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Abstract 

Genome sequencing studies have identified millions of somatic variants in cancer, but their 

phenotypic impact remains challenging to predict. Current experimental approaches to distinguish 

between functionally impactful and neutral variants require customized phenotypic assays that 

often report on average effects, and are not easily scaled. Here, we develop a generalizable, high-

dimensional, and scalable approach to functionally assess variant impact in single cells by pooled 

Perturb-seq. Specifically, we assessed the impact of 200 TP53 and KRAS variants in >300,000 

single lung cancer cells, and used the profiles to categorize variants into phenotypic subsets to 

distinguish gain-of-function, loss-of-function and dominant negative variants, which we validated 

by comparison to orthogonal assays. Surprisingly, KRAS variants did not merely fit into discrete 

functional categories, but rather spanned a continuum of gain-of-function phenotypes driven by 

quantitative shifts in cell composition at the single cell level. We further discovered novel gain-

of-function KRAS variants whose impact could not have been predicted solely by their occurrence 

in patient samples. Our work provides a scalable, gene-agnostic method for coding variant impact 

phenotyping, which can be applied in cancer and other diseases driven by somatic or germline 

coding mutations. 
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INTRODUCTION 

Precision medicine requires the ability to predict how specific genetic variants function in each 

patient (Rehm and Fowler, 2019). In cancer, one useful proxy to detect functionally selected 

variants is by their occurrence within patient cohorts (e.g., KRAS G12V/D, TP53 R175H, BRAF 

V600E). However, most coding variants detected by cancer genome sequencing are rare, even 

within established cancer genes (Bailey et al., 2018; Lawrence et al., 2014; Tate et al., 2019; Zehir 

et al., 2017). Even in the case of highly recurrent variants, their mechanistic effect on cancer 

phenotype(s) is often undefined. As a result, distinguishing all variants that result in phenotypic 

changes from those that have no discernible effect remains a challenging problem that limits the 

interpretation of tumor genome sequencing.  

 

Previous studies have used both computational and experimental assays to determine the putative 

functional impact of variants, defined as a significant difference between a variant and the wildtype 

allele. However, each approach has substantial limitations. Computationally, recurrent mutations 

that are spatially localized (Chang et al., 2016; Kamburov et al., 2015) or evolutionarily conserved 

(Figliuzzi et al., 2016; Hopf et al., 2017) are less likely to be functionally neutral. However, 

detecting recurrence while correcting for the non-random imprint of wide ranging mutagenic 

processes, which are only partly known (Giacomelli et al., 2018), requires substantial data sets to 

achieve statistical power (Alexandrov et al., 2013, 2015; Lawrence et al., 2013). Moreover, 

inference of positive selection on a given variant does not provide information about the specific 

biological function(s) it affects. Experimentally, gene-by-gene functional genomics approaches 

for variant impact phenotyping have assessed large numbers of alleles within a single gene, such 

as ERK1/ERK2 (Brenan et al., 2016), BRCA1 (Findlay et al., 2018), PI3K (Dogruluk et al., 2015; 
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Yu et al., 2020), MEK1/2 (Gao et al., 2018) and TP53 (Boettcher et al., 2019; Giacomelli et al., 

2018; Kotler et al., 2018). However, these have typically focused on specific signaling functions, 

and thus rely on gene- and lab-specific bespoke cellular assays, with specialized phenotypes. Such 

assays have limited generalizability and reproducibility, require some prior knowledge of the 

gene’s function, and often distinguish variants only by one dimension, without extensive 

information on their molecular functions.  

 

By contrast, gene expression profiles (Berger et al., 2016; Dogruluk et al., 2015; Kim et al., 2016; 

Yu et al., 2020) and multi-parameter cellular imaging (Rohban et al., 2017) provide generalized 

phenotypes, are theoretically applicable to any gene, and yield high-dimensional phenotypes that 

are readily interpretable. However, to date, such approaches required arrayed, one-by-one 

measurements of variant impact, and were thus limited in scale. Moreover, bulk profiling could 

not distinguish between two types of variant impact – a uniform (or unimodal) effect across the 

cells, or diverse effects – multi-modal or otherwise. 

 

Here we modified Perturb-Seq for pooled genetic screens with single cell RNA-Seq readout 

(Adamson et al., 2016; Dixit et al., 2016) to phenotype coding variants in a highly scalable 

approach for single-cell Expression-based Variant Impact Phenotyping (sc-eVIP). We 

benchmarked this approach by studying 200 variants of the TP53 and KRAS genes in 300,000 

single cells, introduced computational methods for distinguishing the functional impact of specific 

variants, and demonstrated how population-based measurements may fail to capture the impact of 

variants on single cell heterogeneity.  
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RESULTS 

 

A Perturb-Seq assay for coding variant phenotyping 

To assess the impact of coding variants at scale, we modified Perturb-Seq to simultaneously 

resolve the identity of an exogenously introduced cancer variant tagged with a DNA barcode 

together with the induced expression state at the single cell level (Fig. 1a, Methods). Building on 

our prior work (Berger et al., 2016), we reasoned that variant function could be assessed by 

comparing gene expression in cells with each of the tested variant constructs to that of cells with 

the WT gene construct (Fig. 1a). We annotated variants as neutral if they were indistinguishable 

from the WT construct, and putatively impactful if they deviated significantly. To do this in a 

pooled setting, we cloned the coding sequence of each variant tested, each tagged with a distinct 

10bp-long DNA barcode, into a modified Perturb-seq vector (Methods), and recovered both the 

expression profile of each cell and the identity of the variant(s) it overexpresses by 3’ scRNA-seq 

(Fig. 1a).  

 

As a first test case, we assessed 75 cancer-associated coding variants in TP53, compared to 

synonymous controls and non-synonymous common variants. To this end, we selected and 

synthesized 100 TP53 variants (99 passed QC; Extended Data Fig. 1a, Extended Data Table 1). 

These included (1) the 75 most recurrent TP53 mutations from TCGA (Bailey et al., 2018), 

MSKCC-IMPACT (Zehir et al., 2017), and GENIE (AACR Project GENIE Consortium, 2017), 

which are predicted to be uniformly loss-of-function (Tate et al., 2019); (2) 15 synonymous 

variants as controls (expected to be indistinguishable from the wildtype allele); and (3) 10 non-

synonymous variants from healthy cohorts (ExAC, (Lek et al., 2016)). We transduced the 99 
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pooled TP53 variants into A549 lung cancer cells, a known suitable biosensor for TP53 function 

(Giacomelli et al., 2018) at low MOI to favor single variants per cell (estimated MOI 0.77 and 

detection probability 0.78). We selected for successfully infected cells, and performed scRNA-seq 

(Fig. 1a). Because the expression level of the variants was sufficiently high, we did not perform a 

dial-out PCR (Dixit et al., 2016) to enrich variant barcodes.  

 

Overall, we associated variants and profiles reliably. Specifically, we recovered 162,314 high 

quality cells of which 84% had detectable variant barcodes and 62% were confidently annotated 

with a single expressed variant (median 926 high confidence cells per variant; Extended Data 

Fig. 1b,c). In >70% of cases, a variant overexpressed in a cell was supported by at least 2 barcode 

UMIs (Extended Data Fig. 1d). Furthermore, each of the TP53 variants was expressed at levels 

comparable to the wild type construct with only two variants exceeding a 1.5-fold expression 

difference (Fig. 1d, Extended Data Fig. 1e,f, M237I and Y236C). To reduce potential biases due 

to variant overexpression levels, we regressed out the variant barcode expression in each cell.  

 

Single-cell expression variant impact scores correctly distinguish TP53 loss-of-function 

variants 

To score and categorize variants by their expression profiles we used two complementary 

approaches: scoring the distance between the mean profiles of variants and the WT construct by 

extending our previous expression-based variant impact phenotyping (eVIP) approach (Berger et 

al., 2016), and unsupervised clustering of variants by their mean profiles. Our “single cell eVIP” 

scores (sc-eVIP) quantify the extent to which cells overexpressing a variant deviate from the mean 

expression profile of cells overexpressing the wildtype allele (Methods) using Hotelling’s T2 test 
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(Hotelling, 1931), a multivariate generalization of a t-test applied to a low-dimensional 

representation of cells in principal component (PC) space (Methods). This statistical test yielded 

highly concordant results, even when we down-sampled the cells ~10-fold to 100 cells/variant; 

(Extended Data Fig. 1i). We then called impactful variants at a 1% FDR by comparison to an 

empirical null distribution generated from comparisons between control synonymous variants 

(Methods). As a complementary unsupervised approach, we hierarchically clustered the variants 

using an L1 distance and complete linkage, applied to the correlation matrix of average expression 

profiles (Methods, Fig. 1b,e). Finally, we investigated the gene programs underlying the different 

classes of variants tested, by clustering the average gene expression profiles across variants to 

identify sets of genes with similar behaviors across variants (Extended Data Fig. 2f, Methods) 

or by principal component analysis (Methods, Extended Data Fig. 2g-k).  

 

Both the sc-eVIP scores and unsupervised clustering correctly distinguished expected loss-of-

function variants from the WT and control variants. Specifically, all (25/25; 100%) synonymous 

and ExAC control variants exhibited sc-eVIP scores similar to WT (FDR 1%, Fig. 1c), and formed 

a separate cluster, together with R337C (Fig. 1e, black). The remaining 73/74 variants (98.6%), 

including those at hotspot positions 175, 248 and 273 (top 3 most frequent variants in COSMIC 

(Tate et al., 2019), Fig. 1e, blue) exhibited significant sc-eVIP scores and formed a distinct cluster 

from the neutral controls (Fig 1. b,e). This cluster included the average profile from all unassigned 

cells (cells without a detected variant barcode), suggesting the variants in this cluster were likely 

loss-of-function. The 25 control TP53 variants significantly induced canonical signatures of TP53 

overexpression compared to unassigned cells (Fischer, 2017; Jeay et al., 2015), including induction 

of CDKN1A and RPS27L expression (Fig. 1g), and showed the expected increases in the 
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proportion of non-cycling cells, consistent with cell cycle arrest, as assessed from their single-cell 

expression signatures (Fig. 1m, Extended Data Fig. 3g).  

 

In this cellular context, the variants that were not in the neutral cluster further partitioned into two 

groups (Loss I and Loss II) by both increasing sc-eVIP scores (Fig. 1c) and as sub-clusters (Fig. 

