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Abstract 
While feed-forward activity may suffice for recognizing objects in isolation, additional visual 

operations that aid object recognition might be needed for real-world scenes. One such 

additional operation is figure-ground segmentation; extracting the relevant features and 

locations of the target object while ignoring irrelevant features. In this study of 60 participants, 

we show objects on backgrounds of increasing complexity to investigate whether recurrent 

computations are increasingly important for segmenting objects from more complex 

backgrounds. Three lines of evidence show that recurrent processing is critical for recognition 

of objects embedded in complex scenes. First, behavioral results indicated a greater reduction 

in performance after masking objects presented on more complex backgrounds; with the 

degree of impairment increasing with increasing background complexity. Second, 

electroencephalography (EEG) measurements showed clear differences in the evoked 

response potentials (ERPs) between conditions around 200ms - a time point beyond feed-

forward activity and object decoding based on the EEG signal indicated later decoding onsets 

for objects embedded in more complex backgrounds. Third, Deep Convolutional Neural 

Network performance confirmed this interpretation; feed-forward and less deep networks 

showed a higher degree of impairment in recognition for objects in complex backgrounds 

compared to recurrent and deeper networks. Together, these results support the notion that 

recurrent computations drive figure-ground segmentation of objects in complex scenes.  
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Introduction 
The efficiency and speed of the human visual system during object categorization suggests 

that a feed-forward sweep of visual information processing is sufficient for successful 

recognition (VanRullen and Thorpe, 2002). For example, when presented with objects in a 

rapid serial visual presentation task (RSVP; (Potter and Levy, 1969), or during rapid visual 

categorization (Thorpe et al., 1996), human subjects could still successfully recognize these 

objects, with EEG measurements showing robust object-selective activity within 150 ms after 

object presentation (VanRullen and Thorpe, 2001). Given that there is substantial evidence 

for the involvement of recurrent processing in figure–ground segmentation (Lamme and 

Roelfsema, 2000; Scholte et al., 2008; Wokke et al., 2012), this seems inconsistent with 

recognition processes that rely on explicit encoding of spatial relationships between parts and 

suggest instead that rapid recognition may rely on the detection of an 'unbound' collection of 

image features (Crouzet and Serre, 2011).  

Recently, a multitude of studies have reconciled these seemingly inconsistent findings 

by indicating that recurrent processes might be employed adaptively, depending on the visual 

input: while feed-forward activity might suffice for simple scenes with isolated objects, more 

complex scenes or more challenging conditions (e.g. objects that are occluded or degraded), 

may need additional visual operations (‘routines’) requiring recurrent computations (Groen et 

al., 2018; Tang et al., 2018; Kar et al., 2019; Rajaei et al., 2019; Seijdel et al., 2020). For 

objects in isolation, or very simple scenes, rapid recognition may thus rely on a coarse and 

unsegmented feed-forward representation (Crouzet and Serre, 2011), while for more cluttered 

images recognition may require explicit encoding of spatial relationships between parts. In 

other words, for those images, extra visual operations to group parts of the object, and to 

segment this object ('figure') from its background might be needed. 

Several studies have already shown that the 'segmentability' of a natural scene might 

influence the degree of recurrent processing. For example, Koivisto, Kastrati & Revuonso 

reported that masking, a technique shown to affect mainly recurrent but not feed-forward 

processing (Fahrenfort et al., 2007), was more effective for objects that were rated as being 

‘difficult to segregate’ (Koivisto et al., 2014). Also in a more recent study we showed that 

natural scene complexity, providing information about the ‘segmentability’ of a scene, 

modulates the degree of feedback activity in the brain (Groen et al., 2018). However, both 

studies did not test for effects of segmentation explicitly and used natural scenes that were 

uncontrolled and in which complexity could correlate with other contextual factors in the scene. 

Therefore, we here systematically investigated whether scene complexity influenced the 
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extent of recurrent processing during object recognition. To this end, participants performed 

an object recognition task with objects embedded in backgrounds of different complexity 

(Figure 1), indexed by two biologically plausible measures: the spatial coherence (SC) and 

contrast energy (CE) (Ghebreab et al., 2009; Scholte et al., 2009; Groen et al., 2013). Using 

these ‘hybrid’ stimuli, we combine relevant features of objects in natural scenes, embedded in 

well controlled backgrounds of different complexity. 

