

1 New Insights and Enhanced Human Norovirus Cultivation in Human Intestinal Enteroids

2 Running title: New Insights and Enhanced HuNoV Cultivation in HIEs

3

4

5 Khalil Ettayebi^a, Victoria R Tenge^a, Nicolas W. Cortes-Penfield^{b,c}, Sue E. Crawford^a,

6 Frederick H. Neill^a, Xi-Lei Zeng^a, Xiaomin Yu^a, B. Vijayalakshmi Ayyar^a, Douglas Burrin^d,

7 Sasirekha Ramani^a, Robert L. Atmar^{a,b}, Mary K. Estes^{a,b*}

8

9 ^aDepartment of Molecular Virology and Microbiology, Baylor College of Medicine (BCM),
10 Houston, TX, USA

11 ^bDepartment of Medicine, BCM, Houston, TX, USA

12 ^dSection of Gastroenterology, Hematology and Nutrition, Department of Pediatrics, Baylor
13 College of Medicine, and USDA/ARS Children's Nutrition Research Center, Houston, TX,
14 USA

15

16 Running head: HuNoV cultivation, HIEs, organoids, Intesticult media (53/54)

17

18 *Address correspondence to Mary K. Estes, mestes@bcm.edu

19

20 ^cPresent address: University of Nebraska Medical Center, Omaha, NE, USA

21

22 **Running head: 53/54; Abstract: 245/250; Importance: 146/150; Text: 5000/5000**

23

24 **Abstract**

25 Human noroviruses (HuNoVs) are the leading cause of epidemic and sporadic acute
26 gastroenteritis worldwide. We previously demonstrated human intestinal stem cell-
27 derived enteroids (HIEs) support cultivation of several HuNoV strains. However, HIEs did
28 not support virus replication from every HuNoV-positive stool sample, which led us to test
29 and optimize new media conditions, identify characteristics of stool samples that allow
30 replication, and evaluate consistency of replication over time. Optimization of our HIE-
31 HuNoV culture system has shown that: 1) A new HIE culture media made with
32 conditioned medium from a single cell line and commercial media promote robust
33 replication of HuNoV strains that replicated poorly in HIEs grown in our original culture
34 media made with conditioned media from 3 separate cell lines; 2) GI.1, eleven GII
35 genotypes (GII.1, GII.2, GII.3, GII.4, GII.6, GII.7, GII.8, GII.12, GII.13, GII.14 and GII.17)
36 and six GII.4 variants, can be cultivated in HIEs; 3) successful replication is more likely
37 with virus in stools with higher virus titers; 4) GII.4_Sydney_2012 virus replication was
38 reproducible over three years; and 5) HuNoV infection is restricted to the small intestine,
39 based on replication in duodenal and ileal HIEs but not colonoids from the same donors.
40 These results improve the HIE culture system for HuNoV replication. Use of HIEs by
41 several laboratories worldwide to study the molecular mechanisms that regulate HuNoV
42 replication confirms the usefulness of this culture system and our optimized methods for
43 virus replication will advance the development of effective therapies and methods for virus
44 control.

45

46

47 **Importance**

48 Human noroviruses (HuNoVs) are highly contagious and cause acute and sporadic
49 diarrheal illness in all age groups. In addition, chronic infections occur in
50 immunocompromised cancer and transplant patients. These viruses are antigenically and
51 genetically diverse and there are strain-specific differences in binding to cellular
52 attachment factors. In addition, new discoveries are being made on strain-specific
53 differences in virus entry and replication and the epithelial cell response to infection in
54 human intestinal enteroids. Human intestinal enteroids are a biologically-relevant model
55 to study HuNoVs; however, not all strains can be cultivated at this time. A complete
56 understanding of HuNoV biology thus requires cultivation conditions that will allow the
57 replication of multiple strains. We report optimization of HuNoV cultivation in human
58 intestinal enteroid cultures to increase the numbers of cultivatable strains and the
59 magnitude of replication, which is critical for testing antivirals, neutralizing antibodies and
60 methods of virus inactivation.

61

62

63 **Introduction**

64 Noroviruses, members of a genus in the *Caliciviridae* family, are nonenveloped positive-
65 sense RNA viruses of approximately 7.4-7.7 kb, and are classified based on sequence
66 similarities into ten genogroups, amongst which genogroups GI, GII, GIV, VIII and IX
67 infect humans (1). Within these five genogroups, there are 39 different genotypes that
68 cause human infections; GIs and GIIs that are the most prevalent are divided into 9 and
69 27 genotypes (including eight GII.4 variants), respectively (1). Human noroviruses

70 (HuNoVs) are a leading cause of diarrheal illness and are associated with nearly 20% of
71 all gastroenteritis episodes worldwide, including 19-21 million cases and 56,000 -71,000
72 hospitalizations annually in the United States (2, 3). The spectrum of illness ranges from
73 acute morbidity in all age groups, chronic disease in immunocompromised cancer and
74 transplant patients, and mortality in young children and older adults (2, 4-7). It is estimated
75 that 685 million episodes of acute gastroenteritis and 212,000 deaths occur worldwide
76 due to HuNoVs each year (8). Since the introduction of rotavirus vaccines, HuNoVs have
77 become the leading cause of acute gastroenteritis in children worldwide (2, 9, 10). The
78 economic burden of HuNoV gastroenteritis is substantial, with over \$4 billion in healthcare
79 costs and over \$60 billion in societal costs annually (5). These data emphasize the strong
80 need for effective therapies, antivirals and vaccines.

81
82 The lack of a reproducible culture system for HuNoVs was a major barrier to
83 understanding virus biology including mechanisms of replication, inactivation,
84 neutralization, and vaccine development for approximately five decades (11, 12). This
85 problem was overcome with the successful cultivation of multiple HuNoV strains in
86 enterocytes in human intestinal stem cell-derived, nontransformed enteroid (HIE)
87 monolayer cultures (12-20). Previous studies showed replication of GI.1 and six GII
88 genotypes, including four GII.4 variants, in this ex vivo system, and virus replication in
89 HIEs mimics epidemiological differences in host susceptibility based on genetic
90 differences in expression of histo-blood group antigens (HBGAs) as defined by a person's
91 secretor status (11-13, 21, 22). In addition to being used to study the regulation of viral
92 replication and pathophysiology, the HIE cultivation system allows the evaluation of

93 antiviral candidates, neutralization and methods for virus inactivation (12, 13, 15, 17, 20,
94 23, 24). Despite this progress, a need to improve the system remained, primarily
95 because not every HuNoV-positive stool sample could be propagated in HIEs.

96

97 Significant advancement has been made in the development and maintenance of ex vivo
98 long-term HIE cultures since they were originally established in 2011 (25). Growth factors,
99 including R-spondin, Wnt-3A, and Noggin, are needed to support vital pathways for stem
100 cell maintenance (26). Due to the high cost and reduced biologic activity of some purified
101 commercial growth factors, these factors often are made by expression individually or in
102 combination in mammalian cell lines, where they undergo posttranslational modifications
103 prior to their secretion into the culture media to produce conditioned medium. This
104 conditioned medium is filtered and used as growth factor supplements in HIE proliferation
105 or expansion medium to sustain the maintenance of multicellular three dimensional (3D)
106 cultures, which then are used to produce monolayer (2D) cultures for infection
107 experiments where access to the apical surface is needed (27). Components in the
108 conditioned media, such as serum or other factors produced by the cultures expressing
109 the growth factors, may positively or negatively affect HIE growth and/or viral infection. In
110 this study, we sought to assess the reproducibility of HuNoV infections in HIEs over time,
111 optimize the ex-vivo HIE system for HuNoV replication in order to increase the numbers
112 of cultivatable strains and the magnitude of replication, and identify factors that result in
113 successful virus replication.

114

115

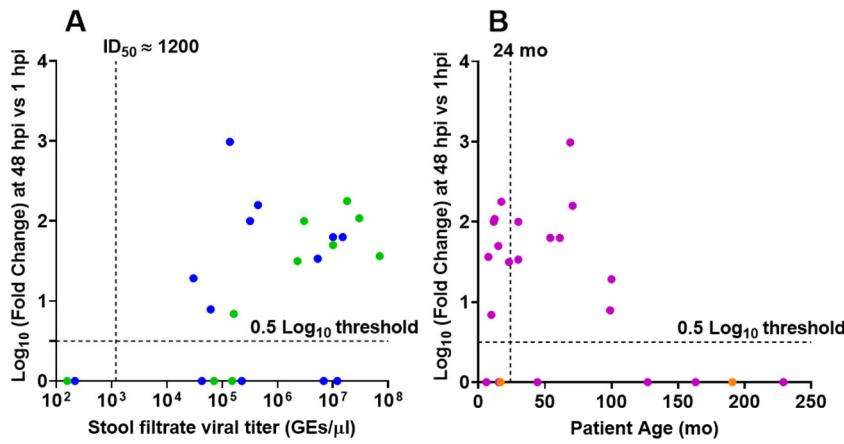
116 Results

117 Many HuNoV strains replicate in jejunal J2 HIE monolayers.

118 We previously reported the establishment of the HIE system for HuNoV cultivation and
119 demonstrated the replication of GI.1, GII.3, GII.17 and 4 GII.4 variants (12). Here, we
120 tested additional stools representing a greater spectrum of HuNoV strains to evaluate
121 whether they can be propagated in the ex vivo HIE culture system and to examine culture
122 conditions that affect virus growth. J2 HIE monolayers cultivated and plated in our original
123 in-house proliferation (BCMp) media and then differentiated in our in-house differentiation

124 (BCMd) media were
125 inoculated with HuNoV-
126 positive fecal filtrates, and
127 virus replication was
128 assessed by RT-qPCR using
129 GI.1 or GII.4 transcripts for
130 quantification of genome
131 equivalents (GEs). A 0.5 log₁₀
132 increase in GEs after 24 hpi
133 relative to the amount of
134 genomic RNA detected at 1
135 hpi (after removal of the virus
136 inoculum and two washes of
137 the monolayers to remove

