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Abstract 

By analyzing whole-exome data from the Alzheimer’s disease sequencing project (ADSP), we 
identify a set of 4 genes that show highly significant association with Alzheimer’s disease (AD). 
These genes were identified within a human TREM2 co-expression network using a novel 
approach wherein prioritized polygenic score analyses were performed sequentially to identify 
significant polygenic components. Two of the 4 genes (TREM2, RIN3) have previously been 
linked to AD and two (ATP8B4, IL17RA) are novel. Like TREM2, the 2 novel AD genes are 
selectively expressed in human microglial cells. The most significant variants in ATP8B4 and 
IL17RA are non-synonymous variants with strong effects comparable to the APOE ε4 and ε2 
alleles. These protein-altering variants will provide unique opportunities to further explore the 
biological role of microglial cells in AD and help inform future immune modulatory therapeutic 
development for AD. 

Background 

In Alzheimer’s disease (AD), amyloid β protein (Aβ) oligomerizes and deposits as insoluble 
amyloid fibrils in senile plaques which reside in the brain for a long prodromal period during 
which tau protein is deposited in neurofibrillary tangles and mild cognitive impairment occurs 
followed by dementia1,2. It has long been known that the amyloid deposition which occurs in AD 
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is associated with activation of the innate immune system in the brain1,3,4. It is well-established 
that heterozygous TREM2 variants strongly increase risk of AD5,6. TREM2 is selectively 
expressed in human microglial cells7, and TREM2 expression is increased both in the brains of 
AD patients8,9 and in mouse models of amyloid deposition1,10. Recent studies of mouse models 
indicate that TREM2 plays an important role in regulating the response of the immune system to 
Aβ and tau pathologies11-14. A weighted gene co-expression network analysis of amyloid-
bearing mice has shown that TREM2 is a hub gene in an AD co-expression network activated 
by amyloid15. In another study TYROBP, the signaling partner of TREM2, was found to be a key 
regulator in a human immune gene regulatory network relevant to AD pathology16. Thus, in 
principle, therapies which effectively target TREM2 and other genes in its co-expression 
network might halt or slow progression to dementia in cognitively normal subjects with amyloid 
deposition by modulating the immune response that occurs when amyloid is deposited. In an 
effort to identify novel AD genes co-expressed with TREM2, we employed a novel approach 
based on polygenic scores (PGS) and sequence kernel association testing (Fig.1) to explore 
234 genes in a TREM2-containing co-expression network (CENTREM2). The genes forming 
CENTREM2 were identified using weighted gene co-expression network analysis17 (WGCNA) of 
RNAseq data18 from postmortem temporal cortex of 80 AD and 76 control brains (Methods). 

Results 

Single Variant Analysis. The ADSP WES dataset19 was generated by sequencing a total of 
10,929 (dbGaP Study Accession: phs000572.v4.p2) subjects at three large scale sequencing 
and analysis centers (LSACs). In this dataset, samples from 9904 subjects passed stringent 
quality control (QC) as fully described in the Methods section. Single variant analysis was 
performed on 102,828 exonic variants which passed QC and had a minor allele count of twenty 
or more and a MAF of 0.1% or more. Analysis of these variants, performed by logistic 
regression using an additive model with sex, APOE ε4 dose, APOE ε2 dose, LSACs, and three 
principal component vectors as covariates, yielded five variants with study-wide significance 
(4.86E-07). As a final QC measure, multinomial regression was performed to assess 
heterogeneity in minor allele frequency across the three LSACs, and 677 variants (0.66%) with 
study-wide PLSAC values ≤ 4.86E-07 were removed. Four of the five variants which associated 
with AD at study-wide significance were among those removed. All four variants showed striking 
heterogeneity across the LSACs with PLSAC values less than 1.0E-34 even though they passed 
all other standard quality control measures. Only rs75932628 encoding TREM2 p.R47H, which 
is known to associate with Alzheimer’s disease5,6, showed study-wide significance after this final 
QC measure. Supplementary Fig. 1 shows a quantile-quantile (Q-Q) plot comparing single 
variant results before and after removal of variants with PLSAC values ≤ 4.86E-07. 
Supplementary Table 1 shows results for all single variants tested and includes PLSAC values, 
MAF information, and annotation for each variant. 

PGSA of all ADSP and CENTREM2 variants. Of the 9904 post-QC samples, 4452 (45%) were 
sequenced at the Broad Institute, 3260 (33%) at Washington University in St. Louis, and 2217 
(22%) at Baylor University (Supplementary Table 2). To avoid any signal from APOE, we 
removed 122 variants in linkage disequilibrium with APOE. To evaluate all remaining variants 
with MAF > 0.1% for association with AD, we performed polygenic score analysis using Broad 
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data for discovery and WashU data for testing. Baylor data were reserved for follow-up analysis. 
Variants were clumped (r2 < 0.2) using the Broad data to prioritize significant variants from the 
single variant analysis. We then used the variant effect size estimates based on the Broad data 
to create polygenic scores (PGS) for AD within the WashU data set. The PGS in WashU were 
tested for association with AD by logistic regression with sex, APOE ε4 dose, APOE ε2 dose, 
and three principal component vectors as covariates. The PGS derived from the Broad sample 
showed significant association in the WashU dataset (73,403 variants, 16,308 genes, PPGS = 
2.05E-03) as did the PGS restricted to variants in CENTREM2 (1200 variants, 234 genes, PPGS = 
4.73E-03) and the PGS with variants in CENTREM2 removed (72,203 variants, 16,074 genes, 
PPGS = 4.94E-03). Consistent with these results, Q-Q plots of the PADSP-values for (i) all ADSP 
variants, (ii) CENTREM2 variants, and (iii) the ADSP variants remaining after removal of CENTREM2, 
all deviated from the distribution expected under the null hypothesis of no association with AD 
(Fig. 2A, B). 

Cumulative Broad/WashU PGSA of CENTREM2 by gene. To evaluate the individual genes in 
CENTREM2, Broad/WashU PGSA was employed to test the polygenic scores for all variants (MAF 
> 0.1%) in each gene for association with AD. The 234 CENTREM2 genes were then ranked by 
their gPBr/Wa–values and tested cumulatively for association with AD by Broad/WashU PGSA 
(Fig. 3 A, B). This analysis identified a highly significant polygenic component (Pcm = 2.08E-09) 
composed of 36 variants in 5 genes (g5v36) with Pgene–values ≤ 1.07E-02 that improved the 
AUC by 1.43%.  

In addition to P-values for each gene, PGSA generates β-values estimating PGS effect size for 
each gene (βgene). These βgene-values are directional. If, for example, a gene has a negative 
value for βgene, then positive polygenic scores derived from Broad βs are associated with 
decreased risk of AD in WashU subjects and vice versa. For such genes, polygenic scores 
based on Broad βs provide no evidence for association with AD as they do not associate with 
AD in the predicted direction in WashU subjects. On the null hypothesis of no association, the 
expectation is that 50% of genes will have positive βgene-values indicating association in the 
expected direction in test subjects and 50% will have negative βgene -values indicating 
association in the opposite direction. On the null hypothesis, Pgene-values are distributed 
uniformly between 0 and 1 so, on average, genes with positive association will be negated by 
those with negative association resulting in no evidence of association. In CENTREM2, all 5 of the 
top genes have positive P-values (Fig. 3A, B), and a one-sided sign test shows a significant 
excess of genes with positive gβBr/WaBa-values over the 50% expected on the null hypothesis 
(Psign = 3.12E-02).  

