

1 **A metabolic coincidence mechanism controls winter photoperiodism in plants**
2

3 **Authors:** Wei Liu¹, Ann Feke^{1*}, Chun Chung Leung^{1*}, Daniel A. Tarté¹, Wenxin Yuan¹, Morgan Vanderwall¹,
4 Garrett Sager¹, Xing Wu¹, Ariela Schear¹, Damon A. Clark¹, Bryan C. Thines², Joshua M. Gendron^{1#}

5 *These authors contributed equally

6 #Corresponding author

7 **Affiliations:**

8 ¹Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA.

9 ²Biology Department, University of Puget Sound, Tacoma, WA 98416, USA

10

11

12

13

14 **Abstract**

15

16 Plants have served as a preeminent study system for photoperiodism because of their propensity to flower in
17 concordance with the seasons. A nearly singular focus on understanding seasonal flowering has been to the
18 detriment of discovering other photoperiod measuring mechanisms that may be necessary for vegetative
19 health. Here we use bioinformatics to identify a group of winter photoperiod-induced genes in *Arabidopsis*
20 and show that one, *PP2-A13*, is critical for fitness and survival, exclusively in winter-like photoperiods. We
21 create a real-time photoperiod reporter, using the *PP2-A13* promoter driving luciferase, and show that winter
22 photoperiod genes are regulated independent of the canonical CO/FT mechanism for photoperiodic
23 flowering. The reporter then allows us to identify the first genetic and cellular drivers of winter
24 photoperiodism and reveal a mechanism that relies on coincidence between light capture through
25 photosynthesis and rhythmic metabolism. This work demonstrates that plants have distinct photoperiod
26 measuring mechanisms that enact critical biological and developmental processes in different seasons.

27

28 **Introduction**

29

30 The obliquity of Earth results in day and night durations (photoperiods) that change throughout the year
31 in most places on earth. Photoperiod is a highly predictable environmental signal that can help
32 organisms anticipate impending seasonal changes (Nelson, et al., 2010). Photoperiod measuring
33 mechanisms are found in fungi (Tan, et al., 2004; Roenneberg and Merrow, 2001), plants (Shim and
34 Imaizumi, 2015; Song, et al., 2015), and animals (Saunders, 2020; Nakane and Yoshimura, 2019) and
35 coordinate seasonal developmental programs to mitigate damage from less predictable abiotic and
36 biotic stresses (Walker, et al., 2019). They also act to align growth and reproduction with seasons that
37 are optimal for organismal fitness. Furthermore, human syndromes, such as seasonal affective disorder
38 and its comorbidities, are under the control of photoperiod (Garbazza and Benedetti, 2018).

39

40 Plants have long been a preeminent study system for understanding photoperiod measurement
41 mechanisms because flowering time is easily observable and is often regulated by photoperiod. In the
42 early part of the 20th century, Erwin Bünning used flowering time studies to postulate a two state model
43 for photoperiod measuring systems (Saunders, 2005; Bunning, 1969). In the first part of the 24-hour day,
44 organisms are in a photophilic (light-loving) state and then later in the day they switch to a skotophilic
45 (dark-loving) state. Bünning postulated that a circadian clock controls the phasing of the photophilic and
46 skotophilic states during the 24-hour day. This underlying two-state mechanism allows the organism to
47 enact different developmental programs depending on whether dusk coincides with the photophilic or
48 skotophilic state. For instance, winter dusk occurs in the photophilic state, or early day state, and the
49 organism has one developmental outcome (i.e. vegetative growth in a “long day” flowering plant).
50 Conversely, summer dusk occurs in the skotophilic state, or late day state, and a different outcome
51 occurs (i.e. flowering in a “long day” flowering plant). These criteria allow for a so-called “true
52 photoperiod measuring mechanism” that counts the number of hours of light or dark each day,
53 irrespective of light intensity.

54

55 With seasonal flowering, Bünning's century-old theory held true. Photoperiodic time measurement in
56 flowering relies on circadian clock-controlled transcription of a gene called *CONSTANS (CO)* (Putterill, et
57 al., 1995). In *Arabidopsis*, *CO* mRNA expression is phased to the latter (skotophilic) portion of the 24-
58 hour day, thus low and high *CO* mRNA levels define the photophilic and skotophilic states, respectively
59 (Yanovsky and Kay, 2002). Photoperiodic time measurement then occurs through light-mediated
60 stabilization of *CO* protein when day length is extended into the skotophilic phase, the time when *CO*
61 mRNA levels are high (Jang, et al., 2008). *CO* protein subsequently activates transcription of *FLOWERING*
62 *LOCUS T (FT)* that encodes the tissue-mobile florigen (An, et al., 2004; Valverde, et al., 2004; Kardailsky,
63 et al., 1999).

64

65 While studies in *Arabidopsis* have generated immense knowledge of the molecular determinants for
66 photoperiod-controlled flowering, far less is known about other photoperiod-controlled processes in
67 plants. This is especially true for the physiological and cellular processes that are induced in winter-like
68 photoperiods to maintain cellular health. Along with lower average temperatures and changes in water
69 availability, winter poses a unique challenge for plants due to the lower average amount of light that can
70 be used for energy production (Vitasse, et al., 2014; Oquist and Huner, 2003). Despite the potential
71 danger, winter is also necessary for survival in many plants and provides them with a yearly "memory" to
72 distinguish between identical photoperiods throughout the year (Bouche, et al., 2017; Henderson, et al.,
73 2003). Currently, perennial trees have served as models for winter photoperiod-induced dormancy and
74 growth cessation, and recent technological advances have allowed researchers to predict that a variation
75 of the *CO/FT* module used for flowering is likely playing a role in repression of winter photoperiod
76 transcripts in long summer-like days (Cubas, 2020; Azeez and Sane, 2015; Bohlenius, et al., 2006).
77 However, the gene regulatory networks that control induction of winter photoperiod transcripts have
78 not been studied in detail, and it has been postulated that winter photoperiod induced biological
79 processes could simply be activated by the absence of summer repressive mechanisms. Alternatively, it
80 is possible that there is a wholly separate winter photoperiod transcript induction mechanism. It is likely
81 that we have yet to make this distinction due to a lack of tools to study winter photoperiod processes
82 and sparse knowledge of the genes and cellular processes that are induced in plants in winter
83 photoperiods.

84

85 To address this gap, we analyzed genome-wide expression data using daily expression integral
86 calculations to identify transcripts whose expression are induced in winter-like photoperiods in
87 *Arabidopsis*. Strikingly, we found one prevailing dark biphasic expression pattern associated with
88 transcripts that are induced by winter photoperiods. We characterized the function of one winter
89 photoperiod-induced gene, *PHLOEM PROTEIN2-A13 (PP2-A13)*, showing that it is necessary for cellular
90 health and reproduction in winter-like photoperiods and controls glycoprotein abundance and functions
91 in parallel to autophagy in plants. We created a *PP2-A13_{promoter}::luciferase* transgenic plant, that acts as a
92 real-time photoperiod reporter, and define the properties of the winter transcript induction system
93 demonstrating that it is independent of the *CO/FT* photoperiod measuring system. We then show that
94 the system relies on light sensing by photosynthesis and that darkness is interpreted by a mechanism
95 that is controlled by rhythmic metabolism. Together, these results show that a metabolic coincidence

96 mechanism drives winter photoperiod transcript induction and define a new photoperiod measuring
97 system that is critical for cellular and physiological health in plants growing in winter photoperiods.
98

99 **Results**

100

101 **Calculating relative daily expression integrals to identify photoperiod-induced transcripts and**
102 **biological processes**

103

104 The well-studied photoperiod-induced flowering time gene, *FT*, has a daily expression rhythm in
105 Arabidopsis with high amplitude in 16 hours light:8 hours dark (16L:8D) growth conditions, and low or no
106 amplitude in 8 hours light:16 hours dark (8L:16D) (Yanovsky and Kay, 2002; Suarez-Lopez, et al., 2001).
107 We surmised that other photoperiod-induced transcripts may also be identified through a photoperiod-
108 specific daily rhythm. We estimated daily expression induction by calculating a relative daily expression
109 integral (rDEI = sum of 24 hours expression in condition one / sum of 24 hours expression in condition
110 two) (Figure 1A). To find transcripts that were induced in long summer-like days and short winter-like
111 days we calculated a rDEI using gene expression data from plants grown in 8 hours light:16 hours dark
112 (8L:16D) or 16 hours light:8 hours dark (16L:8D) day growth conditions (rDEI_{8L:16D/16L:8D}) (Figure 1A and
113 Table S1) (Michael, et al., 2008; Mockler, et al., 2007). According to our calculations, 359 transcripts are
114 induced greater than two-fold in plants grown in an 8L:16D photoperiod, and 194 transcripts are induced
115 greater than two-fold in plants grown in a 16L:8D photoperiod. Clustering analyses revealed 4 co-
116 expression clusters in the 8L:16D-induced transcripts and 4 clusters in the 16L:8D-induced transcripts
117 (Figure 1B, S1 and Table S2, S3). Approximately 88% of the transcripts with rDEI_{8L:16D/16L:8D} > 2.0 are
118 phased to the dark part of the photoperiod, suggesting that nighttime expression is important for an
119 8L:16D-induced gene expression signature (316/359; 8L:16D clusters Aw-Cw; Fig.1B). Conversely, 73% of
120 the 16L:8D-induced transcripts were phased to the light part of the photoperiod (141/194; 16L:8D
121 Clusters A_S and B_S; Figure S1).

122

123 We next performed enrichment tests of Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and
124 Genomes (KEGG) pathways from our 8L:16D-induced transcripts to understand the cellular pathways
125 induced in winter photoperiods (Figure 1B and Table S2, S3) (Hvidsten, et al., 2001; Kanehisa and Goto,
126 2000; Ogata, et al., 1998). Supporting the validity of our approach, “photoperiod” and “red/far red light
127 signaling” are enriched GO terms in the 8L:16D-induced transcripts from clusters Aw-Cw. Furthermore,
128 the “response to carbohydrate,” “response to sucrose,” and “autophagy” GO terms and the “valine,
129 leucine and isoleucine degradation” KEGG pathway are also enriched, highlighting that 8L:16D
130 photoperiods signal the induction of energy response and nutrient conservation and scavenging
131 pathways (Figure 1B and Table S2, S3). We also searched the list of putative winter transcripts for
132 examples of photoperiod-specific function for the genes. *HOMOGENTISATE 1,2-DIOXYGENASE (HGO-*
133 *AT5G54080*) from cluster A_w is an enzyme involved in tyrosine catabolism, specifically in winter
134 photoperiods (Zhi, et al., 2016; Han, et al., 2013), and *MALATE SYNTHASE (MLS-AT5G03860)* from cluster
135 C_w is a gene that is necessary for establishing true leaves in short winter-like days (Cornah, et al., 2004).
136 Perhaps the clearest example of a gene that is important for winter development in the list is

137 *TEMPRANILLO1* (AT1G25560), a transcriptional regulator that blocks flowering in winter-like
138 photoperiods by repressing *FT* expression directly, in competition with CO (Johansson and Staiger, 2014;
139 Castillejo and Pelaz, 2008). *TEMPRANILLO1* was also shown to have the hallmark expression pattern seen
140 in the 8L:16D-induced cluster, Aw (Figure 1B).

141

142 **Defining an expression pattern for transcripts induced in short winter-like days**

143

144 To determine whether the dark-phased expression pattern of winter photoperiod induced genes is linked
145 to a high rDEI_{8L:16D/16L:8D}, we performed hierarchical clustering of the normalized expression patterns for
146 all transcripts from the 8L:16D and 16L:8D microarray experiments (Figure 1C and Table S4). This
147 resulted in the identification of 131 expression pattern clusters. Three large clusters, numbered 21, 25,
148 and 26 had expression patterns that appeared to be similar to clusters Aw, Bw, and Cw (Figure 1B) and
149 also have statistically higher rDEI_{8L:16D/16L:8D} when compared to all of the transcripts represented by the
150 microarray (Figure 1D). In particular, >85% of transcripts from cluster Aw fall within cluster 26, a large
151 cluster of >1800 transcripts (Figure 1E-F). This congruence suggests that the temporal expression pattern
152 represented by cluster 26 is correlated to higher rDEI_{8L:16D/16L:8D}. We performed GO and KEGG analyses on
153 clusters 21, 25, and 26 (Figure 1F). Cluster 26 contains terms that are similar to those found in clusters
154 Aw and Bw, including “photoperiodism”, “response to fructose”, and “vesicle-mediated transport” (a
155 broader term containing “autophagy”). Cluster 26 also included the GO term “ubiquitin-like protein
156 transferase activity” suggesting that the ubiquitin proteasome system is being induced in winter
157 photoperiods and supporting the idea that cellular recycling programs are important winter processes.

158

159 **A winter gene, *PP2-A13*, is essential for *Arabidopsis* fitness in winter-like photoperiods**

160

161 We previously curated a large group of genetic resources for F-box-type E3 ubiquitin ligases (Feke, et al.,
162 2020; Feke, et al., 2019; Lee, et al., 2018; Lee C-M, 2017), which are part of the “ubiquitin-like protein
163 transferase activity” GO term (Figure 1F). One of the winter F-box genes, *PP2-A13*, shares sequence
164 similarity with the human lectin-containing F-box gene *F-BOX ONLY 2* (*FBXO2*, also known as
165 *Fbs1/Nfb42/Fbx2/Fbg1*) which is critical for cytoplasmic glycoprotein quality control processes and
166 results in age-related protein aggregation diseases when mutated in humans (Yoshida, et al., 2005;
167 Dinant, et al., 2003; Yoshida, et al., 2003). The microarray data indicate that *PP2-A13* follows a dark-
168 phased expression pattern similar to cluster Aw which we confirmed by qRT-PCR (Figure 2A). *PP2-A13*
169 expression is qualitatively different between the 8L:16D and 16L:8D growth regimes. In both
170 photoperiods there is a peak of expression near dawn that is subsequently repressed by exposure to
171 light. In 8L:16D a second winter photoperiod-specific expression peak appears and is phased at about 4
172 hours after dusk.

173

174 We next identified a transgenic line (*pp2-a13-1*) containing a T-DNA insertion in *PP2-A13* that has
175 compromised expression of the *PP2-A13* transcript (Figure S2A-B). We assessed development over the
176 life of the *pp2-a13-1* mutant in 8L:16D and 16L:8D growth conditions (Figure 2B-G and S2C-F). Strikingly,
177 the leaves of the *pp2-a13-1* mutant senesce prior to flowering exclusively in 8L:16D, a qualitative

178 reversal of these two important developmental processes (Figure 2B). In 8L:16D, the *pp2-a13-1* mutant is
179 unable to maintain generation of biomass prior to flowering, while in 16L:8D the mutant is only partially
180 compromised in biomass generation early in vegetative development and recovers later in development
181 (Figure 2C and S2C-D). The phenotype of the mutant was complemented by expression of the full length
182 *PP2-A13* driven by the native promoter confirming that the insertion in *PP2-A13* is causing the observed
183 phenotypes (Figure S2G).

184

185 We then noted altered inflorescence morphology, bolting time, and anthesis in the *pp2-a13-1* mutant
186 exclusively in 8L:16D (Figure 2D-E and S2E-F). Furthermore, in 8L:16D, 4 out of 52 (7.7%) mutant plants
187 never underwent anthesis and did not produce seeds, while an additional 9 mutant plants produced no
188 viable seeds (17.3%). We also found that the mutant plants in 16L:8D had a slight defect in seed yield
189 while the 8L:16D grown mutant seeds were severely compromised, but neither growth condition caused
190 a differential effect on weight per 100 seeds (Figure 2F-G). These results show that *PP2-A13* is necessary
191 for *Arabidopsis* cellular health and reproduction in winter-like photoperiods.

192

193 **PP2-A13 works in parallel to autophagy and controls glycoprotein abundance**

194

195 The cellular function of *PP2-A13* has not been studied in detail previously. We first determined the
196 spatial pattern of expression of *PP2-A13* using a transgenic line expressing β -glucuronidase under the
197 *PP2-A13* promoter (*PP2-A13_{promoter}::GUS*) (Figure 3A). *PP2-A13* is expressed widely and does not seem to
198 be tissue-specific. We then determined the subcellular localization of the *PP2-A13* protein using
199 transient expression of *PP2-A13* fused to GFP in *Arabidopsis* protoplasts (Figure 3B). The *PP2-A13* protein
200 shows diffuse localization in the nucleus but also forms foci outside of the nucleus.

201

202 The phenotypic effects of the *pp2-a13-1* mutant are reminiscent of the effects of autophagy mutants
203 grown in short winter-like photoperiods. The “autophagy” GO term is enriched in our winter gene list,
204 and autophagy is critical for nutrient recycling and cellular health in short days in *Arabidopsis* (Izumi, et
205 al., 2013). It is possible that *PP2-A13* participates in autophagy by mediating ubiquitylation of targets for
206 selective autophagy. Indeed, in the *pp2-a13-1* mutant plants the expression of *ATG8a* mRNA is induced and
207 the *ATG8a* protein is more highly accumulated, similar to the effects seen in autophagy mutants (Figures 3C-
208 D) (Phillips, et al., 2008). To test if the *pp2-a13-1* phenotypes are due to defects in autophagy, we crossed the
209 *pp2-a13-1* mutant with the *atg5-1* and *atg7-2* mutants and observed the phenotypes of the double mutants
210 (Figures 3E-F). The double mutants showed defects in growth that were more severe than either single
211 mutant alone, exclusively in short winter-like days. This indicates that *PP2-A13* functions in a pathway that is
212 parallel to autophagy.