In half the trials, we impaired feedback activity with visual-masking. In addition to 

behavioral measures, we measured EEG responses to examine the time-course of visually 

evoked activity. Besides human participants, we also investigated recognition performance in 

Deep Convolutional Neural Networks (DCNNs), which received identical visual stimuli as our 

human participants, and performed a five-choice recognition task. 

A convergence of results indicated that recurrent computations were critical for 

recognition of objects in complex environments, i.e. objects that were more difficult to segment 

from their background. First of all, behavioral results indicated poorer recognition performance 

for objects with more complex backgrounds, but only when feedback activity was disrupted by 

masking. Second, EEG measurements showed clear differences between complexity 

conditions in the ERPs around 200ms - a time point beyond the first feed-forward visual sweep 

of activity. Additionally, object category decoding based on the multivariate EEG patterns 

showed later decoding onsets for objects embedded in more complex backgrounds. This 

indicated that object representations for more complex backgrounds emerge later, compared 

to objects in more simple backgrounds. Finally, DCNN performance confirmed this 

interpretation; feed-forward networks showed a higher degree of impairment in recognition for 

objects in complex backgrounds compared to recurrent networks. Together, these results 

support the notion that recurrent computations drive figure-ground segmentation of objects in 

complex scenes.  
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Figure 1. Stimuli and experimental paradigm. A) Exemplars of two categories (cat, fire hydrant) from 
each stimulus complexity condition. Backgrounds were either uniform (segmented; gray), or had low 
(red), medium (green) or high (blue) CE and SC values. B) Experimental design. On masked trials, the 
stimulus was followed by a dynamic mask (5x100 ms); on unmasked trials this was replaced by a blank 
screen (500 ms). Participants were asked to categorize the target object by pressing the corresponding 
button on the keyboard.  
 

Materials and methods 
 
Subjects main experiment  

Forty-two participants (32 females, 18-35 years old) took part in a first EEG experiment. Data 

from two participants were excluded from further analysis due to technical problems. We used 

this first dataset to perform exploratory analyses and optimize our analysis pipeline (Figure 2). 

Based on this dataset, we defined the time-windows (for further ERP analyses), electrode 

selection and preprocessing steps. To confirm our results on an independent dataset, another 
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twenty participants (13 females, 18-35 years old) were measured. Data from one participant 

were excluded from ERP analyses, due to wrong placement of electrodes I1 and I2.   

 

 

Figure 2. Experimental procedure. Sixty-two participants took part in the EEG experiment. Data from 
forty participants were used to perform exploratory analyses. The resulting data (twenty participants) 
were used to confirm our results. For the decoding analyses, five new participants took part in a 
separate experiment to characterize multivariate EEG activity patterns for the different object 
categories. 
 
 
Stimuli  

Images of real-world scenes containing birds, cats, fire hydrants, frisbees or suitcases were 

selected from several online databases, including MS COCO (Lin et al., 2014), the SUN 

database (Xiao et al., 2010), Caltech-256 (Griffin et al., 2007), Open Images V4 (Kuznetsova 

et al., 2018) and LabelMe (Russell et al., 2008). These five categories were selected because 

a large selection of images was available in which the target object was clearly visible and not 

occluded. For each image, one CE and one SC value was computed using a simple visual 

model that simulates neuronal responses in one of the earliest stages of visual processing. 

Specifically, they are derived by averaging the simulated population response of LGN-like 

contrast filters across the visual scene (for a full description see Ghebreab et al. (2009), 

Scholte et al. (2009), Groen et al. (2013)). Computing these statistics for a large set of scenes 

results in a two-dimensional space in which sparse scenes with just a few scene elements 

separate from complex scenes with a lot of clutter and a high degree of fragmentation.  

 

Together, CE and SC appear to provide information about the ‘segmentability’ of a scene 

(Groen et al., 2013, 2018). High CE/SC values correspond with images that contain many 

edges that are distributed in an uncorrelated manner, resulting in an inherently low figure-

ground segmentation. Relatively low CE/SC values on the other hand correspond with a 

homogenous image containing few edges, resulting in an inherently high figure-ground 

segmentation (Figure 1). Each object was segmented from their real-world scene background 

and superimposed on three categories of phase scrambled versions of the real-world scenes. 
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This corresponded with low, medium and high complexity scenes.   Additionally, the 

segmented object was also presented  on a uniform gray background as the segmented 

condition (Figure 1). For each object category eight low CE/SC, eight medium CE/SC and 

eight high CE/SC images were selected, using the cut-off values from Groen et al. (2018), 

resulting in 24 images for each object category and 120 images in total. Importantly, each 

object was presented in all conditions, allowing us to attribute the effect to the complexity (i.e. 

segmentability) of each trial, and rule out any object-specific effects.  

