript read length 98 bp. No dial-out PCR was
done, in contrast to typical Perturb-seq (Adamson et al., 2016; Dixit et al., 2016; Jaitin et al., 2016)

(Variant assignment is described in the section “Assigning variants to cells”.)

COMPUTATIONAL ANALYSIS

Single-cell RNA-seq data pre-processing

Sequencing reads were demultiplexed and aligned using Cellranger 2.1.1 (Zheng et al., 2017),
mapping to the human transcriptome version GRCh38-1.2.0, and resulting in a matrix of Unique

Molecular Identifier (UMI) counts for each gene in each cell.

We then further processed this matrix using scanpy (Wolf et al., 2018). To filter out low-quality
cells and keep the most informative genes, we removed cells with <200 genes/cell, and then
removed genes present in less than 3 of the remaining cells. We then further filtered out cells with

fewer than 7,000 UMIs/cell and those with a percent mitochondrial UMIs/cell >20%. Finally, we
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down-sampled cells with >50,000 UMIs to 50,000 UMIs, to avoid cells with unusually high

sequencing depth.

After filtering and the above down-sampling, to account for any differences in sequencing depth
between the 64 10x channel batches, we further down-sampled the UMIs per cell such that all
batches would have a median of 20,000 UMIs/cell. For this, we computed the median number of
UMIs/cell in each channel, and then down-sampled the UMIs of each cell by a factor defined as
the 20,000 desired UMIs/cell divided by the median number of UMIs/cell in the batch of the cell.
Specifically, given a cell and this down-sampling factor, we went through each gene and obtained
the adjusted number of UMIs by sampling from a binomial distribution with p=down-sampling
factor and N=number of UMIs observed for this gene in the cell. This down-sampling procedure
adjusted the distributions of UMIs/cell in each batch to have more similar medians. Batches with
a median UMI/cell less than 20,000 did not go through this procedure. Note that in practice, similar

results are obtained even without this down-sampling.

We normalized the expression UMIs per cell to sum to 10,000 in each cell, and then transformed
the normalized values to log(normalized expression+1) to obtain a raw expression matrix. We
selected variable genes by identifying the genes for which the variance (scaled to a z-score relative
to other genes in similar expression bins) exceeded 0.5. We also filtered the variable genes to have

raw expression levels between 0.0125 and 4 (Zheng et al., 2017).

We regressed out batch (as a discrete {0,1} variable), the number of UMIs/cell, the percent of

mitochondrial reads, and the normalized expression of the variant barcode, and converted the
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resulting residuals to z-scores for each gene across cells. The analyses in this work use these z-

scores, unless otherwise noted.

We performed PCA for dimensionality reduction, keeping the first 50 principal components. We
represented the cells in a low dimension using UMAP, using the default values of 15 nearest
neighbors per cell and the default minimum distance between embedded points of 0.5. We used
the resulting nearest neighbor graph to cluster cells using Louvain clustering (Blondel et al., 2008;

Levine et al., 2015).

We then subsampled the cells, to obtain 1000 for each variant, and this was used in downstream

analyses.

Investigating potential doublets

We identified Louvain clusters of cells with higher counts than the rest, and checked if there was
an enrichment of cells with multiple assigned variants, or a depletion of unassigned cells, as both
of these would indicate the presence of doublets (Extended Data Fig. 1g and 5g). For TP53, this
flagged clusters 10 (high counts, significantly depleted in unassigned cells and significantly
enriched in cells with multiple variants) and 11 (high counts, significantly depleted in unassigned

cells, significantly enriched in cells with multiple variants), comprising 5.7% of all cells.

For KRAS, this flagged clusters 10 (high counts, significantly enriched in cells with multiple
variants), 11 (high counts, significantly depleted in unassigned cells and significantly enriched in

cells with multiple variants) and 12 (high counts, significantly depleted in unassigned cells and
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significantly enriched in cells with multiple variants), comprising 8.5% of cells. While we retained
the cells in these clusters in the results we presented, removing them did not significantly change

the results.

Assigning variants to cells

To identify the variant(s) that were overexpressed in each cell, we identified the subset of reads
that mapped to the distinct 10 bp barcodes annotating each variant. To this end, we created a
reference for aligning reads consisting of the full sequence of the plasmid used in this study. We
aligned all scRNA-seq reads to this reference, using Bowtie (version 1.2.2 (Langmead et al.,
2009)), and conservatively only kept alignments with up to 2 mismatches. We kept only valid
alignments, defined as aligning to the negative strand of the reference (and positive strand for reads
that align to the puromycin resistance gene on the construct). We filtered out UMIs with a
transcript-per-transcript (TPT) value < 1 (Dixit, 2016), to remove chimeric reads containing
variant barcodes. TPT quantifies for each read in a combination of cell barcode and UMI the
fraction of reads that are identical, in order to flag cases where for a given cell-barcode-UMI
combination, there is a small fraction of reads that are chimeric and do not map to the same variant
barcode as the majority of reads. We considered reads having the same cell barcode and UMI and
mapping to the same variant barcode as identical, even if they mapped to a different position of
the plasmid, reasoning that they may still come from the same original molecule. We assigned
cells to variants as long as there was at least 1 read supporting the variant. Because we use even
single reads to assign variants, it is possible that we are overestimating the number of cells with

more than 1 variant (and underestimating the number of cells that contain only a single variant).
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Sc-eVIP impact scores

To quantify the degree to which expression profiles of cells overexpressing a variant deviate from
those of cells overexpressing the wildtype version, we used a Hotelling’s T? statistic, a multivariate
generalization of a z-test (Hotelling, 1931). We compared the profiles of cells overexpressing WT
vs. mutant proteins in principal component space, considering the top 20 PCs, with the T? value

reported as the test statistic. Higher scores indicate higher impact.