On the null hypothesis, the 5 most significant genes will sometimes show highly significant 
association when, by chance, 4 or 5 of the most significant genes have positive βgene-values. 
Thus our cumulative PGS analysis does not maintain a correct type I error rate when the first 
five genes are tested. For this reason, results are presented below wherein we evaluate PGS 
for these genes in the independent Baylor data set aside for follow-up.  

Cumulative PGSA of variants in the 5 gene polygenic component (g5v36). To evaluate the 
36 variants in the 5 gene polygenic component, they were ranked by their Broad P-values 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2020. ; https://doi.org/10.1101/2020.11.13.381640doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.381640
http://creativecommons.org/licenses/by-nc-nd/4.0/


(PBroad) and tested by cumulative Broad/WashU PGS (Fig. 4A, B). This analysis identified a 
significant polygenic component (PPGS = 1.43E-09, Psign=9.0E-05) composed of 28 variants 
with PBroad < 0.56 that improved the AUC by 1.47%. The remaining 8 variants did not show 
significant association. Thus removal of 8 non-contributing variants with PBroad > 0.56 resulted in 
a refined polygenic component with 28 variants but PPGS (1.53E-09 vs. 2.09E-09) and the 
improvement in AUC (1.47% vs. 1.43%) were only slightly better.  

Variants in g5v36 show significant, replicable association. Of the 36 variants in g5v36, 
there were 7 variants with nominally significant association in the discovery data (PBroad < 0.05). 
To identify variants that also showed significant association in the test data, we ordered these 
variants by their PBroad values and searched sequentially through the 7 variants (Fig. 4B). To 
adjust for multiple testing, we determined the false discovery rate (FDR)-corrected Q-value 
(WashU.Qcm) for each variant in the test data as it was evaluated. Searching in this prioritized 
manner, we found 4 variants that showed significant association in the same direction in both 
the discovery and test sets (Fig. 4B). The last of these 4 significant variants was found when the 
variant ranked 5 was tested. Thus, by testing only 5 of the 36 variants in g5v36, we were able to 
identify 4 variants that showed significant, replicable association with AD (Prpl = yes, Fig. 4B). 
In the discovery (Broad) data, these 4 variants were the most significant variant in TREM2 
(4.78E-05), ATP8B4 (1.37E-03), IL17RA (2.40E-02) and RIN3 (4.22E-02).  

PGSA of PCg23 subsets. The 4 variants that showed significant, replicable association formed 
a polygenic component (g4v4) that showed highly significant association by Broad/WashU 
PGSA (PPGS = 1.10E-07) and improved the AUC by 1.15%. The polygenic component formed by 
the remaining 31 variants in these 4 genes (g4v31) was also significant (PPGS = 1.01E-03), 
providing independent evidence that these genes associate with AD. Moreover all 4 genes had 
significant gPBr/Wa values ranging from 5.40E-06 to 3.19E-02. The polygenic component formed 
by all 35 variants in the 4 genes (g4v35) was highly significant (PPGS = 2.72E-09) and improved 
the AUC by 1.39%. Among the 4 variants that showed significant, replicable association, the 
most significant is the well-established TREM2 p.R47H variant. Another variant is in RIN3, 
which has previously been linked to AD as it is in a region tagged by a significant GWAS SNP 
(rs10498633)20 that also includes SLC24A4. The remaining variants are in novel genes not 
previously linked to AD (ATP8B4, IL17RA).  

Follow-up analysis of g4v35 by BroWas/Baylor PGSA. To test g4v35 variants in independent 
case-control samples, polygenic scores were analyzed in the Baylor data set aside for follow-up. 
To optimize this analysis, variants were analyzed by logistic regression using combined Broad 
and WashU data, and BroWas-derived polygenic scores were tested for association with AD in 
the Baylor data. By BroWas/Baylor PGSA (Fig. 5A), polygenic scores for all variants in g4v35 
showed significant association (PPGS = 4.31E-04) and improved the AUC by 0.43% 

When we considered the gene-level PGS for each gene in g4v35 (Fig. 5A), only the PGS for 
TREM2 showed significant association with AD (PPGS = 0.031). The gene-level PGS for the 
other 3 genes had βgene-values in the expected direction but were not significant (ATP8B4 
PPGS = 0.081; IL17RA PPGS = 0.051; and RIN3 PPGS = 0.24). However, the PGS constructed 
using the 30 variants from these genes showed significant association (PPGS = 4.69E-03) with 
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AD. Furthermore, PGS for the ATP8B4-IL17RA pair (PPGS = 9.88E-03), ATP8-RIN3 pair (PPGS = 
3.69E-02), and IL17RA-RIN3 pair (PPGS = 2.59E-02) were also significant (Fig. 5A).  

The 35 variants in g4v35 were also analyzed in the Baylor data (Fig. 5B) by ranking them 
according to their PBrWa-values and performing cumulative BroWas/Baylor PGSA. This analysis 
identified a polygenic component (g4v15) composed of the 15 most significant variants that 
showed significant association with AD (PPGS = 1.40E-04) and improved the AUC by 0.59%.  

PGSA of g4v35 stratified by exonic function, MAF and deleteriousness. To evaluate the 
variants in g4v35 further, they were analyzed by Broad/WashU PGSA and follow-up 
BroWas/Baylor PGSA after stratification by exonic function (Fig. 5A). In g4v35, association was 
driven primarily by the 21 non-synonymous SNVs. Polygenic scores for these non-synonymous 
variants were significant both by Broad/WashU PGSA (PPGS = 1.16E-07) and on BroWas/Baylor 
follow-up (PPGS = 5.20E-03). Although less significant, the 14 synonymous SNVs were also 
significant by Broad/WashU PGSA (PPGS = 5.19E-03) and on BroWas/Baylor follow-up (PPGS = 
3.50E-02).  

Further stratification of the 21 non-synonymous SNVs by MAF showed that association was 
driven by low frequency variants with MAF of 0.1 to 1%. The 16 low frequency, non-
synonymous variants were significant both by Broad/WashU PGSA (PPGS = 3.60E-07) and on 
BroWas/Baylor follow-up (PPGS = 3.50E-02), whereas the 5 higher frequency variants with MAF 
of 1 to 50% were not significant by Broad/WashU PGSA (PPGS = 1.29E-01) or BroWas/Baylor 
follow-up (PPGS = 6.68E-01). 