Reference Strain	Age (y, m) [#]	Titer (GEs/μl)	Log ₁₀ increase in viral RNA in BCM
GI.P1/1968/GI.1/Norwalk	N/A	5.7 x 10 ⁶	0.5
GI.3/TCH14-184	N/A	1.0 x 10 ⁴	0.0
GII/GII.1/TCH18-98	23 m	1.8 x 10 ⁴	0.5
GII.P2/GII.2/TCH05-951	N/A	1.7 x 10 ⁶	0.7
GII.P21/GII.3/TCH04-577	7 y	8.5 x 10 ⁶	1.6
GII.P4/GII.4 Farmington Hills/TCH03-151	16 m	1.6 x 10 ²	0.0
GII.P4/GII.4 Yerseke/TCH02-186	2 m	2.3 x 10 ⁶	1.5
GII/GII.4 Yerseke/TCH02-276	10 m	1.6 x 10 ⁵	0.8
GII.P4/GII.4 Yerseke/TCH07-194	7 m	7.0 x 10 ⁷	1.6
GII.P4/GII.4 Den Haag/TCH07-882	5 y	1.5 x 10 ⁷	1.8
GII.P4/GII.4 Den Haag/TCH08-227	2.5 y	5.3 x 10 ⁶	1.5
GII.P4/GII.4 Den Haag/TCH08-429	8 y	3.0 x 10 ⁴	1.3
GII.P4/GII.4 Den Haag/TCH08-430	8 y	6.2 x 10 ⁴	0.9
GII.P4/GII.4 Den Haag/MDA09-01	N/A	1.1 x 10 ⁷	1.6
GII.P4/GII.4 Den Haag/TCH07-348	6 m	1.5 x 10 ⁵	0.0
GII/GII.4 Den Haag/TCH08-135	3 y	6.8 x 10 ⁶	0.0
GII.P4/GII.4 New Orleans/TCH11-64	12 m	3.0 x 10 ⁷	1.6
GII.P4/GII.4 New Orleans/TCH09-935	13 y	2.3 x 10 ⁵	0.0
GII.P4/GII.4 New Orleans/TCH10-52	19 y	1.2 x 10 ⁷	0.0
GII.P31/GII.4 Sydney/TCH12-580	17 m	1.8 x 10 ⁷	2.3
GII.P31/GII.4 Sydney/TCH12-556	15 y	2.2 x 10 ²	0.0
GII.P31/GII.4 Sydney/TCH13-196	10 y	4.3 x 10 ⁴	0.0
GII.P31/GII.4 Sydney/TCH13-601	15 m	7.1 x 10 ⁴	0.0
GII.P31/GII.4 Sydney/TCH14-10	11 m	3.0 x 10 ⁶	2.0
GII.P31/GII.4 Sydney/TCH15-88	5 y	1.4 x 10 ⁵	3.0
GII/GII.4 Sydney/TCH15-82	5 y	4.4 x 10 ⁵	2.2
GII.P16/GII.4 Sydney/TCH15-123	2.5 y	3.2 x 10 ⁵	2.0
GII.P31/GII.4 Sydney/BCM16-1	NA	1.0 x 10 ⁷	1.6
GII.P16/GII.4 Sydney/BCM16-16	4 y	1.0 x 10 ⁷	1.8
GII.P16/GII.4 Sydney/BCM16-22	15 m	1.0 x 10 ⁷	1.8
GII.P7/GII.6/TCH08-166	6 m	4.5 x 10 ⁶	1.0
GII.P7/GII.6/TCH13-106	7 y	6.6 x 10 ⁵	0.8
GII.P7/GII.6/TCH15-167	9 y	4.5 x 10 ⁶	2.0
GII.P7/GII.7/TCH06-163	21 m	6.3 x 10 ⁵	0.5
GII.P8/GII.8/TCH09-279	4 y	1.6 x 10 ⁵	0.5
GII/GII.12/TCH09-477	5 y	2.6 x 10 ⁵	0.8
GII/GII.13/TCH10-338	N/A	1.0 x 10 ⁵	0.5
GII.P7/GII.14/TCH14-364	20 y	1.3 x 10 ⁵	0.5
GII.P38/GII.17/TCH14-385	9 y	1.4 x 10 ⁷	0.5
GII.P13/GII.17/1295-44	NA	9.3 x 10 ⁶	0.7


[#] v. years; m. months; NA. not available. All infections were done in presence of GCDCA.

138 unbound virus) was set as a threshold to indicate successful viral replication. In total, virus

139 replication was seen in 31/40 stool samples tested, including one GI genotype (GI.1) and
140 eleven GII genotypes (GII.1, GII.2, GII.3, GII.4, GII.6, GII.7, GII.8, GII.12, GII.13, GII.14,
141 GII.17). The GII.4 samples included six variants (GII.4_2002, Yerseke_2006a, Den
142 Haag_2006b, New Orleans_2009, Sydney_2012, and Sydney_2015) (Table 1).
143 Increases in HuNoV GEs at 24 hpi ranged from 0.5-3.38 log₁₀. Viruses in stool samples
144 that did not grow in the J2 HIEs included GI.3, and 8 GII.4 strains.

145
146 **Successful replication is more likely with virus from stools with higher virus titers.**
147 To examine factors that may affect HuNoV infection, we assessed differences in
148 replication based on

149 stool viral load and
150 age of infected
151 person. Previously,
152 we determined the
153 infectious dose
154 required for

155 replication of **FIG 1**

156 GII.4_Sydney_2012
157 in 50% of cultures
158 (TCID₅₀) to be
159 ~1200 GEs/well. We
160 found that replication of GII.4 strains was more likely to occur with fecal samples from

Successful replication is more likely with virus from stools with higher virus titers (A) but not affected by patient age (B). (A) Replication of GII.4 strains plotted by virus titer. Dashed vertical line indicates the GII.4_Sydney_2012 ID₅₀ determined previously (12). Data points indicate stools from patients under (green) and over (blue) 2 years of age. (B) Replication of the same set of GII.4 strains plotted by patient age. Purple, stool titer > GII.4_Sydney_2012 ID₅₀. Orange, stool titer < GII.4_Sydney_2012 ID₅₀. Replication less than 0.5 log₁₀ was assigned a value of 0. Dashed lines show the detection 0.5 log₁₀ threshold.

161 patients with a viral titer greater than 1200 GEs per μ L (Fig 1A). Replication was not
162 affected by patient age (Fig. 1B).

163
164 We previously reported from our human challenge studies with GI.1 virus that higher
165 prechallenge levels of HuNoV-specific fecal IgA correlated with a reduced peak viral load
166 (28). We set out to determine whether fecal antibody levels correlated with the ability to
167 cultivate GII.4 HuNoVs. Filtrates were prepared from 12 stools from pediatric patients with
168 GII.4 norovirus gastroenteritis (age range 7.5 mo – 19 yr), and total and GII.4-specific IgA
169 levels from each stool filtrate were quantified. Although total IgA was detected in each of
170 the stool filtrates, GII.4-specific IgA was not detected in any of the samples (Table S1).

171
172 Based on these results, it was

Strain	Age of Patient	IgA present?	Total IgA (ug/ml)	GII.4-specific IgA present?	Infectivity (Log_{10} increase in viral replication in BCM medium at 24 hpi vs 1 hpi)
TCH07-194	7 m	Y	3.4	N	1.6
TCH07-882	5 y	Y	11.8	N	1.8
TCH08-135	3 y	Y	5.6	N	0
TCH08-227	2 y	Y	2.9	N	1.5
TCH09-935	13 y	Y	0.9	N	0
TCH10-52	19 y	Y	1.4	N	0
TCH11-64	12 m	Y	7.8	N	1.6
TCH12-556	15 y	Y	11.1	N	0
TCH13-196	10 y	Y	11.5	N	0
TCH14-10	11 m	Y	76.4	N	2.0
TCH15-123	2 y	Y	9.2	N	2.0
TCH15-82	5 y	Y	12.4	N	2.2

173 not possible to draw conclusions whether infectivity
174 is associated with levels of
175 HuNoV-specific IgA in fecal
176 samples, but the lack of
177 replication in the five non-cultivable samples could not be attributed to the presence of
178 such IgA.

180

181 **HuNoV replication is reproducible over time**

182 We also assessed the
183 reproducibility of the HIE system
184 by comparing the efficiency of
185 GII.4 replication in our standard
186 HIE cultivation media used in
187 previous HuNoV studies
188 (proliferation in BCMp and
189 differentiation in BCMd media)
190 over a three year period (2016-

191 2019). A GII.4_Sydney_2012
192 virus was included as a positive
193 control in all experiments
194 conducted in our laboratory over

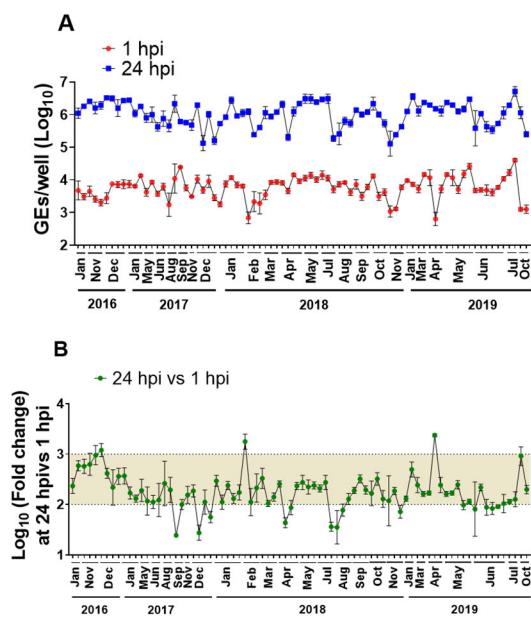


FIG 2

Replication of GII.4_2012_Sydney in HIEs plated in BCM medium is reproducible over time. (A) Virus replication of GII.4_Sydney_2012 HuNoV, included as a positive control in different experiments throughout 3+ years to assess the reproducibility of viral infection in J2 HIE monolayers infected with 9×10^5 GEs/well in BCM media, was determined at 1 hpi and 24 hpi. (B) Fold change at 24 hpi compared to 1 hpi. The mean \log_{10} increase at 24 hpi versus 1 hpi was 2.25 (n=80). Error bars denote standard deviation from 6 wells in each experiment.