213

214 Based on work done with lectin-containing F-box proteins in mammalian systems, we hypothesized *PP2-A13*
215 may function to control glycoprotein abundance (Yoshida, et al., 2019). We tested this by examining the levels
216 of glycosylated proteins in the *pp2-a13-1* mutant in plants grown in short winter-like photoperiods (Figure
217 3G). We found that the abundance of glycosylated proteins was higher in the mutant plants suggesting a
218 conservation of function with mammalian lectin-containing F-box proteins.

219

220 **PP2-A13 expression is photoperiodically induced**

221

222 Due to the importance of *PP2-A13* in plant winter survival, we wanted to create a reporter system to
223 rapidly explore the underlying systems that controls winter- photoperiod expression of *PP2-A13*. To
224 achieve this, we generated transgenic plants expressing the *Luciferase* gene under the control of the
225 *PP2-A13* promoter (*PP2-A13_{promoter}::Luciferase*) (Figure 4A). We measured luminescence from the *PP2-*
226 *A13_{promoter}::Luciferase* plants under 8L:16D and 16L:8D conditions (Figure 4B). The patterns generated
227 from this experiment were similar to those seen in the qRT-PCR and microarray experiments (Figure 2A).
228 In 8L:16D, the reporter line shows the winter-photoperiod specific expression peak after dusk, while in
229 both 8L:16D and 16L:8D the reporter line shows the dawn expression peak and subsequent repression
230 by light exposure. To examine the daily expression shape and compare across experiments, we
231 normalized the data to the trough and peak levels. While this removes amplitude information, it gives a
232 clearer view of the comparative expression pattern shapes (Figure 4C). We also calculated the rate of
233 change in intensity (“intensity change”) (Figure 4D). These analyses confirm the winter specific
234 expression peak of *PP2-A13* and show that *PP2-A13* expression rises rapidly after dusk in 8L:16D and
235 slowly in 16L:8D.

236

237 We next tested whether *PP2-A13* expression is under the control of a “true” photoperiodic measuring
238 system independent of light intensity. We grew the plants in 8L:16D at 100 $\mu\text{M m}^{-2} \text{s}^{-1}$ (8L₁₀₀:16D) for the
239 first part of the experiment and then on day 12 we maintained day length but doubled the light intensity
240 to 200 $\mu\text{M m}^{-2} \text{s}^{-1}$ (8L₂₀₀:16D) (Figure 4E and S3A), matching the daily light integral of the 16L:8D
241 experiment in figure 4B. The pattern of *PP2-A13* expression was nearly unchanged after doubling the
242 light intensity. We also performed the entire experiment with plants grown in 8L₁₀₀:16D and 8L₂₀₀:16D
243 and did not detect a difference in the pattern of *PP2-A13* expression (Figure S3B). This indicates that the
244 expression pattern of *PP2-A13* is reporting on a true photoperiod measuring mechanism that operates
245 independent of light intensity.

246

247 To determine the critical photoperiod in which *PP2-A13* expression changes from the winter-like pattern
248 to the summer-like pattern, we imaged the reporter plants in photoperiods ranging from 4L:20D to
249 20L:4D (Figure 4F, S3C, and S4A). Plants grown in photoperiods with longer nights, akin to fall and winter
250 (8L:16D, 10L:14D, and 11L:13D), exhibit the hallmark *PP2-A13* winter expression signature. Plants grown
251 in photoperiods with days at least one hour longer than night, akin to late spring and early summer
252 (14L:10D, 16L:8D), exhibit summer photoperiod-like expression patterns. These trends continue in more
253 extreme photoperiods (4L:20D and 20L:4D) as well (Figure S4B-C). In plants grown in photoperiods with
254 days that are equal to or slightly longer than nights, akin to spring or fall equinox and early spring or late
255 summer (12L:12D, 13L:11D), the expression pattern appears to be in a transitional state with a small
256 expression “shoulder” early in the night, suggesting that these are near the critical photoperiod.

257

258 We next wanted to know how this expression pattern may translate to levels of *PP2-A13* across one year.
259 We calculated the area under the curve for each experiment from the critical photoperiod data (Figure

260 S4A) and fit this data to a curve with an approximate sigmoid function (Figure S5). We then determined
261 the night lengths over one year in central Germany, where the Columbia ecotype was first isolated
262 (Latitude 48° N), and used this information to calculate a predicted expression level for *PP2-A13* over
263 one full year (Figure 4G). The data clearly shows the expression pattern of *PP2-A13* is not linear with the
264 night length, clearly demonstrating a photoperiodic switch in expression levels.
265

266 Using the real-time reporter we can observe post-dusk induction rates before and after the critical
267 photoperiod in the same 24 hour period (a “double dusk” experiment), a direct test of Bünning’s two
268 state model. We performed this experiment by growing the reporter plants in 16L:8D and then
269 exchanging the light cycle with 8L:4D:8L:4D, maintaining the same daily light integral as 16L:8D but
270 providing one dusk prior to the critical photoperiod and one after the critical photoperiod (Figure 4H and
271 S3D). Supporting a two state model, the rate of induction and expression peak are higher in the first dark
272 period than the second dark period. This, along with the critical photoperiod study (Figure 4F), shows
273 that the plant is transitioning between two dark response states across the 24-hour day.
274

275 Circadian clock or hourglass-like timers function in photoperiodic measurement systems (Bradshaw and
276 Holzapfel, 2010; Saunders, 2005; Saunders, 1997). A circadian clock-like mechanism takes time to re-
277 entrain to a new dawn after a phase shift while an hourglass, by nature, resets immediately to a new
278 dawn. We grew the plants in 8L:16D and then advanced the phase of dawn by eight hours. Subsequent
279 to the phase advance, we maintained the 8L:16D photoperiod (Figure 4I and S3E). On day one after the
280 phase advance (Figure 4I, red trace), we observe a *PP2-A13* expression pattern that is different than any
281 daily expression pattern observed in previous experiments. On day two after the phase shift (Figure 4I,
282 green trace) the expression pattern is similar to the standard 8L:16D pattern seen previously. This
283 suggests that the two dark response states controlling photoperiodic *PP2-A13* expression are under the
284 control of a circadian clock-like timer.
285

286 Photoperiodic timing mechanisms often count the number of hours of dark or the number of hours of
287 light rather than the relative day and night lengths (Lumsden and Millar, 1998; Vince-Prue, 1975). To
288 determine if winter gene expression is measuring the length of day or length of night, we performed
289 photoperiod shift experiments. We grew plants in 8L:16D and then changed the light cycle to 16L:8D and
290 vice versa (Figure 4J-K and S3F-G). In both experiments, on the first day after the shift the expression
291 patterns reset to the new photoperiod. The plants are able to readjust the post-dusk expression pattern
292 after only experiencing one light period, suggesting that this process counts the number of hours of light.
293

294 *CONSTANS (CO)* mediates the photoperiodic induction of some genes in long days in *Arabidopsis*,
295 including the florigen *FT*. Our results show that the winter photoperiod transcript induction system is
296 phased to the early part of the 24 hour day which is opposite to *CO*. We tested whether the *CO*
297 photoperiod measuring system controls winter transcript induction. We crossed the *co-9* mutant into our
298 reporter and grew the plants in 16L:8D and 8L:16D for imaging (Figure 5A-B). The expression pattern of
299 the reporter was nearly identical in the wild-type and *co-9* mutant plants despite the *co-9* mutant plants
300 flowering later than the wild-type plants. This strongly indicates that the photoperiod measuring

301 mechanism is distinct from the mechanism that controls photoperiodic flowering. In support of this idea,
302 our *PP2-A13_{promoter}::GUS* transgenic line does not show vein specific expression, the tissue where the
303 CO/FT mechanism functions (Figure 3A) (An, et al., 2004).

304

305 **Darkness is transmitted through the photosynthetic apparatus to photoperiodic induction of winter
306 genes**

307

308 A necessary component of a photoperiod measuring mechanism is a sensor(s) that can distinguish
309 between light and dark. Plants sense light/dark transitions through the photosynthetic apparatus or
310 environmental sensing photoreceptors. To determine whether photosynthesis or photoreceptors are
311 sensing light/dark transition to control *PP2-A13* expression, we replaced the first eight hours of darkness
312 in an 8L:16D growth condition with red light (635 nm), a single photosynthetically active wavelength that
313 is sensed by phytochromes, red-light photoreceptors, in plants. This regime was performed at two red
314 light intensities, one at $100 \mu\text{M m}^{-2} \text{s}^{-1}$ in which phytochrome signaling is presumably saturated and the
315 intensity is well above the light compensation point (8L:8R₁₀₀:8D), and the second at $5 \mu\text{M m}^{-2} \text{s}^{-1}$ in
316 which phytochrome signaling should be active but is well below the light compensation point for
317 Arabidopsis (the 8L:8R₅:8D) (Figure 6A and S6A) (Moraes, et al., 2019). In the 8L:8R₁₀₀:8D condition, *PP2-*
318 *A13* expression remains low when the lights change to red, similar to the pattern seen in 16L:8D and
319 showing that high red light is sufficient to mimic white light in control of *PP2-A13* expression. However,
320 in the 8L:8R₅:8D condition, the expression pattern is similar to the 8L:16D winter photoperiod expression
321 pattern. This shows that light is sensed by a system that requires light intensity above the compensation
322 point.

323

324 One of the main products of photosynthesis in Arabidopsis is sucrose. To test if sucrose can alter the
325 *PP2-A13* photoperiodic response, we performed imaging experiments in 8L:8R₅:8D in the presence of
326 exogenously supplied sucrose (Figure 6B and S6B). The winter photoperiod expression peak of *PP2-A13*
327 is nearly ablated when sucrose is supplied to the plants and begins to resemble the expression pattern
328 seen in summer photoperiods. We also tested this in white light with two concentrations of sucrose,
329 both of which suppressed the winter expression peak (Figure 6C and S6C). We then tested the repression
330 of the winter expression peak using qRT-PCR. We grew plants in 8L:16D and treated them with sucrose
331 or sorbitol starting at ZT0. We collected tissue at ZT12 (4 hours post-dusk in 8L:16D), and measured *PP2-*
332 *A13* expression (Figure 6D). We found that the sorbitol treatment had little effect on *PP2-A13* expression
333 while the sucrose repressed expression, similar to what we found with the reporter. These results show
334 that sucrose, an important product of photosynthesis, can suppress the winter photoperiod expression
335 of *PP2-A13*. Furthermore, the three night-phased clusters of winter genes, A_w, B_w, and C_w (Figure 1B),
336 are all repressed by the presence of sucrose in the growth media (Figure 6E). This result supports the
337 idea that winter transcripts are generally repressed by sucrose in 8L:16D growth conditions, as observed
338 with *PP2-A13*.

339

340 Our results indicate that the photosynthetic apparatus senses darkness to control winter gene induction.
341 To further test this idea, we grew plants in 16L:8D but blocked photosynthesis using a specific chemical

342 inhibitor of photosystem II called 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). It was technically
343 challenging to perform this experiment using our real-time reporter, necessitating the use of qRT-PCR. In
344 16L:8D we treated the plants with DCMU at ZT0 of day 12 (Figure 6F). We then collected tissue at ZT12
345 when the plants should have very low expression of *PP2-A13* because they are still in the light. In the
346 presence of DCMU, *PP2-A13* expression is induced, despite being the light. This effect was reversed upon
347 the addition of sucrose. This result strongly indicates that darkness, with respect to *PP2-A13* expression,
348 is being sensed by the inactivity of the photosynthetic apparatus rather than phytochrome,
349 cryptochrome, or other photoreceptors.

350

351 **Rhythmic starch controls the phasing of the winter-photoperiod measuring mechanism**

352

353 We next wanted to determine which process acts to differentially interpret the darkness across a 24-
354 hour day. This mechanism sets the transition of the plant between “state1” and “state2” (Figure 4F and
355 4H). Extensive studies have shown that starch production and breakdown is circadian clock and
356 photoperiod regulated and controls a large host of rhythmic metabolic processes in and out of the
357 chloroplast (Kim, et al., 2017; Mengin, et al., 2017). Furthermore, starchless mutants in *Arabidopsis*, such
358 as *phosphoglucomutase* (*pgm*) mutants, have more severe growth and developmental defects in winter
359 photoperiods than in summer or equinox photoperiods (Eimert, et al., 1995). To test whether rhythmic
360 starch production is controlling the state 1/state2 for *PP2-A13* expression, we crossed the *PP2-*
361 *A13_{promoter}::Luciferase* reporter into the *pgm* mutant and monitored expression in 8L:16D, 16L:8D, and
362 8L:4D:8L:4D growth conditions (Figure 7A-C- pink traces). The *pgm* mutant causes altered expression of
363 *PP2-A13* in all three conditions. In 8L:16D, the winter expression peak is delayed to near the middle of
364 the night (Figure 7A). In 16L:8D in the *pgm* mutant, *PP2-A13* expression now is more rapidly induced and
365 has two peaks of expression, similar to wild type in short winter-like days (Figure 7B). This was confirmed
366 in a sucrose treatment experiment that shows the ablation of the first peak and restoration of the
367 standard expression pattern seen in 16L:8D in wild type (Figure S7A-B). These results indicate that the
368 underlying rhythmic process that defines state1 and state2 is misphased and delayed to a later part of
369 the 24 hour day in the *pgm* mutant. The 8L:4D:8L:4D condition tests this more directly (Figure 7C). This
370 experiment shows that the two-state system that exists in wild-type plants has been changed in the *pgm*
371 mutant so that there is no distinction between darkness early or late in the 24-hour day, suggesting that
372 the *pgm* mutant lacks the ability to accurately control winter gene expression.

373

374 The effects of *pgm* on winter gene expression could be explained by a lack of rhythmic starch production
375 or alternately the low starch levels of the mutants. To test this we crossed the *PP2-A13* reporter into the
376 *starch excess1* (*sex1*) mutant which maintains high levels of starch (Caspar, et al., 1991). We again
377 monitored expression in 8L:16D, 16L:8D, and 8L:4D:8L:4D growth conditions and found a similar result as
378 the *pgm* mutant (Figure 7A-C- green traces). *PP2-A13* expression is induced in 8L:16D but delayed when
379 compared to wild type (Figure 7A). In 16L:8D *PP2-A13* is also induced rapidly and the induction can be
380 suppressed by sucrose (Figure 7B and S7A-B). Again, state 1 and state 2 are altered in the 8L:4D:8L:4D
381 growth condition showing that the plant can't distinguish between winter and summer photoperiods
382 (Figure 7C). This result suggests that starch levels are not being measured by the plant, but rather

383 rhythmic starch production and breakdown maintains the phasing of a downstream rhythmic metabolic
384 product, gene, protein, or other biological molecule that differentiates between dusk that occurs in state
385 1 and state 2.

386
387 We can further test this idea using the *pp2-a13-1* mutant. The previous result suggests that the *pgm*
388 mutant is inappropriately activating winter genes, such as *PP2-A13*, in summer and winter photoperiods.
389 Thus, the *pp2-a13-1* mutant phenotype would be apparent in the *pgm* mutant line in both summer and
390 winter photoperiods, rather than exclusively in winter photoperiods like the wild-type plants. We
391 crossed the *pgm* mutant with the *pp2-a13-1* mutant and found growth defects in both winter and
392 summer photoperiods in the double mutant plants (Figure 7D-E). This is clearly seen in the
393 representative images of the plants and is quantified in the fresh weight measurements. This result
394 confirms the idea that rhythmic starch production is necessary for plants to measure seasons and that
395 photosynthesis and rhythmic starch converge to form a metabolic coincidence mechanism to control
396 winter gene expression.

397
398 **Discussion**
399

400 Plants have been one of the preeminent study systems for understanding photoperiod measuring
401 mechanisms for more than one hundred years (Lumsden and Millar, 1998; Vince-Prue, 1975; Bunning,
402 1969). This is because of the visually stunning transition from vegetative growth to flowering, which is
403 often under tight control of a photoperiod measuring mechanism. Despite this, the intense focus on
404 photoperiodic flowering has come at the cost of searching for additional photoperiod measuring
405 mechanisms and understanding the full scope of biological processes that are enacted throughout the
406 year. Winter can appear to be a time of inactivity for plants, but here we clearly show that plants are
407 actively promoting the expression of genes to maintain fitness in winter photoperiods.

408
409 Here we describe the photoperiodic control of winter gene expression and show that it relies on a type
410 of external coincidence we term “metabolic coincidence”. In this mechanism we show that darkness,
411 sensed through the photosynthetic apparatus, is differentially interpreted by a process controlled by
412 rhythmic metabolism downstream of starch production. This mechanism is distinct from, and functions
413 opposite to, the CO/FT photoperiod measuring system for flowering in *Arabidopsis*. Interestingly,
414 photosynthesis and starch metabolism both occur in the chloroplast of *Arabidopsis*, making it possible
415 that this system resides in any chloroplast-containing cell in the plant, rather than being restricted to
416 transport tissues like the CO/FT mechanism. This is supported by the expression pattern of the *PP2-*
417 *A13_{promoter}::Luciferase* and *PP2-A13_{promoter}::Gus* reporters, which do not show vein-specific expression.