Analysis of the 16 low frequency non-synonymous SNVs after stratification by their CADD21 
PHRED-scaled scores (CPS) showed that association was driven primarily by the 10 variants 
with CPS of more than 20 estimated to be highly deleterious (Fig. 5A). These variants showed 
significant association with AD both by Broad/WashU PGSA (PPGS = 9.05E-06) and on 
BroWas/Baylor follow-up (PPGS = 1.78E-03). The 5 variants with CPS of 10 or less estimated to 
be less deleterious were significant by Broad/WashU PGSA (PPGS = 8.59E-03) but not by 
BroWas/Baylor follow-up (PPGS = 3.84E-01).  

Sequence kernel association testing (SKAT-O). Analyses using SKAT-O22,23 provide an 
additional opportunity to test the 4 genes in g4v35 for association with AD because rare variants 
(MAF ≤ 0.1%) that cannot be analyzed by PGSA can be analyzed by SKAT-O. The 4 genes in 
g4v35 had 215 variants with MAF ≤ 0.1% (g4v215), and these variants showed significant 
association by SKAT-O (PSK = 2.87E-03)  

SKAT-O of g7v325 variants stratified by exonic function and deleteriousness. Among the 
215 rare (MAF ≤ 0.1%) in g4v215, the 172 variants that alter protein (Fig. 6A) showed significant 
association with AD (PSK = 3.545E-04) and were composed of 3 stop-gain variants (PSK = 
8.77E-02), 153 nonsynonymous SNVs (PSK = 7.36-04) and 16 indels (frameshift and non-
frameshift insertions and deletions) (PSK = 3.38E-01). The 43 synonymous SNVs (PSK = 8.58E-
01) showed no evidence of association.  
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Analysis of the 172 protein-altering (PA) variants (Fig. 6A) after stratification by their CADD21 
PHRED-scaled scores (CPS) showed that association was driven primarily by the 119 variants 
with CPS of more than 20 estimated to be highly deleterious (PSK = 2.80E-03) and the 22 
variants with CPS of 10-20 estimated to moderately deleterious (PSK = 3.17E-02). The 31 
variants with CPS of 10 or less showed no evidence of association (PSK = 5.75E-01). Thus the 
association of g4v215 variants with AD was due to 141 protein altering variants (g7v141) with 
CPS > 10 (PSK = 3.11E-04).  

Analysis of these 141 variants by gene showed that the 56 variants in RIN 3 (PSK = 7.14E-03) 
were significant. When the 10 variants in TREM2 (PSK = 1.00E-01) and the 49 variants in 
ATP8B4 (PSK = 1.28E-01) were tested together, the combined set of 59 variants in the two 
genes was significant by SKAT-O (PSK = 4.02E-02). The 26 variants in IL17RA (PSK = 4.31E-01) 
were not significant, but the 85 variants in the combined set of TREM2, ATP8B4, and IL17RA 
showed improved significance (Psk=2.37E-02) compared to TREM2 and ATP8B4, the 
combined set of 82 variants in IL17RA and RIN3 (Psk=4.18E-03) showed improved significance 
compared to RIN3 alone, and the 75 variants in IL17RA and ATP8B4 ((Psk=6.74E-02) showed 
improved association that was more significant than ATP8B4 alone. 

Discussion 

In this study we begin by using Broad/WashU PGSA to show that polygenic scores for all 
pruned ADSP variants and for the 1200 variants in CENTREM2 are significantly associated with 
AD (Fig.1). We then test the hypothesis that among the 234 genes in CENTREM2 there will be 
some with a variant that shows significant association at α = 0.05 in both the discovery (Broad) 
and test (WashU) data. Genes are a logical way to organize WES data by function, and it is well 
established that genes with variants that cause or alter risk of disease typically have many such 
variants. Thus, for example, the APP, PSEN1, and PSEN2 genes all have multiple variants that 
cause early onset familial AD, and APOE has two powerful variants which form three haplotypes 
that alter risk of AD. We reasoned, therefore, that analysis by gene might capture exonic 
variants associated with AD better than analysis by variant. More specifically, this reasoning 
suggested that genes with a significant, replicating variant were likely to be found among the 
genes with polygenic scores that associated most significantly with AD.  

For this reason we began our analysis of CENTREM2 by ordering genes by their gPBr/Wa–values 
and performing cumulative Broad/WashU PGSA (Fig. 1, Fig. 3). This analysis showed that 
association became most significant when the 5th gene was tested. This result was significant 
by one-sided sign testing because the top 5 genes all had positive gβBr/Wa-values (Psign = 
3.25E-02). Empirical testing showed that polygenic scores for the top 5 genes also showed 
significant association with AD (empPPGS < 2.6E-03). The top 5 genes had only 36 variants, 
among which 7 (19%) had PBroad-values <= 0.05. These variants were ranked by their PBroad 
values and tested sequentially for significant association in the test (WashU) data, adjusting for 
multiple testing by determining the false discovery rate (WashU.Qcm) in the test data as each 
variant was tested. For 4 genes (TREM2, ATP8B4, RIN 3, IL17RA), the most significant variant 
in the discovery data had a PBroad-value < 0.05 and a WashU.Qcm-value < 0.05 (Fig. 1, Fig. 4). 
By itself, this result provides strong evidence that the most significant variant in each gene 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2020. ; https://doi.org/10.1101/2020.11.13.381640doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.381640
http://creativecommons.org/licenses/by-nc-nd/4.0/


associates with AD. Polygenic scores for the remaining 31 variants (g4v31) also showed 
significant association with AD, providing additional evidence that these 4 genes associate with 
AD. 

The 5th gene (CD74) in the set of 5 that were most significant is informative. This gene had only 
1 variant with a MAF > 0.1%. Both the gene (Fig. 3B) and variant (Fig. 4B) were significant in 
the WashU data (PWashU and gPBr/Wa = 7.04E-03), but in the Broad data (Fig. 4B) this variant 
showed no evidence of association with AD (PBroad = 9.38E-01). Thus, the highly significant 
association of the CD74 variant with AD in the WashU data is likely occurring primarily, if not 
exclusively, by chance alone. In sharp contrast to the other variants, which all showed 
significant association in both the WashU and Broad data, this was evident when association of 
the CD74 variant was examined in the Broad data where there was no evidence of association 
with AD.  

The sequential analyses (Fig. 1) performed using Broad samples for discovery and WashU 
samples for testing provide compelling evidence that g4v35, a polygenic component composed 
of exonic variants in TREM2, ATP8B4, RIN3, and IL17RA, shows significant association with 
AD wherein the most significant variant in each gene shows powerful association that is 
significant in both the discovery and test data. These results establish that there are AD genes 
with powerful variants within g4v35, but they do not establish that each gene in the polygenic 
component is an AD gene. However likely or unlikely it may seem to someone reviewing the 
results for each of these genes, there is always the possibility that a gene within g4v35 may be 
associating with AD by chance alone in the Broad and WashU data. At the beginning of this 
analysis, we identified 16,308 genes in the ADSP dataset. With that many genes, there are 
bound to be some genes with variants that, by chance alone, show association with AD that 
closely resembles the association observed in a true AD gene. For this reason, and because the 
approach used to identify g4v35 was unconventional, it was important to perform follow-up 
analyses to confirm that these 4 genes associate with AD. We did this by analyzing independent 
Baylor subjects by BroWas/Baylor PGSA, and by analyzing independent variants with MAF ≤ 
0.1% by SKAT-O.  