 

Experimental design 

Participants performed a 5-choice categorization task (Figure 1), differentiating images 

containing cats, birds, fire hydrants, frisbees and suitcases as accurately as possible. 

Participants indicated their response using five keyboard buttons corresponding to the 

different categories. Images were presented in a randomized sequence, for a duration of 34 

ms. Stimuli were presented at eye-level, in the center of a 23-inch ASUS TFT-LCD display, 

with a spatial resolution of 1920*1080 pixels, at a refresh rate of 60 Hz. Participants were 

seated approximately 70 cm from the screen, such that stimuli subtended a 6.9° visual angle. 

The object recognition task was programmed in- and performed using Presentation (Version 

18.0, Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com). The experiment 

consisted of 960 trials in total, of which 480 were backward masked trials and 480 were 

unmasked trials, randomly divided into eight blocks of 120 trials for each participant. After 

each block, participants took a short break. The beginning of each trial consisted of a 500 ms 

fixation period where participants focused their gaze on a fixation cross at the centre of the 

screen. In the unmasked trials, stimuli were followed by a blank screen for 500 ms and then a 

response screen for 2000 ms. In order to disrupt recurrent processes (Breitmeyer and Ogmen, 

2000; Lamme et al., 2002; Fahrenfort et al., 2007), in the masked trials, five randomly chosen 

phase-scrambled masks were presented sequentially for 500 ms. The first mask was 

presented immediately after stimulus presentation, each mask was presented for 100 ms 

(Figure 1). The ambient illumination in the room was kept constant across different 

participants. 

 

Subjects pattern localizer  

Five new participants took part in a separate experiment to characterize multivariate EEG 

activity patterns for the different object categories. For this experiment, we measured EEG 

activity while participants viewed the original experimental stimuli followed by a word (noun). 

Participants were asked to only press the button when the image and the noun did not match 

to ensure attention (responses were not analyzed). A classifier was trained on the EEG data 

from this experiment, and subsequently tested on the data from the main experiment using a 
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cross-decoding approach. All participants had normal or corrected-to-normal vision, provided 

written informed consent and received monetary compensation or research credits for their 

participation. The ethics committee of the University of Amsterdam approved the experiment.  

 

Deep Convolutional Neural Networks (DCNNS)  

First, to investigate the effect of recurrent connections, we tested different architectures from 

the CORnet model family (Kubilius et al., 2018); CORnet-Z (feed-forward), CORnet-R 

(recurrent) and CORnet-S (recurrent with skip connections). Then, to further evaluate the 

influence of network depth on scene segmentation, tests were conducted on three deep 

residual networks (ResNets; (He et al., 2016) with increasing number of layers; ResNet-10, 

ResNet-18 and Resnet-34. “Ultra-deep” residual networks are mathematically equivalent to a 

recurrent neural network unfolding over time, when the weights between their hidden layers 

are clamped (Liao and Poggio, 2016). This has led to the hypothesis that the additional layers 

function in a way that is similar to recurrent processing in the human visual system (Kar et al., 

2019). Pre-trained networks were finetuned on images from the MSCoco database (Lin et al., 

2014), using PyTorch (Paszke et al., 2017). After initialization of the pretrained network, the 

model’s weights were finetuned for our task, generating 5 probability outputs (for our 5 object 

categories).  To obtain statistical results, we finetuned each network architecture ten different 

times. 

 

EEG data acquisition and preprocessing 

EEG was recorded using a 64-channel Active Two EEG system (Biosemi Instrumentation, 

Amsterdam, The Netherlands, www.biosemi.com) at a 1024 Hz sample rate. As in previous 

studies investigating early visual processing (Groen et al., 2013, 2018), we used caps with an 

extended 10–10 layout modified with 2 additional occipital electrodes (I1 and I2, which 

replaced F5 and F6). Eye movements were recorded with additional electro-oculograms 

(vEOG and hEOG). Preprocessing was done using MNE software in Python (Gramfort et al., 

2014) and included the following steps for the ERP analyses: 1) After importing, data were re-

referenced to the average of two external electrodes placed on the mastoids. 2) A high-pass 

