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Cells contain hundreds of different organelle and macromolecular assemblies intricately
organized relative to each other to meet any cellular demands. Obtaining a complete
understanding of their organization is challenging and requires nanometer-level, three-
dimensional reconstruction of whole cells. Even then, the immense size of datasets and
large number of structures to be characterized requires generalizable, automatic
methods. To meet this challenge, we developed an analysis pipeline for comprehensively
reconstructing and analyzing the cellular organelles in entire cells imaged by focused ion
beam scanning electron microscopy (FIB-SEM) at a near-isotropic size of 4 or 8 nm per
voxel. The pipeline involved deep learning architectures trained on diverse samples for
automatic reconstruction of 35 different cellular organelle classes - ranging from
endoplasmic reticulum to microtubules to ribosomes - from multiple cell types.

Automatic reconstructions were used to directly quantify various previously inaccessible
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metrics about these structures, including their spatial interactions. We show that
automatic organelle reconstructions can also be used to automatically register light and
electron microscopy images for correlative studies. We created an open data and open
source web repository, OpenOrganelle, to share the data, computer code, and trained

models, enabling scientists everywhere to query and further reconstruct the datasets.

Eukaryotic cells contain a plethora of distinct membrane-bound organelles and macromolecular
assemblies that drive the cell’s activities. Despite biochemical and genetic understanding of
these structures, we still lack a nanometric-level map describing their 3D distributions,
morphological complexities, and interactions throughout an entire cell. Obtaining this
comprehensive 3D map of cellular structures and their interactions has proved difficult. Light
microscopy studies have made inroads, but the results are resolution-limited and involve
potential perturbations from introduction of fluorescent protein markers'. Full nanometric
mapping of a cell should be achievable, however, through volumetric electron microscopy of
entire, unperturbed cells. Modern FIB-SEM provides near-isotropic resolution of cellular
structures with nanometric voxel sizes through an entire cell?. Significant innovations that have
been made in the automatic analysis of volume EM data®>?(Supplementary Information,
Related Works), in turn, provide a means for accessing this information. Here, we combine
whole cell FIB-SEM imaging with deep learning-based segmentation to obtain a comprehensive

map of the thousands of structures packed inside a single cell.

A complete whole cell FIB-SEM dataset from a HelLa cell that was high pressure frozen and
imaged at 4 nm isotropic voxels is shown in Fig. 1a. To obtain ground truth annotation for
training machine learning algorithms, we selected regions of interest (hereafter, blocks) for
manual annotation of up to 35 different organelles and macromolecular structures based on

morphological features established in the literature. Shown in the HelLa cell of Fig. 1a (top
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panel) are 15 of these training blocks (see also: Supplementary Video 1). Whenever possible,
we distinguished between the lumen and membrane of an organelle. Some structures were
easily identified. For instance, mitochondria are ovoid organelles characterized by outer and
inner membranes that fold to form cristae; microtubules are cylindrical ‘tubes’, 25 nm in
diameter, that do not branch. Others can be less clear, such as the endoplasmic reticulum (ER),
an extensive tubular network often studded with ribosomes. However, because it always
connects back to itself and ultimately connects back to the nuclear envelope (NE) it can be
confidently identified in complete volumetric EM datasets. More dubious to differentiate is the
endo-lysosomal system which is often defined by its protein content - information not available
in these volumetric EM. As such, we split the endosomal and lysosomal networks into two
classes, organelles with a light (endosomes) and dark (lysosomes) stained lumen.
Peroxisomes, also ill-defined by EM alone, are included within these two classes. For a
complete list of organelle class descriptions and examples see Supplementary Methods:

Organelle Classification and Extended Data Fig. 1-2.

An example of one ~1 ym?® area block near the cell center, with manual annotations as
described above, is shown in Fig. 1a (inset i). A single FIB-SEM slice from this region, in which
every voxel within the slice was annotated and classified, is shown in insets ii and iii.
Segmenting the dense array of organelles in this region took one person two weeks, meaning
that manual annotation of the entire cell, 2,250 times this size, would take ~60 years,

underscoring the need for automatic segmentation.

The performance of deep learning-based methods depends on representative training data.
Aiming for a solution of automatic segmentation that generalizes across cell types and variation

in imaging parameters, we annotated up to 35 organelle classes in 28 training blocks from five
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datasets covering four different cell types (Extended Data Fig. 2). We further included 30 and 15

blocks that only contained extracellular space and nucleus, respectively.

The training blocks were used to train large, multi-channel 3D-U-Net architectures®** to predict
signed tanh boundary distances of the binary labels for each organelle class. This was shown to
be beneficial compared to using a cross-entropy loss in prior work on synaptic cleft
segmentation in EM'®. We trained all networks to minimize the sum of mean squared errors with
respect to the signed tanh boundary distance of each binary label (one per output channel).
Each takes on values between [-1, 1] and can be converted into binary labels by thresholding at
0. To test the effect of jointly training varying numbers of classes, one network was trained on all
classes jointly (“all”’), one network on the 14 classes that had positive annotations in at least 10
blocks (“many”) and 14 specialized networks on up to four closely related classes (“few”)
(Supplementary Table 1). The specialized networks for some of the classes with very few
positively annotated voxels in the ground truth data (i.e. ribosomes, vesicles, and Golgi) were

trained with a sampling scheme that prioritized blocks containing instances of those labels.

