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1 Summary

The biomedical community is producing increasingly high dimensional datasets, integrated from
hundreds of patient samples, which current computational techniques struggle to explore. To uncover
biological meaning from these complex datasets, we present an approach called Multiscale PHATE,
which learns abstracted biological features from data that can be directly predictive of disease. Built
on a continuous coarse graining process called diffusion condensation, Multiscale PHATE creates
a tree of data granularities that can be cut at coarse levels for high level summarizations of data,
as well as at fine levels for detailed representations on subsets. We apply Multiscale PHATE to
study the immune response to COVID-19 in 54 million cells from 168 hospitalized patients. Through
our analysis of patient samples, we identify CD16"CD66b! neutrophil and IFNy*GranzymeB™
Th17 cell responses enriched in patients who die. Further, we show that population groupings
Multiscale PHATE discovers can be directly fed into a classifier to predict disease outcome. We also
use Multiscale PHATE-derived features to construct two different manifolds of patients, one from
abstracted flow cytometry features and another directly on patient clinical features, both associating
immune subsets and clinical markers with outcome.
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3 Introduction

Extremely high throughput biomedical data is generated by a range of technologies [1-6| that
measure dozens to tens of thousands of features in millions of individual cells. Furthermore, these
technologies are now applied to large patient cohorts, providing information that must be integrated
and analyzed at scale to provide insights into cellular mechanisms and patient responses. However,
there are no specific methods designed to sift through such data at varying levels of granularity to
uncover features that are directly associated with disease phenotype. The SARS-CoV-2 pandemic
has brought this problem to the forefront of biologists’ minds. As increasingly large datasets are
built by integrating patient samples from around the globe, computational approaches also must
scale to provide improved insights regardless of technology type.

We posit here that the key to understanding such vast and complex data is to create meaningful
representations that uncover structure at all resolutions or scales. This approach involves learning
representations of the biological system at many levels, allowing for coarse, high level summarization
as well as fine grained, detailed representations of data subsets. Current tools for dimensionality
reduction and data exploration - including t-distributed stochastic neighborhood embedding (tSNE)
[7], uniform manifold approximation and projection (UMAP) [8], as well as principle component
analysis (PCA) [9] - only show a single level of granularity of the data. Recent computational
papers on SARS-CoV-2 have represented data using one of these approaches [10, 11|, visualizing
the major cell types such as B cells, T cells and myeloid cells. Differences between an effective
immunological response and an ineffective one, however, may not be found at the granularity of
immune compartment abundance alone. In fact, appreciation of a finer resolution of the T cell
manifold would reveal subsets that may be predictive of disease severity. This phenomenon is found
across biomedical data science, as the state space of the data is generally a collection of manifolds or
continuum structures which can be organized at varying levels of hierarchy.

Based on this insight, we developed Multiscale PHATE, a method that can learn and visualize
abstract cellular features and groupings of the data at all levels of granularity. Our algorithm is
based on a dynamic process we have developed called diffusion condensation [12], which computes
a manifold-intrinsic diffusion space on the original data before slowly condensing data points
towards local centers of gravity to form natural, data-driven groupings across multiple granularities.
Rather than forcing merges at each iteration, as done in most agglomerative hierarchical clustering
methods, diffusion condensation allows cells to naturally come together over the course of successive
condensation steps before merging points that fall within a threshold. Visualizing a series of iterations
in this dynamic condensation process using the manifold-affinity preserving PHATE method creates
Multiscale PHATE embeddings, while evaluating groupings of cells across granularities naturally
creates Multiscale PHATE clusters. Furthermore through efficient scalable implementation, we
show that we are able to perform condensation, visualization and clustering of large-scale the data
significantly faster than "single-scale" visualization techniques like tSNE, UMAP or our earlier
method PHATE [13].

We showcase our method on 251 blood samples from 168 patients infected with SARS-CoV-2
measured across four different flow cytometry panels. Analysis of 54 million of cells by single
resolution dimensionality reduction and clustering algorithms would take days to weeks to perform.
With our unique multigranular approach, we can produce high level summarizations as well as
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detailed cell type specific analyses of each panel of markers within minutes. When combined
with the MELD [14], we find that our approach is particularly powerful at identifying cannonical
and non-cannonical cellular populations associated with patient outcome across resolutions. At
coarse resolution, we identify T cells to be broadly protective while monocytes and granulocytes
to be pathogenic. At finer resolution, we identify unique non-cannonical populations of cells, such
as D16MCD66b~ neutrophil, CD14~CD16™HLA-DR! monocytes, and IFNytGranzymeBt Th17
cells, to be associated with patient mortality. This type of multigranaular analysis reveals that
though broadly a cell type, such as T cells, may be protective, fine grain analysis reveals cellular
subsets that can be pathogenic, highlighting the need for a multiresolution approach. Next, we
show that Multiscale PHATE-derived cellular groupings can be used as features input to a random
forest classifier to predict outcome better than immunologist curated and gated features. A unique
contribution we make is the use of these multiscale feature proportions as descriptors of each patient,
which can be used to create a patient-level embedding. We relate distances between these feature
descriptors to Earth Mover’s Distance between patients, leading to an robust patient embedding.

Finally, to display the generality of our approach across data types, we created a multiscale
distillation of clinical data from 2,135 patients admitted to Yale New Haven Hospital (YNHH).
Built from 18 laboratory, clinical, and demographic variables, Multiscale PHATE was able to create
multiresolution embeddings of patient clinical states and identify regions enriched for different patient
outcomes. By associating clinical features and cellular populations with outcomes, we found markers
of multi-organ dysfunction to be associated with mortality and overall T cell counts to be associated
with length of recovery from infection.
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4 Results
4.1 Multiscale PHATE Algorithm
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Figure 1: Overview of Multiscale PHATE algorithm

A. Multiscale PHATE process involves four successive steps. The first step (i) learns the manifold via diffusion
potential calculation. The second step (i) iteratively coarse grains the manifold construction through a fast
diffusion condensation process. The third step (iii) involves the selection of salient granularities via gradient
analysis before finally visualizing and clustering the manifold in the fourth step (iv).

B. Gradient analysis identifies a range of scales for visualization.

C. Multiscale PHATE allows for high level overviews of data as well as finer grain zoom ins of data subsets
for additional detail.

D. Multiscale PHATE abstractions of data are amenable to downstream analyses with algorithms like MELD
[14], DREMI [15] and TrajectoryNet [16].

Multiscale PHATE is a multiresolution visualization and clustering method that can reveal the
structure of data visually and quantitatively at multiple granularities. Multiscale PHATE adapts and
combines two powerful algorithms, diffusion condensation for multigranular analysis and PHATE for
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dimensionality reduction, to produce visualizations and clusters at all levels of granularity.

Diffusion condensation is a dynamic process by which data points slowly and iteratively come
together at a rate determined by the diffusion probabilities between them [12]. This iterative
process is powerful as it reveals structure and groupings of the data at all levels of granularity for a
given diffusion kernel bandwidth. The diffusion condensation process involves three steps that are
iteratively repeated until all points converge:

1. Compute a Markov diffusion operator from the data

2. Apply this operator to the data as a low pass filter, moving points towards local centers of
gravity

3. Merge points together that fall below a preset distance threshold

The first step involves computing a Markov diffusion operator from a dataset. This is done by
first computing a distance matrix D between all data points, before converting this to an affinity
matrix K by using an fixed bandwidth Gaussian kernel function as done previously [12]. K is then
row normalized to obtain a diffusion operator between data points. In the next step, the diffusion
operator is applied to the input data (the data matrix is left-multiplied by the diffusion operator),
effectively replacing the value of a point, with the weighted average of its diffusion neighbors. This
causes points to condense, or move closer together due to the removal of variation. In graph spectral
terms this step is akin to applying a low-pass filter on the graph frequency spectrum which smooths
the data. In the third step, diffusion condensation merges points that have condensed within a preset
merge threshold together. This process is then repeated iteratively. At each step, diffusion operator
is calculated on the output of the previous iteration and used as a low-pass filter to produce an
increasingly coarse dataset for the next iteration. Over the course of many iterations, data points
slowly converge to local centers of gravity and collapse into each other, effectively grouping them
together at that level of granularity. As the diffusion condensation process continues, we scale
the diffusion operator to diffuse points to more global centers of gravity. This first removes local
variability in the data at initial iterations before removing more global variability in later iterations.
This deep cascade of low pass filters effectively builds a tree by merging data points together in a
natural manner.

In its original form, the diffusion condensation process does not scale to millions of data points,
does not condense points on a manifold, and is not optimized for visualization. Thus, we have
modified diffusion condensation to allow for scalable and effective visualizations. The main steps of
Multiscale PHATE include:

1. Transforming datapoints to a novel diffusion potential coordinate system to learn the data
manifold,

2. Computing a fast diffusion condensation process that scales to millions of data points,

3. Identifying levels for visualization based on gradient analysis and creating a density aware
visualization.

Each of these steps is explained below.

The diffusion potential coordinate system

The original diffusion condensation algorithm [17] implements the coarse graining of the data in the
ambient measurement space. However, condensing in this space can lead to “averaged” points that
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deviate from the intrinsic data manifold, especially in cases where the intrinsic manifold is very curved
(Supplementary Figure 1A). As cellular state spaces can be heavily non-linear [13,15,18], we require
an alternative method of diffusion condensation that ensures that the condensed points remain on
the manifold. A straightforward method for achieving this might be diffusion map coordinates.
However, the computation of diffusion map coordinates requires eigendecomposition of a diffusion
operator which is slow (O(n?) complexity).

As we do not need to reduce dimensions, we could simply run diffusion condensation on the
diffusion operator of the dataset itself. However, as discovered in [13], diffusion distances have a key
drawback: they are dominated primarily by differences in nearest neighbors and ignore more distant
datapoints. For example, when visualizing two cells that share nearest neighbors, distant cells that
could be very useful in their global placement are ignored. This was remedied in [13] by computing
the diffusion potential, which log scales diffusion probabilities to allow for faraway datapoints to
inform the local distances and impact the global geometry of the visualization. Inspired by this
finding, we chose diffusion potential as a coordinate system for cells in our multiscale approach.
These coordinates are a way of re-representing each cell in the dataset by the potential of the diffusion
probabilities to other datapoints and offers a “straightened” and globally coherent intrinsic manifold
space upon which to operate the diffusion condensation process.

Fast diffusion condensation

To achieve scalability, we employ two techniques to improve computational efficiency. First, we
coarse grain the initial dataset, effectively removing uninteresting local variation while maintaining
the global structure of the dataset. Second, we use landmarking to quickly compute our diffusion
potential coordinate system.

The initial coarse graining of the data is done to de-noise and downsample the input dataset
while maintaining important global and local structures. By default, we downsample to 25,000 points
using a fast hierarchical kmeans approach applied to randomized PCA dimensions. The centroids of
these partitions are then passed along for diffusion potential calculation and condensation.