195 the 3-year period, and although there was variability in viral yields over time, virus
196 replication occurred consistently (Fig. 2). The geometric mean virus increase at 24 hpi
197 was $2.26 \log_{10}$ (n=80; SD=0.4), with $3.38 \log_{10}$ as the highest observed change.

198

199 **HuNoVs replicate efficiently in HIEs cultured in Intesticul medium.**

200 To further evaluate and potentially simplify cultivation conditions, we next compared
201 GII.4_Sydney_2012 HuNoV replication in jejunal HIE monolayers plated in BCMp
202 medium and differentiated with BCMd medium to replication in HIEs plated in a
203 commercially available medium [Intesticult (referred here to as INTp and INTd) human
204 organoid growth medium from Stem Cell Technologies]. At 24 hpi, the geometric mean
205 \log_{10} GE increases ($\Delta 24\text{hpi}$ -
206 1hpi) were significantly higher in
207 four different jejunal HIE
208 monolayers plated in INT media
209 compared to BCM media (Fig.
210 3A). Similar results were
211 obtained with another HuNoV
212 genotype (GII.3, Fig. 3B),
213 suggesting that using the
214 commercially available INT
215 media to plate jejunal HIE lines
216 efficiently promotes better
217 replication of HuNoV strains compared to BCM media.

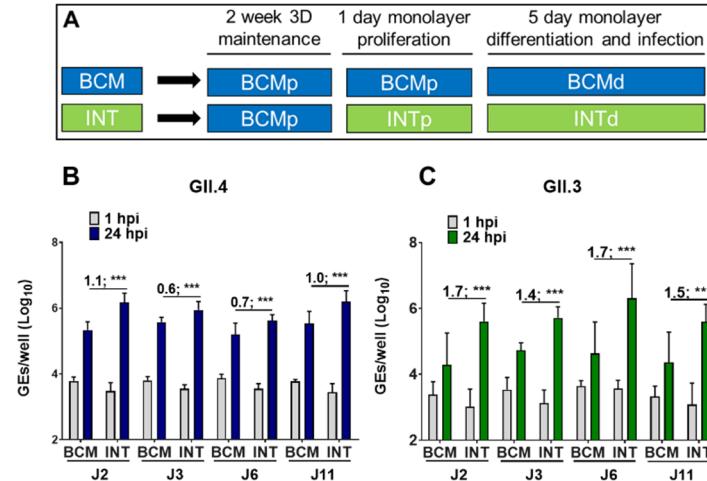


FIG 3

Improved HuNoV replication in different jejunal HIE cultures plated as monolayers in INT media. (A) Schematic design of HIE culture maintenance and monolayer seeding prior to infection ("p" and "d" notations refer to proliferation and differentiation respectively). (B) GII.4_Sydney_2012 (9×10^5 GEs/well) and (C) GII.3 (4.3×10^5 GEs/well) virus replication was evaluated in four jejunal (J2, J3, J6 and J11) HIE lines plated in either BCM or INT media. Each experiment was performed twice and compiled data are presented. Error bars denote standard deviation (N=12). Values on the bars indicate \log_{10} (fold change) replication difference in BCM vs BCM media at 24 hpi. Significance was determined using Student's t-test (***, p value < 0.001).

219 We previously reported that HIEs derived from the three segments (duodenum, jejunum,
220 and ileum) of the small intestine support HuNoV replication when cultured in BCM media
221 and that enterocytes are the primary target for infection and replication (12, 14). However,
222 since these lines were derived from different donors, it was not possible to directly
223 examine segment-specific differences in susceptibility in the absence of confounding
224 genetic differences between individuals. We have now established HIE cultures from
225 three intestinal segments

226 (duodenum, ileum, and colon)

227 from two secretor-positive
228 donors (104 and 109) (29).

229 Duodenal, ileal and colonic

230 HIEs from donors 104 and 109

231 were plated in BCMP or INTp

232 media, and after differentiation,

233 were inoculated with

234 GII.4_Sydney_2012 or GII.3

235 HuNoVs in the corresponding

236 differentiation media (Fig. 4).

237

238 Replication of

239 GII.4_Sydney_2012 was

240 observed in duodenal HIE monolayers from both donors, with significantly greater GE

241 increases (Δ 24hpi-1hpi) when monolayers were plated and differentiated in INT media

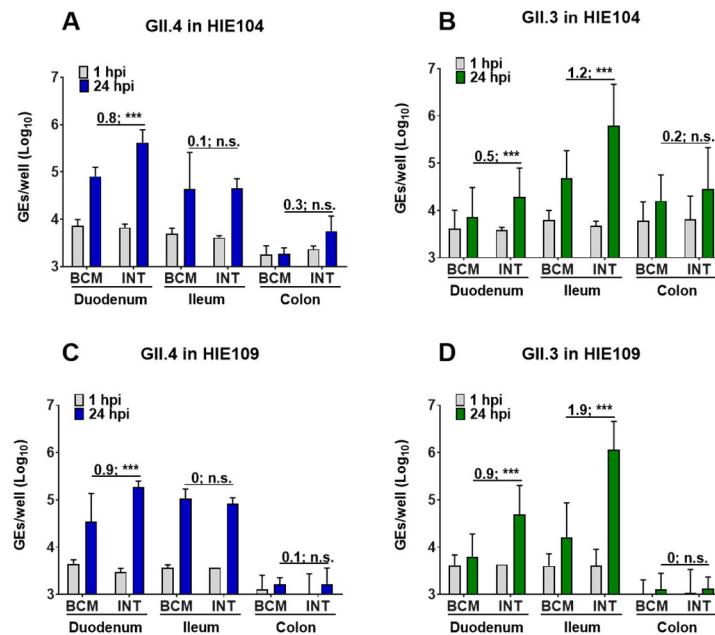


FIG 4

HuNoV replication in HIE cultures from different intestinal segments (duodenum, ileum, colon) from two independent donors (104 and 109). HIEs were plated in BCMP or INTp media (see schematic design in FIG 3A). After differentiation, monolayers were infected with (A, C) GII.4_Sydney_2012 (9×10^5 GEs/well) or (B, D) GII.3 (4.3×10^5 GEs/well). Compiled data from two experiments are presented. Error bars denote standard deviation ($n=12$) and each data bar represents the mean for six wells of inoculated HIE monolayers. Values on the bars indicate \log_{10} (fold change) replication difference in INT vs BCM media at 24 hpi. Significance was determined using Student's t-test (***, p value < 0.001 ; n.s., not significant).

242 compared to BCM media (mean of 0.8 and 0.9 \log_{10} increases in HIE 104 and HIE 109,
243 respectively) (Fig. 4A, 4C). Duodenal HIEs did not support GII.3 replication when cultured
244 in BCM media, but geometric mean increases of 0.7 \log_{10} and 0.9 \log_{10} , respectively,
245 were attained in INT media for donors 104 and 109 (Fig. 4B, 4D). Both
246 GII.4_Sydney_2012 and GII.3 viruses replicated in ileal HIE monolayers; however, while
247 INT media promoted greater GII.3 replication compared to BCM media, there was no
248 difference in replication for GII.4_Sydney_2012. Colonic HIEs did not support
249 GII.4_Sydney_2012 and GII.3 replication when cultured in either medium.

250

251 We previously showed bile acids induce multiple cellular responses that promote GII.3
252 replication, and J2 HIEs do not support GII.3 replication when cultured in BCMD medium
253 without addition of the bile acid glycochenodeoxycholic acid (GCDCA) (24). Since
254 replication of GII.3 is consistently
255 higher in INTd medium (Fig. 3 and 4),
256 we investigated whether INTd medium
257 promotes GII.3 replication in the
258 absence of GCDCA and whether the
259 addition of GCDCA further enhances
260 GII.3 replication. As expected, no
261 significant GII.3 replication was
262 detected in BCMD medium without
263 GCDCA. In INTd medium, a 0.9 \log_{10}
264 increase in GEs ($\Delta 24\text{hpi}-1\text{hpi}$) was seen in the absence of GCDCA and 1.3 \log_{10} increase

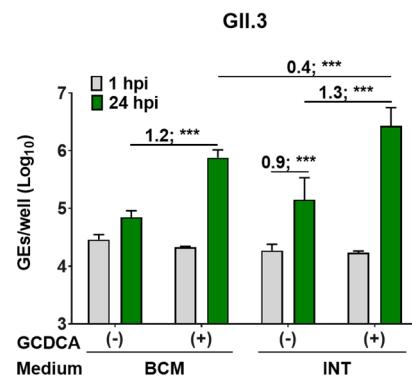


FIG S1

HIE cultures plated in INT media support some GII.3 replication in J2 HIE monolayers and replication is further enhanced by addition of GCDCA supplement. 3D J2 HIEs were maintained in BCMD proliferation medium. Monolayers were proliferated and differentiated in INT or BCM media (see schematic design in FIG 3A), and inoculated with GII.3 (4.3×10^5 GEs/well) diluted in CMGF(-) with or without 500 μM GCDCA supplement. After 1 hpi, monolayers were washed twice and cultured in the indicated differentiation medium. Values above bars represent \log_{10} difference in viral growth at 24 hpi vs 1 hpi. Values represent the mean and error bars denote standard deviation (n=6). Asterisks indicate significant difference from INT medium at 24 hpi: *** p value < 0.001.

265 in GEs was seen at 24 hpi in the presence of GCDCA (Fig. S1). In the presence of
266 GCDCA, a 0.4 log₁₀ greater increase in GEs (Δ 24hpi-1hpi) was seen in INTd compared
267 to BCMd media. These results suggest that INT media may contain component(s) that
268 promote GII.3 virus infection and act synergistically in the presence of GCDCA to
269 enhance GII.3 replication.