Using the trained networks, we predicted organelle segmentation on whole cells excluding

regions that contain only resin to save computation time . Depending on the network

Muz - #channels

architecture, inference speeds varied between 0.5 and 4.8 = s crr on GeForceRTX2080Ti
cards. For example, on a single GPU, inference for the 14 organelles in the type “many” network

on the cell shown in Fig. 1a, jrc_hela-2 (74 gigavoxels) took approximately 12.5 hours.

We developed a manual evaluation method based on pairwise comparisons of whole-cell
predictions (Supplementary Methods: Evaluations) to determine the optimal training iteration

and network architecture for unseen datasets without the costly generation of validation blocks.
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Shown in Fig. 1b are the resulting raw predictions, smoothed with 0 = 18 nm and rendered with
cubic interpolation (Fig. 1b). The inset of Fig. 1b shows a region ~ 3 um away from the inset in
Fig. 1a. The quality of organelle annotations in this region, resembling those done manually in
Fig. 1a(i), suggested the trained networks could successfully reconstruct organelles throughout

the cell.

To quantitatively assess the performance of the machine learning method, as well as validate
the manual approach, we annotated additional 4 um?® holdout blocks (Extended Data Fig. 2) in
four of the datasets that had annotations for training. The holdout blocks did not contain
instances of all organelles, so we only report results for classes present in all four. A
comparison between test and validation performances is shown in Fig. 2a. We chose the Dice
coefficient (F1 Score) as our performance measure (for alternative metrics see Extended Data
Fig. 3). To measure validation performance for each dataset, we optimized the aforementioned
settings directly on the holdout block for that dataset. Conversely, optimizing the settings only
on the holdout blocks from the other datasets allowed us to use each as a test set. Additionally,
Fig. 2a shows performance scores for the settings picked via manual evaluation on the whole
dataset where available (see Supplementary Table 2, for a complete comparison of manual and
automatic validation see Extended Data Fig. 3). With the caveat that all holdout blocks stem
from datasets that have annotations used for training, this comparison assesses the importance
of hyperparameter optimization for segmentation quality. In Fig. 2b, we used the same
procedure to compare test performance of the network setups (i.e. all/many/few classes).
Overall, the results showed good performance scores for organelles well represented in our
training data and setups including more organelles (i.e.all/many) tended to perform slightly

better.
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For some classes, simple refinements were applied to improve the segmentation quality. This

included smoothing, size filtering, watershed segmentation and agglomeration®'-*2

, and masking
(see Supplementary Methods: Refinements, Extended Data Fig. 4, and SupplementaryTable 3).
Evaluation of the refined segmentation performance is shown in Extended Data Fig. 5. For other
classes, biological priors could be used to improve the raw predictions. In particular, for
reconstructing microtubules, shown in Fig. 2c, we used the method by Eckstein et al.?®
(Supplementary Methods: Refinements, Extended Data Fig. 6, and SupplementaryTable 4).

Note the close correlation between ground-truth-based (red) versus automatically reconstructed

microtubules (cyan) (Fig. 2c, d).

The complete post-refinement predictions for each dataset is presented in Fig. 2e, showing
seven organelles that were automatically segmented throughout four different cells. A small
glimpse of the complexity of organelles in these whole cell renderings can be appreciated by
focusing on the Golgi apparatus as shown in the inset of Fig. 2e: In contrast to the textbook
presentations as a compact stack of cisternae, the Golgi is much more elaborate, consisting of a
winding ribbon that extends > 5 um throughout the cytoplasm and consists of flattened arrays of
cisternae interconnected by narrow tubules. Vesicles are highly abundant around the Golgi,
decorating its surface. For a more in depth look at the complexity of other organelles in these

datasets, visit openorganelle.janelia.org.

From these whole cell datasets, we now have the ability to extract quantitative information and
give a few examples of the type of analysis this data facilitates. We calculated the instance
count, volume, and surface area of each organelle within each of the four different cells
(Supplementary Table 5). Using the holdout blocks, we confirmed that these estimates agree
with those extracted from ground truth (Extended Data Fig. 7). Fig. 3a plots the volume

proportion occupied by 8 different organelle classes throughout an entire cell, comparing two
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Hela cells, a Jurkat cell and a macrophage cell. Of note, the jrc_jurkat-1 cell, an immortalized T
lymphocyte, had a higher fraction of its total cell volume occupied by the nucleus (~40%)
compared to the other cell types, likely reflecting its origin as a leukaemic T-cell poised for
proliferation. The jrc_macrophage-2 cell, a cell type involved in detection, phagocytosis, and
destruction of bacteria and other agents, had an increased volume ratio of ER, which could be

relevant for its extensive membrane trafficking activity.

Microtubules play a critical role in enabling organelles to distribute throughout the cell®*. Our
ability to segment out membrane-bound organelles as well as single microtubules enabled us to
investigate the question of how many different organelles could be contacting a single
microtubule at any time. Such associations were calculated by quantifying organelles within 20
nm of a given microtubule, as described in Supplementary Methods: Quantifications and
Extended Data Fig. 8. As shown in Fig. 3b, a single microtubule, less than one micron in length,
made multiple contacts with upwards of five different types of organelles (Supplementary Video
2). A summary of all the microtubule contacts in jrc_hela-2 is summarized in Fig. 3c. These
unprecedented findings open up new questions related to how organelle distributions and

motions are coordinated along a single microtubule.

