

1 **Title:** Extended spectrum β -lactamase and carbapenemase genes are substantially and
2 sequentially reduced during conveyance and treatment of urban sewage

3

4 Liguan Li^{1,§}, Joseph Nesme^{2,§}, Marcos Quintela-Baluja^{3,§}, Sabela Balboa⁴, Syed Hashsham⁵,
5 Maggie R. Williams⁶, Zhuofeng Yu², Søren J. Sørensen², David W. Graham³, Jesús L.
6 Romalde⁴, Arnaud Dechesne¹, Barth F. Smets^{1,*}

7

8 ¹Department of Environmental Engineering, Technical University of Denmark, Lyngby, DK

9 ²Department of Biology, University of Copenhagen, Copenhagen, Denmark

10 ³School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK

11 ⁴Department of Microbiology and Parasitology, CIBUS-Faculty of Biology & Institute
12 CRETUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain

13 ⁵Department of Civil and Environmental Engineering, Michigan State University, East
14 Lansing, MI USA

15 ⁶School of Engineering and Technology, Central Michigan University, Mt. Pleasant, MI USA

16

17 [§] These authors contributed equally to this work.

18 *Corresponding author

19 Address: Department of Environmental Engineering, Technical University of Demark,
20 Bygningstorvet, Bygning 115, 2800 Kgs. Lyngby

21 Phone: +45-45252230

22 Email: bfsm@env.dtu.dk

23

24 **Abstract**

25 Integrated and quantitative observations of antibiotic resistance genes (ARGs) in urban water
26 systems (UWSs) are lacking. We sampled three UWSs for clinically important extended
27 spectrum β -lactamase (ESBL) and carbapenemase (CP) genes, mobile genetic elements and
28 microbial communities. Sewage – especially from hospitals – carried substantial loads of ESBL
29 and CP genes (10^6 – 10^7 per person equivalent), but those loads progressively declined along
30 the UWS, resulting in minimal emissions (10^1 – 10^4 copies per person equivalent). Removal
31 was primarily during sewage conveyance ($65\% \pm 36\%$) rather than within sewage treatment
32 ($34\% \pm 23\%$). The ARGs clustered in groups based on their persistence; less persistent groups
33 were associated to putative host taxa (especially *Enterobacteriaceae* and *Moraxellaceae*),
34 while more persistent groups appear horizontally transferred as they correlated with mobile
35 genetic elements. This first documentation of a substantial ARG reduction during sewage
36 conveyance provides opportunities for antibiotic resistance management and a caution for
37 sewage-based ARG surveillance.

38 **Introduction**

39 Antibiotic resistance acquisition by pathogens is one of the biggest global public health
40 challenges, as it increasingly impairs our ability to treat infectious diseases. While the medical
41 and veterinary use of antibiotics is the main cause of the rise of antibiotic resistance, the
42 environment has recently been shown as the single largest reservoir of antibiotic resistance
43 genes (ARGs)^{1,2}. The urban water system (UWS) has particularly been suggested as a pathway
44 for antibiotic resistance dissemination through residual waters, as bacteria originating from the
45 human gut are mixed with environmental bacteria, exposed to dynamic conditions and diverse
46 microbial interactions in sewage treatment plants (STP)³.

47 Understanding the fate of antibiotic resistance in the UWS is therefore essential for evaluating
48 its role in ARG dissemination. Raw sewage (i.e., residual water) constitutes the main source of
49 ARGs in the UWS and reflects the load of antibiotic resistance of the served populations. Local,
50 regional and international surveillance studies have shown that influents of urban STP harbor
51 significant abundance and diversity of ARGs with socioeconomic, geographic and seasonal
52 variation⁴⁻⁶. Most recently, an integrated surveillance of STP influent in seven European
53 countries revealed ARG profiles that mirrored the north-to-south gradients in clinical antibiotic
54 resistance prevalence across Europe⁴. STP influents often contains sewage not only from
55 domestic origin but also from hospital sources, with contrasting contributions to the total ARG
56 load. Indeed, compared to domestic sewage, hospital sewage has a higher relative load of multi-
57 resistant bacteria and genes, especially clinically important β -lactamase genes⁷⁻¹¹. It is however
58 not clear to what extent sewage collection and treatment can act as barrier for those clinically
59 important ARGs. Incomplete removal of clinical ARGs by sewage treatment processes may
60 cause further dissemination of antibiotic resistance in the receiving environments^{8,12}. Moreover,
61 there is a debate on whether or not separately treating hospital sewage to a higher degree than
62 the rest of sewage would substantially reduce ARG discharge¹¹. In addition, the biological
63 treatment units of STPs have been recognized as a location with substantial amount of ARGs
64 and mobile genetic elements (MGEs), with potential for ARG transfer between environmental
65 bacteria and human pathogens¹³.

66 Realizing that UWSs consist of compartments with very different physical-chemical conditions,
67 efforts to describe ARG dynamics have mainly considered one or a few of these compartments
68 at a time, such as the influent, the biological treatment reactor, and the effluent^{4,10,12,14}.
69 However, these efforts fail to capture a full picture of UWS and rigorous studies on the

70 occurrence of ARGs across the different compartments are absent, hampering an integrative
71 understanding of the fate of ARGs from raw sewage, through conveyance, treatment processes,
72 and until final discharge. As sewage travels through the UWS, the microbial communities and
73 their ARGs are diluted, mixed with resident communities^{15,16}, exposed to varying
74 environmental conditions and, being sequentially subject to both stochastic (e.g., dispersal and
75 drift) and deterministic selective processes (e.g., by differing nutrient and redox conditions)^{17,18}.
76 These processes can lead to the loss of some ARGs if their hosts are driven to extinction,
77 whereas transfer of mobile ARGs can increase their likelihood of persistence, even though the
78 original intestinal host bacteria may die off. It is therefore essential to track ARGs together
79 with community structure and mobility potential to help identify the processes that mitigate or
80 favor antibiotic resistance across the entirety of the UWS. This has not been achieved because
81 most previous studies were based on analysis of ARGs alone and on observations from specific
82 compartments^{4,8,12}.

83 In this study, we systematically investigated the spatiotemporal variation of ARG diversity and
84 abundance across selected, well-characterized UWSs. As single sampling regions/events fail
85 to capture the variability of antibiotic resistance load⁴, we conducted detailed sampling
86 campaigns in parallel in three cities in Denmark (DK), Spain (SP) and the United Kingdom
87 (UK), respectively, with differing ARG occurrence and prescription patterns. However, all
88 cities had modern sewage collection and STP infrastructure. We analyzed both the bacterial
89 communities and 70 clinically important β -lactamase genes, from raw sewage of hospital and
90 residential sources, through different treatment processes in STP, until the final discharge and
91 the receiving river. In all the three countries, we consistently observed significantly greater
92 antibiotic resistance contributions from hospital sources within the UWSs, and a dramatic
93 reduction in ARG abundance during conveyance and treatment. We identified ARG groups
94 with different persistence fate across UWS, which were correlated with the fate of distinct
95 taxonomic groups.

96 **Results**

97 **Community and ARG profile across countries, compartments and campaigns**

98 We sampled key compartments within three UWSs: Odense (DK), Santiago de Compostela
99 (SP), and Durham (UK) (Fig. 1, Table S1). These compartments were (the two letter code in
100 parenthesis used in all figures): sewage from the city's hospital (HS); sewage from a residential
101 area (RS); influent sewage to the STPs (IS), after screening and grit removal; primary clarifier

102 (PC) effluent; the main biological treatment reactor (BT), i.e., activated sludge in DK and SP
103 and a biofilter in UK; and secondary clarifier (SC) effluent discharged to the environment in
104 the UK and SP; in DK, a tertiary treatment (TT, multimedia filtration and post aeration) is
105 applied before discharge. Finally, the river receiving the STP effluent was sampled both
106 upstream and downstream of the discharge point (RU and RD, respectively). Additional
107 information on sampling is provided in Supplementary Information.

108 Overall microbial community compositions and ARG profiles were quantified across sample
109 sets (Fig. 2 & 3). The concentration of bacteria across all samples ranged from 4.5×10^9 cells
110 per ml in STP effluent to 3.8×10^{13} cells per ml in hospital sewage. Similar compartments
111 dominated shaping community profiles (PERMANOVA, P-value < 0.01), even though samples
112 were collected from three geographically distinct European countries (i.e., DK, SP, UK) over
113 three campaigns (spanning about 1.5 year) (Fig. S1). Clearly, hospital and residential sewage
114 had the most similar microbial community composition (average Bray-Curtis dissimilarity =
115 0.35), which was also similar to treatment plant influent and the primary clarifier. The
116 dominant taxa in raw sewage were of human-gut origin, with members of *Clostridiales*,
117 *Bacteroidales* and *Enterobacteriales* orders accounting for 37% of the community on average,
118 and even reaching > 50% in 7 out of 18 sewage samples from the three countries. These enteric
119 bacteria were lost in the influent and primary clarifier, where the communities became mainly
120 composed of *Campylobacteriales*, β -*proteobacteriales*, and *Pseudomonadales*, together
121 accounting 48% on average. The community structure shift across compartments followed a
122 similar pattern in the three countries until the biological treatment compartment. There, the
123 microbial community profile of DK and SP (mainly composed by β -*proteobacteriales*,
124 *Chitinophagales*, *Micrococcales*) significantly differed from that of the UK (mainly composed
125 by *Pseudomonadales*, β -*proteobacteriales*, *Flavobacteriales*) where a biofilter-based process
126 was applied, while the STP in DK and SP employed a suspended-growth process. The
127 concentration of several taxa listed above increased in biological treatment compartment,
128 before being substantially removed by secondary clarification.

129 A large diversity of ARGs and MGEs was detected across countries; i.e., 79 – 89 out of 118
130 genes on the qPCR array, including 39 – 47 β -lactam resistance genes and 38 – 41 MGEs. The
131 total concentration of ARGs ranged from 1.6×10^7 to 2.6×10^9 copies per ml, with the highest
132 value found in hospital sewage and the lowest in upstream river samples (Fig. 3a). Among the
133 β -lactamase genes, class A (extended spectrum) and class B2 (carbapenem hydrolysis) were

134 the main groups, accounting for 70% and 16% of concentration across samples on average.
135 Among the class A group, the five dominant genes *cfxA*, *blaBEL*, *blaGES*, *blaVEB* and *blaTEM*
136 comprised on average > 90% of concentration across samples. The main MGE groups were
137 transposon-associated genes like *tnpA-03* and *tnpA-05* (Fig. 3b).

