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ABSTRACT

Antipsychotic-induced behavioral supersensitivity is a problematic consequence of long-term treatment with
antipsychotic drugs and is characterized by emergence of refractory symptoms and dyskinesias. The underlying
mechanisms are unknown, and no rational approaches exist to prevent or reverse antipsychotic-induced
supersensitivity. Here we describe major adaptations impacting populations of striatal medium spiny neurons
(MSNs) during the development of behavioral supersensitivity and reveal a prominent role played by D2 receptor
expressing MSNs. We show that enhanced D2-MSN activity underlies several symptoms spanning from
psychostimulant sensitization, to antipsychotic treatment resistance and drug addiction. Our data warn against
severe adverse events following antipsychotic treatment discontinuation and offer insight that may inform

therapeutic approaches to overcome antipsychotic-induced supersensitivity.
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Introduction

Antipsychotic drugs are widely prescribed for psychotic and non-psychotic disorders (7-3). Patients with
psychotic symptoms often discontinue antipsychotic treatment due to diminished therapeutic efficacy and
emergence of problematic side effects (4). Antipsychotic discontinuation may exacerbate refractory symptoms
(5-7) and pose a risk for developing tardive dyskinesia (6, 8-10) and substance use disorder (11, 12). These
potential outcomes, referred to as behavioral supersensitivity are hypothesized to result from enhanced
sensitivity to dopamine via upregulated D2 receptors (D2r) owing to long-term receptor blockade (713), even
though increases in D2r expression, binding affinity, and/or function are not consistently reported in humans or
animal models during or after treatment with clinically relevant doses of antipsychotics (5, 74). In previous studies
we described pre- and post-synaptic changes in neurotransmission during antipsychotic treatment resistance
despite adequate D2r blockade (75). We also found that discontinuation from chronic antipsychotic treatment
alters the physiology of striatal cells (76), but we did not define specific adaptation patterns nor their significance

for behavioral symptoms. Here we describe characteristic symptoms and the underlying neurobiology that stem

from discontinuing chronic antipsychotic after treatment failure (75) in both mice and rats.

Antipsychotic discontinuation and motor side effects in animal models

Whether treatment discontinuation following chronic antipsychotic regimens causes motor side effects such as
dyskinesia is unclear since studies report conflicting results using animal models (17-20). We performed a
systematic review of the literature on spontaneous vacuous chewing movements (VCM) in rodents, which are
considered a proxy for extrapyramidal and/or oral dyskinesia symptoms induced by antipsychotic drug treatment
(17). We searched PubMed, EMBASE, and Web of Science for relevant studies using search terms for (1) animal
studies, (2) antipsychotics, and (3) withdrawal (See Supplemental material). We found that discontinuation from
second generation antipsychotic drugs induces no spontaneous VCMs, with the exception of high doses of
risperidone, whereas haloperidol induces high levels of spontaneous VCMs in young and old rats 21 days after
prolonged daily treatment (75d) (fig. S1). To determine if abstinence from shorter treatment regimens using
haloperidol caused oral dyskinesia, we measured VCMs in rats 7d after haloperidol discontinuation, but did not

observe VCMs using this paradigm (fig. S2) in keeping with reports using similar treatment durations (27).
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Brief abstinence (72h) from high doses of daily repeated i.p. haloperidol (15d) results in hyperlocomotion induced
by cocaine (22), consistent with behavioral supersensitivity following antipsychotic treatment discontinuation (9).
In addition, we previously found that 14d of continuous treatment with clinically-relevant doses of haloperidol
results in loss of therapeutic efficacy relative to shorter treatment durations (15). To confirm whether abstinence
from antipsychotics following treatment failure produced behavioral supersensitivity, we treated mice with a
systemic injection of cocaine 7 days after discontinuation of 14d haloperidol treatment, delivered continuously
through osmotic pumps (Fig. 1A). Acute cocaine injection in these animals enhanced locomotion (cross-
sensitization) in a similar manner as in haloperidol-naive animals receiving a second cocaine injection 7 days

after an initial cocaine injection (mono-sensitization, Fig. 1B) (23), thus demonstrating behavioral

supersensitivity.