The peripheral ER system is known to display a variety of topologies, both within a single cell
and across different cell types®*’. Maintaining these structural arrangements is controlled by
numerous proteins 3. To quantify ER morphology, including its relationship to other
organelles, we partitioned the ER into planar and tubular regions, based on its curvature
(Supplementary Methods: Quantification, Extended Data Fig. 8)*°. In the jrc_macrophage-2 cell,
2D planar regions of ER were abundant (Fig. 3d), with many of these regions forming stacks of
helicoidal sheets®” interconnected by tubules. In the jrc_hela-2 cell, the flattened regions of ER

often appeared to be supported by other organelles, such as mitochondria (Fig. 3e and
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Supplementary Video 2). Comparing the ratio of planar and tubular regions between these two
cell types (Fig. 3f), we found the jrc_hela-2 cell had fewer 2D planar regions than the
Jrc_macrophage-2 cell. In line with this qualitative assessment, a larger fraction of the planar ER
regions were supported by mitochondria in the jrc_hela-2 cell (Fig. 3e, bottom right panel and
Fig. 3g). These findings underscore the complexity of ER morphology and its relationship with

organelles like mitochondria in different cell types.

Given the above differences between planar and tubular ER, we next examined the relative
abundance of ribosomes that were associated with these ER domains. Using a contact site
distance of 10 nm, we categorized ribosomes as either ER-bound or cytosolic. ER-bound
ribosomes (Fig. 3h and Supplementary Video 2) were further categorized based on whether
they were bound to planar ER, tubular ER, or nuclear envelope regions (Fig. 3h-i). The
percentage of ribosomes bound to tubular peripheral ER and the nuclear envelope remained
consistent across the data sets for the four different cells. By contrast, the relative percentage of
ribosomes bound to planar peripheral ER was 3-fold higher in the jrc_macrophage-2 cell. As the
jJrc_macrophage-2 cell also had greater volume of ER than the other three cells examined (see
Fig. 2a), the results are consistent with it being more actively engaged in biosynthesis of

membrane and secretory proteins than the other examined cells.

While all of our training datasets were acquired at 4 nm resolution, many FIB-SEM data are
acquired at 8 nm resolution to reduce imaging time. In order to leverage that data for analysis,
we trained 8 nm versions of some of our setups by adding an additional upsampling block to the
3D-U-Net architecture and randomly downsampling the raw data for training (Supplementary
Methods: Machine Learning). Qualitatively, segmentations of data imaged at 8 nm were
satisfying, especially considering that our training data did not contain examples from these

datasets. Fig. 4a shows the segmentation of another HeLa cell, which should be fairly well
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represented by our training data. Notably, our training data currently contains no tissue data
which makes the early experiments on a sample of a chemically fixed, mouse choroid plexus®
(shown in Fig. 4b) particularly interesting for a future extension of the approach to tissue data
and different fixation protocols. For a quantitative assessment we reused the holdout blocks with
downsampled raw data as we did for training. As shown in Fig. 4c, for most organelles, the
quality of segmentation suffers only slightly or, for larger organelles such as mitochondria,

improves a bit compared to full resolution input.

Fluorescent light microscopy (LM) in combination with highly specific molecular markers
provides complementary information to high resolution non-specific EM. To associate correlative
LM and EM (CLEM) acquisitions of the same sample, the acquisitions need to be registered.
This is challenging due to resolution and contrast differences between the modalities, and non-
linear transformations induced during sample preparation and can take a skilled user several
days to accomplish. Using our predictions for mitochondrial membranes, we automated the
registration process for CLEM datasets. We demonstrate this using a previously published
COS-7 cell transiently expressing ER luminal and mitochondria membrane markers, mEmerald-
ER3 and Halo/JF525-TOMM20, respectively*®, imaged by both PALM and SIM, and FIB-SEM
(described in Supplementary Methods: CLEM registration). Fig. 4d, Extended Data Fig. 9 and
Supplementary Video 3 show the registration results. We report the Jacobian determinant of the
transformation field to measure local distortion resulting from registration. Fig. 4e shows a slice
through these measurements, the cell volume is outlined for reference. Fig. 4f shows a
histogram computed over the whole volume. The narrow standard deviation of this distribution

(0.05) indicates that the transformation field is smooth.

We evaluated the registration accuracy with respect to human-generated ground truth by using

31 landmark pairs manually placed by two human evaluators in the subregion marked by the
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box in Fig. 4e. These landmarks were placed at corresponding points in the ER light channel
and ER predictions of the EM image that were not used for automatic registration. This enables
us to measure errors in an unbiased way, with respect to the true underlying transformation, not
only the "part" of the transformation that can be inferred from the mitochondria membrane
channel. Horizontal white lines in Fig. 4g shows how automated registration differs from the
ground-truth human decisions, and vertical white lines show how the human evaluators differ
from each other. The automatic registration differed from human annotator by 0.11 £ 0.06 pm,
while human evaluators differed from each other by 0.03 + 0.02 ym (mean * standard
deviation). The automated registration agrees with human evaluators in areas with clear
mitochondria signals. Additional details and discussion can be found in the Supplementary

Methods: CLEM registration.

We compared the independent registrations of the EM to both PALM and SIM. Fig. 4h shows a
map of the spatial error between the two transformations. Fig. 4i shows a histogram of spatial
error over a region where cells are present, indicated by the white dotted line in Fig. 4h. Errors
are small, especially near mitochondria, indicating that the registration is consistent across
modalities. Altogether we show that using automatic organelle segmentations can be used to
successfully register CLEM images, making it accessible to less experienced users, and

reducing the time from days to an hour or less.