1e, light and dark blue). The groups varied in the strength of impact on canonical TP53 signatures, 

such that Loss I variants induced canonical TP53 signatures to a lesser degree than neutral variants, 

whereas Loss II variants did not affect (or repressed) TP53 signatures relative to unassigned cells 

(Fig. 1g, t-test between 13-gene and 300-gene signature scores: neutral vs Loss I p=2.9*10-15, and 

7.4*10-17, and Loss I vs Loss II: 1.4*10-10 and 2.7*10-10). The repression of canonical TP53-

induced genes CDKN1A and RPS27L, and to a lower degree TP53 signatures in a majority of Loss 

I and II variants is consistent with the annotation of 71/74 of these variants as having dominant 

negative effects in previous work (Giacomelli et al., 2018) (all Loss I and II variants except R337L, 

R280K and G105C, as defined by a functional assay of growth upon treatment with Nutlin-3 in a 

TP53-WT background, z-score higher than 0.61(Giacomelli et al., 2018)). Specifically, 68/71 and 

62/71 of dominant negative variants show significant repression of CDKN1A and RPS27L and 

40/71 and 10/71 for 13-gene and 300-gene TP53 signatures respectively. 

 

As expected, loss of function and neutral variants had diametrically-opposed effects on multiple 

programs (Methods) compared to unassigned cells: program 0 (G1/S checkpoint, DNA damage 

response and metabolism) and 2 (adhesion, differentiation, migration) were repressed by loss of 

function variants and activated by neutral variants (Fig. 1i,j, Extended Data Fig. 2a-e), whereas 
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program 7 (cell cycle G2/M, chromatin remodeling) was activated by loss-of-function variants and 

repressed by neutral ones (Fig. 1i,j, Extended Data Fig. 2a-e).  

 

Our sc-eVIP scores and the associated gene programs from Perturb-Seq were highly concordant 

with those from an optimized TP53-specific cellular assay for growth under Nutlin-3 treatment, in 

a TP53-null background which was previously conducted with the same cell line and over-

expression constructs (Giacomelli et al., 2018) (Spearman ρ=0.73, p= 3.2*10-17, Fig. 1h, Extended 

Data Fig. 3a), as well as additional assays (Extended Data Fig. 3a-f)  

 

At the single cell level, neutral and loss-of-function variants did not occupy mutually exclusive 

cell states (Fig. 1k, Extended Data Fig. 4g), and the two groups showed extensive cell state 

overlap, but differed in their distribution across these states, especially in cell cycle phase 

distribution (Fig. 1k,l,m, Extended Data Fig 3g). As a result, a logistic regression classifier using 

gene expression to predict if any individual cell harbors a loss-of-function or neutral variant had 

limited accuracy (area under the precision-recall curve (AUPRC) = 0.78 on a test set of 50% of 

variants) (Fig. 1n), but overall variant classification using the proportions of cells in each of 15 

cell subsets (as defined by Louvain clustering) was highly accurate (AUPRC=1), suggesting that 

our TP53 variant phenotypes mostly reflect a shift in cell state distributions (Fig. 1n). 

 

Perturb-Seq for KRAS coding variants identifies rare, gain-of-function mutations and 

annotates additional KRAS mutations 

Given the recent success in therapeutically targeting specific KRAS variants (Hong et al., 2020), 

we next evaluated the utility of coding variants Perturb-seq for a series of 98 KRAS variants. 
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Although A549 cells harbor a KRAS G12S allele, we previously found that expression of KRAS 

alleles in this cell line permits the discrimination of the function of exogenously expressed KRAS 

alleles in functional assays (Berger et al., 2016; Kim et al., 2016; Singh et al., 2009). 

 

We selected the 75 most recurrent KRAS alleles in cancer cohorts and 26 negative control alleles, 

including 16 synonymous variants and 10 common, non-synonymous variants from ExAC (98 

passed QC; Extended Data Fig. 5a, Extended Data Table 2). These alleles included those 

reported frequently in cancers (n=1,782, 1,539, 1,110 for G12D, V, C, respectively) as well as 34 

rare alleles observed in fewer than 5 individuals among TCGA (Bailey et al., 2018), MSKCC-

IMPACT (Zehir et al., 2017), and GENIE (AACR Project GENIE Consortium, 2017) databases. 

We analyzed 150,044 high-quality single cell profiles (68% annotated to a single variant, a median 

of 1,058 cells per variant, Extended Data Fig. 5b,c,d, e). As for TP53, most variant constructs 

were expressed at similar levels (Extended Data Fig. 5f), with only 2 outlier constructs with 

reduced expression, both at position 61 (Q61K and Q61L, respectively), and no apparent 

relationship between variant expression levels and sc-eVIP scores (Fig. 2c, Spearman ρ=-0.04, 

p=0.72).  

 

Both impact scores (Fig. 2b, Extended Data Fig. 5i) and clustering by mean expression profiles 

(Fig. 2a,d) correctly distinguished control synonymous KRAS alleles from known gain-of-

function variants at hotspot positions 12, 13 and 61 (Fig. 2b, P<8.9*10-9, t-test). Based on both 

scores and clusters, we annotated another 19 variants as neutral, including 9 of 10 ExAC control 

variants and 10 variants observed in patients at low frequency (Y166H, T58A, C118S, K176Q, 

R135T, R164Q, L79I, R149K and I63S; each in fewer than 4 patients, Fig. 2e). Previously well-
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characterized gain-of-function variants at positions 12, 13 and 61 had higher sc-eVIP scores than 

neutral alleles and separated in distinct clusters (Fig. 2a,b,d). Moreover, in evaluating data from 

the Broad Cancer Dependency Map (Meyers et al., 2017), cell lines with impactful variants were 

more sensitive to loss of KRAS by CRISPR/Cas9 knockout than those with a wildtype allele (Fig. 

2f, p<8.3*10-147, t-test). Finally, there was good correlation (Fig. 2g, Spearman correlation 0.75, 

p=1.93*10-18) between sc-eVIP scores and those from a phenotypic assay measuring growth in 

low attachment (GILA (Rotem et al., 2015), z-scores) in human embryonic kidney cells (HA1E) 

overexpressing KRAS alleles (Ly, 2018). Variants deemed impactful by GILA had higher sc-eVIP 

scores (p<3.2*10-5, t-test) and sc-eVIP scores were predictive of GILA high-scoring variants (z-

score, AUPRC= 0.92).  

 

KRAS variants partition to several classes by their impact on expression  

To further understand the range of KRAS variants and the gene expression programs that underlie 

their functional impact, we defined five variant clusters by correlation between mean single cell 

profiles (pseudo-bulk) (Fig. 2a,d), as well as used Louvain clustering of the pseudo-bulk 

expression profiles across variants to identify expression programs associated with variants 

independent of cluster (Fig. 2h, i, Extended Data Fig. 6a-g). In most (10 of 14) positions with 

more than one non-synonymous variant tested, the different non-synonymous variants were in the 

same cluster (Fig. 2k). One cluster captured gain-of-function variants, including those at known 

hotspot positions 12, 13, and 61, and had the highest sc-eVIP scores (Fig. 2a,d, red text, Extended 

Data Fig. 8a). A second cluster contained all synonymous (WT) variants and 9 of 10 common 

non-synonymous (ExAC) variants, suggesting it captured the group of neutral variants in our set 

(Fig 2a,d, black). Three remaining clusters had lower sc-eVIP scores though not as low as for the 
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WT cluster (p<2.5*10-10, 9.4*10-14, 1.5*10-20 compared to WT cluster; t test), and included variants 

with increasing distinction by sc-eVIP scores (Fig 2a,b,d, green, purple, yellow, Extended Data 

Fig. 8a).  

 

Variants in the gain-of-function cluster included positions 12, 13, 22, 59, 61, 146, 117 and 119 

(Fig. 2d), which largely fall either at or near nucleotide binding domains (UniProt Consortium, 

2019) (Fig. 2k, Extended Data Fig. 8f). All of these variants significantly induced program 0 

(senescence, inflammation, development) (Fig. 2h,i), as well as program 1 (response to stimulus, 

apoptosis, secretion) and all but one induced program 4 (hypoxia, immune, stress, G2M, cell 

polarity) (Extended Data Fig. 6a-e). These alleles also repressed programs 10 (metabolic, G1/S, 

adhesion, regulation of senescence), 12 (signaling, MAPK, metabolic, development) and 13 

(metabolism), and all but two additionally repressed program 11 (adhesion, signaling, endocytosis) 

(Fig 2h,i, Extended Data Fig. 6a-e).  

 

The variants in the neutral cluster (Fig. 2d, black) included 18 variants observed in patients, 8 of 

which had low but significant sc-eVIP scores (P110S, L159S, Q25H, K147N, K147T, E63K, 

V14I, T50I) including variants appearing seven (V14I) or eight (E63K) times in patient cohorts 

(Fig. 2e). Although members of the same cluster, these variants had distinguishing features, as 

many repressed gene program 11 (adhesion, signaling, endocytosis) (Fig. 2h), although their 

impact on other programs was the same as neutral variants (Fig. 2h). 

 

We denoted the three clusters of variants that more closely, but not precisely, phenocopied neutral 

as “semi-neutral” (green), “atypical” (purple) and “semi-neutral-gain” (purple) based on the 
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gradual progression of their sc-eVIP scores from neutral to gain of function (Extended Data Fig. 

8a). Both the semi-neutral and semi-neutral-gain groups included variants near nucleotide binding 

sites, effector binding, and the allosteric lobe (Fig. 2k, Extended Data Fig. 8f), and induced an 

adhesion, signaling and endocytosis program (program 11, Fig. 2h), which was lower in both gain-

of-function and neutral variants. However, semi-neutral-gain variants had higher levels of gain-

of-function-associated programs for senescence, inflammation, development (program 0), 

response to stimulus, apoptosis and secretion (program 1) and hypoxia, immune, stress, G2M, cell 

polarity (program 4), and lower levels of neutral-associated programs metabolic, G1/S, adhesion 

and regulation of senescence (program 10), signaling, MAPK, metabolic and development 

(program 12) and metabolism (program 13), suggesting these alleles resemble gain-of-function 

cell states (Fig. 2h). 