Haloperidol discontinuation in the absence of schizophrenia produced endophenotypes of substance
use disorder

The likelihood of substance use disorder in patients with schizophrenia is ~4.6-fold higher than in the general
population (24, 25), especially among treatment non-adherent patients (26). Interestingly, non-psychotic drug-
addicted patients are reported to co-abuse antipsychotic medications to enhance the effects of addictive
substances (27). This raises the question of whether antipsychotic treatment itself, in the absence of psychiatric
illness, enhances vulnerability to substance use disorder. Traditional animal models of drug addiction
vulnerability involve locomotor sensitization induced by intermittent psychostimulant injections (28-30). Because
haloperidol and cocaine produced locomotor cross-sensitization, we sought to determine whether this response
was predictive of additional behavioral features of substance use disorder using the self-administration,

extinction, and reinstatement model of cocaine use and relapse.

It has been shown previously that intake of substances of abuse is suppressed during ongoing antipsychotic
treatment (31, 32), although lower antipsychotic doses can produce opposite outcomes (33). Regardless, it is
unknown if discontinuing antipsychotic medications after loss of therapeutic efficacy is a risk factor for substance
use disorder. To examine this hypothesis, we trained male and female rats to self-administer cocaine after

abstinence from haloperidol according to the same timeline applied during locomotor cross-sensitization (Fig.
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1C). Operant training was conducted on an FR1 schedule, and cocaine delivery was paired with light and tone
cues for 2h each day. There were no differences in active or inactive lever pressing between haloperidol
pretreated rats and control animals during self-administration and groups did not differ in total cocaine intake
(Fig. 1D, fig. S3A), suggesting that the acquisition of learned operant responding and reward associated with
cocaine delivery were not altered by haloperidol discontinuation. After 10 days of operant training, rats were then
extinguished to the drug-associated context during 2h sessions in the operant box without cues or drug delivery.
In control animals, active lever presses gradually diminished over time in the absence of drug reward and a
stable baseline of responding was observed within 3-5 days of extinction training. In haloperidol-pretreated rats
however, active lever pressing was elevated compared to controls throughout extinction training and baseline
responding in the drug-paired context remained elevated despite absence of reward in haloperidol pretreated
rats (Fig. 1D). After 12 days of extinction, animals were returned to the operant box and light/tone pairings were
restored to the active lever, but no cocaine was delivered. Cocaine-associated cues stimulated lever pressing in
haloperidol-pretreated rats compared to control animals during a 60-min reinstatement test (Fig. 1E), a widely
accepted model of cue reactivity (34) linked to drug relapse in human patients (35). Thus the main deficit
emerging in supersensitive animals was surprisingly not an increase in cocaine intake as reported in studies
applying mono-sensitization procedures (28), but involved disrupted extinction of operant responding (i.e. lever
pressing) for cocaine despite its absence. Similarly, haloperidol pretreated animals displayed enhanced
measures of seeking in response to drug-associated cues, perhaps owing to a deficit in within-session extinction

of behavioral responding in the absence of cocaine. Together, these data indicate that antipsychotic

discontinuation produced features of substance use disorder coincident with behavioral supersensitivity.

D2-MSN hyperactivity, but not D2 receptor upregulation, drives behavioral supersensitivity

The most commonly cited cause of antipsychotic-induced behavioral supersensitivity is upregulated D2r
expression after long-term treatment (73). To test whether the D2r was upregulated in our model of behavioral
supersensitivity, we examined D2r levels in the ventral striatum, dorsal striatum, and midbrain by Western blot
after 14d of continuous haloperidol treatment and after 7d of abstinence from continuous treatment. We found