270

271 We next investigated whether INT media enhanced viral replication of other HuNoV
272 strains. Almost all (20/21) HuNoV positive stool samples representing both GI and GII
273 viruses, replicated as well or significantly better (18/21) in HIEs plated in INT media
274 compared to BCM media (Table 2).

Table 2: HuNoV strains successfully replicated in jejunal HIEs plated in BCM vs INT media

Reference Strain	Titer (GEs/μl)	Log ₁₀ increase in viral RNA in BCM medium	Log ₁₀ increase in viral RNA in INT medium
GI.P1/1968/GI.1/Norwalk	5.7 x 10 ⁶	0.5	1.9 *
GI.3/TCH14-184	1.0 x 10 ⁴	0.0	0.0
GII/GII.1/TCH18-98	1.8 x 10 ⁴	0.5	1.7 *
GII.P2/GII.2/TCH05-951	1.7 x 10 ⁶	0.7	2.1 *
GII.P21/GII.3/TCH04-577	8.5 x 10 ⁶	1.6	2.1 *
GII.P4/GII.4_Yerseke/TCH07-194	7.0 x 10 ⁷	1.5	2.0 *
GII.P4/GII.4_Den Haag/TCH07-882	1.5 x 10 ⁷	1.8	2.2 *
GII.P4/GII.4_Den Haag/MDA09-01	1.1 x 10 ⁷	1.6	2.4 *
GII.P4/GII.4_New Orleans/TCH11-64	3.0 x 10 ⁷	1.6	1.7
GII.P31/GII.4_Sydney/TCH12-580	1.8 x 10 ⁷	2.3	2.7 *
GII.P16/GII.4_Sydney/BCM16-16	1.0 x 10 ⁷	1.8	2.2 *
GII/GII.4_Sydney/TCH15-82	4.4 x 10 ⁵	2.2	2.8 *
GII.P31/GII.4_Sydney/BCM16-1	1.0 x 10 ⁷	1.6	2.0 *
GII.P7/GII.6/TCH13-106	6.6 x 10 ⁵	0.8	1.3 *
GII.P7/GII.6/TCH15-167	4.5 x 10 ⁶	2.0	2.9 *
GII.P8/GII.8/TCH09-279	1.6 x 10 ⁵	0.5	0.7 *
GII/GII.12/TCH09-477	2.6 x 10 ⁵	0.8	1.1
GII/GII.13/TCH10-338	1.0 x 10 ⁵	0.5	0.9 *
GII.P7/GII.14/TCH14-364	1.3 x 10 ⁵	0.5	1.5 *
GII.P38/GII.17/TCH14-385	1.4 x 10 ⁷	0.5	2.1 *
GII.P13/GII.17/1295-44	9.3 x 10 ⁶	0.7	1.5 *

*, significant increase in INT vs BCM media. All infections were done in presence of GCDCA

275
276 We next examined the reproducibility of viral replication in J2 HIE monolayers plated in
277 INTp medium and differentiated in INTd medium supplemented with GCDCA over a 12-

278 month period (Fig. 5). GII.4_Sydney_2012 showed significant increases in viral GEs at
279 24 hpi vs 1 hpi with a mean of $2.66 \log_{10}$ ($n = 24$), which is a $0.4 \log_{10}$ increase compared
280 to the reproducibility of GII.4 replication in BCMd medium throughout 3 years (Fig. 2).

281
282 While we were completing
283 studies comparing HuNoV
284 replication in BCM and INT
285 media, an ATCC L-WRN cell line
286 (ATCC CRL3276) engineered to
287 co-express and secrete the
288 three growth factors (Wnt-3A, R-
289 Spondin, and Noggin) became
290 available (30, 31). This
291 propagation media, referred to
292 as L-WRN (described in material
293 and methods section), uses a
294 single cell line to produce the
295 growth factors to make
296 proliferation medium and offers

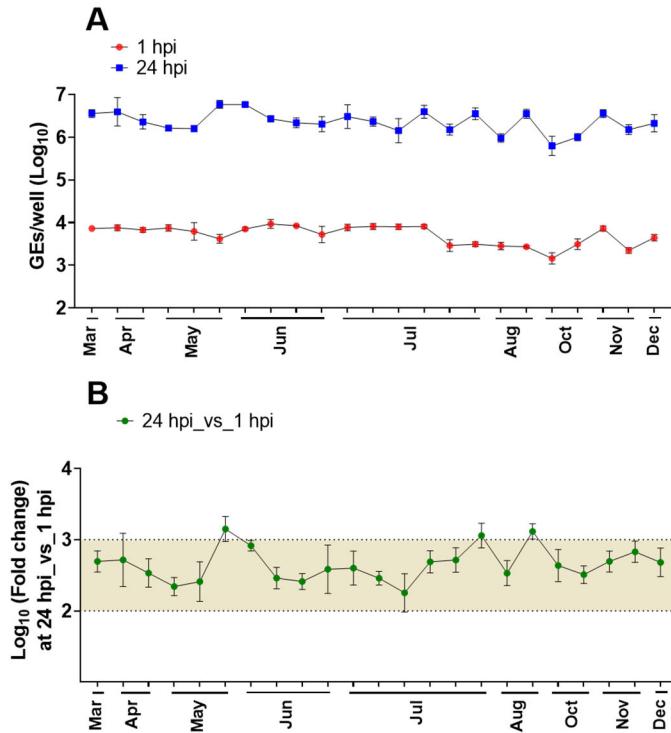


FIG 5

Replication of GII.4_2012_Sydney in HIEs plated in Intesticul medium is reproducible and less variable over one year. (A) Virus replication of GII.4_2012_Sydney HuNoV, included as a positive control in different experiments throughout 1 year (2019) to assess the reproducibility of viral infection in J2 HIE monolayers inoculated with 9×10^5 GEs/well] in INT media was determined at 1 hpi and 24 hpi. (B) Fold change at 24 hpi compared to 1 hpi. The mean \log_{10} increase at 24 hpi versus 1 hpi was 2.66 ($n=23$). Error bars denote standard deviation ($n=6$).

297 several advantages in terms of reducing production time and effort compared to our
298 original method of making the growth factors in three separate cell lines to make BCMp
299 medium. Therefore, we assessed HuNoV replication in J2 HIEs propagated in BCMp or
300 L-WRN media and then plated and differentiated in BCM or INT media. Replication of GII

301 viruses from 4 genotypes was enhanced in J2 HIEs propagated in BCMp medium and
302 then plated and
303 differentiated in INT media
304 (BCM/INT media) compared
305 to replication in HIEs
306 propagated, plated and
307 differentiated in BCM media
308 (BCM/BCM media) (Fig. 6),
309 consistent with our previous
310 results (Fig. 3). Similar
311 results were obtained when
312 J2 HIEs were propagated in
313 L-WRN medium and then
314 plated and differentiated in
315 either BCM or INT media (L-
316 WRN/INT vs L-WRN/BCM)
317 (Fig. 6). Moreover,
318 enhancement of replication
319 of GII.4_Sydney_2012 and GII.17 was significantly greater in the L-WRN/INT combination
320 compared to BCM/INT (Fig. 6B and 6D). In contrast, no significant differences in virus
321 replication were observed for GII.3 and GII.6 replication in L-WRN/INT compared to
322 BCM/INT.

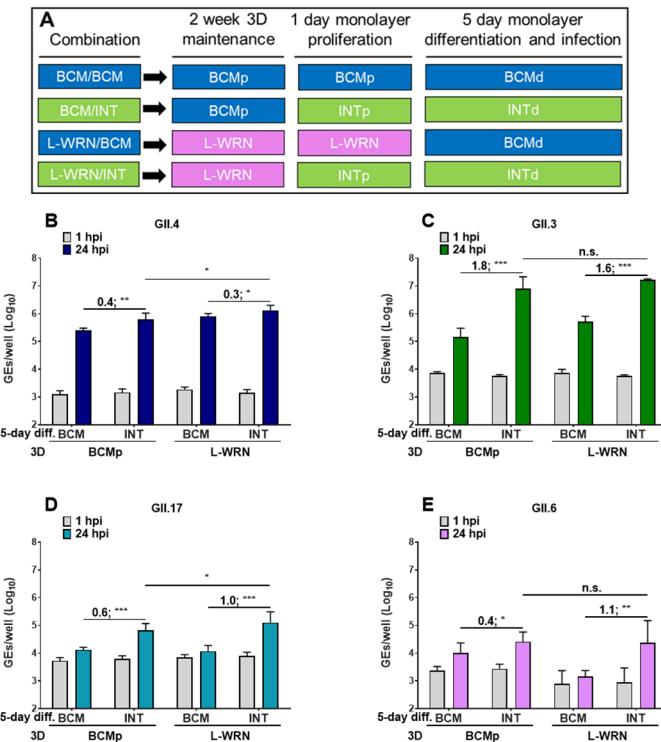


FIG 6

Replication of different GII HuNoV genotypes is improved when HIEs are plated in INT media. J2 HIEs were initially maintained as 3D-HIEs in BCMp or L-WRN proliferation media and then plated and differentiated for 5 days in the indicated media. (A, experimental design). Monolayers were inoculated with (B) GII.4_Sydney_2012 (9×10^5 GEs/well), (C) GII.3 (4.3×10^5 GEs/well), (D) GII.17_1295-44 (4.6×10^5 GEs/well) or (E) GII.6_TCH13-106 (3.3×10^5 GEs/well) diluted in CMGF(-) with 500 μ M GCDCA. After 1 hpi, monolayers were washed and cultured in the indicated BCM or INT differentiation medium (+ 500 μ M GCDCA). Values represent Log₁₀ difference in viral growth between conditions $[(\Delta 24\text{hr}-1\text{hr in INT}) - (\Delta 24\text{hr}-1\text{hr in BCM})]$. Error bars denote standard deviation (n=6). Asterisks indicate significant difference between conditions. *** p value < 0.001; ** p < 0.01; * p < 0.05; n.s., not significant.

