

1
2 **A whole virion vaccine for COVID-19 produced via a novel inactivation**
3 **method: results from animal challenge model studies**
4
5

6 **Authors:** Izabela K Ragan¹, Lindsay M Hartson², Taru S Dutt³, Andres Obregon-Henao³,
7 Rachel M Maison¹, Paul Gordy¹, Amy Fox³, Burton R Karger³, Shaun T Cross³, Marylee L
8 Kapuscinski³, Sarah K Cooper³, Brendan K Podell³, Mark D Stenglein³, Richard A Bowen¹,
9 Marcela Henao-Tamayo³, Raymond P Goodrich^{2,3*}

10 **Affiliations:**

11 ¹ Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United
12 States of America.

13 ² Infectious Disease Research Center, Colorado State University, Fort Collins, Colorado, United
14 States of America.

15 ³ Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort
16 Collins, Colorado, United States of America

17 *Corresponding Author: Raymond P Goodrich, PhD, Infectious Disease Research Center,
18 Colorado State University, 3185 Rampart Road, Fort Collins, CO 80521. Email:
19 Ray.Goodrich@colostate.edu
20

21 I.K.R., L.M.H, R.M.M. and R.A.B. performed all animal work, viral titration and PRNT assays.

22 P.G. performed the PCR assay.

23 T.S.D., A.F., A.O.H., B.R.K., and M.H.T. performed the flow cytometry, ELISA, single-cell
24 sequencing and its analysis.

25 S.T.C., M.L.K., and M.D.S. performed the single cell sequencing, sequence validation and RNA
26 damage analyses.

27 S.K.C. and B.K.P performed histopathology assessments.

28 All authors contributed to assembling the data, writing and reviewing the manuscript, and
29 approved the final version of the manuscript.

30

31

32 **Abstract:** The COVID-19 pandemic has generated intense interest in the rapid development and
33 evaluation of vaccine candidates for this disease and other emerging diseases. Several novel
34 methods for preparing vaccine candidates are currently undergoing clinical evaluation in response
35 to the urgent need to prevent the spread of COVID-19. In many cases, these methods rely on new
36 approaches for vaccine production and immune stimulation. We report on the use of a novel
37 method (SolaVAXTM) for production of an inactivated vaccine candidate and the testing of that
38 candidate in a hamster animal model for its ability to prevent infection upon challenge with SARS-
39 CoV-2 virus. The studies employed in this work included an evaluation of the levels of
40 neutralizing antibody produced post-vaccination, levels of specific antibody sub-types to RBD and
41 spike protein that were generated, evaluation of viral shedding post-challenge, flow cytometric and
42 single cell sequencing data on cellular fractions and histopathological evaluation of tissues post-
43 challenge. The results from this study provide insight into the immunological responses occurring
44 as a result of vaccination with the proposed vaccine candidate and the impact that adjuvant
45 formulations, specifically developed to promote Th1 type immune responses, have on vaccine
46 efficacy and protection against infection following challenge with live SARS-CoV-2. This data
47 may have utility in the development of effective vaccine candidates broadly. Furthermore, the
48 results suggest that preparation of a whole virion vaccine for COVID-19 using this specific
49 photochemical method may have utility in the preparation of one such vaccine candidate.

50

51 **Author Summary:** We have developed a vaccine for COVID-19 which is prepared by a novel
52 method for inactivation of a whole virion particle and tested it in a hamster animal model for its
53 ability to protect against SARS-CoV-2 infection.

54

55 **Introduction**

56 Coronavirus disease 2019 (COVID-19), caused by the virus SARS-CoV-2, continues to
57 spread globally leading to significant impacts on public health [1]. As of August 2020, over 29
58 million total cases have been confirmed and over 900,000 deaths have been reported globally [2].
59 SARS-CoV-2, or Severe Acute Respiratory Syndrome coronavirus 2, causes primarily respiratory
60 infections in humans and is related to other coronaviruses like Middle East Respiratory Syndrome
61 Coronavirus (MERS-CoV) and SARS-CoV [3]. Not only has SARS-CoV-2 caused a public health
62 emergency on a global scale but it continues to have major social, cultural, and economic impacts.
63 Vaccination is the most effective countermeasure for mitigating pandemics and has proven
64 effective against viral pathogens such as smallpox and polio.

65 The emergence of SARS-CoV-2 in human populations spurred the scientific community
66 to development methods to produce vaccines against COVID-19 [4]. Many development paths
67 were initiated using methods that have been applied historically to the production of vaccine
68 candidates as well as new approaches aimed at delivering candidates in a rapid and efficient
69 manner [5]. These methods have included the use of RNA and DNA vaccines, subunit vaccines,
70 attenuated vaccines, as well as vectored vaccines utilizing virus-like particles (VLP), adenovirus
71 or bacterial host constructs. Inactivated vaccines have been a mainstay of vaccinology for decades.
72 Even today, examples of inactivated vaccines include constructs for influenza, cholera, bubonic
73 plague and polio [6]. Each method of vaccine production has merits and limitations. These
74 limitations range from issues in production at scale, cost to produce, stability and delivery process
75 and the potential for side effects.

76 The use of these vaccine production methods is predicated on the ability to achieve
77 inactivation of the pathogen's ability to replicate while preserving the antigenic protein structural
78 potency and integrity [7]. Methods for producing such candidates require the use of chemicals
79 such as beta-propiolactone, ethylenimine, formalin as well as the use of physical inactivation
80 methods such as gamma irradiation, high energy UV light (UVC) and heat inactivation. These
81 methods work primarily by chemically modifying protein and nucleic acid structures of pathogens
82 through covalent modification, crosslinking, oxidation and structural alteration, rendering the
83 treated agents unable to infect target cells or replicate *in vivo*. The key to success with such
84 approaches resides in the ability to balance the alterations required for inactivation with the
85 preservation of antigen epitopes similar to the native agent that are required to stimulate immune
86 response when administered to a host. A method which can successfully prevent pathogen
87 replication without inducing alterations to antigen targets is ideal. Candidates produced by such a
88 method would possess the native protein structures that are as close to natural structures in the
89 intact pathogen as possible without the ability to induce disease.

90 We report a novel method (SolaVAXTM) to produce a candidate vaccine for COVID-19.
91 This method employs the use of a photochemical (riboflavin or vitamin B2) in combination with
92 UV light in the UVA and UVB wavelength regions to carry out specific nucleic acid alterations
93 through electron transfer chemistry-based processes [8]. The method was originally developed for
94 the treatment of blood products to prevent transfusion transmitted diseases [9] and has been in
95 routine clinical use for prevention of transfusion transmitted viral, bacterial and parasitic diseases
96 since 2008 [10]. The process utilizes a well-established and demonstrated capability of riboflavin
97 and UV light to modify nucleic acid structure primarily through modification of guanine bases in

98 a non-oxygen dependent process utilizing the natural electron donor-acceptor chemistry associated
99 with guanine and riboflavin, respectively [11].

100 The specificity of the riboflavin photochemistry used in this process avoids the alkylation,
101 crosslinking and covalent modifications that are associated with other chemical and photochemical
102 mechanisms of pathogen inactivation [12]. The process allows for retention of plasma and cell-
103 bound protein structure post treatment to an extent that such products may still be efficacious in
104 functional utilization for transfusion support of patients [13,14]. Unlike the standard chemical
105 agents such as beta-propiolactone and ethyleneimine derivatives that are routinely used for
106 inactivated vaccine production, the photochemical used in this approach (riboflavin) has a well-
107 established safety toxicology profile, is non-mutagenic and non-carcinogenic and poses little to no
108 toxicity or disposal risk to facility personnel or the environment. This safety profile has been
109 documented extensively in pre-clinical and clinical programs in human subjects [15].

110 For this work, we hypothesized that the use of these methods for production of an
111 inactivated virus of SARS-CoV-2 could have several advantages. These included the ability to
112 utilize existing equipment, reagents and disposables that are in routine use for treatment of blood
113 products to produce an inactivated vaccine preparation when using purified viral stocks of the
114 target virus, e.g., SARS-CoV-2 in this particular application [16]. We hypothesized that the
115 selectivity of the chemistry applied in this process would generate a vaccine candidate that was
116 fully attenuated with regard to replication capabilities while maintaining viral protein structural
117 integrity as close to the native virus as possible. We further hypothesized that such a candidate
118 produced by this method would be able to induce a potent immune response with relatively low
119 doses of immunogen and thus provide protective immunity against live virus challenge.

120 Our approach to evaluate this candidate utilized both *in vitro* analysis and animal models
121 (Syrian Golden Hamsters), developed in house and shown to be susceptible to disease in the upper
122 and lower respiratory tract following exposure to live SARS-CoV-2 virus administered
123 intranasally. Animals exposed in this way were demonstrated to produce and shed virus
124 extensively at days 3-7 post-exposure. Our methods for evaluation of an effective vaccine
125 candidate in this model included measurement of neutralizing antibodies with a Plaque Reduction
126 Neutralization Test (PRNT), assessment of tissue viremia via plaque assays for live virus, flow
127 cytometric analysis of leukocyte subpopulations, single cell mRNA sequencing analysis to assess
128 host transcriptional responses and histopathology of respiratory system post-challenge with live
129 virus via the intranasal route.

130 As part of these studies, we also utilized adjuvant formulations intended to drive immune
131 response to vaccines predominantly via a Th1 immune pathway [17,18]. Our motivation for
132 employing this approach was generated by previous observations of antibody dependent
133 enhancement (ADE) and resulting immunopathology in animal models where Th2 type immune
134 stimulation predominated. We monitored immune response via cellular and humoral pathways in
135 adjuvanted and non-adjuvanted formulations. We also monitored lung histopathology for evidence
136 indicative of immunopathology induced by the virus or subsequent challenge post-vaccination.

137

138 **Results**

139 *Sequence validation of SARS-CoV-2 isolate*

140 We used shotgun RNA sequencing to confirm the identity of the SARS-CoV-2 isolate used
141 in hamster challenge material and to characterize mutations that may have arisen during cell culture

142 passage [19,20]. The isolate contained 5 consensus-changing mutations relative to the USA-WA1
143 patient-derived sequence (GenBank accession MN985325.1) [21] from which it was derived
144 (Table S1). These included a G to A substitution at position 23616 of the genome that results in an
145 arginine to histidine substitution at position 685 within the polybasic cleavage site of the spike
146 protein.

147

148 *Assessment of RNA damage following UV treatment*

149 We used sequencing to detect and quantify RNA damage in photoinactivated virus
150 preparations. Damaged RNA bases can be misrecognized during reverse transcription, leading to
151 characteristic mutations in cDNA sequences [22]. We detected evidence consistent with oxidative
152 damage to G bases in viral RNA in the form of elevated frequencies of G to U and G to C
153 mismatches (Fig. 1B). These lesions would result from the misincorporation of an A or a G
154 opposite an oxidized G during reverse transcription. The frequency of G to U mutations was 2.3x
155 higher in photoinactivated RNA than in untreated RNA (0.0021 vs. 0.0009), and this ratio was
156 1.8x for G to C mutations (0.0012 vs 0.0007; Fig. 1C). Given the combined mutation frequency of
157 ~0.0033 and 5,863 G bases in the SARS-CoV-2 USA-WA1 genome, an average of 19.6 G bases
158 will be damaged per genome. Using these parameters to estimate the number of damaged G bases
159 per genome with a Poisson distribution estimated that 1 genome per 3.0×10^9 genomes will have
160 no damaged bases (Fig. 1D).

161

162 *Hamster model*

163 Hamsters were divided into 4 treatment groups in which Control hamsters received no
164 vaccination, a second group (SvX) received inactivated vaccine (SolaVAX) with no adjuvant, the

165 third group (CpG) received inactivated vaccine with CpG 1018 adjuvant, and the fourth group
166 (ODN) received inactivated vaccine with ODN1668 adjuvant. Within each group hamsters were
167 divided in 2 subgroups that were vaccinated either by subcutaneous (SC) or by intramuscular (IM)
168 injection (Fig.1A). None of the hamsters showed any clinical adverse reactions to the vaccination.
169 Moreover, after viral challenge all hamsters were clinically normal. From the time of viral
170 challenge to necropsy a body weight loss of 4-7.2% was observed in all groups including the
171 Controls.

172

173 *Virus titration*

174 Hamsters were challenged with 10^5 plaque forming units (pfu) of live SARS-CoV-2
175 intranasally. Then oral-pharyngeal swabs were taken 1-3 days post-infection (dpi) to monitor viral
176 replication. At 1 dpi infectious virus was detected in all groups (Fig. 2A-B). At 2 dpi viral
177 replication begins to decline especially in the vaccinated groups. And by 3 dpi, viral replication
178 was detected only in the Control group (SC and IM) and the ODN cohort (SC only). This shows
179 that vaccination in hamsters reduced the amount of viral replication in the oropharynx after SARS-
180 CoV-2 infection.

181 In addition to oral-pharyngeal swabs, necropsies were performed and tissues collected at 3
182 dpi to determine vaccine efficacy after live virus challenge. These tissues were specific to
183 respiratory tract and included the right cranial lung lobe, right caudal lung lobe, trachea, and nasal
184 turbinates Beginning with nasal turbinates (Fig. 2C), these tissue samples revealed high viral titers
185 for all hamsters regardless of vaccination status. This was expected due to the route of live virus
186 inoculation, yet the Control group had higher viral titers compared to the vaccinated groups.
187 Moreover, there was a significant decrease in viral titers in the CpG group within the IM subgroup

188 demonstrating that the IM injection of SolaVAX+CpG 1018 offered the best protection against
189 viral replication in nasal turbinates.

190 Trachea was also evaluated to see if vaccination would protect the lower airway against
191 SARS-CoV-2 infections (Fig. 2D). The viral titers are less than what was observed in the turbinates
192 and support what has been seen in previous experimental hamster infections with SARS-CoV-2.
193 Groups SvX and ODN showed a significant reduction in viral replication by SC administration
194 while groups SvX and CpG showed a significant reduction by IM administration when compared
195 to their respective Controls. In summary, SolaVAX+ CpG 1018 administered IM is effective in
196 protecting against viral replication in both the nasal turbinates and trachea of hamsters.

197 Cranial and caudal lung lobes were collected to evaluate protection against SARS-CoV-2
198 in multiple lung lobes. Previous experimental infections with SARS-CoV-2 in hamsters revealed
199 the viral load between the two lobes are usually similar, as was observed in the Control groups
200 (Fig. 2E-F). However, the cranial lobe is commonly affected first before the caudal lobe.
201 Therefore, it is of interest to evaluate the cranial lung lobe for vaccine efficacy against SARS-
202 CoV-2 early in disease progression. Within the SC subgroup, all hamsters except for one hamster
203 in the CpG cohort and three hamsters in the ODN cohort had no detectable virus (Fig. 2E). Within
204 the IM subgroup, no infectious virus was detected in any of the vaccinated hamsters. Therefore,
205 vaccination appeared to have reduced viral replication in the cranial lung lobes compared to non-
206 vaccinated hamsters.