On this initial coarse-graining we compute the diffusion potential coordinates by employing
landmarking as developed in [19]. Landmarking refers to the idea that instead of computing diffusion
probabilities between every pair of points, we can compute diffusion probabilities from points to a
well-chosen set of central “landmarks” that maintain the geometry of the data. From these landmarks,
we can project back to the initial points, efficiently calculating diffusion potential coordinates for all
points. The computation of the diffusion potential requires a powering of the diffusion probabilities,
which has O(n?) complexity. With landmarking, this process speeds up by first using an O(nk) step
for computing diffusion probabilities from the n points to the k landmarks, then only powering the
smaller k x k diffusion matrix between the landmarks, reducing the overall complexity to O(2nk+tk?),
where t is the number of diffusion steps. Finally, to speed up each condensation step, we use sparse
multiplication to improve upon the O(tk?) complexity, speeding up each filtering step.

Selection of visualization scales and density aware PHATE rendering

While diffusion condensation reveals all levels of granularity in the data, we envision users to start
with a coarse-grained level that offers a high-level summarization of the data before "zooming-in" to
obtain finer detail on populations of interest. To offer this type of interactivity, we provide a method
for selecting specific scales for visualization.

We reason that the salient levels of the representation for visualization must be stable levels
which emerge during condensation, i.e., levels whose structure persists for several iterations. To find
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such levels we examine the gradient of points across successive condensation iterations and determine
where the overall shift in data density from one iteration to the next is locally minimal (Figure 1B).
Visualization of a granularity is achieved by the stress-minimizing optimization procedure provided
by multidimensional scaling (MDS) on the filtered diffusion potential as done in [13]. Finally, to
allow for more refined and detailed visualizations, we allow users to select data subsets to view at
finer granularities identified by gradient analysis (Figure 1C).

At each iteration, diffusion condensation merges points that are closer than a preset threshold
distance. The PHATE rendering at each level is computed on the condensed diffusion potential
where each point in the visualization is sized by the number of points that are merged to form
that condensed point. This visualization strategy creates a naturally clustered and density-aware
embedding.

Selection of clusters based on MELD mortality likelihood score to infer clinical associ-
ations

Multiscale PHATE abstracted data is amenable to many downstream computational analysis tools
like MELD [14] for comparative analysis, DREMI [20] for computing mutual information between
markers within subpopulations, and TrajectoryNet [21] for modeling dynamics of data (Figure
1D). In particular, to identify populations that are differentially enriched between experimental
conditions or patients, we combine our powerful multigranular clustering approach with MELD [14]
(Supplementary Figure 1B). MELD creates a joint graph of the samples being compared, and returns
a relative likelihood that quantifies the probability that the each cell state in the graph is more likely
in the control condition (which corresponds here to patients with positive outcome) or experimental
condition (which corresponds here to patients with adverse outcomes). This likelihood score is
found by first computing a cell-cell graph before creating an indicator signal for each of the two
conditions. In our work, we often use patient clinical outcomes as the condition of origin. Then
MELD smooths, or low-pass filters these signal over the cell-cell graph using the heat kernel to
calculate the conditional density estimate of each condition over the cellular manifold. The density
estimates of both conditions are then inverted via Bayes formula to create a relative likelihood of the
condition given the cell. This likelihood score highlights regions of the manifold enriched in different
conditions.

Finding a clustering method that matches the level of granularity of relative likelihood is
a difficult problem, requiring the computationally complex vertex frequency clustering solution
proposed previously [14]. However, Multiscale PHATE offers an alternative, less expensive solution
as one of the granularities identified by diffusion condensation matches the clusters revealed by the
MELD likelihood score. Combining the likelihood signal with our multigranular analysis, we can
identify populations that are associated with particular outcomes with greater accuracy than other
methods (Supplementary Figure 3B).

Construction of patient manifold through multiresolution cluster evaluation

After creating a cellular manifold by integrating hundreds of patients samples, it is critical to
understand how similar or different each of these patients are from one another. Uncovering
sample level density variations along the cellular manifold can be a powerful strategy to identify
patient clinical states that are similar or dissimilar from one another. Previously, optimal transport
approaches were used to construct a manifold of samples from single cell measurements systems [22].
Recently, these optimal transport based techniques have been implemented on hierarchical trees
allowing for multiresolution comparison of sample density variations [23|. Furthermore, in [24] it was
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shown that multiscale smoothing of data distribution can be used to approximate the Earth-mover
distances between them, which are closely related to optimal transport and essentially measures the
energy required to transform one data distribution to another. Intuitively, this can be understood as
computing how difficult it would be to change the underlying cellular state of one patient to that
of another patient. Inspired by these techniques, we have developed a multiresolution evaluation
system for determining sample level density variations to build a manifold of patients based on
differences in their underlying cellular states. Until now, only two levels of the condensation tree
have ever been evaluated simultaneously, typically one highlighting clusters that arise at a coarse
level while another visualizing the data at a finer level. However, the groupings of points across
multiple scales can provide rich information that can be harnessed by simultaneously evaluating
cluster level information at multiple granularities.

With the goal of creating a manifold of patients, where each point represents a unique patient
sample and distances between points represent how similar or different the underlying samples are
in their cellular states as measured by flow cytometry, we evaluate clusters at multiple levels of the
condensation tree. First, we identify all clusters at a particular level of the condensation tree. For
a particular patient sample, we identify the proportion of the sample’s cells that fall within each
of these clusters, creating a vector of cell proportions. This process is repeated for every sample,
creating a set of features for every sample at a single resolution. This process is repeated for all
samples across multiple resolutions to create an even richer, multiscale set of features related to prior
work in multiresolution optimal transport [23]. This high dimensional multiscale feature matrix can
then be embedded with PHATE for visualization.
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4.2 Comparison of Multiscale PHATE to other visualization and clustering
tools
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Figure 2: Comparison of Multiscale PHATE with other dimensionality reduction tools

A. Visual comparison of Multiscale PHATE with other dimensionality reduction tools across a range of data
types, including 22 million PBMCs measured by flow cytometry [25], 49,942 PBMCs by scRNAseq [10] and
2,135 patients admitted to YNHH by demographic and lab clinical variables.

B. Comparing run time across visualization techniques on increasingly high dimensional flow cytometry data.
C. Quantitative comparison between embeddings produced by Multiscale PHATE and other hierarchical
visualization strategies. Comparisons were evaluated using DeMAP with increasing levels of 2 different types
of biological noise, drop out and variation, as well as on data with different structures, clusters and paths.

Multiscale PHATE embeddings preserve local and global distances better than other
multiscale visualization approaches:

In order to quantify the quality of our dimensionality reduction strategy compared to other multiscale
implementations of established visualization tools, we computed DeMAP scores [13] on embeddings
of a variety of splatter simulated datasets [26]. While there is information loss in any sort of
dimensionality reduction technique, an ideal embedding should capture as much local and global
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distance information as possible. To judge both local and global distance preservation, DeMAP
quantifies the ability of an embedding to preserve ground truth manifold distances, also known as
geodesic distances, in a low dimensional visual representation.

To compare the performance of Multiscale PHATE against six other dimensionality reduction
tools at a particular granularity, we simulated scRNAseq data with Splatter [26]. Splatter uses a
parametric model to simulate ground truth scRNAseq data with either cluster structure or path, also
known as trajectory, structure. Splatter adds noise to this ground truth data, either by increasing
dropout or by increasing biological variation, to simulate realistic noisy scRNAseq data on which
different visualization and denoising tasks can be tested.

In our comparison, we fed increasingly noisy data to Multiscale PHATE and identified a salient
level of granularity through gradient analysis for each run. After visualizing this level of granularity
with Multiscale PHATE, we downsampled the noisy and ground truth datasets to this particular
scale in order to compute embeddings with other dimensionality reduction algorithms at the same
resolution. We computed DeMAP scores on each of these embeddings, comparing the geometrically
downsampled ground truth splatter data to the embedding of the same granularity. We repeated this
simulation on a diverse set 10 datasets with clusters and 10 datasets with paths. As we increased
the degree of dropout and biological variation, Multiscale PHATE captured ground truth structure
of the data more robustly than any other method, outperforming all other methods in 18 of the 20
comparisons (Figure 2C). From these experiments, we conclude that Multiscale PHATE visualizes
coarse grained data better than other visualization techniques.

In addition to quantitative evaluation of Multiscale PHATE, we can also assess its performance
qualitatively. When visualizing high dimensional cellular data, we would expect a good visualization
technique to embed all cells of a single type close to one another and cells of different types far
apart. When comparing our method to other dimensionality reduction techniques, it becomes clear
that Multiscale PHATE more accurately maintains distances between similar and dissimilar cell
types (Figure 2A). When comparing monocyte clusters derived from flow cytometry data across a
range of visualization techniques, we see that across all Multiscale PHATE granularities, monocytes
are embedded close to one another but form distinct and distant clusters in tSNE and UMAP
visualizations. When evaluating embeddings of single cell transcriptomics data [10], these monocytes
are preserved in three groups by UMAP and across a range of Multiscale PHATE granularities,
however are broken into over a dozen groupings by tSNE. Similarly, when embedding patient clinical
data, Multiscale PHATE visualizes patients with similar clinical outcomes close to one another.
These relationships are broken into more distant clusters by tSNE and UMAP embeddings.

Finally, it is clear that Multiscale PHATE is far more scalable and reproducible than other
visualization techniques. While Multiscale PHATE is able to embed 22 million cells measured by
flow cytometry in less than 20 minutes, users are forced to downsample this dataset to just 25,000
cells in order to create UMAP or tSNE visualizations (Figure 2A). When comparing run times
between different techniques, it becomes clear that Multiscale PHATE is able to rapidly scale to
millions of cells, successfully embedding 5 million cells in less than 10 minutes, while the next most
scalable technique, Monocle2, can only embed 500,000 cells in a comparable time (Figure 2B). Finally,
Multiscale PHATE is highly reproducible. A common issue with UMAP and tSNE, which shift
clusters randomly from run to run, is solved by Multiscale PHATE, which can faithfully create the
same embedding across multiple runs (Supplementary Figure 2B).
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Figure 3: Comparison of Multiscale PHATFE with other Clustering techniques

A. Schematic of the hierarchical stochastic block model we generated for multigranular cluster comparisons.
For each method, increasing amounts of random Gaussian values were added to the adjacency matriz of
stochastic block model to simulate increasing amounts of noise. As the model was constructed with known
clusters at multiple scales, we computed Adjusted Rand Index (ARI) between each algorithm’s predicted clusters
and the known clusters across coarse and fine granularities.

B. Comparison of multiple clustering approaches on flow cytometry data where cell types and subtypes have
been identified through gating analysis. Clusters identified by different approaches were compared to gated
populations using ARIL

Multiscale clusters more accurately capture established groupings of data in synthetic
and real biological datasets:

While data scientists sometimes think of neighborhood embeddings such as tSNE or UMAP as
clustering methods, since they visualize data in a manner reminiscent of clusters, such methods
do not explicitly return groupings of the data. Instead, the associated data has to be processed
by a clustering algorithm, such as K-means [27]| or Louvain [28], to produce groups. In contrast,
Multiscale PHATE is truly both a visualization and clustering algorithm, as the condensation process
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effectively returns groupings of the data at all levels of granularity.