418
419 Here we have identified the two main cellular systems that coordinate to form a seasonal measurement
420 system, but in future work we will likely need to identify many more molecular players that participate in
421 this process. It will be critical to identify whether photosynthetic redox signaling or lack of
422 photosynthetic carbon capture is providing the dark signal that triggers rapid winter transcript activation
423 (Foyer, 2018). It will also be important to identify the gene, protein, or molecule that is phased by

424 rhythmic metabolism to enact gene expression in winter photoperiods. Furthermore, this system resides
425 in the chloroplast but manifests as gene expression changes in the nucleus. We will need to determine
426 how the signal is communicated between these two cellular compartments, especially the exact
427 transcription factors that are involved. The real-time luciferase reporter, akin to the first real-time
428 circadian clock reporters (Millar, et al., 1995a; Millar, et al., 1995b; Millar, et al., 1992), paves the way for
429 identifying these components using a host of genetic and reverse genetic approaches

430

431 Winter transcripts in plants include many genes involved in cellular recycling, energy conservation,
432 amino acid catabolism, growth cessation, and dormancy (Fig.1B and 1F). The plant is actively promoting
433 mechanisms to protect itself from starvation in a low energy condition. Furthermore, the dark-response
434 rhythm can be ablated by providing an exogenous energy source to the plant, and the winter
435 photoperiod measurement mechanism relies on darkness being sensed by the photosynthetic
436 apparatus. This indicates that there is an intimate connection between the energy state of the plant and
437 its ability to enact this seasonal developmental program. Thus, it may be apropos in this case to refine
438 the photophilic and skotophilic nomenclature that was proposed for photoperiodic flowering. In the case
439 of winter transcripts it may be easier to imagine that when an early dusk occurs the plant is afraid to
440 starve, and thus the plant is in a famophobic state. When dusk occurs late in the day the plant is afraid to
441 inappropriately conserve and not spend its resources and thus is in a conservaphobic state.

442

443 We chose to focus our attention on the study of one winter gene, *PP2-A13*, because the insertion
444 mutant line has striking and easily observable developmental defects (Figure 2 and S2). Here we show
445 that *PP2-A13* functions in a plant cellular pathway that is parallel to autophagy and likely helps promote
446 degradation of glycosylated proteins, akin to human lectin-containing F-box proteins. It will now be
447 important to further define the sugar-binding specificity and scope of potential targets of *PP2-A13* to
448 refine our understanding of its function expand our knowledge of the cellular pathways that it controls. It will
449 also be important to further explore the relationship between *PP2-A13* and autophagy to understand how
450 they communicate, whether they share conserved targets, and understand their winter-photoperiod specific
451 roles in plants.

452

453 Seasonal biological cycles of plant development are at the core of healthy ecosystems on earth, with
454 plants acting as primary producers. Plants predict both adverse and beneficial seasonal changes by
455 measuring photoperiod, but climate change is rapidly decoupling photoperiod from important seasonal
456 cues such as temperature and water availability (Inoue, et al., 2020; Walker, et al., 2019; Stromme, et al.,
457 2017; Fournier-Level, et al., 2016; Diez, et al., 2014). Importantly to our work, climate change has a
458 disproportionately large effect on winter (Kreylig, 2010) and many plants need winter signals for proper
459 reproductive and vegetative development. It is critical that we continue to explore the conservation of
460 winter photoperiodic measurement mechanisms to ensure future robustness of our most important
461 crops in the face of climate change.

462

463

464 **ACKNOWLEDGEMENTS**

465 We would like to thank Christopher Adamchek and Suyuna Eng Ren for their technical support. We
466 would also like to thank Sandra Pariseau for administrative support. Additionally, we would like to thank
467 Chris Bolick, Eileen Williams, and the staff at Marsh Botanical Gardens for their support in maintaining
468 plant growth spaces. We would like to thank Dr. Shirin Bahmanyar for help with confocal microscopy. We
469 would also like to thank Dr. Shirin Bahmanyar, Dr. Qingqing Wang, Christopher Adamchek, Harper
470 Lowrey, and Lilijana Oliver for critical reading of the manuscript. We would like to thank Dr. Joel
471 Greenwood for invaluable technical support for our automated luciferase imaging system. W.L., C.L., A.F.,
472 D.T., B.T., X.W., M.V., G.S., D.C. and J.M.G. designed the experiments. W.L., C.L., A.F., D.T., A.S., M.V., G.S.
473 and W.Y. performed the experiments and experimental analyses. W.L., C.L., A.F., and J.M.G. wrote the
474 article. This work was supported by the National Science Foundation (EAGER #1548538) and the
475 National Institutes of Health (R35 GM128670) to J.M.G; and by the National Institutes of Health (T32
476 GM007499), the Gruber Foundation, and the National Science Foundation (GRFP DGE-1122492) to A.F.
477 W.L. was supported by the Forest BH and Elizabeth DW Brown Fund Fellowship. DT was supported by the
478 National Institutes of Health (T32GM007223-44).

479

480 **Figure Legends**

481

482 **Figure 1. Induced gene expression in an 8L:16D photoperiod is correlated to rhythmic expression**
483 **patterns with nighttime phasing.** (A) Identification of photoperiod-induced transcripts from the
484 DIURNAL Affymetrix ATH1 microarray dataset using relative daily expression integral (rDEI; ratio of sum
485 of expression between two time courses). Distribution of transcript rDEI_{8L:16D/16L:8D} are presented in the
486 histogram (n = 22810). Blue: 8L:16D-induced transcripts with rDEI_{8L:16D/16L:8D} > 2.0; red: 16L:8D-induced
487 transcripts with rDEI_{8L:16D/16L:8D} < 0.5; grey, all other transcripts. (B) Normalized expression of 8L:16D-
488 induced transcripts (rDEI_{8L:16D/16L:8D} > 2) grouped by k-means clustering (see Methods). 16L:8D (red) and
489 8L:16D (blue) expression rhythms were transformed to Z-score together for clustering to retain relative
490 magnitude. Black lines indicate median expression level. Grey rectangles indicate the dark portion of
491 each photoperiod. The number of clusters is determined by the elbow method. Top enriched Gene
492 Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. (C) Hierarchical
493 clustering of all 22810 transcripts by 16L:8D and 8L:16D patterns (Table S4). 16L:8D and 8L:16D
494 expressions were transformed to Z score separately prior to clustering to obtain the pattern.
495 Dendrogram edges are colored by the average rDEI_{8L:16D/16L:8D} of transcripts within the corresponding
496 node. 132 clusters were defined by dynamic tree cutting. Clusters are indicated by the color bar: light
497 grey and dark grey indicate clusters, and white indicates transcripts that are not assigned to any cluster.
498 (D) Identification of photoperiod-induced clusters (average rDEI_{8L:16D/16L:8D} > 1.15 or average
499 rDEI_{8L:16D/16L:8D} < 0.87). Statistical cutoff is drawn at adjusted p-value < 1.0 x 10⁻²⁰ (one-sample Wilcoxon
500 test; Bonferroni correction). Blue: 8L:16D-induced clusters; grey, other clusters. (E) Doughnut chart
501 showing the overlap between clusters of 8L:16D-induced transcripts (rDEI_{8L:16D/16L:8D} > 2) and clusters of
502 transcripts showing an 8L:16D-induction correlated pattern. (F) Expression pattern of transcripts in
503 clusters 21, 25, and 26 normalized in each of the 16L:8D and 8L:16D dataset. Red: 16L:8D expression;
504 blue: 8L:16D expression. Black lines indicate median expression level. Grey rectangles indicate dark
505 period of each photoperiod (Table S4).

506

507 **Figure 2. Disruption of the PP2-A13 gene causes winter photoperiod-specific fitness defects.** (A)
508 Microarray expression data and qRT-PCR of *PP2-A13* from 12-day-old plants grown in 8L:16D (blue) and
509 16L:8D (red). n = 3 samples containing multiple seedlings for each time point. (B) Representative wild
510 type (Col) and *pp2-a13-1* mutant plants. Grown for 24 days in 16L:8D or 11 weeks in 8L:16D. Adaxial and
511 abaxial views of the rosettes are presented. Scale bar = 3 cm. (C) Aerial fresh weight of wild-type (Col)
512 and *pp2-a13-1* mutant plants grown in 16L:8D and 8L:16D were normalized to the mean of wild-type
513 (Col) at each time point. Black (Col wild type) or orange (*pp2-a13-1* mutant) lines indicate the mean of
514 each genotype at different time points. n = 3-8 individual plants. Asterisks indicate significant difference
515 between wild-type (Col) and *pp2-a13-1* mutant plants at each time point. *, p ≤ 0.05; **, p ≤ 0.01; ***, p
516 ≤ 0.001; ****, p ≤ 0.0001 (Welch's t-test). (D) Representative wild-type (Col) and *pp2-a13-1* mutant
517 plants grown for 28 days in 16L:8D or 14 weeks in 8L:16D. (E) Percentage of wild-type (Col) and *pp2-a13-1*
518 mutant plants that are bolting or anthesed. Plants grown in 16L:8D (left) and 8L:16D (right). n = 52-60.
519 (F) Total seed yield from wild-type (Col) and *pp2-a13-1* mutant plants grown in 8L:16D and 16L:8D. n =
520 52-60. (G) Seed weight in milligrams/100 seeds from wild-type (Col) and *pp2-a13-1* mutant plants grown

521 in 8L:16D and 16L:8D. n = 8.

522
523 **Figure 3. PP2-A13 works in parallel to autophagy and controls glycoprotein abundance.** (A) GUS staining
524 of the *PP2-A13_{promoter}::GUS* transgenic line. The right image is the zoom-in view of the white box area in
525 the left image. Scale bars = 1mm. (B) Subcellular localization of PP2-A13 was performed in Arabidopsis
526 protoplasts. PP2-A13-GFP was co-expressed with a nuclear marker mCherry-VirD2NLS. Scale bar indicates
527 10 μ m. (C) qRT-PCR *ATG8a* from 6-week-old WT (black) and *pp2-a13-1* mutant (orange) grown in 8L:16D
528 (blue). n = 3 individual samples for each time point. **, $p \leq 0.01$ (Welch's t-test) (D) Immunoblot analysis
529 of the *pp2-a13-1* mutant. Crude protein extracts of 11-week-old wide-type (Col) and *pp2-a13-1* mutant
530 were subjected to SDS-PAGE and immunoblot analysis with anti-ATG8a antibody. Equal protein loads were
531 confirmed by immunoblot analysis with anti-Actin antibody. (E) Representative images of wild-type (Col),
532 *pp2-a13-1*, *atg5-1*, *atg7-2*, *atg5-1 pp2-a13-1*, and *atg7-2 pp2-a13-1* mutant plants grown in 16L:8D for 28
533 days or 8L:16D for 87 days. Scale bar = 2 cm in 16L:8D and 3 cm in 8L:16D. (F) Aerial fresh weight of wild-
534 type (Col), *pp2-a13-1*, *atg5-1*, *atg7-2*, *atg5-1 pp2-a13-1*, and *atg7-2 pp2-a13-1* mutant plants grown in
535 16L:8D and 8L:16D. Different letters indicate statistically significant differences as determined by one-way
536 ANOVA followed by Dunnett's T3 multiple comparison test; $p \leq 0.05$. Error bars indicate SD (n = 3-5
537 individual samples). (G) Glycoprotein analysis for WT and *pp2-a13-1* mutant. Crude protein extracts of 11-
538 week-old wide-type (Col) and *pp2-a13-1* mutant were subjected to SDS-PAGE and stained with Pierce
539 Glycoprotein Staining Kit. Equal protein loads were confirmed by immunoblot analysis with anti-Actin
540 antibody.

541
542 **Figure 4. A winter photoperiod measuring mechanism controls winter gene expression.** (A-C) *PP2-*
543 *A13_{promoter}::Luciferase* expression from plants grown under 8L:16D and 16L:8D photoperiods. Grey
544 shading represents the dark period for the various photoperiod experiments. Colored lines represent the
545 intensity traces and shading represents the standard deviation. Black traces in the raw luciferase
546 intensity plots represent time periods that were excluded from normalization and rate calculations. (A)
547 False color images of representative plants taken every two hours from ZT0 to ZT24. (B) Average from
548 traces of raw luciferase intensity. (C) Normalized traces of the daily luciferase intensity pattern. (D)
549 Average rate of change in expression. (E) Plants grown under 8L:16D with 100 μ M $m^{-2} s^{-1}$ light (dark
550 yellow) conditions were transferred into 200 μ M $m^{-2} s^{-1}$ light (light yellow). Note that for this experiment,
551 the false-colored 100 μ M $m^{-2} s^{-1}$ ZT24 image is the same as the 200 μ M $m^{-2} s^{-1}$ ZT0 image. (F)
552 Determination of the critical photoperiod. Traces are from plants grown in indicated conditions. The
553 individual traces are presented in figure S4A and rates are presented in figure S3C. (G) Night lengths in
554 Landsberg, Germany (black) and estimated yearly expression pattern (red) of *PP2-A13_{promoter}:Luciferase*
555 as calculated from the normalized expression in figure 3F. (H) Plants grown under 16L:8D conditions
556 were transferred to double dusk (8L:4D:8L:4D) conditions on day 11. Individual movie frames,
557 normalized pattern, and average rates are presented in figure S3D. (I) Plants were grown under 8L:16D
558 conditions until day 10. On day 11, plants underwent a dawn phase advance of 8 hours but kept in
559 8L:16D for the remainder of the experiment. Normalized plots were excluded from this figure but rates
560 are presented in figure S3E. (J) Plants grown under 8L:16D conditions were transferred into 16L:8D
561 conditions on day 11. Individual movie frames, normalized pattern, and average rates are presented in

562 figure S3F. Note that for this experiment, the false colored 8L:16D ZT24 picture is the same as the 16L:8D
563 ZT0 picture. (K) Plants grown under 16L:8D conditions were transferred into 8L:16D conditions on day
564 11. Individual movie frames, normalized pattern, and average rates are presented in figure S3G. Note
565 that for this experiment, the false colored 16L:8D ZT24 picture is the same as the false colored 8L:16D
566 ZT0 picture.

567

568 **Figure 5. CONSTANS does not regulate the photoperiodic induction or repression of winter genes.** (A-B)
569 *PP2-A13_{promoter}::Luciferase* traces and normalized traces from wild-type and *co-9* mutant plants grown
570 under (A) 16L:8D and (B) 8L:16D photoperiods.

571

572 **Figure 6. The photosynthetic apparatus senses darkness for winter photoperiod time measurement.** (A-
573 C) *PP2-A13_{promoter}::Luciferase* trace data from plants grown in (A) 8L:8R₁₀₀:8D (top panel) and 8L:8R₅:8D
574 (bottom panel), (B) 8L:8R₅:8D treated with 90mM sorbitol (top panel) and 8L:8R₅:8D treated with 90mM
575 sucrose (bottom panel), (C) 8L:16D treated with 90mM sorbitol (top panel) and 8L:16D treated with 90mM
576 sucrose (bottom panel). (D) qRT-PCR of *PP2-A13* from 12-day-old plants grown in 8L:16D. The indicated
577 treatment started at ZT0 and tissue was collected at ZT12. Means with different letters are significantly
578 different determined by one-way ANOVA followed by Dunnett's T3 multiple comparison test; $p \leq 0.05$.
579 Error bars indicate SD (n = 3 samples containing multiple seedlings). (E) The rDEI_{8L:16D sucrose/8L:16D no sucrose} of
580 8L:16D-induced transcripts (blue) in comparison to the rDEI_{8L:16D sucrose/8L:16D no sucrose} of all other transcripts
581 (grey). rDEI_{8L:16D sucrose/8L:16D no sucrose} is calculated as the rDEI of the DIURNAL "shortday" time course divided
582 by the rDEI of the DIURNAL "LER_SD" time course. Asterisks indicate statistical significance between the
583 8L:16D-induced cluster and the background: *, $p < 0.05$; **, $p < 0.01$; ***, $p < 0.0005$; ****, $p < 0.0001$
584 (Welch's t-test; Bonferroni correction). (F) qRT-PCR of *PP2-A13* from 12-day-old plants grown in 16L:8D.
585 The indicated treatment started at ZT0 and tissue was collected at ZT12. Different letters indicate
586 statistically significant differences as determined by one-way ANOVA followed by Dunnett's T3 multiple
587 comparison test; $p \leq 0.05$. Error bars indicate SD (n = 3 samples containing multiple seedlings).

588

589 **Figure 7. A metabolic coincidence mechanism controls winter photoperiod gene expression** (A-C)
590 Average and normalized *PP2-A13_{promoter}::Luciferase* traces from wild type, *pgm* mutant, and *sex1* mutant
591 grown in (A) 8L:16D, (B) 16L:8D, and (C) 8L:4D:8L:4D. Note that for this experiment, the traces and
592 average of WT in 8L:16D is the same as the WT in figure 5. (D) Representative wild-type (Col), *pp2-a13-1*
593 mutant, *pgm* mutant, and *pgm pp2-a13-1* double mutant plants grown for 31 days in 16L:8D or 11 weeks
594 in 8L:16D. (E) Aerial fresh weight of wild-type (Col), *pp2-a13-1* mutant, *pgm* mutant, and *pgm pp2-a13-1*
595 double mutant plants grown for 25 days in 16L:8D or 11 weeks in 8L:16D. Different letters indicate
596 statistically significant differences as determined by one-way ANOVA followed by Dunnett's T3 multiple
597 comparison test; $p \leq 0.05$. Error bars indicate SD (n = 4-8 individual plants).