We then derived an empirical null distribution of the scores and identified a threshold
corresponding to a False Discovery Rate of 1%, as previously described (Noble, 2009). When we
only simply permuted the assignments of the variants to the cells, control synonymous variants
scored as impactful (Extended Data Fig. 1h, 5h), because of variation between synonymous
variants. We thus derived our empirical null distribution by comparing pairs of control
synonymous variants in our dataset, and computing the FDR at a given score threshold as: (percent
scores higher than the threshold from the empirical distribution)/(percent scores higher than the
threshold from the empirical distribution + percent scores of non-synonymous variants higher than
the threshold). Finally, we identified the highest score threshold associated with our desired FDR

of 1%.

Clustering variants by mean expression profiles

To cluster variants into discrete classes, we computed the Spearman correlation coefficient
between the average gene expression profiles of each pair of variants and used the correlation
matrix as an input for clustering using an L1 distance and complete linkage. We ordered the leaves

of the resulting dendrogram by increasing effect sizes, as computed with the Hotelling T? test. To
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obtain discrete cluster assignments, we cut the hierarchy based on visual inspection, obtaining 3

clusters for TP53 and 5 for KRAS.

Computing gene programs

To identify genes whose expression is impacted by variants, we clustered the genes by variants
matrix of average expression profiles across variants using Louvain clustering (using 5 nearest
neighbors). This yielded sets of genes with coherent average expression profiles across variants.
To identify representative genes for each such gene program, we asked which genes are most
correlated with average program scores across variants. For this, we averaged the expression of
genes in each program across in each cell, then averaged scores across cells of a given variant and
then finally computed the correlation between the average gene expression program and the

average expression of a gene across variants.

Scoring of cell cycle phases in single cells

To identify the cell cycle phase of each cell, we followed our previously described approach
(Macosko et al., 2015). Briefly, we retrieved the representative genes for each of the cell cycle
phases G1/S, S, G2/M, M, M/G1. We then restricted the sets of genes in each cell cycle phase to
those that were correlated with the overall score (Spearman correlation coefficient > 0.3). We
scored each cell cycle phase, and standardized the scores to z-scores within each cell cycle phase.
We then assigned cells to the phase that had the highest score. If a cell had low scores for all phases

(z-scores < 0), it was classified as non-cycling.
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Signature analyses

To compare our results with previously reported signatures for TP53, we retrieved two signatures
from (Fischer, 2017; Jeay et al., 2015), consisting of two lists of genes. For each signature, we
scored each cell by computing the average score across the genes in the signature, relative to a set
of 50 control genes, chosen at random in a manner stratified by expression levels to match those
of the genes in the signature. We then averaged signature scores across all cells for each variant

and subtracted the average score in unassigned cells to obtain the results presented in Fig. 1g.

Comparison to dedicated cellular variant phenotyping assays

We retrieved TP53 cellular variant phenotyping assay data from (Giacomelli et al., 2018). For each
of three conditions (Nutlin-3 in TP53-WT cells, Nutlin-3 in TP53-null cells and etoposide in TP53-
null cells) in A549 cells, the values retrieved represent the fitness change induced by
overexpressing the variant after 12 days of treatment, reported as z-scores of logr-fold changes

between the number of cells with the variant at the end of treatment and those at the beginning.

We retrieved KRAS growth in low attachment (GILA) measurements from (Ly, 2018). The
measurements were done on HA1E cells at 2 timepoints, 7 and 14 days, and were reported as z-
scores across all variants tested. The two timepoints were highly concordant (we report Day 7

results in the main text, and show both in Extended Data Fig. 7a-b).

Models to predict the identity of variants based on gene expression
We trained a multi-class logistic regression classifier to distinguish each variant cluster for each

of TP53 and KRAS, using the method sklearn.linear model. LogisticRegression from the package
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sklearn in python, with loss set to ‘multinomial’. We balanced the number of examples per class
by subsampling each class of variants to the class with the fewest cells (6000 cells per class for
TP53 and 3000 cells per class for KRAS). We partitioned the cells or the variants depending on
the task into 50% in the training set and 50% test sets. We computed AUPRC using the R package

PRROC (Grau et al., 2015).

Studying compositional changes induced by variants
Given an assignment of cells to sets, either cell cycle phases or clusters, we tested for each variant
whether the distribution of cells from this variant across groups differs from that of cells

overexpressing the wildtype allele, quantifying significance using a chi-square test.