207 Lastly, the caudal lung was evaluated for the presence of infectious virus. As with the
208 cranial lung, viral replication was detected in all hamsters in the Control group (Fig. 2F). Within
209 the SC subgroup, only three hamsters within the CpG cohort In the IM subgroups, no viral
210 replication was detected in any of the vaccinated groups. As seen with the cranial lung, all the

211 vaccinated groups appeared to have reduced viral replication in the caudal lung lobes compared to
212 non-vaccinated hamsters.

213

214 ***Serology***

215 *Plaque Reduction Neutralization Test*

216 A plaque reduction neutralization test (PRNT) with a 90% cutoff was performed to measure
217 neutralizing antibodies against SARS-CoV-2 after vaccination. Neutralizing antibodies were
218 measured 21 days after the initial vaccination and then at 42 days after initial vaccination (21 days
219 after booster vaccination). All hamsters were seronegative against SARS-CoV-2 prior to
220 vaccination. As expected, hamsters in the Control group did not develop a detectable neutralizing
221 antibody response against SARS-CoV-2 (Fig. 3A and B). In contrast, all but one hamster (CpG,
222 SC) developed antibody titers ranging from 1:10-1:160 after the first vaccination. Moreover, there
223 was an increase of antibody response in all but one of the vaccinated hamsters ranging from 1:40-
224 1:1280. Two SvX hamsters (IM) had a detectable titer of 1:80 and 1:160 after first vaccination but
225 no detectable titer after booster vaccination. Booster vaccination in general increased the titer of
226 neutralizing antibodies prior to virus challenge. In comparing all vaccinated groups, CpG (IM) had
227 the highest mean titer after both the prime and the booster vaccination.

228

229 ***ELISA***

230 Enzyme-linked Immunosorbent Assay (ELISA) was performed on serum samples from
231 Control and vaccinated hamsters to test for the presence of IgG against the SARS-CoV-2 spike
232 protein's receptor-binding domain (RBD) and spike protein regions S1 and S2 (Fig. 3C-E). Pooled

233 serum from naïve hamsters was used as a negative control. A strong IgG response against the three
234 viral proteins was detected in infected hamsters previously vaccinated with SolaVAX. In contrast,
235 IgG levels against viral proteins were below the detection limit in hamsters in the Control group.
236 The following trend was observed for all vaccinated hamsters regardless of vaccination route: a)
237 Titers against the S1 protein and RBD subunit were higher than against the S2 protein; b) IgG
238 levels were greater in infected hamsters vaccinated with SvX, followed by ODN and CpG groups.
239 Panel B shows values for individual hamsters as an area under the curve. This suggests that
240 neutralizing antibodies alone are not solely responsible for the enhanced protection provided by
241 CpG group.

242

243 *Histopathology*

244 Hematoxylin and eosin (H&E) stained slides, including sections of lung, trachea, heart and
245 spleen, were reviewed for histopathological changes due to SARS-CoV-2 infection and alleviation
246 of pathology through vaccination (Fig. 4). No significant pathology was identified in heart or
247 spleen tissue. Control hamsters infected with SARS-CoV-2 demonstrated the most severe
248 pulmonary pathology. Histopathological features of SARS-CoV-2 infection in this group included
249 a strong predilection for larger airways including hilar bronchi and trachea. Bronchi and trachea
250 contained lymphocytic inflammation infiltrating the mucosal epithelium and submucosa in seven
251 of eight Control hamsters, accompanied by neutrophil dominated inflammation disrupting the
252 epithelial surface or completely filling the airway lumen present in five of eight Control hamsters.
253 Control hamsters also developed the most severe alveolar pathology. Alveolar walls were
254 expanded by mononuclear inflammatory cell infiltrates, which limited alveolar air space, and in
255 regionally extensive areas of the lung, led to consolidating interstitial pneumonia with complete

256 effacement of normal alveolar structures. Inflammatory processes in the alveolar spaces were
257 uniformly cell-mediated and lacked evidence of vasoactive inflammation including an absence of
258 edema fluid and fibrin.

259 Among vaccinated hamsters, those in the CpG (IM) group were the best protected from
260 viral-induced pathology. Hamsters immunized with this formulation had improved air space
261 capacity, a lack of consolidating inflammation, and bronchi or trachea with mild inflammatory
262 changes or essentially normal morphology. ODN hamsters were also protected, but to a lesser
263 extent than the CpG group. Notably, however, the SvX group offered a level of protection from
264 severe pulmonary pathology compared to the Controls, and while not achieving statistical
265 significance, this was observed primarily in hamsters vaccinated by SC route (Fig. S1).

266

267 *Immune Responses*

268 The immunological response elicited upon SARS-CoV-2 infection of control or vaccinated
269 animals was evaluated by flow cytometry analysis of leukocytes obtained from lungs, spleen and
270 blood. Populations classified as having statistically significant differences in the total numbers of
271 each cell type present in the lung/spleen or blood between groups are shown in Figure 5. In the
272 lungs, the SC Control group had significantly more cells expressing inflammatory markers (IL-6)
273 and (IL-6 and CXCR4) than any of the other subcutaneously vaccinated groups. The CpG SC
274 group also had significantly fewer cells associated with a Th2 response (CD8+ IL-6+ GATA3+
275 CD4- CXCR3- CXCR4- IL-4- IL-10- Tbet- IFN- γ - TNF- α -) compared to the SvX vaccinated
276 group. These cells may be involved in the induction of isotype switching in the host as a result of
277 the increased infection in the Control group. The vaccine appears to shift the immune response
278 away from an anti-inflammatory Th2 response. Furthermore, in the blood, the SolaVAX-

279 vaccinated IM groups with adjuvants had significantly lower numbers of CD8+ CXCR4+ CD4-
280 CXCR3- IL-6- Tbet- IFN- γ - IL-4- IL-10- GATA- TNF- α - cells compared to the Control group.
281 These cells may promote inflammatory cytokine expression and cell chemotaxis through the
282 MAPK pathway. In the spleen, the Control group had significantly higher numbers of
283 proinflammatory cells expressing CXCR4 + IL-6+ Tbet+ IFN- γ + CD4- CD8- CXCR3- IL-4- IL-
284 10- GATA- TNF- α - cells than the vaccinated groups. Non-significant populations for all organs
285 are shown in Figure S2.

286 Flow cytometry analysis of the Syrian hamster immunological response was limited by the
287 paucity of reagents available for this animal model. Thus, to get a better understanding of the
288 immune response and antiviral or pathogenic mechanism(s) elicited by the different SolaVAX
289 formulations, single cell transcriptomics (scRNASeq) analysis was performed on cells obtained
290 from lungs of vaccinated or unvaccinated Syrian hamsters exposed to SARS-CoV-2-infection.
291 Transcripts were detected from an average of 750 different genes with approximately 20,000
292 reads/cell (Fig. S5). Using an unsupervised cluster detection algorithm (SEURAT) at low
293 resolution, four cellular clusters were identified by the lineage-defining genes CD3D (T cells),
294 CD86 (Myeloid cells), MARCO (Myeloid cells), SFTPC (Epithelial cells), and CD79B (B cells)
295 (Fig. 6 A-C). All the genes used to identify cell types are presented in supplementary table S2.
296 Consistent with the histopathological analysis (Fig. 4), the myeloid population was increased in
297 non-vaccinated hamsters. Similarly, there was a higher relative abundance of T cells in lungs of
298 CpG hamsters, in agreement with the flow cytometry results. Epithelial cells were more abundant
299 in all SvX-vaccinated groups, especially in the CpG group, consistent with increased abundance
300 of inflammatory cells in non-vaccinated hamsters (Fig. 6).

301 Seventeen cell subpopulations were distinguishable based on their expression profiles
302 (Table S2). The immunological response to SARS-CoV-2 infection in non-vaccinated hamsters
303 relied on innate cells such as inflammatory monocytes, neutrophils, plasmacytoid dendritic cells
304 and natural killer T cells. In contrast, hamsters vaccinated with SvX, particularly when formulated
305 with CpG, had a higher frequency of lymphocytes from the adaptive immune response.
306 Specifically, both activated CD4 T cells and cytotoxic CD8 T cells highly expressing XCL1, were
307 increased in vaccinated hamsters. Interestingly, a specific subset of B cells that does not express
308 IgJ are significantly increased in CpG group.

309 The average log-fold change gene expression (avglogFC) was compared between different
310 clusters and groups (Fig.7). In Control hamsters, genes associated with inflammation (NLRP3, IL-
311 1B, CXCL10, CCL4, CCL8, IFI16), were one to two-fold higher in myeloid cells. In contrast, anti-
312 inflammatory (ANXA1) and anti-viral (IFITM) genes were upregulated specifically in animals in
313 the CpG group. Hamsters vaccinated with SvX formulated in either adjuvant, also increased the
314 expression of CD74 conducive to B cell survival and proliferation. Without an adjuvant, however,
315 vaccination with SvX drove the immune response towards Th2, as suggested by increased GATA-
316 3 expression in both CD4+ and CD8+ T cells.

317 Furthermore, relevant biological functions were identified using Gene Ontology (GO)
318 enrichment analysis of differentially expressed genes (DEGs). The top GO biological pathways
319 were evaluated for each set of DEGs and merged within groups for p-value enrichment analysis.
320 Pathways related to T cell differentiation, leukocyte migration, and epithelial cell development
321 were downregulated in Control and SvX vaccinated groups but upregulated in CpG vaccinated
322 group (Fig. 8). In contrast, viral and stress response pathways were upregulated in the Control
323 group and the opposite trend was observed in all vaccinated groups. From a metabolic perspective,

324 oxidative phosphorylation was suppressed in both Control and SvX hamsters; however, it was
325 activated in the CpG group.

326

327 **Discussion**

328 Many routes to the preparation of vaccine candidates exist. All possess potential benefits
329 and drawbacks. We evaluated the ability of a photochemical process for inactivation of pathogens
330 in blood products to use in production of an inactivated SARS-CoV-2 whole virion for prevention
331 of COVID-19 infection.

332 Our motivation for studying this approach was based on the hypothesis that the ability to
333 inactivate virus replication without inducing damage to protein epitopes, could result in the
334 generation of a potent vaccine candidate with intact protein antigen targets comparable to native,
335 live-type virus. Such a candidate was hypothesized to have several advantages including the use
336 of chemical reagents with extensive safety toxicology and general handling benefits, equipment
337 and disposables that are currently in routine use for producing human transfusion products and a
338 cost profile in production that could be favorable for mass production and provide for both global
339 affordability and availability.

340 Our studies have demonstrated the ability of this process to inactivate SARS-CoV-2 virus
341 via a specific, targeted guanine base modification. This work has also demonstrated the ability of
342 products made via this method to induce a potent immune response to vaccination. This response
343 triggered both Th1 and Th2 type immune pathways, leading to generation of neutralizing
344 antibodies and cellular responses capable of protecting vaccinated animals against intranasal
345 challenge with 10^5 pfu SARS-CoV-2. The use of adjuvants was found to boost the levels of

346 neutralizing antibody titers. Interestingly, the non-adjuvanted formulation still provided sufficient
347 protection to prevent viral production and shedding in challenged animals. Robbiani, et al. [23]
348 have observed varying overall neutralizing antibody levels in plasma of convalescent COVID-19
349 patients with consistent levels of specific sub-types against RBD epitopes. They have speculated
350 that a subclass of antibody against receptor binding domain (RBD) epitopes may be critical in
351 conferring therapeutic benefit in those products. The extent to which this may play a role in vaccine
352 efficacy is unknown.

353 Adjuvanted formulations, particularly CpG 1018 demonstrated the lowest levels of viral
354 shedding, preservation of normal lung morphology and airway passage integrity and reduced
355 numbers of infiltrates in the trachea and lung tissue. Both adjuvants used in this study are known
356 to promote Th1 immune pathway responses. Prior work with vaccine candidates suggested that
357 ADE leading to lung immunopathology might be avoided by using Th1 promoting adjuvants [24].
358 Results observed here are consistent with those observations. Further studies with Th2 promoting
359 adjuvant formulations such as alum are required, however, to further elucidate the significance of
360 these findings.

361 A vaccine candidate for COVID-19 produced by this method has been demonstrated to be
362 effective in providing protection against challenge infection in a sensitive hamster model.
363 Importantly, we believe that such a production method could be applied to vaccine candidates
364 targeting other viral, bacterial, and parasitic pathogens. We have already applied such an approach
365 to the generation of solid tumor vaccines and demonstrated their use in both murine and canine
366 disease models [24,25].

367 The use of this methodology may afford a means to rapidly produce vaccine candidates in
368 response to both emergent and existing disease threats. Given the nature of the photosensitizer

369 (riboflavin) and equipment utilized in this setting, such an approach may afford a facile method to
370 prepare vaccine candidates in a logically practical and cost-effective manner that avoids issues
371 associated with current methods for production of inactivated vaccines [26]. The more selective
372 method of nucleic acid modification without extensive protein alteration which is known to occur
373 with current inactivation approaches may also result in more effective vaccination at lower
374 immunogen dose, thus facilitating vaccine distribution and availability in diverse regions of the
375 global community. These potential applications and features warrant additional testing and
376 evaluation to fully establish their utility

377

378 **Materials and Methods**

379 *Study Design*

380 The objective of this study was to determine and characterize the efficacy of a novel
381 method for creating an inactivated whole virion vaccine (SolaVAX) against SARS-CoV-2 in
382 hamsters. Hamster group sample sizes were determined based on previous experience, using four
383 hamsters per cohort (vaccine formulation and administration route) to evaluate the performance
384 of the vaccine candidate in response to viral challenge using different routes of administration
385 and in combination with different adjuvants. The sample size was large enough to demonstrate
386 differences between treatment conditions. No animals were excluded from the analyses (1 animal
387 death occurred in the non-adjuvanted group [SvX, SC] prior to administration of the 2nd vaccine
388 dose due to factors not related to the vaccine), and all animals were randomized to the different
389 treatment groups. Histopathology analyses were performed blinded to the experimental cohort
390 conditions. End points were selected prior to initiation of the study and were selected based on
391 the objective of determining the immune responses to vaccination with the SolaVAX vaccine.

392

393 *SARS-CoV-2 virus*

394 All virus propagation occurred in a BSL-3 laboratory setting. Virus (isolate USA-
395 WA1/2020) was acquired through BEI Resources (product NR-52281) and amplified in Vero
396 C1008 (Vero E6) cell culture. Vero E6 cells (ATCC CRL-1568) were cultured in Dulbecco's
397 modified Eagle's medium (DMEM) supplemented with glucose, L-glutamine, sodium pyruvate,
398 5% fetal bovine serum (FBS) and antibiotics. Inoculation of Vero E6 cells with SARS-CoV-2 was
399 carried out directly in DMEM containing 1% FBS. Medium harvested from infected cells 3-4 days
400 after inoculation was clarified by centrifugation at 800 x g, supplemented with FBS to 10% and
401 frozen to -80°C in aliquots. The virus titer was determined using a standard double overlay plaque
402 assay.