BroWas/Baylor PGSA (Fig. 1, Fig. 5A) confirmed that polygenic scores for the 35 variants in the 
four genes (g4v35) show significant association with AD (PPGS = 4.13E-04) and that association 
is driven primarily by the 21 non-synonymous variants forming g4v21 (PPGS = 5.20E-03) with a 
significant contribution from the 14 synonymous variants comprising g4v14 (PPGS = 3.50E-02). 
BroWas/Baylor PGSA also confirmed that the association of non-synonymous variants was 
driven primarily by the 10 deleterious (CPS > 20), non-synonymous variants with MAF of 0.1 to 
1.0% comprising g4v10 (PPGS = 1.78E-03).  

Because there are fewer samples in the Baylor data than in the WashU data, our expectation 
was that polygenic scores for each gene would show less significant association in the Baylor 
data than in the WashU data, where all 4 genes were significant. This did, in fact, occur (Fig. 
5A). TREM2 (gPBrWa/Ba = 3.05E-02) continued to be significant. Though not significant at α = 
0.05, IL17RA (gPBrWa/Ba = 5.67-02), ATP8B4 (gPBrWa/Ba = 8.14-02), and RIN3 (gPBrWa/Ba = 2.39E-
01) showed suggestive association with AD. That each of these 3 genes associated with AD on 
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follow-up analysis of Baylor samples was evident when polygenic scores for the 3 pairs of 
genes [(ATP8B4, IL17RA); (ATP8B4, RIN3); (IL17RA, RIN3)] formed by these genes were 
analyzed. By BroWas/Baylor PGSA, polygenic scores for each pair showed significant 
association with AD even though polygenic scores for each gene showed only suggestive 
association (Fig. 5A).  

By SKAT-O, the 141 deleterious, protein-altering variants with MAF ≤ 0.1% in the four genes 
(g4v141) showed significant association with AD (PSK = 3.11E-04) in the 9904 samples 
comprising the ADSP data (Fig. 6A). Of these 141 variants, there were 53 in RIN3 that showed 
significant association with AD (PSK = 7.14E-03). The 10 variants in TREM2 (PSK = 1.00E-02) 
and the 49 in ATP8B4 (PSK = 1.29E-01) showed suggestive association with AD that became 
significant (PSK = 4.02E-02) when the combined 59 variants were analyzed (Fig. 6A). Thus 
TREM2 and ATP8B4 have deleterious, protein-altering variants with MAF ≤ 0.1% that contribute 
to significant association with AD. The 26 variants in IL17RA (PSK = 4.31E-01) were not 
significant, but when these variants were added to the 59 variants in TREM2 and ATP8B4, the 
combined set of 85 variants showed improved significance (PSK = 2.38E-02 vs 4.02E-02) 
suggesting that deleterious, protein-altering variants with MAF ≤ 0.1% in IL17RA may also show 
weak, non-significant association with AD.  

Among the 35 variants in the 4 genes, 11 (31%) showed nominally significant association with 
AD (PADSP < 0.05), and 10 of these were low frequency variants (MAF 0.1 to 1.0%) associated 
with strongly increased (9) or decreased (1) risk of AD comparable to that of the well-known 
APOE ε4 and ε2 alleles. This is illustrated in the well-annotated Forest plot of Fig. 6B, which 
shows the OR and 95% CI for these 11 variants in ADSP samples. For reference, the SNPs 
tagging the APOE ε4 and ε2 alleles are shown at the top of Fig. 6B. There were multiple 
variants with ADSP.P-values < 0.05 in TREM2 (4) and RIN3 (2), two genes previously 
associated with AD and in ATP8B4 (3) and IL17RA (2). Neither ATP8B4 nor IL17RA were linked 
to AD by the AD GWAS performed to date20,24,25, but Holstege, et al26 recently reported that 
carrying rare damaging variants in ATP8B4 is associated with AD.  

Like TREM2, ATP8B4 and IL17RA are selectively expressed in human microglial cells7 
(Supplementary Fig. 2). Like the 4 nominally significant variants in TREM2, the 5 nominally 
significant variants in ATP8B4 and IL17RA have MAF of 0.1 - 1.0%. The 5 variants in these 
genes are associated with strongly increased (4) or decreased (1) risk of AD. Genes like these 
are ideally suited for studies aimed at understanding how exonic variants modulate microglial 
function to increase or decrease risk of AD. Importantly, the effect(s) of these variants may 
occur in the window of immunomodulatory opportunity wherein Aβ oligomerization and 
deposition have occurred, are detectable, and have prompted a microglial response but 
cognitive decline has not yet begun.  

Methods 

ADSP WES Variant Calling 

Samples in the ADSP data set19 were sequenced at three large scale sequencing and analysis 
centers (LSACs) located at the Broad Institute (Boston, MA), Baylor College of Medicine, 
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(Houston, TX) and Washington University (St. Louis, MO). The Baylor and Washington 
University LSACs used the Nimblegen VCRome.2.1 exome capture kit (35.3Mbp); the Broad 
Institute used Illumina’s Rapid Capture kit (37.7Mbp). Following IRB approval and DUC 
agreement, whole exome sequencing (WES) data and related phenotypes for 10933 samples 
from the ADSP WES case-control study spanning 6 cohorts (phs000572.v4.p2) were 
downloaded from dbGaP. Four samples that were either not part of or retracted from the ADSP 
in subsequent data releases were removed from our analyses. The most up-to-date phenotypes 
and sample information (phs000572.v7.p4) were used to analyze the remaining 10,929 
samples.  

WES files (fastq) obtained from dbGaP were processed with GenomeGPS (v3.0.1), a 
comprehensive secondary analysis pipeline for sequencing data at Mayo Clinic. Reads were 
aligned to the reference genome (hg19) using Novoalign18 (args: -x 5 -g 40 -i PE 425,80 -r 
Random --hdrhd off -v 120). Quality of sequencing reads was assessed using FastQC27. After 
marking duplicates using Picard28 tools, variant discovery and genotyping were carried out with 
genome analysis toolkit 29 (GATK) v3.3 and implemented using GATK’s Best Practices 
workflow. After realignment and recalibration, variant calling on each sample (SNPs and 
INDELs, simultaneously) was performed using GATK’s HaplotypeCaller. Joint genotyping of 
variants in common capture regions (regions common to both capture kits used by the three 
LSACs ~ 34Mbp, identified using bedtools30) across all samples was performed using GATK’s 
GenotypeGVCFs to generate a consensus variant call file. Quality of SNPs and INDELs was 
assessed separately using GATK’s VariantRecalibrator (SNP: "-an QD -an MQRankSum -an 
ReadPosRankSum -an FS", INDEL: "-an QD -an FS -an ReadPosRankSum --maxGaussians 
4") and ApplyRecalibration (ts_filter: 99.0) tools, a process known as variant quality score 
recalibration (VQSR).  

