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Cells contain hundreds of different organelle and macromolecular assemblies intricately 

organized relative to each other to meet any cellular demands. Obtaining a complete 

understanding of their organization is challenging and requires nanometer-level, three-

dimensional reconstruction of whole cells. Even then, the immense size of datasets and 

large number of structures to be characterized requires generalizable, automatic 

methods. To meet this challenge, we developed an analysis pipeline for comprehensively 

reconstructing and analyzing the cellular organelles in entire cells imaged by focused ion 

beam scanning electron microscopy (FIB-SEM) at a near-isotropic size of 4 or 8 nm per 

voxel. The pipeline involved deep learning architectures trained on diverse samples for 

automatic reconstruction of 35 different cellular organelle classes - ranging from 

endoplasmic reticulum to microtubules to ribosomes - from multiple cell types. 

Automatic reconstructions were used to directly quantify various previously inaccessible 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.14.382143doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.14.382143
http://creativecommons.org/licenses/by/4.0/


 

metrics about these structures, including their spatial interactions. We show that 

automatic organelle reconstructions can also be used to automatically register light and 

electron microscopy images for correlative studies. We created an open data and open 

source web repository, OpenOrganelle, to share the data, computer code, and trained 

models, enabling scientists everywhere to query and further reconstruct the datasets. 

 

Eukaryotic cells contain a plethora of distinct membrane-bound organelles and macromolecular 

assemblies that drive the cell’s activities. Despite biochemical and genetic understanding of 

these structures, we still lack a nanometric-level map describing their 3D distributions, 

morphological complexities, and interactions throughout an entire cell. Obtaining this 

comprehensive 3D map of cellular structures and their interactions has proved difficult. Light 

microscopy studies have made inroads, but the results are resolution-limited and involve 

potential perturbations from introduction of fluorescent protein markers1. Full nanometric 

mapping of a cell should be achievable, however, through volumetric electron microscopy of 

entire, unperturbed cells. Modern FIB-SEM provides near-isotropic resolution of cellular 

structures with nanometric voxel sizes through an entire cell2. Significant innovations that have 

been made in the automatic analysis of volume EM data3–28(Supplementary Information, 

Related Works), in turn, provide a means for accessing this information. Here, we combine 

whole cell FIB-SEM imaging with deep learning-based segmentation to obtain a comprehensive 

map of the thousands of structures packed inside a single cell.  

 

A complete whole cell FIB-SEM dataset from a HeLa cell that was high pressure frozen and 

imaged at 4 nm isotropic voxels is shown in Fig. 1a. To obtain ground truth annotation for 

training machine learning algorithms, we selected regions of interest (hereafter, blocks) for 

manual annotation of up to 35 different organelles and macromolecular structures based on 

morphological features established in the literature. Shown in the HeLa cell of Fig. 1a (top 
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panel) are 15 of these training blocks (see also: Supplementary Video 1). Whenever possible, 

we distinguished between the lumen and membrane of an organelle. Some structures were 

easily identified. For instance, mitochondria are ovoid organelles characterized by outer and 

inner membranes that fold to form cristae; microtubules are cylindrical ‘tubes’, 25 nm in 

diameter, that do not branch. Others can be less clear, such as the endoplasmic reticulum (ER), 

an extensive tubular network often studded with ribosomes. However, because it always 

connects back to itself and ultimately connects back to the nuclear envelope (NE) it can be 

confidently identified in complete volumetric EM datasets. More dubious to differentiate is the 

endo-lysosomal system which is often defined by its protein content - information not available 

in these volumetric EM. As such, we split the endosomal and lysosomal networks into two 

classes, organelles with a light (endosomes) and dark (lysosomes) stained lumen. 

Peroxisomes, also ill-defined by EM alone, are included within these two classes. For a 

complete list of organelle class descriptions and examples see Supplementary Methods: 

Organelle Classification and Extended Data Fig. 1-2. 

  

An example of one ~1 µm3 area block near the cell center, with manual annotations as 

described above, is shown in Fig. 1a (inset i). A single FIB-SEM slice from this region, in which 

every voxel within the slice was annotated and classified, is shown in insets ii and iii. 

Segmenting the dense array of organelles in this region took one person two weeks, meaning 

that manual annotation of the entire cell, 2,250 times this size, would take ~60 years, 

underscoring the need for automatic segmentation.  

  

The performance of deep learning-based methods depends on representative training data. 

Aiming for a solution of automatic segmentation that generalizes across cell types and variation 

in imaging parameters, we annotated up to 35 organelle classes in 28 training blocks from five 
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datasets covering four different cell types (Extended Data Fig. 2). We further included 30 and 15 

blocks that only contained extracellular space and nucleus, respectively.  

  

The training blocks were used to train large, multi-channel 3D-U-Net architectures29,30 to predict 

signed tanh boundary distances of the binary labels for each organelle class. This was shown to 

be beneficial compared to using a cross-entropy loss in prior work on synaptic cleft 

segmentation in EM10. We trained all networks to minimize the sum of mean squared errors with 

respect to the signed tanh boundary distance of each binary label (one per output channel). 

Each takes on values between [-1, 1] and can be converted into binary labels by thresholding at 

0. To test the effect of jointly training varying numbers of classes, one network was trained on all 

classes jointly (“all”), one network on the 14 classes that had positive annotations in at least 10 

blocks (“many”) and 14 specialized networks on up to four closely related classes (“few”) 

(Supplementary Table 1). The specialized networks for some of the classes with very few 

positively annotated voxels in the ground truth data (i.e. ribosomes, vesicles, and Golgi) were 

trained with a sampling scheme that prioritized blocks containing instances of those labels. 