In conclusion, large-scale reconstruction of complete cells and tissues imaged with FIB-SEM?
promises to greatly expand our understanding of the structure and organization of cellular
organelle interactions. Fully automatic reconstruction of cellular organelle ensembles is the only
economically feasible way to exhaustively analyze these large datasets. To be readily
applicable to new questions and domains, it is necessary that automatic reconstruction methods

generalize robustly across cell-types, tissues, and preparation methods. Until today, state-of-
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the-art methods are specialists that are designed for, trained on, and applied to very specific,
yet often very large datasets and a small number of cellular organelles. These methods fail

when presented unseen samples and require costly re-design and re-training.

We described here a first successful method to fully automatically reconstruct a large number of
cellular organelles from FIB-SEM volumes of diverse cell types. We generated carefully
annotated training volumes spanning a variety of different cell types and trained large deep
learning architectures to simultaneously reconstruct a large number of cellular organelles and

sub-organelle structures at different input resolutions.

We demonstrated that we can extract quantitative information about the distribution, size, shape
and other structural properties as well as the interaction between different cellular organelles
directly from automatic reconstructions of complete cells. This comprehensive information,
enabling the global comparison of various cell types at the ultra-structural level, has not been
previously accessible through either sparsely labeled light microscopy or focused local
reconstructions on electron microscopy data. It will enable us to establish a better integrated
view of cellular function and interactions between cells in tissues. We further showed that
automatic organelle reconstructions enable fully automatic registration of light and electron

microscopy for correlative studies, previously an error-prone manual process.

The capability of our networks to generalize across cell-types is a large step towards a push-
button solution to analyze whole cell FIB-SEM volumes fully automatically. However, it is
important to understand that more work is necessary to achieve better performance in diverse
tissue samples and cell types that are vastly different from those included in our training data,
and for organelles and structure that are currently underrepresented. In the Supplementary

Discussion, we analyze this in detail and outline our future plans.
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We strongly believe in the power of open science. We have therefore developed the repository

“OpenOrganelle” (openorganelle.janelia.org) where we make raw datasets, training data,

reconstructions, open source code, and models available to the public. We invite the scientific
community to join us in exploring these incredibly rich datasets. Together, we will accelerate
scientific discovery in both the computational and biological domain, and gain surprising insights

into unexplored phenomena in cell biology.
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Figure 1 - Training data and machine learning

(a) Fifteen 3D renderings of manually annotated training blocks in jrc_hela-2. The zoomed in
subpanels demonstrate the classification of the different organelles within the volume. Shown
are a single FIB-SEM slice (i) and the annotation of every voxel within the slice (ii). Alongside is
a 3D rendering (iii) of a subgroup of these annotations for clarity. Bounding box is 1.2 x 1.2 x
0.95 um. A thorough description of these classifications are reported in the Supplementary
Methods.

(b) Whole cell raw predictions, smoothed with o = 18 nm and rendered with cubic interpolation,
with similarly sized zoomed in region, 3 ym away from inset shown in (a). Shown are the

smoothed outlines of raw organelle predictions in place of their membranes. Microtubules are
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left out because they were too fragmented without refinement. Bounding box is 1.2 x 1.2 x 1.2

um.
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Figure 2 - Network evaluations and refined predictions

(a) Validation and test performance measured by F1 Score on holdout blocks from four
datasets. Manual validation refers to F1 Score of inferences with settings optimized manually on

the whole dataset. Labels sorted by average test score.
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(b) Comparison of networks using different multi-class strategies. Each data point represents
the F1 score (test performance) on a holdout block with the color denoting the multi-class
strategy (“all’/*many”/“few”).

(c) 2D FIB-SEM slice with ground truth and reconstructed microtubules after refinement in the
plane, 3D renderings of the ground truth (red) and reconstructed microtubules (cyan) in a
selected test block on jrc_hela-2.

(d) Comparison of the accuracy of MT reconstruction after refinement for four different cells,
measured over two densely traced 2 ym cubes for each dataset. We show reconstruction
accuracy in terms of precision, recall, and F1 Score on individual edges, where an edge is
correct, if the edge connects two reconstruction vertices that are matched to the same ground
truth microtubule track.

(e) 3D rendering of final predictions for each dataset. Classes shown are plasma membrane
(gray), ER (green), mitochondria (orange), nucleus (purple), endosomal system (blue), vesicles

(red), and Golgi (cyan). Inset shows Golgi and vesicles of jrc_hela-2.
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Figure 3 - Analysis and biological insight

(a) Relative volume occupied by each predicted organelle, per cell. MT volume only shown for
jre_hela-2.
(b) 3D rendering of reconstructed microtubule (white) and its contact sites with other organelles

(colors).

(c) Quantification of contact sites between microtubules and organelles in jrc_hela-2.
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(d) ER predictions in jrc_macrophage-2. Left panel is a 2D FIB-SEM slice with overlaid ER
predictions in green, the middle panel shows a 3D rendering of the ER predictions, and for
clarity the right panel shows the ER medial surface partitioned into planar and tubular structures
and corresponding tubule thicknesses.

(e) ER predictions in jrc_hela-2. Left panel is a 2D FIB-SEM slice with overlaid ER predictions in
green and mitochondria predictions in orange (bottom), the middle panel shows a 3D rendering
of the ER predictions and mitochondria predictions (bottom), and the right panel shows the ER
medial surface partitioned into planes and tubes along with tubule thicknesses. Also shown in
the bottom right panel are the contact site regions (blue) where ER and mitochondria are within
10 nm of each other.

(f) Quantification of the peripheral ER curvature and surface area compared between jrc_hela-2
and jrc_macrophage-2.

(g) Quantification of the peripheral ER curvature at contact sites between peripheral ER and
mitochondria, for jrc_hela-2 and jrc_macrophage-2.