403

404 *Viral Inactivation*

405 Viral stock in DMEM with 10% FBS was dispensed into an illumination bag (Mirasol
406 Illumination Bag, Terumo BCT, Lakewood, CO). Riboflavin solution (500 μ mol/L) was added,
407 residual air was removed from the product, and the bag was placed into the illuminator (Mirasol
408 PRT System, Terumo BCT, Lakewood, CO) for treatment with UV light (150 Joules). Upon
409 successful completion of the illumination process, the product was removed from the illuminator
410 for vaccine preparation and characterization.

411

412 *Sequence validation of SARS-CoV-2 isolate*

413 RNA from cell culture supernatant was extracted using the Trizol reagent (Life
414 Technologies) according to the manufacturer's protocol. Libraries were prepared from total RNA
415 using the Kapa Biosystems RNA HyperPrep kit and sequenced on an Illumina NextSeq instrument
416 to generate single end 150 base reads. Reads were mapped to the USA-WA1 reference sequence
417 (GenBank accession MN985325.1) using bowtie2 [27]. The position, frequency, and predicted
418 coding impact of variants were tabulated as previously described [28].

419

420 *Assessment of RNA damage following photoinactivation*

421 Libraries were created from RNA of photoinactivated vaccine material and from matching
422 untreated material as above. Reads were mapped to a SARS-CoV-2 reference sequence that
423 corresponded to the consensus sequence of the virus used for vaccine production using bowtie2.
424 The frequencies of nucleotide substitutions with basecall quality scores ≥ 30 were tabulated and
425 normalized to the number of occurrences of the mutated bases in all reads. Analysis scripts are
426 available at: https://github.com/stenglein-lab/SolaVAX_sequence_analysis.

427

428 *Vaccine concentration and preparation*

429 Inactivated virus was concentrated using Amicon Ultra Centrifugal Filter units (Millipore
430 Sigma) at 100k cutoff. Concentrated vaccine material was tested by plaque assay to insure
431 complete virus inactivation. PCR was performed to determine RNA copies/mL using the
432 Superscript III Platinum One-Step qRT-PCR system (Invitrogen). Standard curves were obtained
433 by using a quantitative PCR (qPCR) extraction control from the original WA1/2020WY96 SARS-

434 COV-2 isolate. Based on the ratio of pfu to virus RNA copy number for the pre-inactivation
435 vaccine, and RNA copy number of the inactivated and concentrated vaccine, we estimated that
436 prime and booster doses of vaccine used in hamsters were equivalent to 2.2e6 and 1.8e6 PFU-
437 equivalents. We calculated that the amount of virus utilized per dose was on the order of 15 ng
438 (prime) and 13 ng (boost) of virus material, respectively, in each preparation.

439 Vaccines were prepared immediately prior to vaccination. For the non-adjuvanted vaccine,
440 the inactivated vaccine material was mixed equally with sterile PBS. Adjuvant CpG 1018
441 (Dynavax, Lot 1-FIN-3272) was mixed with equal parts of dH₂O then mixed with inactivated
442 vaccine at a 1:1 ratio. One mg of adjuvant ODN1668 (Enzo ALX-746-051-M001) powder was
443 reconstituted in 1 mL of dH₂O then mixed with inactivated vaccine at 1:1 ratio. Each adjuvant was
444 utilized according to manufacturer's recommendations for dose. For CpG 1018, 150 µg of
445 adjuvant was used per dose. For ODN1668, 50 µg of adjuvant was used per dose.

446

447 *Animals*

448 All hamsters were held at Colorado State University in Association for Assessment and
449 Accreditation of Laboratory Animal Care (AAALAC) International accredited animal facilities.
450 Animal testing and research received ethical approval by the Institutional Animal Care and Use
451 Committee (IACUC) (protocol #18-1234A). A total of 32 male Golden Syrian hamsters
452 (*Mesocricetus auratus*) at 6 weeks of age were acquired from Charles River Laboratories
453 (Wilmington, MA). Hamsters were maintained in a Biosafety Level-2 (BSL-2) animal facility at
454 the Regional Biocontainment Lab at Colorado State University during the vaccination period. The
455 hamsters were group-housed and fed a commercial diet with access to water ad libitum. Each
456 hamster was ear notched for animal identification. As previously described, the hamsters were
457 randomly divided into 4 treatment groups (8 hamsters per group): Control hamsters received no

458 vaccination, a second group (SvX) received inactivated vaccine (SolaVAX) with no adjuvant, a
459 third group (CpG) received inactivated vaccine with CpG 1018 adjuvant, and the final group of
460 hamsters (ODN) received inactivated vaccine with ODN1668 adjuvant. Within each group
461 hamsters were divided in two subgroups (4 hamsters per subgroup) where one subgroup was
462 vaccinated by subcutaneous (SC) route and the second subgroup by intramuscular (IM) route
463 (Fig.1D).

464

465 *Clinical observations*

466 Body weights were recorded one day before vaccination, at time of prime vaccination and
467 booster vaccination, and then daily after challenge. Hamsters were observed daily post-vaccination
468 for the duration of the study. Clinical evaluation included temperament, ocular discharge, nasal
469 discharge, weight loss, coughing/sneezing, dyspnea, lethargy, anorexia, and moribund.

470

471 *Vaccination*

472 Prior to vaccination, blood was collected from all hamsters under anesthesia and sera
473 isolated. Each hamster in the vaccinated groups received 100 μ L of vaccine (15 ng). No
474 vaccination was administered to Control hamsters. The hamsters were maintained and monitored
475 for 21 days. Prior to the second (booster) vaccination, blood was collected from all hamsters again
476 under anesthesia and sera isolated. A booster vaccination (13 ng) was administered to hamsters as
477 described in the prime vaccination. Hamsters were again maintained and monitored for additional
478 21 days.

479

480 *Virus challenge*

481 All hamsters were transferred to a Biosafety Level-3 animal facility at the Regional
482 Biocontainment Lab at Colorado State University prior to live virus challenge. Hamsters were bled
483 under anesthesia and sera collected prior to live virus challenge to determine antibody response
484 post vaccination.

485 SARS-CoV-2 virus was diluted in phosphate buffered saline (PBS) to 1×10^5 pfu/mL. The
486 hamsters were first lightly anesthetized with 10 mg of ketamine hydrochloride and 1 mg of
487 xylazine hydrochloride. Each hamster was administered virus via 200 μ L pipette into the nares (50
488 μ L/nare) for a total volume of 100 μ L per hamster. Virus back-titration was performed on Vero
489 E6 cells immediately following inoculation. Hamsters were observed until fully recovered from
490 anesthesia. All hamsters were maintained for three days then humanely euthanized and necropsied.

491 Oropharyngeal swabs were also taken prior to live virus challenge and days 1-3 after
492 challenge to evaluate viral shedding. Swabs were placed in BA-1 medium (Tris-buffered MEM
493 containing 1% BSA) supplemented with antibiotics then stored at -80°C until further analysis.

494

495 *Virus titration*

496 Plaque assays were used to quantify infectious virus in oropharyngeal swabs and tissues.
497 Briefly, all samples were serially diluted 10-fold in BA-1 media supplemented with antibiotics.
498 Confluent Vero E6 cell monolayers were grown in 6-well tissue culture plates. The growth media
499 was removed from the cell monolayers and washed with PBS immediately prior to inoculation.
500 Each well was inoculated with 0.1 mL of the appropriate diluted sample. The plates were rocked
501 every 10-15 minutes for 45 minutes and then overlaid with 0.5% agarose in media with 7.5%

502 bicarbonate and incubated for 1 day at 37°C, 5% CO₂. A second overlay with neutral red dye was
503 added at 24 hours and plaques were counted at 48-72 hours post-plating. Viral titers are reported
504 as the log₁₀ pfu per swab or gram (g). Samples were considered negative for infectious virus if
505 viral titers reached the limit of detection (LOD). The theoretical limit of detection was calculated
506 using the following equation:

507
$$\text{LOD} = \log [1/ (N \times V)]$$

508 where N is the number of replicates per sample at the lowest dilution tested; V is the volume used
509 for viral enumeration (volume inoculated/well in mL). For oropharyngeal swabs the LOD was 10
510 pfu/swab or 1.0 log₁₀ pfu/swab. For tissues the LOD was 100 pfu/g or 2.0 log₁₀ pfu/g.

511

512 *Plaque Reduction Neutralization Test*

513 The production of neutralizing antibodies was determined by plaque reduction
514 neutralization test. Briefly, serum was first heat-inactivated for 30 minutes at 56°C in a waterbath.
515 Then serum samples were diluted two-fold in BA-1 media starting at a 1:5 dilution on a 96-well
516 plate. An equal volume of SARS-CoV-2 virus (isolate USA-WA1/2020) was added to the serum
517 dilutions and the sample-virus mixture was gently mixed. The plates were incubated for 1-hour at
518 37°C. Following incubation, serum-virus mixtures were plated onto Vero E6 plates as described
519 for virus plaque assays. Antibody titers were recorded as the reciprocal of the highest dilution in
520 which >90% of virus was neutralized. All hamsters were tested for the presence of antibodies
521 against SARS-CoV-2 prior to vaccination.

522

523 *ELISA for anti S1, S2 and RBD antibodies*

524 ELISA was performed to evaluate antibody binding to SARS-CoV-2 spike protein region
525 S1 (16-685 amino acids), S2 (686-1213 amino acids), and RBD (319-541 amino acids) (all
526 recombinant proteins from SinoBiological, Wayne, PA). The procedure was adapted from
527 Robbiani et al. [23], with few modifications. Briefly, high binding 96-well plates (Corning, St.
528 Louis, MO) were coated with 50 ng of S1, S2, and RBD protein prepared in PBS and incubated
529 overnight at 4°C. Plates were washed 5 times with PBS + 0.05% Tween 20 (Sigma, St. Louis, MO)
530 and incubated with blocking buffer (PBS + 2% BSA + 2% normal goat serum + 0.05% Tween 20)
531 for 2 hours at room temperature (RT). Serial dilutions (1/250, 1/1250, and 1/6250) of serum
532 obtained from naïve, non-vaccinated and vaccinated hamsters were prepared in blocking buffer
533 and added to the plates for 1 hour. After washing, 1:10,000 dilution of HRP conjugated anti-
534 hamster IgG (H+L) secondary antibody (Jackson Immuno Research, 107-035-142) prepared in
535 blocking buffer was added and incubated for 1 hour. Plates were washed, TMB substrate
536 (ThermoFisher, Waltham, MA) added, and the reaction was stopped after 10 minutes by adding
537 1M H₂SO₄. Absorbance was measured at 450 nm using a Biotek Synergy 2 plate reader (Winnoski,
538 VT).

539

540 *Tissue Collection*

541 Necropsies were performed three days after live virus challenge and gross pathological
542 changes were noted. Tissues were collected for virus quantification, histopathology, flow
543 cytometry, and single cell sequencing. For virus quantitation, portions of right cranial lung lobe,
544 right caudal lung lobe, trachea, and nasal turbinates specimens from each hamster were weighed
545 (100 mg per specimen) and homogenized in BA-1 media with antibiotics then frozen to -80°C

546 until the time of analysis. The tissue homogenates were briefly centrifuged and virus titers in the
547 clarified fluid was determined by plaque assay. Viral titers of tissue homogenates are expressed as
548 pfu/g (\log_{10}). For histopathology, portions of the right cranial lung lobe, right caudal lung lobe,
549 trachea, nasal turbinates, and spleen were collected from each hamster. The tissues were placed in
550 10% neutral buffered formalin for seven days then paraffin embedded and stained with
551 hematoxylin and eosin using routine methods for histological examination. For flow cytometry
552 and single cell sequencing, a portion of the left cranial lung lobe and spleen from each hamster
553 was placed in PBS and immediately processed for analysis.

554

555 *Histopathology*

556 Histopathology was blindly interpreted by a board-certified veterinary pathologist (Podell
557 BK) at Colorado State University. The H&E slides were evaluated for morphological evidence of
558 inflammatory-mediated pathology in lung, trachea, heart and spleen, and reduction or absence of
559 pathological features used as an indicator of vaccine-associated protection. Each hamster was
560 assigned a score of 0-3 based on absent, mild, moderate, or severe manifestation, respectively, for
561 each manifestation of pulmonary pathology including mural bronchial inflammation, neutrophilic
562 bronchitis, consolidating pneumonia, and interstitial alveolar thickening, then the sum of all scores
563 provided for each hamster.

564

565 *Processing of lungs, spleen and blood*

566 Lungs and spleens were processed as described by Fox et al. [29]. Briefly, a portion of the
567 left cranial lung lobe and spleen from each hamster were aseptically transferred from PBS into

568 DMEM then teased apart. Lungs were treated with a solution of DNase IV (500 units/mL) and
569 Liberase (0.5 mg/mL) for 30 minutes at 37°C to dissociate and digest collagen. Both lung and
570 spleen cells were homogenized using a syringe plunger and passed through a 70 µm filter to
571 prepare single cell suspension. Erythrocytes were lysed using Gey's RBC lysis buffer (0.15 M
572 NH₄Cl, 10 mM HCO₃) and cells were resuspended in 1 mL of complete media.

573 For blood, buffy coat was harvested by adding equal volume of PBS + 2% FBS to the blood
574 and centrifuging at 800 x g for 10 minutes at 25°C with brakes off. The buffy coat was collected
575 and washed, and erythrocytes were lysed using 1x Miltenyi RBC lysis buffer (Miltenyi, CA). Cells
576 were washed and resuspended in 1 mL complete media. After adding absolute counting beads
577 (Invitrogen), total cell numbers of lung, spleen and blood were determined by flow cytometry
578 analysis using an LSR-II (BD).

579

580 *Flow cytometry staining*

581 Flow cytometry staining was performed as mentioned by Fox et al. [29]. Briefly, 2 x 10⁶
582 cells were added into each well of a 96-well v-bottom plate and incubated with 1x Brefeldin A at
583 37°C for 4 hours. Cells were washed and stained with Zombie NIR live/dead stain, washed and
584 further stained with predetermined optimal titrations of specific surface antibodies (Table S3) and
585 fluorescence minus one (FMOs). For intracellular staining, cells were further incubated with 1x
586 Foxp3 Perm/Fix buffer (eBiosciences, San Diego, CA) for 1 hour at 37°C, washed with 1x
587 permeabilization buffer (eBiosciences, San Diego, CA) twice and stained with intracellular
588 antibodies cocktail (prepared in 1x permeabilization buffer) and respective FMOs overnight at
589 4°C. The next day, cells were washed twice and resuspended in 300 µL of 1x Permeabilization

590 buffer. Samples were acquired using a Cytek AuroraTM spectral flow cytometer where 100,000
591 events were recorded.