In order to quantify the clustering accuracy of Multiscale PHATE on increasingly noisy and
multigranular data, we simulated two and three-layer hierarchical stochastic block models (SBM)
(Figure 3A, Supplementary Figure 3A). In these models, a graph is constructed in which there are
coarse grain clusters, each of which could be further broken down into increasingly granular clusters.
In order to compare all clustering techniques across a range of noise levels, increasing amounts of
random gaussian noise is added to the edge weights of the graph. At each level of noise, cluster labels
are computed with multiple clustering tools: Multiscale PHATE, Louvain [28|, Leiden [29] and single
linkage hierarchical clustering [30]. For each clustering tool, the entire tree of cluster assignments
is evaluated against coarse and fine grain ground truth cluster labels using Adjusted Rand Index
(ARI), with the top score preserved. These comparisons are run on a range of noise levels and
replicated 10 times across a range of initial hierarchical SBM edge weights in both the two-layer
and the three-layer models. Across both models, Multiscale PHATE performed superior to other
hierarchical clustering techniques in 35 of the 42 comparison conditions (Figure 3A, Supplementary
Figure 3A), with only poorer performance at the finest granularity of the 3 layer SBM. From these
experiments, we conclude the Multiscale PHATE is superior at clustering noisy simulated data than
other leading multigranular clustering tools.

Traditional methods to analyze flow cytometry data involve individually establishing thresholds
across the fluorescent signals from each targeted marker on a given cell based on the controls. By
iterating similar "gates" across a number of markers, an investigator may identify increasingly specific
cells within a heterogeneous population. Individual gates for each marker may be validated by
comparing against rigorous controls including isotype controls, fluorescence minus one controls, and
biological controls. These methods can distinguish true fluorescent signal from non-specific signal or
biological noise, respectively. This robust approach remains the gold standard for the analysis of
flow cytometry data [31]. In order to show that Multiscale PHATE is able to identify known cell
types, we computed multiscale clusters on a dataset with cell types established by traditional gating
analysis. Taking the cell population labels as identified conventionally, we computed ARI scores on
clustering outputs from a range of clustering techniques at multiple granularities. Across both fine
and coarse grain clusters, Multiscale PHATE computed clusters that more faithfully represented the
underlying known biological cell types (Figure 3B).

4.3 Multiscale PHATE analysis of 251 SARS-CoV-2 patient blood samples re-
veals subsets of cells associated with mortality:

One hundred sixty eight patients with moderate to severe COVID-19 [32] were admitted to YNHH
and recruited to the Yale IMPACT (Implementing Medical and Public Health Action Against
Coronavirus CT) study. From each patient, blood samples were collected across multiple timepoints
to characterize patient cellular responses across the spectrum of disease. In total, the composition
of peripheral blood mononuclear cell (PBMC) was measured by flow cytometry on 251 samples.
Finally, clinical data was extracted from the electronic health record corresponding to each biosample
timepoint to allow for clinical correlation of findings (see Methods). In this analysis, we define
poor or adverse outcomes as patients who died from infection, while good outcomes as patients
who survived. In order to analyze over 54 million cells characterized across 4 different sets of flow
marker panels, we applied Multiscale PHATE to identify subsets of peripheral blood mononuclear
cells (PBMCs) associated with mortality and survival.
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Figure 4: CD16" CD66b'° Neutrophil subset enriched in patients who die from COVID-19.

A. Multiscale PHATE visualization of PBMCs identifies all major cell types based on cell type specific markers.
B. Visualization of mortality likelihood score computed by MELD.

C. Visualization of mortality likelihood score organized by cell type reveals enrichment of granulocytes,
monocytes and B cells in patients who die from COVID-19.

D. Zoom in of granulocyte population identifies subsets of neutrophils and eosinophils based on expression of
known markers.

E. Visualization of mortality likelihood score in granulocyte population identifies CD16" neutrophils enriched in

patients with worse outcomes. Key associations between markers and mortality likelihood scores in neutrophils
computed by DREMI and visualized with DREVI.

Key dysfunctional myeloid, granulocyte and B cell subsets are enriched in patient who
die from infection:

To explore the role of individual PBMC cell types in disease pathogenesis, we examined 22 million
cells measured on a myeloid-centric flow cytometry panel from 210 patient samples suffering from
COVID-19. Using cell type specific marker staining, we characterized Multiscale PHATE clusters
(Figure 4A). Using MELD and the mortality outcome for each patient in our cellular state space,
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we were able to compute the mortality likelihood score, which identified cellular states enriched
in patients who die from infection (darker red) or patients that survive (darker blue) (Figure 4B).
When mapping these scores onto cluster labels, we found that the three populations most enriched
in mortality were granulocytes (CD16TSSC"), B cells (CD197), and monocytes (CD14%) while the
population most enriched in survival was T cells (CD3") (Figure 4C).

Resting population of circulating neutrophils enriched in with patients who die from
COVID-19. We zoomed in on the granulocyte population and identified CD16" neutrophils,
CD16% neutrophils and eosinophils based on the expression of CD16, CD66b, granularity by side
scatter (SSC) and size by forward scatter (FSC) (Figure 4D). After mapping our mortality scores
onto this granulocyte population we found that the CD16" neutrophils were enriched in patients
who died from infection. In order to identify which cellular markers beyond CD16 were most
correlated with mortality in neutrophils, we computed DREMI between protein expression and
mortality likelihood scores in both neutrophil subsets. We identified that while CD14 and CD66b
were negatively correlated with mortality, increased FSC and SSC were both strongly positively
correlated with mortality in neutrophils, indicating that CD16"CD66b!° neutrophils were enriched
in patients that died from COVID-19. Based on the PBMC isolation protocol used (see Methods)
neutrophils obtained were by definition Low-Density Neutrophils, containing both the mature and
immature subsets. Considering the sensitivity of CD16 expression, high CD16 in our cohort was most
likely indicative of a mature population that has not responded to an activating stimulus [33-35].
Neutrophils from patients with worse disease also expressed less CD66b; in contrast, an increase in
surface expression of CD66b occurs following degranulation [36]. The combination of high complexity,
high CD16 expression, and low CD66b expression suggests a resting population of circulating
neutrophils present in patients with lethal disease.

CD14 CD16HLA-DR/° monocyte subset associated with patient mortality. In order
to identify monocyte subsets implicated in disease, we zoomed in to the monocyte population and
identified major subtypes based on the expression of markers CD16 and CD14 (Supplementary
Figure 4A). The combination of these markers allowed us to distinguish between CD14TCD16~
monocytes, CD14T7CD16™ monocytes and CD14~CD16" monocytes. After mapping our computed
mortality likelihood scores onto this population, we identified that CD14~CD16" monocytes were
the most strongly enriched in severe infection, followed by CD14*CD16* monocytes (Supplementary
Figure 4B). These findings agreed with published observations as others have also noted an influx of
CD14TCD16" and CD14~CD16™ monocytes in the lungs of patients with severe disease [11,37,38].
Furthermore, across all monocytes, CD16 was positively correlated with mortality while CD14 and
HLA-DR were correlated with survival, identifying a distinct CD14~CD16HLA-DR' population
of monocytes enriched in mortality. The loss of HLA-DR has been previously shown in monocytes
from COVID-19 patients [39]. Monocytes expressing HLA-DR can serve as antigen-presenting cells
to shape the adaptive T cell response, but monocytes in this cohort, expressing reduced amounts of
HLA-DR, would likely have very limited capacity to prime effector T cell responses. Interestingly, a
similar phenomenon occurs in sepsis patients, as well, and is indicative of worse outcomes [40-42|.
In this setting, elevated levels of IL-10 have been linked to decreased HLA-DR on monocytes [43,44].
As COVID-19 patients also present with significantly elevated levels of I1-10 in circulation, a similar
mechanism may be at play here [39,45].

Multiscale PHATE identified plasmablast population associated with mortality. There
has been a persistent interest in the role of B cells during disease due to their potential to generate
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neutralizing antibodies. In our broad PBMC analysis, however, B cells were among the most
enriched populations in severe outcomes (Figure 4C). In order to explore B cells in greater detail,
we processed 154 patient samples on a B cell specific flow cytometry marker panel. Analyzing
these cells by Multiscale PHATE granted us an unbiased, granular look at B cells subsets which
would otherwise be difficult by traditional two-dimensional gating, popular for flow cytometry
analysis. These subsets include transitional B cells (IgDTIgMtCD27~ /CD387CD24 1), naive B
cells (IgDTIgM+tCD27~ /CD387), switched (IgD~IgM~CD27%") and unswitched memory B cells
(IgD*IgM T CD27"), activated B cells (IgD~CD138~CD86+THLADR™), and antibody secreting cells
(CD1387CD38") (Supplementary Figure 4C). After identifying these major cell types, we computed
mortality likelihood scores to identify B cell subtypes implicated in mortality. Interestingly, the most
enriched cell type in patients with adverse outcomes was a subset of the antibody secreting population
defined by CD86'°HLADR~/CXCR3*, also known as plasmablasts. Meanwhile the cell types most
enriched in patients with good outcomes was a subset of late activated mature B cells defined
by CD86" (Supplementary Figure 4D). Despite the well-described protective roles of circulating
antibodies, these results are consistent with earlier findings from COVID-19 patients, which discuss
the potential role of B cells in disease pathogenesis [46-48|. Given the abundance of circulating
IL-6 in COVID-19 patients, it is possible that in this setting, IL-6 skews B cell differentiation into
antibody secreting cells [49]. Considering the lack of mutations in neutralizing, anti-SARS-CoV-2
antibodies, skewing toward antibody secreting cells may come at the expense of transit through the
germinal center, thus producing a less potent or non-specific antibody response [50].

15


https://doi.org/10.1101/2020.11.15.383661
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.15.383661,; this version posted November 17, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A ® 4 Teells i @ FII7IFNY Granzymes* Increased
@ cos Teells @ covouns o
@ Double Positive : :::ﬁ, FXCB.B é
@ Double Negative . @ cosENyTNR 2
. ) 3
Decreased
C 054 DREMI = 0.627
A
’m 0.52 E
3 3
0.50 b
3 z
£ z
S o4s S GranzymeB
= O | DREMI = 0.313
Zz Z
'(—; 0.46 TTS
I £
] o
2 ou = L
L7+ PNy 14 ILl7* IL6*  CXCR3*
IFNy*  TNFa*- IFNy
GranzymeB*
D Patients with Adverse Outcomes
e
: IL-2 IL-6
/ v

Expression

Disease Time

—— Good Outcome
= Adverse Outcome
Unknown

Figure 5: Multiscale PHATYE identifies Th17 subset enriched in patients who die from COVID-
19

A. Multiscale PHATE visualization of T cell focused cytokine panel identifies broad T cell subtypes.

B. Zoom in of CD4% T helper cells identifies subsets based on expression of functional markers.

C. Visualization of mortality likelihood score identifies IFNy™ GranzymeB™ Thi17 cell enrichment in patients
with poor outcomes. Key associations between markers and mortality likelihood scores are computed by DREMI
and visualized with DREVI.

D. TrajectoyNet run on CD4T T cells from all patients and patients who died from infection identifies
condition-specific cellular dynamics. Tracking the expression of key markers overtime, TrajectoryNet identifies
mortality dependent differentially expressed markers in CD4T T cells overtime.