Predicting mutation frequencies in cancer cohorts

To predict mutation frequency of a variant across patient cohorts, we followed a previously
described procedure (Giacomelli et al., 2018). Briefly, we retrieved mutational signature scores
and cellular variant phenotyping assay data (Giacomelli et al., 2018) and then fit a generalized
linear model to predict the counts of each variant in cancer cohorts as measured by IARC counts
for TP53. We used the package statsmodels in python, with the command statsmodels. GLM, with
family=sm.families. Poisson()). The features used were combinations of: (1) impact scores, (2)
mutational signatures and (3) cellular variant impact phenotyping assays from (Giacomelli et al.,
2018). Given the small number of examples for training, we used only the mutational signatures

1,2,4,5,6,7, 13, 24 as these were previously deemed most informative (Giacomelli et al., 2018).
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We partitioned the data into training and test sets for TP53 by amino acid position, to avoid train-
test contamination through different variants at the same position having similar effects. For each
type of model, we trained 10 cross-validated models, and report the median performance in the
main text, and show the distribution of performance scores (Fig. 4f,h, Extended Data Fig. 9a-c
for TP53, and Extended Data Fig. 9d-f for KRAS). For sc-eVIP impact scores, the training and
test sets contained only the variants profiled in this study. For the comparisons with functional
assays and mutational signatures, we also trained on the full datasets from (Giacomelli et al., 2018).
As a control, we also consider the performance obtained when shuffling the order of the true
counts. We focused on the subset of variants annotated with mutational signatures, which resulted

in the control synonymous variants being excluded from these analyses.

We used a similar approach for the variants in KRAS. We excluded from the training variants with

0 observed occurrences in cancer cohorts.

As performance metrics, we report Spearman and Pearson correlation coefficients between the
ground truth and the predicted values, as well as R? (coefficient of determination) as computed
with the sklearn package in python, with the function sklearn.metrics.r2_score (note that this score

can be negative, if a model predicts worse than a model predicting the average of observed values).

Power analyses
To determine the impact of the number of cells profiled per variant and the variant’s strength on
the ability to detect variant impact, we performed a cell subsampling experiment, and quantified

performance as the fraction of impactful variants with a given effect size (as determined from the
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full dataset) that are recovered at an FDR of 1%, for the number of cells allotted. We performed
10 independent subsampling iterations, and report the average performance for a given impact

score and number of cells per variant.

To ensure comparable results between TP53 and KRAS, for which we had a limited number of
cells overexpressing wildtype alleles, we used synonymous variants that had >=1,000 cells/variant
as the “WT reference” (P359P for TP53 and K169K for KRAS), rather than the WT overexpressing

cells.

Projections for creating an atlas of cancer variant impact

We computed the number of cells and associated costs for characterizing all possible variants in a
set of actionable cancer genes, which we retrieved from the Foundation Medicine Panel (J[CSL
STYLE ERROR: reference with no printed form.]). For each gene, we used the APPRIS database
(Rodriguez et al., 2018) to select a principal isoform to serve as the basis for our calculations. We
computed the number of variants for a given gene by multiplying the number of codons in its ORF
by 20 amino acids. The number of required cells was defined as the number of variants multiplied
by 20 cells per variant (a tradeoff to directly detect alleles with the strongest effect, as well as pool
data from different variants in one position for alleles with smaller effect sizes). We increased the
number of required cells (by 1/0.65), to account for our average detection rate of 65% cells with a

single variant.
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Reported p-values
P-values reported throughout the paper are adjusted p-values, with the procedure by Benjamini-
Hochberg, computed using the python package statsmodels, with the function multipletests and

with the parameter method set to “fdr_bh”.

Variant-by-variant analyses
For a comprehensive view of all analyses, displayed for each specific variant, refer to Extended

Data Figures 4 and 8.

Code availability

All analyses can be recapitulated with Jupyter notebooks at https://github.com/klarman-cell-

observatory/sc_eVIP, and using the Perturb-seq library at https://github.com/klarman-cell-

observatory/perturbseq.
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Figure 1. Perturb-Seq for scalable high-content coding variant profiling recapitulates known
biology of loss of function variants in TP53.

a. sc-eVIP for measuring the impact of coding variants using Perturb-seq. Left: ORF library with
distinct barcodes associated with each different variant to test. Middle: transduction and Perturb-
seq. Right: variant impact assessment by the deviation of profiles from cell carrying variant from
those of cells overexpressing the wildtype version. b-e. Distinction of neutral from loss of function
variants by Perturb-Seq. b. Spearman correlation coefficients (red/blue) between the mean profiles
of each pair of variants (rows, columns), clustered into classes (black: neutral, light blue: Loss I,
dark blue: Loss II, horizontal and vertical bars), and labeled by controls (dark gray: synonymous,
light gray: EXAC missense variants, purple: unassigned). ¢. sc-eVIP scores (y axis) for variants
(dots) in each category (x axis). Dotted line: 1% FDR. d. sc-eVIP scores are independent of variant
expression. Variant expression (y axis, transcripts per 10,000 UMIs/cell (TP10K)) for variant
(dots) with different sc-eVIP scores (x axis). e-i. Variant classes are associated with distinct
mutation frequency, TP53 expression signatures, functional assays (growth upon treatment with
Nutlin-3 in a TP53-null background) and expression programs. e. Hierarchical clustering of
variants by the correlation profiles in b. Black: neutral; light blue: Loss I; dark blue: Loss II. Grey
font: controls (synonymous and ExAC), blue font: hotspot variants (positions 175, 248, 273). f.
Mutation frequency (log.(counts+1) of variant occurrences in a pan-cancer curated set) of each
variant, ordered as in e. g. Difference (dot color) in mean expression or signature score between a
variant (columns, ordered as in e) and unassigned cells and the significance of this difference (-
log.«(adj. p-value), Kolmogorov-Smirnov test, dot size, Methods) for each of two genes
canonically induced by TP53 and two TP53-associated signatures (rows). Colored border: BH