598

599 **Figure S1. Summer gene expression pattern clusters.** Normalized expression of 16L:8D-induced
600 transcripts (rDEI_{8L:16D/16L:8D} < 0.5) grouped by k-means clustering (see Methods). 16L:8D (red) and 8L:16D
601 (blue) expression patterns were transformed to Z score together for clustering to retain relative
602 magnitude. Black lines indicate median expression level. Grey rectangles indicate the dark period of each

603 photoperiod. The number of clusters is determined by the elbow method. Top enriched Gene Ontology
604 (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.

605

606 **Figure S2. *PP2-A13* is needed for proper development and fitness in winter photoperiods. (A)**

607 Schematic shows the T-DNA insertion site in *PP2-A13*. Black boxes = exons; black lines = non-coding
608 sequences. (B) qRT-PCR of full length, 5' end, and 3' end of the *PP2-A13* gene. Tissue was collected at
609 ZT11 from 12-day-old plants grown in 8L:16D. *UBQ10* was used as internal control. n = 3 samples
610 containing multiple seedlings. Error bar indicates SD. *, p<0.05 (Welch's t-test). (C) Aerial fresh weight of
611 wild-type (Col) and *pp2-a13-1* mutant plants grown in 16L:8D and 8L:16D. Error bar indicates SD. *, p≤
612 0.05; **, p≤0.01; ***, p≤0.001; ****, p≤0.0001 (Welch's t-test). (D) Representative images of wild-
613 type (Col) and *pp2-a13-1* mutant plants at different time points prior to flowering. Plants grown in
614 16L:8D and 8L:16D. Scale bar = 2 cm in 16L:8D and 3 cm in 8L:16D. (E) Number of days until appearance
615 of 1 cm long bolt for wild-type (Col) and *pp2-a13-1* mutant plants grown in 16L:8D and 8L:16D. n= 52-60.
616 ****, p<0.0001 (Welch's t-test). (F) Number of days until anthesis of the first flower for wild-type (Col)
617 and *pp2-a13-1* mutant plants grown in 16L:8D and 8L:16D. n = 52-60. Welch's t-test was performed on
618 values excluding the four non-anthesed plants. ****, p<0.0001. (G) Segregating progeny from *PP2-*
619 *A13_{promoter}::gPP2-A13* complementation lines in the *pp2-a13-1* mutant background. +/+ and +/- indicate
620 homozygous and hemizygous for the transgene, respectively. Images were taken of 9-week-old plants
621 grown in 8L:16D. Scale bar = 3 cm.

622

623 **Figure S3. *PP2-A13* expression is controlled by photoperiod. (A)** Representative images and intensity
624 changes for data presented in figure 4E. (B) *PP2-A13_{promoter}::Luciferase* expression in plants grown under
625 short day conditions with either 100 $\mu\text{M m}^{-2} \text{s}^{-1}$ (blue) or 200 $\mu\text{M m}^{-2} \text{s}^{-1}$ (teal) white light. (C) Intensity
626 change calculations for data presented in figure 4F. (D) Representative images, normalized traces, and
627 intensity changes for traces presented in figure 4H. (E) Intensity changes for data presented in figure 4I.
628 (F) Representative images, normalized intensity, and intensity changes for figure 4J. (G) Representative
629 images, normalized intensity, and intensity changes for figure 4K.

630

631 **Figure S4. *PP2-A13* critical photoperiod. (A)** Data is same as in Figure 4F except plotted independently
632 for clarity. (B) *PP2-A13_{promoter}::Luciferase* expression in plants grown under 4L:20D conditions (purple)
633 and 20L:4D conditions (magenta).

634

635 **Figure S5. Curve fit for estimated yearly expression of *PP2-A13_{promoter}::Luciferase*.** Approximately
636 sigmoidal fit to the total, normalized intensity of *PP2-A13_{promoter}::Luciferase* in a day. Blue points are the
637 experimental points from the 6 conditions in figure S4. Red line is the approximately sigmoidal fit.

638

639 **Figure S6. The photosynthetic apparatus senses darkness for winter photoperiod time measurement.**
640 (A) Representative images, normalized traces, and intensity changes for traces presented in figure 6A. (B)
641 Representative images, normalized traces, and intensity changes for traces presented in figure 6B. (C)
642 Representative images, normalized traces, and intensity changes for traces presented in figure 6C.

643

644 **Figure S7. A metabolic coincidence mechanism controls winter photoperiod gene expression. (A-B)**
645 Traces and normalized trace data from plants grown in 16L:8D with (A) 90mM sorbitol or (B) 90mM
646 sucrose.
647

648 **Table S1: Relative daily expression integral (rDEI) of the probes of ATH1 microarray.**
649

650 **Table S2: Description and enriched annotations of 8L:16D-induced clusters.**
651

652 **Table S3: Description and enriched annotations of 16L:8D-induced clusters.**
653

654 **Table S4: Description and enriched annotations of clusters identified by hierarchical clustering.**
655

656 **Table S5: Primers used in this study.**
657

658 **References**

659

660 An, H., Roussel, C., Suarez-Lopez, P., Corbesier, L., Vincent, C., Pineiro, M., Hepworth, S., Mouradov, A., Justin, S.,
661 Turnbull, C., et al. (2004). CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic
662 flowering of *Arabidopsis*. *Development* (Cambridge, England) 131, 3615-26.

663 Azeez, A., and Sane, A.P. (2015). Photoperiodic growth control in perennial trees. *Plant signaling & behavior* 10,
664 e1087631.

665 Bohlenius, H., Huang, T., Charbonnel-Campaa, L., Brunner, A.M., Jansson, S., Strauss, S.H., and Nilsson, O. (2006).
666 CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. *Science* (New York,
667 N.Y.) 312, 1040-3.

668 Bouche, F., Woods, D.P., and Amasino, R.M. (2017). Winter Memory throughout the Plant Kingdom: Different Paths
669 to Flowering. *Plant physiology* 173, 27-35.

670 Bradshaw, W.E., and Holzapfel, C.M. (2010). What season is it anyway? Circadian tracking vs. photoperiodic
671 anticipation in insects. *J Biol Rhythms* 25, 155-65.

672 Bunning, E. (1969). Common features of photoperiodism in plants and animals. *Photochem Photobiol* 9, 219-28.

673 Caspar, T., Lin, T.P., Kakefuda, G., Benbow, L., Preiss, J., and Somerville, C. (1991). Mutants of *Arabidopsis* with
674 altered regulation of starch degradation. *Plant physiology* 95, 1181-8.

675 Castillejo, C., and Pelaz, S. (2008). The balance between CONSTANS and TEMPRANILLO activities determines FT
676 expression to trigger flowering. *Current biology : CB* 18, 1338-43.

677 Cornah, J.E., Germain, V., Ward, J.L., Beale, M.H., and Smith, S.M. (2004). Lipid utilization, gluconeogenesis, and
678 seedling growth in *Arabidopsis* mutants lacking the glyoxylate cycle enzyme malate synthase. *The Journal of
679 biological chemistry* 279, 42916-23.

680 Cubas, P. (2020). Plant Seasonal Growth: How Perennial Plants Sense That Winter Is Coming. *Current biology : CB*
681 30, R21-R23.

682 Diez, J.M., Ibanez, I., Silander, J.A., Jr., Primack, R., Higuchi, H., Kobori, H., Sen, A., and James, T.Y. (2014). Beyond
683 seasonal climate: statistical estimation of phenological responses to weather. *Ecol Appl* 24, 1793-802.

684 Dinant, S., Clark, A.M., Zhu, Y., Vilaine, F., Palauqui, J.C., Kusiak, C., and Thompson, G.A. (2003). Diversity of the
685 superfamily of phloem lectins (phloem protein 2) in angiosperms. *Plant physiology* 131, 114-28.

686 Eimert, K., Wang, S.M., Lue, W.I., and Chen, J. (1995). Monogenic Recessive Mutations Causing Both Late Floral
687 Initiation and Excess Starch Accumulation in *Arabidopsis*. *The Plant cell* 7, 1703-1712.

688 Feke, A., Liu, W., Hong, J., Li, M.W., Lee, C.M., Zhou, E.K., and Gendron, J.M. (2019). Decoys provide a scalable
689 platform for the identification of plant E3 ubiquitin ligases that regulate circadian function. *Elife* 8.

690 Feke, A.M., Hong, J., Liu, W., and Gendron, J.M. (2020). A Decoy Library Uncovers U-Box E3 Ubiquitin Ligases That
691 Regulate Flowering Time in *Arabidopsis*. *Genetics* 215, 699-712.

692 Fournier-Level, A., Perry, E.O., Wang, J.A., Braun, P.T., Migneault, A., Cooper, M.D., Metcalf, C.J., and Schmitt, J.
693 (2016). Predicting the evolutionary dynamics of seasonal adaptation to novel climates in *Arabidopsis thaliana*.
694 *Proceedings of the National Academy of Sciences of the United States of America* 113, E2812-21.

695 Foyer, C.H. (2018). Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. *Environ Exp
696 Bot* 154, 134-142.

697 Garbazza, C., and Benedetti, F. (2018). Genetic Factors Affecting Seasonality, Mood, and the Circadian Clock. *Front
698 Endocrinol (Lausanne)* 9, 481.

699 Han, C., Ren, C., Zhi, T., Zhou, Z., Liu, Y., Chen, F., Peng, W., and Xie, D. (2013). Disruption of fumarylacetoacetate
700 hydrolase causes spontaneous cell death under short-day conditions in *Arabidopsis*. *Plant physiology* 162, 1956-64.
701 Henderson, I.R., Shindo, C., and Dean, C. (2003). The need for winter in the switch to flowering. *Annu Rev Genet* 37,
702 371-92.
703 Hvidsten, T.R., Komorowski, J., Sandvik, A.K., and Laegreid, A. (2001). Predicting gene function from gene
704 expressions and ontologies. *Pac Symp Biocomput*, 299-310.
705 Inoue, S., Dang, Q.L., Man, R., and Tedla, B. (2020). Photoperiod and CO₂ elevation influence morphological and
706 physiological responses to drought in trembling aspen: implications for climate change-induced migration. *Tree*
707 *Physiol* 40, 917-927.
708 Izumi, M., Hidema, J., Makino, A., and Ishida, H. (2013). Autophagy contributes to nighttime energy availability for
709 growth in *Arabidopsis*. *Plant physiology* 161, 1682-93.
710 Jang, S., Marchal, V., Panigrahi, K.C., Wenkel, S., Soppe, W., Deng, X.W., Valverde, F., and Coupland, G. (2008).
711 *Arabidopsis COP1* shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response.
712 *EMBO J* 27, 1277-88.
713 Johansson, M., and Staiger, D. (2014). *SRR1* is essential to repress flowering in non-inductive conditions in
714 *Arabidopsis thaliana*. *Journal of experimental botany* 65, 5811-22.
715 Kanehisa, M., and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. *Nucleic Acids Res* 28, 27-30.
716 Kardailsky, I., Shukla, V.K., Ahn, J.H., Dagenais, N., Christensen, S.K., Nguyen, J.T., Chory, J., Harrison, M.J., and
717 Weigel, D. (1999). Activation tagging of the floral inducer FT. *Science (New York, N.Y.)* 286, 1962-5.
718 Kim, J.A., Kim, H.S., Choi, S.H., Jang, J.Y., Jeong, M.J., and Lee, S.I. (2017). The Importance of the Circadian Clock in
719 Regulating Plant Metabolism. *Int J Mol Sci* 18.
720 Kreyling, J. (2010). Winter climate change: a critical factor for temperate vegetation performance. *Ecology* 91, 1939-
721 48.
722 Lee C-M, F., A, Adamchek C, Webb K, Pruneda-Paz J, Bennett EJ, Kay SA, Gendron JM (2017). Decoys reveal the
723 genetic and biochemical roles of redundant plant E3 ubiquitin ligases. *biorXiv*.
724 Lee, C.M., Feke, A., Li, M.W., Adamchek, C., Webb, K., Pruneda-Paz, J., Bennett, E.J., Kay, S.A., and Gendron, J.M.
725 (2018). Decoys Untangle Complicated Redundancy and Reveal Targets of Circadian Clock F-Box Proteins. *Plant*
726 *physiology* 177, 1170-1186.
727 Lumsden, P.J., and Millar, A.J. (1998). Biological rhythms and photoperiodism in plants (Oxford Washington, D.C.
728 Herndon, VA: Bios Scientific Publishers ;
729 Bios Scientific Publishers distributor)
730 Mengin, V., Pyl, E.T., Alexandre Moraes, T., Sulpice, R., Krohn, N., Encke, B., and Stitt, M. (2017). Photosynthate
731 partitioning to starch in *Arabidopsis thaliana* is insensitive to light intensity but sensitive to photoperiod due to a
732 restriction on growth in the light in short photoperiods. *Plant, cell & environment* 40, 2608-2627.
733 Michael, T.P., Mockler, T.C., Breton, G., McEntee, C., Byer, A., Trout, J.D., Hazen, S.P., Shen, R., Priest, H.D., Sullivan,
734 C.M., et al. (2008). Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules.
735 *PLoS Genet* 4, e14.
736 Millar, A.J., Carre, I.A., Strayer, C.A., Chua, N.H., and Kay, S.A. (1995a). Circadian clock mutants in *Arabidopsis*
737 identified by luciferase imaging. *Science (New York, N.Y.)* 267, 1161-3.
738 Millar, A.J., Short, S.R., Chua, N.H., and Kay, S.A. (1992). A novel circadian phenotype based on firefly luciferase
739 expression in transgenic plants. *The Plant cell* 4, 1075-87.

740 Millar, A.J., Straume, M., Chory, J., Chua, N.H., and Kay, S.A. (1995b). The regulation of circadian period by
741 phototransduction pathways in *Arabidopsis*. *Science* (New York, N.Y.) 267, 1163-6.

742 Mockler, T.C., Michael, T.P., Priest, H.D., Shen, R., Sullivan, C.M., Givan, S.A., McEntee, C., Kay, S.A., and Chory, J.
743 (2007). The DIURNAL project: DIURNAL and circadian expression profiling, model-based pattern matching, and
744 promoter analysis. *Cold Spring Harb Symp Quant Biol* 72, 353-63.

745 Moraes, T.A., Mengin, V., Annunziata, M.G., Encke, B., Krohn, N., Hohne, M., and Stitt, M. (2019). Response of the
746 Circadian Clock and Diel Starch Turnover to One Day of Low Light or Low CO₂. *Plant physiology* 179, 1457-1478.

747 Nakane, Y., and Yoshimura, T. (2019). Photoperiodic Regulation of Reproduction in Vertebrates. *Annu Rev Anim
748 Biosci* 7, 173-194.

749 Nelson, R.J., Denlinger, D.L., and Somers, D.E. (2010). *Photoperiodism : the biological calendar* (Oxford ; New York:
750 Oxford University Press)

751 Ogata, H., Goto, S., Fujibuchi, W., and Kanehisa, M. (1998). Computation with the KEGG pathway database.
752 *Biosystems* 47, 119-28.

753 Oquist, G., and Huner, N.P. (2003). Photosynthesis of overwintering evergreen plants. *Annu Rev Plant Biol* 54, 329-
754 55.

755 Phillips, A.R., Suttangkakul, A., and Vierstra, R.D. (2008). The ATG12-conjugating enzyme ATG10 is essential for
756 autophagic vesicle formation in *Arabidopsis thaliana*. *Genetics* 178, 1339-53.

757 Putterill, J., Robson, F., Lee, K., Simon, R., and Coupland, G. (1995). The CONSTANS gene of *Arabidopsis* promotes
758 flowering and encodes a protein showing similarities to zinc finger transcription factors. *Cell* 80, 847-57.

759 Roenneberg, T., and Merrow, M. (2001). Seasonality and photoperiodism in fungi. *J Biol Rhythms* 16, 403-14.

760 Saunders, D.S. (1997). Insect circadian rhythms and photoperiodism. *Invert Neurosci* 3, 155-64.

761 Saunders, D.S. (2005). Erwin Bunning and Tony Lees, two giants of chronobiology, and the problem of time
762 measurement in insect photoperiodism. *J Insect Physiol* 51, 599-608.

763 Saunders, D.S. (2020). Dormancy, Diapause, and the Role of the Circadian System in Insect Photoperiodism. *Annu
764 Rev Entomol* 65, 373-389.

765 Shim, J.S., and Imaizumi, T. (2015). Circadian clock and photoperiodic response in *Arabidopsis*: from seasonal
766 flowering to redox homeostasis. *Biochemistry* 54, 157-70.

767 Song, Y.H., Shim, J.S., Kinmonth-Schultz, H.A., and Imaizumi, T. (2015). Photoperiodic flowering: time measurement
768 mechanisms in leaves. *Annu Rev Plant Biol* 66, 441-64.