(h) 3D rendering of the peripheral ER-bound ribosomes (those within 10 nm of the ER) in

jrc_hela-2. Ribosomes are color coded based on whether they are contacting planar ER (planar

measure 2 0.6, green) or tubular ER (planar measure < 0.6, blue).

(i) Quantification of the total ribosome distribution across all four datasets based on a contact
distance of 10 nm. Ribosomes that neither contact the nucleus nor ER are considered cytosolic.
Peripheral ER-bound ribosomes are further categorized based on the ER curvature where they

are bound.
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Figure 4 - Scaling predictions and CLEM auto-registration
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(a) 3D rendering of refined predictions for 8 nm dataset, jrc_hela-1.

(b) 3D rendering of refined predictions for 8 nm dataset, jrc_choroid-plexus-2. Classes shown in
(a) and (b) are plasma membrane (gray), ER (green), mitochondria (orange), nucleus (purple),
endosomal system (blue), vesicles (red), and Golgi (cyan). The zoomed regionis 1.2 x 1 x 0.8
pm.

(c) Comparison of networks trained with 4 nm and simulated 8 nm raw data. Each data point
represents the F1 score (test performance) on a holdout block.

(d) Overlays of PALM images and network mitochondria / ER predictions from the region
marked with a dashed box in (e).

(e) A single slice of the Jacobian determinant map for the transformation registering EM to
PALM for jrc_cos7-11. Red (blue) indicates local increase (decrease) in volume. Dotted area
shows the approximate location of cells.

(f) Histogram of Jacobian determinant over the whole volume.

(g) Qualitative comparison of automated and manual registration for the region marked with the
dashed box in (e). PALM images show ER (magenta) and mitochondria (green). White glyphs
show human-human error (vertical) and human-automatic error (horizontal).

(h) Error map showing differences for automatic registrations using PALM or SIM as the target
image. Dotted area shows the approximate location of cells.

(i) Histogram of PALM vs SIM errors over the area where a cell is present (white dotted line in

(h)).
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Methods

Sample preparation and acquisition

Sample preparation for the four 4 nm datasets presented here are detailed in Xu et al., 2020". In
short, the samples were cultured on 3-mm diameter, 50 um thick sapphire disks, high-pressure
frozen, freeze-substituted with 2% OsO4 0.1% UA 3% H20 in acetone, and resin embedded in
Eponate 1. The jrc_hela-1 dataset followed the same sample preparation. The jrc_choroid-
plexus-2 was prepared as previously described in Coulter et al., 20182; postfixed in 1.0%
osmium tetroxide in 0.1M cacodylate buffer (pH 7.4), rinsed with buffer, dehydrated through a
graded series of ethanol, and embedded in durcupan. High-resolution (4 nm) datasets were
imaged as described in Xu et al., 2020" and lower-resolution datasets were imaged as
described in Xu et al., 2017°. Note that while the actual resolution along the cutting axis can
slightly differ from the lateral resolution’, we treated and refer to these data as isotropic. Section
series were aligned using automatically extracted landmark correspondences,* manually
contrast adjusted, and stored at 8 bit precision using the N5 format®. See the Supplementary

Methods: Datasets for a more detailed list of information for each dataset.

Training data and machine learning

Organelles were manually identified using morphological features established in the literature®.
Because every voxel within an annotated block must be classified, ‘hollow’ organelles e.g.
endoplasmic reticulum, which contains lumen bound by a membrane, are defined by ‘lumen’
(lum) and ‘membrane’ (mem), or ‘inside’ (in) and ‘outside’ (out) depending on organelle

composition. Examples of each class can be found in Extended Data Fig. 1.
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We manually segmented blocks at 2 nm resolution from datasets of HelLa, Jurkat, Macrophage
and SUM159 cells acquired at 4 nm resolution using Amira-Avizo (ThermoFisher) and BigCat'.
The expert annotators used various image processing filters to enhance raw data,
miscellaneous selection tools for label assignment and preliminary 3D rendering as a contextual
guide. After final cross-annotator quality checks each block was stored as a N5 dataset® in
preparation for model training. For more details on the manual segmentation process and a
complete list of organelles and sub-organelle compartments, see Supplementary Methods:

Training Data and Supplementary Methods: Organelle Classification, respectively.

We used 3D U-Net architectures®® with valid padding and kernel sizes of (3, 3, 3) composed of
4 levels with downsampling factors of (2, 2, 2), (3, 3, 3) and (3, 3, 3) between them. The initial
feature width is 12 with a multiplication factor of 6. We did not reduce the number of feature
maps after the final upsampling layer. To train networks that can process data with 8 nm
isotropic resolution, we added an additional upsampling level and simulated 8 nm isotropic data
by sampling from 8 random subsamplings of the original data. All networks are trained with the
Adam optimizer'® to minimize the sum of mean squared errors between the outputs and the
signed tanh distance transform'' of each class. Distance transforms were computed on-the-fly
on larger patches and then cropped to the output size of the network. Potential block boundary
effects were masked out for the loss computation. We used a variety of augmentations to
virtually increase the amount of training data and improve robustness to contrast variations:

random flips and rotations, elastic deformations, linear and gamma intensity augmentations.

To test the trade-off between dedicated networks for each organelle and sharing information
between classes, we tested networks co-predicting different numbers of classes. For a

summary of all networks refer to Supplementary Table 1. Generally, we sampled patches
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randomly from training blocks according to their sizes. For the dedicated ribosomes, vesicles
and golgi networks for 4 nm isotropic data, we sampled with probability 0.5 from the few training
blocks containing instances of those. For more details on the machine learning pipeline see

Supplementary Methods: Machine Learning.