FDR<10%. h. Growth with Nutlin-3 in a TP53-null background (z-score) for each variant (ordered
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as in e). i. Difference (dot color) in mean program score between a variant (columns, ordered as in
e) and unassigned cells and the significance of this difference (-log.(adj. p-value, Kolmogorov-
Smirnov test, dot size, Methods) for each gene program (rows), as defined by clustering genes
(Methods). Program 1, higher in assigned vs. unassigned cells was enriched for translation,
nonsense-mediated decay, and viral transcription, and may reflect the response to lentiviral
transduction. Colored border: BH FDR<10%. j. Gene programs vary across variant classes. Top:
UMAP embedding of single cell profiles, colored by program scores (color bar). Middle:
Cumulative distribution function of the program scores (x axis) for each variant class (color).
Bottom: average expression (z-score, color bar) in cells of each variant (columns) of genes (rows)
most correlated with the mean of the expression program. k. Variant induced shift in cell
distributions. Density map of cell profiles organized in a 2-dimensional UMAP embedding,
comparing the density of cells overexpressing a synonymous allele (black, right) or a loss of
function variant, R248W (blue, left) to either the WT TP53 allele (grey, top) or unassigned cells
(purple, bottom). Lm. Reduced proportion of non-cycling cells in loss of function TP53 variants. L.
UMAP embedding of single cell profiles, colored by their assignment to cell cycle phases. m.
Proportion of non-cycling cells (y axis) among cells carrying each variant (dots) across variant
classes (x axis). Adj. p-value: t-test. n. Accurate variant classification by mean profiles but not at
the single cell level. Performance (AUROC on balanced test set, color bar) of logistic regression
classifiers predicting the class of variant for individual cells (left), or for the entire set of cells (by

proportion of cell states) (right).
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Figure 2. sc-eVIP correctly annotates known gain-of-function variants in the KRAS
oncogene and reveals five functional classes of KRAS coding mutations.

a-c. Distinction of neutral from impactful variants in KRAS by Perturb-Seq. a. Spearman
correlation coefficients (red/blue) between the mean profiles of each pair of variants (rows,
columns), clustered into classes (black: neutral, green: semi-neutral, purple: atypical, gold: semi-
neutral gain, red: gain-of-function, horizontal and vertical bars), and labeled by controls (dark
gray: synonymous, light gray: EXAC missense variants, purple: unassigned). b. sc-eVIP scores (y
axis) for variants (dots) in each category (x axis). Dashed line: 1% FDR. ¢. sc-eVIP scores are
independent of variant expression. Variant expression (y axis, transcripts per 10,000 UMIs/cell
(TP10K)) for variant (dots) with different sc-eVIP scores (x axis). d-h. Variant classes are
associated with distinct mutation frequency, KRAS dependency, growth in low attachment (GILA)
phenotypes, and expression programs. d. Hierarchical clustering of variants by the correlation
profiles in a. Grey font: controls (synonymous and ExAC), red font: hotspot variants (positions
12, 13 and 61). e. Mutation frequency (log.(counts+1) of variant occurrences in a pan-cancer
curated set, color bar) of each variant, ordered as in e. f. Dependence of cell line growth on KRAS
(y axis), for cell lines (dots) categorized by their KRAS genotype status (x axis). Gray: wildtype
KRAS, red: missense KRAS variants. g. Growth in low attachment of HA1E cells (z-score, color
bar) for each variant (columns, ordered as in e). h. Difference (dot color) in mean expression or
signature score between a variant (columns, ordered as in e) and unassigned cells and the
significance of this difference (-log.(adj. p-value, Kolmogorov-Smirnov test, dot size, Methods)
for each gene program (rows), as defined by clustering genes (Methods). Colored border: BH
FDR<10%. Program 2, higher in assigned vs. unassigned cells was enriched for translation,

nonsense-mediated decay, viral processes and metabolism, and may reflect the response to
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lentiviral transduction. i. Gene programs varying across variant classes. Top: UMAP embedding
of single cell profiles (dots), colored by program scores (color bar). Middle: Cumulative
distribution function (CDF) of program scores (x axis) for each variant class (color). Bottom: mean
expression (z-score, color bar) of genes (rows) most correlated with the mean of the expression
program in cells of each variant (columns). j. Variant-induced shift in cell distributions. Density
map of cell profiles organized in a UMAP embedding, showing the density of cells overexpressing
each variant class (colored as in a) and either the WT KRAS allele (grey, top) or unassigned cells
(purple, bottom). k. Annotation of variant classes on the 3-dimensional structure of the KRAS
protein. Each position is colored by the variant class with the highest impact assigned to variants
at that position, with 4 variants assigned to multiple categories highlighted (listing all variants at

the position, each colored by its assigned class, as in a)
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Figure 3. KRAS variants form a gradual functional gradient within and across variant
groups.