592

593 *Single cell RNA sequencing*

594 Lungs cells were prepared as described above, filtered, washed and resuspended in PBS +
595 0.4% BSA. Cells were counted using a hemocytometer, and ~12,000 cells were added to the 10x
596 Genomics chromium Next GEM Chip for a target recovery of 8,000 cells. GEMs were placed in a
597 thermal cycler and cDNA purified using Dynabeads. cDNA amplification was done using 10x
598 Genomics single cell v3' chemistry as per the manufacturer's recommendations. The amplification
599 PCR was set at 11 cycles and to eliminate any traces of primer-dimers, the PCR amplified cDNA
600 product was purified using 0.6x SPRI beads (Beckman Coulter) before using the DNA for
601 sequencing library preparation. Quality and quantity of cDNA was determined via Agilent
602 TapeStation analysis using a HS-D5000 screen tape (Fig. S3). Twenty-five percent (25%) of the
603 total cDNA amount was carried forward to generate barcoded sequencing libraries with 10 cycles
604 of Sample Index PCR in 35-mL reaction volume (Fig. S4). Libraries were then pooled at equal
605 molar concentration (Fig. S5) and sequenced on an Illumina NextSeq 500 sequencer to obtain a
606 total of 941M read pairs (Illumina). An average of 78M read pairs per sample were generated with
607 a standard deviation of 10.7M read pairs. Low-quality cells with <200 genes/cell and cells that
608 express mitochondrial genes in >15% of their total gene expression were excluded. Gene
609 expression in each group was normalized based on the total read count and log transformed.

610 Sequenced samples were de-multiplexed using Cell Ranger mkfastq (Cell Ranger 10×
611 Genomics, v3.0.2) to generate fastq files and aligned to the *Mesocricetus auratus* (accession
612 GCA_000349665) and SARS-CoV-2 (reference genome MN985325) reference genomes using
613 CellRanger count pipeline. Filtered barcode matrices were analyzed by Seurat package Version
614 3.0. Low quality cells, defined as expressing <200 genes/cell or those in which mitochondrial
615 genes corresponded to >15% of their total gene expression, were excluded. Samples within groups
616 were merged and downsampled to the same number of cells per group. Thereafter, gene expression
617 for each group was normalized based on total read counts and log transformed. All groups were
618 integrated using Seurat integration strategy [30], aligned samples scaled, and cells analyzed by
619 unsupervised clustering (0.5 resolution), after principal components analysis (PCA). The top 15
620 principal components were visualized using UMAP. Differentially up-regulated genes in each
621 cluster were selected with >0.25 log fold change and an adjusted p<0.05. Cell types were assigned
622 by manually inspecting the top 20 upregulated genes, in addition to identifying previously
623 published specific markers such as FSCN1 and GZMA for dendritic cells and CD8+ effector T
624 cells, respectively [31]. Differentially expressed genes (DEGs) between non-vaccinated group and
625 vaccinated groups were identified using DESeq2 algorithm, with a Bonferroni-adjusted p< 0.05
626 and a log2 fold change > 1.

627

628 *Statistical Analyses*

629 Group mean (n=4) viral titers were analyzed using a two-way ANOVA analysis followed
630 by a post hoc test to analyze differences between the Control group and the vaccinated groups. In
631 the case where samples reached the LOD, values were entered as 0 for statistical analysis. Data
632 were considered significant if p<0.05. Analysis was performed using GraphPad Prism software

633 (version 8.4.2) (GraphPad Software, Inc, La Jolla, CA). Mean (n=4) subjective pathology scores
634 were compared between groups using the Kruskall-Wallis test for non-parametric data with an
635 alpha of 0.05. The flow cytometry results were analyzed using FlowJo as well as a newly published
636 methodology [29]. Events were filtered to cell populations that constituted greater than 2% of the
637 live leukocytes of at least one sample, where a cell population is defined by the combination of
638 positive and negative markers. Statistical significance among A and among B groups was
639 determined using Anova and Tukey Honest Significant Difference.

640 **References and Notes:**

641 1. McKay B and Dvorak P. A Deadly Coronavirus Was Inevitable. Why was No One Ready?
642 *Wall Street Journal* August 13, 2020

643 2. Johns Hopkins University and Medicine Coronavirus Resource Center. c2020. Baltimore,
644 Maryland. [Accessed 2020, Sept. 4]. <https://coronavirus.jhu.edu>.

645 3. Zhou F, Du R, Fan G, Liu Y, Xiang J, Wang Y, et al. Clinical Course and Risk Factors for
646 Mortality of Adult Inpatients with COVID-19 in Wuhan, China: a Retrospective Cohort Study.
647 *Lancet* 2020;395: 1054-1062 (2020).

648 4. Frederiksen LSF, Zhang Y, Foged C, Thakur A. The Long Road Toward COVID-19 Herd
649 Immunity: Vaccine Platform Technologies and Mass Immunization Strategies. *Front*
650 *Immunol.* 2020 Jul 21;11, 1817 doi: 10.3389/fimmu.2020.01817. eCollection 2020.

651 5. Rauch S, Jasny E, Schmidt KE, Petsch B. New Vaccine Technologies to Combat Outbreak
652 Situations. *Front Immunol.* 2018;9: 1-24.

653 6. Barrett PN, Terpening SJ, Snow D, Cobb RR, Kistner O. Vero Cell Technology for Rapid
654 Development of Inactivated Whole Virus Vaccines for Emerging Viral Diseases. *Expert Rev*
655 *Vaccines* 2017;16: 883-894.

656 7. Delrue I, Verzele D, Madder A, Nauwynck HJ. Inactivated Virus Vaccines from Chemistry to
657 Prophylaxis: Merits, Risks and Challenges. *Expert Rev Vaccines* 2012;11: 695-719.

658 8. Mundt JM, Rouse L, Van den Bossche J, Goodrich RP. Chemical and Biological Mechanisms
659 of Pathogen Reduction Technologies. *Photochem Photobiol.* 2014;90: 957-964.

660 9. Ruane PH, Edrich R, Gampp D, Keil SD, Leonard RL, Goodrich RP. Photochemical
661 Inactivation of Selected Viruses and Bacteria in Platelet Concentrates using Riboflavin and
662 Light. *Transfusion* 2004;44: 877-885.

663 10. Yonemura S, Doane S, Keil S, Goodrich R, Pidcock H, Cardoso M. Improving the Safety of
664 Whole Blood-derived Transfusion Products with a Riboflavin-Based Pathogen Reduction
665 Technology. *Blood Transfus.* 2017;15: 357-364.

666 11. Martin CB, Wilfong E, Ruane P, Goodrich R, Platz M. An Action Spectrum of the Riboflavin-
667 photosensitized Inactivation of Lambda Phage. *Photochem Photobiol.* 2005;81: 474-480.

668 12. Kumar V, Lockerbie O, Keil SD, Ruane PH, Platz MS, Martin CB, et al. Riboflavin and UV-
669 light Based Pathogen Reduction: Extent and Consequence of DNA Damage at the Molecular
670 Level. *Photochem Photobiol.* 2004;80: 15-21.

671 13. van der Meer PF, Ypma PF, van Geloven N, van Hilten JA, van Wordragen-Vlaswinkel RJ,
672 Eissen O, et al. Hemostatic Efficacy of Pathogen-inactivated vs Untreated Platelets: a
673 Randomized Controlled Trial. *Blood* 2018;132: 223-231.

674 14. Allain JP, Owusu-Ofori AK, Assennato SM, Goodrich RP, Owusu-Ofori S. Effect of
675 Plasmodium inactivation in Whole Blood on the Incidence of Blood Transfusion-transmitted
676 Malaria in Endemic Regions: the African investigation of the Mirasol System (AIMS)
677 Randomised Clinical Trial. *Lancet* 2016;387: 1753-1761.

678 15. Reddy HL, Dayan AD, Cavagnaro J, Gad S, Li J, Goodrich RP. Toxicity Testing of a Novel
679 Riboflavin-based Technology for Pathogen Reduction and White Blood Cell Inactivation.
680 *Transfus Med Rev.* 2008;22: 133-153.

681 16. Goodrich RP, Edrich RA, Goodrich LL, Scott CA, Manica KJ, Hlavinka DJ, et al. The
682 Antiviral and Antibacterial Properties of Riboflavin and Light: Application to Blood Safety
683 and Transfusion Medicine. In: Eduardo Silva, Ana M Edwards, editors. Flavins:
684 Photochemistry and Photobiology. Royal Society of Chemistry 2006. pp. 83-113.

685 17. Tseng CT, Sbrana E, Iwata-Yoshikawa N, Newman PC, Garron T, Atmar RL, et al.
686 Immunization with SARS Coronavirus Vaccines Leads to Pulmonary Immunopathology on
687 Challenge with the SARS Virus. PLoS ONE 2012;7: e35421.

688 18. Eng NF, Bhardwah N, Mulligan R, Diaz-Mitoma F. The Potential of 1018 ISS Adjuvant in
689 Hepatitis B Vaccines: HEPLISAVTM Review. Hum Vacc Immunother. 2013;9: 1661-1672.

690 19. Liu Z, Zheng H, Lin H, Li M, Yuan R, Peng J, et al. Identification of Common Deletions in
691 the Spike Protein of Severe Acute Respiratory Syndrome Coronavirus 2. J Virol. 2020;94:
692 e00790-20 (2020).

693 20. Ogando NS, Dalebout TJ, Zevenhoven-Dobbe JC, Limpens RWAL van der Meer, Caly YL, et
694 al. SARS-Coronavirus-2 Replication in Vero E6 Cells: Replication Kinetics, Rapid Adaptation
695 and Cytopathology. J Gen Virol. 2020 Jun 22: doi.1099/jgv.0.001453.

696 21. J. Harcourt, A. Tamin, X. Lu, S. Kamili, S.K. Sakthivel, J. Murray, et al. Severe Acute
697 Respiratory Syndrome Coronavirus 2 from Patient with Coronavirus Disease, United States.
698 Emerg Infect Dis. 2020;26: 1266-1273.

699 22. Rhee Y, Valentine MR, Termini J. Oxidative Base Damage in RNA Detected by Reverse
700 Transcriptase. Nucleic Acids Res. 1995;23: 3275-3282 (1995).

701 23. Robbiani DF, Gaebler C, Muecksch F, Lorenzi JCC, Wang Z, Cho A, et al. Convergent
702 Antibody Responses to SARS-CoV-2 in Convalescent Individuals. Nature 2020;584: 437-442.

703 24. Park H, Gladstone M, Shanley C, Goodrich R, Guth A. A Novel Cancer Immunotherapy
704 Utilizing Autologous Tumour Tissue. *Vox Sang.* 2020;115: 525-535.

705 25. Goodrich RP, Weston J, Hartson L, Griffin L, Guth A. Pilot Acute Safety Evaluation of
706 InnocellTM Cancer Immunotherapy. *J Immunol Res.* 2020. doi.org/10.1155/2020/7142375.

707 26. MacLennan CA. Vaccines for Low-income Countries. *Semin Immunol.* 2013;25: 114-123.

708 27. Langmead B, Salzberg SL. Fast Gapped-read Alignment with Bowtie 2. *Nat Methods* 2012;9:
709 357-359.

710 28. Schmitt K, Kumar DM, Curlin J, Remling-Mulder L, Stenglein M, SO' Connor S, et al.
711 Modeling the Evolution of SIV Sooty Mangabey Progenitor Virus towards HIV-2 using
712 Humanized Mice. *Virology* 2017;10: 175-184.

713 29. Fox A, Dutt TS, Karger B, Rojas M, Obregón-Henao A, Anderson GB, et al. Cyto-Feature
714 Engineering: A Pipeline for Flow Cytometry Analysis to Uncover Immune Populations and
715 Associations with Disease. *Sci Rep* 2020 May 6;10: 7651. doi: 10.1038/s41598-020-64516-0.

716 30. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck 3rd WM, et al.
717 Comprehensive Integration of Single-Cell Data. *Cell* 2019;177: 1888-1902.

718 31. Bost P, Giladi A, Liu Y, Bendjelal Y, Xu G, David E, et al. Host-Viral Infection Maps Reveal
719 Signatures of Severe COVID-19 Patients. *Cell* 2020;181: 1475-1488.

720 32. Mould KJ, Jackson ND, Henson PM, Seibold M, Janssen WJ. Single Cell RNA Sequencing
721 Identifies Unique Inflammatory Airspace Macrophage Subsets. *JCI Insight* 2019;4(5):
722 e126556.

723 33. Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, et al. Single-cell RNA-
724 seq Reveals New Types of Human Blood Dendritic Cells, Monocytes, and Progenitors. *Science*
725 2017;356(6335): eaaah4573.

726 34. Zhu YP, Padgett L, Dinh HQ, Marcovecchio P, Blatchley A, Wu R, et al. Identification of an
727 Early Unipotent Neutrophil Progenitor with Pro-Tumoral Activity in Mouse and Human Bone
728 Marrow. *Cell Rep.* 2018;24: 2329-2341.

729 35. Lee JS, Park S, Jeong HW, Ahn JY, Choi SJ, Lee H, et al. Immunophenotyping of COVID-19
730 and Influenza Highlights the Role of Type I Interferons in Development of Severe COVID-19.
731 *Sci Immunol.* 2020;5(49): eabd1554.

732 36. Szabo PA, Levitin HM, Miron M, Snyder ME, Senda T, Yuan J, et al. Single-cell
733 Transcriptomics of Human T Cells Reveals Tissue and Activation Signatures in Health and
734 Disease. *Nat Commun.* 2019;10: 4706.

735 37. Milpied P, Cervera-Marzal I, Mollichella ML, Tesson B, Brisou G, Traverse-Glehen A, et al.
736 Human Germinal Center Transcriptional Programs are De-synchronized in B Cell Lymphoma.
737 *Nat Immunol.* 2018;19: 1013-1024.

738 38. Hammerbeck CD, Hooper JW. T Cells are not Required for Pathogenesis in the Syrian Hamster
739 Model of Hantavirus Pulmonary Syndrome. *J Virol.* 2011;85: 9929-9944.

740 39. Prescott J, Safronetz D, Haddock E, Robertson S, Scott D, Feldmann H. The Adaptive Immune
741 Response does not Influence Hantavirus Disease or Persistence in the Syrian Hamster.
742 *Immunology* 2013;140: 168-178.

743 40. Gao Q, Chen C, Ji T, Wu P, Han Z, Fang H, et al. A Systematic Comparison of the Anti-
744 Tumoural Activity and Toxicity of the Three Adv-TKs. *PLoS One* 2014;9(4): e94050.

745 41. Kaewraemruean C, Sermswan RW, Wongratanacheewin S, Induction of Regulatory T Cells
746 by *Opisthorchis viverrini*. Parasite Immunol. 2016;38: 688-697.

747 42. McCann KE, Sinkiewicz DM, Norvelle A, Huhman KL. De novo Assembly, Annotation, and
748 Characterization of the Whole Brain Transcriptome of Male and Female Syrian Hamsters. Sci
749 Rep. 2017;7: 40472.