 

Variants in the final “atypical” cluster (Fig. 2a,d, purple) showed a mixture of features from other 

variant groups: repression of program 0 (as in neutral and semi-neutral variants), and of programs 

12 and 13 (as in gain-of-function) (Fig. 2h). Of these variants, D33E has tumorigenic potential 

(Kim et al., 2016), due to altered protein dynamics including changes in the switch 1 

conformational state (Lu et al., 2018); and L19F conferred fitness in NIH3T3 cells (Akagi et al., 

2007) and scored highly in the GILA assay.  

 

KRAS variants form a gradual functional gradient within and across groups  

We further examined the KRAS variants that scored as impactful, leveraging the single cell 

profiles. We performed Principal Component Analysis (PCA) of all cells and searched for PCs 

that were significantly higher in cells carrying previously known gain-of-function variants from 
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hotspot positions 12, 13 and 61 compared to cells carrying synonymous variants. Of 32 

significantly different PCs (by t-test, 1% FDR), PC3 and PC4 scores (Fig. 3b) were particularly 

good at distinguishing between individual cells with activating vs. neutral variants (AUROC on 

balanced data 0.9 and 0.8 respectively, compared to the next best performance of 0.67 for PC5, 

Extended Data Fig. 6h-k). Top ranked genes for PC3 were enriched in oncogene-induced 

senescence, regulation of apoptosis and multiple metabolic pathways, while top genes for PC4 

were enriched for adhesion.  

 

Although PC3 scores of all neutral variants were mostly comparable to wildtype overexpressing 

cells (Extended Data Fig. 6j,k), other variants arranged on a continuum of increasing strength, as 

reflected by the increasing separation of the distribution of PC3 scores (Fig. 3c,d, Extended Data 

Fig. 8c), gradually shifting from the mildest separation appearing in variants in the neutral cluster 

that have significant sc-eVIP scores (e.g., V14I) to the strong separation in the full gain-of-function 

variants. Even within the gain-of-function cluster, PC3 scores varied continuously. This continuum 

was not explained by technical considerations, such as differences in variant overexpression levels 

(Fig. 3e, Spearman correlation -0.14, p=0.18) and was consistent with GILA assay (Ly, 2018) 

scores (Fig. 3f, Spearman correlation 0.73, p=1.3*10-16), for which it had high predictive power 

(auPRC 0.91), with only 5 of 24 variants scoring high in GILA (z-score > 3) not showing the 

expected increases in PC3 (Q61K, K177R, L19F, G12Y, F) (Fig. 3f, Extended Data Fig. 8c). 

PC4 scores varied most within the gain-of-function cluster, with neutral and semi-neutral variants 

showing similar levels, and atypical and semi-neutral-gain falling between neutral and gain-of-

function levels. This suggests that two sources of variation may be at play, as also indicated by 

gene program scores (Fig. 3b,g-j, Extended Data Fig. 8c).  
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KRAS gain-of-function variants largely redistribute cells within an existing phenotypic 

landscape 

These continuous differences between variants can arise because variants lead to a new cell state, 

not observed in the context of WT KRAS, because of a redistribution in the same phenotypic space, 

or both. To distinguish these possibilities, we embedded all the single cell profiles from our 

experiment in two dimensions (Fig. 3l, Methods) and compared the distribution of single cell 

profiles from variants in the five categories to those from either WT or unassigned cells (Fig. 3n).  

 

Impactful and neutral variants occupied a largely overlapping cell state space, but with a 

continuous shift in the distribution of cells across this space (Fig. 3k), from neutral, to semi-

neutral, semi-neutral-gain, atypical then followed by the continuum of gain of function variant 

spectrum. Only the strongest gain-of-function variants occupied almost exclusively a cell state 

space (Fig. 3k,l,n, cell state “0”) barely occupied by WT-overexpressing cells (<2%), but present 

in some of the unassigned cells (11.7%). For example, >81% of the cells with the strongest gain-

of-function variant, G13R, are in this space (Fig. 3k). This cell state is associated with high 

expression of gain-of-function programs 0 and 1 (Extended Data Fig. 6g). The proportion of cells 

in this portion of the cell state space corresponds to the observed continuum of variant activating 

levels by GILA (Spearman correlation = 0.78, P-value=1.8*10-20, Fig. 3f, Extended Data Figure 

7c-d). While the gain-of-function variants also have a higher proportion of cells in M phase, and 

a lower proportion in S phase (Extended Data Fig. 7e), these changes are modest and, unlike in 

TP53, are not a major contributor to the difference between variants. 
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Consistent with a model of redistribution of cells across an existing state space (Fig. 3k), when we 

trained a multi-class logistic regression model to classify each individual cell into its corresponding 

variant class as defined by unsupervised clustering, we found a broad swath of misclassifications 

(Fig. 3o, left). The best performance is for gain-of-function variants, due to the high enrichment 

of cells in cell state 0 largely depleted of other variants (Fig. 3k-m, Extended Data Fig. 7f). 

Conversely, a model trained and tested on mean expression profiles has near-perfect performance, 

in all but two classes, suggesting that variants impact cell composition (Fig. 3o, right).  

 

Expression impact can help predict mutation frequencies, but mutation frequency alone does 

not always predict impact for rare KRAS variants  

In principle, variants exerting stronger functional effects would be under stronger selective 

pressure in tumors and in many cases would be found to be mutated at higher frequencies across 

patients. Thus, we related our functional characterization of variants to observed mutation 

frequencies in cancer cohorts, to test if functional effects can help predict mutation frequency, and 

conversely, to understand the degree to which variant impact in our assay can be ascertained based 

on mutation frequency alone. There were significant correlations between the number of times a 

variant occurred in patient cohorts and either our sc-eVIP scores or cellular growth assays (Fig. 

4a-d, TP53: Spearman correlation = 0.73, P=3.1*10-15 with growth in Nutlin-3, TP53-null, 

Spearman correlation = 0.68, P=8.1*10-13 with sc-eVIP scores; KRAS: Spearman correlation= 

0.63, p=7.7*10-12 with GILA assay and Spearman correlation= 0.74, P=3.3*10-17 with sc-eVIP 

scores). 
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For TP53, previous work has shown that integrating functional assay results with mutational 

signatures accurately predicted the frequency of somatic variation across patient cohorts 

(Giacomelli et al., 2018). Following on this, we partitioned the variants into training and test sets 

by position (such that variants at the same position will not be shared between the training and test 

sets) 10 times, and quantified the extent to which sc-eVIP impact scores or functional assays are 

predictive of TP53 variant frequency, when combined with mutational signatures in a generalized 

linear model. All models trained performed better than random (t-test comparing each group with 

shuffled p. adj. <0.05), with similar performance for models using sc-eVIP scores as features, as 

compared to those using functional assays (Fig. 4e,f, Extended Data Figure 9a-c). As expected, 

models trained on the restricted set of 99 variants profiled in this work had higher variance than 

those trained on a larger training set, due to the model’s need for sufficient dynamic range of effect 

in the positions assigned to the training set. 

 

For KRAS, models using either sc-eVIP scores or GILA scores to predict variant frequency 

performed significantly better than a shuffled model (t-test comparing each group with shuffled p. 

adj. <3.92*10-4) and had similar performance to each other, with the exception of models trained 

on a larger set of variants than present in our dataset, which had a significantly better performance 

than models using sc-eVIP features (p. adj. 7.51*10-3, Fig, 4g,h, Extended Data Figure 9d-f). 

Overall, variants with the largest sc-eVIP impact score in our experiment also tended to be the 

most commonly mutated in cancers (Fig. 4j). Other gain of function variants (e.g., Q22K, 

A59G,E,T T58I, V14L, D119G) with somewhat lower frequencies, also had lower sc-eVIP scores 

within the gain-of-function cluster, as well as lower GILA scores. However, mutation frequency 

did not resolve well impactful variants that occur at a lower frequency (<20 observations), 
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highlighting the distinct value of functional profiles. For example, variants at known gain-of-

function hotspot positions 12, 13 and 61 that occur more rarely due to the requirement for multiple 

base changes (e.g., G12I, G12Y, G13E, Q61A, Q61P) are still detected as impactful with our assay. 

Additionally, ultra rare variants requiring single base changes (such as V14L and D119G) were 

also found to be gain-of-function, albeit at the low end of the gain-of-function continuum. Finally, 

several variants that arise from single base mutation (A146P, G13R) and are comparable in 

frequency to the neutral group (Fig. 4j, left), score as gain-of-function in our assay (Fig. 4j, right). 

Together, these observations highlight interesting disconnects between mutation prevalence in 

patients and mutation function, highlighting the importance of generating functional data as a 

complementary approach to cancer genome sequencing.  

 

Coding variant Perturb-Seq as a scalable variant phenotyping platform  

Finally, we performed power analysis by subsampling to evaluate the scalability of our approach 

for phenotyping thousands or more of cancer variants (Fig. 5). The impact of variants with large 

effect sizes could be detected with as few as 20-100 cells per variant, whereas smaller effect sizes 

mostly required 100-300 cells per variant (Fig. 5a-c). Thus, with ~8.3 million single cells, one 

could conceivably study all ~270,000 possible variants in each 1kb cancer gene in the Foundation 

Medicine Panel ([CSL STYLE ERROR: reference with no printed form.]), and with ~71 million 

cells, one could create a draft cancer variant functional atlas of ~2.3 million possible variants in 

the ~200 actionable cancer genes with cDNA sizes under 3kb (Fig. 5d,e). These calculations 

account for a 65% rate of variant barcode detection (as observed in our study), 20 cells per variant 

(sufficient for detecting the largest effect sizes per variant), and would amount to 400 cells per 

amino acid position, allowing us to detect lower impact variants by transferring information across 
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similar variants when modeling variant impact. As both large-scale single cell profiling and DNA 

synthesis technologies are rapidly increasing in scale, at lower costs (Datlinger et al., 2019; Ma et 

al., 2020; Sidore et al., 2019), such comprehensive experiments are now within reach. 

 

Discussion 

Our study shows the feasibility of a scalable, general platform for variant impact phenotyping in 

which pooled variants across different genes can be evaluated simultaneously for function. The 

single unified readout of single cell gene expression does not only provide an efficient 

experimental approach, but is also a rich and interpretable molecular phenotype. For example, the 

same readout allowed us to show that the cell cycle is the main underlying signal for differences 

between TP53 variants, but not for KRAS variants. In KRAS, the high-dimensional, continuous, 

and high-resolution profiles identified a continuum from neutral to highly impactful variants and 

categorized this continuum into variant classes, each distributing differently along a broad 

phenotypic space, and associated with specific gene expression programs which shift gradually. 