324 To further investigate the difference between INT and L-WRN media with regard to
325 HuNoV replication, we compared the replication of GII.4_Sydney_2012, GII.3, GII.17, and
326 GII.6 in monolayers prepared from 3D J2 HIEs propagated for two weeks in either INTp
327 or L-WRN media. Monolayers were plated from INT-3D- or L-WRN-3D-HIEs, proliferated
328 for one day and then differentiated for 5 days in the indicated media (Fig. 7). The highest
329 levels of replication of GII.4_Sydney_2012, GII.3 and GII.17 were observed when INT
330 media was used for J2 HIE propagation, plating and differentiation (Fig. 7A, 7B and 7C).

331 When propagating 3D J2 HIEs in L-
332 WRN medium and
333 plating/differentiating monolayers in
334 INT media (L-WRN/INT
335 combination), viral replication was
336 significantly increased (0.6, 1.0, 0.3,
337 0.6 log₁₀ increases for
338 GII.4_Sydney_2012, GII.3, GII.17
339 and GII.6, respectively) compared to
340 the L-WRN/BCM media combination.

341 Virus replication remained
342 significantly reduced for
343 GII.4_Sydney_2012 and GII.3 (0.5
344 and 0.4 log₁₀ decreases,
345 respectively) in the L-WRN/INT
346 combination compared to the INT/INT combination. Thus, while the INT medium for

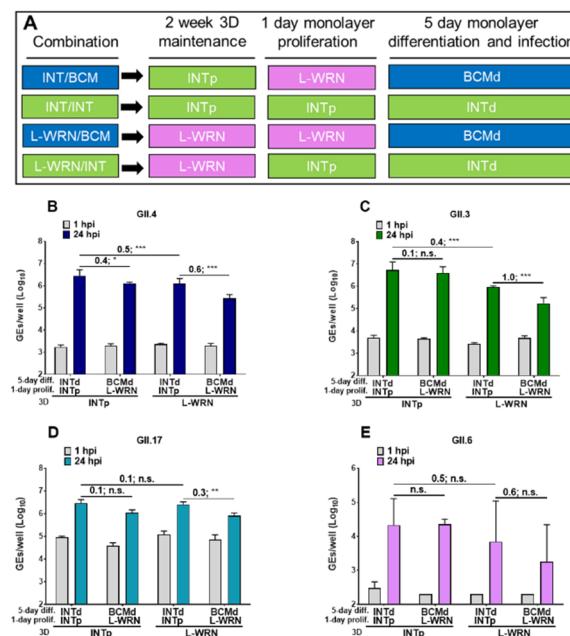


FIG 7

Media composition can improve HuNoV replication. J2 HIEs were propagated in INT or L-WRN media prior to seeding them into monolayers. Monolayers were prepared from INT-3D- or L-WRN-3D-HIEs, proliferated for one day and then differentiated for 5 days in the indicated media (A, experimental design). They were inoculated with (B) GII.4_Sydney_2012 (9×10^5 GEs/well), (C) GII.3 (4.3×10^5 GEs/well), (D) GII.17_1295-44 (4.6×10^5 GEs/well) or (E) GII.6_TCH13-106 (3.3×10^5 GEs/well) diluted in CMGF(-) with 500 μ M GCDCA. After 1 hpi, monolayers were washed twice and cultured in the indicated differentiation medium (+ 500 μ M GCDCA). Values above bars represent Log₁₀ difference in viral growth between conditions. Error bars denote standard deviation (n=6). Asterisks indicate significant difference between conditions.

347 propagating, plating and differentiating HIEs was the best combination to support HuNoV
348 replication, propagating HIEs in L-WRN and seeding monolayers in INT medium also
349 achieved efficient HuNoV infections; this L-WRN/INT combination is attractive because it
350 is more cost effective than using INT medium for both propagating and plating cells.

351

352 HuNoVs infect differentiated enterocytes (12, 14). To determine whether cultivation in the
353 different media tested in this study affects differentiation, we next evaluated J2 HIEs for
354 the gene expression of cell proliferation/differentiation markers after the cultures were
355 grown in each proliferation medium (BCMp, INTp, L-WRN) and then differentiated in the
356 corresponding differentiation medium (BCMd or INTd). Differentiation markers for
357 enterocytes (sucrase isomaltase, *SI*);
358 goblet cells (mucin, *MUC2*); and Paneth
359 cells (alkaline phosphatase, *AP*) were
360 significantly expressed in HIEs
361 maintained in all media conditions, while
362 gene expression for the stem cells
363 markers (*LGR5*, *CD44*) and proliferation
364 marker (*KI67*) were reduced (Fig. S2).
365 Thus, HIE monolayers cultured for 5
366 days in either differentiation medium
367 were fully differentiated, with no
368 significant differences in enterocyte marker *SI* between the three conditions.

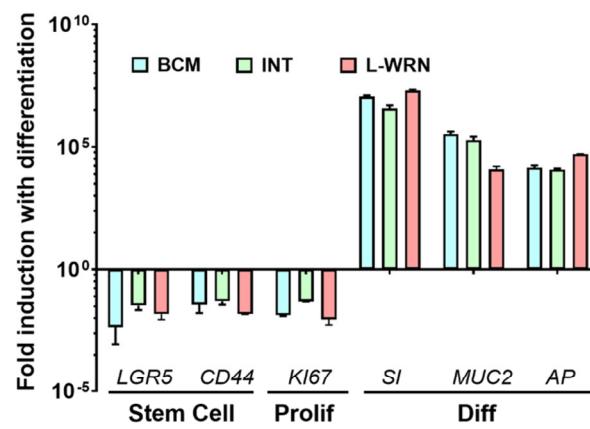


FIG S2

Media composition does not change differentiation of HIEs. Fold change in levels of transcripts assessed by RT-qPCR in differentiated J2 HIE monolayers relative to the transcript levels in proliferating J2 HIE monolayers. Transcript levels were first normalized to GAPDH levels prior to obtaining the relative fold change by using the $2^{-\Delta\Delta CT}$ method. Shown are markers for stem cells, proliferating and differentiated cells. Gene symbols represent leucine-rich-repeat-containing G-protein-coupled receptor 5 (*LGR5*), antigen identified by monoclonal antibody Ki-67 (*KI67*), *CD44*, *sucrase-isomaltase (SI)*, *alkaline phosphatase (AP)*, and *mucin 2 (MUC2)* genes. Error bars indicate standard errors of the means ($n = 3$).

369

370 We are interested in further exploring how the L-WRN and INT media improve HuNoV
371 replication. This is difficult to determine because the composition of INT media is
372 proprietary. Based on our previous studies demonstrating increased replication of HuNoV
373 strains in the presence of bile acids, we hypothesized that serum in INT media contains
374 bile acids, which enhances virus replication (12, 21, 24). We analyzed INT components
375 A (used in differentiation media) and B (used in combination with component A for
376 proliferation media) as well as BCMp and L-WRN media for the presence of 12 different
377 bile acids. We focused our analysis primarily on GCDCA and TCDCA
378 (taurochenodeoxycholic acid) that facilitates GII.3 infection of HIEs at 5 μ M and higher
379 concentrations (24). Bile acids were not detected in INT component A. While INT
380 component B had detectable levels of individual bile acids, none surpassed 5 μ M (Fig.
381 S3A). The concentration of bile acids
382 in L-WRN media (sum=1.26 μ M)
383 was more similar to INT component
384 B (sum=1.65 μ M) than to INT
385 component A or BCMp media. Since
386 the source of bile acid in in-house
387 media (BCMp and L-WRN) is likely
388 to be the fetal bovine serum (FBS)
389 used in the cultivation of growth
390 factor cell lines, we next tested the
391 bile acid concentrations in the
392 different FBS lots used in our laboratory. For BCMp, Corning FBS was used at 8% while

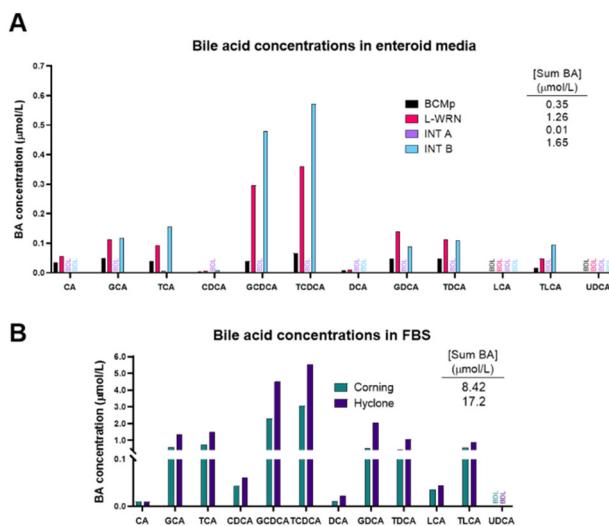


FIG S3

Enteroid media and FBS contain bile acids at low levels. (A) media [BCMp, L-WRN, INT component A (INT A) and INT component B (INT B)] or (B) commercial FBS (Corning or Hyclone brand) were analyzed by mass spectrometry (MS) for concentrations of a panel of individual bile acids. Inset tables contain the additive concentration of tested bile acids detected by MS (Sum BA).

393 10% Hyclone FBS was used in the L-WRN media. While both FBS contain GCDCA and
394 TCDCA, the sum concentrations are almost double in the FBS used for L-WRN media
395 compared to the one used for BCM media (Fig. S3B). The differences in the source and
396 concentrations of FBS used, and corresponding differences in bile acid concentration may
397 all provide explanations for the enhancement of HuNoV replication in HIEs grown in L-
398 WRN and INT media compared to BCM media. Whether other factors in each of these
399 media that affect HIE metabolism or health remains unknown.

