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Abstract

While feed-forward activity may suffice for recognizing objects in isolation, additional visual
operations that aid object recognition might be needed for real-world scenes. One such
additional operation is figure-ground segmentation; extracting the relevant features and
locations of the target object while ignoring irrelevant features. In this study of 60 participants,
we show objects on backgrounds of increasing complexity to investigate whether recurrent
computations are increasingly important for segmenting objects from more complex
backgrounds. Three lines of evidence show that recurrent processing is critical for recognition
of objects embedded in complex scenes. First, behavioral results indicated a greater reduction
in performance after masking objects presented on more complex backgrounds; with the
degree of impairment increasing with increasing background complexity. Second,
electroencephalography (EEG) measurements showed clear differences in the evoked
response potentials (ERPs) between conditions around 200ms - a time point beyond feed-
forward activity and object decoding based on the EEG signal indicated later decoding onsets
for objects embedded in more complex backgrounds. Third, Deep Convolutional Neural
Network performance confirmed this interpretation; feed-forward and less deep networks
showed a higher degree of impairment in recognition for objects in complex backgrounds
compared to recurrent and deeper networks. Together, these results support the notion that

recurrent computations drive figure-ground segmentation of objects in complex scenes.
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Introduction

The efficiency and speed of the human visual system during object categorization suggests
that a feed-forward sweep of visual information processing is sufficient for successful
recognition (VanRullen and Thorpe, 2002). For example, when presented with objects in a
rapid serial visual presentation task (RSVP; (Potter and Levy, 1969), or during rapid visual
categorization (Thorpe et al., 1996), human subjects could still successfully recognize these
objects, with EEG measurements showing robust object-selective activity within 150 ms after
object presentation (VanRullen and Thorpe, 2001). Given that there is substantial evidence
for the involvement of recurrent processing in figure—ground segmentation (Lamme and
Roelfsema, 2000; Scholte et al., 2008; Wokke et al., 2012), this seems inconsistent with
recognition processes that rely on explicit encoding of spatial relationships between parts and
suggest instead that rapid recognition may rely on the detection of an 'unbound' collection of
image features (Crouzet and Serre, 2011).

Recently, a multitude of studies have reconciled these seemingly inconsistent findings
by indicating that recurrent processes might be employed adaptively, depending on the visual
input: while feed-forward activity might suffice for simple scenes with isolated objects, more
complex scenes or more challenging conditions (e.g. objects that are occluded or degraded),
may need additional visual operations (‘routines’) requiring recurrent computations (Groen et
al., 2018; Tang et al., 2018; Kar et al., 2019; Rajaei et al., 2019; Seijdel et al., 2020). For
objects in isolation, or very simple scenes, rapid recognition may thus rely on a coarse and
unsegmented feed-forward representation (Crouzet and Serre, 2011), while for more cluttered
images recognition may require explicit encoding of spatial relationships between parts. In
other words, for those images, extra visual operations to group parts of the object, and to
segment this object (‘figure') from its background might be needed.

Several studies have already shown that the 'segmentability’ of a natural scene might
influence the degree of recurrent processing. For example, Koivisto, Kastrati & Revuonso
reported that masking, a technique shown to affect mainly recurrent but not feed-forward
processing (Fahrenfort et al., 2007), was more effective for objects that were rated as being
‘difficult to segregate’ (Koivisto et al., 2014). Also in a more recent study we showed that
natural scene complexity, providing information about the ‘segmentability’ of a scene,
modulates the degree of feedback activity in the brain (Groen et al., 2018). However, both
studies did not test for effects of segmentation explicitly and used natural scenes that were
uncontrolled and in which complexity could correlate with other contextual factors in the scene.

Therefore, we here systematically investigated whether scene complexity influenced the
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extent of recurrent processing during object recognition. To this end, participants performed
an object recognition task with objects embedded in backgrounds of different complexity
(Figure 1), indexed by two biologically plausible measures: the spatial coherence (SC) and
contrast energy (CE) (Ghebreab et al., 2009; Scholte et al., 2009; Groen et al., 2013). Using
these ‘hybrid’ stimuli, we combine relevant features of objects in natural scenes, embedded in
well controlled backgrounds of different complexity.