no change in D2r expression in either group using our treatment protocols relative to untreated animals (fig. S4).
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Spontaneous and sensitized locomotion and goal-directed behaviors are orchestrated by activity of D1r and D2r-
expressing MSNs in the ventral striatum (D1- and D2-MSNs) (36). To examine the cellular basis of locomotion
during behavioral supersensitivity, we recorded single cell Ca** dynamics (fig. S5) in 1852 MSNs in the nucleus
accumbens core (NAcore, the ventral extension of the caudate-putamen) in vivo (fig. S6A and B) during
locomotor responses to cocaine in cross-sensitized (892 cells) and mono-sensitized (960 cells) mice.
Unsupervised k-means clustering (fig. S6C and E) revealed the underlying response structure of D1- and D2-
MSNs in mono-sensitized mice. Clusters with similar patterns over the recording session were combined and
classified as unchanged, showing stable activity before and after i.p. cocaine and inactivated cells showing
depression of Ca** events in response to cocaine (Fig. 2A). In addition to unchanged and inactivated clusters,

in cross-sensitized mice we also found a unique subpopulation of both D1- and D2-MSNs that were activated by

an acute i.p. cocaine injection (fig. S6D and F, Fig. 2B).

While baseline MSN activity was grossly unchanged in mono-sensitized animals across treatments, the baseline
activity of D2-MSNs was enhanced relative to control conditions during ongoing chronic haloperidol treatment
(fig. S7). This effect endured after treatment discontinuation. Furthermore, baseline MSN activity after haloperidol
discontinuation served as a reliable predictor of cellular responses to cocaine during cross-sensitization (Fig.
2C), in that higher baseline activity predicted depression of cellular response to cocaine whereas moderate basal
D2-MSN activity predicted cocaine-induced hyperactivity (as in Fig. 2B, middle panel). When cell clusters were
examined separately regarding their relationship to locomotor output, we found that unchanged and decreased
MSNs in mono-sensitized (Fig. 2A, right panel) as well as cross-sensitized mice either did not correlate or
correlated negatively with locomotion (Fig. 2B, right panel). Instead, both D1- and D2-MSNs that were activated
by cocaine in cross-sensitized animals correlated positively with locomotion, suggesting an important role for
hyperactive MSN subpopulations in mediating behavioral supersensitivity (Fig. 2B, right panel). Importantly,
locomotor activation by psychostimulants is thought to stem from the combined stimulation of D1-and D2- MSNs
(37). Here instead we found that both D1- and D2-MSNs show similar patterns of responding to cocaine in mono-
and cross-sensitized animals and that subpopulations of D2-MSNs were uniquely activated by cocaine only in

cross-sensitized animals following haloperidol discontinuation (Fig. 2B, activated).
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To determine the role of hyperactive D2-MSNs in locomotion during behavioral supersensitivity, we next
assessed if silencing D2-MSNs could suppress locomotor cross-sensitization. We virally delivered a Gi-coupled
designer receptor activated by the designer drug (DREADD) clozapine-N-oxide (CNO) (38) to D2-MSNs in the
NAcore of haloperidol pretreated mice. Mice that received CNO intracranially to inhibit D2-MSN activity did not
exhibit locomotor cross-sensitization after cocaine injection compared with mice not expressing the Gi-DREADD
(Fig. 2D). Locomotion in mice undergoing DREADD inhibition in D2-MSNs was comparable to locomotion in
untreated mice that received acute haloperidol, which suppressed cocaine-induced locomotion. We also found
that acute haloperidol in animals that had undergone treatment discontinuation was not sufficient to block
cocaine-induced hyperlocomotion (Fig. 2D), consistent with loss of antipsychotic efficacy (5, 7) and in keeping
with emergence of refractory motor symptoms during behavioral supersensitivity. Altogether these findings show
that hyperactive D2-MSNs mediate behavioral supersensitivity. Furthermore, since acute haloperidol only partly

suppressed hyperlocomotion during cross-sensitization we confirm that D2r blockade is functionally unrelated to

the contribution of D2-MSN activity on motor output (39).