138 Unlike for the microbial community, ARG and MGE composition was shaped by both country
139 and compartment together (PERMANOVA, both P-values < 0.01) (Fig. S2). For example,
140 although all hospital sewage samples were enriched with diverse ARGs compared with other
141 compartments, distinct dominant genes characterized each country: *mcr-1*, the most abundant
142 ARG (>10%) in hospital sewage in the UK, accounted for less than 1% in DK and SP; *blaVIM*,
143 reaching 2% in SP, was less than 0.1% in DK. Similar country-specific profiles also were
144 apparent for MGEs; e.g., *tnpA-03*, reaching 40% in DK, while only 18% in SP. Genes at low
145 concentration had country and compartment specific occurrence, for example, *blaOXA10*,
146 detected in hospital sewage, residential sewage, influent and primary clarifier in UK, was
147 almost absent in DK and SP; *blaZ*, detected in hospital or residential sewage in SP and UK,
148 was undetected in DK.

149 Across all UWSs, ARG abundance and diversity gradually decreased along the STP treatment
150 train, and most ARGs were undetectable in the final stage of treatment (e.g., 76 – 84% of β -
151 lactamase genes detected in influent were below detection limit in effluent of secondary
152 clarifier and tertiary treatment) and even those detected were at low concentration (e.g., in DK,
153 $2.0 - 4.8 \times 10^3$ copies per ml in tertiary treatment versus $2.8 \times 10^6 - 2.9 \times 10^7$ copies per ml in
154 influent). Compared with ARGs, the concentrations of MGEs were more variable despite the
155 consistent decrease from influent to effluent in STP. In contrast to observations in DK and UK,
156 the downstream river in SP was enriched with various ARGs and MGEs, which might be
157 because the plant is under-sized and occasionally discharges sewage without treatment during
158 wet-weather events.

159 **Hospital sewage has unique ARG profile and high ARG load**

160 In all three countries, ARG and MGE profiles of the hospital and residential sewage differed
161 consistently, even though they had similar microbial community structures (Fig. S1, Fig. 3).
162 The concentration of ARGs in hospital sewage was always more than 5-fold higher than in the
163 residential sewage. In spite of greater abundance disparity, ARG richness was similar, with an
164 average of 38 and 35 ARGs in hospital and residential sewage respectively, and 31 ARGs were
165 shared by the two sewage types. However, the ARG composition clearly differed between the

166 two types of sewage sources; e.g., in the UK, the relative abundance of *mcr-1* was ca. 60% in
167 hospital sewage while less than 10% in residential sewage; in DK, the ARGs of class A β -
168 lactamase of carbenicillin and carbapenem hydrolysis (e.g., *blaCARB*, *blaKPC* and *blaPSE*)
169 was 3 – 5% in hospital sewage while less than 0.1% or even absent from residential sewage.
170 In contrast, the group of class B2 β -lactamase (e.g., *blaCphA* and *blaSFH*) was 0.1% and 1.5%
171 in hospital sewage while 8 – 29% and 18 – 42% in residential sewage in DK and UK
172 respectively. Similar to the ARG profile, the MGE abundance was 3- to 10-fold higher in
173 hospital compared with residential sewage. The estimated hospital contribution to the ARG
174 and MGEs of the total sewage was 10 to 20%, although it contributed less than 3% of the total
175 sewage flow.

176 We identified 11, 6 and 8 hospital-sewage unique ARGs and MGEs in DK, SP and UK
177 respectively (Fig. 4a). The unique ARGs included β -lactamase genes of class B1 (*cifA*, *blaVIM*,
178 *blaNDM*, *blaSIM*) and class C (*blaFOX*, *blaACC*, *blaACT*, *blaOCH*, *ampC*). In addition, we
179 detected four unique MGEs in hospital sewage (IS5/IS1182 and three plasmid associated
180 elements of IncI, F, HI). We tracked these hospital-sewage unique ARGs and MGEs along the
181 UWSs and several of them were still detected in early STP compartments (i.e., influent and
182 primary clarifier). However, they were undetected in downstream treatment processes, except
183 for IncI in DK, and *blaVIM* in SP and DK. STPs therefore appear effective barriers for the
184 hospital-sewage unique ARGs and MGEs. However, in SP we observed most of the hospital-
185 sewage unique ARG and MGEs in downstream river samples.

186 Considering the occurrence of hospital-sewage unique ARGs through the UWS and their
187 clinical importance, four β -lactamase genes – *blaCTX-M*, *blaVIM*, *blaNDM* and *blaKPC* were
188 selected for further validation in the winter and summer campaigns. Besides the three hospital-
189 sewage unique ARGs (*blaVIM*, *blaNDM* and *blaKPC*), we included *blaCTX-M* as an ARG of
190 relatively high abundance across UWS compartments. We observed abundance variation of the
191 four genes among the three campaigns but patterns within each UWS were consistent across
192 seasons (Fig. 4b). STPs were poor barriers for *blaCTX-M* especially in summer. *blaNDM*, the
193 only hospital-sewage unique ARG shared by the three countries, was present in hospital sewage
194 while absent in residential sewage and was readily removed by primary treatment. *blaKPC* and
195 *blaVIM* had the biggest variation among campaigns, and they were even detected in the
196 secondary clarifier or tertiary treatment, as well as in river samples.

197 **Dynamics of ARG during sewage transport to STP**

198 By coupling the concentration of ARGs, MGEs, and taxa with sewage flow rates, we estimated
199 fluxes entering STP, assuming transport only (i.e., no removal or amplification). This estimated
200 flux was compared with the observed flux in STP influents (Fig. 5, Fig. S3). Among all 322
201 observed ARGs and MGEs in influent, 243 showed significant removal (with a criterion of 90%
202 or lower than the estimated values). In contrast, 66 ARGs and MGEs appeared to be enriched
203 during sewage transport. Regarding the 74 – 85 ARGs and MGEs that were detected in raw
204 sewage, disappearance in influent was most apparent for 15% – 27% of the ARGs and MGEs,
205 as they were reduced below detection limit.

206 Across the three countries, 13 ARGs and 15 MGEs were removed in all cases of sewage
207 transport (Table S2). In particular, *blaOCH* was always below detection limit in the STP
208 influent; *blaOXY-1*, *blaCARB* and *blaTEM* displayed on average > 80% removal. Of the 15
209 MGEs, there were 9 ISs, 4 transposons, and 2 plasmids of the IncN and IncQ groups. Pairwise
210 comparison between the observed and the estimated flux identified statistically significant
211 removal of 70% across genes, countries and sampling days (Wilcoxon test, P-value < 0.01),
212 indicating that removal was a general phenomenon during sewage transport. In fact, for 36 –
213 67 ARGs and MGEs, removal in sewer exceeds that occurring within the STP across countries
214 (i.e., average removal ratio 65% by sewer and 34% by STP) (Fig. S4).

215 One explanation for such substantial ARG removal during sewage transport is dilution to below
216 detection limit of our analytical methods. Indeed, if a gene is only present in hospital sewage,
217 the expected concentration will decrease by more than an order of magnitude as hospital
218 sewage contributes to less than 3% of the total sewage flow. Such dilution to below detection
219 limit however can only explain 14% of the observations. We then tested another possible
220 explanation – whether ARG and MGE removal could be explained by host disappearance. We
221 therefore examined the estimated and observed fluxes of each taxon observed in microbial
222 communities in STP influent (Table S3). Taxa with the highest removal were intestinal types
223 with preference for anaerobic environments like *Clostridiales* (e.g., *Lachnospiraceae*,
224 *Ruminococcaceae*), *Lactobacillales* (e.g., *Enterococcaceae*, *Lactobacillaceae*,
225 *Streptococcaceae*), *Bacteroidales* (e.g., *Prevotellaceae*), and *Enterobacteriales* (e.g.,
226 *Enterobacteriaceae*). More than 50% of these intestinal bacteria displayed more than 70%
227 decay, especially members of the *Clostridiales*, *Bacteroidales* and *Enterobacteriales* orders.
228 Since these bacteria typically carry a diversity of ARGs, we cannot exclude the possibility that
229 their removal might cause corresponding ARG loss.

230 **ARG groups with different persistence in UWSs**

231 It is apparent that not all ARGs and MGEs display the same fate through UWSs, with some
232 restricted to a few compartments, and others more persistent and present in most compartments.
233 We therefore clustered the 118 analyzed ARGs and MGEs into four groups according to their
234 concentration profile across samples (Fig. 6a). These groups with increasing persistence fate
235 through the UWS were named persistence Group I, II, III, IV based on the most downstream
236 location where the genes were still detected: Inlet to STP (Group I), primary clarifier (Group
237 II), biological treatment reactor (Group III), secondary clarifier (Group IV). ARGs and MGEs
238 with occurrence patterns that did not fit any of the four groups were gathered into a category
239 named 'Other'. The genes in this group were either ARGs with sporadic occurrence, or MGEs
240 prevalent throughout the whole UWS at relatively high abundance.

241 Since the fate of ARGs is mainly determined by their mobility potential and/or by the fate of
242 their hosts, we expect that ARG groups with higher persistence might be associated with higher
243 mobility potential and broader host diversity. We thus examined the relationships between
244 ARG, MGE, and community member persistence through network analysis. We hypothesized
245 non-random co-occurrence pattern among ARGs, MGEs and microbial taxa (i.e., significant
246 positive correlations of Spearman's $R^2 > 0.8$, $P < 0.05$) to be indicative of ARG mobility
247 potential and ARG-host association. The correlation network consisted of 126 nodes (27 ARGs,
248 31 MGE, 68 orders) and 1074 edges. The largest group was composed of 20 ARGs and 24
249 MGEs that strongly associated with 11 taxa (Fig. S5). In particular, ARGs of the two relatively
250 persistent Groups III (e.g., *blaCTX-M*, *blaPSE*, *blaMOX/blaCMY*, *ampC*, *cepA*) and IV (e.g.,
251 *blaTEM*, *blaGES*, *cfxA*, *mcr-1*) significantly correlated with MGEs (transposon, IS, integron)
252 as well as taxa *Pseudomonadales*, *Enterobacteriales*, *Clostridiales*, and β -*proteobacteriales*.
253 Compared with Group III and IV, there were only 5 ARGs of Group II significantly correlated
254 with MGEs or taxa, in which *pbp5* and *blaSHV-11* were the only ARGs strongly connected
255 with both MGEs (e.g., transposon and integron) and taxa (e.g., *Enterobacteriales* and
256 *Clostridiales*). In contrast to Group II, III and IV, we did not detect significant correlation
257 between ARGs of Group I and any of MGEs or taxa.