In half the trials, we impaired feedback activity with visual-masking. In addition to
behavioral measures, we measured EEG responses to examine the time-course of visually
evoked activity. Besides human participants, we also investigated recognition performance in
Deep Convolutional Neural Networks (DCNNs), which received identical visual stimuli as our
human participants, and performed a five-choice recognition task.

A convergence of results indicated that recurrent computations were critical for
recognition of objects in complex environments, i.e. objects that were more difficult to segment
from their background. First of all, behavioral results indicated poorer recognition performance
for objects with more complex backgrounds, but only when feedback activity was disrupted by
masking. Second, EEG measurements showed clear differences between complexity
conditions in the ERPs around 200ms - a time point beyond the first feed-forward visual sweep
of activity. Additionally, object category decoding based on the multivariate EEG patterns
showed later decoding onsets for objects embedded in more complex backgrounds. This
indicated that object representations for more complex backgrounds emerge later, compared
to objects in more simple backgrounds. Finally, DCNN performance confirmed this
interpretation; feed-forward networks showed a higher degree of impairment in recognition for
objects in complex backgrounds compared to recurrent networks. Together, these results
support the notion that recurrent computations drive figure-ground segmentation of objects in

complex scenes.


https://paperpile.com/c/MV1MvM/Sb3Q+iIU8+hWBc
https://doi.org/10.1101/2020.11.11.377655
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.11.377655; this version posted November 11, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

segmented low medium

@ bird | cat | fire hydrant | frisbee | suitcase C? bird | cat | fire hydrant | frisbee | suitcase

2000 ms 2000 ms

500 ms

masked unmasked

Figure 1. Stimuli and experimental paradigm. A) Exemplars of two categories (cat, fire hydrant) from
each stimulus complexity condition. Backgrounds were either uniform (segmented; gray), or had low
(red), medium (green) or high (blue) CE and SC values. B) Experimental design. On masked trials, the
stimulus was followed by a dynamic mask (5x100 ms); on unmasked trials this was replaced by a blank
screen (500 ms). Participants were asked to categorize the target object by pressing the corresponding
button on the keyboard.

Materials and methods

Subjects main experiment

Forty-two participants (32 females, 18-35 years old) took part in a first EEG experiment. Data
from two participants were excluded from further analysis due to technical problems. We used
this first dataset to perform exploratory analyses and optimize our analysis pipeline (Figure 2).
Based on this dataset, we defined the time-windows (for further ERP analyses), electrode

selection and preprocessing steps. To confirm our results on an independent dataset, another
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twenty participants (13 females, 18-35 years old) were measured. Data from one participant

were excluded from ERP analyses, due to wrong placement of electrodes 11 and 12.

all data
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Figure 2. Experimental procedure. Sixty-two participants took part in the EEG experiment. Data from
forty participants were used to perform exploratory analyses. The resulting data (twenty participants)
were used to confirm our results. For the decoding analyses, five new participants took part in a
separate experiment to characterize multivariate EEG activity patterns for the different object
categories.

Stimuli

Images of real-world scenes containing birds, cats, fire hydrants, frisbees or suitcases were
selected from several online databases, including MS COCO (Lin et al., 2014), the SUN
database (Xiao et al., 2010), Caltech-256 (Griffin et al., 2007), Open Images V4 (Kuznetsova
et al., 2018) and LabelMe (Russell et al., 2008). These five categories were selected because
a large selection of images was available in which the target object was clearly visible and not
occluded. For each image, one CE and one SC value was computed using a simple visual
model that simulates neuronal responses in one of the earliest stages of visual processing.
Specifically, they are derived by averaging the simulated population response of LGN-like
contrast filters across the visual scene (for a full description see Ghebreab et al. (2009),
Scholte et al. (2009), Groen et al. (2013)). Computing these statistics for a large set of scenes
results in a two-dimensional space in which sparse scenes with just a few scene elements

separate from complex scenes with a lot of clutter and a high degree of fragmentation.