Such quantitative shifts of the cellular landscape at the single cell level are consistent with studies 

on the effects of variants affecting cellular compositions (Brodin et al., 2015; Dubovik et al., 2018; 

Li et al., 2018). 

 

The single cell nature of our approach allowed us to move beyond average gene expression profiles 

of variants to study their effect on distributions of cells. Specifically, in the cellular context 

explored in this work, it revealed that variants do not simply fall in discrete categories of loss-of-

function or gain-of-function but rather show quantitative shifts in cell compositions. The observed 

re-distribution of cells across the phenotypic landscape, enriching and depleting specific cellular 
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states for each variant, provides hypotheses for explaining the quantitative behavior of such 

variants in orthogonal assays. Moreover, the learned gene programs across single cells provide a 

step towards decoupling potentially multiple functionalities of variants for a gene, as is the case 

for KRAS where we observe a gain-of-function continuum as well as additional separate gene 

programs separating variant classes that may capture other aspects of KRAS biology to be further 

characterized. 

 

While expression-based variant phenotyping can help predict mutation frequencies, some 

mutations present in lower frequencies can nonetheless be highly impactful in our assays, showing 

the power and complementarity of functional, expression-based phenotyping. In particular, certain 

variants in KRAS had stronger phenotypic effects than we would have predicted based on 

recurrence in patient samples, while others had weaker effects than we would have predicted. Such 

discrepancies can be explained, at least partially, by the mutability of the underlying nucleic acid 

residues, consistent with prior observations with TP53 (Giacomelli et al., 2018). Future work will 

determine if models can be trained to better incorporate mutational signatures to predict the extent 

of functional impact without experimental assays.  

 

The observation that a cancer variant induces a gene expression change relative to the WT allele 

(defined as an impactful variant in this work) is highly suggestive of its biological function, but is 

not a definitive assessment of the induction of a cancer phenotype, such as tumorigenesis or drug 

sensitivity in models or patients. It is possible for impactful variants, as defined using gene 

expression profiling to not be consequential for human tumors. Nevertheless, our analysis showed 

high concordance between expression-based phenotyping and dedicated, highly optimized gene-
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specific functional assays. This suggests that an expression-based cancer variant impact atlas 

should be a useful first draft for annotating allele function. Comparisons to more physiological 

assays as they are developed would help properly calibrate false positive and false negative rates, 

and help interpret expression patterns in terms of their physiological relevance. With recent 

advances in pooled optical screens (Feldman et al., 2019), matched reference maps with both 

genomics and cell biology readouts should help facilitate this interpretation.  

 

Our experimental approach can be expanded and improved in several ways. First, we focused on 

one cellular context, A549 lung cancer cells, but our previous work (Berger et al., 2016; Kim et 

al., 2016), showed that additional cellular contexts can add sensitivity regarding the mechanism of 

loss-of-function (e.g., a WT endogenous allele is required for distinguishing dominant negative 

from LOF effects). The pooled nature of Perturb-Seq should allow us to readily extend this work 

to many cell lines, including existing pools of cell lines such as PRISM (Kinker et al., 2019; 

McFarland et al., 2020). Second, we used exogenously expressed cDNA constructs, where viral 

packaging limits the interrogation of longer (>3.5kb) genes, and where some variants may be 

expressed at non-physiologic levels. New approaches for base editing (Gaudelli et al., 2017; 

Komor et al., 2016) and prime editing (Anzalone et al., 2019) should help overcome this 

bottleneck. Third, we were limited by variant-level barcoding at the 3’ end of each construct for 

scRNA-seq detection. Advances in long-read scRNA-seq methods (Lebrigand et al., 2020; Volden 

and Vollmers, 2020) should allow direct sequencing readout of individual RNA variants. Finally, 

our scale is impacted by the costs of scRNA-seq. Advances in massively parallel scRNA-Seq, such 

as scifi (Datlinger et al., 2019) and combinatorial barcoding (Cao et al., 2017; Ma et al., 2020; 

Rosenberg et al., 2018) have substantially reduced such costs and can be efficiently applied to cell 
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lines. Efficiency can be further enhanced by using “compressed” designs (Cleary et al., 2017), 

such as introducing multiple distant mutations in one construct, multiple constructs in one cell, or 

multiple cells profiled together.  

 

Our proof-of-concept demonstrated the ability of sc-eVIP to read out variant impact across 

multiple distinct genes. The generalizability of this approach across genes will depend on whether 

engineered variants induce cell state changes that can be recorded at the transcriptomic level. We 

expect the approach to be particularly useful for variants in genes that affect many gene programs 

and elicit cell state changes, as for example those that result in signaling cascades or cell cycle 

changes. On the other hand, it may be more challenging to use gene expression based variant 

impact phenotyping for genes that result in transient effects or that have effect sizes comparable 

to the noise levels in these data. While the current work and previous research (Berger et al., 2016; 

Kim et al., 2016) have observed sc-eVIP to be versatile across a variety of cancer genes, future 

work will determine the extent to which sc-eVIP can be applied across all genes. 

 

Overall, coding variants Perturb-Seq combined with the associated sc-eVIP analytical framework 

represents a versatile and powerful approach for assessing the phenotypic impact of coding 

variants. In contrast to existing methods, it provides a high-content and highly interpretable readout 

about the functional impact of overexpressed variants and does not require the development of 

bespoke phenotypic assays for each gene of interest. At its current scale, it can be immediately 

deployed to assess medium-sized libraries of hundreds of disease-related variants, important for 

both basic biological understanding and therapeutic applications. With improvements, it should be 

amenable to the assessment of tens of thousands of variants and deep mutational scans of entire 
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disease-related genes in cancer and beyond, including coding variants in common diseases, and to 

construct general predictive models from variants to functions. Such an atlas of variant impact 

across all key cancer genes and contexts would be a foundational resource for translational cancer 

research. 

 
METHODS 
 

EXPERIMENTAL APPROACHES 

Variant pool construction for TP53 and KRAS variant pools 

Clinically observed variants of KRAS and TP53 were downloaded from cBioportal on October 

20th, 2017 from the TCGA (Bailey et al., 2018), MSKCC-IMPACT (Zehir et al., 2017), and 

GENIE (AACR Project GENIE Consortium, 2017) pan-cancer datasets and merged into a single 

list. We selected the 75 most frequently observed missense alterations for each gene from this list. 

The goal was diversity of amino acid variants; for amino acid changes that exhibited multiple 

possible nucleotide alterations, we selected a single variant (with priority given to single nucleotide 

variants). 25 negative control variants were also selected, comprising 10 missense and 15 

synonymous variants from ExAC that were not observed in the aforementioned cancer sequencing 

studies. We obtained wild-type TP53 (NM_000546.5) and KRAS (NM_004985.4) sequences from 

GenBank (Benson et al., 2013).  

 

Variants were synthesized by Twist Bioscience, appended with unique 10 bp barcodes generated 

by the ‘DNAbarcodes’ R package (Buschmann and Bystrykh, 2013) using a Hamming distance of 

5 between barcodes, and cloned into a modified Perturb-seq (Dixit et al., 2016) vector.   
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Perturb-seq: transduction, selection, and scRNA-Seq  

106 A549 cells (ATCC CCL-185) were transduced with either KRAS or TP53 lentiviral pools at 

an MOI of 0.1 to attain a single integration event per cell, and selected with 2  µg/mL puromycin 

for 2 days to obtain a final library representation of ~1,000 cells per variant for both KRAS and 

TP53. Cells were allowed to recover for 2 days after selection and then loaded onto a 10X 

Chromium chip using the 10X Chromium Single Cell 3’ v2 kit (10X Genomics #120237). We 

loaded 7,000 cells per channel across 32 channels for each cDNA library to obtain a total of 

224,000 cells per library (448,000 total). Paired-end libraries were sequenced over 32 lanes on an 

Illumina Hiseq 2500 per sequencing parameters recommended by 10X Genomics: cell barcode 

read length 26 bp, index read length 8 bp and transcript read length 98 bp. No dial-out PCR was 

done, in contrast to typical Perturb-seq (Adamson et al., 2016; Dixit et al., 2016; Jaitin et al., 2016) 

(Variant assignment is described in the section “Assigning variants to cells”.) 

 

COMPUTATIONAL ANALYSIS 

Single-cell RNA-seq data pre-processing  

Sequencing reads were demultiplexed and aligned using Cellranger 2.1.1 (Zheng et al., 2017), 

mapping to the human transcriptome version GRCh38-1.2.0, and resulting in a matrix of Unique 

Molecular Identifier (UMI) counts for each gene in each cell.  

 

We then further processed this matrix using scanpy (Wolf et al., 2018). To filter out low-quality 

cells and keep the most informative genes, we removed cells with <200 genes/cell, and then 

removed genes present in less than 3 of the remaining cells. We then further filtered out cells with 

fewer than 7,000 UMIs/cell and those with a percent mitochondrial UMIs/cell >20%. Finally, we 
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down-sampled cells with >50,000 UMIs to 50,000 UMIs, to avoid cells with unusually high 

sequencing depth.  

 

After filtering and the above down-sampling, to account for any differences in sequencing depth 

between the 64 10x channel batches, we further down-sampled the UMIs per cell such that all 

batches would have a median of 20,000 UMIs/cell. For this, we computed the median number of 

UMIs/cell in each channel, and then down-sampled the UMIs of each cell by a factor defined as 

the 20,000 desired UMIs/cell divided by the median number of UMIs/cell in the batch of the cell. 

Specifically, given a cell and this down-sampling factor, we went through each gene and obtained 

the adjusted number of UMIs by sampling from a binomial distribution with p=down-sampling 

factor and N=number of UMIs observed for this gene in the cell. This down-sampling procedure 

adjusted the distributions of UMIs/cell in each batch to have more similar medians. Batches with 

a median UMI/cell less than 20,000 did not go through this procedure. Note that in practice, similar 

results are obtained even without this down-sampling. 

 

We normalized the expression UMIs per cell to sum to 10,000 in each cell, and then transformed 

the normalized values to log(normalized expression+1) to obtain a raw expression matrix. We 

selected variable genes by identifying the genes for which the variance (scaled to a z-score relative 

to other genes in similar expression bins) exceeded 0.5. We also filtered the variable genes to have 

raw expression levels between 0.0125 and 4 (Zheng et al., 2017). 