Sample Quality Control  

Read coverage: Read coverage of the exome capture region was assessed for each sample. A 
commonly-used threshold for high-quality exome sequencing with sufficient depth would 
exclude any sample with less than 50% of the capture region covered at 40X. This threshold 
would remove a group of otherwise high-quality samples, so we lowered the threshold to retain 
samples with high coverage at 10X, yet lower coverage at 40X. Samples with less than 90% of 
the capture region covered at 10X, or less than 30% covered at 40X were excluded. Samples 
with less than 50% coverage at 40X were flagged and investigated for other QC metrics. 
Similarly samples with a call rate of less than 95% for SNVs or 90% for INDELs or missing 
chromosomes were flagged.  

Sex: To verify the sex of samples, clinical information provided by the ADSP was compared to 
genotypes on the sex chromosomes. Variants on the X chromosome that passed VQSR, had a 
minor allele frequency greater than 0.002, call rate of 95% and above and a Hardy Weinberg p-
value greater than 1e-08 were used to assess sex. Variants in the pseudo autosomal regions of 
the X-chromosome were excluded from the analysis. Using PLINK v1.931, variants were pruned 
to an r-squared of 0.05 within a sliding window of 50 variants (--indep-pairwise 50 5 0.05). The 
resultant homozygosity estimate (F) of the X-chromosome for males and females was used to 
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exclude samples. A measure closer to 1 is expected for males and closer to 0 for females. 
Samples marked females having an F estimate of 0.3 or less and males with an F-estimate 
equal to or greater 0.7 were retained. For those with an F estimate opposite to what was 
expected, it is likely that sex was mis-classified in the clinical variables, or that there was a 
sample mix-up. Samples closer to the thresholds were examined for other QC issues. 

Ti/Tv ratio: The transition to transversion (Ti/Tv) ratio was examined for each sample using all 
variants in the common capture region and also for the subset of common capture, exonic SNPs 
that passed VQSR. For coding variants, Ti/Tv ratios are expected to be around 2.8. The 
distribution of Ti/Tv ratios for all variants in common-capture regions centered around 2.5, but 
the common capture, exonic SNVs that passed VQSR had a Ti/Tv ratio of greater than 2.75 and 
only 27 samples had a Ti/Tv ratio of less than 2.8. Hence no samples were excluded under this 
metric. 

Sample contamination: Contamination between samples was examined using VerifyBamID32, 
a tool that checks whether reads in sample match previously observed genotypes in another 
sample (or a group of samples). We applied the sequence-only method of VerifyBamID, which 
estimates contamination by modeling the sequence reads as a mixture of two unknown samples 
based on the allele frequency information provided in a reference VCF file. The 1000genomes 
array genotypes were used as reference for this analysis. Given the sample size, contamination 
estimation was executed as a two-step process. Initially VerifyBamID was run on chromosome 
20 for all samples. A FREEMIX score (a VerifyBamID sequence-only contamination estimate), 
of 0.02 was used as a threshold to identify samples with potential contamination. For those 
samples with suspected contamination, VerifyBamID was run on all chromosomes (whole 
exome). Samples with a whole exome FREEMIX score greater than 0.04 were excluded. 
Samples with a FREEMIX greater than 0.02 for chromosome 20 but less than 0.04 for all 
chromosomes, showing some level of contamination, were examined for other QC issues. A 
large portion of samples that failed sex-check were removed for contamination as well. 

After evaluating sample quality using the metrics mentioned above, a total of 10715 samples 
passed QC. 25 samples were excluded for insufficient read coverage (19 failed for having < 
30% of the capture region covered at 40x and 6 samples failed for having <90% covered at 
10x). 29 samples failed to meet the call rate threshold of 95%. 26 samples were identified as 
having missing chromosomes and 143 samples were excluded for having a whole genome 
FREEMIX score 0.04 or greater, showing significant levels of sample contamination. Of these, 
133 were sequenced at Baylor, 1 at the Broad and 9 at Washington University. 68 samples with 
a homozygosity estimate for females greater 0.3 and males less than 0.7 were also excluded. 
Some of the samples that were excluded failed in more than one metric. 

Relatedness: Relatedness among samples in the ADSP cohort was examined using KING-
robust33, a tool to identify relationships by estimating pairwise kinship coefficients and identity by 
state probabilities using genotype data. KING is able to clearly delineate unrelated samples 
from those that are related, up to the 3rd degree, and is robust to population substructure. Only 
samples that passed aforementioned QC measures were used to estimate kinship coefficients. 
These kinship coefficients along with an IBS0 score (the probability of sharing 0 variants 
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identical by state, which is lower for closely related pairs), were used to identify related samples. 
Initially 29 samples with a kinship coefficient greater than 0.3 and an IBS0 close to 0 were 
identified. Of these, 9 samples were identified to have been sequenced in triplicates and one 
sequenced in duplicate. From these 29 samples, 10 high quality samples were retained and 19 
were removed. Thus, after removing 19 from the set of 10715 samples identified above, the 
remaining 10696 samples were reprocessed for multi-sample calling and joint genotyping. 

After joint genotyping and VQSR of the 10696 high quality samples, analysis with KING-robust 
was repeated to identify and remove additional related samples. As a first step, groups of 
related samples with a kinship coefficient equal to or greater than 0.0442 were identified. 
Subjects in these "families" were prioritized to keep the least contaminated sample obtained 
from patients with AD. If any of these samples in a family were grouped together as a result of 
underlying contamination, all samples in the group were excluded. For every pair of related 
samples with a kinship coefficient greater than or equal to 0.0442 (1st, 2nd and 3rd degree 
relatives), the sample with lower levels of contamination (FREEMIX for whole genome less than 
0.02), obtained from a subject with AD and having better coverage metrics (in that order of 
precedence), was chosen to be retained. In summary, 42 samples were dropped at the 1st 
degree (kinship coefficient: 0.177-0.354), 9 samples were dropped at 2nd degree (0.0884-0.177) 
and 76 samples were dropped at 3rd degree (0.0442-0.0884) of relatedness. A total of 10569 
samples were retained after QC for relationship status. 

Population stratification: In order to retain relatively homogeneous, Caucasian samples of 
European descent, sample population was evaluated using principal component analysis (PCA). 
A set of unrelated samples that passed prior QC metrics (n=10569) were examined for 
population stratification using Eigenstrat34. Prior to performing PCA, variants were pre-selected 
for the following: autosomal SNPs that pass VQSR with a genotyping rate 95% or more, having 
minor allele frequency greater than 0.01 and meeting a Hardy-Weinberg threshold of 1e-05. In 
addition, any SNPs associating with any of the LSACs with a p-value greater than 1e-07 were 
excluded. Variants in highly variable and duplicitous regions of the human genome, along with 
those in and around ApoE locus were also excluded. Remaining variants pruned to an r2 less 
than 0.1 (nSNPs=15,438) were subsequently used with Eigenstrat to perform PCA. Eigenstrat 
was set to removes outliers up to 6 standard deviations for the top 10 principal components 
(PCs) over 6 iterations, while refitting PCs after each iteration of outlier removal. Of 10569 high 
quality unrelated samples, 10241 were retained. 