769 Stromme, C.B., Julkunen-Tiitto, R., Olsen, J.E., Nybakken, L., and Tognetti, R. (2017). High daytime temperature
770 delays autumnal bud formation in *Populus tremula* under field conditions. *Tree Physiol* 37, 71-81.

771 Suarez-Lopez, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F., and Coupland, G. (2001). CONSTANS mediates
772 between the circadian clock and the control of flowering in *Arabidopsis*. *Nature* 410, 1116-20.

773 Tan, Y., Merrow, M., and Roenneberg, T. (2004). Photoperiodism in *Neurospora crassa*. *J Biol Rhythms* 19, 135-43.

774 Valverde, F., Mouradov, A., Soppe, W., Ravenscroft, D., Samach, A., and Coupland, G. (2004). Photoreceptor
775 regulation of CONSTANS protein in photoperiodic flowering. *Science* (New York, N.Y.) 303, 1003-6.

776 Vince-Prue, D. (1975). *Photoperiodism in plants* (London ; New York: McGraw-Hill)

777 Vitasse, Y., Lenz, A., and Körner, C. (2014). The interaction between freezing tolerance and phenology in temperate
778 deciduous trees. *Front Plant Sci* 5, 541.

779 Walker, W.H., 2nd, Melendez-Fernandez, O.H., Nelson, R.J., and Reiter, R.J. (2019). Global climate change and
780 invariable photoperiods: A mismatch that jeopardizes animal fitness. *Ecol Evol* 9, 10044-10054.

781 Yanovsky, M.J., and Kay, S.A. (2002). Molecular basis of seasonal time measurement in *Arabidopsis*. *Nature* 419,
782 308-12.

783 Yoshida, Y., Adachi, E., Fukiya, K., Iwai, K., and Tanaka, K. (2005). Glycoprotein-specific ubiquitin ligases recognize N-
784 glycans in unfolded substrates. *EMBO Rep* 6, 239-44.

785 Yoshida, Y., Mizushima, T., and Tanaka, K. (2019). Sugar-Recognizing Ubiquitin Ligases: Action Mechanisms and
786 Physiology. *Front Physiol* 10, 104.

787 Yoshida, Y., Tokunaga, F., Chiba, T., Iwai, K., Tanaka, K., and Tai, T. (2003). Fbs2 is a new member of the E3 ubiquitin
788 ligase family that recognizes sugar chains. *The Journal of biological chemistry* 278, 43877-84.

789 Zhi, T., Zhou, Z., Huang, Y., Han, C., Liu, Y., Zhu, Q., and Ren, C. (2016). Sugar suppresses cell death caused by
790 disruption of fumarylacetoacetate hydrolase in *Arabidopsis*. *Planta* 244, 557-71.

791

Materials and Methods:

Plant materials and growth conditions

The *PP2-A13_{promoter}::Luciferase* transgenic line was generated in this study as described in section “plasmid construction”. The *PP2-A13* complementation line was generated by transformation of agrobacteria GV3101 harboring *PP2-A13_{promoter}::gPP2-A13* construct into the *pp2-a13-1* background. The transgenic lines were selected by hygromycin and genotyping. The Arabidopsis seeds of Col-0, *pp2-a13-1* (SALK_101611), *pgm-1* (CS210), *sex1-1* (CS3093), *co-9* (CS870084), *atg5-1* (CS39993), and *atg7-2* (CS69859) were obtained from ABRC. *pp2-a13-1* was also crossed to *atg5-1*, *atg7-2*, and *pgm* mutants and the double mutants were identified by genotyping. *PP2-A13_{promoter}::Luciferase* transgenic line was crossed to *co-9*, *pgm*, and *sex1* mutant and the homozygous lines were identified by genotyping and bioluminescence imaging. The *pgm-1* allele was genotyped as described by (Veley, et al., 2012). The *sex1-1* allele was genotyped by PCR followed by *StyI* digestion (WT = 387 bp + 607 bp). The primers used for genotyping are listed in table S5.

Regarding samples for qRT-PCR assays, seeds from Arabidopsis Col-0 or the indicated mutant were sown on filter paper soaked with 0.5X Murashige and Skoog agar plates (pH 5.7) and stratified at 4°C for 2 days in the dark. Afterwards, the plates were transferred to a growth chamber at 22°C illuminated by white fluorescent lamps at 150 $\mu\text{mol m}^{-2} \text{s}^{-1}$ under photoperiod of 16L:8D, 12L:12D, or 8L:16D for the indicated duration. Specifically, for figure 2A, seeds were given 24 hours for germination and the seedlings were harvested on the thirteenth day after germination. Triplicates were collected every 4 hours starting at ZT0. For the ZT0 time point, collection took place 5 minutes before dawn. For the dusk time point of the respective photoperiod, collection took place in the light. Whole seedlings were snap-frozen with liquid nitrogen. For soil-grown plants, after two days stratification, seeds were germinated and grown in Fafard-2 mix at 22 °C under 16L:8D or 8L:16D.

Plasmid construction

For the *PP2-A13* complementation plasmids, the *PP2-A13_{promoter}::gPP2-A13* fragment was generated from PCR using Col-0 genomic DNA as template and inserted into pENTR/D-TOPO vectors (Invitrogen, cat. # K240020) then transferred into pGWB16 destination vectors using LR recombination(Nakagawa, et al., 2007).

To generate the *PP2-A13_{promoter}::LUC* construct, a 2233 bp promoter sequence upstream the *PP2-A13* coding sequence was obtained by PCR and inserted into pENTR vector and then transferred into the pFLASH destination vectors to drive the luciferase(Gendron, et al., 2012).

To generate the *PP2-A13_{promoter}::GUS* construct, the 2233 bp promoter sequence was subcloned from entry vector pENTR-*PP2-A13_{pro}* to destination vector pMDC164 by LR recombination (Curtis and Grossniklaus, 2003). The primers used for cloning are listed in table S5.

Luciferase Imaging and Analysis

PP2-A13_{promoter}::Luciferase and *DIN6_{promoter}::Luciferase* seeds were surface sterilized for 20 minutes in 70% ethanol and 0.01% Triton X-100 then sown on freshly poured ½ MS plates (2.15 g/L Murashige and Skoog medium, pH 5.7, Cassion Laboratories, cat. # MSP01 and 0.8% bacteriological agar, AmericanBio cat. # AB01185) without sucrose. Seeds were stratified in the dark for two days at 4°C then transferred

into 22°C, 12L/12D conditions for seven days. Twenty seven-day old seedlings were transferred onto freshly poured 100 mm square ½ MS plates with and without added sugars as indicated for a given experiment, in a 10x10 grid. Seedlings were then treated with 5 mM D-luciferin (Cayman Chemical Company, cat. # 115144-35-9) dissolved in 0.01% TritonX-100, and imaged at 22°C under the indicated conditions. Under light conditions, lights were on for 52 minutes of every hour: the lights are off for two minutes prior to a five minute exposure collected on an Andor iKon-M CCD camera, and then remain off for one minute following the exposure. During the dark period, images were taken during the same five minute time period. Light was provided by two LED light panels (Heliospectra L1) with light fluence rate of 100-150 $\mu\text{mol m}^{-2} \text{s}^{-1}$, unless otherwise indicated. The CCD camera was controlled using Micromanager, using the following settings: binning of 2, pre-amp gain of 2, and a 0.05 MHz readout mode (Edelstein, et al., 2014). Using this setup, up to 400 seedlings are simultaneously imaged across four plates. Images are acquired each hour for approximately six and a half days. Data was collected for the entire imaging period (the end of day 7 through the dawn of day 14) but only the data collected between days 10 and 14 of plant growth are presented in figures and used for analyses. The mean intensity of each seedling at each time point was calculated using ImageJ (Schneider, et al., 2012). These raw values are presented as raw trace plots.

Normalization of luciferase imaging data

For normalization, the maximum and minimum expression values in a 25 hour period (defined as either one hour before dawn to the subsequent dawn or one hour before dusk to the subsequent dusk, as indicated for each experiment) were calculated. The minimum expression value was subtracted from each expression value, then this value was divided by the difference in expression between the maximum and minimum expression within that 24 hour period.

$$\text{Expression}_{\text{normalized}} = \frac{(\text{Expression}_{\text{raw}} - \text{Expression}_{\text{minimum}})}{(\text{Expression}_{\text{maximum}} - \text{Expression}_{\text{minimum}})}$$

The mean and standard deviation of these normalized expression values were calculated for all days within an experiment of the same light conditions, unless otherwise indicated. Only the normalized expression values from dawn to dawn or dusk to dusk are plotted. The rate of change in expression was also calculated from the normalized expression values by calculating the difference between the expression at time t and the expression at time $t-1$. Because of the nature of this calculation, only 24 rate values are calculated. The mean and standard deviation of these rate values were calculated for all days within an experiment of the same light conditions, unless otherwise indicated.

Estimation of yearly expression of *PP2-A13_{promoter}::Luciferase*

The total *PP2-A13_{promoter}::Luciferase* intensity is first determined by taking the area under the curve, using the trapezoidal rule for numerical integration, for the six different light/dark conditions in figure S4. Since the plots in figure S4 are averaged over multiple days, a correction in the total *PP2-A13_{promoter}::Luciferase* intensity for the growth of the plant should be included. This is done by taking the intensity value at dusk and at 23 hours after dusk, connecting these points with a straight line, evaluating the resulting area under the curve (area of a triangle), then subtracting the total area under the curve by that triangular area. The area correction helps diminish the effects of plant growth. These corrected areas are then divided by the largest value (the 8L:16D condition) to obtain the normalized *PP2-A13_{promoter}::Luciferase* intensity. The normalized intensities are then fit with an approximately sigmoid function

$$c_1 \frac{x^{c_2}}{c_3^{c_2} + x^{c_2}} + c_4$$

The built in non-linear data fitting tool in Xmgrace was used to determine the best fit parameters to the data are $c_1 = 0.62$, $c_2 = 26.27$, $c_3 = 12.67$, and $c_4 = 0.37$.

Using the sigmoidal fit from figure S5, the expression of *PP2-A13_{promoter}::Luciferase* over the course of a year is estimated. Since *Arabidopsis* Columbia ecotype was first isolated in Landsberg, Germany (<https://peerj.com/preprints/26931v5/>) (latitude, ~48° N), the length of the night for each day in 2019 in Landsberg, Germany (<https://www.timeanddate.com/sun/germany/landsberg-am-lech>) was used to estimate the daily normalized expression of *PP2-A13_{promoter}::Luciferase*.

qRT-PCR

For qRT-PCR experiments, RNA extraction was performed with two different methods. For figures 3A and 5A, total RNA was extracted from *Arabidopsis* seedlings grown in indicated conditions using TRIzol™ reagent (ThermoFisher, cat. #15596026); for the remaining figures 4B, 4D, 4E, 5D, 5E, and S2D, extraction was performed with RNeasy Plant Mini Kit (QIAGEN cat. # 74904). In both methods, the resulted RNA was subsequently treated with DNase (QIAGEN, cat. # 79254). The subsequent reverse-transcription and conditions for qRT-PCR reactions were described previously with minor modifications (Lee, et al., 2018). Four hundred nanograms of total RNA were used for reverse-transcription using iScript™ Reverse Transcription Supermix for RT-qPCR (Bio-Rad, cat. # 1708841). iTaq Universal SYBR Green Supermix was used for qRT-PCR reaction (Bio-Rad, cat. # 1725121). *IPP2* (AT3G02780) or *UBQ10* (AT4G05320) was used as an internal control as indicated. The relative expression represents means of $2^{(-\Delta CT)}$ from three biological replicates, in which $\Delta CT = (CT \text{ of Gene of Interest} - CT \text{ of internal control})$. The primers are listed in Table S5.

Clustering analysis

The time-course microarray dataset was downloaded from the DIURNAL database (<ftp://www.mocklerlab.org/diurnal>) (Michael, et al., 2008; Mockler, et al., 2007). Relative daily expression integral for a transcript was calculated as: (sum of expression values in the DIURNAL “shortday” 8L:16D condition) / (sum of expression values in the DIURNAL “longday” 16L:8D condition). For the k-means clustering by both 16L:8D and 8L:16D expression values (Fig.1B), we performed log₂-transformation followed by Z-score transformation in a gene-wise manner across both 16L:8D and 8L:16D expression values. We performed k-means clustering with the ‘kmeans’ function from scikit-learn python package (Pedregosa, et al., 2011) and determined the number of clusters using the elbow method with inertia.

For the hierarchical clustering analysis (Fig.1C), we performed log₂-transformation of the data followed by Z-score transformation in a gene-wise manner separately for each time course to obtain the pattern. Principal components amounting to just above 90% of the total variance were used for clustering using the ‘factoextra’ R package (Alboukadel Kassambara and Fabian Mundt (2020). factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7. <https://CRAN.R-project.org/package=factoextra>). Gene-wise Pearson correlation was used as similarity measure for hierarchical clustering using the R ‘hclust’ function with average linkage. The ‘cutreeDynamic’ function from the ‘dynamicTreeCut’ R package (Langfelder, et al., 2008) was used to identify clusters from the dendrogram, with the parameters: method="hybrid", minClusterSize=50, deepSplit=1, pamStage=FALSE.

For figure 1D, clusters of strongly photoperiodic expression were identified by testing the mean $\log_2(rDEI_{8L:16D/16L:8D})$ of the cluster against zero using the one-sample Wilcoxon signed rank test. All three identified clusters with $-\log_{10}(\text{adjusted } p\text{-value}) > 20$ (Bonferroni correction) were 8L:16D-induced.

All code used for clustering analysis are provided in the supplementary materials.

Functional enrichment analysis

Only clusters that have at least 40 transcripts were tested for enrichment of functional annotations. Enrichment analysis of Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways was performed with the R package 'clusterProfiler', using the enrichGO function and the enrichKEGG function with the parameters: pAdjustMethod = "BH", pvalueCutoff = 0.05, qvalueCutoff = 0.05, respectively (Yu, et al., 2012; Hvidsten, et al., 2001; Kanehisa and Goto, 2000; Ogata, et al., 1998). Highly similar GO terms were merged with the 'simplify' function with the parameters: cutoff = 0.5, measure = 'Wong', by='p.adjust'. Since redundant annotations were still present after merging, notable annotations were manually selected for figure 1B. The full list of annotations is available in the Supplementary materials.

GUS histochemical analysis

For GUS assay, the *PP2-A13_{promoter}::GUS* transgenic plant was grown in 12L:12D for 12 days and then transferred to 8L:16D for 3 more days. The plant was freshly harvested and stained at 37 °C over night with 2 mM 5-bromo-4-chloro-3-indolyl-beta-D-glucuronic acid (X-glu) in 100 mM potassium phosphate buffer, pH 7.0, containing 0.1% (v/v) Triton X-100, 1 mM K₃Fe(CN)₆ and 10 mM EDTA. Tissues were cleared before observation by washing with 75% (v/v) ethanol.

Subcellular localization

For subcellular localization studies, the coding sequences of the *PP2-A13* gene were recombined into pGW-GFP vector which harbors an in-frame C-terminal GFP and is driven by the *Cauliflower mosaic virus* (*CaMV*) 35S promoter. The 35S::*PP2-A13-GFP* construct was co-transformed with 35S::*mCherry-VirD2NLS* as a nuclear marker (Citovsky, et al., 2006). Arabidopsis protoplast transfection was performed as previously described (Yoo, et al., 2007) and the subcellular localization of the fluorescent-tagged protein was detected with a Nikon ECLIPSE Ti confocal microscope system.

Immunoblotting

For immunoblot analysis, WT and *pp2-a13-1* mutant plants were ground in liquid nitrogen. Crude proteins were extracted with SII buffer (100 mM sodium phosphate, pH 8, 150 mM NaCl, 5 mM EDTA, and 0.1% [v/v] Triton X-100) with cOmplete EDTA-free Protease Inhibitor Cocktail (Roche, catalog no. 11873580001) and 1 mM phenylmethylsulfonyl fluoride. Protein concentration was quantified with a Pierce BCA Protein Assay Kit (Thermo Fisher Scientific, catalog no. 23225). Approximately 50 µg of total protein was loaded and separated on 12% (w/v) SDS-PAGE for immunoblot analyses. ATG8a and actin protein levels were detected with anti-ATG8a antibody (1:1000; abcam, ab77003) and anti-actin antibody (1:3000; Millipore-Sigma, SAB4301137).

Glycoprotein staining

For glycoprotein staining, the procedure of protein extraction, quantification, and separation are the same as the procedure in section “Immunoblotting”. The glycoproteins in polyacrylamide gel was detected with Pierce Glycoprotein Staining Kit (catalog no. 24562) according to the manufacturer’s procedure.

Materials and Methods References

Citovsky, V., Lee, L.Y., Vyas, S., Glick, E., Chen, M.H., Vainstein, A., Gafni, Y., Gelvin, S.B., and Tzfira, T. (2006). Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta. *J Mol Biol* 362, 1120-31.

Curtis, M.D., and Grossniklaus, U. (2003). A gateway cloning vector set for high-throughput functional analysis of genes in planta. *Plant physiology* 133, 462-9.

Edelstein, A.D., Tsuchida, M.A., Amodaj, N., Pinkard, H., Vale, R.D., and Stuurman, N. (2014). Advanced methods of microscope control using muManager software. *J Biol Methods* 1.