Key pathogenic T cell subsets are enriched in patients who die from infection:

Although T cells collectively were enriched in patients who recovered from infection (Figure 4C),
there are a diverse set of T cell subsets which have been implicated in severe disease pathogenesis. In
order to identify functional T cell subsets enriched in patients who died from COVID-19, we applied
Multiscale PHATE to 22 million T cells measured on a cytokine-specific flow cytometry panel. After
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identifying salient levels of granularity for downstream analysis, we identified both CD4" and CD8"
T cell subsets at coarse granularity (Figure 5A).

Fine grain analysis of protective T cell population helps identify pathogenic IFNy™
GranzymeB™ Th17 subpopulation. Using Multiscale PHATE’s zoom and cluster capabilities,
we were able to visualize the CD4" T cells and subdivide the cells into functional subsets using
functional markers, IFNvy, IL-17, and IL-4 (Figure 5B). Interestingly, in our dataset, we identified two
different subsets of CD4*1 IL-17 producing T cells classically known as Th17 cells, one co-producing
GranzymeB and IFNy and one staining negative for both markers. Finally, we classify two final
subsets based on the expression of IL6 and CXCR3 (Figure 5B). To identify cell types enriched in
mortality, we computed a mortality likelihood score. By organizing our scores by T helper subset, it
became clear that the Th17 subset co-producing IFNy™GranzymeB™ were enriched in patients who
died from infection. Furthermore, GranzymeB and IFNy were positively associated with mortality
likelihood on DREMI analysis across all CD41 T cell subtsets (Figure 5C).

While Th17 cells can play protective roles [51], IFNyTGranzymeB* Thl7 cells have been
associated with tissue damage. In a model of murine autoimmune encephalomyelitis, a discrete
subset of IFNy+GranzymeB™ Th17 cells caused significantly worse disease than traditionally activated
Th17 cells [52]. Previous literature had also observed that high levels of circulating IL-17 produced
from IFNy*GranzymeB™ Th17 cells could drive a strong pro-inflammatory immune response and
promote neutrophil expansion. Likewise, recent reports have indicated the harmful contribution of
neutrophils and neutrophil extracellular traps (NETs) in SARS-CoV-2 infections [53-55]. This influx
of neutrophils can be further exacerbated by the virus-induced loss of ACE2 [56], and cumulatively,
these events have the potential to trigger ARDS, as seen in COVID-19 patents. However, what
regulates neutrophil recruitment, survival, and subsequent NET release during the disease has not
been definitively identified in COVID-19. Interestingly, patients with adverse outcomes in this cohort
demonstrated an enrichment in IFNy*GranzymeB™ Th17 cells, as well as CD16™ neutrophils. We
posit that IFNy*GranzymeB™ Th17 cells in our cohort may precipitate these pathogenic effects
via IL-17 secretion. While our flow cytometry data was limited to identifying cells in circulation,
sequencing data from upper respiratory tracts of COVID-19 patients observed Thl7 cells in the
airways, as well [57,58]. Either in the lungs or in circulation, IFNy*GranzymeB™ Th17 may influence
neutrophil activity by inducing IL-8 release from airway epithelial cells or G-CSF from microvascular
pericytes [59-61|. It was recently shown that MAIT cells comprise a substantial portion of IL-17
expressing cells in the upper respiratory tracts of COVID-19 patients; consequently, secretion of
IL-17 in the lung may not be primarily confined to the Th17 compartment. The two may also act
synergistically as MAIT cells have been shown to promote the recruitment of activated CD4+ T
cells to the lungs during pulmonary infection [62].

To understand cellular dynamics from our multiscale distilation, we ran TrajectoryNet [21] on our
CD4" T cell coarse grained embedding as well as on the underlying markers. With this analysis we
identified diverging trajectories when comparing all patients with patients who experienced adverse
outcomes (Figure 5D). When comparing trajectories from these patient populations, we can identify a
clear set of Th17 cells from patients with adverse outcomes shifting towards the IFNy ™ GranzymeB™
co-producers. This indicates, that in patients with adverse outcomes, potentially homeostatic Th17
cells acquire a pathogenic phenotype. By integrating TrajectoryNet with Multiscale PHATE, we
also show that we can identify biomarkers that are predictive of disease outcome. We identify that
IL-2 and IL-6 expression by CD4% T cells is differentially based on patient outcome over time,
with patients who die expressing higher levels of IL-2 and IL-6 over time and patients who survive
expressioning lower amounts of both(Figure 5D).
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Hyperactivated CD8TTIM3THLA-DRTPD1"™ TEMRA cells, expressing GranzymeB
enriched in patients who die from COVID-19. In acute viral infections, CD8' T lymphocytes
play a critical role in the clearance of virus [63]. By the directed secretion of Granzyme B, these
effectors may rapidly kill virally-infected targets [64]. In order to characterize the role of CD8*
T cell subsets in disease, we zoomed in on CD8% T cells in our cytokine-focused T cell panel.
Using the expression of cell surface markers and cytokines, we identified three major subsets, one
producing GranzymeB, one producing IFNy and one producing TNFa (Supplementary Figure 5A).
After mapping mortality likelihood scores onto the CD8' subpopulation, it became clear that the
GranzymeB™ population is most enriched in mortality with GranzymeB expression being highly
associated with mortality in CD8" T cells (Supplementary Figure 5B). These findings are consistent
with a previous study of SARS-CoV-2 infected patients that observed an association between the
enrichment of CD8" T cells expressing high amounts of GranzymeB and increased disease severity [65].
Despite the protective role of GranzymeB in other viral infections, our data and others indicate that
its excess may lead to worse outcomes, including mortality. This possibility is supported by early
findings of GranzymeB™ CDS8'-induced tissue damage in different murine models of respiratory
viral infections [66,67] or from clinical studies [68]. In these early studies from mice, pathogenic
GranzymeB™T CD8" T cell activity manifested in the presence of extremely high viral loads or in
the absence of other lymphocytes and antigen-specific antibodies. Likewise, all of these factors are
present in COVID-19 patients- high viral loads, lymphocytopenia, and ineffective antibody responses
- which permits the emergence of this hyper-activated CD8" population associated with more severe
disease. To gain additional insight on which discrete subset of CD8T T cells may be the source of
GranzymeB, we performed detailed surface staining of all T cells.

We analyzed 208 patient samples using a flow cytometry panel containing markers indicative of T
cell subset identity and activation status. After identifying the ideal granularity to analyze the data,
we identified CD4", CD8™ and double positive T cell subsets (Supplementary Figure 5C). Zooming in
to the CD8™T subset, we identified a range of activation states based on the expression of key markers:
Effector (TIM3TPD1%/CD45RA™), Follicular (CD45RA~ /CCR7-CD127~ /CXCR5TPD1"), Mem-
ory (CD45RA~/CCR7T or CCR7 ~ CD127%), Naive (CD45RAT/CCR7TCD127") and T effector
memory cells re-expressing CD45RA (TEMRA) (CD45RA T /CCR7-CD127) (Supplementary Figure
5D). After computing MELD mortality likelihood score, we identified that the TEMRA population
displayed the most enrichment in severe infection. Furthermore, across all CD8'+ T cells, activation
state markers PD1, TIM3, HLA-DR and CD45RA were also positively correlated with mortality on
DREMI analysis, while markers like CD127 and CCR7 were negatively correlated with mortality
(Supplementary Figure 5E). Our findings here are in agreement with contemporaneous studies of
SARS-CoV-2 patients [46,65,69]. Cumulatively, our data correlate mortality with a hyper-activated
CDS8™ T cell response in the form of CD8TCD45RATTIM3THLA-DRTPD1T™ TEMRA cells, likely

expressing GranzymeB.
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4.4 Multiscale patient manifold construction reveals potential mechanisms of

disease:
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Figure 6: Patient manifold corroborates cellular states associated with of disease pathogenesis.
A. Visualization of patient manifold via PHATE and mortality likelihood score based on patient outcomes
computed via MELD.

B. Visualization of key cell population enrichment trends over the manifold with associations computed by
DREMI and visualized with DREVI.

C. Tracing three patients’ hospital courses over patient manifold. Patients 19 and 63 were discharged while
patient 54 died.

D. Comparing predictability of patient mortality using random forest classifier on Multiscale PHATE identified
populations and flow cytometry identified populations. Most predictive Multiscale PHATE clusters are ranked
through feature importance analysis.

Here, we show that Multiscale PHATE-derived clusters across multiple scales form a rich set of feature

descriptors for patients measured in single cell modalities. Although, the purpose of measuring
single cell data is indeed to derive features in the form of cells, patients can be hard to compare and
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analyze at this level. Common approaches simply compare cluster proportion or averaged expression
levels across patients. However, since Multiscale PHATE creates cellular groupings at multiple
granularities, we can derive a rich summarization of patients across scales.

We create a patient-embedding using cluster proportions from several levels of the condensation
tree of the myeloid-focused flow cytometry using our patient manifold approach (Figure 6A). Briefly,
the proportion of a patient’s cells that belong to clusters at several levels of the tree are used as
a feature vector (see Methods). These patient descriptors are then embedded and visualized with
PHATE [13]. The resultant embedding demonstrates that the patients lie on a low dimensional
continuum or manifold themselves. When the patient embedding is colored by the manifold-based
likelihood estimate of mortality outcomes, we see that the dominant progression in the data is indeed
clinical outcome, with patients on the left enriched for good outcomes (darker blue) and patients on
the right enriched for adverse outcomes (darker red).

In order to associate previously identified cellular populations with outcome, we computed
DREMI between these population proportions and mortality likelihood score. We identified that
while T cells overall were negatively correlated with mortality, CD4*IFNy*GranzymeB™ Th17
cell, plasmablasts, CD16" neutrophils and CD14~CD16™ monocytes were all strongly positively
associated with mortality (Figure 6B). These findings indicate that precipitous decline in T cells
correlates with mortality, while subsets of neutrophils, monocytes and Th17 cells, all previously
highlighted in our analyses, are increased in patients with adverse outcomes. Finally, we trace
clinical states of three patients, 19, 63 and 54, across the patient manifold to determine if our
construct accurately recapitulates patient trajectories. Surviving patients 19 and 63 had their clinical
trajectories consistently go from the high mortality region to the low mortality region. In contrast,
patient 54, who succumbed to disease, had a tortuous set of clinical states all of which mapped
within the high mortality region (Figure 6C).

To identify if age, sex and other clinical variables were preferentially associated with mortality
on our construction, we mapped these clinical variables onto the patient manifold. We found that
patients who were more likely to experience poor outcomes were also more likely to be older, male,
receive ventilatory support and have higher markers of inflammation (Supplementary Figure 6A). We
ran DREMI analysis to find associations between these clinical variables and key cell types implicated
in infection pathogenesis. We found that females and young individuals were more likely to mount a
robust T cell response. This finding builds upon a body of literature that shows immune responses
may differ across sex and age [70,71]. Specifically, for SARS-CoV-2, this finding corroborates a
separate analysis that found that activated T cells play a protective role in women but not as
much in men [72]. Additionally, the negative relationship between age and T cell numbers has been
extensively studied [73,74]|. Our analysis finds the same trend in our cohort of patients, who are in
general older, predisposing them to requiring hospitalization. Epidemiological data analyzing large
numbers of COVID-19 patients enumerate the significant contributions of age and sex for disease
severity [75,76].