258 To further identify specific taxa with strong association to ARG persistence, we applied a linear
259 regression model between abundance of the ARG groups and four bacterial groups (Fig. 6b),
260 including the total cell and three taxa at the family level: *Enterobacteriaceae*, *Moraxellaceae*,
261 *Burkholderiaceae*. ARGs of the Group I and II correlated relatively strongly with members of

262 *Enterobacteriaceae* and *Moraxellaceae* (e.g., $R^2 > 0.6$ between Group I/II and
263 *Enterobacteriaceae* observed in all the three countries). Group I and II however correlated
264 weakly with total cell numbers. The more persistent Groups III and IV correlated more strongly
265 with *Moraxellaceae* and total cells than the other groups (e.g., $R^2 > 0.6$ between Group IV and
266 total cells observed in all the three countries).

267

268 Discussion

269 Results across the three countries show that the UWS compartment strongly shapes the resident
270 community profile. Such clear effects of compartment on communities were identified in
271 previous studies across UWS^{9,10,14,19}. This is likely due to the distinct environmental conditions
272 in each UWS compartment. In the transition from the human gut to the sewer, the enteric
273 microbial community is subject to a strong shift from higher temperature (37°C) and anaerobic
274 conditions to lower temperature (20 – 25°C) and moderately anaerobic or aerobic conditions.
275 Such change in conditions not only affects survival of the introduced community but also
276 supports a sewer-specific microbial community – including *Arcobacter*, *Acinetobacter* and
277 *Aeromonas*^{15,16}. These bacteria would significantly influence the outcome of the introduced
278 community through processes like competition and dilution. As a result, we observe a
279 substantial shift of microbial community as sewage is transported from upstream of the
280 conveyance system to the STP. This is evident in the large decrease of enteric bacteria
281 (*Clostridiales*, *Bacteroidales* and *Enterobacterales*) from 37% to 21% on average. This
282 mirrors previous results indicating that only around 20% of the microbes in sewage come from
283 human enteric bacteria²⁰.

284 Upon entering the STP, sewage bacteria experience another series of evident environmental
285 changes, including quiescent sedimentation tanks and highly oxic conditions in the biological
286 reactor. These compartments certainly enrich microorganisms specifically adapted to these
287 unique conditions. In the common biological treatment process of activated sludge, stable
288 resident bacteria have been revealed in global-scale and long-term surveillances, such as
289 bacteria from classes of *Alphaproteobacteria*, *Actinobacteria*, *Gammaproteobacteria*,
290 *Acidimicrobia*, *Sphingobacteria* and *Anaerolineae*^{21,22}. Indeed, these bacteria were also the
291 dominant (accounting for 78%) in the biological treatment compartment in STPs of DK and
292 SP, while much less in biofilter system in UK STP and other compartments. The dynamics of
293 UWS microbial community therefore is largely shaped by environmental conditions and
294 resident communities of the compartments they go through.

295 In parallel with these community shifts, the ARG load in sewage was significantly reduced
296 through the UWS. Here, we quantify the extent of attenuation (65%) across a suite of ARGs
297 during sewage transport. Earlier cultivation-based studies suggested large decreases of resistant
298 bacteria in sewage from immediate discharge to STP entrance^{23,24}, and direct monitoring of β -
299 lactamase genes *blaTEM* and *blaKPC* along the length of a sewer pipe also revealed reduction²⁵.
300 Such attenuation is presumably caused by the loss of specific ARG host bacteria; the substantial
301 decrease of enteric bacteria during sewage transport reduces the ARGs harbored by those
302 bacterial groups. In addition, since carrying ARG often results in fitness burden²⁶, host bacteria
303 of the same ecotype are likely to be outcompeted. This would be especially likely for ARGs
304 carried by plasmids with high fitness cost²⁷ and when selective pressures for plasmid carriage
305 are absent²⁸.

306 In contrast, we also observed enrichment of some ARGs during sewage transport, potentially
307 caused by either sources not sampled in this study or gene proliferation by hosts growing in
308 the sewers. The sewer itself houses rich microbial communities in both planktonic and biofilm
309 phase, which have been revealed as potential reservoirs of ARGs like *blaTEM*²⁵. Despite
310 selective enrichment, most ARGs not removed during sewage transport can be substantially
311 removed by treatment processes in the STP; on average 26 out of 30 ARGs detected in influent
312 were absent in effluent. The ARG shift driven by sewage transport appears common in UWSs
313 since we observed consistent patterns across countries and sampling campaigns, in spite of the
314 imprecisions associated with measurements of solid concentrations and flow rates in sewers.
315 Given such obvious ARG shifts, ARG profiles in the sewage versus the human gut differ
316 greatly^{14,29}. Recently, a plan for global surveillance of antibiotic resistance in sewage was
317 outlined as an affordable way to survey community ARG prevalence³⁰. Based on the notable
318 ARG decay during sewer conveyance observed in this study, we argue that simple sewage
319 surveillance will substantially underestimate the real ARG load in the studied population and
320 that rigorous studies are warranted to examine to what extent the ARG profiles in sewage
321 mirror community ARG profiles.

322 We consistently identified hospital sewage as significant point sources of ARGs in the UWSs
323 across countries and seasons, which has been seen before¹⁰. In fact, hospital and residential
324 sewage can be very different, which we saw here. For example, ARG concentrations of 2.0 –
325 3.0×10^{10} copies per ml (similar level as in this study) with β -lactamase genes as dominant
326 were observed in hospital sewage in Spain, around 10-fold higher than in residential sewage¹⁰.

327 Such relatively high ARG load in hospital sewage was also verified in other EU countries. For
328 example, the Netherlands and France had a 16- and 26-fold higher concentration of β -lactamase
329 genes in hospital versus residential sewage respectively^{19,31}, which is even higher than the 10-
330 fold difference observed in our study. In a survey of five hospitals in Singapore⁹, a few variants
331 of β -lactamase genes were only detected in hospital sewage (e.g., *blaIMP*, *blaNDM* and
332 *blaVIM*). Except *blaIMP*, we also identified most of these genes as unique to the hospital in at
333 least one of the three countries (i.e., DK, SP and UK) with *blaVIM* of relatively high abundance
334 in both SP and UK. Consistent with our study, researchers have revealed the complete removal
335 of the hospital-unique β -lactamase genes in STPs, even though a few other persistent genes
336 like *blaVEB* and *blaTEM* were still present in effluent despite remarkable abundance reduction
337 by STP⁹.

338 We identified ARG groups with distinct persistence across the UWS, which might be
339 associated with their enteric versus environmental origin, or plasmid versus chromosomal
340 location. For example, *blaOXA*, a carbapenemase encoding gene, is commonly found in
341 *Acinetobacter baumannii* clinical isolates colonizing hospitalized patients and is usually
342 located on the chromosome^{32,33}. These ARGs are therefore more likely stably maintained
343 within the specific bacterial groups rather than transferred to other environmental bacteria. On
344 the contrary, ARGs of environmental origin, especially those harbored by sewer or STP
345 communities, may well be maintained in a broad range of sewage resident hosts^{25,34}. Moreover,
346 compared with many chromosomal-borne β -lactamase genes³⁵, MGEs especially the broad-
347 host-range plasmids^{36,37}, encoding a wide variety of β -lactamases (e.g., *blaGES*, *blaTEM*,
348 *blaSHV*, *blaIMP*) have become the most prevalent mechanism leading to their global
349 dissemination³⁸. Although plasmid carriage often imposes fitness burden on host bacteria,
350 compensatory adaptation can rapidly reduce the cost and improve plasmid persistence³⁹. A
351 recent laboratory study has revealed that complex microbial communities have hitherto
352 unrecognized potential in maintaining plasmids by gaining phylotype-level fitness benefits
353 even under non-selective conditions⁴⁰. Additionally, conjugal plasmids carrying ARGs can be
354 stable in multispecies communities through source-sink microbial interactions⁴¹. Indeed,
355 *blaTEM*, encoding the most common plasmid-mediated β -lactamase⁴² was identified within
356 the high persistence Group IV, and displays significant co-occurrence with various MGEs,
357 whereas *blaLEN* – a typically chromosomal β -lactamase gene⁴³, belongs to the low persistence
358 Group I. Given the observed ARG persistence pattern, highly resolved strategies are necessary
359 for efficient ARG containment. Popular approaches for ARG containment have focused on

360 control of enteric bacteria⁴⁴. We argue that elimination of enteric bacteria can only contain part
361 of ARGs (i.e., those of persistence Groups I and II), while community-level strategies are
362 necessary for controlling ARGs of the more persistent group (i.e., Groups III and IV).

363 Here, we documented that sewage, especially discharged from hospitals, carries substantial
364 loads of ARGs that progressively decline in UWS during conveyance in the sewers. Such
365 attenuation needs to be considered during sewage based antibiotic resistance surveillance. We
366 identified four ARG groups of different persistence fate in the UWS compartments of the three
367 countries. The less persistent groups were associated with putative host taxa like
368 *Enterobacteriaceae* and *Moraxellaceae*, while the more persistent groups appear horizontally
369 transferred. Overall, the attenuation versus persistence of ARGs in UWS revealed in this study
370 can inform management decisions on containment of antibiotic resistance in urban sewage and
371 assist policymakers on the selection of appropriate sampling points for epidemiological ARG
372 surveillance.

373

374 **Methods**

375 **Site description, sampling and metadata collection**

376 Three independent sampling campaigns were performed. The first lasted two days in
377 spring/summer 2017; the second, three days in winter 2018; and the last, three days in summer
378 2018. At least 1.5 l 24-hr flow proportional, refrigerated samples were collected from each
379 sampling point, except in SP where 10-hr composite samples (from 8:00 to 18:00, taken every
380 2 hours) were collected, and for the activated sludge, a grab sample was obtained at around
381 11:30. Due to their low biomass content, at least 20 l of STP effluent and the river water were
382 collected and concentrated, using dead-end ultra-filtration with a dialysis filter Rexeed 25A
383 (Asahi Kasei, Chiyoda, Japan) as described elsewhere⁴⁵. For molecular analysis, 100 ml of 10-
384 time concentrated biomass suspension was stored frozen at -80°C in 20% glycerol prior to
385 DNA extraction

386 **DNA extraction**

387 A volume of 500 µl of thawed sample was used for DNA extraction with NucleoSpin Soil kit
388 (MACHEREY-NAGEL, Düren, Germany) following the user manual using SL2 lysis buffer.
389 Bead-beating step was performed on a FastPrep-24 Classic homogenizer (MP Biomedicals,
390 Irvine, CA, USA) for 30 seconds at 5 m/s. The rest of the extraction procedure was performed
391 on an EpMotion 5075 liquid handling platform (Eppendorf, Hamburg, Germany). Finally,

392 DNA was eluted in 100 μ L of preheated (68°C) Buffer SE and stored at -20°C. All DNA
393 extracts were quantified using a Qubit® Fluorometer and HS dsDNA kit (Invitrogen, Maryland,
394 MD, USA).