Gendron, J.M., Pruneda-Paz, J.L., Doherty, C.J., Gross, A.M., Kang, S.E., and Kay, S.A. (2012). Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. *Proceedings of the National Academy of Sciences of the United States of America* 109, 3167-72.

Hvidsten, T.R., Komorowski, J., Sandvik, A.K., and Laegreid, A. (2001). Predicting gene function from gene expressions and ontologies. *Pac Symp Biocomput*, 299-310.

Kanehisa, M., and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. *Nucleic Acids Res* 28, 27-30.

Langfelder, P., Zhang, B., and Horvath, S. (2008). Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. *Bioinformatics* 24, 719-20.

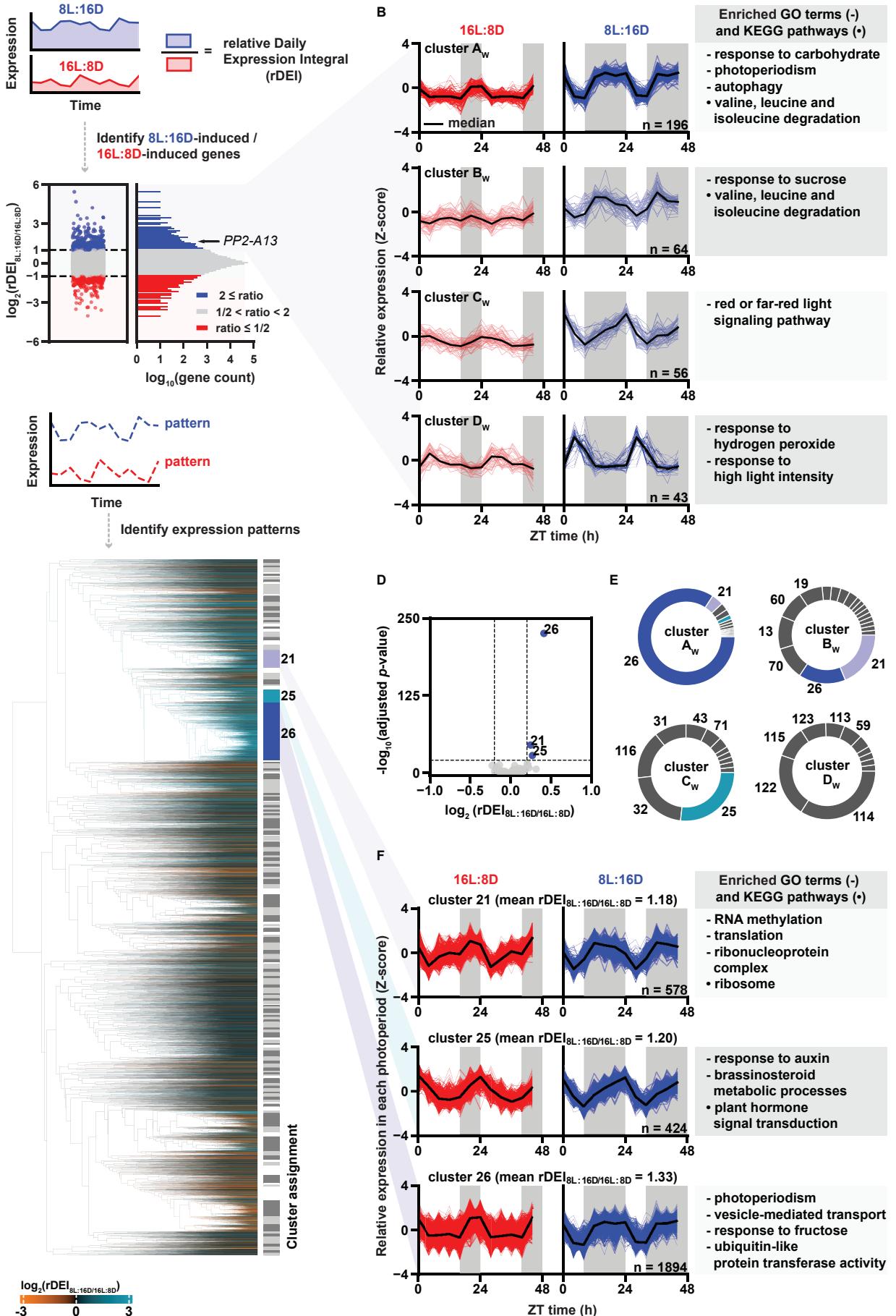
Lee, C.M., Feke, A., Li, M.W., Adamchek, C., Webb, K., Pruneda-Paz, J., Bennett, E.J., Kay, S.A., and Gendron, J.M. (2018). Decoys Untangle Complicated Redundancy and Reveal Targets of Circadian Clock F-Box Proteins. *Plant physiology* 177, 1170-1186.

Michael, T.P., Mockler, T.C., Breton, G., McEntee, C., Byer, A., Trout, J.D., Hazen, S.P., Shen, R., Priest, H.D., Sullivan, C.M., et al. (2008). Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules. *PLoS Genet* 4, e14.

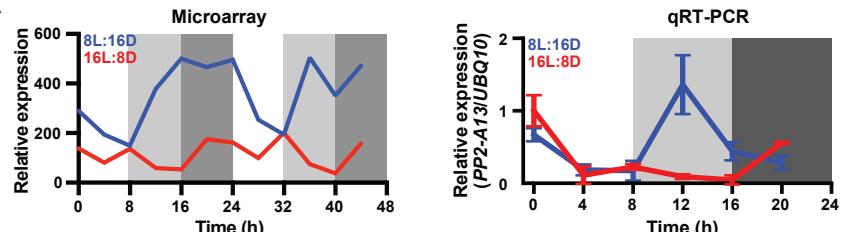
Mockler, T.C., Michael, T.P., Priest, H.D., Shen, R., Sullivan, C.M., Givan, S.A., McEntee, C., Kay, S.A., and Chory, J. (2007). The DIURNAL project: DIURNAL and circadian expression profiling, model-based pattern matching, and promoter analysis. *Cold Spring Harb Symp Quant Biol* 72, 353-63.

Nakagawa, T., Kurose, T., Hino, T., Tanaka, K., Kawamukai, M., Niwa, Y., Toyooka, K., Matsuoka, K., Jinbo, T., and Kimura, T. (2007). Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. *J Biosci Bioeng* 104, 34-41.

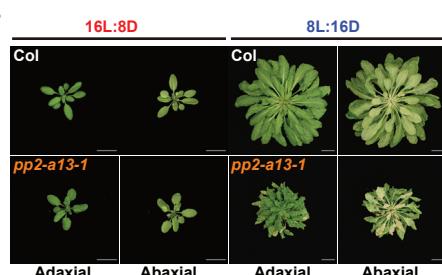
Ogata, H., Goto, S., Fujibuchi, W., and Kanehisa, M. (1998). Computation with the KEGG pathway database. *Biosystems* 47, 119-28.

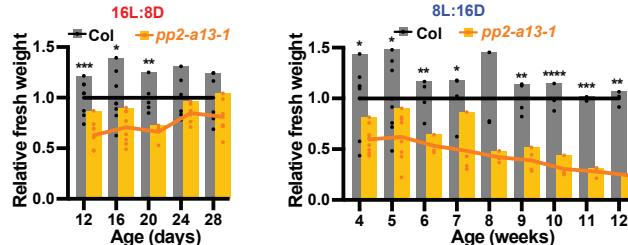

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine Learning in Python. *J Mach Learn Res* 12, 2825-2830.

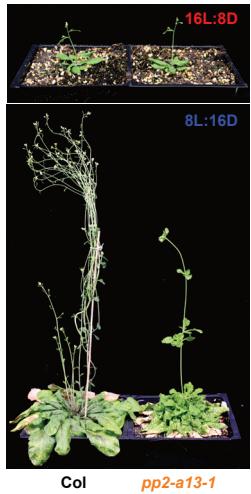
Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. *Nat Methods* 9, 671-5.

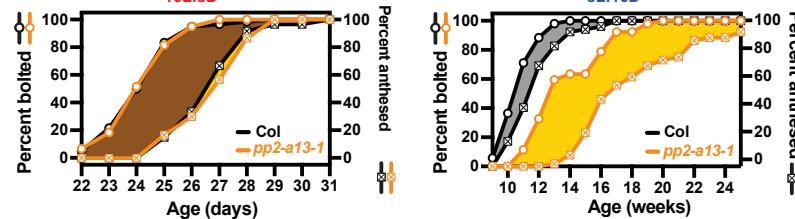

Veley, K.M., Marshburn, S., Clure, C.E., and Haswell, E.S. (2012). Mechanosensitive channels protect plastids from hypoosmotic stress during normal plant growth. *Current biology : CB* 22, 408-13.

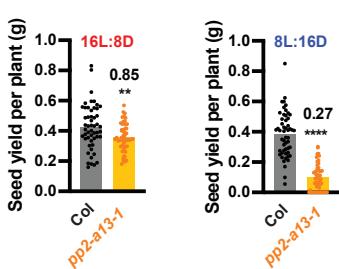
Yoo, S.D., Cho, Y.H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. *Nat Protoc* 2, 1565-72.

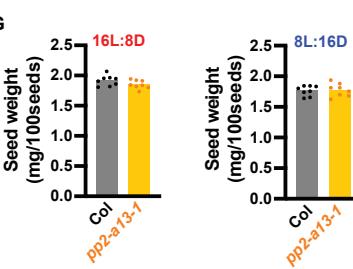

Yu, G., Wang, L.G., Han, Y., and He, Q.Y. (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. *OMICS* 16, 284-7.