In order to see if Multiscale PHATE-derived sub-populations could predict disease outcome,
we combined the features of patients we identified in our myeloid-focused flow cytometry panel
with clinical outcome to train a random forest classifier (see Methods). Using these abstracted
features, we accurately predict outcome in 83.5% of cases. When performing a similar prediction task
using flow cytometry gated populations, we were only able to predict outcome with 73.8% accuracy.
Furthermore, we identified that monocytes, CD16" neutrophils and T cells were three of the top
four cell types most predictive of eventual disease outcome in our classifier model (Figure 6D).
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4.5 Multiscale clinical manifold construction highlights potential mechanisms
of disease convalescence:
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Figure 7: Multiscale manifold of patient clinical features identifies cell types associated with
extended COVID-19 recovery phase

A. Visualization of Multiscale PHATE clinical manifold constructed on patient clinical features. Embedding is
colored by likelihood scores based on patient outcomes computed via MELD.

B. Zoom in on transition point between high extended recovery likelihood score and high survival likelthood
score.

C. Patient clinical features and flow cytometry identified cell populations associated with patient outcomes
using DREMI and visualized with DREVI.

Thus far, we have primarily used Multiscale PHATE to identify multiresolution structure in single
cell flow cytometry data. We now showcase the utility of Multiscale PHATE on a different type of
data: laboratory, clinical, and demographic data generated from routine clinical care of COVID-19
patients admitted to YNHH. With 18 clinical variables collected on 2,135 patients admitted to
YNHH diagnosed with moderate to severe COVID-19, we created a multiscale embedding capturing
patient states across mild, moderate and severe spectrums of disease. Patient outcomes at discharge
were categorized by severity: discharge to home, discharge to rehabilitation for extended recovery,
and discharge to hospice or death while in hospital. Using each of these outcomes, we computed
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likelihood scores with MELD corresponding to each outcome: survival likelihood score, extended
recovery likelihood score and mortality likelihood score (Figure TA).

In order to understand how clinical features could inform outcomes, we computed DREMI and
DREVI analysis between clinical features and each of our likelihood scores (Supplementary Figure
7A-B). As anticipated, markers of physiologic instability, such as decreased systolic blood pressure and
increased respiratory rate, as well as systemic inflammatory markers, increased ferritin, procalcitonin
and CRP, were associated with higher mortality. Beyond these general markers, however, several
markers of organ dysfunction were also strongly associated with mortality. Specifically, kidney
dysfunction, as measured by blood urea nitrogen (BUN) and creatinine, as well as liver dysfunction,
aspartate aminotransferase (AST) and alanine aminotransferase (ALT), were correlated with mortality.
Although COVID-19 most commonly involves the respiratory system, these findings are consistent
with clinical reports of severe disease from a generalized inflammatory state resulting in multiorgan
damage and failure.

A subset of patients infected with SARS-CoV-2 experience prolonged recovery periods. In fact,
in our multiscale embedding of patient clinical states we see a transition between a region of high
survival likelihood score and a region of high extended recovery likelihood score (Figure 7A). In
order to understand which cellular populations and clinical features drive the difference between
these outcomes, we decided to zoom into this transition point (Figure 7B). We computed DREMI
association scores between clinical features and flow sorted cellular populations to identify features
differentially associated with survival and extended recovery. Our analysis found that age and kidney
dysfunction were strongly associated with extended recovery indicating that older patients with
worse kidney function were more likely to experience lengthy recovery periods from infection (Figure
70).

Beyond clinical features like age and organ function, we also discovered different cellular popu-
lations associated with outcomes such as survival or long-term recovery from disease (Figure 7C),
thus showcasing the way in which MultiScale PHATE can be used as a substrate for integrating and
analyzing multiple modalities of data. Multiple recent publications have addressed the question of
protection conferred by T cell-mediated responses [77-79] - with many demonstrating that antigen-
specificity and T cell responsiveness lead to improved outcomes [80,81]. Our analyses are in line
with these findings, indicating that though some T cell subsets may be pathogenic, the major T
cell subsets overall are positively associated with survival and negatively associated with a lengthy
recovery phase. Interestingly, no myeloid subsets were found to be associated with length recovery
periods, indicating that T cells and T cell subsets are perhaps more associated with recovery length
while other immune populations may be associated with mortality.

5 Discussion

Here we presented a multiscale data exploration technique to visualize, understand and compare large-
scale datasets, filling a key gap in biological data exploration. Multiscale PHATE finds groupings of
data at varying scales that are predictive of clinical outcome. Biological data naturally contains
multi-granular structure. Most analysis methods, however, whether clustering or dimensionality
reduction algorithms, generally only look at a single level of resolution and do not offer a systematic
way to explore different scales. Hierarchical clustering is one method that could offer certain scales
of resolution. However, due to the constant merges that occur in hierarchical clustering approaches,
like Louvain, many levels of resolution are missed and biologically important levels of granularity are
not recapitulated. By contrast, Multiscale PHATE offers a fast manifold learning-based technique
for uncovering a continuum of resolutions of structure and features from data. The speed and
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effectiveness of Multiscale PHATE is due in large part to key algorithmic advances we presented to
make the underlying diffusion condensation process scalable, and representational advances in using
diffusion potential coordinates as the substrate for the condensation.

We show that Multiscale PHATE can be combined with other techniques, like manifold density
estimation (MELD), mutual information (DREMI), trajectory inference (TrajectoryNet), and classifi-
cation (random forest classification) to provide deep and detailed insights in biological processes. We
showed several effective examples of combining Multiscale PHATE with a technique known as MELD
that shows the relative likelihood of seeing cells from different categories of patients in different
parts of the cellular manifold. When MELD is combined with Multiscale PHATE, we can find levels
of resolution that naturally capture the salient differences between patients with different clinical
outcomes. Interestingly, Multiscale PHATE’s ability to zoom in helps identify pathogenic subsets of
protective populations. Across our analyses, T cells have been shown to be protective against poor
outcomes, corroborating previous work done in COVID-19. While broadly this cell type is protective,
a multiscale zoom in of CD4™ T cells reveals a pathogenic CD4TIFNy ™ GranzymeB™* Th17 subpopu-
lation, highlighting the need for multiresolution analyses. In our work, we show several instances
where density resampled estimate of mutual information (DREMI) between MELD likelihood scores
and Multiscale PHATE identified clusters revealed potential associations between outcomes and key
subpopulations, like CD161CD14~CD66b™ neutrophils and CD14°CD16THLA-DR monocytes.
We then showed that our manifold representation can be used to model cellular dynamics in patient
response, identifying a key transition in Th17 cells as well as differential longitudinal IL-2 and IL-6
expression in patients with good and adverse outcomes. Furthermore, we showed that Multiscale
PHATE identified populations combined with outcome variables can be used to predict clinical
outcomes better than the current gold standard for flow cytometry analysis. Finally, we show that
our approach is generalizable to a wide variety of biomedical data, including scRNAseq, scATACseq,
CyTOF, TCR repertoire sequencing and clinical datasets.

While we have demonstrated Multiscale PHATE in the context of COVID-19 patient data, we
believe that both the technique and the ways in which we have used it to analyze multi-modal data
are widely applicable. Other applications could include analysis of multi-modal influenza or HIV
data. Multiscale PHATE can also be used with an individual data modality to uncover structure
where canonical cellular subtypes are not available, such as in patient-specific cancer or tumor cell
types. Generally, as datasets continue to increase in size and the number of samples continue to
expand, our scalable algorithm will become even more critical for joint analysis.
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7 Methods

7.1 Computational Methods

In the following sections we provide a thorough description of each aspect of the Multiscale PHATE
algorithm and the use of downstream analysis tools. This includes but is not limited to explanations
of algorithm design choices, information on how comparisons between algorithms were run and
details on how the patient manifold was constructed.

7.1.1 Diffusion information geometry for visualization and condensation

The multiresolution visualization provided by Multiscale PHATE relies on the construction of a
diffusion geometry that captures the intrinsic structure of the data. Such a construction was first
presented in the context of manifold learning with Diffusion Maps (DM), which rely on diffusion
coordinates derived from spectral decomposition of the heat kernel over (Riemannian) manifolds [82].
The DM construction approximates the heat kernel on data by defining a Markovian diffusion process

whose transition probabilities are given by p(z,y) = 0 i]:((?gfh’ where the L1 norm is taken over the

input data and k(-,-) is a similarity kernel capturing local neighborhoods in the data. Then, an
integral diffusion operator is constructed as P f(z) = [ p(z,y)f(y)dy, which is represented in finite
settings as a matrix with entries [P];; = p(z;,z;), where {x1,x2,...} are the input data points (e.g.,

cells or strains in our case). By taking powers of this diffusion operator, we can consider t-step

diffusion probabilities between data points given by p'(z;, x;) := Prlx; Losteps, z;] = [P');;. Finally,

the diffusion geometry considers each data point x via its t-step diffusion distribution p!, = p'(x, ),
and DM aims to extract low dimensional coordinates where Euclidean distances capture a diffusion
distance metric defined as Ly distances between these distributions, called diffusion distance.
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While several similarity kernels are used in practice to construct the diffusion operator P, a
standard choice is the Gaussian affinity k.(z,y) = exp(— ||z — y||?/¢) [13,82-84], in which case we
denote the diffusion operator P., where ¢ determines the neighborhood radius. This kernel choice is
often seen in theoretical and mathematical work due to its established properties on data sampled
from locally low dimensional geometries (i.e., data manifolds) [82,85,86]. In particular, it can be

verified that when the data is sampled from a Riemannian manifold, the diffusion operator Pé/ y
constructed from k. (-, -) converges to the heat kernel on the underlying manifold as € — 0. Further, as

€ — 0 the eigenvectors of Pgt/ © operator converge to Laplace-Beltrami eigenvectors that characterize
the solutions of the heat equation (9;f(x,t) = V2 f(x,t)) with Neumann boundary conditions on
the underlying manifold of the data. Based on this convergence properties, the embedding provided
by DM is based on the eigendecomposition of P? to its eigenvalues 1 = )\6 > )\ﬁ > )\5 >...>0and
corresponding eigenvectors ¢g, ¢1, @2, . .., which then yield the diffusion coordinates x +— ()\3(;5]-);7:1,
where 7 is determined by the numerical rank of P? and the first eigenpair is discarded since ¢ is
(provably) constant. We refer the reader to [82] for more details on DM and its properties.