Together, CE and SC appear to provide information about the ‘segmentability’ of a scene
(Groen et al., 2013, 2018). High CE/SC values correspond with images that contain many
edges that are distributed in an uncorrelated manner, resulting in an inherently low figure-
ground segmentation. Relatively low CE/SC values on the other hand correspond with a
homogenous image containing few edges, resulting in an inherently high figure-ground
segmentation (Figure 1). Each object was segmented from their real-world scene background

and superimposed on three categories of phase scrambled versions of the real-world scenes.
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This corresponded with low, medium and high complexity scenes. Additionally, the
segmented object was also presented on a uniform gray background as the segmented
condition (Figure 1). For each object category eight low CE/SC, eight medium CE/SC and
eight high CE/SC images were selected, using the cut-off values from Groen et al. (2018),
resulting in 24 images for each object category and 120 images in total. Importantly, each
object was presented in all conditions, allowing us to attribute the effect to the complexity (i.e.

segmentability) of each trial, and rule out any object-specific effects.

Experimental design

Participants performed a 5-choice categorization task (Figure 1), differentiating images
containing cats, birds, fire hydrants, frisbees and suitcases as accurately as possible.
Participants indicated their response using five keyboard buttons corresponding to the
different categories. Images were presented in a randomized sequence, for a duration of 34
ms. Stimuli were presented at eye-level, in the center of a 23-inch ASUS TFT-LCD display,
with a spatial resolution of 1920*1080 pixels, at a refresh rate of 60 Hz. Participants were
seated approximately 70 cm from the screen, such that stimuli subtended a 6.9° visual angle.
The object recognition task was programmed in- and performed using Presentation (Version

18.0, Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com). The experiment

consisted of 960 trials in total, of which 480 were backward masked trials and 480 were
unmasked trials, randomly divided into eight blocks of 120 trials for each participant. After
each block, participants took a short break. The beginning of each trial consisted of a 500 ms
fixation period where participants focused their gaze on a fixation cross at the centre of the
screen. In the unmasked trials, stimuli were followed by a blank screen for 500 ms and then a
response screen for 2000 ms. In order to disrupt recurrent processes (Breitmeyer and Ogmen,
2000; Lamme et al., 2002; Fahrenfort et al., 2007), in the masked trials, five randomly chosen
phase-scrambled masks were presented sequentially for 500 ms. The first mask was
presented immediately after stimulus presentation, each mask was presented for 100 ms
(Figure 1). The ambient illumination in the room was kept constant across different

participants.

Subjects pattern localizer

Five new participants took part in a separate experiment to characterize multivariate EEG
activity patterns for the different object categories. For this experiment, we measured EEG
activity while participants viewed the original experimental stimuli followed by a word (noun).
Participants were asked to only press the button when the image and the noun did not match
to ensure attention (responses were not analyzed). A classifier was trained on the EEG data

from this experiment, and subsequently tested on the data from the main experiment using a
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cross-decoding approach. All participants had normal or corrected-to-normal vision, provided
written informed consent and received monetary compensation or research credits for their

participation. The ethics committee of the University of Amsterdam approved the experiment.

Deep Convolutional Neural Networks (DCNNS)

First, to investigate the effect of recurrent connections, we tested different architectures from
the CORnet model family (Kubilius et al., 2018); CORnet-Z (feed-forward), CORnet-R
(recurrent) and CORnet-S (recurrent with skip connections). Then, to further evaluate the
influence of network depth on scene segmentation, tests were conducted on three deep
residual networks (ResNets; (He et al., 2016) with increasing number of layers; ResNet-10,
ResNet-18 and Resnet-34. “Ultra-deep” residual networks are mathematically equivalent to a
recurrent neural network unfolding over time, when the weights between their hidden layers
are clamped (Liao and Poggio, 2016). This has led to the hypothesis that the additional layers
function in a way that is similar to recurrent processing in the human visual system (Kar et al.,
2019). Pre-trained networks were finetuned on images from the MSCoco database (Lin et al.,
2014), using PyTorch (Paszke et al., 2017). After initialization of the pretrained network, the
model’s weights were finetuned for our task, generating 5 probability outputs (for our 5 object
categories). To obtain statistical results, we finetuned each network architecture ten different

times.