 

Using the trained networks, we predicted organelle segmentation on whole cells excluding 

regions that contain only resin to save computation time . Depending on the network 

architecture, inference speeds varied between 0.5 and 4.8  on GeForceRTX2080Ti 

cards. For example, on a single GPU, inference for the 14 organelles in the type “many” network 

on the cell shown in Fig. 1a, jrc_hela-2 (74 gigavoxels) took approximately 12.5 hours. 

 

We developed a manual evaluation method based on pairwise comparisons of whole-cell 

predictions (Supplementary Methods: Evaluations) to determine the optimal training iteration 

and network architecture for unseen datasets without the costly generation of validation blocks. 
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Shown in Fig. 1b are the resulting raw predictions, smoothed with σ = 18 nm and rendered with 

cubic interpolation (Fig. 1b). The inset of Fig. 1b shows a region ~ 3 µm away from the inset in 

Fig. 1a. The quality of organelle annotations in this region, resembling those done manually in 

Fig. 1a(i), suggested the trained networks could successfully reconstruct organelles throughout 

the cell.  

 

To quantitatively assess the performance of the machine learning method, as well as validate 

the manual approach, we annotated additional 4 μm3 holdout blocks (Extended Data Fig. 2) in 

four of the datasets that had annotations for training. The holdout blocks did not contain 

instances of all organelles, so we only report results for classes present in all four. A 

comparison between test and validation performances is shown in Fig. 2a. We chose the Dice 

coefficient (F1 Score) as our performance measure (for alternative metrics see Extended Data 

Fig. 3). To measure validation performance for each dataset, we optimized the aforementioned 

settings directly on the holdout block for that dataset. Conversely, optimizing the settings only 

on the holdout blocks from the other datasets allowed us to use each as a test set. Additionally, 

Fig. 2a shows performance scores for the settings picked via manual evaluation on the whole 

dataset where available (see Supplementary Table 2, for a complete comparison of manual and 

automatic validation see Extended Data Fig. 3). With the caveat that all holdout blocks stem 

from datasets that have annotations used for training, this comparison assesses the importance 

of hyperparameter optimization for segmentation quality. In Fig. 2b, we used the same 

procedure to compare test performance of the network setups (i.e. all/many/few classes). 

Overall, the results showed good performance scores for organelles well represented in our 

training data and setups including more organelles (i.e.all/many) tended to perform slightly 

better. 
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For some classes, simple refinements were applied to improve the segmentation quality. This 

included smoothing, size filtering, watershed segmentation and agglomeration31,32, and masking 

(see Supplementary Methods: Refinements, Extended Data Fig. 4, and SupplementaryTable 3). 

Evaluation of the refined segmentation performance is shown in Extended Data Fig. 5. For other 

classes, biological priors could be used to improve the raw predictions. In particular, for 

reconstructing microtubules, shown in Fig. 2c, we used the method by Eckstein et al.28 

(Supplementary Methods: Refinements, Extended Data Fig. 6, and SupplementaryTable 4). 

Note the close correlation between ground-truth-based (red) versus automatically reconstructed 

microtubules (cyan) (Fig. 2c, d). 

 

The complete post-refinement predictions for each dataset is presented in Fig. 2e, showing 

seven organelles that were automatically segmented throughout four different cells. A small 

glimpse of the complexity of organelles in these whole cell renderings can be appreciated by 

focusing on the Golgi apparatus as shown in the inset of Fig. 2e: In contrast to the textbook 

presentations as a compact stack of cisternae, the Golgi is much more elaborate, consisting of a 

winding ribbon that extends > 5 µm throughout the cytoplasm and consists of flattened arrays of 

cisternae interconnected by narrow tubules. Vesicles are highly abundant around the Golgi, 

decorating its surface. For a more in depth look at the complexity of other organelles in these 

datasets, visit openorganelle.janelia.org. 

 

From these whole cell datasets, we now have the ability to extract quantitative information and 

give a few examples of the type of analysis this data facilitates. We calculated the instance 

count, volume, and surface area of each organelle within each of the four different cells 

(Supplementary Table 5). Using the holdout blocks, we confirmed that these estimates agree 

with those extracted from ground truth (Extended Data Fig. 7). Fig. 3a plots the volume 

proportion occupied by 8 different organelle classes throughout an entire cell, comparing two 
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HeLa cells, a Jurkat cell and a macrophage cell. Of note, the jrc_jurkat-1 cell, an immortalized T 

lymphocyte, had a higher fraction of its total cell volume occupied by the nucleus (~40%) 

compared to the other cell types, likely reflecting its origin as a leukaemic T-cell poised for 

proliferation. The jrc_macrophage-2 cell, a cell type involved in detection, phagocytosis, and 

destruction of bacteria and other agents, had an increased volume ratio of ER, which could be 

relevant for its extensive membrane trafficking activity. 

 

Microtubules play a critical role in enabling organelles to distribute throughout the cell33. Our 

ability to segment out membrane-bound organelles as well as single microtubules enabled us to 

investigate the question of how many different organelles could be contacting a single 

microtubule at any time. Such associations were calculated by quantifying organelles within 20 

nm of a given microtubule, as described in Supplementary Methods: Quantifications and 

Extended Data Fig. 8. As shown in Fig. 3b, a single microtubule, less than one micron in length, 

made multiple contacts with upwards of five different types of organelles (Supplementary Video 

2). A summary of all the microtubule contacts in jrc_hela-2 is summarized in Fig. 3c. These 

unprecedented findings open up new questions related to how organelle distributions and 

motions are coordinated along a single microtubule.  