Inference was performed in parallel across multiple GPUs and restricted to a mask roughly
separating sample material from resin. The predicted distances were converted from float32
covering the range of [-1, 1] to uint8 with values in [0, 255], i.e. generating binary labels by
thresholding the signed tanh distance transform at O (predicted distance of O nm) translates into

thresholding at a voxel value of 127.

To optimize the type of network as well as the training iteration for each label and dataset we
used a manual evaluation method based on repeated pairwise comparisons of random crops
from two predictions. We validated this method using holdout blocks from four datasets on
which we computed validation and test F1 scores by comparing to the thresholded predictions.
Further details and additional metrics and comparisons can be found in the Supplementary
Methods: Evaluations, Extended Data Fig. 3and Supplementary Table 2. Refer to

Supplementary Discussion for an extended discussion on manual vs automated validation.

Refinements and quantifications

To obtain organelle instance information from the predictions, a number of refinements are

performed on the predictions.

In most cases, we first smoothed the predictions with a Gaussian filter (0 = 12 nm) before

thresholding at 127 and performing connected component analysis. Next, we often size-filtered
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the resulting segmentations to remove small false positives based on the known organelle
sizes. Additional general refinements included hole filling, masking the predictions of one
organelle class with those from another, and having an expert user choose specific objects to

remove or keep.

For overmerged organelles we employed the watershed-agglomeration segmentation
methodology of Zlateski and Seung'? as implemented in waterz'®. In this approach, watershed
segmentation is performed on a smoothed version of the predictions, where all background
voxels are set to 0. This resulted in overly segmented organelles. To reconstruct complete
organelles, iterative agglomeration was performed based on the costs of merging adjacent
segments. Here, two adjacent fragments were merged if a set percentage of their shared edge
voxels had predicted distances greater than or equal to a set distance; the exact percentile and
distance were chosen by an expert and varied from dataset to dataset. Using this agglomeration
method, fragments were more likely to be merged if their shared edge was predicted to be deep

within an organelle.

Segmentation of organelles with well-defined dimensions and morphologies, such as ribosomes
and microtubules, was performed by fitting the known structures to the predictions. Ribosomes
are treated as spheres with radius r = 10 nm. Microtubules are particularly hard to reconstruct
because they have a comparatively small diameter of 25 nm, making them hard to detect. At the
same time, they extend over several microns in length, making topologically accurate
reconstruction challenging. As such, for microtubule refinement, we used the method presented

by Eckstein et al.™

, exploiting structural priors on microtubules, such as no branch constraints
and locally limited curvature. We found suitable hyperparameters of the method via grid search
on four densely annotated 2 ym cubes of microtubules in the jrc_hela-2 dataset. We used these

hyperparameters to reconstruct all microtubules in jrc_hela-2, jrc_hela-3, jrc_jurkat-1 and
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Jrc_macrophage-2 and evaluated the reconstruction accuracy for each cell on two additional,
densely traced 2 um cubes for each dataset (Fig. 2c-d). See Extended Data Fig. 6 and
Supplementary Methods: Refinements for further details, including comparison of the used
method to a simple baseline method. To create the 3D representation of microtubules for
downstream analysis, the microtubule tracks were expanded by 12.5 nm, followed by removal of
all voxels within 6 nm of the axes as well as removal of end-caps. This created tubes with an

inner radius of 6 nm and outer radius of 12.5 nm.

Once the final segmentations were obtained for all organelle classes, a number of analyses
were performed. For each class, we calculated instance count, volume and surface area. In
addition, we measured the instance count and size of contact sites between a variety of
organelle classes. We also used topological thinning'®'® to produce skeletons and medial
surfaces of the mitochondria and ER, respectively. From the skeletons we measured
mitochondrial length and diameters. From the medial surface, we partitioned the ER into planar
and tubular regions based on a planarity metric. Planarity was calculated using the Hessian
matrix eigenvalues for the ER, evaluated at the medial surface at a scale maximizing this
metric'’. Partitioning was then performed on a planarity-labeled version of the ER, reconstructed

from the medial surface measurements, thresholded at 0.6.

For more detail on refinements and quantifications, see Supplementary Methods: Refinements,

Quantifications.

CLEM registration

We downsampled and blurred mitochondria membrane predictions to generate a “synthetic

light” image. We registered this image to light images labelling Halo/JF525-TOMMZ20. First, a
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human annotator coarsely masks corresponding cells in both images for automatic processing.
We used elastix'® to register these images in two steps: affine-only followed by deformable. For

additional details, see Supplementary Methods: CLEM Registration.

Open data and open source

We are committed to sharing the raw and derived datasets presented in this paper with the
broader scientific community, for educational purposes and further analysis and discovery.
Sharing data at this scale presents a technical challenge, which we addressed through a
combination of technologies: we stored datasets on the cloud using Amazon Web Services
(AWS) S3 storage platform using a variety of “cloud-friendly” data formats. To make this
collection of datasets viewable, we built a web platform “OpenOrganelle”

(openorganelle.janelia.org) that provides a catalog of datasets and access to tools for data

visualization.

Cloud Storage

We used AWS S3 for hosting our public-facing datasets, as the AWS S3 cloud storage platform
offers high scalability, availability, and extensively documented application programming
interfaces (APIs) across a wide range of programming languages. Additionally, AWS offers free
hosting for selected open datasets, including ours, through their open data program. See

https://reqistry.opendata.aws/janelia-cosem/ for more details about our presence on this

program.