a-b. Continuous variation across KRAS variants. a. Hierarchical clustering of variants by the
correlation profiles in Fig 2a. black: neutral, green: semi-neutral, purple: atypical, gold: semi-
neutral gain, red: gain-of-function. Grey font: controls (synonymous and ExAC), red font: hotspot
variants (positions 12, 13 and 61). b. Distribution of the scores of principal components (PCs) 3
and 4 for cells carrying each variant (red) and WT KRAS overexpressing cells (gray). ¢-j. PC 3
and 4 scores are concordant with functional assays and independent of variant overexpression
levels. ¢,g. UMAP embedding of single cell profiles (dots), colored by PC scores (color bar). d,h.
Mean PC scores (y axis) for each variant (dots), from the five variant classes (x axis, colored as in
a). e.i. Normalized variant barcode expression level (y axis, transcripts per 10,000 UMlIs/cell
(TP10K)) and sc-eVIP impact scores (x axis) for each variant (dots), colored by variant class. fj.
GILA scores (y axis) and mean PC scores (x axis) across variants (dots), colored by variant class.
k-n. Variation in cell state proportions across variants. k. UMAP embedding of single cell profiles
(dots), colored by WT KRAS (black), gain-of-function G12D (dark red), each of 5 variants (pink,
label at bottom), and all other cells (grey). Bottom: fraction of cells of the noted variant present in
gain-of-function-associated cell state 0 (as in 1) for each variant. . UMAP embedding as in Kk,
colored by cell clusters. m. Spearman correlation coefficient (x axis) for each cluster in 1 (y axis)
between the proportion of cells in each cluster in 1 (y axis) and the functional assay (GILA). n.
Fraction of cells in each cell cluster (x axis) from each variant class (y axis). 0. Accurate variant
classification by mean profiles but not at the single cell level. Performance (AUROC on balanced
test set, color bar) of logistic regression classifiers predicting the class of variant for individual

cells (left), or for the entire set of cells (by mean expression profile) (right).
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Figure 4. Relationship between sc-eVIP scores and the frequency of variants in patient
cohorts.

a-d. Comparison of sc-eVIP scores and functional assays with variant prevalence in cancer cohorts
for TP53 (a,b) and KRAS (¢,d). a,c. Mutation prevalence (y axis, log.(counts of mutation in cohort
+ 1) and sc-eVIP scores (x axis) across TP53 (a) and KRAS (b) variants (dots), colored by variant
class. b,d. Mutation prevalence (y axis, log.(counts of mutation in cohort + 1) and functional assay
scores for TP53 (b, growth with Nutlin-3, in a TP53-null background, z-score, x axis) and KRAS
(d, GILA, z-score, x axis) across variants (dots), colored by variant class. e-h. Comparison of
generalized linear models for predicting variant prevalence in cancer cohorts using mutational
signatures and either sc-eVIP or functional assays for TP53 and KRAS. e,g. Top: Specification of
5 compared models, trained on the subset of variants profiled in this study (small set, S) or on a
large dataset of thousands of variants (L) or by shuffling the observed variant prevalence across
variants (Methods). Observed (x axis) and predicted (y axis) variant prevalence (log.(counts + 1)),
for each model across variants (dots), colored by whether the variant is in the training (gray) or
test (black) set, for TP53 (e) and KRAS (g). f,h. Coefficient of determination (1) of each of the 5
models for TP53 (f) and KRAS (h) relative to a model predicting the mean variant prevalence,
across 10 models, colored by whether they use sc-eVIP scores for prediction (red), functional
assays (blue), or neither (gray). i,j. Mutation prevalence (x axis, left, colored by mutation
prevalence (dark gray >= 20 counts and light gray <20 counts) and sc-eVIP scores (x axis, right,

colored by variant class), for each of the TP53 (i) and KRAS (j) variants in the study.
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Figure 5. Power analysis and outlook for the variant-to-function efforts to phenotype cancer
coding variation.

a-c. Power analysis for detecting impactful variants as a function of effect size. a. Variant impact
effect size (y axis, logu(sc-eVIP score)), colored by variant class for TP53 (left) and KRAS (right)
variants. Dotted line separates impactful from neutral variants. b. Sensitivity (colorbar) of
impactful variant detection for each variant effect size bin in a (rows) at increasing numbers of
cells profiled per variant (columns). ¢. Number of cells required for a sensitivity of 0.95 at an FDR
of 1% (y axis) for each variant effect size bin (x axis). d,e. Projected number of cells required for
a cancer coding variant impact atlas. d. Number of cells (millions, y axis) required to profile for
testing a given number of variants (x axis), at different variant impact effect sizes (colored curves).
Vertical lines: number of variants needed for studying all cancer genes in the Foundation Medicine
Panel less than 1kb in length (magenta) or less than 3kb (purple). Dots: number of cells required
for these atlases for detection at the strongest effect size bin. e. Distribution of transcript lengths

(x axis, Kb) for the 309 cancer genes in the Foundation Medicine panel.
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Extended Data Figure 1. Quality control for TP53 Perturb-Seq experiment.

a. Variant representation in the library. Number of barcode reads (y axis) for each tested variant (x
axis), either after transduction and 2-day puromycin selection (“no recovery”), or 42.5 hours after
puromycin selection (“42.5h recovery”). b-f. Quality control metrics. b. Cumulative distribution
function (CDF) of number of cells (x axis) profiled for each variant, considering either all cells
(light blue) or only cells with a single variant (dark blue). ¢. Distribution of the number of variants
detected per cell. d. Distribution of the number of variant barcode (vbc) UMIs per cell per variant.
e. The number of cells detected per variant (y axis) and the variant’s barcode expression (x axis,
TP10K) for cells with a single variant, colored by class. f. Distribution of mean variant barcode
expression (TP10K, x axis). Variants with a fold change higher than 1.5 compared to the WT
barcode are colored by variant class. g. Potential doublets. Top left: Distribution of number of
UMIs/cell (y axis) for each cell cluster as defined by Louvain clustering of cell profiles (bottom,
middle). Top middle and right: enrichment and depletion (x axis, -log.(adj. p-value),
hypergeometric test); positive sign for enrichment, and negative for depletion) for each cluster in
unassigned cells (top middle) and cells with multiple variants (top right). Bottom: UMAP
embedding of single cell profiles (dots) colored by number of UMIs/cell (left), cluster assignment
(middle), or cell clusters that are likely doublets (clusters 10 and 11, right). h. Permutation tests
for FDR control. Sc-eVIP score (y axis) for variants (dots) in each variant group (x axis). Dotted
lines: FDR 1% for a permutation test shuffling the assignments of variants (gray) or estimating an
empirical distribution of the sc-eVIP under the null hypothesis using only comparisons between
synonymous variants (black). i. Impact of number of cells on sc-eVIP scores. sc-eVIP scores for