  

The peripheral ER system is known to display a variety of topologies, both within a single cell 

and across different cell types34-37. Maintaining these structural arrangements is controlled by 

numerous proteins 34,35. To quantify ER morphology, including its relationship to other 

organelles, we partitioned the ER into planar and tubular regions, based on its curvature 

(Supplementary Methods: Quantification, Extended Data Fig. 8)36. In the jrc_macrophage-2 cell, 

2D planar regions of ER were abundant (Fig. 3d), with many of these regions forming stacks of 

helicoidal sheets37 interconnected by tubules. In the jrc_hela-2 cell, the flattened regions of ER 

often appeared to be supported by other organelles, such as mitochondria (Fig. 3e and 
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Supplementary Video 2). Comparing the ratio of planar and tubular regions between these two 

cell types (Fig. 3f), we found the jrc_hela-2 cell had fewer 2D planar regions than the 

jrc_macrophage-2 cell. In line with this qualitative assessment, a larger fraction of the planar ER 

regions were supported by mitochondria in the jrc_hela-2 cell (Fig. 3e, bottom right panel and 

Fig. 3g). These findings underscore the complexity of ER morphology and its relationship with 

organelles like mitochondria in different cell types. 

  

Given the above differences between planar and tubular ER, we next examined the relative 

abundance of ribosomes that were associated with these ER domains. Using a contact site 

distance of 10 nm, we categorized ribosomes as either ER-bound or cytosolic. ER-bound 

ribosomes (Fig. 3h and Supplementary Video 2) were further categorized based on whether 

they were bound to planar ER, tubular ER, or nuclear envelope regions (Fig. 3h-i). The 

percentage of ribosomes bound to tubular peripheral ER and the nuclear envelope remained 

consistent across the data sets for the four different cells. By contrast, the relative percentage of 

ribosomes bound to planar peripheral ER was 3-fold higher in the jrc_macrophage-2 cell. As the 

jrc_macrophage-2 cell also had greater volume of ER than the other three cells examined (see 

Fig. 2a), the results are consistent with it being more actively engaged in biosynthesis of 

membrane and secretory proteins than the other examined cells.  

 

While all of our training datasets were acquired at 4 nm resolution, many FIB-SEM data are 

acquired at 8 nm resolution to reduce imaging time. In order to leverage that data for analysis, 

we trained 8 nm versions of some of our setups by adding an additional upsampling block to the 

3D-U-Net architecture and randomly downsampling the raw data for training (Supplementary 

Methods: Machine Learning). Qualitatively, segmentations of data imaged at 8 nm were 

satisfying, especially considering that our training data did not contain examples from these 

datasets. Fig. 4a shows the segmentation of another HeLa cell, which should be fairly well 
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represented by our training data. Notably, our training data currently contains no tissue data 

which makes the early experiments on a sample of a chemically fixed, mouse choroid plexus38 

(shown in Fig. 4b) particularly interesting for a future extension of the approach to tissue data 

and different fixation protocols. For a quantitative assessment we reused the holdout blocks with 

downsampled raw data as we did for training. As shown in Fig. 4c, for most organelles, the 

quality of segmentation suffers only slightly or, for larger organelles such as mitochondria, 

improves a bit compared to full resolution input.  

 

Fluorescent light microscopy (LM) in combination with highly specific molecular markers 

provides complementary information to high resolution non-specific EM. To associate correlative 

LM and EM (CLEM) acquisitions of the same sample, the acquisitions need to be registered. 

This is challenging due to resolution and contrast differences between the modalities, and non-

linear transformations induced during sample preparation and can take a skilled user several 

days to accomplish. Using our predictions for mitochondrial membranes, we automated the 

registration process for CLEM datasets. We demonstrate this using a previously published 

COS-7 cell transiently expressing ER luminal and mitochondria membrane markers, mEmerald-

ER3 and Halo/JF525-TOMM20, respectively39, imaged by both PALM and SIM, and FIB-SEM 

(described in Supplementary Methods: CLEM registration). Fig. 4d, Extended Data Fig. 9 and 

Supplementary Video 3 show the registration results. We report the Jacobian determinant of the 

transformation field to measure local distortion resulting from registration. Fig. 4e shows a slice 

through these measurements, the cell volume is outlined for reference. Fig. 4f shows a 

histogram computed over the whole volume. The narrow standard deviation of this distribution 

(0.05) indicates that the transformation field is smooth. 

 

We evaluated the registration accuracy with respect to human-generated ground truth by using 

31 landmark pairs manually placed by two human evaluators in the subregion marked by the 
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box in Fig. 4e. These landmarks were placed at corresponding points in the ER light channel 

and ER predictions of the EM image that were not used for automatic registration. This enables 

us to measure errors in an unbiased way, with respect to the true underlying transformation, not 

only the "part" of the transformation that can be inferred from the mitochondria membrane 

channel. Horizontal white lines in Fig. 4g shows how automated registration differs from the 

ground-truth human decisions, and vertical white lines show how the human evaluators differ 

from each other. The automatic registration differed from human annotator by 0.11 ± 0.06 μm, 

while human evaluators differed from each other by 0.03 ± 0.02 μm (mean ± standard 

deviation). The automated registration agrees with human evaluators in areas with clear 

mitochondria signals. Additional details and discussion can be found in the Supplementary 

Methods: CLEM registration.  

 

We compared the independent registrations of the EM to both PALM and SIM. Fig. 4h shows a 

map of the spatial error between the two transformations. Fig. 4i shows a histogram of spatial 

error over a region where cells are present, indicated by the white dotted line in Fig. 4h. Errors 

are small, especially near mitochondria, indicating that the registration is consistent across 

modalities. Altogether we show that using automatic organelle segmentations can be used to 

successfully register CLEM images, making it accessible to less experienced users, and 

reducing the time from days to an hour or less. 