While the analytic relation between spectral embedding with diffusion coordinates is appealing
from a manifold learning perspective, the resulting DM often separates trajectories, pathways, or
clusters into independent eigenspaces. This, in turn, yields multidimensional representations that
cannot be conveniently visualized (e.g., having significantly more than 2-3 dimensions), and more
importantly, cannot be directly projected into 2D or 3D displays that faithfully capture diffusion
distances. In order to overcome this and extract a low dimensional data visualization, the recently
proposed PHATE method treats the constructed diffusion geometry as a statistical manifold and
leverages tools from information geometry to define a family of diffusion information distances

defined as D] (z,y) = HAEZ?Z/)()Hz where

. pe(2) — ply(2) y=-1
() ) o ; :
A(z o (2) = / w2 du = { logpl(z) —logp)(2) v=+1 (1)
' t(z — _
e 2 [T~ W27 otherwise

and the parameter —1 <~ < +1 attenuates the influence of lower probability differences in the overall
distance. On one extreme (v = —1), the resulting metric yields the traditional diffusion distance.
When v = 0, it yields an f-divergence corresponding to Hellinger distances between diffusion
distributions. On the other extreme (y = +1), the resulting information distance yields an Lo
distance between localized diffusion energy potentials given by UL(-) = log pL(2), as discussed in [13].
There, as well as in other work [87], it has been shown that this potential distance is amenable to low
dimensional embedding that captures and visually accentuates emergent global and local structures
in the data - most importantly, trajectories and transitions between stable clusters in it. Therefore,
the PHATE method, as well as its variation here, are based on embedding potential distances directly
into two or three dimensional coordinates via stress-minimizing optimization procedure provided by
multidimensional scaling (MDS). In addition to the core utilization of diffusion information geometry,
the PHATE algorithm also includes robust construction of the initial neighborhood kernel, automatic
tuning of diffusion resolution (see also discussion in the next section), and efficient sampling for
scalability purposes. For more details about these aspects of PHATE, we refer the reader to [13].

Multiscale PHATE not only uses PHATE for visualization of several chosen iterations of the
condensation process (explained below), representing multiple scales of data coarse graining, but also
as the coordinate system for the data. This ensures that the condensation process itself operates in
data manifold dimensions.
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7.1.2 Multiresolution via the diffusion condensation time-inhomogeneous Markov pro-
cess

The diffusion geometry underlying PHATE is naturally multiscale, via the diffusion time parameter ¢
that controls the resolution of information captured by the diffusion process. Indeed, as the diffusion
time increases, the distributions p(-) (or potentials UZL(-)) consider increasingly diffused energy that
attenuates local differences until eventually at ¢ — oo all these distributions converge to a unique
equilibrium stationary distribution, since the process is ergodic. However, as discussed in [88,89],
this process often diffuses information too rapidly to enable multiresolution representation of varying
intermediate scales of data geometry. Further, in [13], it was shown that the diffusion time scale
admits an optimal time scale for visualization, which can be identified automatically by distinguishing
between a rapid denoising phase and a slow decay from metastable to equilibrium diffusion states.
We can use this property to automatically tune the diffusion time scale to transitioning point between
these two phases. However, here we aim to extend this analysis to provide a full multiscale or
multiresolution data geometry, and therefore we need to provide better control of the propagation of
information by intrinsic diffusion over the data.

One of the first attempts at alleviating the rapid convergence to stationary distribution in
multiscale DM was presented in [88], as part of a hierarchical construction of localized diffusion
folders (LDF) using a localized diffusion process, which was further analyzed in [89]. The localized
diffusion process there limited each instantiation of the diffusion random walks to only traverse
between two “diffusion folders” (i.e., clusters), thus blocking global pathways that quickly diffuse to
wide regions in the data. While this process was shown to be effective in some applications involving
hierarchical clustering, it requires separate clustering steps and a priori determination of scales at
which to pause the diffusion and cluster into LDFs. Furthermore, the pruning of the diffusion process
there is computationally intensive, as each diffusion affinity (or transition probability) requires
simulating or approximating a local diffusion process between two considered clusters. However,
the principles posed by this approach clearly established the need for careful manipulation of the
underlying Markov process of DM in order to truly enable multiscale representation learning via
diffusion geometry, and by extension the diffusion information geometry used in PHATE.

A more recent approach towards multiresolution diffusion-based coarse graining was presented
in [12], which relies on replacing the traditional time-homogeneous Markov process typically used
in diffusion frameworks [13,82] with an inhomogeneous process, following the theoretical analysis
in [90] that established the mathematical viability of diffusion geometry construction of such
processes. Unlike previous approaches, the coarse graining in [12] does not rely on a clustering &
pruning approach. Instead, it proposes to base the intuition for the diffusion construction from heat
propagation that rapidly spreads over the data based on connectivity, to a condensation process
that alternates between slow gravitation (e.g., as drops of water slowly gravitate towards each
other) and fast merging, concentrated regions collapse (e.g., as water drops merge together) to
a single point. The alternation between these meta-stable and transient regimes also provides a
diffusion-analogous notion of persistence used in topological data analysis (e.g., in the construction of
persistence homology), which in turn naturally gives rise to emergent stable resolutions for multiscale
visualization.

7.1.3 Condensation on potential coordinates

The computation of the diffusion condensation process in [12] only uses the diffusion operator P,
interpreted as a low-pass (smoothing) filter that can be applied to any dataset encoded in a points-
by-features data matrix X. In the current manuscript rather than using the original features, we use
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the potential representation of data points used in PHATE (see Equation 1) as the as initial features.
This effectively re-represents points by features that consist of the log of diffusion probabilities to all
other features. In PHATE this representation is used as the step before dimensionality reduction
and low-dimensional data embedding. However, we use these diffusion potential coordinates here as
a high-dimensional representation of the data on which the condensation operates. This way when
data points are condensed, they are condensed in terms of their diffusion probabilities.

Then, condensation process proceeds as follows. Let X(©) = X be the initial data matrix with
diffusion operator Py := P constructed from its rows (as data points), and let X(1) = PyX(©). This
gives the first iteration of the process, where the application of the diffusion smoothing intrinsically
denoises and reduces local variability in X1 compared to X(©). Then, the process is repeated to
further reduce local data variability by computing the diffusion operator Py over rows of X(!) yielding
X@ = Py XMW, In general, this process is repeated iteratively, resulting in a time-inhomogeneous
Markov process

X (t+1) Ptx(t) =P,P;_1---P{PyX, (2)

whose t-step transition probabilities are given by the entries of a time-varying row-stochastic operator
P® = P,...Pj. As mentioned previously, due to the low-pass nature of each diffusion operator
Py, this Markov process adaptively removes local (high frequency) variations in input coordinate
functions. The effect on the data points X is to draw them towards local barycenters, which are
defined by the inhomogeneous diffusion process.

7.1.4 Data merging

When two or more points collapse into the same barycenter (closer than a threshold €), we merge
them into a cluster since they would then have approximately the same coordinates. After this
merging operation, we effectively treat the cluster as a single point. This has the effect of density
subsampling the data iteratively, and allowing for subsequent iterations to proceed faster.

As we iterate this process over and over again, the condensation process slowly coarse grains the
data to reveal structure at all levels of granularity while avoiding the typical tendency of traditional
hierarchical clustering approaches to force (e.g., greedy) cluster merges at every scale.

7.1.5 Distinction and comparison between the diffusion condensation process and
hierarchical clustering

One use of diffusion condensation can be to provide a hierarchy of clusters determined by merged
points. However, it should be noted that the condensation process here is significantly different
from typical hierarchical clustering, and instead provides a richer coarse graining of data geometry.
Indeed, hierarchical clustering algorithms generally belong to two families: divisive algorithms and
agglomerative ones.

Divisive approaches (e.g., bisecting k-means [91] or MST-based clustering [92]) work in a top-down
fashion, each time optimizing a partition of the data into clusters (e.g., using partitional methods
like k-means), and then recursively partitioning further each cluster. The difference between these
and the gradual aggregation approach of the condensation process is clear.

Agglomerative methods, on the other hand, work in a bottom-up fashion by first merging points
into clusters, and then recursively merging increasingly bigger clusters. While intuitively more
related to the gradual merges in diffusion condensation, there is a fundamental difference between
the coarse graining operation applied here and the (typically greedy) agglomeration in such methods.
Indeed, most agglomerate clustering methods only operate on determining an iterative or recursive
sequence of merges, without considering any intermediate information or structure in the data.
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The condensation process utilized here, on the other hand, is derived from a continuous process
that gradually eliminates local variability in the data. At its core, it relies on a time-inhomogeneous
Markov chain that gradually constructs a diffusion geometry that reveals global and local structures
in the data at increasingly coarse scales. The elimination of local variability in this process allows
points to naturally come together, thus producing natural data clusters from data regions that
collapse to the same point, without the need for partitioning or greedy agglomeration. However, this
is a pattern that emerges from the coarse graining process, rather than directly or explicitly guiding
it. The constructed multiresolution data geometry also reveals other information, beyond clustering,
which makes it amenable for visualization and other downstream tasks. For instance, condensation
tree produces branch lengths that are meaningful, and levels of meta-stability can be analyzed, as
we do for the selection of meta-stable resolutions (e.g., for visualization) explained below.

To demonstrate the difference between diffusion condensation and agglomerative clustering, we
use the Louvain method [28| as a representative example, due to its popularity in single cell data
analysis. This method greedily selects clusters to merge together by their impact on modularity
(i.e., whether and how much they improve it). The forced merges, while ensuring a hierarchy of
data agglomerations, do not provide reliable coarse grained representations for revealing varied data
resolutions. As we showed in figure 3 and supplementary Figure 3 miss vital levels of resolution.
Meanwhile, diffusion condensation allows for a systematic exploration of granularity and is better at
capturing levels where biological differences may exist (Supplementary Figure 3B).

In order to quantitatively compare the accuracy of Multiscale PHATE clusters with hierarchical
clustering approaches, we compared cluster labels generated from a range of clustering strategies to
ground truth labels using Adjusted Rand index (ARI). We first generated a hierarchical stochastic
block model with different clusters at multiple granularities (Figure 3A, Supplementary Figure
3A). We then used Multiscale PHATE, Louvain [28], Leiden [29] and single linkage hierarchical
clustering [30] to identify groupings across multiple levels of granularity. For each level of ground
truth clusters, we computed ARI against cluster labels from each algorithm across all granularities,
storing the highest ARI for each method. For the flow cytometry data, we used gated populations
from 3 samples in our myeloid-centric flow cytometry panel as ground truth labels across coarse
and fine grain cluster labels. For instance, at coarse grain monocytes would be identified as one
population, however at fine grain monocytes would be a part of three distinct populations. ARI
was computed similarly for this dataset, ground truth labels were compared to all granulities of
clusters from each algorithm, with the top score stored for each approach. Networkx 93| was used to
produce Louvain clusters, leidenalg was used to produce Leiden clusters and agglomerative clusters
were produced using sklearn [94].

7.1.6 Scalable coarse-graining with fast diffusion condensation

In order to allow Multiscale PHATE to enable scalable exploration of large data sets, such as high
dimensional biological data, we propose speeding up of the initial condensation iteration in the
following ways:

1. Speed-up of the initial iteration using graph partitioning.
2. Fast computation of the diffusion potential via landmarking.