 

We regressed out batch (as a discrete {0,1} variable), the number of UMIs/cell, the percent of 

mitochondrial reads, and the normalized expression of the variant barcode, and converted the 
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resulting residuals to z-scores for each gene across cells. The analyses in this work use these z-

scores, unless otherwise noted.  

 

We performed PCA for dimensionality reduction, keeping the first 50 principal components. We 

represented the cells in a low dimension using UMAP, using the default values of 15 nearest 

neighbors per cell and the default minimum distance between embedded points of 0.5. We used 

the resulting nearest neighbor graph to cluster cells using Louvain clustering (Blondel et al., 2008; 

Levine et al., 2015). 

 

We then subsampled the cells, to obtain 1000 for each variant, and this was used in downstream 

analyses. 

 

Investigating potential doublets 

We identified Louvain clusters of cells with higher counts than the rest, and checked if there was 

an enrichment of cells with multiple assigned variants, or a depletion of unassigned cells, as both 

of these would indicate the presence of doublets (Extended Data Fig. 1g and 5g). For TP53, this 

flagged clusters 10 (high counts, significantly depleted in unassigned cells and significantly 

enriched in cells with multiple variants) and 11 (high counts, significantly depleted in unassigned 

cells, significantly enriched in cells with multiple variants), comprising 5.7% of all cells. 

 

For KRAS, this flagged clusters 10 (high counts, significantly enriched in cells with multiple 

variants), 11 (high counts, significantly depleted in unassigned cells and significantly enriched in 

cells with multiple variants) and 12 (high counts, significantly depleted in unassigned cells and 
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significantly enriched in cells with multiple variants), comprising 8.5% of cells. While we retained 

the cells in these clusters in the results we presented, removing them did not significantly change 

the results. 

 

Assigning variants to cells 

To identify the variant(s) that were overexpressed in each cell, we identified the subset of reads 

that mapped to the distinct 10 bp barcodes annotating each variant. To this end, we created a 

reference for aligning reads consisting of the full sequence of the plasmid used in this study. We 

aligned all scRNA-seq reads to this reference, using Bowtie (version 1.2.2 (Langmead et al., 

2009)), and conservatively only kept alignments with up to 2 mismatches. We kept only valid 

alignments, defined as aligning to the negative strand of the reference (and positive strand for reads 

that align to the puromycin resistance gene on the construct). We filtered out UMIs with a 

transcript-per-transcript (TPT) value < 1 (Dixit, 2016), to remove chimeric reads containing 

variant barcodes. TPT quantifies for each read in a combination of cell barcode and UMI the 

fraction of reads that are identical, in order to flag cases where for a given cell-barcode-UMI 

combination, there is a small fraction of reads that are chimeric and do not map to the same variant 

barcode as the majority of reads. We considered reads having the same cell barcode and UMI and 

mapping to the same variant barcode as identical, even if they mapped to a different position of 

the plasmid, reasoning that they may still come from the same original molecule. We assigned 

cells to variants as long as there was at least 1 read supporting the variant. Because we use even 

single reads to assign variants, it is possible that we are overestimating the number of cells with 

more than 1 variant (and underestimating the number of cells that contain only a single variant). 
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Sc-eVIP impact scores 

To quantify the degree to which expression profiles of cells overexpressing a variant deviate from 

those of cells overexpressing the wildtype version, we used a Hotelling’s T2 statistic, a multivariate 

generalization of a t-test (Hotelling, 1931). We compared the profiles of cells overexpressing WT 

vs. mutant proteins in principal component space, considering the top 20 PCs, with the T2 value 

reported as the test statistic. Higher scores indicate higher impact.  

 

We then derived an empirical null distribution of the scores and identified a threshold 

corresponding to a False Discovery Rate of 1%, as previously described (Noble, 2009). When we 

only simply permuted the assignments of the variants to the cells, control synonymous variants 

scored as impactful (Extended Data Fig. 1h, 5h), because of variation between synonymous 

variants. We thus derived our empirical null distribution by comparing pairs of control 

synonymous variants in our dataset, and computing the FDR at a given score threshold as: (percent 

scores higher than the threshold from the empirical distribution)/(percent scores higher than the 

threshold from the empirical distribution + percent scores of non-synonymous variants higher than 

the threshold). Finally, we identified the highest score threshold associated with our desired FDR 

of 1%.  

 

Clustering variants by mean expression profiles 

To cluster variants into discrete classes, we computed the Spearman correlation coefficient 

between the average gene expression profiles of each pair of variants and used the correlation 

matrix as an input for clustering using an L1 distance and complete linkage. We ordered the leaves 

of the resulting dendrogram by increasing effect sizes, as computed with the Hotelling T2 test. To 
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obtain discrete cluster assignments, we cut the hierarchy based on visual inspection, obtaining 3 

clusters for TP53 and 5 for KRAS. 

 

Computing gene programs 

To identify genes whose expression is impacted by variants, we clustered the genes by variants 

matrix of average expression profiles across variants using Louvain clustering (using 5 nearest 

neighbors). This yielded sets of genes with coherent average expression profiles across variants. 

To identify representative genes for each such gene program, we asked which genes are most 

correlated with average program scores across variants. For this, we averaged the expression of 

genes in each program across in each cell, then averaged scores across cells of a given variant and 

then finally computed the correlation between the average gene expression program and the 

average expression of a gene across variants. 

 

Scoring of cell cycle phases in single cells 

To identify the cell cycle phase of each cell, we followed our previously described approach 

(Macosko et al., 2015). Briefly, we retrieved the representative genes for each of the cell cycle 

phases G1/S, S, G2/M, M, M/G1. We then restricted the sets of genes in each cell cycle phase to 

those that were correlated with the overall score (Spearman correlation coefficient > 0.3). We 

scored each cell cycle phase, and standardized the scores to z-scores within each cell cycle phase. 

We then assigned cells to the phase that had the highest score. If a cell had low scores for all phases 

(z-scores < 0), it was classified as non-cycling. 
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Signature analyses 

To compare our results with previously reported signatures for TP53, we retrieved two signatures 

from (Fischer, 2017; Jeay et al., 2015), consisting of two lists of genes. For each signature, we 

scored each cell by computing the average score across the genes in the signature, relative to a set 

of 50 control genes, chosen at random in a manner stratified by expression levels to match those 

of the genes in the signature. We then averaged signature scores across all cells for each variant 

and subtracted the average score in unassigned cells to obtain the results presented in Fig. 1g. 

 

Comparison to dedicated cellular variant phenotyping assays 

We retrieved TP53 cellular variant phenotyping assay data from (Giacomelli et al., 2018). For each 

of three conditions (Nutlin-3 in TP53-WT cells, Nutlin-3 in TP53-null cells and etoposide in TP53-

null cells) in A549 cells, the values retrieved represent the fitness change induced by 

overexpressing the variant after 12 days of treatment, reported as z-scores of log2-fold changes 

between the number of cells with the variant at the end of treatment and those at the beginning.  

 

We retrieved KRAS growth in low attachment (GILA) measurements from (Ly, 2018). The 

measurements were done on HA1E cells at 2 timepoints, 7 and 14 days, and were reported as z-

scores across all variants tested. The two timepoints were highly concordant (we report Day 7 

results in the main text, and show both in Extended Data Fig. 7a-b). 

 

Models to predict the identity of variants based on gene expression 

We trained a multi-class logistic regression classifier to distinguish each variant cluster for each 

of TP53 and KRAS, using the method sklearn.linear_model.LogisticRegression from the package 
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sklearn in python, with loss set to ‘multinomial’. We balanced the number of examples per class 

by subsampling each class of variants to the class with the fewest cells (6000 cells per class for 

TP53 and 3000 cells per class for KRAS). We partitioned the cells or the variants depending on 

the task into 50% in the training set and 50% test sets. We computed AUPRC using the R package 

PRROC (Grau et al., 2015). 

  

Studying compositional changes induced by variants 

Given an assignment of cells to sets, either cell cycle phases or clusters, we tested for each variant 

whether the distribution of cells from this variant across groups differs from that of cells 

overexpressing the wildtype allele, quantifying significance using a chi-square test.   

 

Predicting mutation frequencies in cancer cohorts 

To predict mutation frequency of a variant across patient cohorts, we followed a previously 

described procedure (Giacomelli et al., 2018). Briefly, we retrieved mutational signature scores 

and cellular variant phenotyping assay data (Giacomelli et al., 2018) and then fit a generalized 

linear model to predict the counts of each variant in cancer cohorts as measured by IARC counts 

for TP53. We used the package statsmodels in python, with the command statsmodels.GLM, with 

family=sm.families.Poisson()). The features used were combinations of: (1) impact scores, (2) 

mutational signatures and (3) cellular variant impact phenotyping assays from (Giacomelli et al., 

2018). Given the small number of examples for training, we used only the mutational signatures 

1, 2, 4, 5, 6, 7, 13, 24 as these were previously deemed most informative (Giacomelli et al., 2018).  
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We partitioned the data into training and test sets for TP53 by amino acid position, to avoid train-

test contamination through different variants at the same position having similar effects. For each 

type of model, we trained 10 cross-validated models, and report the median performance in the 

main text, and show the distribution of performance scores (Fig. 4f,h, Extended Data Fig. 9a-c 

for TP53, and Extended Data Fig. 9d-f for KRAS). For sc-eVIP impact scores, the training and 

test sets contained only the variants profiled in this study. For the comparisons with functional 

assays and mutational signatures, we also trained on the full datasets from (Giacomelli et al., 2018). 

As a control, we also consider the performance obtained when shuffling the order of the true 

counts. We focused on the subset of variants annotated with mutational signatures, which resulted 

in the control synonymous variants being excluded from these analyses. 

 

We used a similar approach for the variants in KRAS. We excluded from the training variants with 

0 observed occurrences in cancer cohorts. 

 

As performance metrics, we report Spearman and Pearson correlation coefficients between the 

ground truth and the predicted values, as well as R2 (coefficient of determination) as computed 

with the sklearn package in python, with the function sklearn.metrics.r2_score (note that this score 

can be negative, if a model predicts worse than a model predicting the average of observed values). 

 

Power analyses 

To determine the impact of the number of cells profiled per variant and the variant’s strength on 

the ability to detect variant impact, we performed a cell subsampling experiment, and quantified 

performance as the fraction of impactful variants with a given effect size (as determined from the 
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full dataset) that are recovered at an FDR of 1%, for the number of cells allotted. We performed 

10 independent subsampling iterations, and report the average performance for a given impact 

score and number of cells per variant. 