    

In conclusion, large-scale reconstruction of complete cells and tissues imaged with FIB-SEM2 

promises to greatly expand our understanding of the structure and organization of cellular 

organelle interactions. Fully automatic reconstruction of cellular organelle ensembles is the only 

economically feasible way to exhaustively analyze these large datasets. To be readily 

applicable to new questions and domains, it is necessary that automatic reconstruction methods 

generalize robustly across cell-types, tissues, and preparation methods. Until today, state-of-
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the-art methods are specialists that are designed for, trained on, and applied to very specific, 

yet often very large datasets and a small number of cellular organelles. These methods fail 

when presented unseen samples and require costly re-design and re-training. 

 

We described here a first successful method to fully automatically reconstruct a large number of 

cellular organelles from FIB-SEM volumes of diverse cell types. We generated carefully 

annotated training volumes spanning a variety of different cell types and trained large deep 

learning architectures to simultaneously reconstruct a large number of cellular organelles and 

sub-organelle structures at different input resolutions. 

 

We demonstrated that we can extract quantitative information about the distribution, size, shape 

and other structural properties as well as the interaction between different cellular organelles 

directly from automatic reconstructions of complete cells. This comprehensive information, 

enabling the global comparison of various cell types at the ultra-structural level, has not been 

previously accessible through either sparsely labeled light microscopy or focused local 

reconstructions on electron microscopy data. It will enable us to establish a better integrated 

view of cellular function and interactions between cells in tissues. We further showed that 

automatic organelle reconstructions enable fully automatic registration of light and electron 

microscopy for correlative studies, previously an error-prone manual process. 

 

The capability of our networks to generalize across cell-types is a large step towards a push-

button solution to analyze whole cell FIB-SEM volumes fully automatically. However, it is 

important to understand that more work is necessary to achieve better performance in diverse 

tissue samples and cell types that are vastly different from those included in our training data, 

and for organelles and structure that are currently underrepresented. In the Supplementary 

Discussion, we analyze this in detail and outline our future plans. 
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We strongly believe in the power of open science. We have therefore developed the repository 

“OpenOrganelle” (openorganelle.janelia.org) where we make raw datasets, training data, 

reconstructions, open source code, and models available to the public. We invite the scientific 

community to join us in exploring these incredibly rich datasets. Together, we will accelerate 

scientific discovery in both the computational and biological domain, and gain surprising insights 

into unexplored phenomena in cell biology. 
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Figures  

 

Figure 1 - Training data and machine learning 

(a) Fifteen 3D renderings of manually annotated training blocks in jrc_hela-2. The zoomed in 

subpanels demonstrate the classification of the different organelles within the volume. Shown 

are a single FIB-SEM slice (i) and the annotation of every voxel within the slice (ii). Alongside is 

a 3D rendering (iii) of a subgroup of these annotations for clarity. Bounding box is 1.2 x 1.2 x 

0.95 μm. A thorough description of these classifications are reported in the Supplementary 

Methods. 

(b) Whole cell raw predictions, smoothed with σ = 18 nm and rendered with cubic interpolation, 

with similarly sized zoomed in region, 3 μm away from inset shown in (a). Shown are the 

smoothed outlines of raw organelle predictions in place of their membranes. Microtubules are 
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left out because they were too fragmented without refinement. Bounding box is 1.2 x 1.2 x 1.2 

μm. 
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Figure 2 - Network evaluations and refined predictions 

(a) Validation and test performance measured by F1 Score on holdout blocks from four 

datasets. Manual validation refers to F1 Score of inferences with settings optimized manually on 

the whole dataset. Labels sorted by average test score. 
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(b) Comparison of networks using different multi-class strategies. Each data point represents 

the F1 score (test performance) on a holdout block with the color denoting the multi-class 

strategy (“all”/“many”/“few”). 

(c) 2D FIB-SEM slice with ground truth and reconstructed microtubules after refinement in the 

plane, 3D renderings of the ground truth (red) and reconstructed microtubules (cyan) in a 

selected test block on jrc_hela-2.  

(d) Comparison of the accuracy of MT reconstruction after refinement for four different cells, 

measured over two densely traced 2 μm cubes for each dataset. We show reconstruction 

accuracy in terms of precision, recall, and F1 Score on individual edges, where an edge is 

correct, if the edge connects two reconstruction vertices that are matched to the same ground 

truth microtubule track. 

(e) 3D rendering of final predictions for each dataset. Classes shown are plasma membrane 

(gray), ER (green), mitochondria (orange), nucleus (purple), endosomal system (blue), vesicles 

(red), and Golgi (cyan). Inset shows Golgi and vesicles of jrc_hela-2.  
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Figure 3 - Analysis and biological insight 

(a) Relative volume occupied by each predicted organelle, per cell. MT volume only shown for 

jrc_hela-2. 

(b) 3D rendering of reconstructed microtubule (white) and its contact sites with other organelles 

(colors). 

(c) Quantification of contact sites between microtubules and organelles in jrc_hela-2. 
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(d) ER predictions in jrc_macrophage-2. Left panel is a 2D FIB-SEM slice with overlaid ER 

predictions in green, the middle panel shows a 3D rendering of the ER predictions, and for 

clarity the right panel shows the ER medial surface partitioned into planar and tubular structures 

and corresponding tubule thicknesses. 

(e) ER predictions in jrc_hela-2. Left panel is a 2D FIB-SEM slice with overlaid ER predictions in 

green and mitochondria predictions in orange (bottom), the middle panel shows a 3D rendering 

of the ER predictions and mitochondria predictions (bottom), and the right panel shows the ER 

medial surface partitioned into planes and tubes along with tubule thicknesses. Also shown in 

the bottom right panel are the contact site regions (blue) where ER and mitochondria are within 

10 nm of each other. 

(f) Quantification of the peripheral ER curvature and surface area compared between jrc_hela-2 

and jrc_macrophage-2. 

(g) Quantification of the peripheral ER curvature at contact sites between peripheral ER and 

mitochondria, for jrc_hela-2 and jrc_macrophage-2. 