each variant (dots, colored by variant class) computed using 1,000 cells/variant (x axis) or with
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varying numbers of subsampled cells (y axis). Dotted lines: threshold sc-eVIP score at a 1% FDR

for each axis.
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Extended Data Figure 2. Gene programs impacted by TP53 variants.

a-e. Gene programs impacted by variant classes. a,b. UMAP embedding of single cell profiles
(dots), colored by program scores (color bar) and labeled by selected Gene Ontology biological
processes enriched in genes from each program (top). ¢,d. CDF for program scores (x axis) for
each variant (c) or for all variants in one class (d), colored by class. e. Average expression (z score,
color bar) in cells of each variant (columns) of genes (rows) most correlated with the mean of the
expression program. f. Mean expression (colorbar) of each gene (rows) in cells of each variant
(columns). Row color bar: gene program membership; Column color bar: variant class. g..
Difference (dot color) in mean expression of each gene program (rows) between the cells in each
cluster (columns, as in Extended Data Fig. 1g) and all other cells, and the significance of this
difference (dot size, -log.(adj. p-value), Kolmogorov-Smirnov test, Methods). Colored border:
BH FDR<10%. h. ROC curve of the true positive (y axis) and false positive (x axis) rate when
using each PC (color) to distinguish between single cells with synonymous variants and those with
variants in hotspot positions 175, 248, and 273. Color legend: Area Under the ROC curve
(AUROOQC) for each variant. i-k. Principal component analysis. i. UMAP embedding of single cell
profiles, colored by principal component (PC) scores (color bar), for each of the first 10 PCs. j,k.
CDFs for the PC scores (x axis) for the cells of each variant or all variants in a class, colored by

class.
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Extended Data Figure 3. Comparison of sc-eVIP with cellular phenotyping assays and cell
cycle effects for TP53 variants.

a-c. sc-eVIP impact scores and gene programs agree with functional growth assays under Nutlin-
3 treatment in a p53 wildtype background (a) or a pS3 null background (b) and under etoposide in
a p53 null background (¢). Left: Functional assay score (y axis) and sc-eVIP score (x axis, left) or
normalized variant expression (x axis, transcripts per 10,000 UMlIs/cell (TP10K), right) for each
variant (dots), colored by variant class. Middle: Correlation (x axis) between the functional assay
score for each variant and mean gene expression across the variants for the genes (y axis) whose
expression is most strongly correlated with the functional assays score. Right: Mean gene program
(x axis) and functional assay (y axis) scores for each variant (dots), colored by variant class. d-f.
Cell clusters correlated with functional growth assays under Nutlin-3 treatment in a p53 wildtype
background (d) or a p53 null background (e) and under etoposide in a p53 null background (f).
Left: Spearman correlation coefficient (x axis) between the proportion of cells from each variant
in each cluster (as in Extended Data Fig. 1g) and the functional assay scores of the variants. Right:
Proportion of cells (x axis) in cluster (label, top) and functional assay scores (y axis) for each
variant (dots), colored by variant class. g. Proportion of cells in each cell cycle phase (y axis)

among cells carrying each variant (dots) across variant classes (x axis). Adj. p-value: t-test.
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Extended Data Figure 4. Variant-by-variant analyses for TP53 variants.

a. Variant features. Number of cells (y axis, top), distribution of normalized variant barcode
expression (y axis, middle; red: variants with a fold-change greater than 1.5) and sc-eVIP scores
(y axis, bottom; black: significant scores) for each variant (x axis), ordered as in Fig. 1e. Grey font:
controls (synonymous and ExAC), blue font: hotspot variants (positions 175, 248, 273). b.
Agreement with other data features. Top: difference (dot color) in mean expression or signature
score between a variant (columns, ordered as in Fig. 1e) and unassigned cells and the significance
of this difference (dot size, -log.(adj. p-value), Kolmogorov-Smirnov test, Methods) for each of
two genes canonically induced by TP53 and two TP53-associated signatures (rows). Colored
border: BH FDR<10%. Middle: Growth (z-score, color bar) in three functional assays (rows) of
each variant (columns). Bottom: Mutation prevalence (log.(counts+1) of variant occurrences) in
two datasets (rows) of each variant, ordered as in Fig. le. ¢. Gene programs association with
variants. Top: Difference (dot color) in mean program score (top) or mean PC score (bottom)
between a variant (columns) and WT overexpressing cells and the significance of this difference
(dot size, -log.(P-value), Kolmogorov-Smirnov test, Methods) for each gene program (top, rows,
by gene clustering genes, Methods), or each of the top 10 PCs (bottom, rows). Colored border:
BH FDR<10%. d,e. Relation of variants to different clusters and cell cycle phases. Left: Proportion
of cells (bar height) in each cell cluster (d, as in Extended Data Fig. 1g) or cell cycle phase (e)
(rows) derived for each variant (columns), annotated at the top with significance from a chi-square
test comparing the cell state distribution of each variant with that of WT overexpressing cells (-
log.(adj. p-value)). Right: UMAP embedding of single cell profiles, colored by cell clusters (d) or
cell cycle phase (e). f. Relation of variants to p53 gene structure. sc-eVIP scores (y axis) of each