EEG data acquisition and preprocessing
EEG was recorded using a 64-channel Active Two EEG system (Biosemi Instrumentation,

Amsterdam, The Netherlands, www.biosemi.com) at a 1024 Hz sample rate. As in previous

studies investigating early visual processing (Groen et al., 2013, 2018), we used caps with an
extended 10-10 layout modified with 2 additional occipital electrodes (11 and 12, which
replaced F5 and F6). Eye movements were recorded with additional electro-oculograms
(VEOG and hEOG). Preprocessing was done using MNE software in Python (Gramfort et al.,
2014) and included the following steps for the ERP analyses: 1) After importing, data were re-
referenced to the average of two external electrodes placed on the mastoids. 2) A high-pass
(0.1Hz, 0.1Hz transition band) and low-pass (30Hz, 7.5 Hz transition band) basic FIR filters
were sequentially applied. 3) an Independent Component Analysis (ICA;(Vigario et al., 2000))
was run in order to identify and remove eye-blink and eye-movement related noise
components (mean = 1.73 of first 25 components removed per participant). 4) epochs were
extracted from -200 ms to 500 ms from stimulus onset. 5) trials were normalized by their 200
ms pre-stimulus baseline. 6) 5% of trials with the most extreme values within each condition
were removed, keeping the number of trials within each condition equal. 7) data were

transformed to current source density responses (Perrin et al., 1989).
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Statistical analysis: behavioral data

For human subjects, choice accuracy was computed for each condition in the masked and
unmasked trials (Figure 3). Differences between the conditions were tested using two-factor
(Scene complexity: segmented, low, med, high; Masking: masked, unmasked) repeated-
measures ANOVAs. Significant main effects were followed up by post-hoc pairwise
comparisons between conditions using Sidak multiple comparisons correction at a = 0.05. For
DCNNs, a non-parametric Friedman test was used to differentiate accuracy across the
different conditions (segmented, low, medium, high), followed by pairwise comparisons using
a Mann-Whitney U test. Behavioral data were analyzed in Python using the following
packages: Statsmodels, SciPy, NumPy, Pandas, (Jones et al., 2001; Oliphant, 2006;
McKinney and Others, 2010; Seabold and Perktold, 2010).

Statistical analysis: EEG - event related potentials

EEG analyses were carried out in Python, using the MNE software. For each participant, the
difference in event-related potential (ERP) to scene complexity was computed within masked
and unmasked conditions, pooled across occipital and peri-occipital electrodes (Oz, POz, O1,
02, PO3, PO4, PO7, PO8). This was done by subtracting the signal of each complexity
condition (i.e. low, medium or high) from the segmented condition. Doing so enabled us to
investigate differences between low, medium and high complex scenes regardless of masking
effects. Based on the exploratory dataset, we established five time windows by performing t-
tests on every time point for each condition and selecting windows in which the amplitude
differed from zero for all complexity conditions (low, med, high). Then, a repeated measures
ANOVA with factor background complexity (low, medium, high) and masking (masked,

unmasked) was performed on the average activity in these established time windows.

Statistical analysis: EEG - multivariate classification

The same preprocessing pipeline was used as for the ERP analyses. To evaluate how object
category information in our EEG signal evolves over time, cross-decoding analyses were
performed by training a Support Vector Machine (SVM) classifier on all trials from the pattern
localizer experiment (performed by five different subjects) and testing it on each of the main
experiment conditions. Object category classification was performed on a vector of EEG
amplitudes across 22 electrodes, including occipital (11, 1z, 12, O1, Oz, O2), peri-occipital (PO3,
PO7, POz, PO4, PO8), and parietal (Pz, P1-P10) electrodes. EEG activity was standardized
and averaged across the five time windows derived from the ERP analyses. Statistical
significance was determined using a Wilcoxon signed-rank test, and corrected for multiple

comparisons using a false discovery rate (FDR) of 0.05.
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Results