(0.1Hz, 0.1Hz transition band) and low-pass (30Hz, 7.5 Hz transition band) basic FIR filters 

were sequentially applied. 3) an Independent Component Analysis (ICA;(Vigario et al., 2000)) 

was run in order to identify and remove eye-blink and eye-movement related noise 

components (mean = 1.73 of first 25 components removed per participant). 4) epochs were 

extracted from -200 ms to 500 ms from stimulus onset. 5) trials were normalized by their 200 

ms pre-stimulus baseline. 6) 5% of trials with the most extreme values within each condition 

were removed, keeping the number of trials within each condition equal. 7) data were 

transformed to current source density responses (Perrin et al., 1989).  
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Statistical analysis: behavioral data 

For human subjects, choice accuracy was computed for each condition in the masked and 

unmasked trials (Figure 3). Differences between the conditions were tested using two-factor 

(Scene complexity: segmented, low, med, high; Masking: masked, unmasked) repeated-

measures ANOVAs. Significant main effects were followed up by post-hoc pairwise 

comparisons between conditions using Sidák multiple comparisons correction at α = 0.05. For 

DCNNs, a non-parametric Friedman test was used to differentiate accuracy across the 

different conditions (segmented, low, medium, high), followed by pairwise comparisons using 

a Mann-Whitney U test. Behavioral data were analyzed in Python using the following 

packages: Statsmodels, SciPy, NumPy, Pandas, (Jones et al., 2001; Oliphant, 2006; 

McKinney and Others, 2010; Seabold and Perktold, 2010).  

  

Statistical analysis: EEG - event related potentials 

EEG analyses were carried out in Python, using the MNE software. For each participant, the 

difference in event-related potential (ERP) to scene complexity was computed within masked 

and unmasked conditions, pooled across occipital and peri-occipital electrodes (Oz, POz, O1, 

O2, PO3, PO4, PO7, PO8). This was done by subtracting the signal of each complexity 

condition  (i.e. low, medium or high) from the segmented condition. Doing so enabled us to 

investigate differences between low, medium and high complex scenes regardless of masking 

effects. Based on the exploratory dataset, we established five time windows by performing t-

tests on every time point for each condition and selecting windows in which the amplitude 

differed from zero for all complexity conditions (low, med, high). Then, a repeated measures 

ANOVA with factor background complexity (low, medium, high) and masking (masked, 

unmasked) was performed on the average activity in these established time windows.  

 

Statistical analysis: EEG - multivariate classification 

The same preprocessing pipeline was used as for the ERP analyses. To evaluate how object 

category information in our EEG signal evolves over time, cross-decoding analyses were 

performed by training a Support Vector Machine (SVM) classifier on all trials from the pattern 

localizer experiment (performed by five different subjects) and testing it on each of the main 

experiment conditions. Object category classification was performed on a vector of EEG 

amplitudes across 22 electrodes, including occipital (I1, Iz, I2, O1, Oz, O2), peri-occipital (PO3, 

PO7, POz, PO4, PO8), and parietal (Pz, P1-P10) electrodes. EEG activity was standardized 

and averaged across the five time windows derived from the ERP analyses. Statistical 

significance was determined using a Wilcoxon signed-rank test, and corrected for multiple 

comparisons using a false discovery rate (FDR) of 0.05. 
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Results 
 
Behavior 

During the task, participants viewed images of objects placed on top of a gray (segmented), 

low, medium or high complexity background. On each trial, they indicated which object 

category the scene contained, using the corresponding keyboard buttons. In half of the trials, 

the target image was followed by a dynamic backward mask (5x100 ms); the other half of the 

trials was unmasked (Figure 1). Accuracy (percentage correct trials) was computed for each 

participant. A repeated measures ANOVA on the exploratory dataset (N = 40), with factors 

background (segmented, low, medium, high) and masking (masked, unmasked) indicated, 

apart from main effects, an interaction effect. Results indicated that masking impaired 

performance for objects presented on more complex backgrounds stronger than for less 

complex backgrounds  (F(3,117) = 185.6748, p < .001). Post-hoc comparisons showed that 

for masked trials, accuracy decreased for both medium (t(39) = 2.88, p(Sidák-corrected) = 

0.038) and high (t(39) = 3.84, p(Sidák-corrected) = 0.003) complexity condition compared to 

the low condition (all other p > .203). For unmasked trials, all conditions differed from each 

other, with an incremental decrease in accuracy for objects presented on more complex 

backgrounds. 