 

To ensure comparable results between TP53 and KRAS, for which we had a limited number of 

cells overexpressing wildtype alleles, we used synonymous variants that had >=1,000 cells/variant 

as the “WT reference” (P359P for TP53 and K169K for KRAS), rather than the WT overexpressing 

cells.  

 

Projections for creating an atlas of cancer variant impact  

We computed the number of cells and associated costs for characterizing all possible variants in a 

set of actionable cancer genes, which we retrieved from the Foundation Medicine Panel ([CSL 

STYLE ERROR: reference with no printed form.]). For each gene, we used the APPRIS database 

(Rodriguez et al., 2018) to select a principal isoform to serve as the basis for our calculations. We 

computed the number of variants for a given gene by multiplying the number of codons in its ORF 

by 20 amino acids. The number of required cells was defined as the number of variants multiplied 

by 20 cells per variant (a tradeoff to directly detect alleles with the strongest effect, as well as pool 

data from different variants in one position for alleles with smaller effect sizes). We increased the 

number of required cells (by 1/0.65), to account for our average detection rate of 65% cells with a 

single variant. 
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Reported p-values 

P-values reported throughout the paper are adjusted p-values, with the procedure by Benjamini-

Hochberg, computed using the python package statsmodels, with the function multipletests and 

with the parameter method set to “fdr_bh”. 

 

Variant-by-variant analyses 

For a comprehensive view of all analyses, displayed for each specific variant, refer to Extended 

Data Figures 4 and 8. 

 

Code availability 

All analyses can be recapitulated with Jupyter notebooks at https://github.com/klarman-cell-

observatory/sc_eVIP, and using the Perturb-seq library at https://github.com/klarman-cell-

observatory/perturbseq. 
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Figure 1. Perturb-Seq for scalable high-content coding variant profiling recapitulates known 

biology of loss of function variants in TP53. 

a. sc-eVIP for measuring the impact of coding variants using Perturb-seq. Left: ORF library with 

distinct barcodes associated with each different variant to test. Middle: transduction and Perturb-

seq. Right: variant impact assessment by the deviation of profiles from cell carrying variant from 

those of cells overexpressing the wildtype version. b-e. Distinction of neutral from loss of function 

variants by Perturb-Seq. b. Spearman correlation coefficients (red/blue) between the mean profiles 

of each pair of variants (rows, columns), clustered into classes (black: neutral, light blue: Loss I, 

dark blue: Loss II, horizontal and vertical bars), and labeled by controls (dark gray: synonymous, 

light gray: ExAC missense variants, purple: unassigned). c. sc-eVIP scores (y axis) for variants 

(dots) in each category (x axis). Dotted line: 1% FDR. d. sc-eVIP scores are independent of variant 

expression. Variant expression (y axis, transcripts per 10,000 UMIs/cell (TP10K)) for variant 

(dots) with different sc-eVIP scores (x axis). e-i. Variant classes are associated with distinct 

mutation frequency, TP53 expression signatures, functional assays (growth upon treatment with 

Nutlin-3 in a TP53-null background) and expression programs. e. Hierarchical clustering of 

variants by the correlation profiles in b. Black: neutral; light blue: Loss I; dark blue: Loss II. Grey 

font: controls (synonymous and ExAC), blue font: hotspot variants (positions 175, 248, 273). f. 

Mutation frequency (log2(counts+1) of variant occurrences in a pan-cancer curated set) of each 

variant, ordered as in e. g. Difference (dot color) in mean expression or signature score between a 

variant (columns, ordered as in e) and unassigned cells and the significance of this difference (-

log10(adj. p-value), Kolmogorov-Smirnov test, dot size, Methods) for each of two genes 

canonically induced by TP53 and two TP53-associated signatures (rows). Colored border: BH 

FDR<10%. h. Growth with Nutlin-3 in a TP53-null background (z-score) for each variant (ordered 
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as in e). i. Difference (dot color) in mean program score between a variant (columns, ordered as in 

e) and unassigned cells and the significance of this difference (-log10(adj. p-value, Kolmogorov-

Smirnov test, dot size, Methods) for each gene program (rows), as defined by clustering genes 

(Methods). Program 1, higher in assigned vs. unassigned cells was enriched for translation, 

nonsense-mediated decay, and viral transcription, and may reflect the response to lentiviral 

transduction. Colored border: BH FDR<10%. j. Gene programs vary across variant classes. Top: 

UMAP embedding of single cell profiles, colored by program scores (color bar). Middle: 

Cumulative distribution function of the program scores (x axis) for each variant class (color). 

Bottom: average expression (z-score, color bar) in cells of each variant (columns) of genes (rows) 

most correlated with the mean of the expression program. k. Variant induced shift in cell 

distributions. Density map of cell profiles organized in a 2-dimensional UMAP embedding, 

comparing the density of cells overexpressing a synonymous allele (black, right) or a loss of 

function variant, R248W (blue, left) to either the WT TP53 allele (grey, top) or unassigned cells 

(purple, bottom). l,m. Reduced proportion of non-cycling cells in loss of function TP53 variants.  l. 

UMAP embedding of single cell profiles, colored by their assignment to cell cycle phases. m. 

Proportion of non-cycling cells (y axis) among cells carrying each variant (dots) across variant 

classes (x axis). Adj. p-value: t-test. n. Accurate variant classification by mean profiles but not at 

the single cell level. Performance (AUROC on balanced test set, color bar) of logistic regression 

classifiers predicting the class of variant for individual cells (left), or for the entire set of cells (by 

proportion of cell states) (right).  
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Figure 2. sc-eVIP correctly annotates known gain-of-function variants in the KRAS 

oncogene and reveals five functional classes of KRAS coding mutations. 

a-c. Distinction of neutral from impactful variants in KRAS by Perturb-Seq. a. Spearman 

correlation coefficients (red/blue) between the mean profiles of each pair of variants (rows, 

columns), clustered into classes (black: neutral, green: semi-neutral, purple: atypical, gold: semi-

neutral gain, red: gain-of-function, horizontal and vertical bars), and labeled by controls (dark 

gray: synonymous, light gray: ExAC missense variants, purple: unassigned). b. sc-eVIP scores (y 

axis) for variants (dots) in each category (x axis). Dashed line: 1% FDR. c. sc-eVIP scores are 

independent of variant expression. Variant expression (y axis, transcripts per 10,000 UMIs/cell 

(TP10K)) for variant (dots) with different sc-eVIP scores (x axis). d-h. Variant classes are 

associated with distinct mutation frequency, KRAS dependency, growth in low attachment (GILA) 

phenotypes, and expression programs. d. Hierarchical clustering of variants by the correlation 

profiles in a. Grey font: controls (synonymous and ExAC), red font: hotspot variants (positions 

12, 13 and 61). e. Mutation frequency (log2(counts+1) of variant occurrences in a pan-cancer 

curated set, color bar) of each variant, ordered as in e. f. Dependence of cell line growth on KRAS 

(y axis), for cell lines (dots) categorized by their KRAS genotype status (x axis). Gray: wildtype 

KRAS, red: missense KRAS variants. g. Growth in low attachment of HA1E cells (z-score, color 

bar) for each variant (columns, ordered as in e). h. Difference (dot color) in mean expression or 

signature score between a variant (columns, ordered as in e) and unassigned cells and the 

significance of this difference (-log10(adj. p-value, Kolmogorov-Smirnov test, dot size, Methods) 

for each gene program (rows), as defined by clustering genes (Methods). Colored border: BH 

FDR<10%. Program 2, higher in assigned vs. unassigned cells was enriched for translation, 

nonsense-mediated decay, viral processes and metabolism, and may reflect the response to 
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lentiviral transduction. i. Gene programs varying across variant classes. Top: UMAP embedding 

of single cell profiles (dots), colored by program scores (color bar). Middle: Cumulative 

distribution function (CDF) of program scores (x axis) for each variant class (color). Bottom: mean 

expression (z-score, color bar) of genes (rows) most correlated with the mean of the expression 

program in cells of each variant (columns). j. Variant-induced shift in cell distributions. Density 

map of cell profiles organized in a UMAP embedding, showing the density of cells overexpressing 

each variant class (colored as in a) and either the WT KRAS allele (grey, top) or unassigned cells 

(purple, bottom). k. Annotation of variant classes on the 3-dimensional structure of the KRAS 

protein. Each position is colored by the variant class with the highest impact assigned to variants 

at that position, with 4 variants assigned to multiple categories highlighted (listing all variants at 

the position, each colored by its assigned class, as in a) 
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Figure 3. KRAS variants form a gradual functional gradient within and across variant 

groups. 

a-b. Continuous variation across KRAS variants. a. Hierarchical clustering of variants by the 

correlation profiles in Fig 2a. black: neutral, green: semi-neutral, purple: atypical, gold: semi-

neutral gain, red: gain-of-function. Grey font: controls (synonymous and ExAC), red font: hotspot 

variants (positions 12, 13 and 61). b. Distribution of the scores of principal components (PCs) 3 

and 4 for cells carrying each variant (red) and WT KRAS overexpressing cells (gray). c-j. PC 3 

and 4 scores are concordant with functional assays and independent of variant overexpression 

levels. c,g. UMAP embedding of single cell profiles (dots), colored by PC scores (color bar). d,h. 

Mean PC scores (y axis) for each variant (dots), from the five variant classes (x axis, colored as in 

a). e.i. Normalized variant barcode expression level (y axis, transcripts per 10,000 UMIs/cell 

(TP10K)) and sc-eVIP impact scores (x axis) for each variant (dots), colored by variant class. f,j. 

GILA scores (y axis) and mean PC scores (x axis) across variants (dots), colored by variant class. 

k-n. Variation in cell state proportions across variants. k. UMAP embedding of single cell profiles 

(dots), colored by WT KRAS (black), gain-of-function G12D (dark red), each of 5 variants (pink, 

label at bottom), and all other cells (grey). Bottom: fraction of cells of the noted variant present in 

gain-of-function-associated cell state 0 (as in l) for each variant. l. UMAP embedding as in k, 

colored by cell clusters. m. Spearman correlation coefficient (x axis) for each cluster in l (y axis) 

between the proportion of cells in each cluster in l (y axis) and the functional assay (GILA). n. 