Data formats

We stored all of our datasets in “cloud-friendly” formats, i.e. file formats that enable web

services to easily access data using standard web communication protocols like hypertext
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transfer protocol (HTTP). For large imaging datasets a cloud-friendly format is one that provides
a web-compatible interface for making spatial queries against the data. This constraint ruled out
traditional bioimaging formats like mrc, tiff and hdf5 because these formats do not expose their
spatial structure to HTTP. Thus we exclusively stored volumetric image data using N5 and
“Neuroglancer precomputed” file formats, both of which represent image volumes as collections
of separate files, or “chunks”. When hosted on a cloud storage platform like S3, each chunk has
its own URL and thus can be individually accessed over HTTP. To save storage space and
speed up data transmission each chunk is compressed with a browser-compatible compression

scheme (GZip for lossless compression or JPEG for lossy compression).

OpenOrganelle

Although our data can be publicly accessed directly through the cloud storage API, this is not
particularly user friendly or amenable to data exploration. Thus we created a public-facing web

page (www.openorganelle.janelia.org) that provides a description of each dataset and access to

tools for viewing individual subvolumes (e.g., mitochondria predictions) within a dataset. Our site
does not provide any direct tools for data visualization; instead, our site dynamically creates
hyperlinks that target a publicly hosted instance of the web-based image viewer Neuroglancer'®,
which is designed to access large cloud-hosted datasets over HTTP. Our site is written in

t20

TypeScript using the React™ framework and is completely open source

(https://github.com/janelia-cosem/openorganelle).

Data organization

We stored all of our large volumetric datasets as image pyramids, i.e. a given volume is stored
as a collection of arrays at different levels of detail. Although this approach increased the

amount of storage space needed, it is the preferred format for interactively visualizing large
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volumes. Creating an image pyramid involves repeatedly downsampling an image volume using
increasing downsampling factors. We performed downsampling by partitioning the source data
into a collection of contiguous cubes of voxels with edge length 2N, where N ranged from 1 to 5
and computing a reducing function over the values within each cube. For image volumes with
voxel values representing a scalar quantity, such as EM volumes or unrefined predictions, that
reducing function was the arithmetic mean, while for volumes representing labels and segment
IDs (e.g., segmentation volumes) we reduced by computing the modal value in each cube. Most
of our volumes are stored in the N5 format, in which case we stored each image pyramid as a
collection of datasets in a group. The group metadata contains an enumeration of the datasets
that comprise the multiresolution pyramid, as well as a specification of the spatial transformation
for each dataset. A minority of our volumes (those that warranted lossy jpeg compression) are
stored in the Neuroglancer precomputed format, which is specific to the Neuroglancer viewer

tool and natively supports image pyramids through its own metadata specification.

Data visualization and access

1921 "an open source WebGL data

Data was made available for online viewing via Neuroglancer
viewer. Neuroglancer provides intuitive navigation of 3D datasets and supports orthogonal slice
views, image pyramids, mesh rendering and a variety of other features making it ideal for
displaying the large 3D datasets produced by this project. For visualization, we provide the raw
data, predictions, segmentations, contact sites, skeletons and medial surfaces discussed

throughout the text. For select organelles and contact sites, we also include meshes? in the

Neuroglancer legacy mesh format.

We provide two plugins for Fiji® to access and interact with the data we provide. N5-Viewer
enables viewing these large datasets in their entirety with BigDataViewer?. N5-ij?° allows users

to open datasets or subsets of datasets in Fiji to perform their own analyses.
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To download datasets, we recommend using the AWS command line interface (AWS CLI).

Instructions for using this tool can be found on their user guide?.

We have also made data analysis results available as a Neo4j graph database (downloadable

from openorganelle.janelia.org). Neo4j allows users to easily interact with and visualize the

data, including organelle properties like volume and surface area and contact site properties like
contact area and planarity. Neo4J also allows users to create custom queries to search through

and analyze data and relationships in novel ways.

We welcome feedback about how these data are used and your biological discoveries. We hope
this will inspire new insights and expect they will generate more questions than answers. Please

email us at cosemdata@janelia.nhmi.org

Data Availability

All data, software, and source code generated and analyzed during this study can be found at

https://openorganelle.janelia.org/.

Code Availability

All data, software, and source code generated and analyzed during this study can be found at

https://openorganelle.janelia.org/.
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Extended data figures

Mit "th.J!‘

Extended Data Fig. 1 - Organelle classification

Examples of each class used for training input. Organelles were manually identified using
morphological features established in the literature. A description of each class can be found in

the Supplementary Methods: Organelle classification.
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Extended Data Fig. 2 - Class frequencies and holdout block

(a) 37 different classes are used to classify all intracellular structures. These classes are
combined into 35, potentially overlapping semantic categories (see Supplementary Methods
and Extended Data Fig. 1). Classes in bold depict these super classes. As an example, the ER
object class is expanded in the subpanel. In green are classes that are predicted jointly by type
“many” networks. Denoted with a dot are the super classes, with a few additional classes, used
in the type “few” networks. The type “all” networks train jointly on all 35 classes.

(b) Annotated volume according to datasets. Reported are the percentage of the total cell that is

annotated.
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3D rendering of predictions (¢) and ground truth (d) in a4 ym x 4 um x 4 ym holdout block in
jrc_hela-3. Shown are the nucleus (magenta), plasma membrane (gray), ER and NE (green),
mitochondria (orange), vesicles (red), lysosomes (yellow), endosomes (blue), and microtubules

(white).
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Extended Data Fig. 3 - Evaluation metrics & Comparison of manual and

automatic hyperparameter tuning

(a) F1 Scores on holdout blocks from four datasets comparing manual and automatic
hyperparameter tuning. Data includes all results we collected using the manual comparison of
predictions on whole cells, i.e. comparisons across iterations only as well as comparisons
across the best iterations of different network types. For automatic validation scores equivalent
queries were made against the database.