Analysis of the confirmatory dataset (N = 20) indicated similarly, apart from the main 

effects, an interaction between masking and background complexity. For masked trials, there 

was a larger decrease in performance with an increase in background complexity,  (F(3, 57) 

= 101.3338, p < .001).  Post-hoc comparisons showed that for masked trials, accuracy 

decreased for both medium and high complexity conditions compared to the segmented (t(19) 

= 3.47, p(Sidák-corrected) = 0.003, (t(19) = 3.47, p(Sidák-corrected) = 0.003) and low 

conditions (t(19) = 4.23, p(Sidák-corrected) < .001, (t(19) = 4.31, p(Sidák-corrected) < .001). 

For unmasked trials, all conditions differed from each other with the exception of medium - 

high, with an incremental decrease in accuracy for objects presented on more complex 

backgrounds. 
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Figure 3. Human performance on the object recognition task. Performance (percentage correct) on 
the 5-option object recognition task. For masked trials, performance decreased with an increase in 
background complexity. The left panel shows results from the exploratory set (n=40), on the right results 
from the confirmatory set (N = 20) are plotted. Error bars represent the bootstrap 95% confidence 
interval, dots indicate the average performance of individual participants. Significant differences are 
indicated with a solid (unmasked) or dashed (masked) line. 
 

Network performance 

Next, we presented the same images to Deep Convolutional Neural Networks with different 

architectures. For the CORnets (Figure 4, left panel), a non-parametric Friedman test 

differentiated accuracy across the different conditions (segmented, low, medium, high) for all 

architectures, Friedman’s Q(3) = 27.8400; 24.7576; 26.4687 for CORnet-Z, -RT -S 

respectively, all p < .001.  A Mann-Whitney U test on the difference in performance between 

segmented and high complexity trials indicated a smaller decrease in performance for 

CORnet-S compared to CORnet-Z (Mann–Whitney U = 100.0, n1 = n2 = 10, p < .001, two-

tailed). For the ResNets (Figure 4, right panel), a non-parametric Friedman test differentiated 

accuracy across the different conditions for ResNet-10 and ResNet-18, Friedman’s Q (3) = 

23.9053; 22.9468, for ResNet-10 and ResNet-18 respectively, both p < .001. A Mann-Whitney 

U test on the difference in performance between segmented and high complexity trials 

indicated a smaller decrease in performance for ResNet-34 compared to ResNet-10 (Mann–

Whitney U = 99.0, n1 = n2 = 10, p < .001, two-tailed). Overall, in line with human performance, 

results indicated a higher degree of impairment in recognition for objects in complex 

backgrounds for feed-forward or more shallow networks, compared to recurrent or deeper 

networks. 
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Figure 4. Deep Convolutional Neural Network performance on the object recognition task. 
Performance (percentage correct) on the 5-option object recognition task. Networks were finetuned on 
the 5 target categories, top-1 accuracy was computed.  For the CORnets (left panel) performance of 
the feedforward architecture decreased with an increase in background complexity. For recurrent 
architectures, this decrease was less prominent. For CORnet-S, there was no difference between 
conditions. Error bars represent the bootstrap 95% confidence interval.  

EEG - event related potentials  

To investigate the time-course of figure-ground segmentation in visual cortex, evoked 

responses to the masked and unmasked scenes were pooled across occipital and peri-

occipital electrodes (Oz, POz, O1, O2, PO3, PO4, PO7, PO8), for each condition. Difference 

waves were generated by subtracting the signal of each condition from the segmented 

condition (Figure 5B/E). Doing so enabled us to eliminate the effect of masking on the EEG 

signal, and to investigate differences between low, medium and high complex scenes. For 

each participant, data was averaged across five time windows based on analyses on the 

exploratory dataset (see Materials and methods).   
 

For every time window, a Repeated Measures ANOVA was performed on the average EEG 

amplitude of the difference waves, with Complexity (low, med, high) and Masking (masked, 

unmasked) as within subject factors. As preprocessing procedure and time point selection 

were based on t-tests on the exploratory set, we do not report subsequent Repeated Measures 

ANOVA for this dataset. Results on the confirmatory dataset (Figure 5D/E/F) showed no main- 

or interaction effects in the first time-window (92-115 ms; Figure 5F). Critically, differences 

between Complexity conditions only emerged in time-window 2 and 3 (120-150 ms: F(36) = 

22.87, η2par = .56, p < .001; 155-217 ms: F(36) = 24.21, η2par = .57, p < .001), suggesting a 

differential contribution of recurrent processing to object recognition in varying complexity 

scenes. In time-window 2, there was a main effect of Masking (F(18) = 5.38, η2par = .576, p = 

.03. Only in time window 4 (221-275 ms), an interaction effect of Masking and Complexity, 