Fraction of cells in each cell cluster (x axis) from each variant class (y axis).  o. Accurate variant 

classification by mean profiles but not at the single cell level. Performance (AUROC on balanced 

test set, color bar) of logistic regression classifiers predicting the class of variant for individual 

cells (left), or for the entire set of cells (by mean expression profile) (right).  
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Figure 4. Relationship between sc-eVIP scores and the frequency of variants in patient 

cohorts.  

a-d. Comparison of sc-eVIP scores and functional assays with variant prevalence in cancer cohorts 

for TP53 (a,b) and KRAS (c,d). a,c. Mutation prevalence (y axis, log10(counts of mutation in cohort 

+ 1) and sc-eVIP scores (x axis) across TP53 (a) and KRAS (b) variants (dots), colored by variant 

class. b,d. Mutation prevalence (y axis, log10(counts of mutation in cohort + 1) and functional assay 

scores for TP53 (b, growth with Nutlin-3, in a TP53-null background, z-score, x axis) and KRAS 

(d, GILA, z-score, x axis) across variants (dots), colored by variant class. e-h. Comparison of 

generalized linear models for predicting variant prevalence in cancer cohorts using mutational 

signatures and either sc-eVIP or functional assays for TP53 and KRAS. e,g. Top: Specification of 

5 compared models, trained on the subset of variants profiled in this study (small set, S) or on a 

large dataset of thousands of variants (L) or by shuffling the observed variant prevalence across 

variants (Methods). Observed (x axis) and predicted (y axis) variant prevalence (log10(counts + 1)), 

for each model across variants (dots), colored by whether the variant is in the training (gray) or 

test (black) set, for TP53 (e) and KRAS (g). f,h. Coefficient of determination (r2) of each of the 5 

models for TP53 (f) and KRAS (h) relative to a model predicting the mean variant prevalence, 

across 10 models, colored by whether they use sc-eVIP scores for prediction (red), functional 

assays (blue), or neither (gray). i,j. Mutation prevalence (x axis, left, colored by mutation 

prevalence (dark gray >= 20 counts and light gray <20 counts) and sc-eVIP scores (x axis, right, 

colored by variant class), for each of the TP53 (i) and KRAS (j) variants in the study.  
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Figure 5. Power analysis and outlook for the variant-to-function efforts to phenotype cancer 

coding variation. 

a-c. Power analysis for detecting impactful variants as a function of effect size. a. Variant impact 

effect size (y axis, log10(sc-eVIP score)), colored by variant class for TP53 (left) and KRAS (right) 

variants. Dotted line separates impactful from neutral variants. b. Sensitivity (colorbar) of 

impactful variant detection for each variant effect size bin in a (rows) at increasing numbers of 

cells profiled per variant (columns). c. Number of cells required for a sensitivity of 0.95 at an FDR 

of 1% (y axis) for each variant effect size bin (x axis). d,e. Projected number of cells required for 

a cancer coding variant impact atlas. d. Number of cells (millions, y axis) required to profile for 

testing a given number of variants (x axis), at different variant impact effect sizes (colored curves). 

Vertical lines: number of variants needed for studying all cancer genes in the Foundation Medicine 

Panel less than 1kb in length (magenta) or less than 3kb (purple). Dots: number of cells required 

for these atlases for detection at the strongest effect size bin. e. Distribution of transcript lengths 

(x axis, Kb) for the 309 cancer genes in the Foundation Medicine panel. 
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Extended Data Figure 1. Quality control for TP53 Perturb-Seq experiment. 

a. Variant representation in the library. Number of barcode reads (y axis) for each tested variant (x 

axis), either after transduction and 2-day puromycin selection (“no recovery”), or 42.5 hours after 

puromycin selection (“42.5h recovery”). b-f. Quality control metrics. b. Cumulative distribution 

function (CDF) of number of cells (x axis) profiled for each variant, considering either all cells 

(light blue) or only cells with a single variant (dark blue). c. Distribution of the number of variants 

detected per cell. d. Distribution of the number of variant barcode (vbc) UMIs per cell per variant. 

e. The number of cells detected per variant (y axis) and the variant’s barcode expression (x axis, 

TP10K) for cells with a single variant, colored by class. f. Distribution of mean variant barcode 

expression (TP10K, x axis). Variants with a fold change higher than 1.5 compared to the WT 

barcode are colored by variant class. g. Potential doublets. Top left: Distribution of number of 

UMIs/cell (y axis) for each cell cluster as defined by Louvain clustering of cell profiles (bottom, 

middle). Top middle and right: enrichment and depletion (x axis, -log10(adj. p-value), 

hypergeometric test); positive sign for enrichment, and negative for depletion) for each cluster in 

unassigned cells (top middle) and cells with multiple variants (top right). Bottom: UMAP 

embedding of single cell profiles (dots) colored by number of UMIs/cell (left), cluster assignment 

(middle), or cell clusters that are likely doublets (clusters 10 and 11, right). h. Permutation tests 

for FDR control. Sc-eVIP score (y axis) for variants (dots) in each variant group (x axis). Dotted 

lines: FDR 1% for a permutation test shuffling the assignments of variants (gray) or estimating an 

empirical distribution of the sc-eVIP under the null hypothesis using only comparisons between 

synonymous variants (black). i. Impact of number of cells on sc-eVIP scores. sc-eVIP scores for 

each variant (dots, colored by variant class) computed using 1,000 cells/variant (x axis) or with 
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varying numbers of subsampled cells (y axis). Dotted lines: threshold sc-eVIP score at a 1% FDR 

for each axis. 
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Extended Data Figure 2. Gene programs impacted by TP53 variants. 

a-e. Gene programs impacted by variant classes. a,b. UMAP embedding of single cell profiles 

(dots), colored by program scores (color bar) and labeled by selected Gene Ontology biological 

processes enriched in genes from each program (top). c,d. CDF for program scores (x axis) for 

each variant (c) or for all variants in one class (d), colored by class. e. Average expression (z score, 

color bar) in cells of each variant (columns) of genes (rows) most correlated with the mean of the 

expression program. f. Mean expression (colorbar) of each gene (rows) in cells of each variant 

(columns). Row color bar: gene program membership; Column color bar: variant class. g.. 

Difference (dot color) in mean expression of each gene program (rows) between the cells in each 

cluster (columns, as in Extended Data Fig. 1g) and all other cells, and the significance of this 

difference (dot size, -log10(adj. p-value), Kolmogorov-Smirnov test, Methods). Colored border: 

BH FDR<10%. h. ROC curve of the true positive (y axis) and false positive (x axis) rate when 

using each PC (color) to distinguish between single cells with synonymous variants and those with 

variants in hotspot positions 175, 248, and 273. Color legend: Area Under the ROC curve 

(AUROC) for each variant.  i-k. Principal component analysis. i. UMAP embedding of single cell 

profiles, colored by principal component (PC) scores (color bar), for each of the first 10 PCs. j,k. 

CDFs for the PC scores (x axis) for the cells of each variant or all variants in a class, colored by 

class.  
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Extended Data Figure 3. Comparison of sc-eVIP with cellular phenotyping assays and cell 

cycle effects for TP53 variants. 

a-c. sc-eVIP impact scores and gene programs agree with functional growth assays under Nutlin-

3 treatment in a p53 wildtype background (a) or a p53 null background (b) and under etoposide in 

a p53 null background (c). Left: Functional assay score (y axis) and sc-eVIP score (x axis, left) or 

normalized variant expression (x axis, transcripts per 10,000 UMIs/cell (TP10K), right) for each 

variant (dots), colored by variant class. Middle: Correlation (x axis) between the functional assay 

score for each variant and mean gene expression across the variants for the genes (y axis) whose 

expression is most strongly correlated with the functional assays score. Right: Mean gene program 

(x axis) and functional assay (y axis) scores for each variant (dots), colored by variant class. d-f. 

Cell clusters correlated with functional growth assays under Nutlin-3 treatment in a p53 wildtype 

background (d) or a p53 null background (e) and under etoposide in a p53 null background (f). 

Left: Spearman correlation coefficient (x axis) between the proportion of cells from each variant 

in each cluster (as in Extended Data Fig. 1g) and the functional assay scores of the variants. Right: 

Proportion of cells (x axis) in cluster (label, top) and functional assay scores (y axis) for each 

variant (dots), colored by variant class. g. Proportion of cells in each cell cycle phase (y axis) 

among cells carrying each variant (dots) across variant classes (x axis). Adj. p-value: t-test.  
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Extended Data Figure 4. Variant-by-variant analyses for TP53 variants. 

a. Variant features. Number of cells (y axis, top), distribution of normalized variant barcode 

expression (y axis, middle; red: variants with a fold-change greater than 1.5) and sc-eVIP scores 

(y axis, bottom; black: significant scores) for each variant (x axis), ordered as in Fig. 1e. Grey font: 

controls (synonymous and ExAC), blue font: hotspot variants (positions 175, 248, 273). b. 

Agreement with other data features. Top: difference (dot color) in mean expression or signature 

score between a variant (columns, ordered as in Fig. 1e) and unassigned cells and the significance 

of this difference (dot size, -log10(adj. p-value), Kolmogorov-Smirnov test, Methods) for each of 

two genes canonically induced by TP53 and two TP53-associated signatures (rows). Colored 

border: BH FDR<10%. Middle: Growth (z-score, color bar) in three functional assays (rows) of 

each variant (columns). Bottom: Mutation prevalence (log2(counts+1) of variant occurrences) in 

two datasets (rows) of each variant, ordered as in Fig. 1e. c. Gene programs association with 

variants. Top: Difference (dot color) in mean program score (top) or mean PC score (bottom) 

between a variant (columns) and WT overexpressing cells and the significance of this difference 

(dot size, -log10(P-value), Kolmogorov-Smirnov test, Methods) for each gene program (top, rows, 

by gene clustering genes, Methods), or each of the top 10 PCs (bottom, rows). Colored border: 

BH FDR<10%. d,e. Relation of variants to different clusters and cell cycle phases. Left: Proportion 

of cells (bar height) in each cell cluster (d, as in Extended Data Fig. 1g) or cell cycle phase (e) 

(rows) derived for each variant (columns), annotated at the top with significance from a chi-square 

test comparing the cell state distribution of each variant with that of WT overexpressing cells (-

log10(adj. p-value)). Right: UMAP embedding of single cell profiles, colored by cell clusters (d) or 

cell cycle phase (e). f. Relation of variants to p53 gene structure. sc-eVIP scores (y axis) of each 

variant (dot, colored by the variant class) and its position along the TP53 gene (x axis, annotated 
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by domain). g. Variant induced shift in cell distributions. Density map of cell profiles in a UMAP 

embedding, comparing the density of cells overexpressing variants in each of 3 classes to either 

the WT TP53 allele (grey, top) or unassigned cells (purple, bottom).  
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Extended Data Figure 5. Quality control for KRAS Perturb-Seq experiment. 