(h) 3D rendering of the peripheral ER-bound ribosomes (those within 10 nm of the ER) in 

jrc_hela-2. Ribosomes are color coded based on whether they are contacting planar ER (planar 

measure ≥ 0.6, green) or tubular ER (planar measure < 0.6, blue). 

(i) Quantification of the total ribosome distribution across all four datasets based on a contact 

distance of 10 nm. Ribosomes that neither contact the nucleus nor ER are considered cytosolic. 

Peripheral ER-bound ribosomes are further categorized based on the ER curvature where they 

are bound.  
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Figure 4 - Scaling predictions and CLEM auto-registration 
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(a) 3D rendering of refined predictions for 8 nm dataset, jrc_hela-1. 

(b) 3D rendering of refined predictions for 8 nm dataset, jrc_choroid-plexus-2. Classes shown in 

(a) and (b) are plasma membrane (gray), ER (green), mitochondria (orange), nucleus (purple), 

endosomal system (blue), vesicles (red), and Golgi (cyan). The zoomed region is 1.2 x 1 x 0.8 

μm. 

(c) Comparison of networks trained with 4 nm and simulated 8 nm raw data. Each data point 

represents the F1 score (test performance) on a holdout block. 

(d) Overlays of PALM images and network mitochondria / ER predictions from the region 

marked with a dashed box in (e). 

(e) A single slice of the Jacobian determinant map for the transformation registering EM to 

PALM for jrc_cos7-11. Red (blue) indicates local increase (decrease) in volume. Dotted area 

shows the approximate location of cells. 

(f) Histogram of Jacobian determinant over the whole volume. 

(g) Qualitative comparison of automated and manual registration for the region marked with the 

dashed box in (e). PALM images show ER (magenta) and mitochondria (green). White glyphs 

show human-human error (vertical) and human-automatic error (horizontal). 

(h) Error map showing differences for automatic registrations using PALM or SIM as the target 

image. Dotted area shows the approximate location of cells. 

(i) Histogram of PALM vs SIM errors over the area where a cell is present (white dotted line in 

(h)).
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Methods 

Sample preparation and acquisition 

Sample preparation for the four 4 nm datasets presented here are detailed in Xu et al., 20201. In 

short, the samples were cultured on 3-mm diameter, 50 μm thick sapphire disks, high-pressure 

frozen, freeze-substituted with 2% OsO4 0.1% UA 3% H2O in acetone, and resin embedded in 

Eponate 1. The jrc_hela-1 dataset followed the same sample preparation. The jrc_choroid-

plexus-2 was prepared as previously described in Coulter et al., 20182; postfixed in 1.0% 

osmium tetroxide in 0.1M cacodylate buffer (pH 7.4), rinsed with buffer, dehydrated through a 

graded series of ethanol, and embedded in durcupan. High-resolution (4 nm) datasets were 

imaged as described in Xu et al., 20201 and lower-resolution datasets were imaged as 

described in Xu et al., 20173. Note that while the actual resolution along the cutting axis can 

slightly differ from the lateral resolution1, we treated and refer to these data as isotropic. Section 

series were aligned using automatically extracted landmark correspondences,4 manually 

contrast adjusted, and stored at 8 bit precision using the N5 format5. See the Supplementary 

Methods: Datasets for a more detailed list of information for each dataset. 

Training data and machine learning 

Organelles were manually identified using morphological features established in the literature6. 

Because every voxel within an annotated block must be classified, ‘hollow’ organelles e.g. 

endoplasmic reticulum, which contains lumen bound by a membrane, are defined by ‘lumen’ 

(lum) and ‘membrane’ (mem), or ‘inside’ (in) and ‘outside’ (out) depending on organelle 

composition. Examples of each class can be found in Extended Data Fig. 1. 
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We manually segmented blocks at 2 nm resolution from datasets of HeLa, Jurkat, Macrophage 

and SUM159 cells acquired at 4 nm resolution using Amira-Avizo (ThermoFisher) and BigCat7. 

The expert annotators used various image processing filters to enhance raw data, 

miscellaneous selection tools for label assignment and preliminary 3D rendering as a contextual 

guide. After final cross-annotator quality checks each block was stored as a N5 dataset5 in 

preparation for model training. For more details on the manual segmentation process and a 

complete list of organelles and sub-organelle compartments, see Supplementary Methods: 

Training Data and Supplementary Methods: Organelle Classification, respectively. 

 

We used 3D U-Net architectures8,9 with valid padding and kernel sizes of (3, 3, 3) composed of 

4 levels with downsampling factors of (2, 2, 2), (3, 3, 3) and (3, 3, 3) between them. The initial 

feature width is 12 with a multiplication factor of 6. We did not reduce the number of feature 

maps after the final upsampling layer. To train networks that can process data with 8 nm 

isotropic resolution, we added an additional upsampling level and simulated 8 nm isotropic data 

by sampling from 8 random subsamplings of the original data. All networks are trained with the 

Adam optimizer10 to minimize the sum of mean squared errors between the outputs and the 

signed tanh distance transform11 of each class. Distance transforms were computed on-the-fly 

on larger patches and then cropped to the output size of the network. Potential block boundary 

effects were masked out for the loss computation. We used a variety of augmentations to 

virtually increase the amount of training data and improve robustness to contrast variations: 

random flips and rotations, elastic deformations, linear and gamma intensity augmentations. 

 

 

To test the trade-off between dedicated networks for each organelle and sharing information 

between classes, we tested networks co-predicting different numbers of classes. For a 

summary of all networks refer to Supplementary Table 1. Generally, we sampled patches 
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randomly from training blocks according to their sizes. For the dedicated ribosomes, vesicles 

and golgi networks for 4 nm isotropic data, we sampled with probability 0.5 from the few training 

blocks containing instances of those. For more details on the machine learning pipeline see 

Supplementary Methods: Machine Learning. 