F(18) = 59.60, η2par = .07, p < .001 started to emerge.  
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Figure 5. ERP results. A) Average ERP amplitude for segmented, low, medium and high complexity 
scenes for an occipital-peri-occipital pooling of EEG channels (Oz, POz, O1, O2, PO3, PO4, PO7, PO8) 
for masked and unmasked trials. Shaded regions indicate SEM across participants. Mask onsets are 
indicated with thin dashed lines (bottom panel only) B) Difference waves were generated by subtracting 
the signal of each condition from the segmented condition. Five time windows were determined by 
performing t-tests on every time point for each condition and selecting windows in which the amplitude 
differed from zero for all complexity conditions. Significant timepoints are indicated with a black dot 
above the x-axis.  C) Based on significant timepoints in the exploratory dataset, five time-windows were 
defined: 92-115 ms; 120-150 ms; 155-217 ms; 221-275 ms; 279-345 ms). D/E/F) Analyses repeated 
for the confirmatory dataset. Symbol markers indicate main or interaction effects, asterisk: main effect 
of Complexity; diamond: main effect of Masking; plus: interaction effect.  
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EEG multivariate classification  
To further investigate the representational dynamics of object recognition under different 

complexity conditions, multivariate decoding analyses were performed on the averaged 

activity in the five time windows (Figure 6). To control for response-related activity (keyboard 

buttons were fixed across the task), a cross-decoding analysis was performed, by training the 

classifier on all trials from an independent pattern localizer experiment, and testing it on each 

of the main experiment conditions (see Methods for details). For unmasked trials, a Wilcoxon 

signed-rank test on the exploratory dataset indicated successful decoding for segmented trials 

in all five time windows (Z = 100, p < 0.001; Z = 89, p < 0.001; Z = 30, p < 0.001; Z = 131, p < 

0.001; Z = 141, p < 0.001) and low trials in the first three time windows (92-115 ms; 120-150 

ms; 155-217 ms; Z = 198, p = 0.007; Z = 82, p < 0.001; Z = 61, p < 0.001). For objects on 

medium complex background, successful above-chance decoding emerged slightly later, in 

time-windows 2 and 3 (Z = 200, p = 0.012; Z = 110, p < 0.001). For objects on high complex 

background, there was successful decoding in time window 3, Z=216, p = 0.045. For masked 

trials, there was successful decoding for the segmented objects in time-windows 1, 3 and 4 , 

Z = 113, p < 0.001; Z = 183, p = 0.004; Z = 186, p = 0.004, followed by later additional decoding 

of low (155-217 ms), Z = 138, p = 0.001, and high (221-275 ms) complexity trials, Z = 157, p 

= 0.003.  There were no significant time windows for medium complexity trials. All p-values 

reported were corrected by FDR = 0.05. 

Finally, we aimed to replicate these findings in the confirmatory dataset (N = 20). 

Overall, results indicated fewer instances of successful object decoding, and if present, slightly 

delayed compared to the exploratory set. For unmasked trials, results from the Wilcoxon 

Signed-Ranks test indicated successful decoding for segmented trials (92-115 ms; 155-217 

ms; 221-275 ms; 279-245 ms), Z = 27, p = 0.006; Z = 18, p = 0.003; Z = 0, p < 0.001; Z = 35, 

p = 0.011. There were no other significant time windows from other unmasked conditions. For 

masked conditions, there was also only significant decoding in segmented trials, specifically 

in time window 3 and 4  (155-217 ms; 221-275 ms), Z = 36, p = 0.031; Z = 38, p = 0.031.  

Overall, these findings showed that different objects evoked reliably different sensor 

patterns when presented in isolation or in ‘simple’ environments, within the first feed-forward 

sweep of visual information processing. Additionally, results indicated decreased and later 

decoding for objects embedded in more complex backgrounds, suggesting that object 

representations for objects on complex backgrounds emerge later. Finally, these findings also 

indicate that the object category representations generalized across tasks and participants. 
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Figure 6. Cross-decoding results using the pattern localizer. Decoding object category in the EEG 
signal for the A) exploratory dataset, and the B) Confirmatory dataset, for masked and unmasked trials 
with varying complexity in the five time windows. The dotted line represents the 20% chance-level, 
shaded error bars represent the bootstrap 95% confidence interval. Results from the Wilcoxon signed-
rank test are indicated with a bold x (corrected for multiple comparisons using a false discovery rate of 
0.05).  
 