The complexity of computing a diffusion operator on n points is n2. However as the condensation
proceeds, points that are within a threshold distance of each other are merged into a single point.
Therefore the number of points steadily decreases, allowing the algorithm to speed up in successive
iterations. This process means, however, that the first calculation of the operator is the most
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computationally complex. In order to reduce the dimensionality of the initial condensation iterations,
we run hierarchical kmeans on the PCA space of the data with a high K (by deafult 100) to obtain a
coarse graining of the data in feature space. In each iteration of the kmeans approach we partition
the data into k more clusters. In following iterations we compute another k clusters from each of
these clusters. This process continues until we have a large number of clusters from which to compute
the diffusion operator (by default 25,000). We then compute a landmarked diffusion potential (as
done in [13] and explained below) on this reduced space, by convention the centroid of each of these
clusters, before starting the coarse graining process.

Creation of the diffusion operator requires the computation of all pairwise distances between
points, before conversion of those distances to affinities. Instead using spectral clustering on a set of
data we can come up with cluster centroids that are treated as "landmarks", Distances D,; and Ay
are computed between points and landmarks, i.e., they are n X k matrices where n is the number of
points and k is the number of landmarks. In addition, distances D; and affinities A; are computed
between landmarks, i.e. k x k matrices. Then in order to compute the diffusion operator P? we
row normalize A, and A; to obtain Py, P; and compute P' = P, P!P,,; decomposing ¢-step path
probabilities between two points as the probability of going to a landmark and then back to the
point. We have shown in [13] that this leads to high quality approximations of the diffusion operator
which lead to near-identical visualizations with PHATE. In addition, we examined in [19] that this
leads to low error approximations of diffusion operators in general. We use this fast approach to
compute a low error diffusion potential system for our coarse graining process.

We show that the resultant method is orders of magnitude faster than competing methods: DM,
tSNE, UMAP, Monocle2, and PHATE (Figure 2B).

7.1.7 Selection of visualization layers via Gradient Analysis

As our iterative coarse graining approach creates hundreds of layers for downstream analysis, selecting
salient level of granularity for visualization is a critical task. As previously described, Multiscale
PHATE visualizes emergent stable resolutions that define the information geometry of the manifold
well at a particular scale. In order to identify these metastable states, we identify changes in manifold
density in for every pair of successive condensation iterations V(1) = X® — X(+1) - In order
to identify total shifts in density we compute the matrix sum of V& by G = Zﬁf Zg \ACL
Picking scales for visualization and downstream analysis arises from identifying local minima in G.

7.1.8 Comparison of hierarchical visualizations with DeMAP

DeMAP is a metric for assessing visualization and dimensionality reduction quality in terms of its
ability to capture the manifold geometry of the data even when the data has noise and perturbations.
It was first proposed in [13]. DeMAP computes correlation between geodesic distances on ground
truth noiseless data manifolds to Euclidean distances in the embedded space, after adding noise to
the data. Hence it is called Denoised Manifold Affinity Preservation. High DeMAP scores indicate
that a visualization that accurately represents geodesic manifold distances in an embedding.

In order to show that Multiscale PHATE created improved hierarchical visualizations when
compared to other approaches, we performed an ablation study.

First, the splatter software was used to simulate ground truth and noisy single cell data of either
group (cluster) or path (trajectory) geometries [26]. After computing the condensation tree on the
noisy splatter data, we created a Multiscale PHATE embedding by identifying the optimal resolution
via gradient analysis. In order to create hierarchical visualizations of other algorithms, we selected
the same resolution and merged points together in raw feature space to create a dataset of the same
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scale across both noisy and ground truth datasets. After computing other dimensionality reduction
techniques on the merged noisy data, we compared all embeddings with the merged ground truth
data using DeMAP. This process was repeated across a range of noise types, biological variation
and drop out, and a range of noise levels. For robustness, this process was run across 10 different
splatter datasets with group geometry and 10 different splatter datasets with path geometry. Besides
Multiscale PHATE, the DeMAP package was used to build all visualizations [13].

7.1.9 Construction of patient manifold through multiresolution cluster evaluation:

Previously, PhEMD built a manifold of samples measured via single cell technologies by binning
cells associated with each sample into histograms and computing Earth Mover Distances or optimal
transport between histograms [22]. This computation, however, is done at a single scale and requires
determining ground distance between histogram bins. Truthfully, cells can occupy a diverse set of
hierarchical labels which a single resolution does not capture. Here, instead, we combine multiple
histograms at different scales for each patient to compute a distance between their underlying cellular
states. Our approach of replacing ground distance with multiscale construction is based on the work
of [24] and [23| , which show that with appropriate weights, the combination of such smoothed data
distributions can be used to efficiently compute or approximate Earth mover distances. We note
that our results show empirically that even without careful tuning of such weights, the resulting
patient to patient distance, and the constructed manifold, accurately recapitulate the clinical states.

Practically, we create a manifold of samples by simultaneously evaluating multiple levels of the
diffusion condensation tree. At each level ¢ € {1,2,..., L}, a number of Ny clusters are identified.
We count the number of cells, ng ;x, of the k-th patient that belong to each cluster Cy ; for every

j€{1,2,..., Ny} and calculate the normalized percentage as ¢ = % We calculate the
j Vs

proportions for all patients at a series of selected levels of the tree and concatenate these to create a
rich multiscale vector of features for each patient. These multiscale feature vectors are then used to
create an embedding with PHATE [13] and to de-noise patient specific signals using MAGIC [1§]
using Euclidean distance between samples.

7.1.10 Use of MELD with Multiscale PHATE

MELD is a method proposed in [14] that takes a discrete signal defined on a data graph and computes
a continuous likelihood score of the signal value by using a sophisticated form of neighborhood
averaging by using a heat kernel at each point (Figure 1C). In order to apply MELD to this dataset,
we combined the flow cytometry data coming from all patients, and used a binary outcome score that
we call mortality, which uses a discrete 0-value for a positive outcome (the patient was discharged),
or a l-value for a negative outcome (patient died or was sent to hospice). The outcome of the patient
is used as the discrete condition for all cells from that patient. Thus in our combined flow-cytometry
dataset, every cell from positive outcome patients get a raw experimental signal value of 0. Using
MELD, we estimate likelihood of each outcome over the cellular manifold using a heat-diffusion kernel
applied to the data graph to obtain mortality likelihood score. Values of the mortality likelihood
score range from 0 to 1 and constitute a probability likelihood estimate of the condition over the
manifold. This allows us to identify areas of the cellular manifold that are likely to be enriched in
those with positive or negative outcomes.

Since Multiscale PHATE identifies clusters of cells across all levels of granularity, we can sweep
across resolutions to identify levels which isolate high and low mortality likelihood score regions.
In fact, when comparing our multigranular clusters with other clustering techniques across a range
of granularities, we show that multiscale PHATE is better able to isolate high and low mortality
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likelihood score regions in one of our flow cytometry panels (Supplementary Figure 3B). By looking
at these informative resolutions, we can identify populations of cells that are pertinent to patient
outcomes. When identifying these subpopulations in conjunction with cell type defining markers,
we show that we can identify cell types and functional subtypes that are differentially enriched
across patient outcomes and may drive disease pathogenesis. The full Multiscale PHATE and MELD
integrated pipeline can be seen in Supplementary Figure 1B.

7.1.11 DREMI Associations with mortality likelihood score

DREMI or Density Resampled Estimate of Mutual Information [15], is an information-theoretic
metric that quantifies associations or strength of a relationship between two variables. Like most
discrete estimates of mutual information, DREMI starts by binning continuous data into equal-
sized partitions, X = {X1, Xo,... X}, and Y = {Y¥1,Y>,...Y,} in both variable dimensions but
instead of measuring the mutual information as I(X,y) = H(Y) — >, H(Y|X;) the difference
between the entropy of Y and the conditional entropy of X|Y, DREMI "resamples" or equalizes
the number of samples in each bin using an extra level of conditioning. Thus DREMI computes
DREMI(X,Y) =1(X,Y|X)=H(Y|X) - >, HY|X;|X;). The rationale for this is that normal
mutual information is dominated by the density peaks of the X variable, and does not reveal the
full strength of the relationship given imbalanced sampling which is common in biomedical data.

When combining our DREMI analysis with previously computed mortality likelihood score, we
can identify functional marker trends which are correlated with mortality. As cells of the same type
can occupy a range of functional states that can be enriched in disease, a given subtype may not be
associated with mortality but a functional substate could be. By computing DREMI associations
between mortality likelihood score and cellular functional state markers, we can identify markers,
and by extension activation states, that are associated with outcome.

7.1.12 Trajectory analysis of flow cytometry Data with TrajectoryNet

TrajectoryNet [21] trains a model to infer developmental and activation trajectories from a series
of static snapshot measurements. The time-lapsed measurements are treated as samples from
distributions at different time points. TrajectoryNet generates dynamic optimal transport between
these distributions by restricting the paths taken using an path-derivative regularization, effectively
interpolating between the time points and generating continuous differentiation paths [21].
TrajectoryNet builds upon work on Neural Ordinary Differential Equations (Neural ODE) [95], a
new family of deep neural network models that learn a high dimensional derivative (rather than a
function) with a neural network, and computes both the output, and backpropagates using an ordinary
differential equation solver. More specifically, the ODE that describes the continuous dynamics
of input variables dzsf) = f(z(t),t,0), where 6 are the neural network parameters. TrajectoryNet
extends Neural ODE by adding regularization to the optimization target, which are specifically
beneficial for modeling biological trajectories. We used the basic model of TrajectoryNet adopts an
energy regularization in the form of [, || fo(x(t), Bl
especially suitable for cell differentiation trajectories.
We train TrajectoryNet to infer activation dynamics in our CD4" T cell flow cytometry data
by making use of clinical time series data from each patient sample. As each sample was taken
some amount of time after presentation of initial infection symptoms, ranging from several hours
to 60 day, we used this variable as explicit time. In order to run TrajectoryNet on these samples,
we discretized the time variables into 4 different quartiles, representing timepoints 1 through 4
and trained TrajectoryNet to infer differentiation trajectories between these time points. To train

which allows for achieving optimal transport,
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TrajectoryNet, two types of data are used, the normalized flow cytometry data and the embedding
from Multiscale PHATE. The embeddings are low-dimensional representations of the original data,
and trajectories in the embedding space allow us to understand cellular dynamics over time, such
as the differentiation of homeostatic Th17 cells into more pathogenic Th17 cells. On the other
hand, trajectories in the original high-dimensional flow cytometry space allow for us to study time
dependent changes in marker expression. This analysis allows for us to derive biomarkers, like IL-2
and IL-6, that are divergent and potentially predictive of patient outcome.

7.1.13 Patient manifold analysis from Multiscale PHATE Features

In order to identify the differences between individual patient samples, we used Multiscale PHATE to
construct a manifold of patients as described above. Similar to mortality likelihood score computed
by MELD in our flow cytometry analysis, we computed a similar mortality likelihood score for our
patient manifold by identifying if each patient sample originated from a patient that had a positive
outcome or a negative outcome. In order to identify patient sample features correlated with mortality
likelihood score, we compiled a set of clinical, demographic and Multiscale PHATE identified cell
type proportion features for each patient sample. Using the geometry of the patient manifold, we
de-noised our patient sample features using MAGIC [18] before running association analysis between
features using DREMI [15].