 

Inference was performed in parallel across multiple GPUs and restricted to a mask roughly 

separating sample material from resin. The predicted distances were converted from float32 

covering the range of [-1, 1] to uint8 with values in [0, 255], i.e. generating binary labels by 

thresholding the signed tanh distance transform at 0 (predicted distance of 0 nm) translates into 

thresholding at a voxel value of 127. 

 

To optimize the type of network as well as the training iteration for each label and dataset we 

used a manual evaluation method based on repeated pairwise comparisons of random crops 

from two predictions. We validated this method using holdout blocks from four datasets on 

which we computed validation and test F1 scores by comparing to the thresholded predictions. 

Further details and additional metrics and comparisons can be found in the Supplementary 

Methods: Evaluations, Extended Data Fig. 3and Supplementary Table 2. Refer to 

Supplementary Discussion for an extended discussion on manual vs automated validation. 

Refinements and quantifications 

To obtain organelle instance information from the predictions, a number of refinements are 

performed on the predictions.  

 

In most cases, we first smoothed the predictions with a Gaussian filter (σ = 12 nm) before 

thresholding at 127 and performing connected component analysis. Next, we often size-filtered 
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the resulting segmentations to remove small false positives based on the known organelle 

sizes. Additional general refinements included hole filling, masking the predictions of one 

organelle class with those from another, and having an expert user choose specific objects to 

remove or keep. 

  

For overmerged organelles we employed the watershed-agglomeration segmentation 

methodology of Zlateski and Seung12 as implemented in waterz13. In this approach, watershed 

segmentation is performed on a smoothed version of the predictions, where all background 

voxels are set to 0. This resulted in overly segmented organelles. To reconstruct complete 

organelles, iterative agglomeration was performed based on the costs of merging adjacent 

segments. Here, two adjacent fragments were merged if a set percentage of their shared edge 

voxels had predicted distances greater than or equal to a set distance; the exact percentile and 

distance were chosen by an expert and varied from dataset to dataset. Using this agglomeration 

method, fragments were more likely to be merged if their shared edge was predicted to be deep 

within an organelle. 

 

Segmentation of organelles with well-defined dimensions and morphologies, such as ribosomes 

and microtubules, was performed by fitting the known structures to the predictions. Ribosomes 

are treated as spheres with radius r = 10 nm. Microtubules are particularly hard to reconstruct 

because they have a comparatively small diameter of 25 nm, making them hard to detect. At the 

same time, they extend over several microns in length, making topologically accurate 

reconstruction challenging. As such, for microtubule refinement, we used the method presented 

by Eckstein et al.14, exploiting structural priors on microtubules, such as no branch constraints 

and locally limited curvature. We found suitable hyperparameters of the method via grid search 

on four densely annotated 2 μm cubes of microtubules in the jrc_hela-2 dataset. We used these 

hyperparameters to reconstruct all microtubules in jrc_hela-2, jrc_hela-3, jrc_jurkat-1 and 
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jrc_macrophage-2 and evaluated the reconstruction accuracy for each cell on two additional, 

densely traced 2 μm cubes for each dataset (Fig. 2c-d). See Extended Data Fig. 6 and 

Supplementary Methods: Refinements for further details, including comparison of the used 

method to a simple baseline method. To create the 3D representation of microtubules for 

downstream analysis, the microtubule tracks were expanded by 12.5 nm, followed by removal of 

all voxels within 6 nm of the axes as well as removal of end-caps. This created tubes with an 

inner radius of 6 nm and outer radius of 12.5 nm. 

 

Once the final segmentations were obtained for all organelle classes, a number of analyses 

were performed. For each class, we calculated instance count, volume and surface area. In 

addition, we measured the instance count and size of contact sites between a variety of 

organelle classes. We also used topological thinning15,16 to produce skeletons and medial 

surfaces of the mitochondria and ER, respectively. From the skeletons we measured 

mitochondrial length and diameters. From the medial surface, we partitioned the ER into planar 

and tubular regions based on a planarity metric. Planarity was calculated using the Hessian 

matrix eigenvalues for the ER, evaluated at the medial surface at a scale maximizing this 

metric17. Partitioning was then performed on a planarity-labeled version of the ER, reconstructed 

from the medial surface measurements, thresholded at 0.6. 

 

For more detail on refinements and quantifications, see Supplementary Methods: Refinements, 

Quantifications.  

CLEM registration 

We downsampled and blurred mitochondria membrane predictions to generate a “synthetic 

light” image. We registered this image to light images labelling Halo/JF525-TOMM20. First, a 
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human annotator coarsely masks corresponding cells in both images for automatic processing. 

We used elastix18 to register these images in two steps: affine-only followed by deformable. For 

additional details, see Supplementary Methods: CLEM Registration. 

Open data and open source 

We are committed to sharing the raw and derived datasets presented in this paper with the 

broader scientific community, for educational purposes and further analysis and discovery. 

Sharing data at this scale presents a technical challenge, which we addressed through a 

combination of technologies: we stored datasets on the cloud using Amazon Web Services 

(AWS) S3 storage platform using a variety of “cloud-friendly” data formats. To make this 

collection of datasets viewable, we built a web platform “OpenOrganelle” 

(openorganelle.janelia.org) that provides a catalog of datasets and access to tools for data 

visualization.  

Cloud Storage 

We used AWS S3 for hosting our public-facing datasets, as the AWS S3 cloud storage platform 

offers high scalability, availability, and extensively documented application programming 

interfaces (APIs) across a wide range of programming languages. Additionally, AWS offers free 

hosting for selected open datasets, including ours, through their open data program. See 

https://registry.opendata.aws/janelia-cosem/ for more details about our presence on this 

program.  