Discussion 

This study systematically investigated whether recurrent processing is required for figure-

ground segmentation during object recognition. A converging set of behavioral, EEG and 

computational modelling results indicate that recurrent computations are required for figure-

ground segmentation of objects in complex scenes. These findings are consistent with 

previous findings showing enhanced feedback for complex scenes (Groen et al., 2018), and 

visual backward masking being more effective for images that were ‘more difficult to segment’ 

(Koivisto et al., 2014). We interpret these results as showing that figure-ground segmentation, 

driven by recurrent processing, is not necessary for object recognition in simple scenes but it 

is for more complex scenes.     
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Effects of scene complexity using artificial backgrounds 

In an earlier study, using natural scenes, we already showed that feedback was selectively 

enhanced for high complexity scenes, during an animal detection task. While there are 

numerous reasons for using naturalistic scenes (Felsen and Dan, 2005; Felsen et al., 2005; 

Talebi and Baker, 2012), it is difficult to do controlled experiments with them because they 

vary in many (unknown) dimensions. Additionally, SC and CE (measures of scene complexity) 

could correlate with other contextual factors in the scene (e.g. SC correlates with perception 

of naturalness of a scene (Groen et al., 2013)), and could be used as diagnostic information 

for the detection of an animal. Additionally, previous research has shown that natural scenes 

and scene structure can facilitate object recognition (Davenport and Potter, 2004; Neider and 

Zelinsky, 2006; Kaiser and Cichy, 2018). Results from the current study, using artificial 

backgrounds of varying complexity, replicate earlier findings while allowing us to attribute the 

effects to SC and CE, and the subsequent effect on segmentability. A limitation of any 

experiment with artificially generated (or artificially embedded) images is that it's not clear 

whether our findings will generalize to 'real images' that have not been manipulated in any 

way. Together with the previous findings, however, our results corroborate the idea that more 

extensive processing (possibly in the form of recurrent computations) is required for object 

recognition in more complex, natural environments (Groen et al., 2018; Rajaei et al., 2019).  

 

Time course of object recognition 

Based on the data from the exploratory dataset (N = 40), we selected five time windows in the 

ERPs to test our hypotheses on the confirmatory dataset. For our occipital-peri-occipital 

pooling, we expected the first feed-forward sweep to be unaffected by scene complexity (i.e. 

low, med, high). Indeed, amplitudes of the difference waves (complexity condition - segmented 

ERP amplitudes) averaged across the selected time windows indicated no influence of 

masking or scene complexity early in time (92-115 ms). The observation that all three 

difference waves deviated from zero, however, indicates that there was an effect of 

segmentation. In this early time window, background presence thus seems to be more 

important than the complexity of the background. This difference could be attributed to the 

detection of additional low-level features in the low, medium and high complexity condition, 

activating a larger set of neurons that participate in the first feed-forward sweep (Lamme and 

Roelfsema, 2000). In the second and third time window (120-217 ms), differences between 

the complexity conditions emerged. We interpret these differences as reflecting the increasing 

need for recurrent processes when backgrounds are more complex.  

Our results are generally consistent with prior work investigating the time course of 

visual processing of objects under more or less challenging conditions (DiCarlo and Cox, 

2007; Cichy et al., 2014; Contini et al., 2017; Tang et al., 2018; Rajaei et al., 2019). In line with 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 11, 2020. ; https://doi.org/10.1101/2020.11.11.377655doi: bioRxiv preprint 

https://paperpile.com/c/MV1MvM/UWzh+EweM+WoZS
https://paperpile.com/c/MV1MvM/UWzh+EweM+WoZS
https://paperpile.com/c/MV1MvM/hWBc
https://paperpile.com/c/MV1MvM/hFrx+wlVx+pBUp
https://paperpile.com/c/MV1MvM/hFrx+wlVx+pBUp
https://paperpile.com/c/MV1MvM/V7Ax+PhFA
https://paperpile.com/c/MV1MvM/XfdP
https://paperpile.com/c/MV1MvM/XfdP
https://paperpile.com/c/MV1MvM/bz3j+ziAA+PhFA+yzTY+Ez6c
https://paperpile.com/c/MV1MvM/bz3j+ziAA+PhFA+yzTY+Ez6c
https://doi.org/10.1101/2020.11.11.377655
http://creativecommons.org/licenses/by/4.0/


multiple earlier studies, masking left the early evoked neural activity (<120 ms) relatively intact, 

whereas the neural activity after ∼150 ms was decreased (Lamme and Roelfsema, 2000; 

Lamme et al., 2002; Del Cul et al., 2007; Fahrenfort et al., 2007; Boehler et al., 2008; Koivisto 

and Revonsuo, 2010).   