395 **High-throughput qPCR array**

396 Primers used in the 120-assay setup were a subset of the ARG 2.0 panel (103 primers) with the
397 addition of 17 new qPCR primer sets. New primers added to the high-throughput qPCR array
398 subset as part of this work included: *blaAIM*, *blaGIM*, *blaKHM*, *mcr-1*, *blaNMC/IMI*,
399 *blaOXA23*, *blaOXA24*, *blaOXA48*, *blaOXA51*, *blaOXA54*, *blaOXA55*, *blaOXA58*, *blaSFC*,
400 *blaSFH*, *blaSIM*, *blaSPM-45*, and *blaTMB*. Reference sequences for these genes were obtained
401 from ARG-ANNOT⁴⁶, MEGARes⁴⁷, and Genbank. Sequences of high similarity were obtained
402 using BLAST. Following collection and curation, sequences were aligned using MEGA and
403 primers were designed using RDP EcoFunPrimer design tool
404 (<https://github.com/rdpstaff/EcoFunPrimer>)⁴⁸. Specificity of primer candidates was evaluated
405 using BLAST and selected primers were chosen based on targeted gene coverage, specificity,
406 and thermodynamic properties. The high-throughput qPCR analysis was conducted on
407 Takara's SmartChip qPCR platform which allows analysis up to 5,184 100 nl reactions
408 simultaneously (120 assays with 14 samples; with three technical replicates). Samples and
409 primers were dispensed in loading plates per manufacturer protocols with LightCycler® 480
410 SYBR Green I Master Mix and placed in the chip-loading system which loads the high-density
411 chips automatically, with three technical replicates per sample-primer combination. A cycle
412 quantification value of 28 was used as a cut-off threshold for analysis of positive events, and
413 only assays with amplification in a minimum of two technical replicates were included in
414 downstream analysis. Copy numbers were estimated using a previously described equation⁴⁹,
415 and relative abundance of a target gene was determined as the ratio of average target gene to
416 16S rRNA gene copies. In further data analysis, β -lactamase gene were grouped by Ambler
417 classification with functions specified.

418 **16SrRNA sequencing and analysis**

419 Bacteria and Archaea community compositions were assessed by high-throughput amplicon
420 sequencing. A fragment spanning the hypervariable regions V3-V4 of the 16S rRNA gene was
421 amplified from each DNA sample by an initial PCR step using primers Uni341F (5'-
422 CCTAYGGGRBGCASCAG-3') and Uni806R (5'-GGACTACNNNGGTATCTAAT-3')
423 originally published by Yu et al.⁵⁰ and modified as described by Sundberg et al.⁵¹. In a second

424 PCR reaction step, the primers additionally included Illumina specific sequencing adapters and
425 a unique dual index combination for each sample. After each PCR reaction, amplicon products
426 were purified using HighPrep™ PCR Clean Up System (AC-60500, MagBio Genomics Inc.,
427 USA) paramagnetic beads using a 0.65:1 (beads:PCR reaction) volumetric ratio to remove
428 DNA fragments below 100 bp in size and primers. Samples were normalized using SequalPrep
429 Normalization Plate (96) Kit (Invitrogen) and pooled using a 5 μ l volume for each sample. The
430 pooled samples library was concentrated using DNA Clean and Concentrator™-5 kit (Zymo
431 Research, Irvine, CA, USA). The pooled library concentration was determined using the
432 Quant-iT™ High-Sensitivity DNA Assay Kit (Life Technologies). Before library denaturation
433 and sequencing, the final pool concentration was adjusted to 4 nM before library denaturation
434 and loading. Amplicon libraries sequencing was performed on an Illumina MiSeq platform
435 using Reagents Kit v3 [2 x 300 cycles] in paired-end mode. Raw sequence reads were trimmed
436 of primer sequences used in first PCR, discarding read pairs for which any of the two primers
437 sequences could not be detected using cutadapt version 2.3⁵². Primers-trimmed sequence reads
438 were error-corrected, merged and amplicon sequence variants (ASVs) identified using DADA2
439 version 1.10.0⁵³ plugin for QIIME2⁵⁴ with the following parameters: truncL = 230, truncR =
440 215; trimL=8, trimR=8 and otherwise defaults parameters. A separate denoising was performed
441 for each run as recommended by DADA2. Each ASVs was given a taxonomic annotation using
442 *q2-feature-classifier* classify-sklearn module trained with SILVA SSU rel. 132 NR99
443 database⁵⁵. Prior to training the classifier, the V3-V4 region of SILVA database sequences was
444 extracted at the same primers position. Raw sequence data are publicly available at the NCBI-
445 SRA database under BioProject accession number PRJNA672724.

446 **qPCR detection and analysis**

447 *blaVIM*, *blaNDM* and *blaKPC* were quantified using the SsoAdvanced™ Universal Probes
448 Supermix (Bio-Rad), employing the following thermocycle program: (i) 3 min of initial
449 denaturation at 95 °C, and 40 cycles of (ii) 5 s denaturation at 95 °C, and (iii) 30 s
450 annealing/extension at 60 °C. In addition, qPCR also was used to quantify *blaCTX-M* and total
451 eubacteria using a SYBR green-based method assay. SYBR-green reactions were conducted
452 using SsoAdvanced™ Universal SYBR® Green Supermix (BioRad), employing the following
453 thermocycle program: (i) 2 min of initial denaturation at 98°C, and 40 cycles of (ii) 5 s
454 denaturation at 98°C, and (iii) 5 s annealing/extension at 60 °C. Primer sets for qPCR assay
455 were listed in Table S4. All assays were done in triplicate using the BioRad CFX C1000System
456 (BioRad, Hercules, CA USA). In order to avoid inhibitor effects, DNA samples were diluted

457 to a working solution of 2 ng/ul and an internal control DNA was used in SYBR-green reactions.
458 Standard curves for each set of primers were constructed using plasmid clones of the target
459 sequences of between 1.0×10^2 and 1.0×10^8 copy numbers, which were used in triplicate and
460 in parallel with each qPCR run.

461 **Concentration and flux calculation for taxa and genes**

462 The cell concentration N (cells l^{-1}) in each sample was derived from the VSS measurement (mg
463 l^{-1}). It was calculated using Eq. (1)⁵⁶, assuming a bacterial biovolume (V) of $0.25 \mu m^3 cell^{-1}$, a
464 carbon content per unit of cell volume (Cs) of 310 fg C μm^{-3} and considering that only ~53%
465 of a cell's dry weight constitutes carbon.

466
$$N (\text{cells } ml^{-1}) = (VSS \times 1e-3 \times 0.53) / (V \times Cs \times 1e-12) \quad (1)$$

467 The cell concentration of each taxon N_t (cell ml^{-1}) in the sample was then obtained by
468 multiplying the total cell concentration with the relative abundance of the taxon in the amplicon
469 library.

470 The concentration of each ARG or MGE (copies ml^{-1}) was calculated using Eq. (2) by
471 considering the cell concentration N (cells ml^{-1}), the average 16S rRNA gene copies per cell
472 (16S_{cell}, copies $cell^{-1}$) and relative abundance of ARG or MGE (RA, copies (16S rRNA gene
473 copy) $^{-1}$). For each amplicon library, universal 16S rRNA gene amplicon sequencing data was
474 used to perform CaRcone analysis to obtain the average 16S rRNA gene copies per cell (R
475 script <https://github.com/ardagulay/CaRcone---Community-average-rRNA-gene-copy-nrestimator>)⁵⁷.

477
$$\text{Concentration of ARG or MGE (copies } ml^{-1}) = RA \times 16S_{cell} \times N \quad (2)$$

478 The observed flux of each gene or taxon (copies $hour^{-1}$ or cells $hour^{-1}$) at the STP entrance was
479 obtained by multiplying the concentration of ARG or MGE (copies ml^{-1} or cell ml^{-1}) with the
480 average flow rate ($ml \text{ hour}^{-1}$) of the sewage entering STP. This was compared with the expected
481 flux calculated from the abundances measured in the hospital and residential sewers, under the
482 assumption of simple conveyance of the genes or the taxa from the sewer sampling points to
483 the entrance of STP, and taking into account the respective contribution of both sources to the
484 STP influent. Deviation from the expected flux indicates violation of the 'conveyance only'
485 assumption, for example because some taxa are outcompeted by other, resulting in their
486 effective removal. Pairwise comparison between the two fluxes was performed by Wilcoxon
487 test, in which only the ARGs or MGEs above detection limit in qPCR array were included. For
488 each gene, the relative contributions of sewer conveyance and treatment in STP to total removal

489 were calculated respectively as (F1-F2)/F1 and (F2-F3)/F1, where F1 is the flux entering the
490 sewers, including hospital and residential sewage; F2, the flux entering the STP (i.e., STP
491 influent); and F3 the flux leaving the STP (i.e., effluent).

492 **Statistical analysis**

493 Non-metric multidimensional scaling (NMDS) was carried out using Bray-Curtis dissimilarity
494 matrices that were based on concentration of taxa or genes. Permutational multivariate analysis
495 of variance (PERMANOVA) tests were conducted to evaluate the effect of the country,
496 compartment and campaign on microbial community and gene profile, since it is robust to
497 deviation from parametric assumptions. ARG&MGE grouping was performed by hierarchical
498 cluster analysis based on distance measure of Pearson correlation. Network analysis was based
499 on the correlation matrix developed by calculating all possible pairwise Spearman's rank
500 correlations among bacterial taxa, ARGs, and MGEs. A correlation between two items was
501 considered statistically robust if the Spearman's correlation coefficient (R^2) was ≥ 0.8 and the
502 P-value was ≤ 0.05 . To reduce the chances of obtaining false positive results, P-values were
503 adjusted with a multiple testing correction using the Benjamini-Hochberg method. The robust
504 pairwise correlations formed co-occurrence networks. Network analyses were performed in R,
505 and was visualized and explored to identify its topological properties (i.e., clustering
506 coefficient, shortest average path length, and modularity) in Gephi⁵⁸. Linear regression models
507 were applied to estimate the association between abundance of the ARG&MGE groups and
508 four specific bacterial groups (i.e., *Enterobacteriaceae*, *Moraxellaceae*, *Burkholderiaceae* and
509 total cells). The bacterial groups were chosen based on the network correlation with
510 ARG&MGEs, and their high abundance in UWS compartments specifically or generally, e.g.,
511 *Enterobacteriaceae* mainly occurring in raw sewage, while *Moraxellaceae* and
512 *Burkholderiaceae* through most UWS. In addition, we included the total cell in the linear
513 regression analysis, assuming ARG&MGEs hosted by multiple taxa will correlate more with
514 the total cell abundance than with that of any specific taxa.