Data formats 

We stored all of our datasets in “cloud-friendly” formats, i.e. file formats that enable web 

services to easily access data using standard web communication protocols like hypertext 
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transfer protocol (HTTP). For large imaging datasets a cloud-friendly format is one that provides 

a web-compatible interface for making spatial queries against the data. This constraint ruled out 

traditional bioimaging formats like mrc, tiff and hdf5 because these formats do not expose their 

spatial structure to HTTP. Thus we exclusively stored volumetric image data using N5 and 

“Neuroglancer precomputed” file formats, both of which represent image volumes as collections 

of separate files, or “chunks”. When hosted on a cloud storage platform like S3, each chunk has 

its own URL and thus can be individually accessed over HTTP. To save storage space and 

speed up data transmission each chunk is compressed with a browser-compatible compression 

scheme (GZip for lossless compression or JPEG for lossy compression).  

OpenOrganelle 

Although our data can be publicly accessed directly through the cloud storage API, this is not 

particularly user friendly or amenable to data exploration. Thus we created a public-facing web 

page (www.openorganelle.janelia.org) that provides a description of each dataset and access to 

tools for viewing individual subvolumes (e.g., mitochondria predictions) within a dataset. Our site 

does not provide any direct tools for data visualization; instead, our site dynamically creates 

hyperlinks that target a publicly hosted instance of the web-based image viewer Neuroglancer19, 

which is designed to access large cloud-hosted datasets over HTTP. Our site is written in 

TypeScript using the React20 framework and is completely open source 

(https://github.com/janelia-cosem/openorganelle). 

Data organization 

We stored all of our large volumetric datasets as image pyramids, i.e. a given volume is stored 

as a collection of arrays at different levels of detail. Although this approach increased the 

amount of storage space needed, it is the preferred format for interactively visualizing large 
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volumes. Creating an image pyramid involves repeatedly downsampling an image volume using 

increasing downsampling factors. We performed downsampling by partitioning the source data 

into a collection of contiguous cubes of voxels with edge length 2N, where N ranged from 1 to 5 

and computing a reducing function over the values within each cube. For image volumes with 

voxel values representing a scalar quantity, such as EM volumes or unrefined predictions, that 

reducing function was the arithmetic mean, while for volumes representing labels and segment 

IDs (e.g., segmentation volumes) we reduced by computing the modal value in each cube. Most 

of our volumes are stored in the N5 format, in which case we stored each image pyramid as a 

collection of datasets in a group. The group metadata contains an enumeration of the datasets 

that comprise the multiresolution pyramid, as well as a specification of the spatial transformation 

for each dataset. A minority of our volumes (those that warranted lossy jpeg compression) are 

stored in the Neuroglancer precomputed format, which is specific to the Neuroglancer viewer 

tool and natively supports image pyramids through its own metadata specification.  

Data visualization and access 

Data was made available for online viewing via Neuroglancer19,21, an open source WebGL data 

viewer. Neuroglancer provides intuitive navigation of 3D datasets and supports orthogonal slice 

views, image pyramids, mesh rendering and a variety of other features making it ideal for 

displaying the large 3D datasets produced by this project. For visualization, we provide the raw 

data, predictions, segmentations, contact sites, skeletons and medial surfaces discussed 

throughout the text. For select organelles and contact sites, we also include meshes22 in the 

Neuroglancer legacy mesh format. 

 

We provide two plugins for Fiji23 to access and interact with the data we provide. N5-Viewer 

enables viewing these large datasets in their entirety with BigDataViewer24. N5-ij25 allows users 

to open datasets or subsets of datasets in Fiji to perform their own analyses. 
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To download datasets, we recommend using the AWS command line interface (AWS CLI). 

Instructions for using this tool can be found on their user guide26. 

 

We have also made data analysis results available as a Neo4j graph database (downloadable 

from openorganelle.janelia.org). Neo4j allows users to easily interact with and visualize the 

data, including organelle properties like volume and surface area and contact site properties like 

contact area and planarity. Neo4J also allows users to create custom queries to search through 

and analyze data and relationships in novel ways. 

 

We welcome feedback about how these data are used and your biological discoveries. We hope 

this will inspire new insights and expect they will generate more questions than answers. Please 

email us at cosemdata@janelia.hhmi.org  

Data Availability 

All data, software, and source code generated and analyzed during this study can be found at 

https://openorganelle.janelia.org/. 

Code Availability 

All data, software, and source code generated and analyzed during this study can be found at 

https://openorganelle.janelia.org/. 
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Extended data figures  

 

Extended Data Fig. 1 - Organelle classification 

Examples of each class used for training input. Organelles were manually identified using 

morphological features established in the literature. A description of each class can be found in 

the Supplementary Methods: Organelle classification. 
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Extended Data Fig. 2 - Class frequencies and holdout block 

(a) 37 different classes are used to classify all intracellular structures. These classes are 

combined into 35, potentially overlapping semantic categories (see Supplementary Methods 

and Extended Data Fig. 1). Classes in bold depict these super classes. As an example, the ER 

object class is expanded in the subpanel. In green are classes that are predicted jointly by type 

“many” networks. Denoted with a dot are the super classes, with a few additional classes, used 

in the type “few” networks. The type “all” networks train jointly on all 35 classes. 

(b) Annotated volume according to datasets. Reported are the percentage of the total cell that is 

annotated. 
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3D rendering of predictions (c) and ground truth (d) in a 4 μm × 4 μm × 4 μm holdout block in 

jrc_hela-3. Shown are the nucleus (magenta), plasma membrane (gray), ER and NE (green), 

mitochondria (orange), vesicles (red), lysosomes (yellow), endosomes (blue), and microtubules 

(white). 
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Extended Data Fig. 3 - Evaluation metrics & Comparison of manual and 

automatic hyperparameter tuning 

(a) F1 Scores on holdout blocks from four datasets comparing manual and automatic 

hyperparameter tuning. Data includes all results we collected using the manual comparison of 

predictions on whole cells, i.e. comparisons across iterations only as well as comparisons 

across the best iterations of different network types. For automatic validation scores equivalent 

queries were made against the database. 