400

401

402 **Discussion**

403 After the HIE system was established for HuNoV cultivation, major advances have
404 ensued in the norovirus field, manifested by studies that have focused on transcriptomic
405 analysis, detecting viral infectivity, developing virus inactivation and neutralization
406 methods, and dissecting the strain-specific requirement for bile for GII.3 entry for viral
407 replication (13, 15-17, 24, 32, 33). In this manuscript, we report studies that centered on
408 improving the HIE system to enhance viral replication and expand the spectrum of
409 cultivatable HuNoV strains. We and others previously demonstrated successful
410 replication of GI.1 and six GII genotypes (GII.1, GII.2, GII.3, four GII.4 variants, GII.14,
411 and GII.17) in J2 HIEs (12, 13). Here we expanded the spectrum of cultivatable strains to
412 cover five more genotypes (GII.6, GII.7, GII.8, GII.12 and GII.13) and two more GII.4
413 variants (GII.4_2002 and GII.4_Sydney_2015) (Tables 1 and 2). We found varied
414 increases in virus yields when infections were performed in HIE monolayers cultured in
415 BCM media. However, INT media enhanced replication of several strains belonging to

416 different genotypes. Indeed, significant increases in virus yield were achieved for 18
417 strains tested in INT media compared to BCM media (Table 2). To our knowledge, this is
418 the first study comparing the commercial media to laboratory-produced media related to
419 HuNoV growth. Moreover, while reproducible replication of GII.4_Sydney_2012 strain
420 was seen in either BCM or INT media, assessment of replication in INT media over a one
421 year period showed higher fold increases in GEs and lesser variability, with a $2.66 \log_{10}$
422 (95% CI 2.56-2.76; n= 23) mean increase in GEs at 24 hpi vs 1 hpi in INT media compared
423 to $2.26 \log_{10}$ (95% CI 2.17-2.33; n= 80) in BCM media (Figs. 2 and 5). While improvement
424 in replication using the INT media is a major advance, the cost of this commercial medium
425 is an issue for large scale culturing of HIEs. Indeed, we cannot afford to grow all our
426 cultures in INT medium. Our final results using L-WRN medium for culturing HIEs followed
427 by plating the cells in INTp medium prior to differentiation and infection in INTd medium,
428 are important in identifying conditions that are cost-effective and still achieve enhanced
429 replication of multiple viral strains. We and others have also previously described other
430 methods of achieving enhanced HuNoV replication such as through genetic modification
431 of HIE fucosylation (GI.1 and GII.17) or of HIE innate responses (GII.3) (16, 21). Culturing
432 genetically modified HIEs in these optimized culture media conditions may further
433 optimize the HIE-HuNoV culture system and expand the spectrum of cultivatable GI
434 genotypes.

435
436 Replication of GI.1, GII.1, GII.3, GII.6 and GII.17 in BCM media are bile acid-dependent
437 (data not shown), providing another example of strain-specific differences in requirements
438 for HuNoV replication (12, 18, 21, 24). We previously defined the BA-mediated

439 mechanism for GII.3 replication involves virus uptake mediated by dynamic and rapid BA-
440 mediated cellular endolysosomal dynamic changes and cellular ceramide (24). Future
441 studies are necessary to confirm whether the uptake and subsequent replication of all
442 these BA-dependent strains are regulated by the same mechanism as shown for GII.3.

443

444 Costantini et al. reported successful HuNoV replication in HIEs was largely contingent on
445 initial virus titer and genotype, even though several GII genotype samples with moderate
446 or high viral titers failed to replicate (13). While HuNoV infection is primarily restricted
447 based on secretor status of the cultures, GII.3 has unusual characteristics (12, 21, 24).
448 This raises the question of whether there are other unknown factors for successful
449 replication of noncultivable strains. Previously, Costantini et al. (13) tested 80 stools
450 containing various HuNoV genotypes from young patients (0-12 years old) or adults over
451 18 and found that 15/16 replicating strains came from stools from the 0-12 year age group.
452 They further showed that 13/16 replicating strains were from patients under two years
453 old. Of the 25 GII.4 strains we tested, all replicating strains were isolated from stools of
454 patients under 12. However, we found no statistical difference in replication of strains
455 derived from patients under 2 years of age compared to stools from older patients. High
456 viral titer is one predictor of successful replication and inoculating cultures with a dose
457 that is above the minimal infectious dose is the best predictor of replication success (12,
458 13, 17). However, six among eight GII.4 strains that did not show positive replication had
459 moderate to high titers (4.3×10^4 – 1.1×10^7 GEs/ μ L) (Fig. 1A and Table 1). The reasons
460 related to failure to achieve viral replication of strains with high titers remain unclear but
461 could be due to the presence of noninfectious particles in the fecal sample, cellular host

462 factors or anti-HuNoV antibodies in the fecal samples that might impede the binding of
463 viral particles to their specific surface receptors. We previously showed that pre-challenge
464 levels of Norwalk-specific fecal IgA correlates with reduced viral load in human
465 experimental infection studies (34, 35). However, we were unable to detect norovirus-
466 specific IgA in stools where virus did not grow.

467

468 While many advances have been made to generate 3D human organoids, different media
469 compositions are used in the context of the specificity and function of the original tissue.
470 The media formulations and growth factors are considered vital elements required for
471 efficient establishment and long-term maintenance of organoids. Due to the high cost of
472 commercial purified growth factors, most organoid media, including that for HIEs, are
473 formulated with growth factors expressed in eukaryotic cell lines and supplemented as
474 conditioned media. These conditioned media retain impurities, such as serum
475 components and possibly bile acids, that may positively or negatively affect HIE growth
476 and/or viral infection. We showed that HIE media and FBS present in conditioned media
477 contain bile acids at low levels, which may explain the enhancement of HuNoV replication
478 in HIEs grown in L-WRN and INT media.

479

480 Here, we evaluated the effect of ex vivo HIE growth on HuNoV infectivity in two laboratory-
481 produced versus commercially available media: BCM (designated in previous studies as
482 CMGF+), the first medium published by Clevers et al. (25) and previously used in HuNoV
483 replication system (12-14); L-WRN formulated with one conditioned media that has three
484 growth factors expressed from one cell line (36); and the commercial INT. With regards

485 to HuNoV infectivity, INT and L-WRN media both promoted GII.3, GII.4_Sydney_2012,
486 GII.6 and GII.17 replication better than BCM media when HIEs are maintained and
487 differentiated in INT media (Fig. 7). Due to the high cost of the commercial media, we
488 have found a simplified cost-effective way to use a combination of L-WRN/INT, by
489 sustaining the 3D HIE growth in L-WRN and seeding and infecting HIE monolayers in INT
490 media.

491

492 **Material and methods**

493 *Preparation of HuNoV positive/negative stool filtrates.*

494 Ten percent stool filtrates containing HuNoV were prepared as described previously (12).
495 In brief, 4.5 mL of ice-cold PBS was added to 0.5 mL of stool, homogenized by vortexing,
496 and sonicated three times for 1 min. The sonicated suspension was centrifuged at 1,500
497 x g for 10 min at 4°C. The supernatant was transferred to a new tube and centrifuged a
498 second time. The resulting supernatant was passed serially through 5 µm, 1.2 µm, 0.8
499 µm, 0.45 µm and 0.22 µm filters depending on stool texture. The filtered sample was
500 aliquoted and frozen at -80°C until used (Table 1).

501

502 *Human intestinal enteroid culture.*

503 All HIE cultures used in this study are from an HIE bank maintained by the Texas Medical
504 Center Digestive Diseases Center (TMC DDC) Core. Jejunal HIE cultures were previously
505 generated from surgical specimens obtained during bariatric surgery. Duodenal, ileal, and
506 colonic HIE cultures were generated from biopsy specimens obtained from adults during
507 routine endoscopy at Baylor College of Medicine (BCM) through the TMC DDC Study

508 Design and Clinical Research Core. The BCM Institutional Review Board approved the
509 study protocols. All HIEs used in this study were secretor- positive (Table S2).

510
511 HIEs were obtained from the DDC Core as multilobular cultures in Matrigel. HIEs were
512 maintained and propagated in 24-well plates as previously described (12, 14). Monolayer
513 cultures in 96-well plates were prepared for infection from the multilobular cultures. Each
514 well of a 96-well plate was coated with 33 µg/mL collagen IV diluted in 100 µl ice-cold
515 water that was removed between a minimum of 2 hours and a maximum of overnight
516 incubation at 37°C. Multilobular HIEs were washed with 0.5 mM EDTA in ice cold DPBS
517 (calcium chloride-magnesium chloride free) and dissociated with 0.05% trypsin/0.5 mM
518 EDTA for 5 min at 37°C. Trypsin was then inactivated by adding CMGF[-] medium (12)
519 supplemented with 10% FBS to the cell suspension. Cells were dissociated by pipetting
520 50 times with a P1000 pipet and passing them through a 40 µm cell strainer. Cells were
521 pelleted for 5 min at 400 x g, suspended in proliferation medium containing the ROCK
522 inhibitor Y-27632 (10 µM, Sigma), and seeded onto a 96-well plate at a concentration of
523 100,000 cells per well. After 1 day of cell growth as a monolayer, the proliferation medium
524 was changed to differentiation medium. The cells were maintained in the differentiation
525 medium for 5 days, with the medium being changed every other day.

526
527 *Media.*
528 Five different media were used to maintain and differentiate HIEs:
529 (1) Complete medium with growth factors (BCMp) , prepared at BCM by the DDC core,
530 consisted of CMGF[-] medium supplemented with epidermal growth factor (EGF),

531 nicotinamide, gastrin I, A-83-01, SB202190, B27 supplement, N2 supplement, N-
532 acetylcysteine, and Noggin, R-spondin, and Wnt3A conditioned media prepared from
533 three different expressing cell lines (12, 37). Noggin- and R-spondin-expressing cell
534 lines were kindly provided by Van den Brink (Amsterdam, The Netherlands) and
535 Calvin Kuo (Palo, CA, USA), respectively. L-Wnt-3A-expressing cell line (CRL-2647)
536 was purchased from ATCC (Manassas, VA, USA). Conditioned medium is prepared
537 from each cell line grown and maintained in DMEM-F12 supplemented with 10%
538 Corning FBS.