515 **Acknowledgements**

516 This work was supported by a Joint Programming Initiative-Antimicrobial Resistance grant
517 (JPI-AMR; DARWIN project 7044-00004B). We appreciate the outstanding help of the staff
518 at VandCenter Syd (Odense, Denmark), Viaqua (Santiago de Compostela, Spain), and
519 Northumbrian Water Limited (Durham, UK) in accessing and sampling their systems.

520 **Author contributions**

521 L.L., J.N., M.Q., A.D., and B.F.S. designed the study. M.Q., A.D., and S.B. performed the
522 sampling. Z.Y. extracted DNA. S.Y. and M.R.W. performed HT-qPCR. M.Q. performed qPCR.
523 L.L. and J.N. did all the amplicon sequence analyses. L.L., A.D., and B.F.S. interpreted the
524 results. L.L. drafted the manuscript with input from A.D., B.F.S., S.J.S., J.N., D.W.G., J.L.R.
525 All authors contributed to manuscript revisions and have read and approved the final version
526 of the manuscript.

527 **Data availability**

528 The sequence data analyzed in this study are available in NCBI-SRA database under BioProject
529 accession number PRJNA672724.

530 **Competing interests**

531 The authors declare no competing interests.

532 **References**

- 533 1. Nesme, J. *et al.* Large-scale metagenomic-based study of antibiotic resistance in the
534 environment. *Curr. Biol.* **24**, 1096–1100 (2014).
- 535 2. Li, B. *et al.* Metagenomic and network analysis reveal wide distribution and co-
536 occurrence of environmental antibiotic resistance genes. *ISME J.* **9**, 2490–2502 (2015).
- 537 3. Vikesland, P. J. *et al.* Toward a comprehensive strategy to mitigate dissemination of
538 environmental sources of antibiotic resistance. *Environ. Sci. Technol.* **51**, 13061–
539 13069 (2017).
- 540 4. Pärnänen, K. M. M. *et al.* Antibiotic resistance in European wastewater treatment
541 plants mirrors the pattern of clinical antibiotic resistance prevalence. *Sci. Adv.* **5**,
542 (2019).
- 543 5. Hendriksen, R. S. *et al.* Global monitoring of antimicrobial resistance based on
544 metagenomics analyses of urban sewage. *Nat. Commun.* **10**, 1124 (2019).
- 545 6. Su, J. Q. *et al.* Metagenomics of urban sewage identifies an extensively shared
546 antibiotic resistome in China. *Microbiome* **5**, 1–15 (2017).
- 547 7. Proia, L. *et al.* Occurrence and persistence of carbapenemases genes in hospital and
548 wastewater treatment plants and propagation in the receiving river. *J. Hazard. Mater.*
549 **358**, 33–43 (2018).
- 550 8. Rodriguez-Mozaz, S. *et al.* Occurrence of antibiotics and antibiotic resistance genes in
551 hospital and urban wastewaters and their impact on the receiving river. *Water Res.* **69**,
552 234–242 (2015).

553 9. Ng, C. *et al.* Characterization of metagenomes in urban aquatic compartments reveals
554 high prevalence of clinically relevant antibiotic resistance genes in wastewaters. *Front.*
555 *Microbiol.* **8**, 1–12 (2017).

556 10. Quintela-Baluja, M. *et al.* Spatial ecology of a wastewater network defines the
557 antibiotic resistance genes in downstream receiving waters. *Water Res.* **162**, 347–357
558 (2019).

559 11. Hocquet, D., Muller, A. & Bertrand, X. What happens in hospitals does not stay in
560 hospitals: antibiotic-resistant bacteria in hospital wastewater systems. *J. Hosp. Infect.*
561 **93**, 395–402 (2016).

562 12. Yang, Y., Li, B., Zou, S., Fang, H. H. P. & Zhang, T. Fate of antibiotic resistance
563 genes in sewage treatment plant revealed by metagenomic approach. *Water Res.* **62**,
564 97–106 (2014).

565 13. Che, Y. *et al.* Mobile antibiotic resistome in wastewater treatment plants revealed by
566 Nanopore metagenomic sequencing. *Microbiome* **7**, 44 (2019).

567 14. Bengtsson-Palme, J. *et al.* Elucidating selection processes for antibiotic resistance in
568 sewage treatment plants using metagenomics. *Sci. Total Environ.* **572**, 697–712
569 (2016).

570 15. McLellan, S. L. & Roguet, A. The unexpected habitat in sewer pipes for the
571 propagation of microbial communities and their imprint on urban waters. *Curr. Opin.*
572 *Biotechnol.* **57**, 34–41 (2019).

573 16. Kristensen, J. M., Nierychlo, M., Albertsen, M. & Nielsen, P. H. Bacteria from the
574 genus arcobacter are abundant in effluent from wastewater treatment plants. *Appl.*
575 *Environ. Microbiol.* **86**, 1–13 (2020).

576 17. Wu, L. *et al.* Global diversity and biogeography of bacterial communities in
577 wastewater treatment plants. *Nat. Microbiol.* **4**, 1183–1195 (2019).

578 18. Jong, M., Harwood, C. R., Blackburn, A., Snape, J. R. & Graham, D. W. Impact of
579 redox conditions on antibiotic resistance conjugative gene transfer frequency and
580 plasmid fate in wastewater ecosystems. *Environ. Sci. Technol.* (2020).
581 doi:10.1021/acs.est.0c03714

582 19. Buelow, E. *et al.* Limited influence of hospital wastewater on the microbiome and
583 resistome of wastewater in a community sewerage system. *FEMS Microbiol. Ecol.* **94**,
584 1–9 (2018).

585 20. Newton, R. J. *et al.* Sewage reflects the microbiomes of human populations. *MBio* **6**,
586 1–9 (2015).

587 21. Ju, F. & Zhang, T. Bacterial assembly and temporal dynamics in activated sludge of a
588 full-scale municipal wastewater treatment plant. *ISME J.* **9**, 683–695 (2015).

589 22. Ju, F., Xia, Y., Guo, F., Wang, Z. & Zhang, T. Taxonomic relatedness shapes bacterial
590 assembly in activated sludge of globally distributed wastewater treatment plants.
591 *Environ. Microbiol.* **16**, 2421–2432 (2014).

592 23. Conte, D. *et al.* Characterization of CTX-M enzymes, quinolone resistance
593 determinants, and antimicrobial residues from hospital sewage, wastewater treatment
594 plant, and river water. *Ecotoxicol. Environ. Saf.* **136**, 62–69 (2017).

595 24. Thompson, J. M., Gündoğdu, A., Stratton, H. M. & Katouli, M. Antibiotic resistant
596 *Staphylococcus aureus* in hospital wastewaters and sewage treatment plants with
597 special reference to methicillin-resistant *Staphylococcus aureus* (MRSA). *J. Appl.*
598 *Microbiol.* **114**, 44–54 (2013).

599 25. Auguet, O. *et al.* Sewers as potential reservoirs of antibiotic resistance. *Sci. Total*
600 *Environ.* **605–606**, 1047–1054 (2017).

601 26. Andersson, D. I. & Hughes, D. Antibiotic resistance and its cost: Is it possible to
602 reverse resistance? *Nat. Rev. Microbiol.* **8**, 260–271 (2010).

603 27. San Millan, A. & MacLean, R. C. Fitness costs of plasmids: a limit to plasmid
604 transmission. *Microbiol. Spectr.* **5**, 1–12 (2017).

605 28. Rysz, M., Mansfield, W. R., Fortner, J. D. & Alvarez, P. J. J. Tetracycline Resistance
606 Gene Maintenance under Varying Bacterial Growth Rate, Substrate and Oxygen
607 Availability, and Tetracycline Concentration. *Environ. Sci. Technol.* **47**, 6995–7001
608 (2013).

609 29. Pehrsson, E. C. *et al.* Interconnected microbiomes and resistomes in low-income
610 human habitats. *Nature* **533**, 212–216 (2016).

611 30. Aarestrup, F. M. & Woolhouse, M. E. J. Using sewage for surveillance of
612 antimicrobial resistance. *Science* **367**, 631–632 (2019).

613 31. Buelow, E. *et al.* Hospital discharges in urban sanitation systems: Long-term
614 monitoring of wastewater resistome and microbiota in relationship to their eco-
615 exposome. *Water Res. X* **7**, 100045 (2020).

616 32. Walther-Rasmussen, J. & Høiby, N. OXA-type carbapenemases. *J. Antimicrob.*
617 *Chemother.* **57**, 373–383 (2006).

618 33. Bush, K. & Jacoby, G. A. Updated functional classification of β -lactamases.
619 *Antimicrob. Agents Chemother.* **54**, 969–976 (2010).

620 34. Frigon, D. *et al.* Water and sanitation: an essential battlefield in the war on

621 antimicrobial resistance. *FEMS Microbiol. Ecol.* **94**, fly101 (2018).

622 35. Bush, K. Past and present perspectives on β -lactamases. *Antimicrob. Agents*
623 *Chemother.* **62**, e01076-18 (2018).

624 36. Klümper, U. *et al.* Broad host range plasmids can invade an unexpectedly diverse
625 fraction of a soil bacterial community. *ISME J.* **9**, 934–945 (2015).

626 37. Li, L. *et al.* Estimating the transfer range of plasmids encoding antimicrobial resistance
627 in a wastewater treatment plant microbial community. *Environ. Sci. Technol. Lett.* **5**,
628 260–265 (2018).

629 38. Von Wintersdorff, C. J. H. *et al.* Dissemination of antimicrobial resistance in microbial
630 ecosystems through horizontal gene transfer. *Front. Microbiol.* **7**, 1–10 (2016).

631 39. Harrison, E. & Brockhurst, M. A. Plasmid-mediated horizontal gene transfer is a
632 coevolutionary process. *Trends Microbiol.* **20**, 262–267 (2012).

633 40. Li, L. *et al.* Plasmids persist in a microbial community by providing fitness benefit to
634 multiple phylotypes. *ISME J.* **14**, 1170–1181 (2020).