(b) F1 Scores on holdout regions from four datasets comparing F1 Score and Mean False 

Distance as the metric used for hyperparameter tuning. Data points are equivalent to those from 

(a). 
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Extended Data Fig. 4 - Mitochondria overmerging corrections 

(a) Whole cell, 3D rendering of mitochondria in jrc_hela-2 segmented using naive connected 

component analysis method. 

(b) FIB-SEM and raw mitochondria predictions thresholded at 127 (d = 0nm) for the boxed 

region in (a), shown for one 2D slice. 

(c) Naive connected component segmentation of mitochondria for the region in (a), performed 

on smoothed, thresholded predictions at 127 and followed by size filtering and hole-filling. 
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(d) To alleviate over-merging of mitochondria, we smooth the predictions and perform 

watershed segmentation on all voxels greater than or equal to 127. Shown are the resultant 

watershed fragments. 

(e) To create the improved mitochondria segmentations, we agglomerate adjacent fragments in 

(d) based on parameters that best optimize the resultant segmentations, as chosen by an expert 

user.  

(f) Final whole cell rendering of corrected mitochondria predictions. 
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Extended Data Fig. 5 - Effect of prediction refinements on evaluation 

metrics 

F1 Score (a), Precision (b) and Recall (c) on holdout blocks from four datasets before (raw) and 

after (refined) refinements described in Supplementary Methods: Refinements. Network type 

and iterations represented here are listed in Supplementary Table 1 and are optimized manually 

with a bias towards potential improvement through the refinement process. 
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Extended Data Fig. 6 - Microtubule Refinement 

Comparison of the baseline microtubule refinement and the method described in Eckstein et 

al.28. Shown is the accuracy in terms of topological errors on full tracks (a) and precision and 

recall on individual edges (b), where an edge is correct, if the edge connects two reconstruction 

vertices that are matched to the same ground truth microtubule track. Each column shows the 
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accuracy of both methods, acquired via 6-fold cross validation over 4 ground truth annotation 

blocks, where we used two blocks for validation and the remaining two for testing for each run. 

Numbers above each column in (b) are the median value of the 6 cross-validation runs. See 

Supplementary Table 4 for a complete listing of evaluation results. 

2D FIB-SEM slice with ground truth and reconstructed microtubules in the plane, 3D renderings 

of the ground truth (red) and reconstructed microtubules (cyan) in selected test blocks on 

jrc_hela-3 (c), jrc_jurkat-1 (d) and jrc_macrophage-3 (e). Plots show the topological errors 

normalised by ground-truth microtubule cable length for each cell respectively. For accuracy 

results in terms of precision, recall and F1 score, see Fig. 2. See Supplementary Table 4 for a 

complete listing of evaluation results. Standard box plots are used showing the total range 

(whiskers), outliers (points), the first and third quartile (box), and median (line). 
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Extended Data Fig. 7 - Measurements in holdout regions 

Surface area (a) and volume (b) deviations from the ground truth for sample organelles in the 

holdout regions. Analysis was performed on both raw predictions thresholded at 127 (dark 

shade), and refined predictions (light shade). In order to get some sense of reliability, we divide 

each holdout region in half in 3 dimensions resulting in 6 regions. The measurements within 

these 6 regions are shown (circles), as well as the measurements for the entire holdout region 

(bar). 
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Extended Data Fig. 8 - Organelle contact sites, planarity and skeletons 

(a) ER (reconstructed, green) and mitochondria (orange) dense regions of jrc_hela-2 chosen for 

comparison, with 2D FIB-SEM slice also displayed. 
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(b) 2D FIB-SEM slice shown in (a) displays ER predictions (green), mitochondria predictions 

(orange), naive contact sites (magenta) and refined contact sites (blue), which are subsets of 

the naive contact sites. 

(c) 3D rendering of mitochondria (orange) and simple contact sites (magenta). 

(d) 3D rendering of mitochondria (orange) and refined contact sites (blue).  

(e) 3D rendering of refined ER segmentation in an example region of jrc_hela-2. 

(f) Medial surface (black) produced from iterative topological thinning of the ER segmentation 

(gray).  

(g) A planar metric (color) is calculated for each voxel in the medial surface based on the ER’s 

Hessian matrix eigenvalues at that voxel; higher values correspond to more planar regions. 

(h) The planarity metric medial surface in (c) is used to reconstruct a curvature-labeled ER 

which is thresholded at 0.6, above which voxels are considered planes (blue) and below which 

voxels are considered non-planar (red). 

(i) Topological thinning is used to produce skeletons. Shown is a 3D rendering of an example 

mitochondria (gray), skeleton (red), pruned skeleton (blue), and longest shortest path (green) 

from jrc_hela-2. 

(j) Unpruned skeleton used as a starting point. 

(k) Repetitive pruning produced a final skeleton such that no remaining branch was shorter than 

80 nm. 

(l) Mitochondrial length and average radius were calculated using the longest shortest path 

within the pruned skeleton. 

See Supplementary Methods: Quantifications for in depth description. 
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Extended Data Fig. 9 - CLEM 

Overlays of PALM images and network mitochondria / ER predictions. The substantial similarity 

between transformed ER predictions and TOMM20 indicates good algorithm performance, 

despite imperfect staining and false positive / negative predictions. The conclusion is similar 

when comparing ER predictions and mEmerald-ER3. While the ER predictions have a higher 
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false negative rate than the mitochondria predictions, similar structures overlap after 

registration.  
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