a. Variant representation in the library. Number of barcode reads (y axis) for each tested variant 

(x axis), either after transduction and 2-day puromycin selection (“no recovery”), or 42.5 hours 

after puromycin selection (“42.5h recovery”). b-f. Quality control metrics. b. Cumulative 

distribution function (CDF) of number of cells (x axis) profiled for each variant, considering either 

all cells (pink) or only cells with a single variant (red). c. Distribution of the number of variants 

detected per cell. d. Distribution of the number of variant barcode (vbc) UMIs per cell per variant. 

e. The number of cells detected per variant (y axis) and the variant’s barcode expression (x axis, 

TP10K) for cells with a single variant, colored by class. f. Distribution of mean variant barcode 

expression (TP10K, x axis). Variants with a fold change higher than 1.5 compared to the WT 

barcode are colored by variant class. g. Potential doublets. Top left: Distribution of number of 

UMIs/cell (y axis) for each cell cluster as defined by Louvain clustering of cell profiles (bottom, 

middle). Top middle and right: enrichment and depletion (x axis, -log10(adj. p-value), 

hypergeometric test); positive sign for enrichment, and negative for depletion) for each cluster in 

unassigned cells (top middle) and cells with multiple variants (top right). Bottom: UMAP 

embedding of single cell profiles (dots) colored by number of UMIs/cell (left), cluster assignment 

(middle), or cell clusters that are likely doublets (clusters 10, 11 and 12, right). h. Permutation tests 

for FDR control. Sc-eVIP score (y axis) for variants (dots) in each variant group (x axis). Dotted 

lines: FDR 1% for a permutation test shuffling the assignments of variants (gray) or estimating an 

empirical distribution of the sc-eVIP under the null hypothesis using only comparisons between 

synonymous variants (black). i. Impact of number of cells on sc-eVIP scores. sc-eVIP scores for 

each variant (dots, colored by variant class) computed using 1,000 cells/variant (x axis) or with 
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varying numbers of subsampled cells (y axis). Dotted lines: threshold sc-eVIP score at a 1% FDR 

for each axis. 
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Extended Data Figure 6. Gene programs impacted by KRAS variants. 

a-e. Gene programs impacted by variant classes. a,b. UMAP embedding of single cell profiles 

(dots), colored by program scores (color bar) and labeled by selected Gene Ontology biological 

processes enriched in genes from each program (top). c,d. CDF for program scores (x axis) for 

each variant (c) or for all variants in one class (d), colored by class. e. Average expression (z score, 

color bar) in cells of each variant (columns) of genes (rows) most correlated with the mean of the 

expression program. f. Mean expression (colorbar) of each gene (rows) in cells of each variant 

(columns). Row color bar: gene program membership; Column color bar: variant class. g. 

Difference (dot color) in mean expression of each gene program (rows) between the cells in each 

cluster (columns, as in Extended Data Fig. 1g) and all other cells, and the significance of this 

difference (dot size, -log10(adj. p-value), Kolmogorov-Smirnov test, Methods). Colored border: 

BH FDR<10%. h. ROC curve of the true positive (y axis) and false positive (x axis) rate when 

using each PC (color) to distinguish between single cells with synonymous variants and those with 

variants in hotspot positions 12, 13 and 61. Color legend: Area Under the ROC curve (AUROC) 

for each variant.  i-k. Principal component analysis. i. UMAP embedding of single cell profiles, 

colored by principal component (PC) scores (color bar), for each of the first 10 PCs. j,k. CDFs for 

the PC scores (x axis) for the cells of each variant or all variants in a class, colored by class.  
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Extended Data Figure 7. Comparison of sc-eVIP with cellular phenotyping assays and cell 

cycle effects for KRAS variants. 

a,b. sc-eVIP impact scores and gene programs agree with growth in low attachment at 7 days (a) 

and 14 days (b). Left: GILA score (y axis) and sc-eVIP score (x axis, left) or normalized variant 

expression (x axis, transcripts per 10,000 UMIs/cell (TP10K), right) for each variant (dots), colored 

by variant class. Middle: Correlation (x axis) between the GILA score for each variant and mean 

gene expression across the variants for the genes (y axis) whose expression is most strongly 

correlated with the GILA score. Right: Mean gene program (x axis) and GILA (y axis) scores for 

each variant (dots), colored by variant class. c,d. Cell clusters correlated with GILA at 7 days (c) 

and 14 days (d). Left: Spearman correlation coefficient (x axis) between the proportion of cells 

from each variant in each cluster (as in Extended Data Fig. 5g) and the GILA scores of the 

variants. Right: Proportion of cells (x axis) in cluster (label, top) and GILA scores (y axis) for each 

variant (dots), colored by variant class. e. Proportion of cells in each cell cycle phase (y axis) 

among cells carrying each variant (dots) across variant classes (x axis). Adj. p-value: t-test. f. 

Performance of a logistic regression classifier, trained to predict for each individual cell its variant 

class. The performance is shown as a heatmap, for each variant class (x axis) as a function of cell 

states (y axis), with values representing the accuracy within the cells in the respective variant class 

and cell state. 
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Extended Data Figure 8. Variant-by-variant detailed representation of all analyses for 

KRAS variants. 

a. Variant features. Number of cells (y axis, top), distribution of normalized variant barcode 

expression (y axis, middle; red: variants with a fold-change greater than 1.5) and sc-eVIP scores 

(y axis, bottom; black: significant scores) for each variant (x axis), ordered as in Fig. 2d. Grey 

font: controls (synonymous and ExAC), red font: hotspot variants (positions 12, 13 and 61). b. 

Agreement with other data features. Top: Dependence of cell line growth on KRAS (y axis), for 

cell lines (dots) categorized by their KRAS genotype status (x axis). Gray: wildtype KRAS, red: 

known gain-of-function variants. Middle: Growth in low attachment of HA1E cells (z-score, color 

bar), or GILA score, for each variant (columns, ordered as in Fig. 2d) at 7 and 14 days.. Bottom: 

Mutation prevalence (log2(counts+1) of variant occurrences) in the COSMIC database (top) and a 

pan-cancer curated set (bottom), for each variant. c. Gene programs association with variants. Top: 

Difference (dot color) in mean program score (top) or mean PC score (bottom) between a variant 

(columns) and WT overexpressing cells and the significance of this difference (dot size, -log10(P-

value), Kolmogorov-Smirnov test, Methods) for each gene program (top, rows, by gene clustering 

genes, Methods), or each of the top 10 PCs (bottom, rows). Colored border: BH FDR<10%. d,e. 

Relation of variants to different clusters and cell cycle phases. Left: Proportion of cells (bar height) 

in each cell cluster (d, as in Extended Data Fig. 1g) or cell cycle phase (e) (rows) derived for each 

variant (columns), annotated at the top with significance from a chi-square test comparing the cell 

state distribution of each variant with that of WT overexpressing cells (-log10(p-value)).. Right: 

UMAP embedding of single cell profiles, colored by cell clusters (d) or cell cycle phase (e). f. 

Relation of variants to KRAS gene structure. sc-eVIP scores (y axis) of each variant (dot, colored 

by the variant class) and its position along the KRAS gene (x axis, annotated by domain). g. Variant 
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induced shift in cell distributions. Density map of cell profiles in a UMAP embedding, comparing 

the density of cells overexpressing variants in each of 3 classes to either the WT TP53 allele (grey, 

top) or unassigned cells (purple, bottom). h. UMAP embedding of single cell profiles colored by 

representative PCs.  
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Extended Data Figure 9. Performance of models predicting mutation prevalence for TP53 

and KRAS variants. 

For each of TP53 (a-c) and KRAS variants (d-f), shown is the performance of different generalized 

models (a axis) by either r2 (a,d y axis, relative to a model that predicts the average mutation 

prevalence), or either Spearman (b,e) or Pearson (c,f) correlation coefficient between mutation 

prevalence and predictions. S: subset of variants profiled in this study; L: large dataset consisting 

of thousands of TP53 variants or tens of KRAS variants. Cell: functional assays data; Mut: 

mutational signature data. Shuffled: model which shuffles the observed variant prevalence across 

variants. Boxes are colored by use of mutational signatures (dark), sc-eVIP scores (red), and 

functional assays (blue). Boxplot shows the median, and its ends represent the 25% and 75% 

quartiles, with whiskers extending between (25% quartile - 1.5 interquartile range) and (75% 

quartile + 1.5 interquartile range) or the most extreme values in the data, if they fall within this 

range. 
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Supplementary Table 1. Properties of TP53 variants. The columns represent the name of the 

variant (Variant), its position in the amino acid sequence (Position), the original base(s) in the 

ORF (From), the base(s) the variant produces (To), whether the variant involves a single or 

multiple base change (Mutation type), whether the variant is a control synonymous, ExAC or 

unknown (Control status), whether the variant passed quality control and is in the library 

(Library synthesis), the number of cells per variant (Cells/variant), the average expression of the 

variant barcode in UMIs per 10,000 UMIs (Variant expression), Hotelling’s T2 statistic 

representing the sc-eVIP score (HotellingT2), the FDR (FDR.HotellingT2), the functional class 

assigned to the variant (Variant functional class), the variant prevalence in the pan-cancer dataset 

(Count(pancan)) and the variant prevalence in ExAC (Count (ExAC)). 

 

Supplementary Table 2. Properties of KRAS variants. The columns represent the name of the 

variant (Variant), its position in the amino acid sequence (Position), the original base(s) in the 

ORF (From), the base(s) the variant produces (To), whether the variant involves a single or 

multiple base change (Mutation type), whether the variant is a control synonymous, ExAC or 

unknown (Control status), whether the variant passed quality control and is in the library 

(Library synthesis), the number of cells per variant (Cells/variant), the average expression of the 

variant barcode in UMIs per 10,000 UMIs (Variant expression), Hotelling’s T2 statistic 

representing the sc-eVIP score (HotellingT2), the FDR (FDR.HotellingT2), the functional class 

assigned to the variant (Variant functional class), the variant prevalence in the pan-cancer dataset 

(Count(pancan)) and the variant prevalence in ExAC (Count (ExAC)). 
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