APOE dosage: As an additional QC metric relevant to Alzheimer's disease, clinical APOE 
genotypes provided with the ADSP samples were compared with the genotypes obtained by 
WES, and 337 samples with discordant genotypes were eliminated leaving 9904 samples in the 
final dataset.  

Variant Quality Control 

Variants in autosomes passing VQSR FILTER, originating from non-multi-allelic loci and having 
a genotyping rate of over 95% across all samples were retained. Variants in regions known to 
lead to spurious associations were excluded. Variants that had a Bonferroni adjusted Hardy 
Weinberg p-value less than 0.05 in controls were also excluded. Additionally, for logistic 
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regression analysis with covariates, variants with minor allele counts of less than 20 were 
excluded. Due to the known strong association of variants in the APOE locus with AD, variants 
in the APOE LD block (chr19: 45,000,000-45,800,000bp) were excluded from the polygenic 
score analysis.  

Variant annotation and PLINK genotypes 

Variants were annotated with information from public databases using Annovar35. Using PLINK 
1.9, the VCF file with variant genotypes was converted to files suitable for subsequent analyses 
with PLINK 1.9 software. A PLINK compatible covariate file was generated. While converting 
genotypes from VCF to PLINK, SNPs and INDELs were processed separately. At multi-allelic 
sites, we let PLINK retain the most common alternate allele. All non-variant sites were dropped. 
SNP IDs were encoded using chromosome (CHR), position (POS), minor (A1) and major (A2) 
alleles as “CHR:POS:A1:A2”. 

Single variant analysis, additional QC for LSAC heterogeneity 

Single variant analysis was performed on 102,826 exonic variants which passed QC and had a 
minor allele count (MAC) of twenty or more. Variants were analyzed by logistic regression using 
an additive model with sex, APOE ε4 dose, APOE ε2 dose, LSACs, and three principal 
component vectors as covariates. As a final QC measure, multinomial regression was 
performed to assess heterogeneity in minor allele frequency across the three LSACs, and 677 
variants (0.66%) with study-wide PLSAC values ≤ 4.86E-07 were removed. 

Weighted gene co-expression network analysis 

Weighted gene co-expression network analysis (WGCNA) was performed using R package 
WGCNA36 to identify co-expressed genes in an RNA sequencing (RNAseq) dataset. The cohort, 
generation of RNAseq data and quality control steps have been described previously18,37. 
Briefly, RNA was isolated from temporal cortex tissue of neuropathologically diagnosed AD 
patients and controls. RNA libraries were generated using the TruSeq RNA Sample Prep Kit 
(Illumina, San Diego, CA) and sequenced on an Illumina HiSeq2000 (101bp PE) multiplexing 3 
samples per lane. Raw reads were aligned to GRCh37 and were counted for each gene through 
the MAP-RSeq pipeline38. Gene read counts were normalized using conditional quantile 
normalization39. After QC, 80 AD and 76 control samples were retained for analysis. To account 
for covariates, expression residuals were obtained using multiple linear regression implemented 
in R, where gene expression was the dependent variable, and sex, age at death, flow cell and 
RNA integrity number (RIN) were the independent variables. As previously described, co-
expression analysis was performed for 13,273 TCX RNAseq transcripts (13,211 unique genes), 
which were expressed above background levels in both this RNAseq dataset and in an 
independent cohort37. Co-expression networks based on residuals were obtained using 
WGCNA function blockwiseConsensusModules (args: networkType="signed", 
TOMType="signed", power=12). For genes in each co-expression network, enriched gene 
ontology (GO) terms were identified by function GOenrichmentAnalysis. Eigengenes that 
represent each co-expression network were obtained from function moduleEigengenes. One 
module was identified to contain TREM2 and thus genes in this module (CENTREM2) were 
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selected for further study. The CENTREM2 module contained 295 genes, of which 234 had 
variants in the ADSP dataset that passed QC and were subsequently carried forward for 
analysis.  

Polygenic score analysis (PGSA)  

Broad/WashU PGSA of pruned variants (MAC ≥ 20) in the ADSP and CENTREM2: To 
evaluate variants with a MAC ≥ 20 in the entire ADSP dataset, the 234 genes of CENtrem2, and 
the ADSP variants remaining after removing variants in 234 genes of CENtrem2, we performed 
polygenic score analysis (PGSA) with the Broad genotypes as the discovery set and the 
Washington University genotypes as the test set. Baylor genotypes were reserved for follow-up 
analysis. The single variants in the discovery set (Broad) were analyzed by logistic regression 
using an additive genetic model adjusting for sex, APOE ε4 dose, APOE ε2 dose, and three 
principal components addressing population substructure. Using the clump function in PLINK 
v1.931, variants were pruned to reduce linkage disequilibrium (r2 < 0.2). The pruned betas 
estimated by logistic regression were then used to construct polygenic scores for each subject 
in the test set (WashU) which were tested for association with AD.  

Gene-level Broad/WashU PGSA of CENTREM2: To evaluate association of each CENTREM2 gene 
with AD, PGSA was employed to analyze all pruned variants with MAC ≥ 20 in each gene. 
Broad/WashU PGSA, performed as described above, was used to obtain PGENE-values for each 
gene in samples genotyped at WashU. The 234 CENtrem2 genes were then ranked by their 
gPBr/Wa–values and tested cumulatively for association with AD by Broad/WashU PGSA. 

Follow-up BroWas/Baylor PGSA. Significant genes and polygenic components identified by 
Broad/WashU PGSA were tested in independent samples using BroWas/Baylor PGSA. For 
these follow-up analyses, CENTREM2 variants were analyzed by logistic regression using 
combined Broad and WashU data, and BroWas-derived polygenic scores were tested for 
association with AD in the Baylor data. 

Optimal sequence kernel association testing (SKAT-O) 

To determine if variants with minor allele counts less than 20 in polygenic components that 
showed significant association using PGSA are also associated with AD, we used SKAT-O. 
SKAT-O maximizes power by optimally combining burden test, which is typically used when 
most variants in the tested set are causal and their effects are in the same direction, with the 
non-burden sequence kernel association test, which is mostly used when a large fraction of 
variants are noncausal or direction of causal and noncausal variants are different directions22,23.   
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Lung, and Blood Institute (NHLBI), other National Institute of Health (NIH) institutes and other foreign 
governmental and non-governmental organizations. The Discovery Phase analysis of sequence data is 
supported through UF1AG047133 (to Drs. Schellenberg, Farrer, Pericak-Vance, Mayeux, and Haines); 
U01AG049505 to Dr. Seshadri; U01AG049506 to Dr. Boerwinkle; U01AG049507 to Dr. Wijsman; and 
U01AG049508 to Dr. Goate and the Discovery Extension Phase analysis is supported through 
U01AG052411 to Dr. Goate, U01AG052410 to Dr. Pericak-Vance and U01 AG052409 to Drs. Seshadri 
and Fornage. Data generation and harmonization in the Follow-up Phases is supported by U54AG052427 
(to Drs. Schellenberg and Wang). 