(b) F1 Scores on holdout regions from four datasets comparing F1 Score and Mean False

Distance as the metric used for hyperparameter tuning. Data points are equivalent to those from

(a).
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Extended Data Fig. 4 - Mitochondria overmerging corrections

(a) Whole cell, 3D rendering of mitochondria in jrc_hela-2 segmented using naive connected
component analysis method.

(b) FIB-SEM and raw mitochondria predictions thresholded at 127 (d = Onm) for the boxed
region in (a), shown for one 2D slice.

(c) Naive connected component segmentation of mitochondria for the region in (a), performed

on smoothed, thresholded predictions at 127 and followed by size filtering and hole-filling.
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(d) To alleviate over-merging of mitochondria, we smooth the predictions and perform
watershed segmentation on all voxels greater than or equal to 127. Shown are the resultant
watershed fragments.

(e) To create the improved mitochondria segmentations, we agglomerate adjacent fragments in
(d) based on parameters that best optimize the resultant segmentations, as chosen by an expert
user.

(f) Final whole cell rendering of corrected mitochondria predictions.
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Extended Data Fig. 5 - Effect of prediction refinements on evaluation

metrics

F1 Score (a), Precision (b) and Recall (c) on holdout blocks from four datasets before (raw) and
after (refined) refinements described in Supplementary Methods: Refinements. Network type
and iterations represented here are listed in Supplementary Table 1 and are optimized manually

with a bias towards potential improvement through the refinement process.
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Extended Data Fig. 6 - Microtubule Refinement

Comparison of the baseline microtubule refinement and the method described in Eckstein et
al.?8. Shown is the accuracy in terms of topological errors on full tracks (a) and precision and
recall on individual edges (b), where an edge is correct, if the edge connects two reconstruction

vertices that are matched to the same ground truth microtubule track. Each column shows the
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accuracy of both methods, acquired via 6-fold cross validation over 4 ground truth annotation
blocks, where we used two blocks for validation and the remaining two for testing for each run.
Numbers above each column in (b) are the median value of the 6 cross-validation runs. See
Supplementary Table 4 for a complete listing of evaluation results.

2D FIB-SEM slice with ground truth and reconstructed microtubules in the plane, 3D renderings
of the ground truth (red) and reconstructed microtubules (cyan) in selected test blocks on
jrc_hela-3 (c), jrc_jurkat-1 (d) and jrc_macrophage-3 (e). Plots show the topological errors
normalised by ground-truth microtubule cable length for each cell respectively. For accuracy
results in terms of precision, recall and F1 score, see Fig. 2. See Supplementary Table 4 for a
complete listing of evaluation results. Standard box plots are used showing the total range

(whiskers), outliers (points), the first and third quartile (box), and median (line).
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Extended Data Fig. 7 - Measurements in holdout regions

Surface area (a) and volume (b) deviations from the ground truth for sample organelles in the
holdout regions. Analysis was performed on both raw predictions thresholded at 127 (dark
shade), and refined predictions (light shade). In order to get some sense of reliability, we divide
each holdout region in half in 3 dimensions resulting in 6 regions. The measurements within
these 6 regions are shown (circles), as well as the measurements for the entire holdout region

(bar).
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Extended Data Fig. 8 - Organelle contact sites, planarity and skeletons

(a) ER (reconstructed, green) and mitochondria (orange) dense regions of jrc_hela-2 chosen for

comparison, with 2D FIB-SEM slice also displayed.
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(b) 2D FIB-SEM slice shown in (a) displays ER predictions (green), mitochondria predictions
(orange), naive contact sites (magenta) and refined contact sites (blue), which are subsets of
the naive contact sites.

(c) 3D rendering of mitochondria (orange) and simple contact sites (magenta).

(d) 3D rendering of mitochondria (orange) and refined contact sites (blue).

(e) 3D rendering of refined ER segmentation in an example region of jrc_hela-2.

(f) Medial surface (black) produced from iterative topological thinning of the ER segmentation
(gray).

(9) A planar metric (color) is calculated for each voxel in the medial surface based on the ER’s
Hessian matrix eigenvalues at that voxel; higher values correspond to more planar regions.
(h) The planarity metric medial surface in (c) is used to reconstruct a curvature-labeled ER
which is thresholded at 0.6, above which voxels are considered planes (blue) and below which
voxels are considered non-planar (red).

(i) Topological thinning is used to produce skeletons. Shown is a 3D rendering of an example
mitochondria (gray), skeleton (red), pruned skeleton (blue), and longest shortest path (green)
from jrc_hela-2.

(i) Unpruned skeleton used as a starting point.

(k) Repetitive pruning produced a final skeleton such that no remaining branch was shorter than
80 nm.

(I) Mitochondrial length and average radius were calculated using the longest shortest path
within the pruned skeleton.

See Supplementary Methods: Quantifications for in depth description.
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Extended Data Fig. 9 - CLEM

Overlays of PALM images and network mitochondria / ER predictions. The substantial similarity
between transformed ER predictions and TOMM20 indicates good algorithm performance,
despite imperfect staining and false positive / negative predictions. The conclusion is similar

when comparing ER predictions and mEmerald-ER3. While the ER predictions have a higher
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false negative rate than the mitochondria predictions, similar structures overlap after

registration.
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