750

751 **Acknowledgments:** The authors would like to thank the Flow Cytometry, Next Generation
752 Sequencing, and Experimental Pathology Core laboratories at Colorado State University for their
753 assistance and expertise with sample analyses. Additionally, the authors thank Ann Hess and the
754 Graybill Statistical Laboratory at Colorado State University for assistance with statistical analyses
755 of the viral titer and PRNT data. We thank BEI for providing the SARS-CoV-2 virus utilized in
756 these studies. The reagent was deposited by the Centers for Disease Control and Prevention and
757 obtained through BEI Resources, NIAID, NIH: SARS-Related Coronavirus 2, Isolate USA-
758 WA1/2020, NR-52281. We thank Dynavax for providing the CpG 1018 adjuvant. Vero African
759 Green Monkey Kidney Cells (ATCC® CCL-81™), FR-243, were obtained through the
760 International Reagent Resource, Influenza Division, WHO Collaborating Center for Surveillance,
761 Epidemiology and Control of Influenza, Centers for Disease Control and Prevention, Atlanta, GA,
762 USA. The RNA extraction control was obtained through BEI Resources, NIAID, NIH:
763 Quantitative PCR (qPCR) Extraction Control from Inactivated SARS Coronavirus, Urbani, NR-
764 52349. **Competing interests:** R. Goodrich and R. Bowen are inventors of the SolaVAX™
765 platform, for which patents have been filed and are pending approval. **Data and materials**
766 **availability:** All data associated with this study are present in the paper or the Supplementary
767 Materials. SARS-CoV-2 USA-WA1 strain sequencing data may be accessed via GenBank
768 accession MN985325.1. Analysis scripts for RNA damage following photoinactivation are
769 available at: https://github.com/stenglein-lab/SolaVAX_sequence_analysis.

770

771 **Fig. 1. Production of SolaVAX vaccine and sequence-based detection of RNA damage**
772 **in photoinactivated virus preparations. (A)** SARS-CoV-2 virus (isolate USA-WA1/2020) was

773 propagated in Vero E6 cells. The virus was then inactivated using the Mirasol PRT System by
774 adding a riboflavin solution to the virus stock and exposing the solution to UV light. The
775 inactivated virus was concentrated and prepared with or without adjuvant (CpG 1018,
776 ODN1668). Hamsters were immunized with various SolaVAX vaccine formulations either
777 subcutaneously (SC) or intramuscularly (IM) in groups of four animals. **(B)** The frequencies of
778 the indicated mismatches in SARS-CoV-2 mapping reads in datasets from untreated
779 or photoactivated virus preparations. Mismatches are relative to the SARS-CoV-2 positive
780 sense RNA sequence. **(C)** The ratio of mismatch frequencies in inactivated and untreated
781 datasets, normalized to the frequency of bases in the reference sequence. Boxplots represent
782 distributions of values across all sites in the genome. **(D)** A Poisson distribution estimating the
783 probability of a SARS-CoV-2 genome containing the indicated number of damaged G bases,
784 assuming 5863 Gs per genome and a combined mismatch frequency of 0.0033 for G to C and G
785 to U mutations.

786

787 **Fig. 2. Viral loads from oropharyngeal swab and respiratory tract tissues after challenge**
788 **with live virus.** Oropharyngeal swabs were taken from all hamsters on 1, 2, and 3 days post
789 infection (DPI). Viral titers of swabs collected from hamsters vaccinated via SC **(A)** and via IM
790 **(B)** were determined by plaque assay. The presence of infectious virus was also determined in
791 turbinates **(C)**, trachea **(D)**, right cranial lung lobe **(E)**, and right caudal lung **(F)** of each hamster
792 three days after live virus challenge. Data points represent group mean +/- SD. SC, subcutaneous
793 vaccination. IM, intramuscular vaccination. Asterisks above bars indicate statistically significant
794 difference in viral titers between Control and vaccine group (**** = $p<0.0001$, *** = $p<0.001$,
795 ** = $p<0.01$, * = $p<0.05$). Limit of detection denoted as horizontal dotted line.

796

797 **Fig. 3. The detection of neutralizing antibodies in hamsters by PRNT90 after vaccination**

798 **(A and B), and serum reactivity to spike protein's RBD, S1 and S2 region (C-E).** A plaque
799 reduction neutralization test with a cutoff of 90% was used to determine neutralizing antibody
800 production after 21 and 42 days post vaccination (DPV) for both SC **(A)** and IM **(B)** routes of
801 vaccine administration. The prime vaccination was given at 0 DPV and a booster vaccination
802 given at 21 DPV. Data points represent group mean +/- SD. Results of ELISAs measuring serum
803 reactivity to RBD **(C)** and S1 **(D)** and S2 **(E)** protein. Graphs on the left panel shows optical
804 density (OD) at 450 nm (y-axis) vs serum dilutions (x-axis). Values represent mean +/- SD, n=4.
805 Right panel shows area under the curve (AUC) calculated for each dilution for individual
806 hamsters.

807

808 **Fig. 4. Representative histology of differences between unimmunized SARS-CoV-2 infected**
809 **controls (A, C and E) and infected hamsters vaccinated with SolaVAX prepared SARS-**
810 **CoV-2 virus and CpG 1018 adjuvant (B, D and F). (A)** Trachea with dense submucosal
811 lymphocytic and neutrophilic inflammation infiltrating mucosal epithelium (arrow) and
812 accumulation of neutrophils within the tracheal lumen (arrowhead). **(B)** Trachea with mild
813 submucosal lymphocytic inflammation. **(C)** Large bronchus with dense lymphocytic and
814 suppurative inflammation in the interstitium (arrow) and accumulation of neutrophils in the
815 lumen with loss of mucosal epithelium (arrowhead). **(D)** Large bronchus minimally affected by
816 inflammation (arrow). **(E)** Effacement of lung alveolar tissue by consolidating interstitial
817 pneumonia (arrow) and overall decrease in alveolar air space (arrowhead). **(F)** Interstitial

818 pneumonia increasing alveolar wall thickness (arrowhead) without compromising alveolar air
819 space (arrowhead).

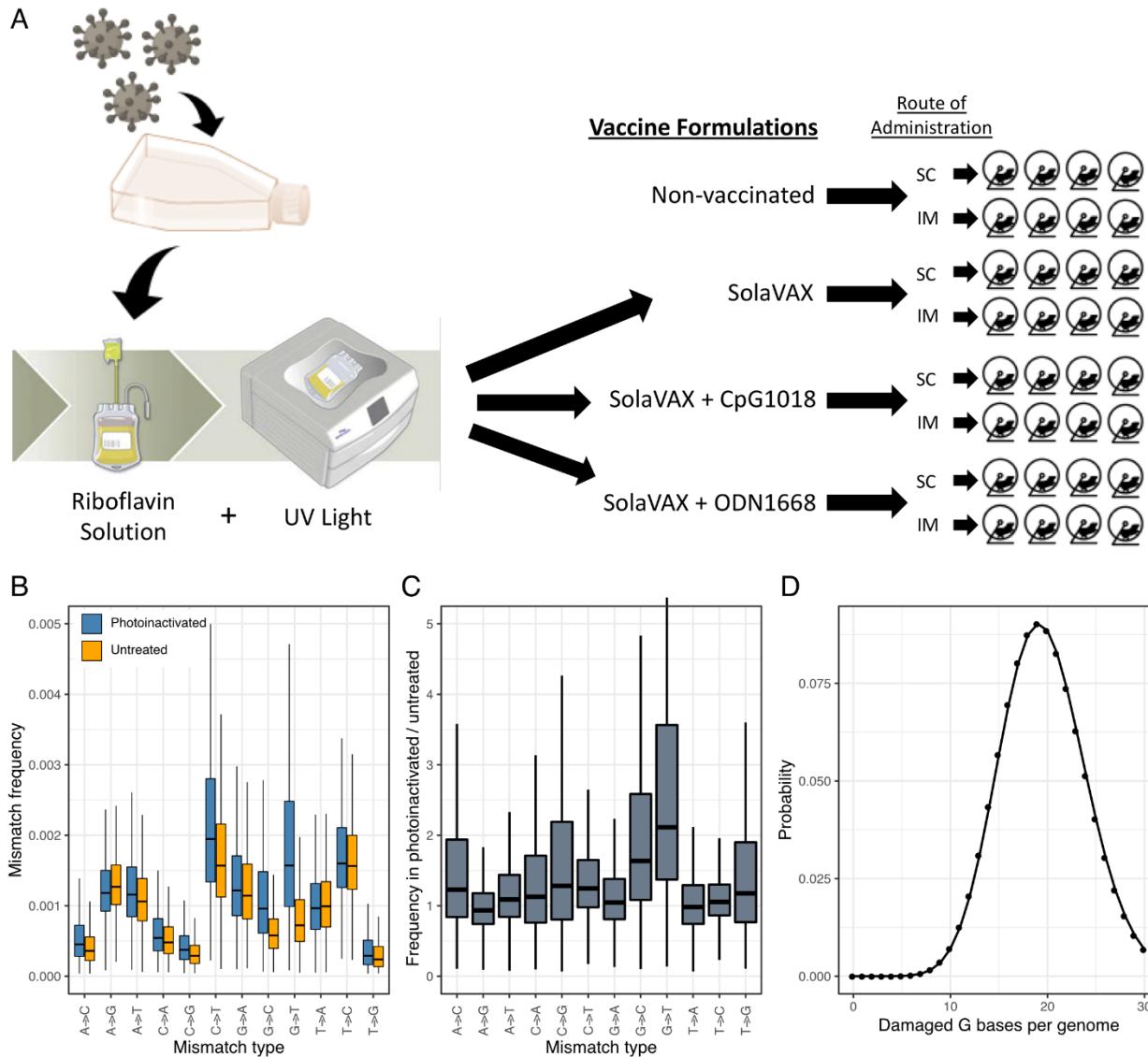
820

821 **Fig. 5. Statistically significant flow cytometry populations within intramuscular and**
822 **subcutaneously vaccinated groups.** The bar plots show the statistically significant populations
823 identified through cyto-feature engineering for each organ. The x-axis shows the eight groups
824 studied. The average total numbers of cells for each group were calculated and shown. The
825 population names listed at the top of each small plot indicates the flow cytometry markers that
826 are positive in the population. Note that these populations are negative for all of the other
827 markers in the panel.

828

829 **Fig. 6. Single-cell transcriptomes of lungs from non-vaccinated and SolaVAX vaccinated**
830 **hamsters. (A)** merged UMAP visualization of 5466 single cells Control, SvX, CpG and ODN
831 vaccinated hamsters via IM administration. Colors indicate grouping of cells into T cells, myeloid,
832 B cells and epithelial cells based on transcriptional similarity. **(B)** Proportion of T, B, myeloid and
833 epithelial cell types in each group. **(C)** Normalized expression of known genes on a UMAP plot to
834 identify different cell types. **(D)** UMAP projection to visualize 17 different cell types visualized
835 after sub clustering the major cell types at higher resolution. **(E)** Percentage of each cell subtype
836 of T (left panel), myeloid (middle panel), B cells and epithelial cells (right panel). Significance
837 value was calculated using ANOVA. $p>0.05$ was considered significant.

838

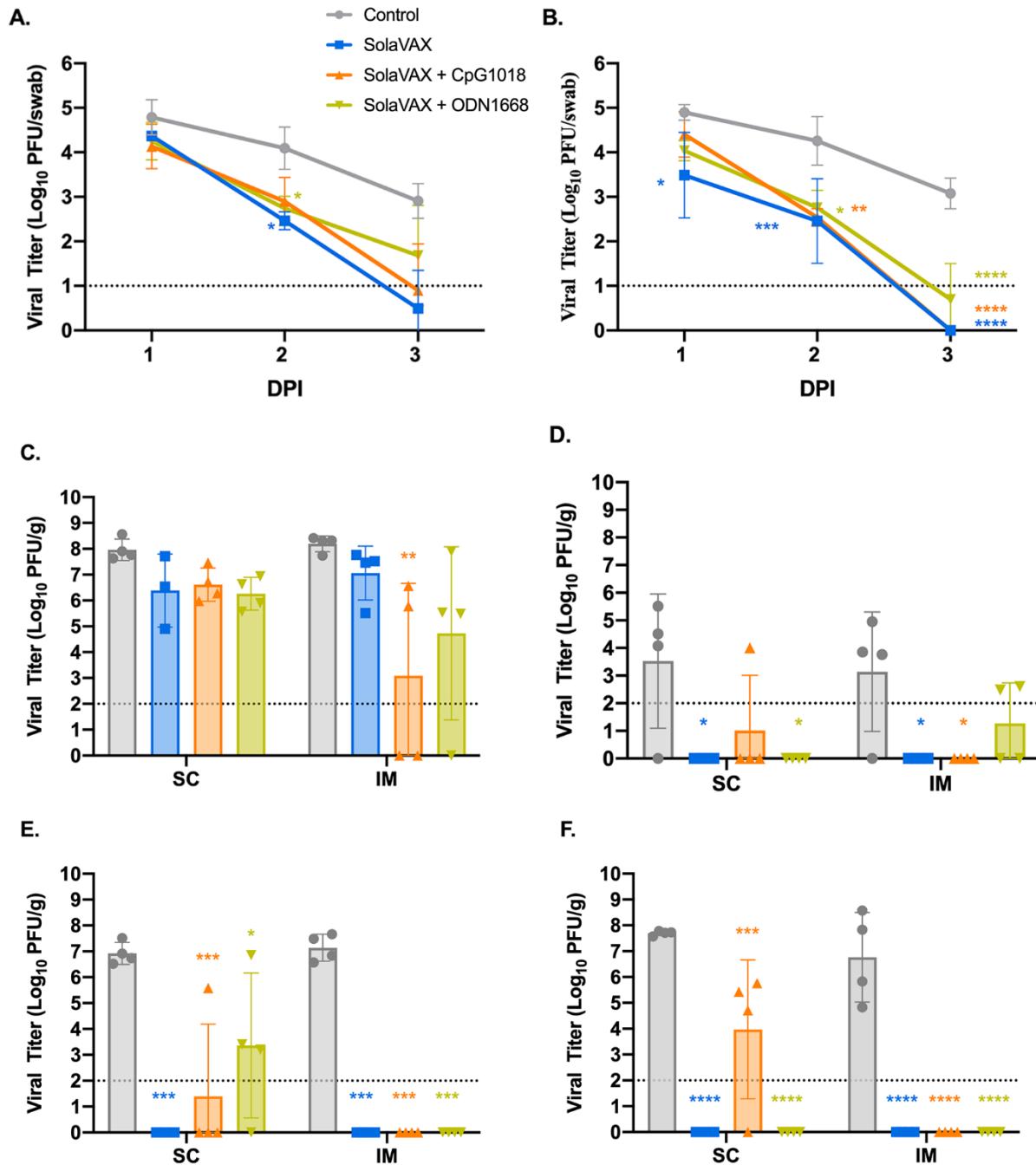

839 **Fig. 7. Average log fold change gene expression analysis. (A)** Average log fold change gene
840 expression comparing pooled gene expression between Control, SvX, CpG, and ODN for different

841 molecular functions across different cell types. Column annotation bar at the top represents
842 different groups, column annotation bar at the bottom represents major immune response type and
843 row annotation bar on the left represent different molecular functions. Cell types are annotated
844 above each cluster in the heatmap. **(B)** Expression of SARS-CoV-2 transcripts in different groups
845 when merged (top panel) and in each individual hamster (bottom panel).