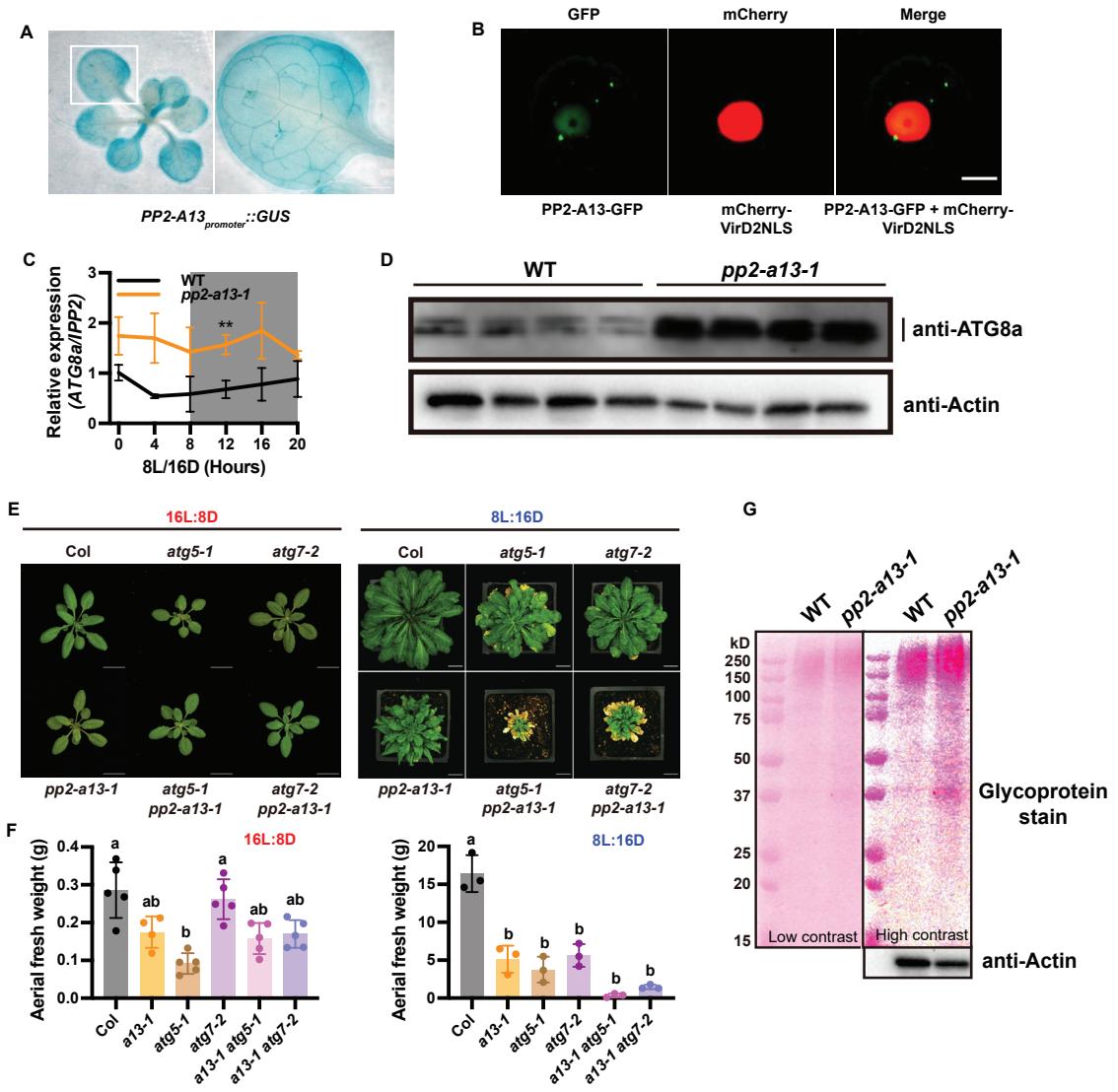

A

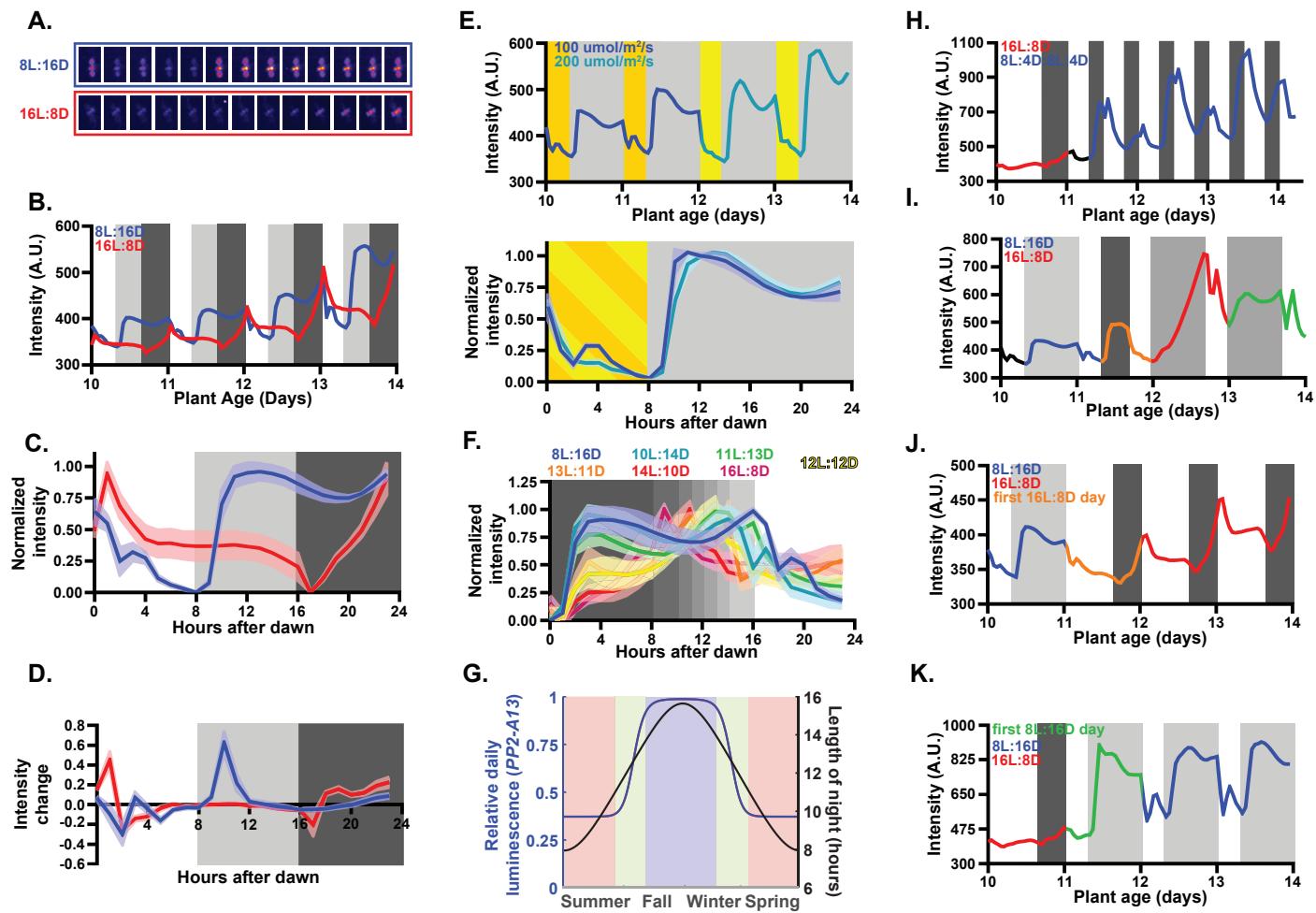

B

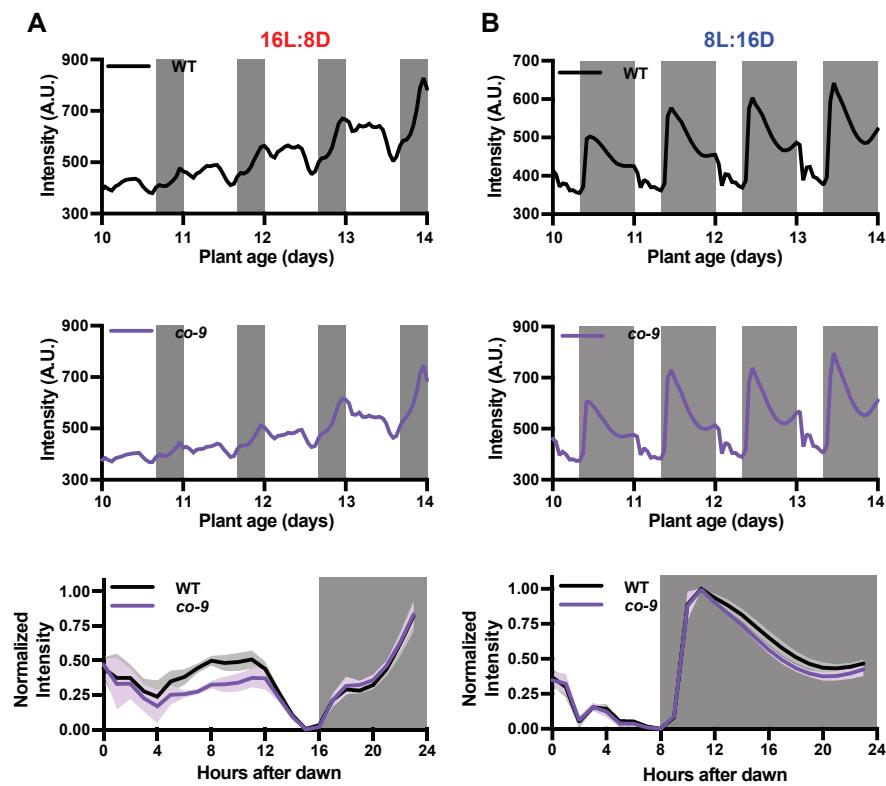

C

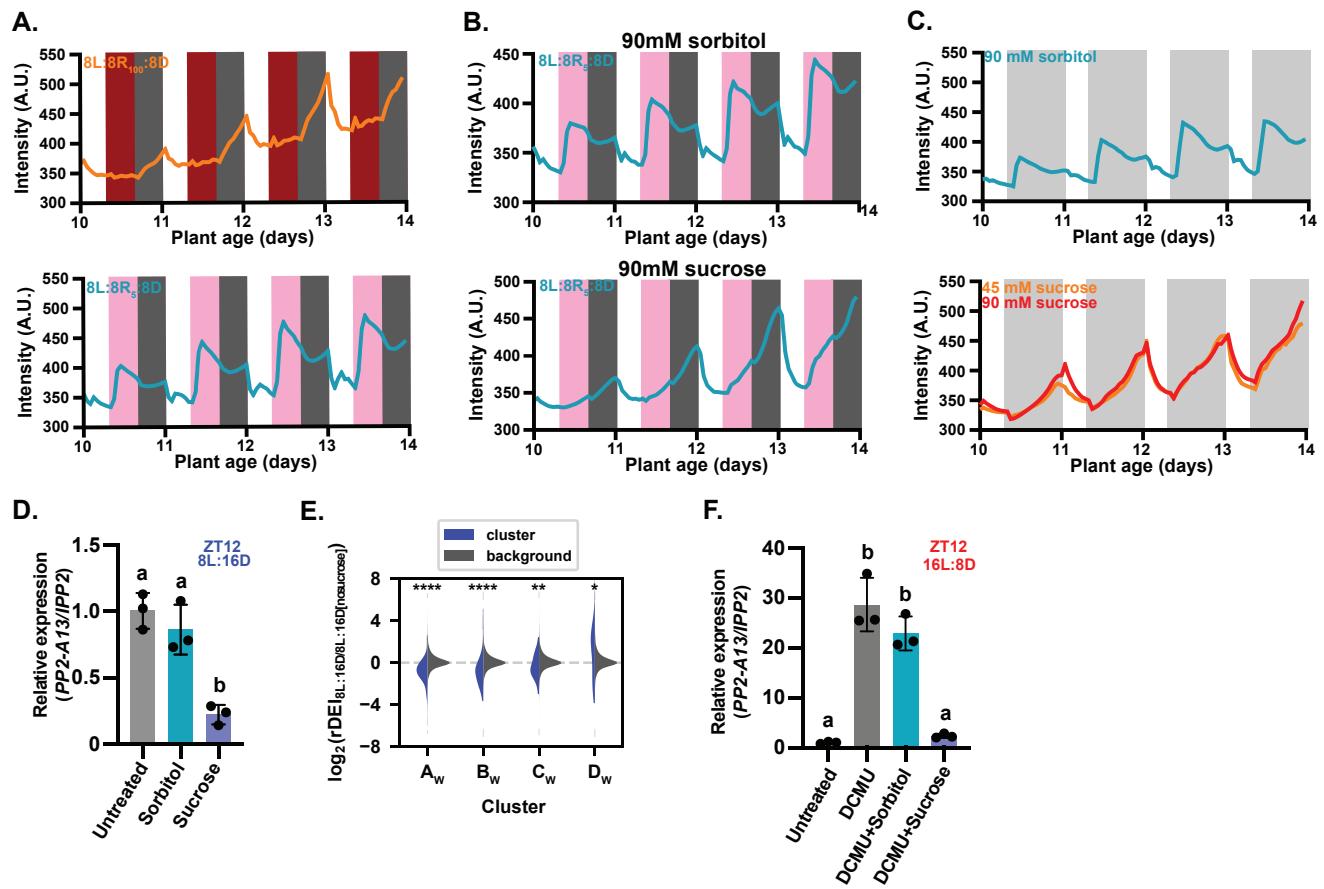

D

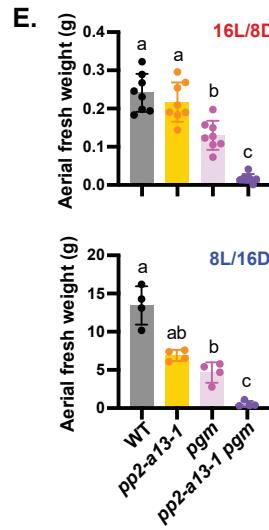
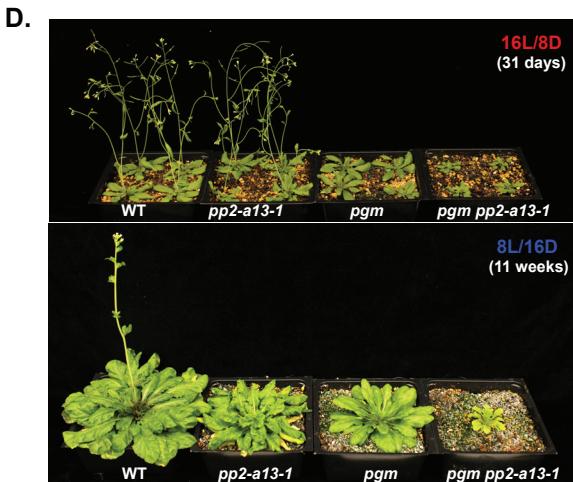
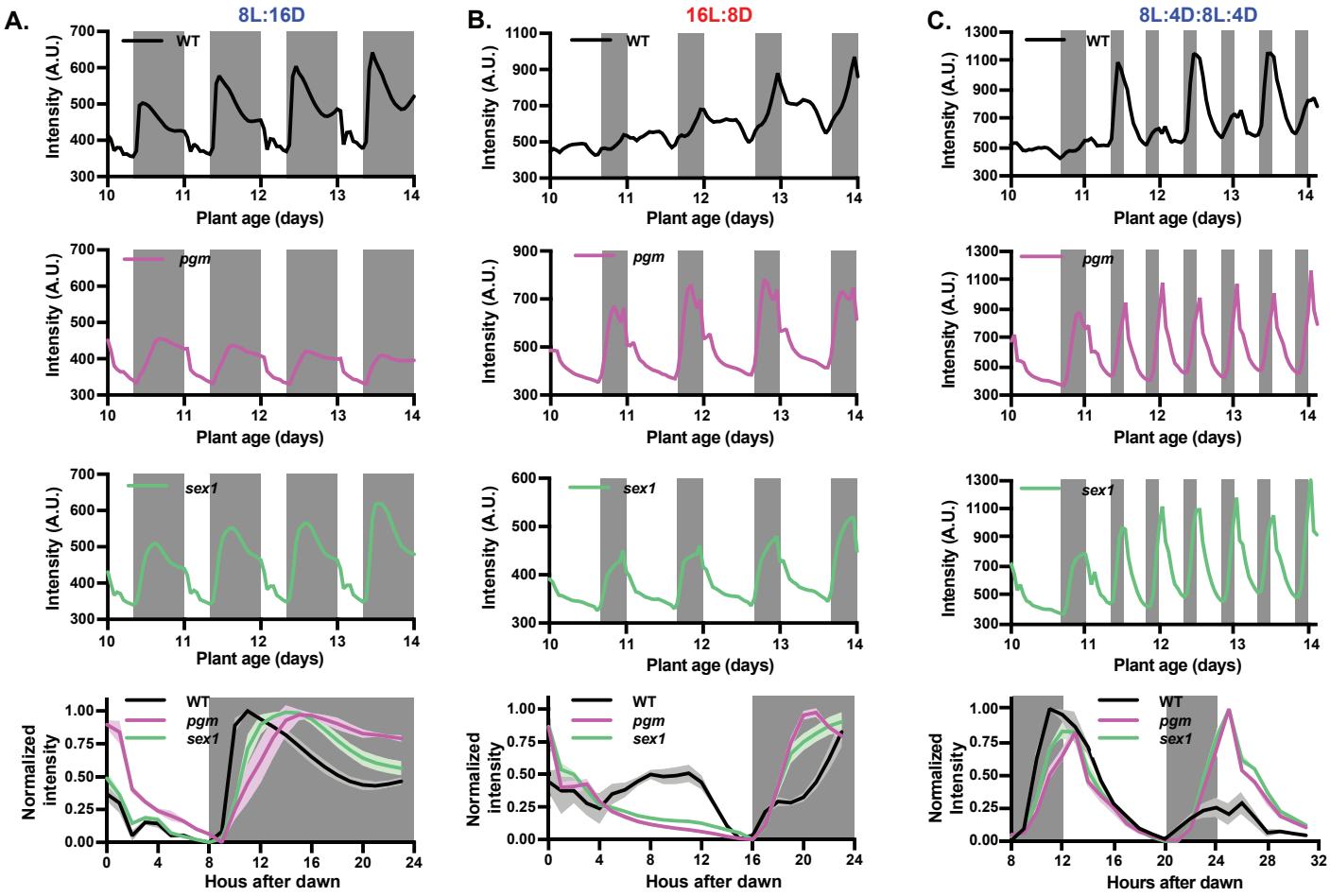