635 41. Hall, J. P. J., Wood, A. J., Harrison, E. & Brockhurst, M. A. Source–sink plasmid
636 transfer dynamics maintain gene mobility in soil bacterial communities. *Proc. Natl.*
637 *Acad. Sci.* **113**, 8260–8265 (2016).

638 42. Bradford, P. A. Extended-spectrum β -lactamases in the 21st century: Characterization,
639 epidemiology, and detection of this important resistance threat. *Clin. Microbiol. Rev.*
640 **14**, 933–951 (2001).

641 43. Hæggman, S., Löfdahl, S., Paauw, A., Verhoef, J. & Brisse, S. Diversity and evolution
642 of the class A chromosomal β -lactamase gene in *Klebsiella pneumoniae*. *Antimicrob.*
643 *Agents Chemother.* **48**, 2400–2408 (2004).

644 44. Karkman, A., Pärnänen, K. & Larsson, D. G. J. Fecal pollution can explain antibiotic
645 resistance gene abundances in anthropogenically impacted environments. *Nat.*
646 *Commun.* **10**, 80 (2019).

647 45. Heduin, A., Jimenez, M., Desmulliez, M. & Bridle, H. *Report of recommendation of*
648 *sampling systems to WP9 - Aquavalens Project Deliverable D8.5.* (2016).

649 46. Gupta, S. K. *et al.* ARG-annot, a new bioinformatic tool to discover antibiotic
650 resistance genes in bacterial genomes. *Antimicrob. Agents Chemother.* **58**, 212–220
651 (2014).

652 47. Doster, E. *et al.* MEGARes 2.0: A database for classification of antimicrobial drug,
653 biocide and metal resistance determinants in metagenomic sequence data. *Nucleic*
654 *Acids Res.* **48**, D561–D569 (2020).

655 48. Stedtfeld, R. D. *et al.* Primer set 2.0 for highly parallel qPCR array targeting antibiotic
656 resistance genes and mobile genetic elements. *FEMS Microbiol. Ecol.* **94**, 1–9 (2018).

657 49. Looft, T. *et al.* In-feed antibiotic effects on the swine intestinal microbiome. *Proc.*
658 *Natl. Acad. Sci. U. S. A.* **109**, 1691–1696 (2012).

659 50. Yu, Z. T., Michel, F. C., Hansen, G., Wittum, T. & Morrison, M. Development and
660 application of real-time PCR assays for quantification of genes encoding tetracycline
661 resistance. *Appl. Environ. Microbiol.* **71**, 6926–6933 (2005).

662 51. Sundberg, C. *et al.* 454 pyrosequencing analyses of bacterial and archaeal richness in
663 21 full-scale biogas digesters. *FEMS Microbiol. Ecol.* **85**, 612–626 (2013).

664 52. Mart, M. Cutadapt removes adapter sequences from high-throughput sequencing reads.
665 *EMBnet.journal* **17**, 10–12 (2011).

666 53. Callahan, B. J. *et al.* DADA2: High-resolution sample inference from Illumina
667 amplicon data. *Nat. Methods* **13**, 581–583 (2016).

668 54. Bolyen, E. *et al.* Reproducible, interactive, scalable and extensible microbiome data
669 science using QIIME 2. *Nat. Biotechnol.* **37**, 852–857 (2019).

670 55. Quast, C. *et al.* The SILVA ribosomal RNA gene database project: Improved data
671 processing and web-based tools. *Nucleic Acids Res.* **41**, 590–596 (2013).

672 56. Brown, M. R. *et al.* A flow cytometry method for bacterial quantification and biomass
673 estimates in activated sludge. *J. Microbiol. Methods* **160**, 73–83 (2019).

674 57. Diwan, V., Albrechtsen, H. J., Smets, B. F. & Dechesne, A. Does universal 16S rRNA
675 gene amplicon sequencing of environmental communities provide an accurate
676 description of nitrifying guilds? *J. Microbiol. Methods* **151**, 28–34 (2018).

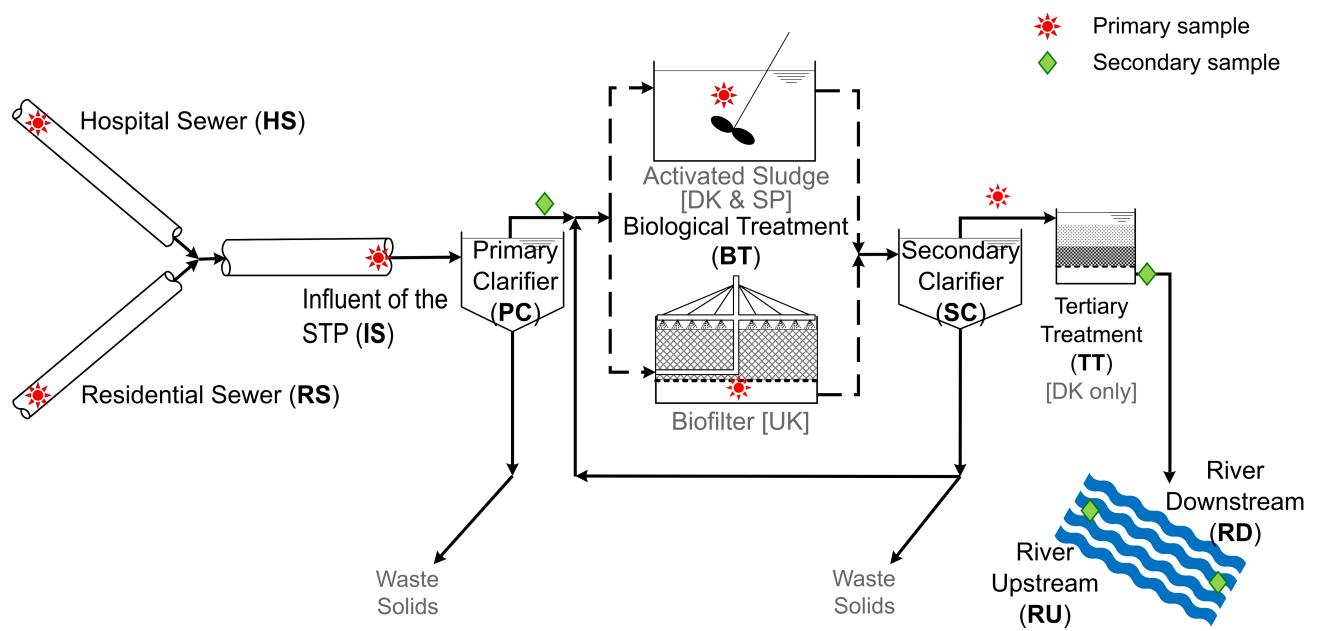
677 58. Bastian, M., Heymann, S. & Jacomy, M. Gephi: An open source software for
678 exploring and manipulating networks. *Third Int. ICWSM Conf.* 361–362 (2009).

679

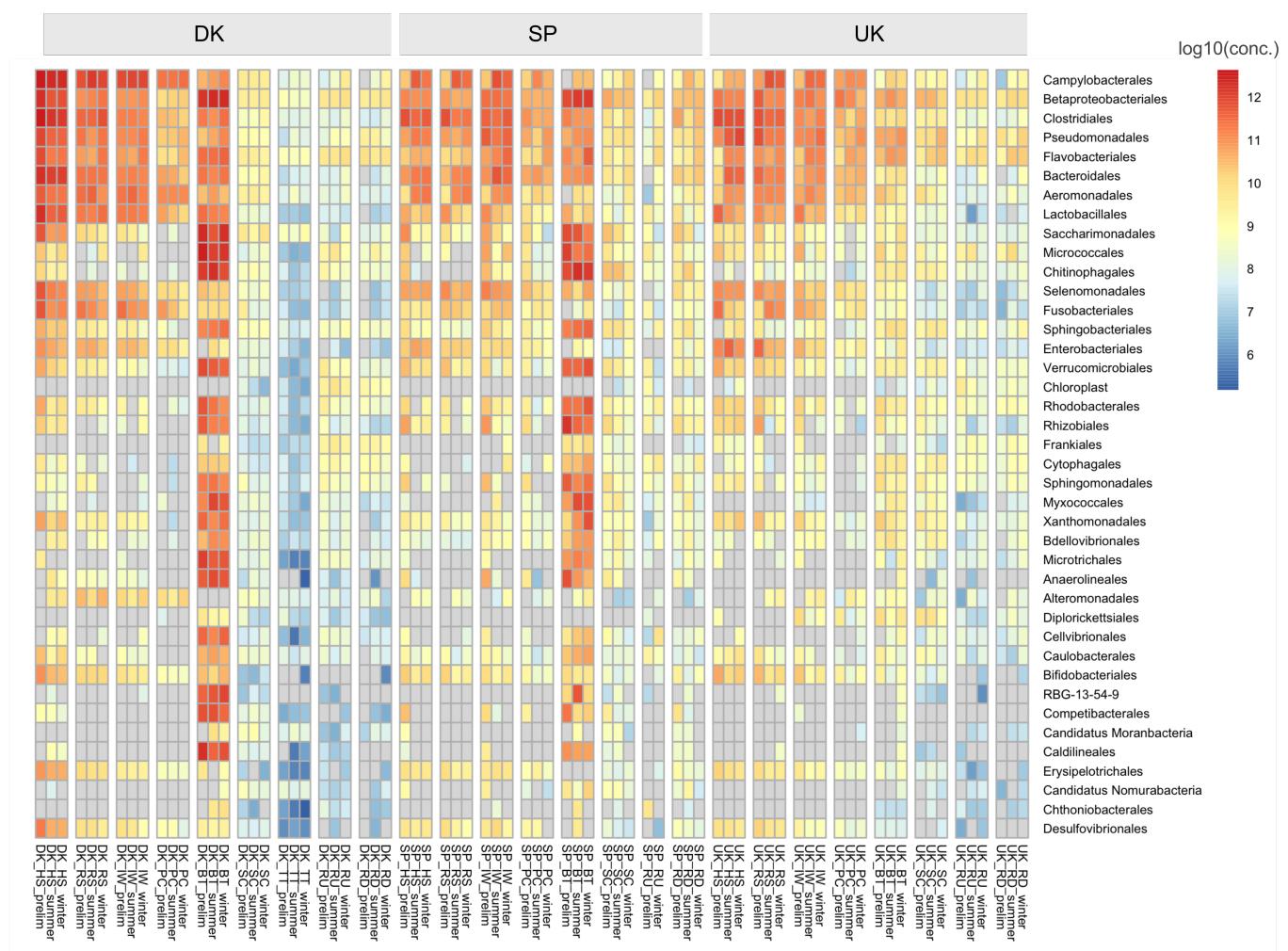
680 **Figure legend**

681 **Fig. 1** Sampling sites of UWSs in three European cities: Odense (DK), Santiago de Compostela
682 (SP), and Durham (UK). The two letter codes of sampling compartments in parenthesis are
683 used in all figures.