846

847 **Fig. 8. Enrichment p values for the selected Gene Ontology (GO) biological pathways of**
848 **differentially expressed genes between Control and SolaVAX vaccinated hamsters, with or**
849 **without adjuvant.** Circles represent normalized enrichment score (NES), size of the circle
850 represents the number of genes involved in the pathway and the color represents the significance
851 score. $p < 0.05$ was considered significant.

852



853

854

Figure 1

855

856

857

858

Figure 2

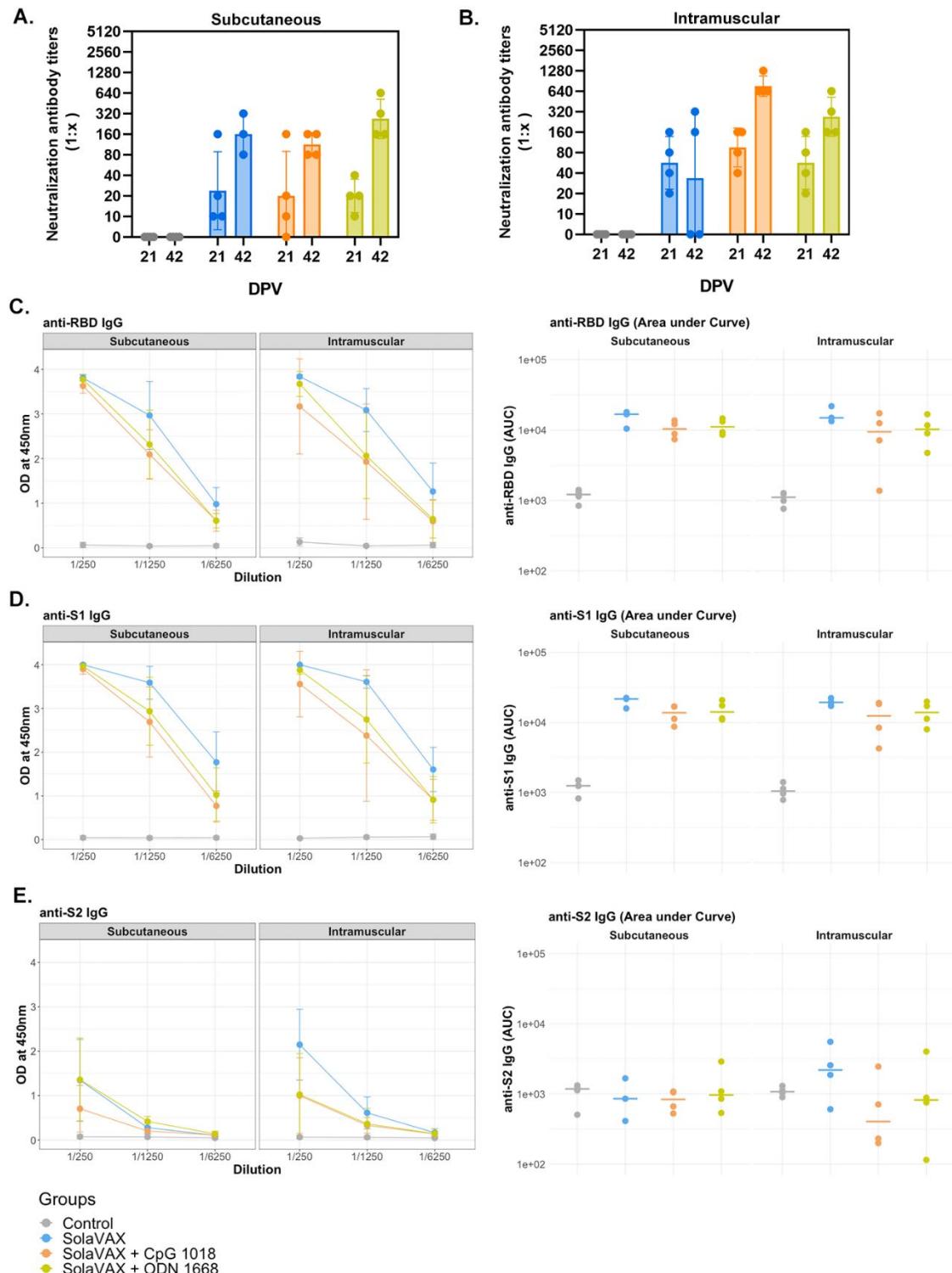
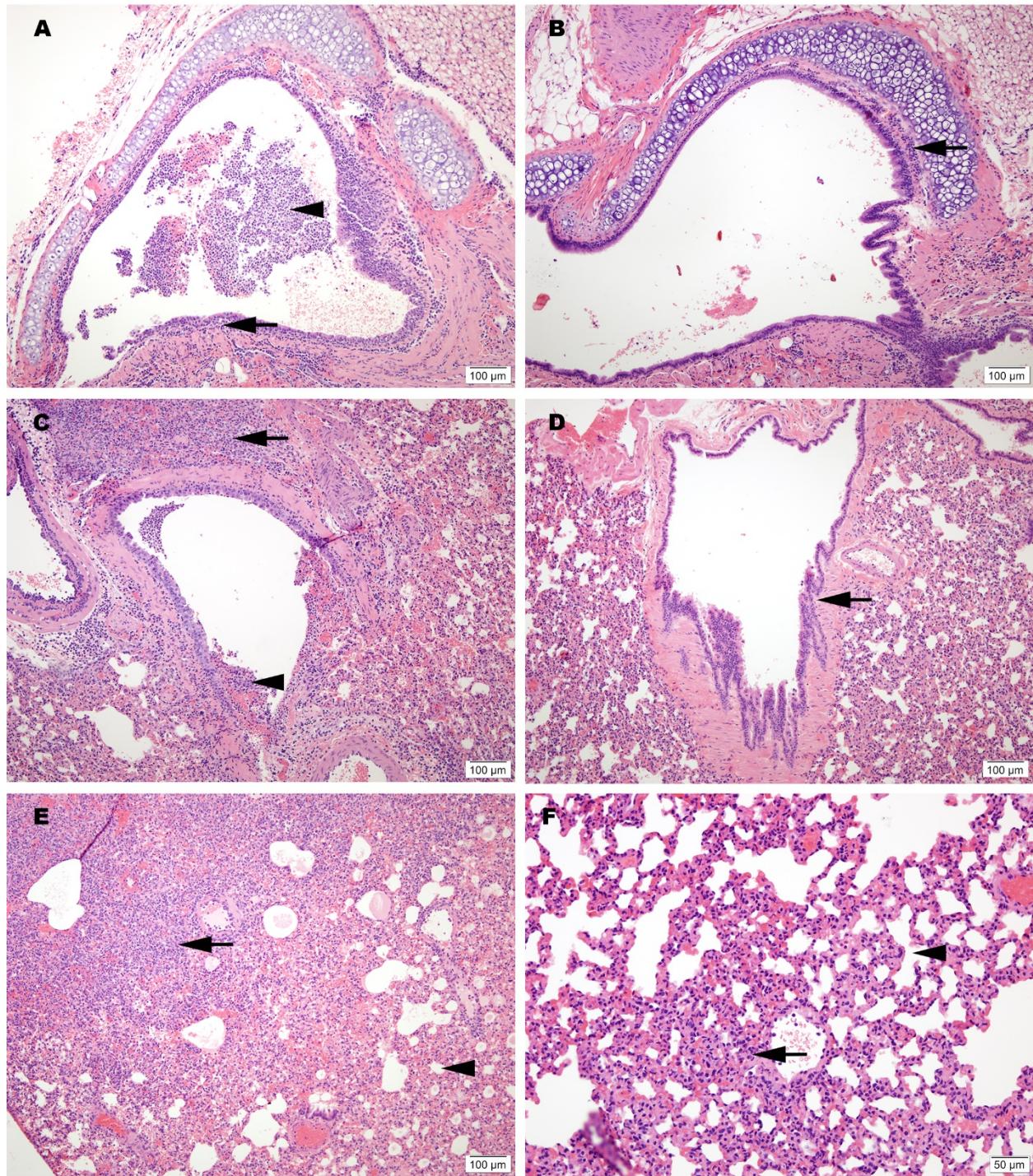



Figure 3

859

860

861

862

863

864

Figure 4

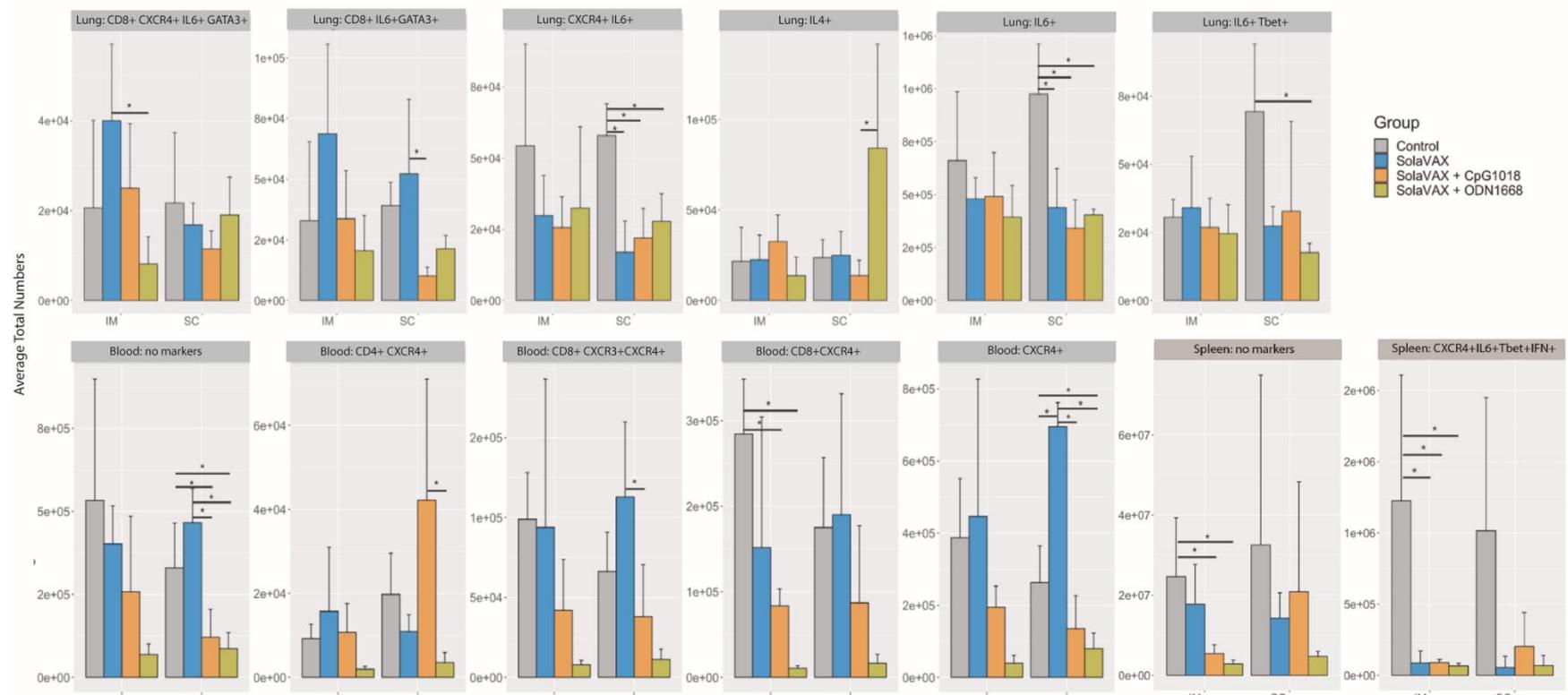


Figure 5

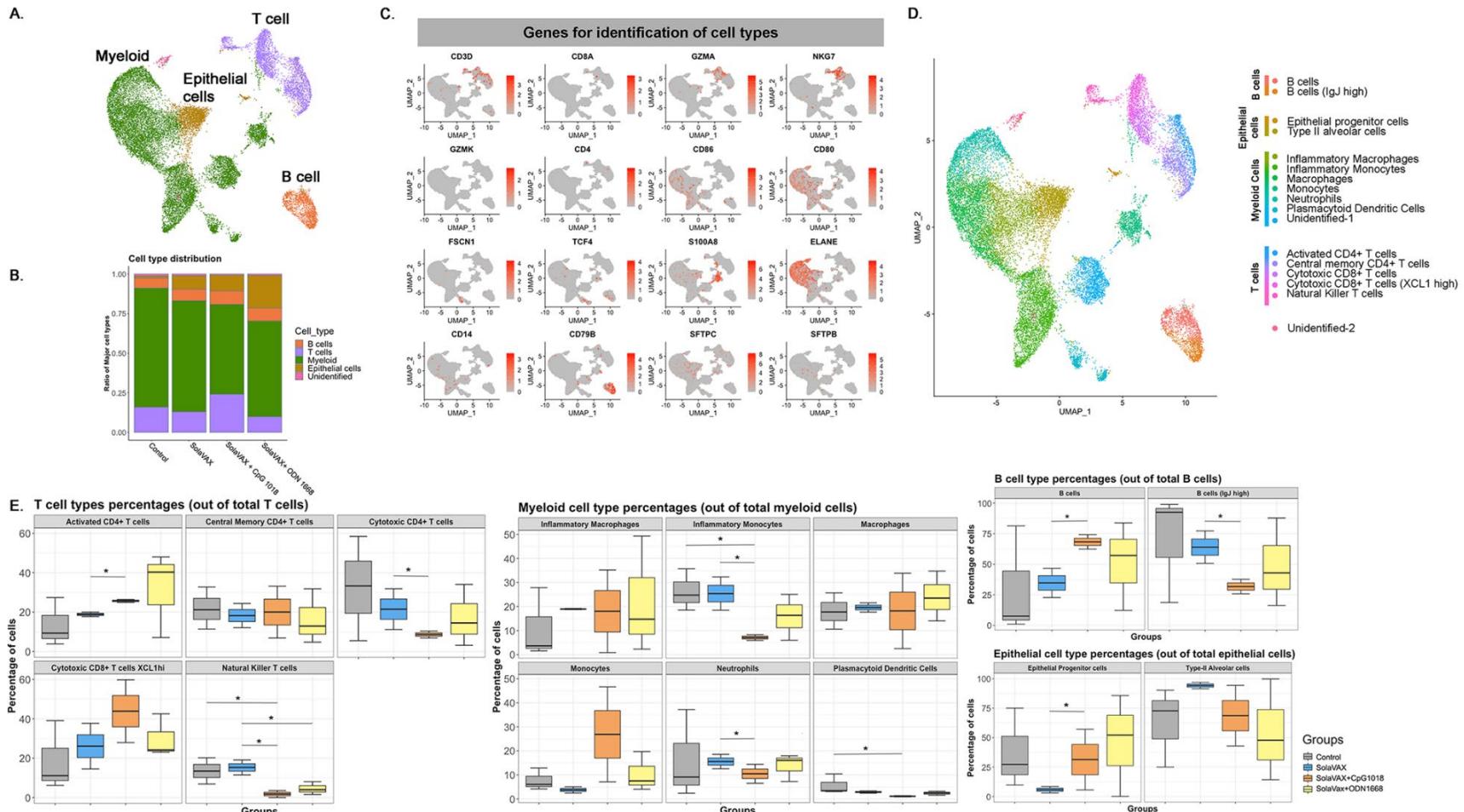


Figure 6

868

869

870

A.