Behavior

During the task, participants viewed images of objects placed on top of a gray (segmented),
low, medium or high complexity background. On each trial, they indicated which object
category the scene contained, using the corresponding keyboard buttons. In half of the trials,
the target image was followed by a dynamic backward mask (5x100 ms); the other half of the
trials was unmasked (Figure 1). Accuracy (percentage correct trials) was computed for each
participant. A repeated measures ANOVA on the exploratory dataset (N = 40), with factors
background (segmented, low, medium, high) and masking (masked, unmasked) indicated,
apart from main effects, an interaction effect. Results indicated that masking impaired
performance for objects presented on more complex backgrounds stronger than for less
complex backgrounds (F(3,117) = 185.6748, p < .001). Post-hoc comparisons showed that
for masked trials, accuracy decreased for both medium (t(39) = 2.88, p(Sidak-corrected) =
0.038) and high (t(39) = 3.84, p(Sidak-corrected) = 0.003) complexity condition compared to
the low condition (all other p > .203). For unmasked trials, all conditions differed from each
other, with an incremental decrease in accuracy for objects presented on more complex
backgrounds.

Analysis of the confirmatory dataset (N = 20) indicated similarly, apart from the main
effects, an interaction between masking and background complexity. For masked trials, there
was a larger decrease in performance with an increase in background complexity, (F(3, 57)
= 101.3338, p < .001). Post-hoc comparisons showed that for masked trials, accuracy
decreased for both medium and high complexity conditions compared to the segmented (t(19)
= 3.47, p(Sidak-corrected) = 0.003, (t(19) = 3.47, p(Sidak-corrected) = 0.003) and low
conditions (1(19) = 4.23, p(Sidak-corrected) < .001, (t(19) = 4.31, p(Sidak-corrected) < .001).
For unmasked ftrials, all conditions differed from each other with the exception of medium -
high, with an incremental decrease in accuracy for objects presented on more complex

backgrounds.
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Figure 3. Human performance on the object recognition task. Performance (percentage correct) on
the 5-option object recognition task. For masked trials, performance decreased with an increase in
background complexity. The left panel shows results from the exploratory set (n=40), on the right results
from the confirmatory set (N = 20) are plotted. Error bars represent the bootstrap 95% confidence
interval, dots indicate the average performance of individual participants. Significant differences are
indicated with a solid (unmasked) or dashed (masked) line.

Network performance

Next, we presented the same images to Deep Convolutional Neural Networks with different
architectures. For the CORnets (Figure 4, left panel), a non-parametric Friedman test
differentiated accuracy across the different conditions (segmented, low, medium, high) for all
architectures, Friedman's Q(3) = 27.8400; 24.7576; 26.4687 for CORnet-Z, -RT -S
respectively, all p < .001. A Mann-Whitney U test on the difference in performance between
segmented and high complexity trials indicated a smaller decrease in performance for
CORnet-S compared to CORnet-Z (Mann—-Whitney U = 100.0, n1 = n2 = 10, p < .001, two-
tailed). For the ResNets (Figure 4, right panel), a non-parametric Friedman test differentiated
accuracy across the different conditions for ResNet-10 and ResNet-18, Friedman’s Q (3) =
23.9053; 22.9468, for ResNet-10 and ResNet-18 respectively, both p <.001. A Mann-Whitney
U test on the difference in performance between segmented and high complexity trials
indicated a smaller decrease in performance for ResNet-34 compared to ResNet-10 (Mann—
Whitney U =99.0, n1 =n2 =10, p <.001, two-tailed). Overall, in line with human performance,
results indicated a higher degree of impairment in recognition for objects in complex
backgrounds for feed-forward or more shallow networks, compared to recurrent or deeper

networks.
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Figure 4. Deep Convolutional Neural Network performance on the object recognition task.
Performance (percentage correct) on the 5-option object recognition task. Networks were finetuned on
the 5 target categories, top-1 accuracy was computed. For the CORnets (left panel) performance of
the feedforward architecture decreased with an increase in background complexity. For recurrent
architectures, this decrease was less prominent. For CORnet-S, there was no difference between
conditions. Error bars represent the bootstrap 95% confidence interval.