Enhanced excitatory transmission on D2-MSNs underlies behavioral supersensitivity

NAcore MSN excitability is regulated by cortical, thalamic and limbic excitatory inputs, and D2-MSNs likely
receive specific inputs from the cortex (40, 47). Additionally, NAcore MSN excitability is modulated by astrocytes
via their expression of the glutamate transporter GLT-1 that regulates glutamate uptake following synaptic
release (42) and their synaptic proximity, a dynamic measure that impacts autoinhibitory control of transmitter
release (43, 44). Moreover, striatal glutamatergic transmission is altered by antipsychotic drugs (75) and may
involve modification of recycling and readily-releasable synaptic vesicle mechanisms (15, 45). To determine
whether density of presynaptic vesicles was impacted by haloperidol during and after treatment discontinuation,
we immunolabeled tissue from haloperidol-treated mice for the presynaptic marker Synapsin I. We found
increased density of Synapsin |-positive puncta in the NAcore during chronic haloperidol treatment and
discontinuation (Fig. 3D), indicating presynaptic changes capable of elevating transmitter release capacity. Next,
we labeled NAcore astroglia using a virally-delivered membrane-bound fluorophore (mCherry) and measured
changes in synaptic proximity of NAcore astroglia by quantifying confocal co-registration of mCherry with

immunoreactive Synapsin |. Synaptic co-registration of the astroglial membrane was reduced after chronic
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haloperidol treatment and during cross-sensitization (Fig. 3E). These data illustrate synaptic retraction of
astrocyte processes during behavioral supersensitivity, an adaptation that would be expected to reduce
autoinhibitory control of transmitter release. We next immunolabeled GLT-1 on NAcore astroglia and found
increased GLT-1 expression during haloperidol treatment that returned to baseline levels during abstinence (Fig.
3F), despite persistentincreases in Synapsin | labeling (Fig. 3D). Together, these adaptations along with reduced

synaptic proximity of astroglial processes that harbor GLT-1 (Fig. 3E) would be expected to render synapses

vulnerable to overexcitation during cross-sensitization.

Neurobiology of behavioral supersensitivity

We show for the first time a crucial role for NAcore D2-MSN activation in driving locomotor activity during
behavioral supersensitivity. Beyond the relevance to treatment for schizophrenia, these data invite us to rethink
the canonical role of striatal D2-MSN physiology underlying motor outputs. It is generally thought that stimulation
of D1 and D2 receptors with either dopamine or with direct and indirect agonists produce stimulation and

inhibition of MSNs via the activation of intracellular GS/0 or Gi/O proteins, respectively. On the contrary we show

not only that D1-MSNs are not activated by cocaine during mono-sensitization (Fig. 2A), but also that silencing
D2-MSNs inhibits locomotor activity in mice discontinuing antipsychotic treatment during cross-sensitization,
revealing a subpopulation of D2-MSNs that can be triggered to drive hyperlocomotion. It is important to note that
when MSN activity during cross-sensitization was averaged, D1- and D2-MSNs were increased and decreased
in response to cocaine, respectively, in line with canonical expectation of the impact of cocaine on MSN activity
(fig. S8). This “canonical” outcome was not observed in the mono-sensitization group. Moreover, an important
and opposing role for D2-MSN activation on locomotion was uncovered by teasing apart activity in cell clusters.
D2-MSN inhibition in this case suppressed locomotion, consistent with a functional role of hyperactive D2-MSNs

in driving locomotion during behavioral supersensitivity.

Relevance for antipsychotic treatment in human patients
While side effects of antipsychotic treatment are often attributed to changes in the D2r, our study shows that
antipsychotic discontinuation leads to the emergence of behavioral supersensitivity, refractory response to

antipsychotic treatment and addiction vulnerability independent from D2r changes. Most importantly we show
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evidence for long-term adaptations driving hyperactivated MSNs during psychotic-like behaviors after
antipsychotic discontinuation. These studies prove that antipsychotic discontinuation itself, in the absence of
schizophrenia, contributes to endophenotypes of substance use disorder. Deficits in behavioral extinction and
increased reinstated seeking would be expected to translate to increased relapse rates and shorter abstinence
periods in humans undergoing parallel pharmacological treatments. Since D2-MSNs have been shown to
mediate both aversion and reward (46), increased lever pressing during extinction and reinstatement may derive

from the motivation of subjects to either reduce aversion during antipsychotic discontinuation or to achieve

reward.
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Group by Study name Statistics for each study Subgroup within study
ubgroup withn study