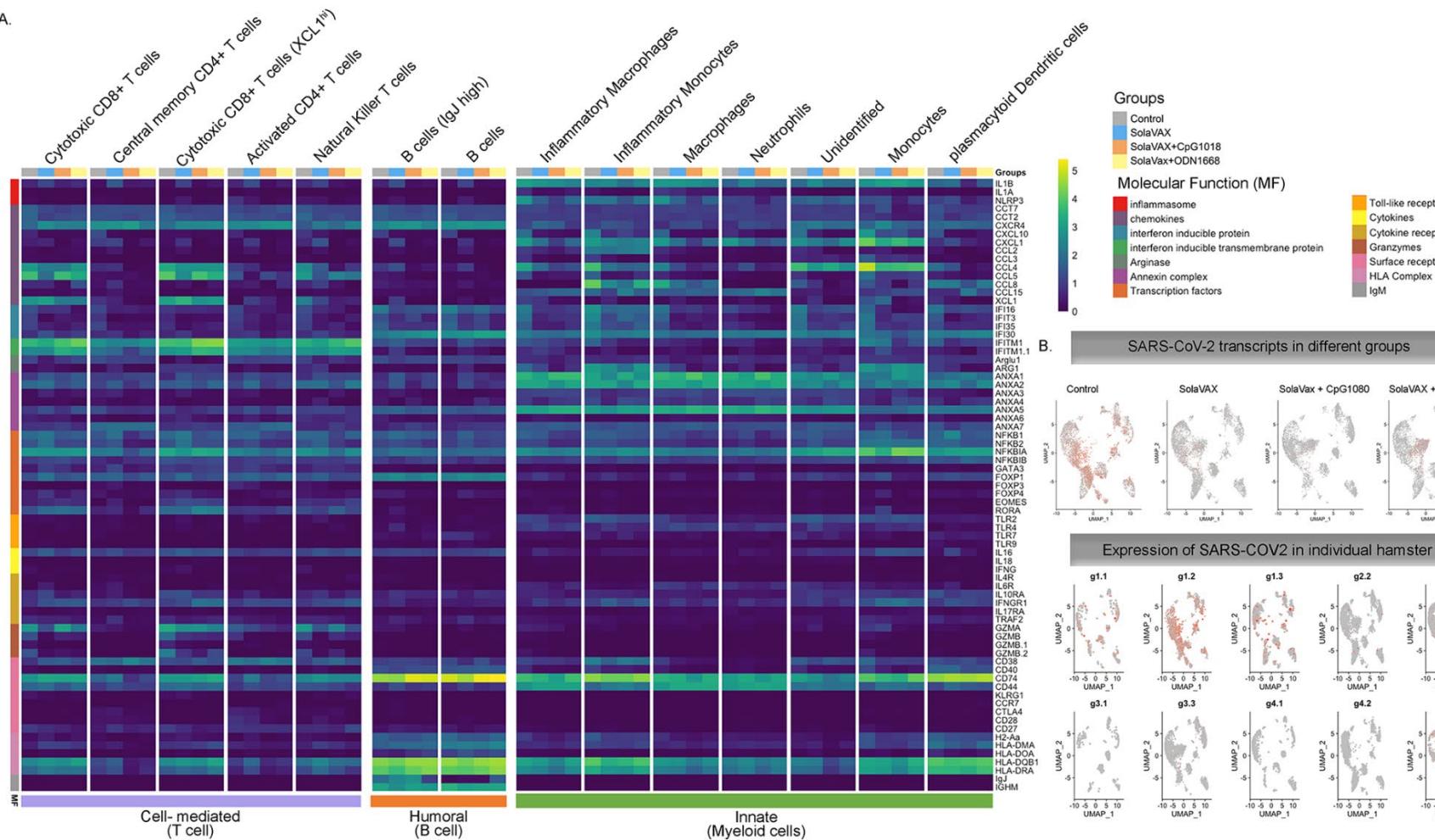
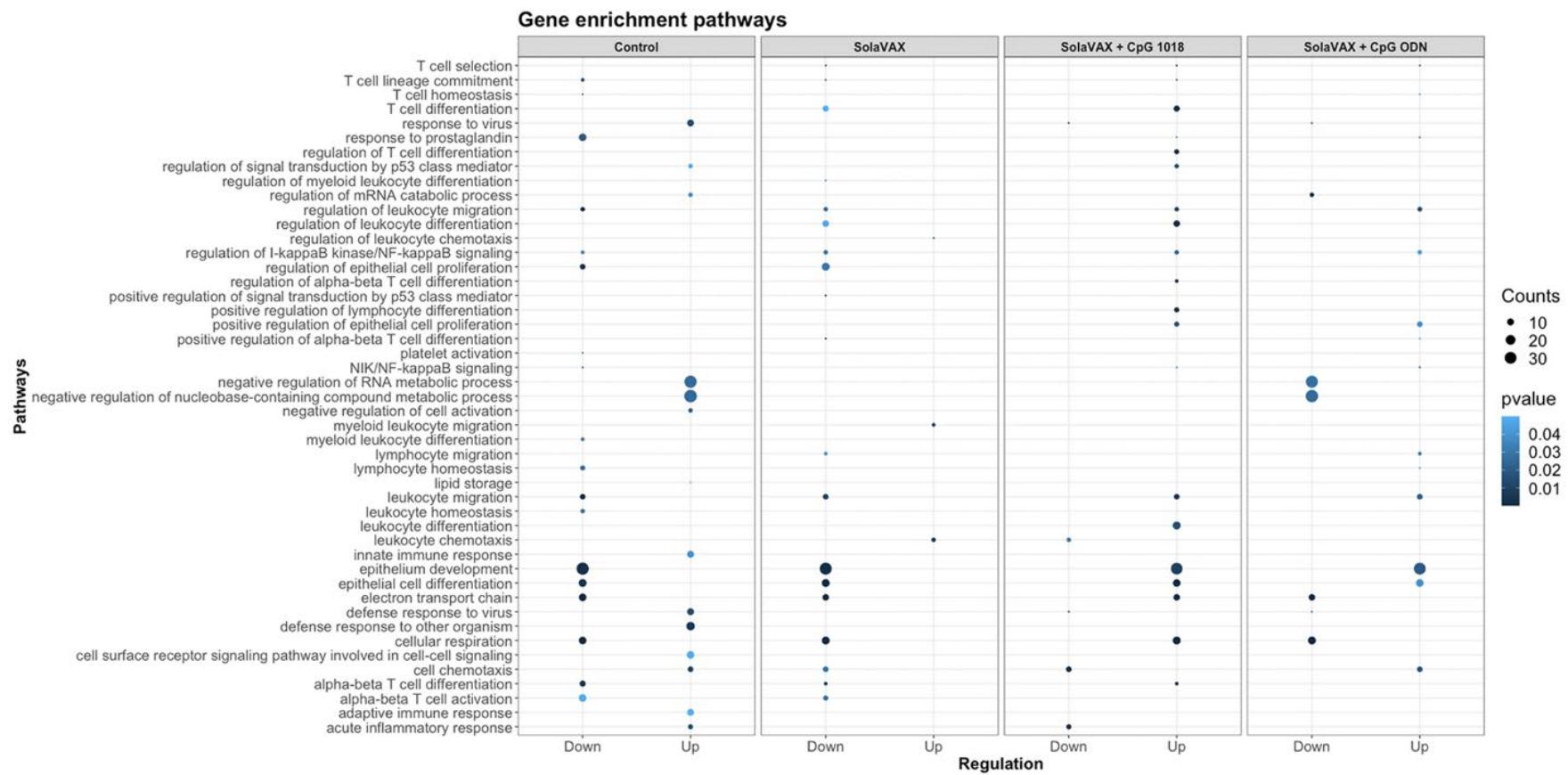



Figure 7

871

872

873

874

875

876

Figure 8

877

878

Supplementary Materials

879 **Fig. S1. Semiquantitative lung pathology scores from all study groups separated by route of administration.**

880 **Fig. S2. Statistically non-significant flow cytometry populations within intramuscular and subcutaneously vaccinated groups.**

881 **Fig. S3. cDNA amplification traces**

882 **Fig. S4. cDNA library traces**

883 **Fig S5. Total cDNA concentration and cDNA library molarity of individual samples.**

884 **Table S1. Markers for Identification of different cell types**

885 **Table S2. Consensus-changing mutations in the SARS-CoV-2 isolate used for hamster infection studies relative to the USA-**

886 **WA1 sequence**

887 **Table S3: Flow cytometry panel to Th1 and Th2 response**

888

889

890

891

892

893

894

895

896

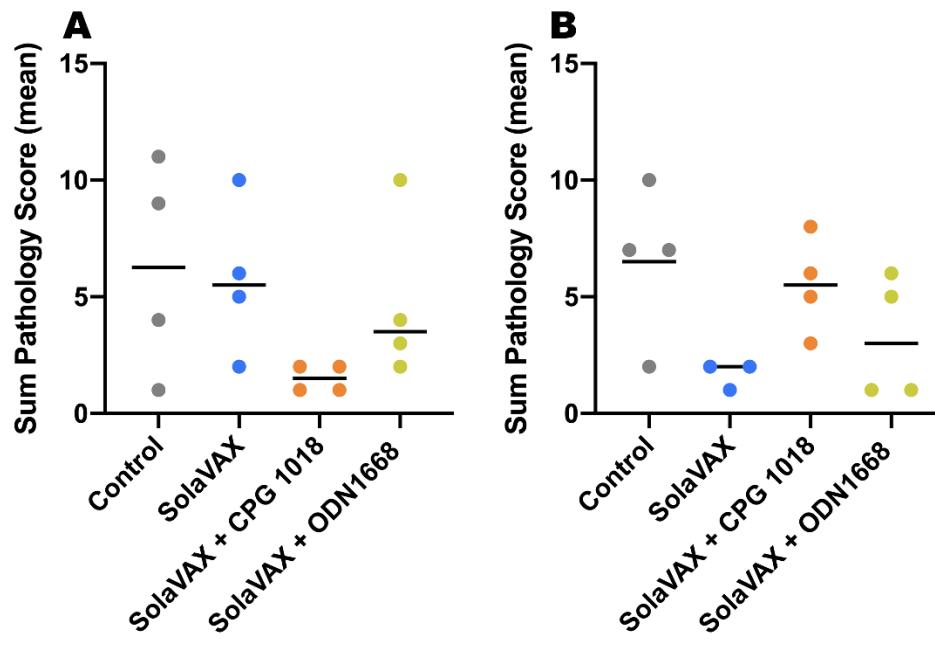
Position in genome (nt) ¹	Gene	Nucleotide substitution	Amino acid substitution	Variant frequency ²
13845	nsp12	U → G	D135E	0.86
22205	S	G → C	D215H	0.90
23616	S	G → A	R685H	0.87
26542	M	C → U	T7I	0.93
28853	N	U → A	S194T	0.94

897 1. Coordinates relative to MN985325.1

898 2. Fraction of reads with alternate base

899

900

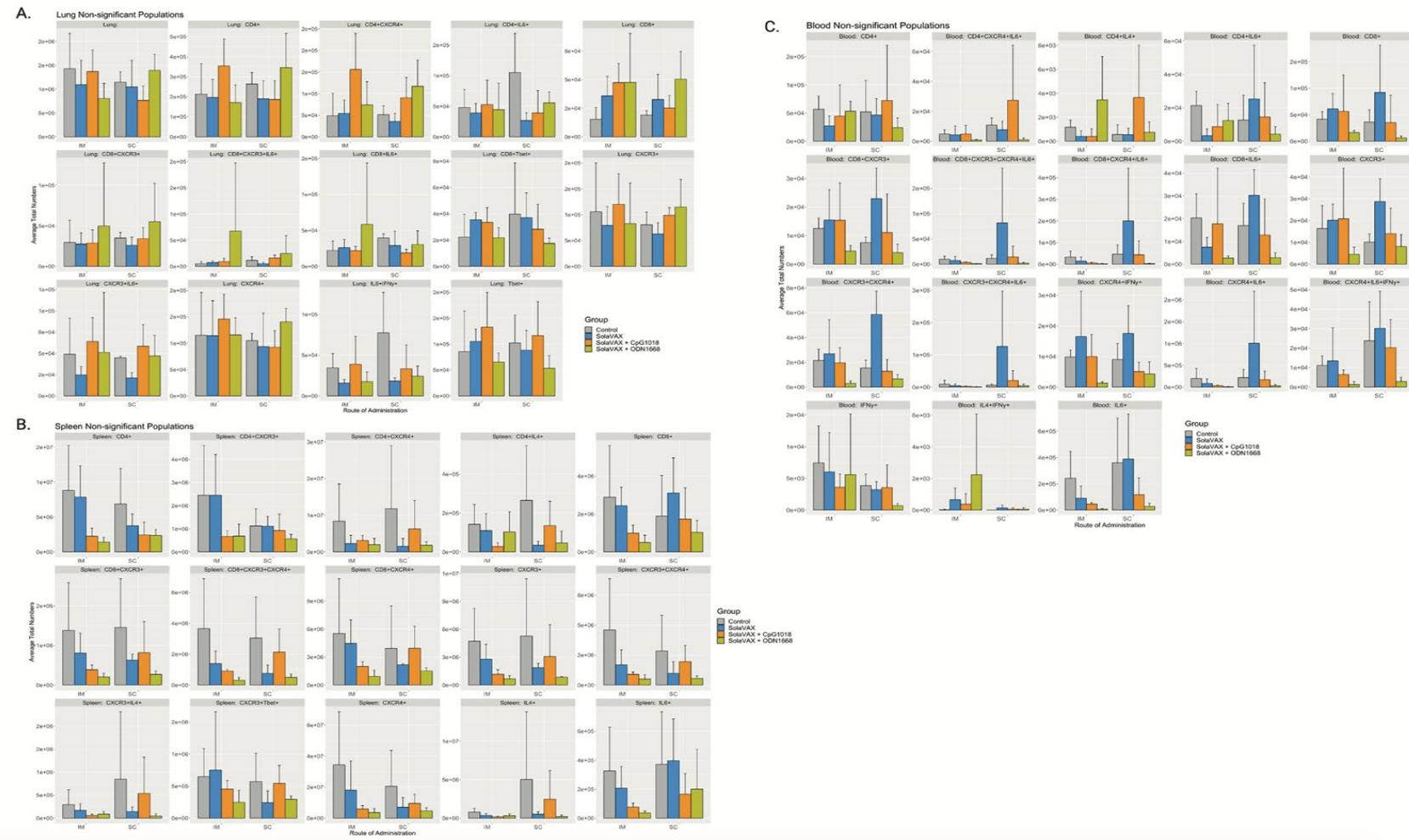

901

902

Table S1. Consensus-changing mutations in the SARS-CoV-2 isolate used for hamster infection studies relative to the USA-WA1 sequence (accession MN985325.1).