EEG - event related potentials

To investigate the time-course of figure-ground segmentation in visual cortex, evoked
responses to the masked and unmasked scenes were pooled across occipital and peri-
occipital electrodes (Oz, POz, O1, 02, PO3, PO4, PO7, PO8), for each condition. Difference
waves were generated by subtracting the signal of each condition from the segmented
condition (Figure 5B/E). Doing so enabled us to eliminate the effect of masking on the EEG
signal, and to investigate differences between low, medium and high complex scenes. For
each participant, data was averaged across five time windows based on analyses on the

exploratory dataset (see Materials and methods).

For every time window, a Repeated Measures ANOVA was performed on the average EEG
amplitude of the difference waves, with Complexity (low, med, high) and Masking (masked,
unmasked) as within subject factors. As preprocessing procedure and time point selection
were based on t-tests on the exploratory set, we do not report subsequent Repeated Measures
ANOVA for this dataset. Results on the confirmatory dataset (Figure 5D/E/F) showed no main-
or interaction effects in the first time-window (92-115 ms; Figure 5F). Critically, differences
between Complexity conditions only emerged in time-window 2 and 3 (120-150 ms: F(36) =
22.87, n?a = 56, p < .001; 155-217 ms: F(36) = 24.21, n%2 = 57, p < .001), suggesting a
differential contribution of recurrent processing to object recognition in varying complexity
scenes. In time-window 2, there was a main effect of Masking (F(18) = 5.38, n?a = 576, p =
.03. Only in time window 4 (221-275 ms), an interaction effect of Masking and Complexity,
F(18) = 59.60, n%a = .07, p < .001 started to emerge.
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Figure 5. ERP results. A) Average ERP amplitude for segmented, low, medium and high complexity
scenes for an occipital-peri-occipital pooling of EEG channels (Oz, POz, O1, 02, PO3, PO4, PO7, PO8)
for masked and unmasked trials. Shaded regions indicate SEM across participants. Mask onsets are
indicated with thin dashed lines (bottom panel only) B) Difference waves were generated by subtracting
the signal of each condition from the segmented condition. Five time windows were determined by
performing t-tests on every time point for each condition and selecting windows in which the amplitude
differed from zero for all complexity conditions. Significant timepoints are indicated with a black dot
above the x-axis. C) Based on significant timepoints in the exploratory dataset, five time-windows were
defined: 92-115 ms; 120-150 ms; 155-217 ms; 221-275 ms; 279-345 ms). D/E/F) Analyses repeated
for the confirmatory dataset. Symbol markers indicate main or interaction effects, asterisk: main effect
of Complexity; diamond: main effect of Masking; plus: interaction effect.
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EEG multivariate classification

To further investigate the representational dynamics of object recognition under different
complexity conditions, multivariate decoding analyses were performed on the averaged
activity in the five time windows (Figure 6). To control for response-related activity (keyboard
buttons were fixed across the task), a cross-decoding analysis was performed, by training the
classifier on all trials from an independent pattern localizer experiment, and testing it on each
of the main experiment conditions (see Methods for details). For unmasked trials, a Wilcoxon
signed-rank test on the exploratory dataset indicated successful decoding for segmented trials
in all five time windows (Z = 100, p <0.001; Z=89, p<0.001; Z=30,p<0.001; Z=131,p <
0.001; Z =141, p < 0.001) and low ftrials in the first three time windows (92-115 ms; 120-150
ms; 155-217 ms; Z = 198, p = 0.007; Z = 82, p < 0.001; Z = 61, p < 0.001). For objects on
medium complex background, successful above-chance decoding emerged slightly later, in
time-windows 2 and 3 (Z = 200, p = 0.012; Z = 110, p < 0.001). For objects on high complex
background, there was successful decoding in time window 3, Z=216, p = 0.045. For masked
trials, there was successful decoding for the segmented objects in time-windows 1, 3 and 4 ,
Z=113,p<0.001;Z=183, p=0.004; Z =186, p = 0.004, followed by later additional decoding
of low (155-217 ms), Z = 138, p = 0.001, and high (221-275 ms) complexity trials, Z = 157, p
= 0.003. There were no significant time windows for medium complexity trials. All p-values
reported were corrected by FDR = 0.05.