The ADGC cohorts include: Adult Changes in Thought (ACT), the Alzheimer’s Disease Centers (ADC), 
the Chicago Health and Aging Project (CHAP), the Memory and Aging Project (MAP), Mayo Clinic 
(MAYO), Mayo Parkinson’s Disease controls, University of Miami, the Multi-Institutional Research in 
Alzheimer’s Genetic Epidemiology Study (MIRAGE), the National Cell Repository for Alzheimer’s Disease 
(NCRAD), the National Institute on Aging Late Onset Alzheimer's Disease Family Study (NIA-LOAD), the 
Religious Orders Study (ROS), the Texas Alzheimer’s Research and Care Consortium (TARC), 
Vanderbilt University/Case Western Reserve University (VAN/CWRU), the Washington Heights-Inwood 
Columbia Aging Project (WHICAP) and the Washington University Sequencing Project (WUSP), the 
Columbia University Hispanic- Estudio Familiar de Influencia Genetica de Alzheimer (EFIGA), the 
University of Toronto (UT), and Genetic Differences (GD). 

The CHARGE cohorts are supported in part by National Heart, Lung, and Blood Institute (NHLBI) 
infrastructure grant HL105756 (Psaty), RC2HL102419 (Boerwinkle) and the neurology working group is 
supported by the National Institute on Aging (NIA) R01 grant AG033193. The CHARGE cohorts 
participating in the ADSP include the following: Austrian Stroke Prevention Study (ASPS), ASPS-Family 
study, and the Prospective Dementia Registry-Austria (ASPS/PRODEM-Aus), the Atherosclerosis Risk in 
Communities (ARIC) Study, the Cardiovascular Health Study (CHS), the Erasmus Rucphen Family Study 
(ERF), the Framingham Heart Study (FHS), and the Rotterdam Study (RS). ASPS is funded by the 
Austrian Science Fond (FWF) grant number P20545-P05 and P13180 and the Medical University of Graz. 
The ASPS-Fam is funded by the Austrian Science Fund (FWF) project I904),the EU Joint Programme - 
Neurodegenerative Disease Research (JPND) in frame of the BRIDGET project (Austria, Ministry of 
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Science) and the Medical University of Graz and the Steiermärkische Krankenanstalten Gesellschaft. 
PRODEM-Austria is supported by the Austrian Research Promotion agency (FFG) (Project No. 827462) 
and by the Austrian National Bank (Anniversary Fund, project 15435. ARIC research is carried out as a 
collaborative study supported by NHLBI contracts (HHSN268201100005C, HHSN268201100006C, 
HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, 
HHSN268201100011C, and HHSN268201100012C). Neurocognitive data in ARIC is collected by U01 
2U01HL096812, 2U01HL096814, 2U01HL096899, 2U01HL096902, 2U01HL096917 from the NIH 
(NHLBI, NINDS, NIA and NIDCD), and with previous brain MRI examinations funded by R01-HL70825 
from the NHLBI. CHS research was supported by contracts HHSN268201200036C, 
HHSN268200800007C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, 
N01HC85083, N01HC85086, and grants U01HL080295 and U01HL130114 from the NHLBI with 
additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). 
Additional support was provided by R01AG023629, R01AG15928, and R01AG20098 from the NIA. FHS 
research is supported by NHLBI contracts N01-HC-25195 and HHSN268201500001I. This study was 
also supported by additional grants from the NIA (R01s AG054076, AG049607 and AG033040 and 
NINDS (R01 NS017950). The ERF study as a part of EUROSPAN (European Special Populations 
Research Network) was supported by European Commission FP6 STRP grant number 018947 (LSHG-
CT-2006-01947) and also received funding from the European Community's Seventh Framework 
Programme (FP7/2007-2013)/grant agreement HEALTH-F4-2007-201413 by the European Commission 
under the programme "Quality of Life and Management of the Living Resources" of 5th Framework 
Programme (no. QLG2-CT-2002-01254). High-throughput analysis of the ERF data was supported by a 
joint grant from the Netherlands Organization for Scientific Research and the Russian Foundation for 
Basic Research (NWO-RFBR 047.017.043). The Rotterdam Study is funded by Erasmus Medical Center 
and Erasmus University, Rotterdam, the Netherlands Organization for Health Research and Development 
(ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and 
Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the 
municipality of Rotterdam. Genetic data sets are also supported by the Netherlands Organization of 
Scientific Research NWO Investments (175.010.2005.011, 911-03-012), the Genetic Laboratory of the 
Department of Internal Medicine, Erasmus MC, the Research Institute for Diseases in the Elderly (014-93-
015; RIDE2), and the Netherlands Genomics Initiative (NGI)/Netherlands Organization for Scientific 
Research (NWO) Netherlands Consortium for Healthy Aging (NCHA), project 050-060-810. All studies are 
grateful to their participants, faculty and staff. The content of these manuscripts is solely the responsibility 
of the authors and does not necessarily represent the official views of the National Institutes of Health or 
the U.S. Department of Health and Human Services. 

The four LSACs are: the Human Genome Sequencing Center at the Baylor College of Medicine (U54 
HG003273), the Broad Institute Genome Center (U54HG003067), The American Genome Center at the 
Uniformed Services University of the Health Sciences (U01AG057659), and the Washington University 
Genome Institute (U54HG003079). 