variant (dot, colored by the variant class) and its position along the TP53 gene (x axis, annotated
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by domain). g. Variant induced shift in cell distributions. Density map of cell profiles in a UMAP

embedding, comparing the density of cells overexpressing variants in each of 3 classes to either

the WT TP53 allele (grey, top) or unassigned cells (purple, bottom).
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Extended Data Figure 5. Quality control for KRAS Perturb-Seq experiment.

a. Variant representation in the library. Number of barcode reads (y axis) for each tested variant
(x axis), either after transduction and 2-day puromycin selection (“no recovery”), or 42.5 hours
after puromycin selection (“42.5h recovery”). b-f. Quality control metrics. b. Cumulative
distribution function (CDF) of number of cells (x axis) profiled for each variant, considering either
all cells (pink) or only cells with a single variant (red). c. Distribution of the number of variants
detected per cell. d. Distribution of the number of variant barcode (vbc) UMIs per cell per variant.
e. The number of cells detected per variant (y axis) and the variant’s barcode expression (x axis,
TP10K) for cells with a single variant, colored by class. f. Distribution of mean variant barcode
expression (TP10K, x axis). Variants with a fold change higher than 1.5 compared to the WT
barcode are colored by variant class. g. Potential doublets. Top left: Distribution of number of
UMIs/cell (y axis) for each cell cluster as defined by Louvain clustering of cell profiles (bottom,
middle). Top middle and right: enrichment and depletion (x axis, -log.(adj. p-value),
hypergeometric test); positive sign for enrichment, and negative for depletion) for each cluster in
unassigned cells (top middle) and cells with multiple variants (top right). Bottom: UMAP
embedding of single cell profiles (dots) colored by number of UMIs/cell (left), cluster assignment
(middle), or cell clusters that are likely doublets (clusters 10, 11 and 12, right). h. Permutation tests
for FDR control. Sc-eVIP score (y axis) for variants (dots) in each variant group (x axis). Dotted
lines: FDR 1% for a permutation test shuffling the assignments of variants (gray) or estimating an
empirical distribution of the sc-eVIP under the null hypothesis using only comparisons between
synonymous variants (black). i. Impact of number of cells on sc-eVIP scores. sc-eVIP scores for

each variant (dots, colored by variant class) computed using 1,000 cells/variant (x axis) or with
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varying numbers of subsampled cells (y axis). Dotted lines: threshold sc-eVIP score at a 1% FDR

for each axis.
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Extended Data Figure 6. Gene programs impacted by KRAS variants.

a-e. Gene programs impacted by variant classes. a,b. UMAP embedding of single cell profiles
(dots), colored by program scores (color bar) and labeled by selected Gene Ontology biological
processes enriched in genes from each program (top). ¢,d. CDF for program scores (x axis) for
each variant (c) or for all variants in one class (d), colored by class. e. Average expression (z score,
color bar) in cells of each variant (columns) of genes (rows) most correlated with the mean of the
expression program. f. Mean expression (colorbar) of each gene (rows) in cells of each variant
(columns). Row color bar: gene program membership; Column color bar: variant class. g.
Difference (dot color) in mean expression of each gene program (rows) between the cells in each
cluster (columns, as in Extended Data Fig. 1g) and all other cells, and the significance of this
difference (dot size, -log.(adj. p-value), Kolmogorov-Smirnov test, Methods). Colored border:
BH FDR<10%. h. ROC curve of the true positive (y axis) and false positive (x axis) rate when
using each PC (color) to distinguish between single cells with synonymous variants and those with
variants in hotspot positions 12, 13 and 61. Color legend: Area Under the ROC curve (AUROC)
for each variant. i-k. Principal component analysis. i. UMAP embedding of single cell profiles,
colored by principal component (PC) scores (color bar), for each of the first 10 PCs. j,k. CDFs for

the PC scores (x axis) for the cells of each variant or all variants in a class, colored by class.
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Extended Data Figure 7. Comparison of sc-eVIP with cellular phenotyping assays and cell
cycle effects for KRAS variants.

a,b. sc-eVIP impact scores and gene programs agree with growth in low attachment at 7 days (a)
and 14 days (b). Left: GILA score (y axis) and sc-eVIP score (x axis, left) or normalized variant
expression (x axis, transcripts per 10,000 UMIs/cell (TP10K), right) for each variant (dots), colored
by variant class. Middle: Correlation (x axis) between the GILA score for each variant and mean
gene expression across the variants for the genes (y axis) whose expression is most strongly
correlated with the GILA score. Right: Mean gene program (x axis) and GILA (y axis) scores for
each variant (dots), colored by variant class. ¢,d. Cell clusters correlated with GILA at 7 days (c)
and 14 days (d). Left: Spearman correlation coefficient (x axis) between the proportion of cells
from each variant in each cluster (as in Extended Data Fig. 5g) and the GILA scores of the
variants. Right: Proportion of cells (x axis) in cluster (label, top) and GILA scores (y axis) for each
variant (dots), colored by variant class. e. Proportion of cells in each cell cycle phase (y axis)
among cells carrying each variant (dots) across variant classes (x axis). Adj. p-value: t-test. f.
Performance of a logistic regression classifier, trained to predict for each individual cell its variant
class. The performance is shown as a heatmap, for each variant class (x axis) as a function of cell
states (y axis), with values representing the accuracy within the cells in the respective variant class

and cell state.
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Extended Data Figure 8. Variant-by-variant detailed representation of all analyses for
KRAS variants.