539

540 (2) A second complete medium with growth factors (L-WRN medium), prepared at BCM
541 by the DDC core, consisted of the same components as those of BCMp medium, with
542 the exception that *N*-acetylcysteine was reduced by 50%, and Noggin, R-spondin and
543 Wnt-3A were expressed from a single cell line, L-WRN ATCC CRL-3276 grown in
544 DMEM-F12 supplemented with 20% Hyclone FBS (Manassas, VA, USA) following
545 published information (36).

546

547 (3) BCM differentiation medium (BCMd) consisted of the same components as those of
548 BCMp medium without the addition of Wnt-3A, SB202190, and nicotinamide as well
549 as 50% reduction in the concentrations of Noggin and R-spondin conditioned media.
550 After 1 day of cell growth as a monolayer, the proliferation medium (BCMp or L-WRN)
551 was changed to BCM differentiation medium. The cell monolayers were differentiated
552 for 5 days as described above.

553

554 (4) Commercial Intesticult (INT) human organoid growth medium (Stem Cell
555 Technologies), composed of components A and B. The cell pellets, resulting from HIE
556 cell dispersion, were suspended in proliferation INT medium (INTp), prepared by
557 mixing equal volumes of components A and B, and supplemented with 10 μ M ROCK
558 inhibitor Y-27632.

559
560 (5) After 1 day of cell growth as a monolayer, the INTp medium was changed with
561 differentiation INT medium (INTd), consisting of an equal volume of component A and
562 CMGF[-] medium. The cell monolayers were differentiated for 5 days as previously
563 described.

564
565 *Human norovirus (HuNoV) infection of HIE monolayers.*
566 5-day differentiated HIE cell monolayers were washed once with CMGF[-] medium and
567 inoculated with 5 μ L HuNoV, diluted in 100 μ L CMGF[-] medium supplemented with 500
568 μ M GCDCA, for 1-2 hour at 37°C. The inoculum was removed and monolayers were
569 washed twice with CMGF[-] medium to remove unbound virus. Differentiation medium
570 (100 μ L containing 500 μ M GCDCA) was then added and the cultures were incubated at
571 37°C for 24 hours.

572
573 *RNA extraction.*
574 Total RNA was extracted from each infected well using the KingFisher Flex Purification
575 System and MagMAX-96 Viral RNA Isolation Kit. RNA extracted at 1 hpi, was used as a
576 baseline to determine the amount of input virus that remained associated with cells after

577 washing the infected cultures to remove the unbound virus. Replication of virus was
578 determined by RNA levels quantified from samples extracted at 24 hpi.

579
580 *Reverse Transcriptase Quantitative Polymerase Chain Reaction (RT-qPCR).*
581 The primer pair and probe COG2R/QNIF2d/QNIFS (38) were used for GII genotypes and
582 the primer pair and probe NIFG1F/V1LCR/NIFG1P (39) were used for GI.1 using qScript
583 XLT One-Step RT-qPCR ToughMix reagent with ROX reference dye (Quanta
584 Biosciences). Reactions were performed on an Applied Biosystems StepOnePlus
585 thermocycler using the following cycling conditions: 50°C (15 min), 95°C (5 min), followed
586 by 40 cycles of 95°C (15 sec) and 60°C (35 sec). A standard curve based on a
587 recombinant HuNoV GII.4 [Houston virus (HOV)] or GI.1 (Norwalk virus) RNA transcript
588 was used to quantitate viral genome equivalents (GEs) in RNA samples (40, 41). A 0.5
589 \log_{10} increase in GEs after 24 hpi relative to the amount of genomic RNA detected at 1
590 hpi (after removal of the virus inoculum and two washes of the monolayers to remove
591 unbound virus) was set as a threshold to indicate successful viral replication.

592
593 *Bile acid analysis.*
594 Media samples and sera were analyzed for bile acids using LC-MS/MS (Q-Exactive
595 Orbitrap; Thermo Scientific) as described previously (42).

596
597 *Statistical analysis.*
598 Each experiment was performed twice, with three technical replicates of each culture
599 condition and time point. Data from combined experiments are presented. All statistical

600 analyses were performed on GraphPad Prism version 8.2.0 for Windows (GraphPad
601 Software, La Jolla California USA). Samples with RNA levels below the limit of detection
602 of the RT-qPCR assay were assigned a value that was one-half the limit of detection of
603 the assay. Comparison between groups was performed using the Students t-test, with
604 statistical significance determined using the Holm-Sidak method. P-values < 0.05 were
605 considered statistically significant.

606

607

608 **Author contributions**

609 K.E., R.L.A. and M.K.E. conceived and designed the study. K.E., N.W.C, V.R.T., B.V.A
610 performed experiments; X-L.Z., F.H.N., Y.X. provided reagents/analytical tools. K.E.,
611 M.K.E., R.L.A., S.R., V.R.T. and S.E.C. analyzed data and wrote the paper, with all
612 authors providing comments.

613

614 **Acknowledgments**

615 This work was supported in part by Public Health Service grants AI-057788 (to M.K.E.),
616 P30 DK 56338 and contract HHSN2722017000381 from the National Institutes of
617 Health, by NIH P30 shared resource grant CA125123, NIEHS grants 1P30ES030285
618 and 1P42ES0327725, and by the John S. Dunn Research Foundation.

619

620 **References**

621 1. Chhabra P, de Graaf M, Parra GI, Chan MC, Green K, Martella V, Wang Q, White
622 PA, Katayama K, Vennema H, Koopmans MPG, Vinjé J. 2019. Updated
623 classification of norovirus genogroups and genotypes. J Gen Virol 100:1393-1406.

624 2. Ahmed SM, Hall AJ, Robinson AE, Verhoef L, Premkumar P, Parashar UD,
625 Koopmans M, Lopman BA. 2014. Global prevalence of norovirus in cases of
626 gastroenteritis: a systematic review and meta-analysis. *Lancet Infect Dis* 14:725-
627 730.

628 3. Hall AJ, Lopman BA, Payne DC, Patel MM, Gastañaduy PA, Vinjé J, Parashar UD.
629 2013. Norovirus disease in the United States. *Emerg Infect Dis* 19:1198-205.

630 4. Atmar RL, Ramani S, Estes MK. 2018. Human noroviruses: recent advances in a
631 50-year history. *Curr Opin Infect Dis* 31:422-432.

632 5. Bartsch SM, Lopman BA, Ozawa S, Hall AJ, Lee BY. 2016. Global Economic
633 Burden of Norovirus Gastroenteritis. *PLoS One* 11:e0151219.

634 6. Kirk MD, Pires SM, Black RE, Caipo M, Crump JA, Devleesschauwer B, Döpfer D,
635 Fazil A, Fischer-Walker CL, Hald T, Hall AJ, Keddy KH, Lake RJ, Lanata CF,
636 Torgerson PR, Havelaar AH, Angulo FJ. 2015. Correction: World Health
637 Organization Estimates of the Global and Regional Disease Burden of 22
638 Foodborne Bacterial, Protozoal, and Viral Diseases, 2010: A Data Synthesis. *PLoS*
639 *Med* 12:e1001940.

640 7. Said MA, Perl TM, Sears CL. 2008. Healthcare epidemiology: gastrointestinal flu:
641 norovirus in health care and long-term care facilities. *Clin Infect Dis* 47:1202-8.

642 8. Pires SM, Fischer-Walker CL, Lanata CF, Devleesschauwer B, Hall AJ, Kirk MD,
643 Duarte AS, Black RE, Angulo FJ. 2015. Aetiology-Specific Estimates of the Global
644 and Regional Incidence and Mortality of Diarrhoeal Diseases Commonly
645 Transmitted through Food. *PLoS One* 10:e0142927.

646 9. Koo HL, Neill FH, Estes MK, Munoz FM, Cameron A, DuPont HL, Atmar RL. 2013.
647 Noroviruses: The Most Common Pediatric Viral Enteric Pathogen at a Large
648 University Hospital After Introduction of Rotavirus Vaccination. *J Pediatric Infect
649 Dis Soc* 2:57-60.

650 10. Payne DC, Vinjé J, Szilagyi PG, Edwards KM, Staat MA, Weinberg GA, Hall CB,
651 Chappell J, Bernstein DI, Curns AT, Wikswo M, Shirley SH, Hall AJ, Lopman B,
652 Parashar UD. 2013. Norovirus and medically attended gastroenteritis in U.S.
653 children. *N Engl J Med* 368:1121-30.

654 11. Estes MK, Ettayebi K, Tenge VR, Murakami K, Karandikar U, Lin SC, Ayyar BV,
655 Cortes-Penfield NW, Haga K, Neill FH, Opekun AR, Broughman JR, Zeng XL, Blutt
656 SE, Crawford SE, Ramani S, Graham DY, Atmar RL. 2019. Human Norovirus
657 Cultivation in Nontransformed Stem Cell-Derived Human Intestinal Enteroid
658 Cultures: Success and Challenges. *Viruses* 11.

659 12. Ettayebi K, Crawford SE, Murakami K, Broughman JR, Karandikar U, Tenge VR,
660 Neill FH, Blutt SE, Zeng XL, Qu L, Kou B, Opekun AR, Burrin D, Graham DY,
661 Ramani S, Atmar RL, Estes MK. 2016. Replication of human noroviruses in stem
662 cell-derived human enteroids. *Science* 353:1387-1393.

663 13. Costantini V, Morantz EK, Browne H, Ettayebi K, Zeng XL, Atmar RL, Estes MK,
664 Vinjé J. 2018. Human Norovirus Replication in Human Intestinal Enteroids as
665 Model to Evaluate Virus Inactivation. *Emerg Infect Dis* 24:1453-1464.