Std diff  Standard Lower Upper

inmeans  error  Variance limit limit Z-Value p-Value
Clozapine Rosengarten, 2002 0,693 0420 0177 4517 0131 -1648 0009 —_—t Clozapine Clozapine 12,2 mg/kg/day vs Control (rats 18 months)
Clozapine Rosengarten, 2002 0577 0417 0174 0239 134 1386 0,166 e ™ m— Clozapine Clozapine 12,2 mg/kg/day vs Control (rats 3 months)
Clozapine Seo, 1990 0878 0494 0244 0090 1845 1779 0075 L " a—— Clozapino Clozapine 15 mg/kg/day vs Control
Clozapine Gunne, 1986 1,023 0532 0283 0019 2085 1924 0054 Clozapine Clozapine 52 mg/kg/day vs Control
Clozapine 0413 0405 0164 0381 1206 1020 0308 P e
Haloperidol Gunne, 1986 1,023 0532 0283 0019 2085 1924 0054 Haloperidol Haloperidol 0,41 mg/kg/day vs Control
Haloperidol Rosengarton, 2002 3175 0614 0377 1972 4378 5173 0,000 Haloperidol Haloperidol 0.5 mg/kg/day vs Control (rats 3 months)
Haloperidol Rosengarten, 2002 3398 0638 0407 2147 4648 5325 0000 —— Haloperidol Haloperidol 0,5 mg/ka/day vs Control (rats 18 months)
Haloperidol See, 1900 1,489 0533 0284 0445 2533 2795 0005 — e Haloperidol Haloperidol 1 mg/kg/day vs Control
Haloperidol Marchese, 2004 0430 0413 0171 0379 1239 1042 0298 — e Haloperidol Haloperidol 2 mg/kg/day vs Control
Haloperidol Marchese, 2004 2,286 0525 0276 1257 3315 435 0000 —_—— Haloperidol Haloperidol 20 mg/kg/day vs Control
Haloperidol Marchese, 2004 1,603 0460 0220 0683 253 3416 0,001 —_——— Haloperidol Haloperidol 8 mg/kg/day vs Control
Haloperidol 1,856 0407 0,165 1050 2653 4505 0000 e A
Olanzapine Rosengarten, 2002 0,400 0,412 0170 -0408 1208 0971 0332 e B ] Olanzapine Olanzapine 0,88 mg/kg/day vs Control (rats 3 months)
Olanzapine Rosengarten, 2002 0635 0418 0175 -1455 018 -1518 0,129 ] e Olanzapine Olanzapine 0,88 mg/kg/day vs Control (rats 18 months)
Olanzapine 0,115 0518 0268 -1,130 0000 -0222 0824
Risperidone Marchese, 2004 0280 0410 0168 -1,084 0524 0683 0495 Risperidone Risperidone 0,2 mg/kg/day vs Control
Risperidone Rosengarten, 2002 0000 0408 0167 -0.800 0800 0000 1,000 Risperidone Risporidone 0,45 mg/kgiday vs Control (rats 18 months)
Risperidone Rosengarten, 2002 0377 0412 0170 -0431 1184 0915 0360 Risperidone Risperidone 0,45 mg/kg/day vs Control (rats 3 months)
Risperidone Marchese, 2004 0,059 0408 0167 0859 0742 0,144 0886 Risperidone Risperidone 1 mg/kg/day vs Control
Risperidone Marchese, 2004 0908 0420 0184 0068 1748 2118 0034 —L Risperidone Risperidone 2 mg/kg/day vs Control
Risperidone 0178 0205 0042 0223 0579 0870 0384
Overal 0442 0150 0025 0131 075 2787 0005 -

4,00 2,00 0,00 2,00 4,00

VCMs Increased In control VCMs increased after antipsychotic discontinuation
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