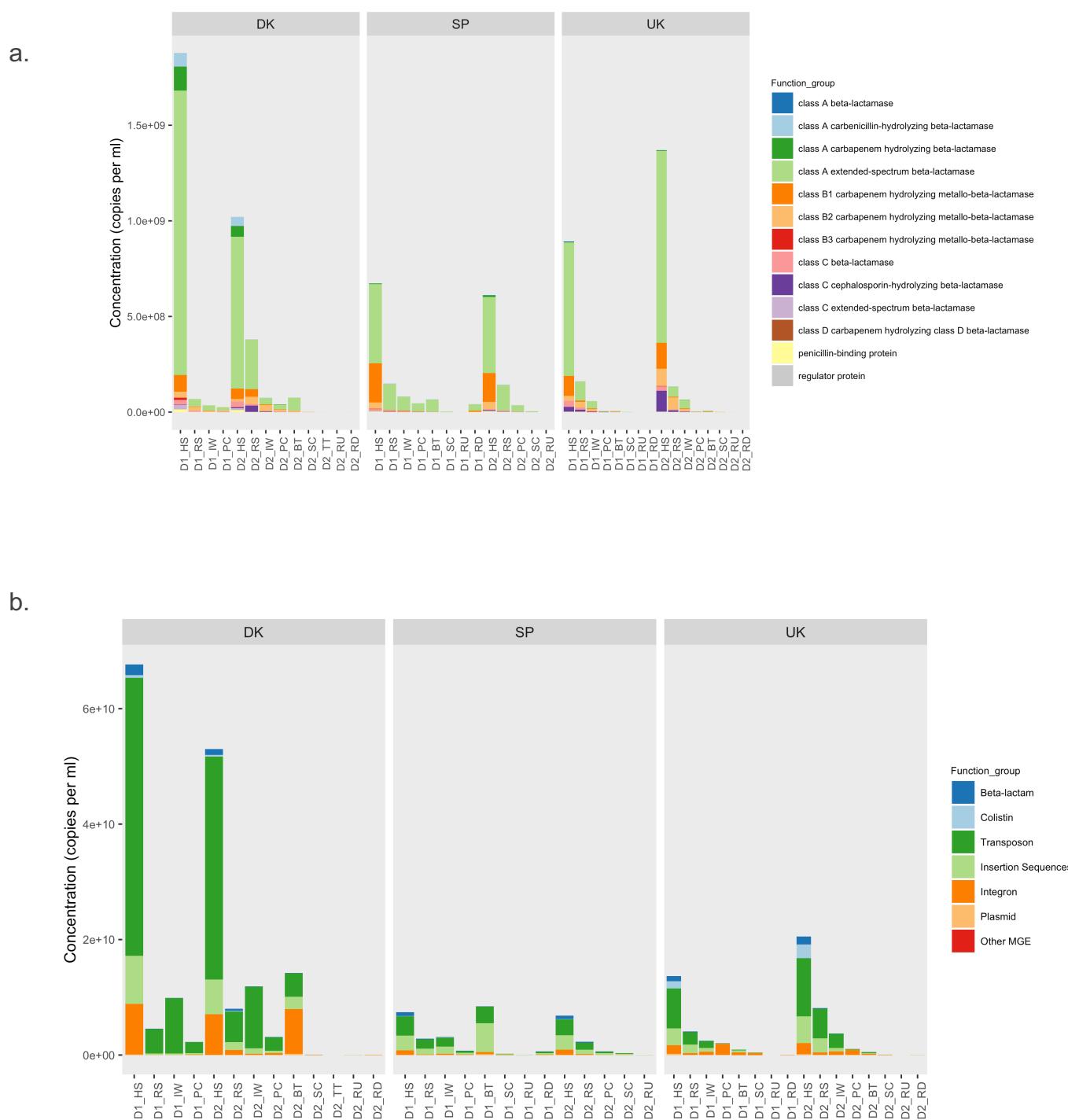
684 **Fig. 2** Concentration heatmap of the 40 most abundant taxa at order level across the three
685 countries. The rows are 40 orders arranged from high to low average abundance across all
686 samples. Each column indicates ARG concentration in specific country and UWS compartment
687 averaged by sampling days in the campaign. For each country, columns are ordered by
688 compartment sequence (HS-RS-IW-PC-BT-SC-TT-RU-RD) through UWS of the country.
689 Concentration (cells per ml) is log10 transformed. Color scale from blue to red indicates from
690 low to high concentration, and gray indicates not detected.

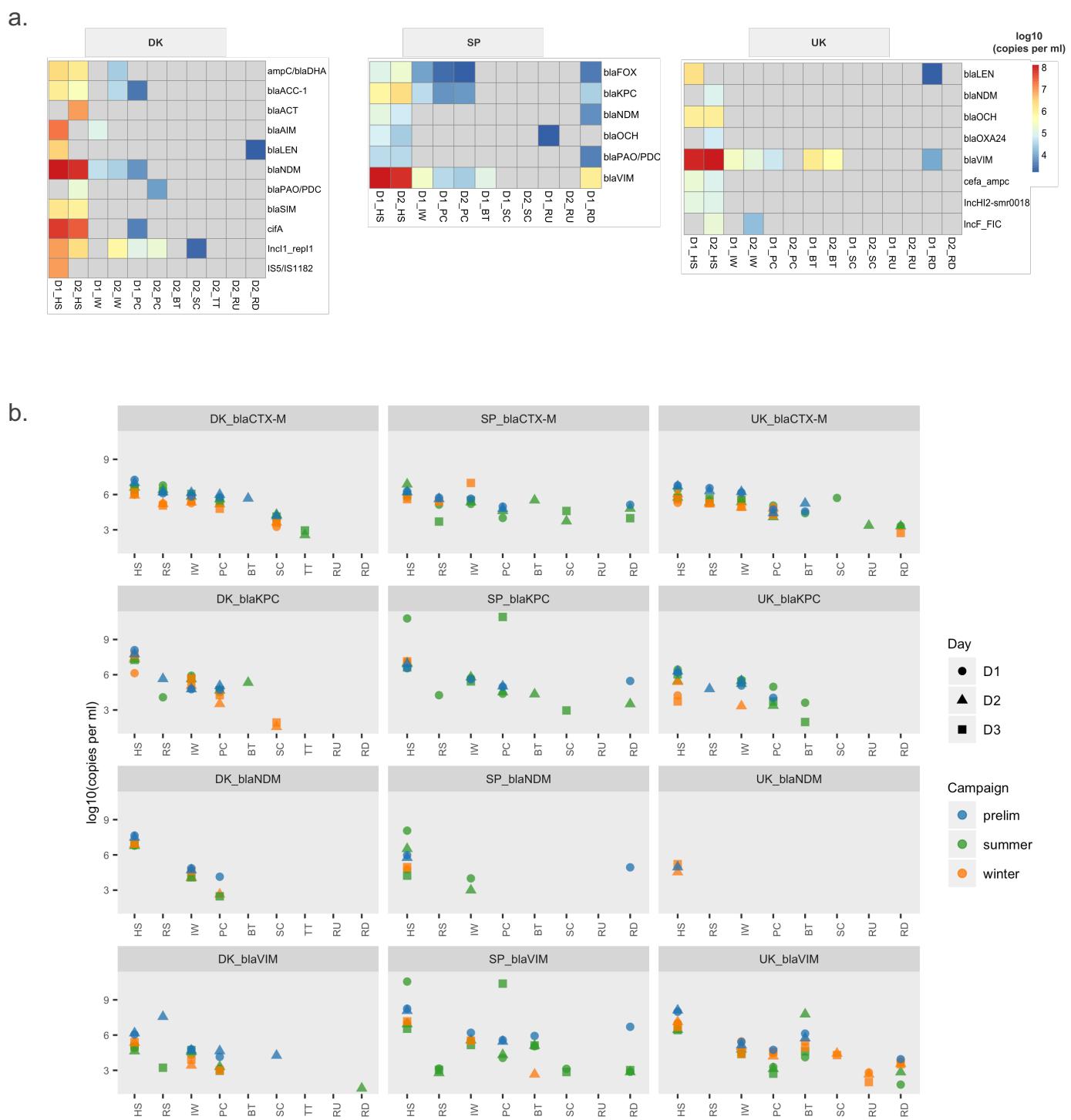

691 **Fig. 3** ARG and MGE composition across sampling compartments, days and countries. **a)**.
692 composition profile of ARGs are grouped by function, e.g., β -lactamase genes are classified
693 by their Ambler classification with specific function indicated. **b)**. composition profile of both
694 ARGs and MGEs. ARGs are grouped by the antibiotics they resistant against and MGEs are
695 grouped into insertion sequences, integrons, plasmids, transposons and other MGEs.