903

904



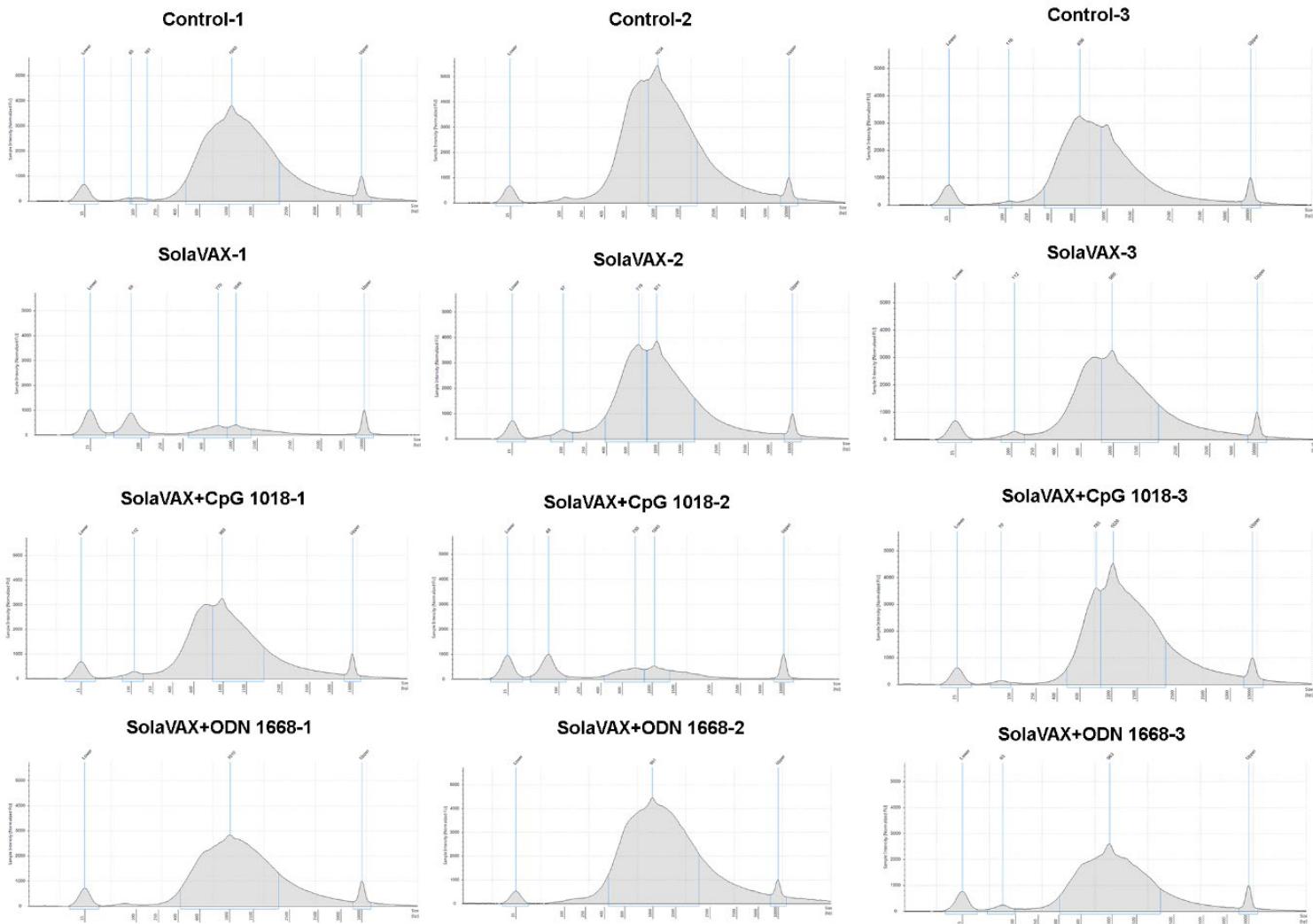
905

906

907 **Fig. S1. Semiquantitative lung pathology scores from all study groups separated by route of administration.** Overall severity of
 908 lung pathology was determined by the sum of severity scores for four pathological features with 12 being the maximum assigned sum
 909 of severity scores. Data are shown for all groups, separated by intramuscular (A) and subcutaneous (B) routes of immunization. Data
 910 points represent sum scores of individual animals with the bar representing the mean.

911

912

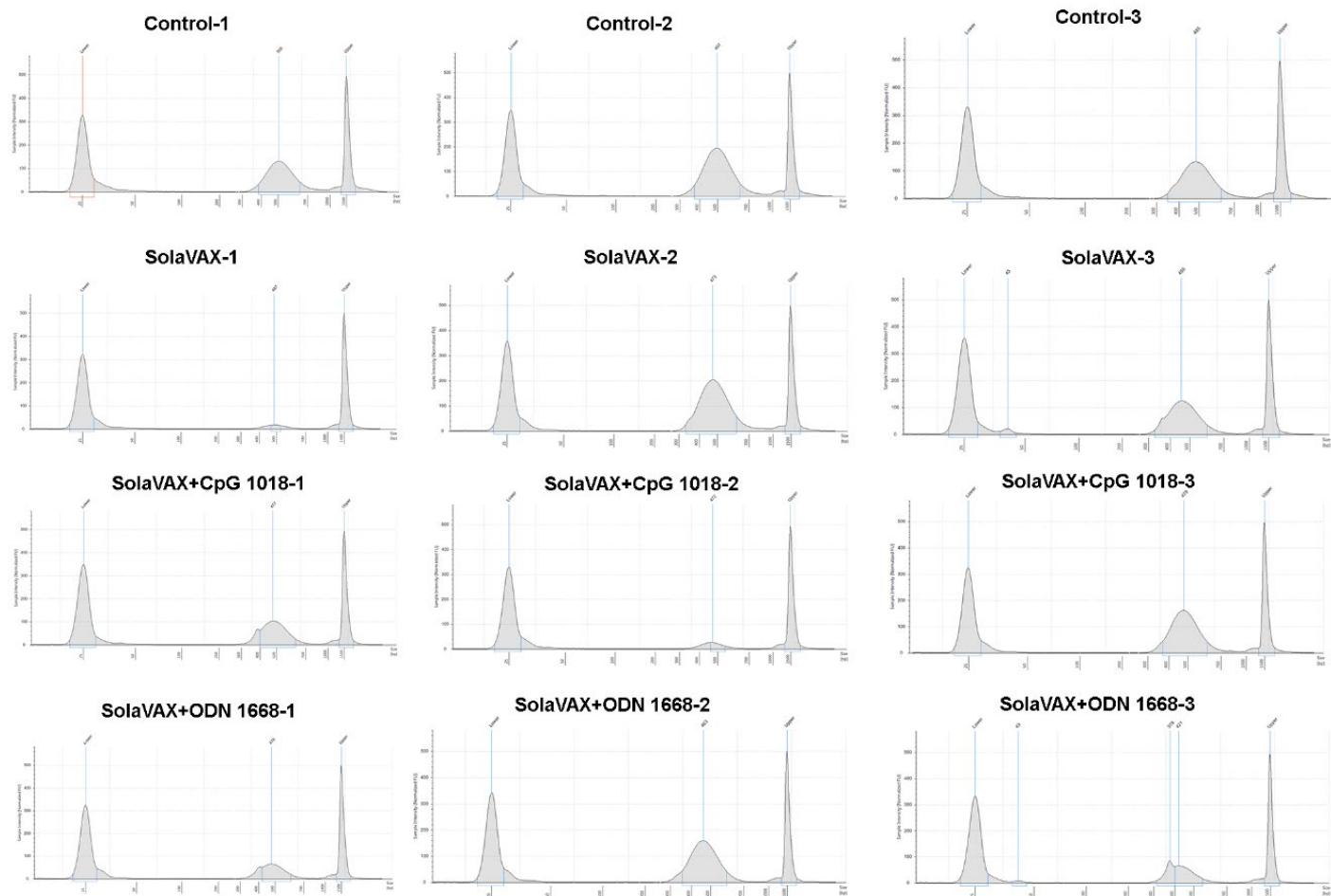

913

914 **Fig. S2. Statistically non-significant flow cytometry populations within intramuscular and subcutaneously vaccinated groups.**
 915 The bar plots show the statistically non-significant populations for the lung (A), spleen (B), and blood (C). The y-axis displays the
 916 average total numbers of cells for the eight groups. The population names at the top of the plots indicate the positive markers in the
 917 population: the population is negative for all other markers in the panel.

Markers	Cell type	References
Marco, CD86, CD274, NLRP3, IL-1B	Inflammatory Macrophages	[30]
CD14, Saa3, THBS1, CCL8	Inflammatory monocytes	[30, 31]
Marco, CD80, FABP5	Macrophages	[30]
ELANE, NET1, S100A6	Neutrophils	[32]
S100A8, S100A9, CD14	Monocytes	[31]
TCF4, FSCN1, CD83	plasmacytoid dendritic cells	[33, 34]
CD3D, CD8A, GZMA, GZMB, NKG7, CD44	Cytotoxic CD8 T cells	[33-35]
CD3D, CD8A, GZMA, NKG7, CD44, XCL	Cytotoxic CD8 T cells, XCL ^{hi}	[33-35]
CD3D, CD4, CD44, CD62L, CD38	Central memory CD4+ T cells	[33, 34]
CD3D, CD4, CD44, TNFRSF4	Activated CD4+ T cells	[33]
CD3D, GZMA, GZMK, TNFRSF	NK cells	[33, 35]
CD79B, CD74, H2-Aa, IGHJ, IGHM	B cells IGHJ ^{hi}	[33, 36]
CD79B, CD74, H2-Aa	B cells	[33, 36]
SFTPC, SFTPB	Type -II alveolar cells	[33]
SFTPC, SOX4	Epithelial progenitor cells	[33]

918 **Table S2. Markers for Identification of different cell types.** By using principal component analysis, 17 clusters were generated by
919 using Seurat pipeline. These clusters were classified into different cell types based on specific markers cited in literatures.

920

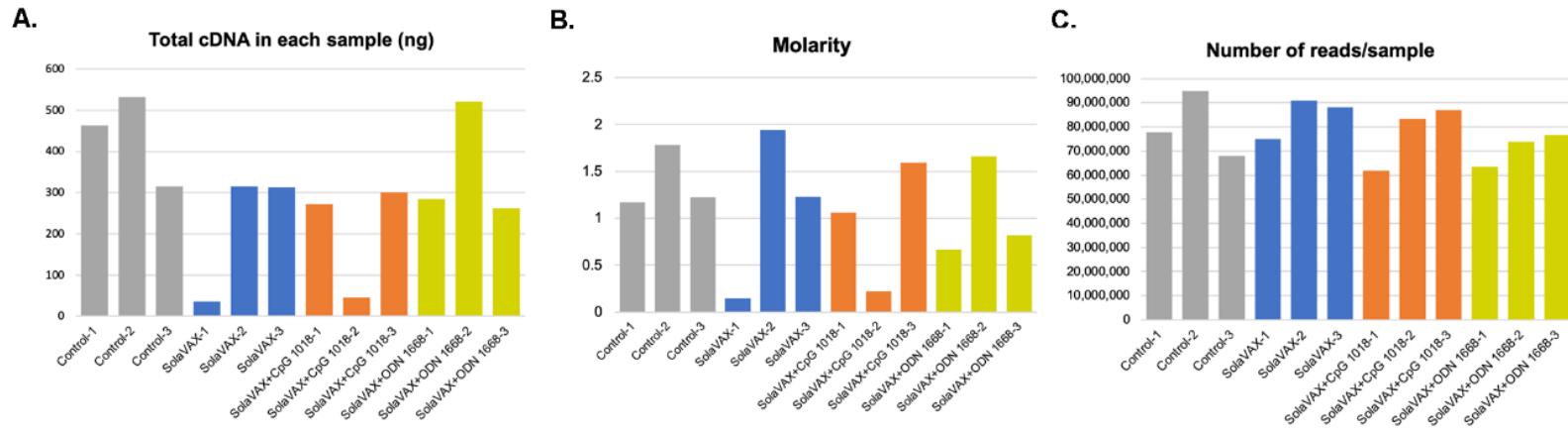


921

922

923 **Fig. S3. cDNA amplification traces.** cDNA was amplified and quality and quantity were evaluated via Agilent Tapestation using HS-
924 D5000 screen tapes and reagents. Traces here represent amplified cDNA after 10-fold dilution.

925



926

927 **Fig. S4. cDNA library traces.** cDNA was amplified, library was prepared, and quality and quantity were evaluated via Agilent
 928 Tapestation using HS-D1000 screen tapes and reagents. Traces here represent cDNA library after 10-fold dilution.

929

930

931

932

933 **Fig. S5. Total cDNA concentration, cDNA library molarity and number of reads for individual samples.** Total cDNA in the
 934 sample was calculated by taking concentration of cDNA obtained (in pg/μL) between 200-9000 bp. Molarity of the library was
 935 evaluated using region between 250 and 1000 bp. Number of reads were obtained from the combined sequencing run performed in
 936 Illumina Next Seq 500.

937

938

939

Antibody	Clone	fluorophore	Concentration of antibody used	Company	Catalogue	References
CD4	GK1.5	Pacific blue	1 µg/mL	Biolegend	100428	[37]
CD8	341	FITC	2 µg/mL	BD Biosciences	554973	[38, 39]
IFN- γ	XMG1.2	BV785	1 µg/mL	Biolegend	505838	[40]
IL-10	JES5-16E3	BV421	1 µg/mL	Biolegend	505022	[40]
Gata-3	16E10A23	PE	0.5 µg/mL	Biolegend	653804	[41]
Tbet	4B10	BV711	0.5 µg/mL	Biolegend	644820	[41]
IL-4	11-B11	APC	1 µg/mL	Biolegend	504106	[40]
TNF α	MP6-XT22	PE-Dazzle 594	0.5 µg/mL	Biolegend	506346	Based on percent similarity of protein sequence, hamster and mouse: 82%
IL-6	MP5-20F3	Percp efluor 710	1 µg/mL	Thermo Scientific	46-7061-82	Based on percent similarity of protein sequence, hamster and mouse: 73%
CXCR3	173	APC-Fire 750	1 µg/mL	Biolegend	126540	Based on percent similarity of protein sequence, hamster and mouse: 91.1%
CXCR4	2B11	BV650	2 µg/mL	BD Biosciences	740526	Based on percent similarity of protein sequence, hamster and mouse: 82%
Zombie NIR		Live/dead	1:2000 dilution	Biolegend	423106	Based on percent similarity of protein sequence, hamster and mouse: 93.2%

940

941 **Table S3. Flow cytometry panel:** Flow cytometry panel to study the Th1 and Th2 immune responses in non-vaccinated and
 942 SolaVAX vaccinated hamsters. Antibodies were selected based on previous studies and by percent similarity between hamsters to
 943 either mouse/rat based on availability of the antibodies.