Biological samples and associated phenotypic data used in primary data analyses were stored at Study 
Investigators institutions, and at the National Cell Repository for Alzheimer’s Disease (NCRAD, 
U24AG021886) at Indiana University funded by NIA. Associated Phenotypic Data used in primary and 
secondary data analyses were provided by Study Investigators, the NIA funded Alzheimer’s Disease 
Centers (ADCs), and the National Alzheimer’s Coordinating Center (NACC, U01AG016976) and the 
National Institute on Aging Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS, 
U24AG041689) at the University of Pennsylvania, funded by NIA, and at the Database for Genotypes and 
Phenotypes (dbGaP) funded by NIH. This research was supported in part by the Intramural Research 
Program of the National Institutes of health, National Library of Medicine. Contributors to the Genetic 
Analysis Data included Study Investigators on projects that were individually funded by NIA, and other 
NIH institutes, and by private U.S. organizations, or foreign governmental or nongovernmental 
organizations. 
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Figure 1. Analytic flow diagram. The ADSP WES and then the 234 genes in a co-expression network containing TREM2 (CENTREM2) were analyzed in 
sequential analytic steps. Broad/WashU PGSA was employed to analyze pruned variants (r2 < 0.2) with MAF > 0.1% thereby identifying a polygenic 
component (g4v35) comprised of 4 genes with 35 variants wherein each gene showed significant association with AD in the WashU (test) data and had 
a strongly associating variant that showed significant association both in the Broad (discovery) and WashU (test) data. BroWas/Baylor PGSA was 
employed for follow-up analysis of g4v35 in independent samples sequenced at Baylor. SKAT-O was used for follow-up analysis of 215 variants with 
MAF ≤ 0.1% in the 4 genes. AUCΔ is the improvement in AUC that occurred when polygenic scores were added to a covariates only model that included 
APOE ε4 dose, APOE ε2 dose, and three principal component vectors. nVar is the number of variants in the genes or polygenic components analyzed. 
Stratified analyses were performed after stratification on non-synonymous SNVs (nsyn), synonymous SNVs, minor allele frequency (MAF), protein-
altering variants (indels + stopgain + nsyn), or CADD PHRED-scaled scores (CPS)..
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Figure2. Q-Q plots of PADSP-values for ADSP WES variants with minor allele counts (MAC) of 20 or more. PADSP-values were obtained by logistic regression with appropriate covariates using all 9904 
ADSP subjects. Q-Q plots, in which the solid red line shows the P-value distribution expected on the null hypothesis of no association with AD, are shown for PADSP-values of variants with MAF >  0.1% in 
A. All Genes of ADSP WES dataset. PADSP-values are shown for all 73,445 variants (MAC ≥ 20) in the 16,310 genes of the ADSP WES dataset. B Genes in CENTREM2. PADSP-values are shown for the 1200 
variants in the 234 genes of the co-expression network containing TREM2 (CENTREM2) (blue symbols). For comparison, PADSP-values are shown for the 72,245 variants in the 16,076 genes which remain 
after CENTREM2 genes are removed from the ADSP WES dataset. These remaining variants (red symbols) also show significant (PPGS = 5.23E-03) association with AD by Broad/WashU PGSA. 
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Figure 3. Cumulative PGSA of CEN.TREM2 by gene. All variants in each CENTREM2 gene (nVg) were analyzed by Broad/WashU PGSA to obtain Pgene (gPBr/Wa) and βgene (gβBr/Wa). Genes ranked by 
Pgene were then analyzed by cumulative Broad/WashU PGSA. A. Graph shows –log10 cumulative P vs Rank. Note that cumulative significance declined whenever the variants in genes with negative 
gβBr/Wa (neg, red symbols) were added. B. Tabulated results. Sign test results are for a one sided test analyzing whether the number of positive gβBr/Wa values (Npos = Rank-Nneg) is significantly greater 
than the 50% expected on the null hypothesis of no association. Cumulative results show cumulative number of variants (nVcm), as well as cumulative PPGS (Pcm) and βPGS (Bcm). AUC is the AUC and 
95% CI for a model including the cumulative polygenic score with APOE ε4 dose, APOE ε2 dose, and three principal component vectors as covariates. AUC Δcm shows the improvement in AUC in this 
model compared to a covariates only model, which had an AUC (95%CI) of 0.656 (0.6376-0.6749). Psign and Pcm were most significant and AUC Δcm was maximal when polygenic scores for the 36 
variants in the top 5 genes were tested (bold red font).   
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Figure 4. Broad/WashU PGSA of g5v36 variants. A. Variants ranked by Broad.P were analyzed by cumulative Broad/WasBay PGSA. A. Graph shows –log10 cumulative P vs Rank. Note that cumulative 
significance declined when (Broad.β * WasBay.β) was negative (neg, red symbols), indicating that the direction of association for the variant added was opposite in Broad and WasBay samples. B. 
Tabulated results. Sign test and cumulative results are tabulated as described in the legend to Fig.3. AUC.Δ was maximal when polygenic scores for the top 28 variants were tested (bold red font). In 
addition to cumulative PGSA, individual variants, ranked by their P-value in discovery samples (Broad.P), were tested sequentially for significant association in the WasBay samples, adjusting for multiple 
testing as each variant was tested (WasBay.Qcm). As described in the text, 4 variants showed significant, replicable association with AD (red symbols).Significance (P) and effect size (β) are shown for 
Broad (discovery) Washu (test) and combined Broad +WashU (BroWas) data. Annotation shows the gene name (refGene: RefSeq gene symbol) and amino acid change (AAchange).  
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Figure 5. BroWas/Baylor PGSA of g4v35 variants. A. BroWas/Baylor PGSA of g4v35 compared with Broad/WashU PGSA. To test g4v35 variants in independent case-control samples, polygenic 
scores were analyzed in the Baylor data set aside for follow-up. To optimize PGSA, variants were analyzed by logistic regression using combined Broad and WashU data, and BroWas-derived polygenic 
scores were tested for association with AD in the Baylor data. Comparative results are shown for all 4 genes, each gene, and several combinations of genes. Comparative results are also shown after 
stratification by exonic function (ExFunc) which compared synonymous SNV (syn SNV) with non-synonymous SNV (nonsyn SNV), minor allele frequency (MAF), and CADD PHRED-scaled score (CPS). 
B. Variants ranked by BroWas.P were analyzed by cumulative BroWas/Baylor PGSA. Graph shows –log10 cumulative P vs Rank. Note that cumulative significance declined when (BroWas.β * Baylor.β) 
was negative (neg, red symbols), indicating that the direction of association for the variant added was opposite in BroWas and Baylor samples. C. Tabulated results. Sign test and cumulative results are 
tabulated as described in the legend to Fig.3. AUC.Δcm was maximal and Pcm was most significant when polygenic scores for the top 15 variants were tested. Annotation shows the gene name (refGene:  
RefSeq gene symbol) and amino acid change (AAchange) if any.  
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Fig 6. SKAT-0 analysis of g4v215and Forest Plot of g4v11 A. SKAT-O results for polygenic components composed of variants with MAF ≤ 0.1%. 
Results are shown for all 215 variants with MAF ≤ 0.1% in the 4 four genes identified by PGSA, for stratified analysis of g4v215 by exonic function and 
CADD PHRED-scaled score, for individual genes, and for gene combinations. B. Forest plot of variants in TREM2, ATP8B4, RIN3 and IL17RA with 
ADSP.P-values < 0.05. For comparison results are shown for the APOE SNPs that tag the APOE ε4 and .ε4 alleles. Annotation: rs# (dbSNP_id_142), 
AAch (Amino acid change) and ExF (exonic function per Ensembl gene), CPS (CADD PHRED-scaled score). Symbol size is proportional to the number 
of samples in which genotypes were determined (9904 ADSP samples for all variants) 
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Supplementary Figures 

 

Supplementary Figure 1. Q-Q plots of PADSP-values of ADSP WES variants before and after filtering 
for heterogeneity. Using all 9904 post-QC ADSP subjects, all post-QC variants with a minor allele count 
≥ 20 were analyzed by logistic regression using an additive model with sex, APOE ε4 dose, APOE ε2 
dose, LSACs, and three principal component vectors as covariates. As a final QC measure, multinomial 
regression was performed to assess heterogeneity in minor allele frequency across the three LSACs. Q-Q 
plots of PADSP values are shown before (light blue points) and after (orange points) removing, 677 variants 
(0.66%) with study-wide PLSAC values ≤ 4.86E-07. 
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Supplementary Figure 2. Gene expression in human brain cells (Source: Zhang, et al, 2016, https://www.brainrnaseq.org/). Gene expression 
values for the five novel (TREM2, ATP8B4, IL17RA and RIN3) and two known AD genes (TREM2 and RIN3) as observed in human CNS cell 
types.  
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