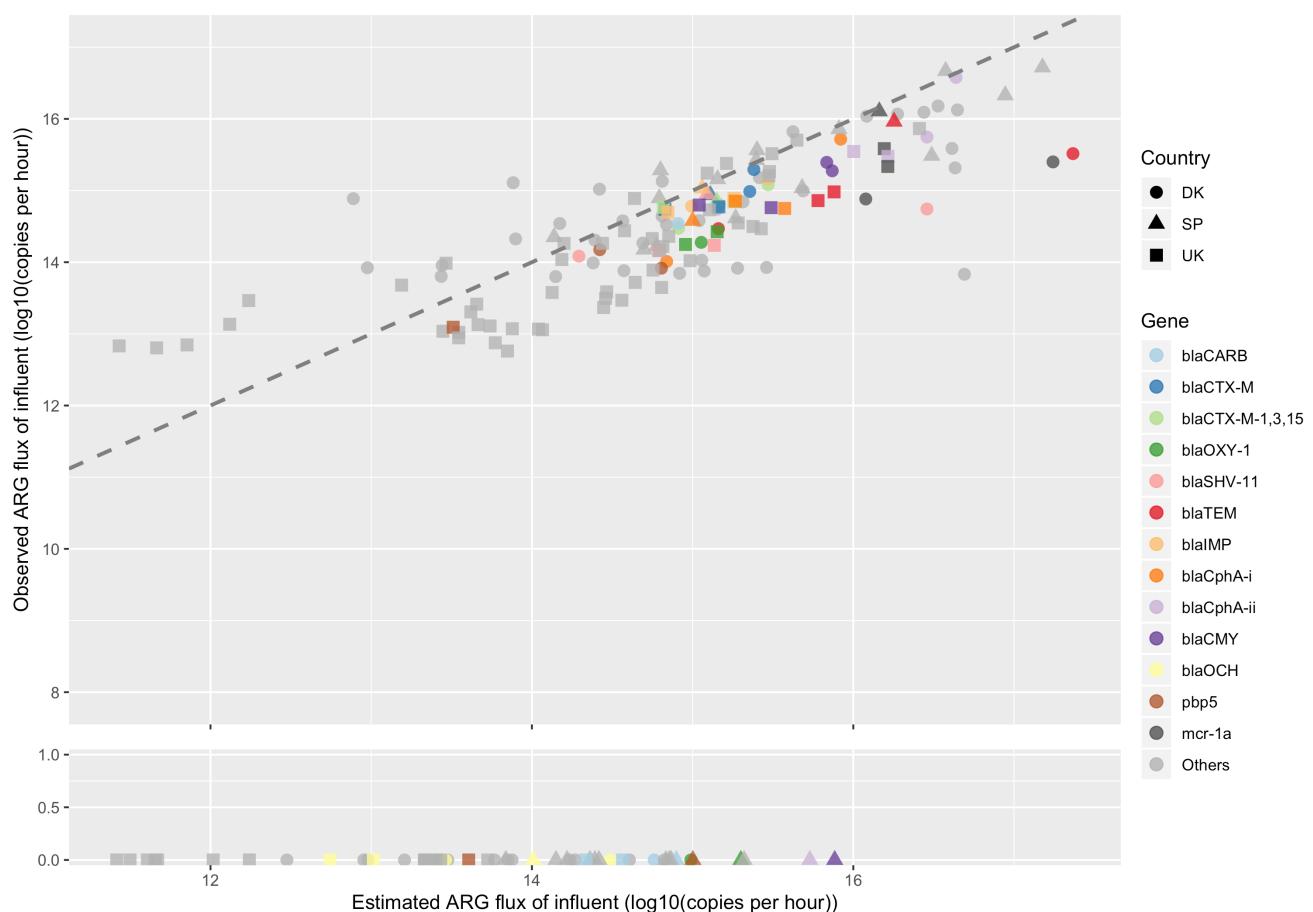
696 **Fig. 4** Concentration of hospital unique ARGs along UWS compartment. **a)**. Concentration
697 trend of country-specific hospital unique ARGs along UWS compartments (gray indicates
698 below detection limit). **b)**. concentration profile of four selected ARGs (i.e., *blaCTX-M*,
699 *blaKPC*, *blaNDM* and *blaVIM*) across sampling countries, days and campaigns. Concentration
700 is log10 transformed.


701 **Fig. 5** Comparison of estimated and observed ARG flux of STP influent. Points indicate ARGs,
702 in which 13 ARGs decayed consistently across countries are highlighted by color and others
703 are gray. The country in which ARGs are detected is indicated by shape. The gray dash line is
704 reference line of slope = 1, indicating no difference between estimated and observed ARG flux.
705 Flux value is log10 transformed.

706 **Fig. 6** ARG and MGE grouping by concentration profile across all samples, and their
707 correlation with four bacterial groups. **a)**. Heatmap of ARG and MGE concentration along
708 UWS compartments. Samples at x-axis are grouped by country and day along the sequential
709 compartments. ARG and MGE at y-axis are clustered into six groups (Group I, II, III, IV, and


710 other ARGs, other MGEs). Functional annotation of gene is indicated by color bar. Persistence
711 of groups through the UWS does not necessarily correlate with high concentration, as there is
712 no significant impact of concentration level in influent on the grouping (ANOVA, p-value >
713 0.05). **b)**. Linear correlation of concentration between Group I – IV and four bacterial groups
714 (i.e., *Enterobacteriaceae*, *Moraxellaceae*, *Burkholderiaceae* and total cell). The top panel is
715 the averaged correlation across countries, followed by three panels of each country.


Fig. 1 Sampling sites of UWSs in three European cities: Odense (DK), Santiago de Compostela (SP), and Durham (UK). The two letter codes of sampling compartments in parenthesis are used in all figures.


Fig. 2 Concentration heatmap of the 40 most abundant taxa at order level across the three countries. The rows are 40 orders arranged from high to low average abundance across all samples. Each column indicates ARG concentration in specific country and UWS compartment averaged by sampling days in the campaign. For each country, columns are ordered by compartment sequence (HS-RS-IW-PC-BT-SC-TT-RU-RD) through UWS of the country. Concentration (cells per ml) is log10 transformed. Color scale from blue to red indicates from low to high concentration, and gray indicates not detected.

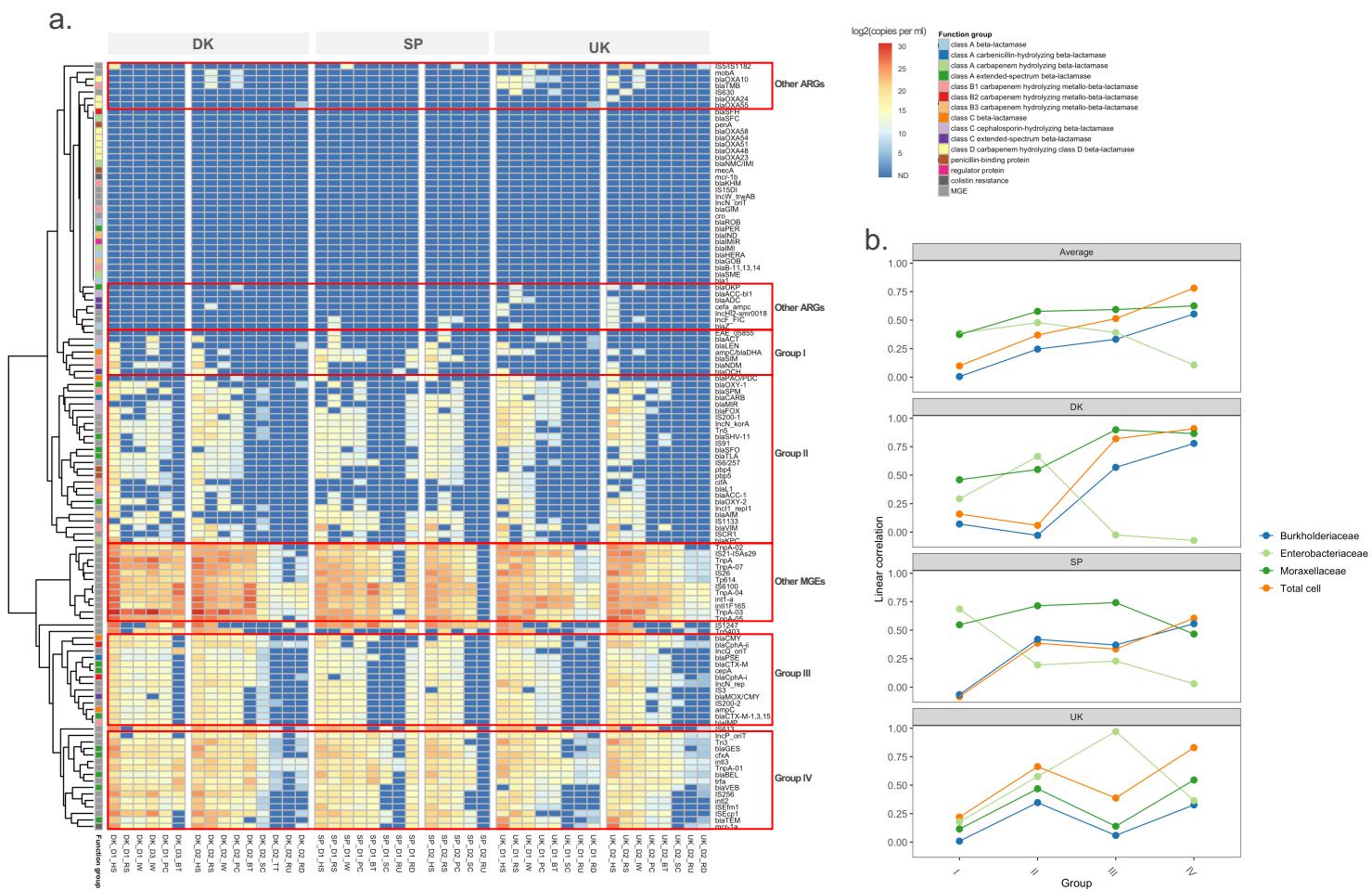

Fig. 3 ARG and MGE composition across sampling compartments, days and countries. **a).** composition profile of ARGs are grouped by function, e.g., β -lactamase genes are classified by their Ambler classification with specific function indicated. **b).** composition profile of both ARGs and MGEs. ARGs are grouped by the antibiotics they resistant against and MGEs are grouped into insertion sequences, integrons, plasmids, transposons and other MGEs.

Fig. 4 Concentration of hospital unique ARGs along UWS compartment. **a).** Concentration trend of country-specific hospital unique ARGs along UWS compartments (gray indicates below detection limit). **b).** concentration profile of four selected ARGs (i.e., *blaCTX-M*, *blaKPC*, *blaNDM* and *blaVIM*) across sampling countries, days and campaigns. Concentration is log10 transformed.

Fig. 5 Comparison of estimated and observed ARG flux of STP influent. Points indicate ARGs, in which 13 ARGs decayed consistently across countries are highlighted by color and others are gray. The country in which ARGs are detected is indicated by shape. The gray dash line is reference line of slope = 1, indicating no difference between estimated and observed ARG flux. Flux value is log10 transformed.

Fig. 6 ARG and MGE grouping by concentration profile across all samples, and their correlation with four bacterial groups. **a).** Heatmap of ARG and MGE concentration along UWS compartments. Samples at x-axis are grouped by country and day along the sequential compartments. ARG and MGE at y-axis are clustered into six groups (Group I, II, III, IV, and other ARGs, other MGEs). Functional annotation of gene is indicated by color bar. Persistence of groups through the UWS does not necessarily correlate with high concentration, as there is no significant impact of concentration level in influent on the grouping (ANOVA, p -value > 0.05). **b).** Linear correlation of concentration between Group I – IV and four bacterial groups (i.e., *Enterobacteriaceae*, *Moraxellaceae*, *Burkholderiaceae* and total cell). The top panel is the averaged correlation across countries, followed by three panels of each country.