a. Variant features. Number of cells (y axis, top), distribution of normalized variant barcode
expression (y axis, middle; red: variants with a fold-change greater than 1.5) and sc-eVIP scores
(y axis, bottom; black: significant scores) for each variant (x axis), ordered as in Fig. 2d. Grey
font: controls (synonymous and ExAC), red font: hotspot variants (positions 12, 13 and 61). b.
Agreement with other data features. Top: Dependence of cell line growth on KRAS (y axis), for
cell lines (dots) categorized by their KRAS genotype status (x axis). Gray: wildtype KRAS, red:
known gain-of-function variants. Middle: Growth in low attachment of HA1E cells (z-score, color
bar), or GILA score, for each variant (columns, ordered as in Fig. 2d) at 7 and 14 days.. Bottom:
Mutation prevalence (log.(counts+1) of variant occurrences) in the COSMIC database (top) and a
pan-cancer curated set (bottom), for each variant. ¢. Gene programs association with variants. Top:
Difference (dot color) in mean program score (top) or mean PC score (bottom) between a variant
(columns) and WT overexpressing cells and the significance of this difference (dot size, -log.(P-
value), Kolmogorov-Smirnov test, Methods) for each gene program (top, rows, by gene clustering
genes, Methods), or each of the top 10 PCs (bottom, rows). Colored border: BH FDR<10%. d,e.
Relation of variants to different clusters and cell cycle phases. Left: Proportion of cells (bar height)
in each cell cluster (d, as in Extended Data Fig. 1g) or cell cycle phase (e) (rows) derived for each
variant (columns), annotated at the top with significance from a chi-square test comparing the cell
state distribution of each variant with that of WT overexpressing cells (-log.(p-value)).. Right:
UMAP embedding of single cell profiles, colored by cell clusters (d) or cell cycle phase (e). f.
Relation of variants to KRAS gene structure. sc-eVIP scores (y axis) of each variant (dot, colored

by the variant class) and its position along the KRAS gene (x axis, annotated by domain). g. Variant
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induced shift in cell distributions. Density map of cell profiles in a UMAP embedding, comparing
the density of cells overexpressing variants in each of 3 classes to either the WT TP53 allele (grey,
top) or unassigned cells (purple, bottom). h. UMAP embedding of single cell profiles colored by

representative PCs.
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Extended Data Figure 9. Performance of models predicting mutation prevalence for TP53
and KRAS variants.

For each of TP53 (a-¢) and KRAS variants (d-f), shown is the performance of different generalized
models (a axis) by either » (a,d y axis, relative to a model that predicts the average mutation
prevalence), or either Spearman (b,e) or Pearson (c,f) correlation coefficient between mutation
prevalence and predictions. S: subset of variants profiled in this study; L: large dataset consisting
of thousands of TP53 variants or tens of KRAS variants. Cell: functional assays data; Mut:
mutational signature data. Shuffled: model which shuffles the observed variant prevalence across
variants. Boxes are colored by use of mutational signatures (dark), sc-eVIP scores (red), and
functional assays (blue). Boxplot shows the median, and its ends represent the 25% and 75%
quartiles, with whiskers extending between (25% quartile - 1.5 interquartile range) and (75%
quartile + 1.5 interquartile range) or the most extreme values in the data, if they fall within this

range.
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Supplementary Table 1. Properties of TP53 variants. The columns represent the name of the
variant (Variant), its position in the amino acid sequence (Position), the original base(s) in the
ORF (From), the base(s) the variant produces (To), whether the variant involves a single or
multiple base change (Mutation type), whether the variant is a control synonymous, EXAC or
unknown (Control status), whether the variant passed quality control and is in the library
(Library synthesis), the number of cells per variant (Cells/variant), the average expression of the
variant barcode in UMIs per 10,000 UMIs (Variant expression), Hotelling’s T? statistic
representing the sc-eVIP score (HotellingT2), the FDR (FDR.HotellingT2), the functional class
assigned to the variant (Variant functional class), the variant prevalence in the pan-cancer dataset

(Count(pancan)) and the variant prevalence in EXAC (Count (ExAC)).

Supplementary Table 2. Properties of KRAS variants. The columns represent the name of the
variant (Variant), its position in the amino acid sequence (Position), the original base(s) in the
ORF (From), the base(s) the variant produces (To), whether the variant involves a single or
multiple base change (Mutation type), whether the variant is a control synonymous, EXAC or
unknown (Control status), whether the variant passed quality control and is in the library
(Library synthesis), the number of cells per variant (Cells/variant), the average expression of the
variant barcode in UMIs per 10,000 UMIs (Variant expression), Hotelling’s T? statistic
representing the sc-eVIP score (HotellingT2), the FDR (FDR.HotellingT2), the functional class
assigned to the variant (Variant functional class), the variant prevalence in the pan-cancer dataset

(Count(pancan)) and the variant prevalence in EXAC (Count (ExAC)).
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