666 14. Zou WY, Blutt SE, Crawford SE, Ettayebi K, Zeng XL, Saxena K, Ramani S,
667 Karandikar UC, Zachos NC, Estes MK. 2019. Human Intestinal Enteroids: New
668 Models to Study Gastrointestinal Virus Infections. *Methods Mol Biol* 1576:229-247.

669 15. Alvarado G, Ettayebi K, Atmar RL, Bombardi RG, Kose N, Estes MK, Crowe JE,
670 Jr. 2018. Human Monoclonal Antibodies That Neutralize Pandemic
671 GII.4 Noroviruses. *Gastroenterology* 155:1898-1907.

672 16. Hosmillo M, Chaudhry Y, Nayak K, Sorgeloos F, Koo BK, Merenda A, Lillestol R,
673 Drumright L, Zilbauer M, Goodfellow I. 2020. Norovirus Replication in Human
674 Intestinal Epithelial Cells Is Restricted by the Interferon-Induced JAK/STAT
675 Signaling Pathway and RNA Polymerase II-Mediated Transcriptional Responses.
676 *mBio* 11.

677 17. Chan MC, Cheung SKC, Mohammad KN, Chan JCM, Estes MK, Chan PKS. 2019.
678 Use of Human Intestinal Enteroids to Detect Human Norovirus Infectivity. *Emerg
679 Infect Dis* 25:1730-1735.

680 18. Lin SC, Qu L, Ettayebi K, Crawford SE, Blutt SE, Robertson MJ, Zeng XL, Tenge
681 VR, Ayyar BV, Karandikar UC, Yu X, Coarfa C, Atmar RL, Ramani S, Estes MK.
682 2020. Human norovirus exhibits strain-specific sensitivity to host interferon
683 pathways in human intestinal enteroids. *Proc Natl Acad Sci U S A*
684 doi:10.1073/pnas.2010834117.

685 19. Lindesmith LC, Brewer-Jensen PD, Mallory ML, Jensen K, Yount BL, Costantini V,
686 Collins MH, Edwards CE, Sheahan TP, Vinjé J, Baric RS. 2020. Virus-Host
687 Interactions Between Nonsecretors and Human Norovirus. *Cell Mol Gastroenterol
688 Hepatol* 10:245-267.

689 20. Lindesmith LC, McDaniel JR, Changela A, Verardi R, Kerr SA, Costantini V,
690 Brewer-Jensen PD, Mallory ML, Voss WN, Boutz DR, Blazeck JJ, Ippolito GC,
691 Vinje J, Kwong PD, Georgiou G, Baric RS. 2019. Sera Antibody Repertoire
692 Analyses Reveal Mechanisms of Broad and Pandemic Strain Neutralizing
693 Responses after Human Norovirus Vaccination. *Immunity* 50:1530-1541.e8.

694 21. Haga K, Ettayebi K, Tenge VR, Karandikar UC, Lewis MA, Lin SC, Neill FH, Ayyar
695 BV, Zeng XL, Larson G, Ramani S, Atmar RL, Estes MK. 2020. Genetic
696 Manipulation of Human Intestinal Enteroids Demonstrates the Necessity of a
697 Functional Fucosyltransferase 2 Gene for Secretor-Dependent Human Norovirus
698 Infection. *mBio* 11.

699 22. Rimkutė I, Thorsteinsson K, Henricsson M, Tenge VR, Yu X, Lin SC, Haga K,
700 Atmar RL, Lycke N, Nilsson J, Estes MK, Bally M, Larson G. 2020. Histo-blood
701 group antigens of glycosphingolipids predict susceptibility of human intestinal
702 enteroids to norovirus infection. *J Biol Chem* doi:10.1074/jbc.RA120.014855.

703 23. Koromyslova AD, Morozov VA, Hefele L, Hansman GS. 2019. Human Norovirus
704 Neutralized by a Monoclonal Antibody Targeting the Histo-Blood Group Antigen
705 Pocket. *J Virol* 93.

706 24. Murakami K, Tenge VR, Karandikar UC, Lin SC, Ramani S, Ettayebi K, Crawford
707 SE, Zeng XL, Neill FH, Ayyar BV, Katayama K, Graham DY, Bieberich E, Atmar
708 RL, Estes MK. 2020. Bile acids and ceramide overcome the entry restriction for
709 GII.3 human norovirus replication in human intestinal enteroids. *Proc Natl Acad
710 Sci U S A* 117:1700-1710.

711 25. Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, Van Houdt
712 WJ, Pronk A, Van Gorp J, Siersema PD, Clevers H. 2011. Long-term expansion
713 of epithelial organoids from human colon, adenoma, adenocarcinoma, and
714 Barrett's epithelium. *Gastroenterology* 141:1762-72.

715 26. Sato T, Clevers H. 2013. Growing self-organizing mini-guts from a single intestinal
716 stem cell: mechanism and applications. *Science* 340:1190-4.

717 27. VanDussen KL, Marinshaw JM, Shaikh N, Miyoshi H, Moon C, Tarr PI, Ciorba MA,
718 Stappenbeck TS. 2015. Development of an enhanced human gastrointestinal
719 epithelial culture system to facilitate patient-based assays. *Gut* 64:911-20.

720 28. Atmar RL, Opekun AR, Gilger MA, Estes MK, Crawford SE, Neill FH, Graham DY.
721 2008. Norwalk virus shedding after experimental human infection. *Emerg Infect
722 Dis* 14:1553-7.

723 29. Rajan A, Vela L, Zeng XL, Yu X, Shroyer N, Blutt SE, Poole NM, Carlin LG, Nataro
724 JP, Estes MK, Okhuysen PC, Maresso AW. 2018. Novel Segment- and Host-
725 Specific Patterns of Enteropathogenic Escherichia coli Adherence to Human
726 Intestinal Enteroids. *mBio* 9:e02419-17.

727 30. Kasendra M, Tovaglieri A, Sontheimer-Phelps A, Jalili-Firoozinezhad S, Bein A,
728 Chalkiadaki A, Scholl W, Zhang C, Rickner H, Richmond CA, Li H, Breault DT,
729 Ingber DE. 2018. Development of a primary human Small Intestine-on-a-Chip
730 using biopsy-derived organoids. *Sci Rep* 8:2871.

731 31. Miyoshi H, Ajima R, Luo CT, Yamaguchi TP, Stappenbeck TS. 2012. Wnt5a
732 potentiates TGF- β signaling to promote colonic crypt regeneration after tissue
733 injury. *Science* 338:108-13.

734 32. Lin L, Han J, Yan T, Li L, Li J, Ao Y, Duan Z, Hou Y. 2019. Replication and
735 transcriptionomic analysis of human noroviruses in human intestinal enteroids. *Am
736 J Transl Res* 11:3365-3374.

737 33. Lin SC QL, Ettayebi K, Crawford SE, Blutt SE, Robertson MJ, Zeng XL, Tenge VR,
738 Ayyar BV, Karandikar UC, Yu X, Coarfa C, Atmar RL, Ramani S, Estes KM. 2020.
739 Human norovirus exhibits strain-specific sensitivity to host interferon pathways in
740 human intestinal enteroids. *PNAS* Under review.

741 34. Okhuysen PC, Jiang X, Ye L, Johnson PC, Estes MK. 1995. Viral shedding and
742 fecal IgA response after Norwalk virus infection. *J Infect Dis* 171:566-9.

743 35. Ramani S, Neill FH, Opekun AR, Gilger MA, Graham DY, Estes MK, Atmar RL.
744 2015. Mucosal and Cellular Immune Responses to Norwalk Virus. *J Infect Dis*
745 212:397-405.

746 36. VanDussen KL, Sonnek NM, Stappenbeck TS. 2019. L-WRN conditioned medium
747 for gastrointestinal epithelial stem cell culture shows replicable batch-to-batch
748 activity levels across multiple research teams. *Stem Cell Res* 37:101430.

749 37. Saxena K, Blutt SE, Ettayebi K, Zeng XL, Broughman JR, Crawford SE, Karandikar
750 UC, Sastri NP, Conner ME, Opekun AR, Graham DY, Qureshi W, Sherman V,
751 Foulke-Abel J, In J, Kovbasnjuk O, Zachos NC, Donowitz M, Estes MK. 2016.
752 Human Intestinal Enteroids: a New Model To Study Human Rotavirus Infection,
753 Host Restriction, and Pathophysiology. *J Virol* 90:43-56.

754 38. Loisy F, Atmar RL, Guillot P, Le Cann P, Pommepuy M, Le Guyader FS. 2005.
755 Real-time RT-PCR for norovirus screening in shellfish. *J Virol Methods* 123:1-7.

756 39. Miura T, Parnaudeau S, Grodzki M, Okabe S, Atmar RL, Le Guyader FS. 2013.
757 Environmental detection of genogroup I, II, and IV noroviruses by using a generic
758 real-time reverse transcription-PCR assay. *Appl Environ Microbiol* 79:6585-92.

759 40. Guix S, Asanaka M, Katayama K, Crawford SE, Neill FH, Atmar RL, Estes MK.
760 2007. Norwalk virus RNA is infectious in mammalian cells. *J Virol* 81:12238-48.

761 41. Le Guyader FS, Le Saux JC, Ambert-Balay K, Krol J, Serais O, Parnaudeau S,
762 Giraudon H, Delmas G, Pommepuy M, Pothier P, Atmar RL. 2008. Aichi virus,
763 norovirus, astrovirus, enterovirus, and rotavirus involved in clinical cases from a
764 French oyster-related gastroenteritis outbreak. *J Clin Microbiol* 46:4011-7.

765 42. Call L, Molina T, Stoll B, Guthrie G, Chacko S, Plat J, Robinson J, Lin S, Vonderhe
766 C, Mohammad M, Kunichoff D, Cruz S, Lau P, Premkumar M, Nielsen J, Fang Z,
767 Olutoye O, Thymann T, Britton R, Sangild P, Burrin D. 2020. Parenteral lipids
768 shape gut bile acid pools and microbiota profiles in the prevention of cholestasis
769 in preterm pigs. *J Lipid Res* 61:1038-1051.

770

771