Decoding results corroborated these findings, showing decreased or delayed decoding 

onsets for objects embedded in more complex backgrounds, suggesting that object 

representations for those images emerge later. Additionally, when recurrent processing was 

impaired using backward masking, only objects presented in isolation or in ‘simple’ 

environments evoked reliably different sensor patterns that our classifiers were able to pick up 

(Figure 5 and 6). 

 

Influence of masking on behavior 

Based on the strong interaction effect on behavior, it is tempting to conclude that complexity 

significantly increases the effect of masking on recognition accuracy. However, performance 

on all unmasked trials was virtually perfect (96-97%) raising concerns about ceiling effects 

obscuring the actual variation between these conditions (Uttl, 2005). Therefore, although 

masked stimuli show a decrease in performance along increases in complexity; based on the 

current findings we cannot conclude that this is because of masking (i.e. reducing recurrent 

processes). While we do not claim that unmasked segmented, low, medium, or high images 

are equally difficult or processed in the same way (we actually argue for the opposite), our 

results show that apparently the brain is capable of arriving at the correct answer with enough 

time. It is hard to come up with an alternative (more difficult) task without affecting our 

experimental design and subsequent visual processing (e.g. stimulus degradation generally 

affects low-level complexity; reducing object size or varying object location creates a visual 

search task that could benefit from spatial layout properties). Combined fMRI and EEG results 

from an earlier study already showed that for complex scenes only, early visual areas were 

selectively engaged by means of a feedback signal (Groen et al., 2018). Here, using controlled 

stimuli and backward masking, we replicate and expand on these findings.  Importantly, results 

from both EEG and deep convolutional neural networks support the notion that recurrent 

computations drive figure-ground segmentation of objects in complex scenes.  

 
Consistency of object decoding results 

In the exploratory set, results from the multivariate decoding analyses indicated early above 

chance decoding for ‘simple’ scenes (segmented and low) in both unmasked and masked 

trials. For more complex scenes decoding emerged later (medium) or was absent (high) for 

unmasked trials. In the confirmatory set, however, there were fewer instances of successful 
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object decoding, and if present, successful decoding was delayed. A likely explanation for this 

finding could be that the sample size in the confirmatory dataset was inadequate for the 

chosen multivariate decoding analyses, resulting in reduced statistical power. A simulation 

analysis on the exploratory set, in which we randomly selected 20 participants (repeated 1000 

times) indicated reduced decoding accuracy, similar to our confirmatory results. Our choice 

for the number of participants in the confirmatory dataset thus does not seem to be sufficient 

(Supplementary Figure S1).  

 

Probing cognition with Deep Convolutional Neural Networks 

One way to understand how the human visual system processes visual information involves 

building computational models that account for human-level performance under different 

conditions. Here we used Deep Convolutional Neural Networks, because they show 

remarkable performance on both object and scene recognition (e.g. (Russakovsky et al., 2015; 

He et al., 2016). While we certainly do not aim to claim that DCNNs are identical to the human 

brain, we argue that studying how performance of different architectures compares to human 

behaviour could be informative about the type of computations that are underlying this 

behavior (Cichy and Kaiser, 2019). In the current study, it provides an additional test for the 

involvement of recurrent connections. Comparing the (behavioral) results of DCNNs with 

findings in humans, our study adds to a growing realization that more extensive processing, 

in the form of recurrent computations, is required for object recognition in more complex, 

natural environments (Groen et al., 2018; Tang et al., 2018; Kar et al., 2019; Rajaei et al., 

2019). 

Conclusion 
Results from the current study show that how object recognition is resolved depends on the 

context in which the target object appears: for objects presented in isolation or in ‘simple’ 

environments, object recognition appears to be dependent on the object itself, resulting in a 

problem that can likely be solved within the first feed-forward sweep of visual information 

processing on the basis of unbound features (Crouzet and Serre, 2011). When the 

environment is more complex, recurrent processing is necessary to group the elements that 

belong to the object and segregate them from the background.  
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Supplementary Figures 

 
Supplementary Figure S1. Simulation analysis on the exploratory set. Random selection of 20 
participants (repeated 1000 times) indicated reduced chances of finding significant decoding results. 
Plotted are the proportion (number of instances divided by 1000) in which the results remained 
significant.  
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