E

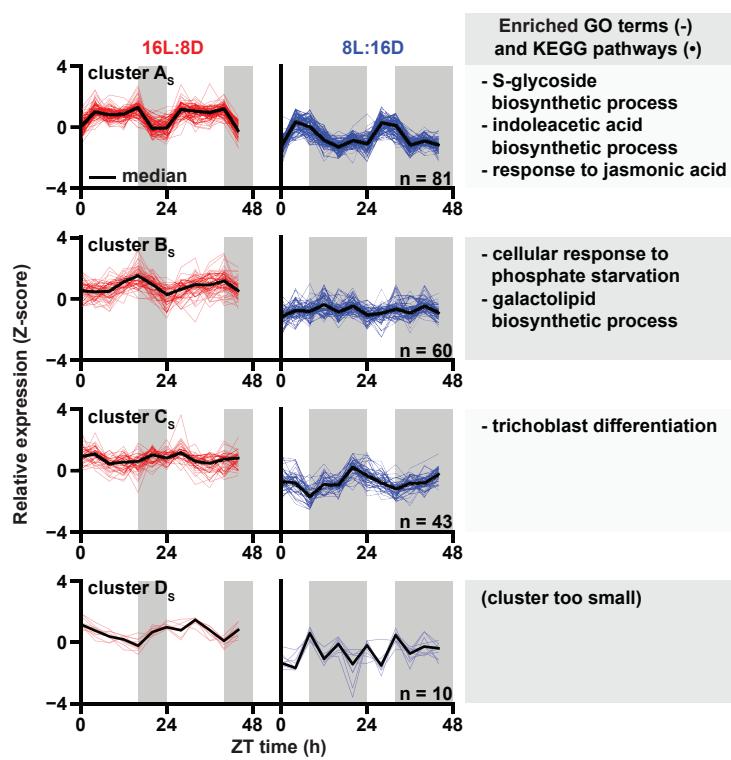


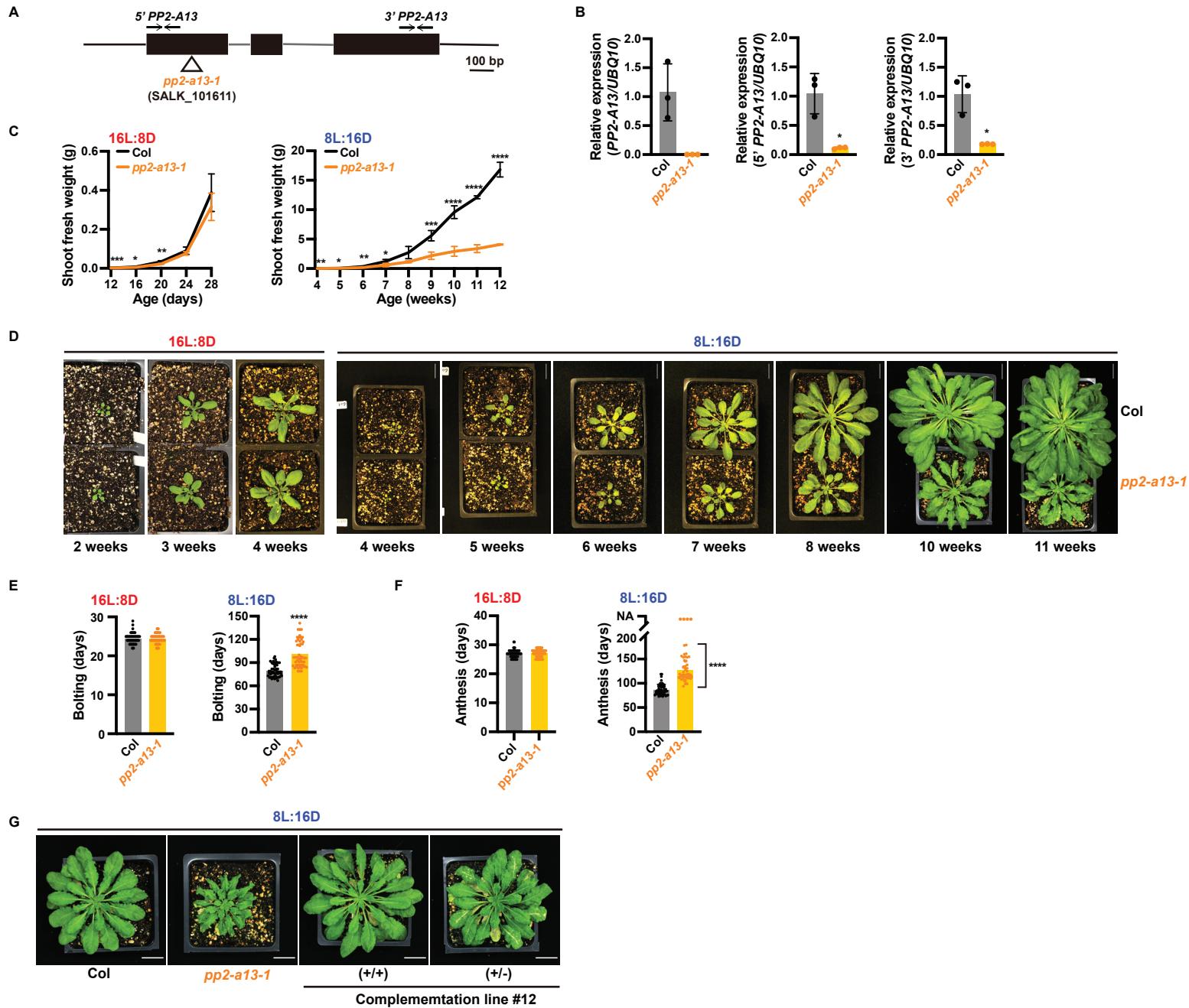

F

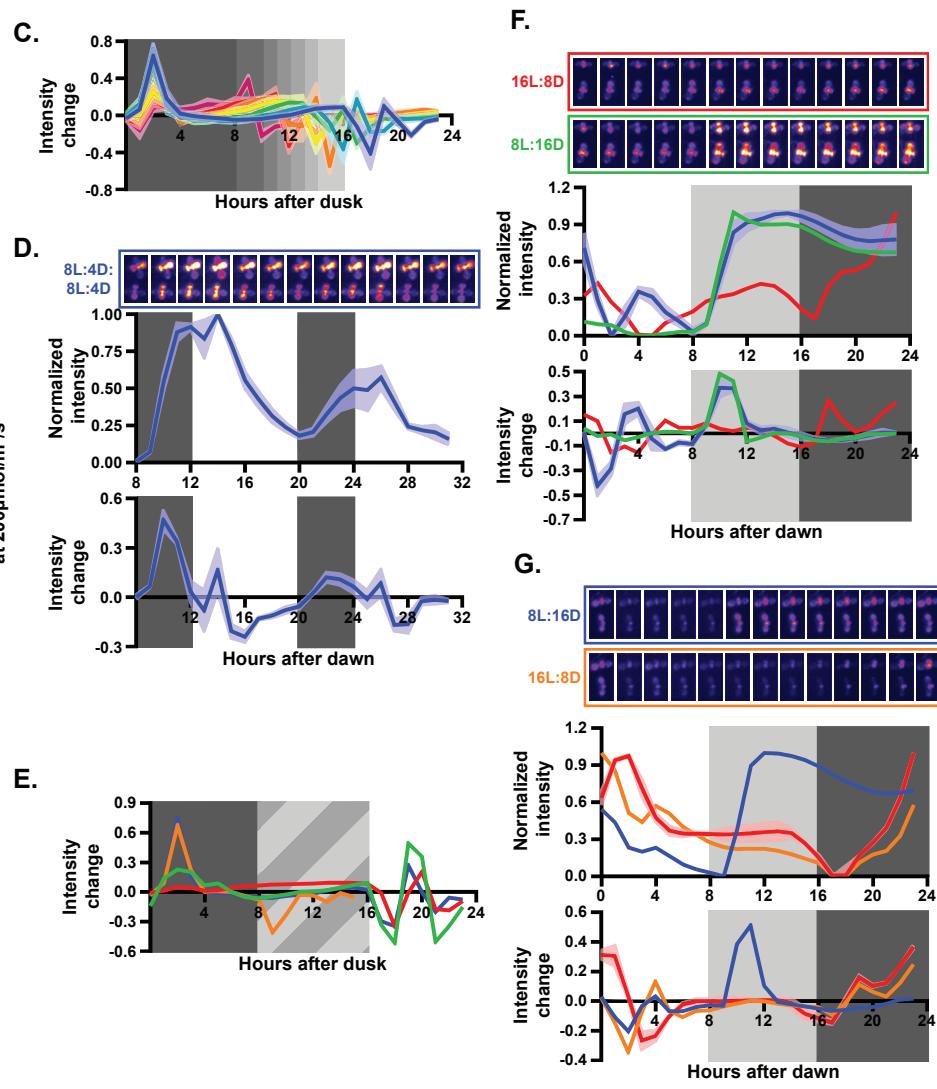
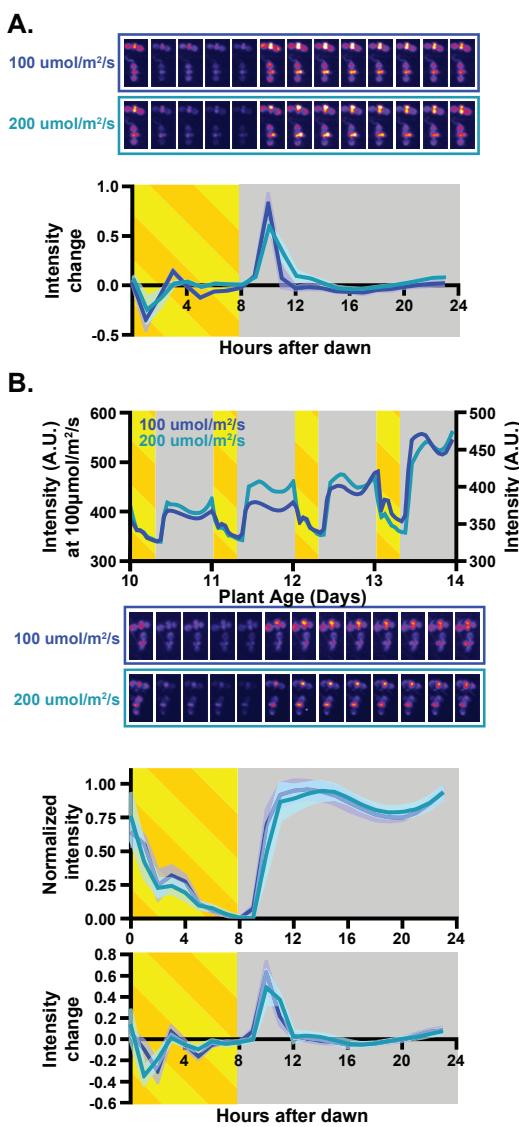


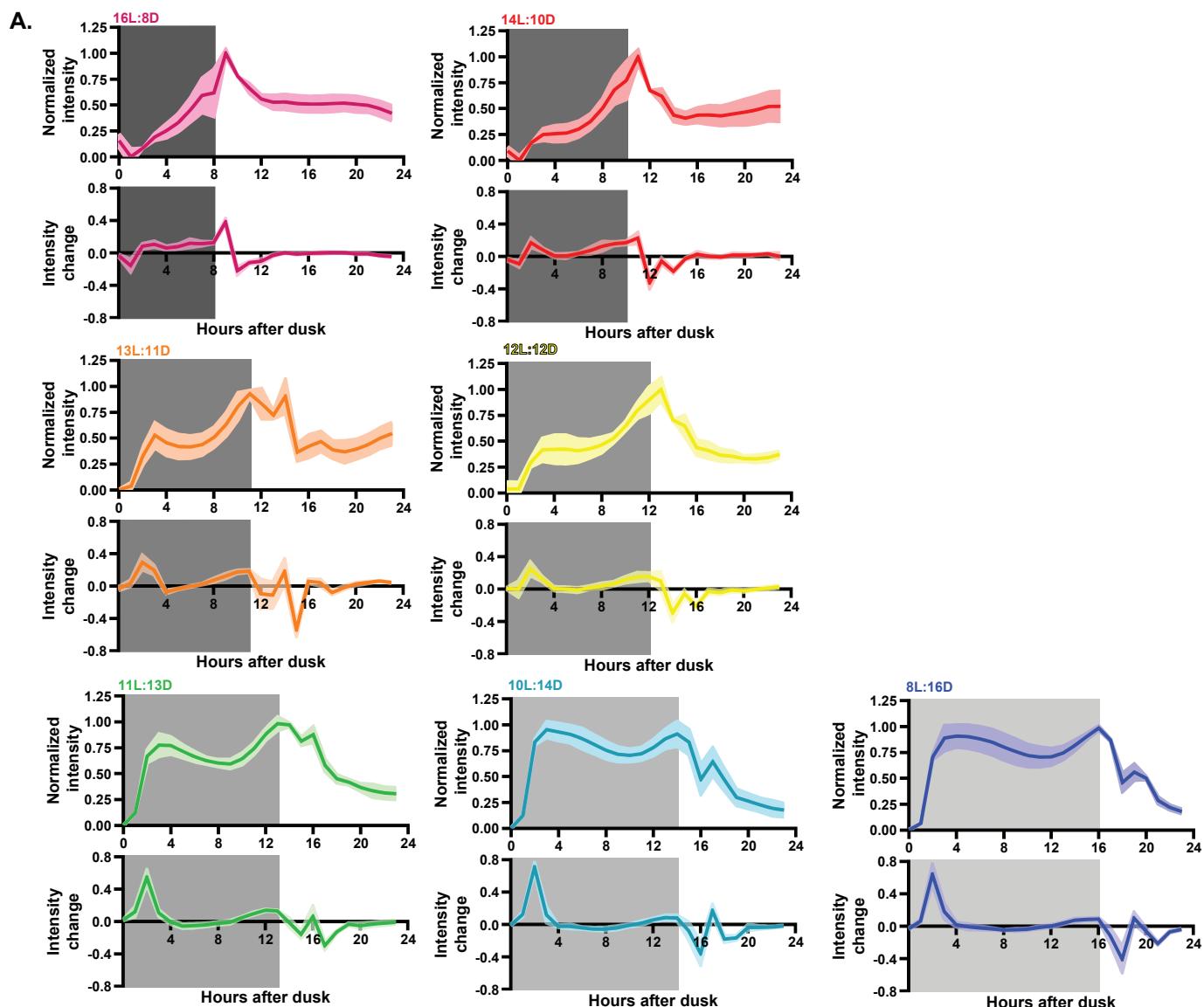
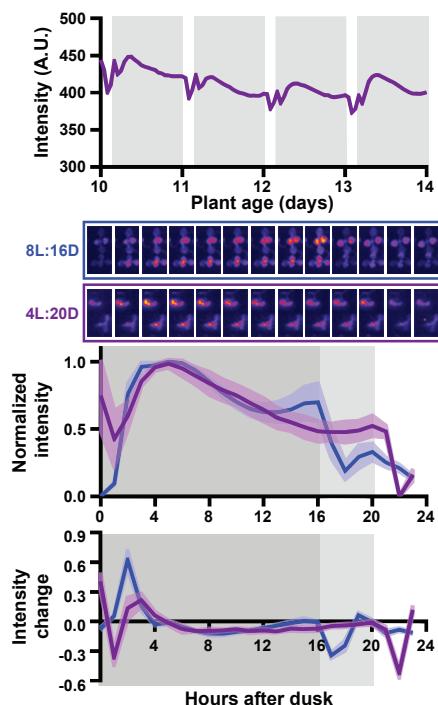
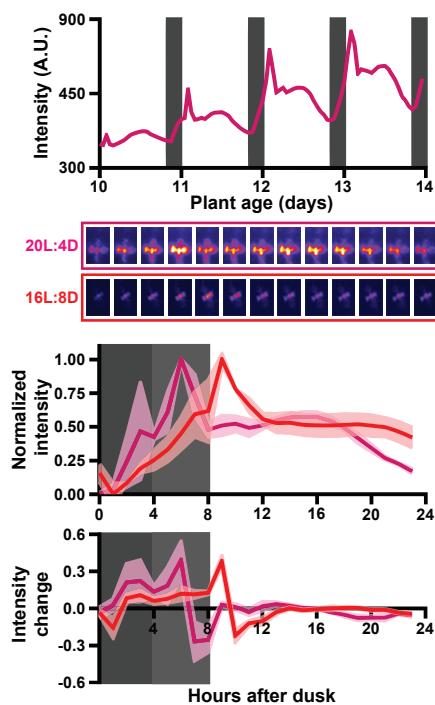

G

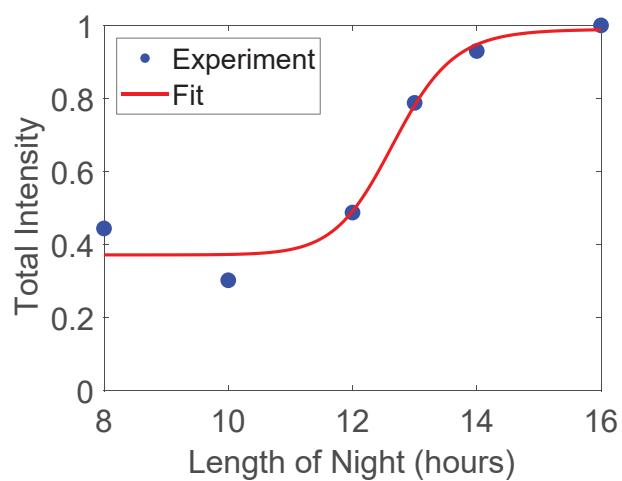




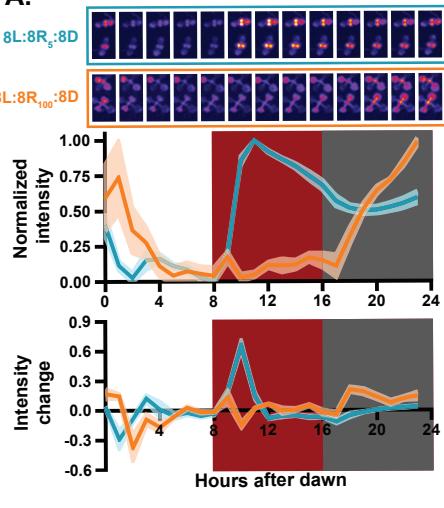
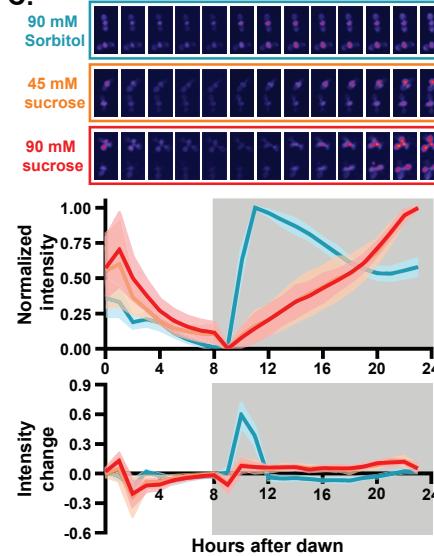
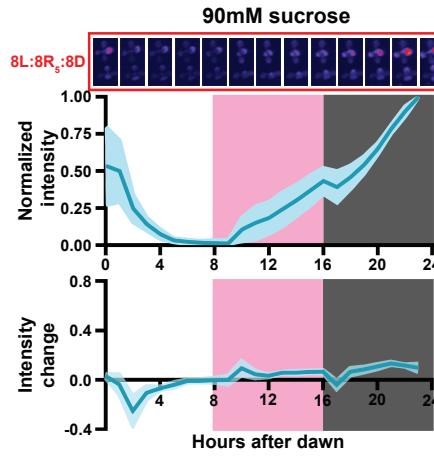
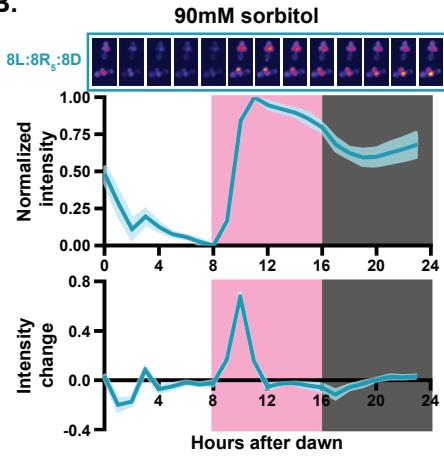


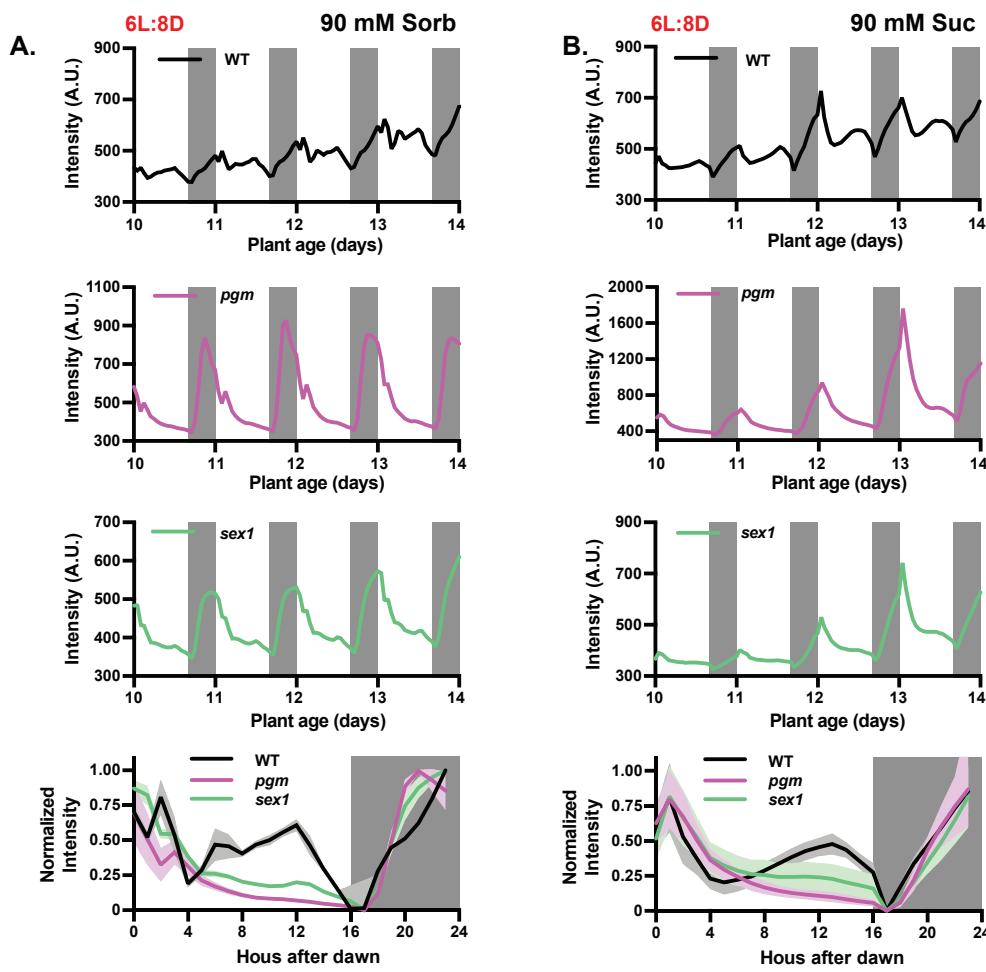






B.**C.**

A.**C.****B.**