7.1.14 Mortality Prediction using Random Forest Classifier

In addition to being useful for visualizing, clustering and identifying condition specific enrichment of
cell types, we wanted to see if the populations we identified across granularities were predictive of
patient outcome. In order to predict patient outcomes from just a single patient sample, we trained
a random forest classifier on populations we identified in our myeloid focused flow cytometry panel.
Similar to our patient manifold analysis, we derived multiscale patient features by identifying the
proportion of each patient’s cells that were labeled with a particular cell type. After partitioning our
dataset of 210 patient samples into 5 sets, we performed 5-fold cross-validation where we iteratively
shuffled training sets (4 of 5) and test sets (1 of 5). Across all runs, we achieved an accuracy of
83.5% across both conditions, with 86.5% classification accuracy for patients that survive and 78.8%
classification accuracy for patients that died from infection. In order to identify cellular types
that were particularly informative of mortality outcome, we computed and compared the feature
importance of random forests. This analysis revealed that that monocytes, CD16™ neutrophils,
dendritic cells and T cells had the highest importance and were most predictive of mortality outcome.
To determine whether our Multiscale PHATE derived cellular populations were more informative
than current gold standard cell typing strategies, we also trained a random forest classifier on cell
populations identified via conventional flow cytometry gating analysis. This analysis was only able
to accurately predict patient outcomes in 73.8% of cases.

7.1.15 Software availability

The Multiscale PHATE package, as implemented in python, is available for download with a
guided tutorial on the Krishnaswamy Lab Github page: https://github.com/KrishnaswamyLab/
Multiscale_PHATE.
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7.1.16 Pre-processing of patient flow cytometry data

Flow cytometry was performed on PBMC from each patients (methods explained in detail below).
The resulting .FCS files were pre-processed by applying compensation based on the respective
single-color compensation controls, 2) selecting only leukocytes and singlets based on FSC and SSC,
and 3) selecting only live cells based on a viability dye. MFI values for each fluorophore on a per-cell
basis were then extracted for downstream analysis. In order to extract T cells for the cytokine
focused T cell panel, cells with CD3 staining greater than 425 were extracted. For the T cell surface
marker panel, cells with a CD3 staining greater than 500 were extracted. For the B cell focused
panel, cells with a CD19 staining greater than 400 were extracted and cells expressing less than a
total of 2700 cumulative staining across all markers were removed. No extraction of cells was done
for the myeloid focused panel, however cells with cumulative staining across all markers less than
2700 across were removed. All datasets were then independently normalized to 1000 staining counts
per cell before square root normalization.

7.2 Biological and Medical Methods

In the following sections we provide details on how patient biological data and clinical information
was acquired and processed.

Ethics statement

This study was approved by Yale Human Research Protection Program Institutional Review Boards
(FWA00002571, protocol ID 2000027690). Informed consent was obtained from all enrolled patients
and healthcare workers.

Patients

Patient enrollment, sample acquisition, processing, and downstream analysis by flow cytometry were
performed as in [25]. One-hundred and sixty-eight patients admitted to YNHH with SARS-CoV2
between 18 March 2020 and 27 May 2020 were recruited to the Yale IMPACT study (Implementing
Medical and Public Health Action Against Coronavirus CT) after testing positive for SARS-CoV2
by qRT-PCR and included in this study. No statistical methods were used to predetermine sample
size. Paired whole blood for flow cytometry analysis was collected simultaneously in sodium heparin-
coated vacutainers and kept on gentle agitation until processing. All blood was processed on the
day of collection. Patients were scored for COVID-19 disease severity through review of electronic
medical records (EMR) at each longitudinal time point. For all patients, days from symptom
onset were estimated as follows: (1) highest priority was given to explicit onset dates provided by
patients; (2) next highest priority was given to the earliest reported symptom by a patient; and
(3) in the absence of direct information regarding symptom onset, we estimated a date through
manual assessment of the electronic medical record (EMRs) by an independent clinician. The
clinical data were collected using EPIC EHR and REDCap 9.3.6 software. At the time of sample
acquisition and processing, investigators were unaware of the patients’ conditions. Blood acquisition
was performed and recorded by a separate team. Information about patients’ conditions was not
available until after processing and analysis of raw data by flow cytometry and ELISA. A clinical
team, separate from the experimental team, performed chart reviews to determine relevant statistics.
Flow cytometry analyses were performed blinded. Patients’ clinical information and clinical score
coding were revealed only after data collection.
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Isolation of PBMCs

PBMCs were isolated from heparinized whole blood using Histopaque (Sigma-Aldrich, #10771-
500ML) density gradient centrifugation in a biosafety level 2+ facility. After isolation of undiluted
serum, blood was diluted 1:1 in room temperature PBS, layered over Histopaque in a SepMate
tube (StemCell Technologies; #85460) and centrifuged for 10 min at 1,200g. The PBMC layer was
isolated according to the manufacturer’s instructions. Cells were washed twice with PBS before
counting. Pelleted cells were briefly treated with ACK lysis buffer for 2 min and then counted.
Percentage viability was estimated using standard Trypan blue staining and an automated cell
counter (Thermo-Fisher, #AMQAX1000).

Flow cytometry

In brief, freshly isolated PBMCs were plated at 1-2 x 106 cells per well in a 96-well U-bottom plate.
Cells were resuspended in Live/Dead Fixable Aqua (ThermoFisher) for 20 min at 4 °C. Following
a wash, cells were blocked with Human TruStain FcX (BioLegend) for 10 min at RT. Cocktails of
desired staining antibodies were added directly to this mixture for 30 min at RT. For secondary stains,
cells were first washed and supernatant aspirated; then to each cell pellet a cocktail of secondary
markers was added for 30 min at 4 °C. Prior to analysis, cells were washed and resuspended in 100puL
of 4% PFA for 30 min at 4 °C. For intracellular cytokine staining following stimulation, cells were
resuspended in 200pL. cRPMI (RPMI-1640 supplemented with 10% FBS, 2 mM l-glutamine, 100
U/ml penicillin, and 100 ug/ml streptomycin, 1 mM sodium pyruvate, and 50pM 2-mercaptoethanol)
and stored at 4 °C overnight. Subsequently, these cells were washed and stimulated with 1x Cell
Stimulation Cocktail (eBioscience) in 200 pL. cRPMI for 1 h at 37 °C. 50uL of 5x Stimulation Cocktail
(plus protein transport inhibitor) (eBioscience) was added for an additional 4 h of incubation at 37
°C. Following stimulation, cells were washed and resuspended in 100 pL of 4% PFA for 30 min at 4
°C. To quantify intracellular cytokines, these samples were permeabilized with 1x permeabilization
buffer from the FOXP3/Transcription Factor Staining Buffer Set (eBioscience) for 10 min at 4 °C.
All subsequent staining cocktails were made in this buffer. Permeabilized cells were then washed and
resuspended in a cocktail containing Human TruStain FcX (BioLegend) for 10 min at 4 °C. Finally,
intracellular staining cocktails were added directly to each sample for 1 h at 4 °C. Following this
incubation, cells were washed and prepared for analysis on an Attune NXT (ThermoFisher). Data
were analysed using FlowJo software version 10.6 software (Tree Star).

Acquisition of Clinical Data for Flow Cytometry analysis and Patient Manifold

Longitudinal patient data was extracted from the electronic medical record (Epic, Verona, WI) for
only the hospitalized patients included in the repository. Time-varying data, specifically vital signs as
well as laboratory studies, were extracted specifically 24 hours before and after the collection of blood
specimens for flow cytometry as described above. This ensured that the measurements correlated
with the patient state at the time of flow cytometry measurements. Laboratory values reflecting
clinical evaluation of general inflammatory states (white blood cell count, high sensitivity c-reactive
protein) were extracted. The values for the laboratory measurements were then consolidated by
taking the most abnormal value (e.g. highest ferritin) in the 72 hour period and overlaid onto the
patient manifolds.
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Acquisition of Clinical Data for Clinical Manifold

For patients who did not undergo flow cytometry analysis, the time varying clinical, laboratory, and
treatment data was extracted for the first 24 hours from admission with consolidation by the most
abnormal value as described before. Otherwise, the consolidated data temporally correlating to flow
cytometry measurements were extracted as described above.
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8 Supplementary Figures
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Supplementary Figure 1: Condensing on Manifold and updating visualization

A. Visualization of toy swiss roll dataset after several iterations of fast diffusion condensation, running in
both feature space and in manifold space as computed by Diffusion Potential.

B. Pipeline for identifying cellular populations enriched based on clinical variables with Multiscale PHATE

and MELD.
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Supplementary Figure 2: Visualization of additional data types with run time and reproducibil-
ity comparison

A. Visualization comparison of 25,528 cells from a diverse set of mouse tissues measured by scATACseq [96],
1,010,964 PBMCs measured by CyTOF [97] and 50,000 TCRs from COVID-19 infected patients and healthy

controls [98, 99].
B. Visualization of reproduciblity of Multiscale PHATE across two different runs.
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Supplementary Figure 3: Comparison of Multiscale PHATE algorithm with other clustering
techniques on three-layer hierarchical SBM and at identifying MELD density score enriched
regions.

A. Schematic of three-layer hierarchical SBM we generated for multigranular cluster comparison. For each
method, increasing amounts of random gaussian values were added to the adjacency matrix of stochastic block
model to simulate increasing amounts of noise. As the model was constructed with known clusters at multiple
scales, we computed Adjusted Rand Index (ARI) between each algorithms predicted clusters and the known
clusters across coarse and fine granularities.

B. Comparison of multiple clustering techniques at identifying regions with uniform MELD likelihood scores
across a range of comparable granularities.
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Supplementary Figure 4: Multiscale PHATE identifies subsets of monocytes and B cells en-
riched in patients who die from COVID-19.

A. Zoom in of monocyte population identifies subsets based on expression of markers.

B. Visualization of mortality likelihood score in monocytes identifies subsets enriched in patients who die
from COVID-19. Key associations between markers and mortality likelihood score computed by DREMI and
visualized with DREVI.

C. Visualization of B cells panel identifies a range of subsets based on expression of known markers.

D. Visualization of mortality likelihood score identifies B cell subsets enriched in patients who die from
COVID-19.

E. Comparison of mortality likelihood score across panels reveals that granulocytes and monocytes are broadly
the most enriched cell types in patients who die from COVID-19.
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Supplementary Figure 5: Multiscale PHATE analysis identifies subsets of CD8" T cells en-
riched in patients with poor COVID-19 outcomes.

A. Zoom in of CD8 T cells identifies subsets based on expression of markers.

B. Visualization of mortality likelihood score in CDST T cells identifies subsets enriched in patients who die
from COVID-19. Key associations between GranzymeB and mortality likelihood computed by DREMI and
visualized with DREVI.

C. Multiscale PHATE visualization of T cell focused surface marker panel with broad T cell subtypes identified.
D. Zoom in of CDS™ T cells identifies subsets based on expression of known markers.

E. Visualization of mortality likelihood score in CDS8T T cells identifies subsets enriched in patients who
die from COVID-19. Key associations between markers and mortality likelihood computed by DREMI and
visualized with DREVI.
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Supplementary Figure 6: Visualization of patient manifold and correlation with clinical fea-
tures

A. Visualizing clinical trends on patient manifold.

B. DREMI and DREVI association analysis between clinical features and mortality as well as cellular
populations.
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