Finally, we aimed to replicate these findings in the confirmatory dataset (N = 20).
Overall, results indicated fewer instances of successful object decoding, and if present, slightly
delayed compared to the exploratory set. For unmasked trials, results from the Wilcoxon
Signed-Ranks test indicated successful decoding for segmented ftrials (92-115 ms; 155-217
ms; 221-275 ms; 279-245 ms), Z = 27, p = 0.006; Z= 18, p = 0.003; Z =0, p < 0.001; Z = 35,
p = 0.011. There were no other significant time windows from other unmasked conditions. For
masked conditions, there was also only significant decoding in segmented trials, specifically
in time window 3 and 4 (155-217 ms; 221-275 ms), Z =36, p = 0.031; Z = 38, p = 0.031.

Overall, these findings showed that different objects evoked reliably different sensor
patterns when presented in isolation or in ‘simple’ environments, within the first feed-forward
sweep of visual information processing. Additionally, results indicated decreased and later
decoding for objects embedded in more complex backgrounds, suggesting that object
representations for objects on complex backgrounds emerge later. Finally, these findings also

indicate that the object category representations generalized across tasks and participants.
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Figure 6. Cross-decoding results using the pattern localizer. Decoding object category in the EEG
signal for the A) exploratory dataset, and the B) Confirmatory dataset, for masked and unmasked trials
with varying complexity in the five time windows. The dotted line represents the 20% chance-level,
shaded error bars represent the bootstrap 95% confidence interval. Results from the Wilcoxon signed-
rank test are indicated with a bold x (corrected for multiple comparisons using a false discovery rate of
0.05).

Discussion

This study systematically investigated whether recurrent processing is required for figure-
ground segmentation during object recognition. A converging set of behavioral, EEG and
computational modelling results indicate that recurrent computations are required for figure-
ground segmentation of objects in complex scenes. These findings are consistent with
previous findings showing enhanced feedback for complex scenes (Groen et al., 2018), and
visual backward masking being more effective for images that were ‘more difficult to segment’
(Koivisto et al., 2014). We interpret these results as showing that figure-ground segmentation,
driven by recurrent processing, is not necessary for object recognition in simple scenes but it

is for more complex scenes.
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Effects of scene complexity using artificial backgrounds

In an earlier study, using natural scenes, we already showed that feedback was selectively
enhanced for high complexity scenes, during an animal detection task. While there are
numerous reasons for using naturalistic scenes (Felsen and Dan, 2005; Felsen et al., 2005;
Talebi and Baker, 2012), it is difficult to do controlled experiments with them because they
vary in many (unknown) dimensions. Additionally, SC and CE (measures of scene complexity)
could correlate with other contextual factors in the scene (e.g. SC correlates with perception
of naturalness of a scene (Groen et al., 2013)), and could be used as diagnostic information
for the detection of an animal. Additionally, previous research has shown that natural scenes
and scene structure can facilitate object recognition (Davenport and Potter, 2004; Neider and
Zelinsky, 2006; Kaiser and Cichy, 2018). Results from the current study, using artificial
backgrounds of varying complexity, replicate earlier findings while allowing us to attribute the
effects to SC and CE, and the subsequent effect on segmentability. A limitation of any
experiment with artificially generated (or artificially embedded) images is that it's not clear
whether our findings will generalize to 'real images' that have not been manipulated in any
way. Together with the previous findings, however, our results corroborate the idea that more
extensive processing (possibly in the form of recurrent computations) is required for object

recognition in more complex, natural environments (Groen et al., 2018; Rajaei et al., 2019).

Time course of object recognition
Based on the data from the exploratory dataset (N = 40), we selected five time windows in the
ERPs to test our hypotheses on the confirmatory dataset. For our occipital-peri-occipital
pooling, we expected the first feed-forward sweep to be unaffected by scene complexity (i.e.
low, med, high). Indeed, amplitudes of the difference waves (complexity condition - segmented
ERP amplitudes) averaged across the selected time windows indicated no influence of
masking or scene complexity early in time (92-115 ms). The observation that all three
difference waves deviated from zero, however, indicates that there was an effect of
segmentation. In this early time window, background presence thus seems to be more
important than the complexity of the background. This difference could be attributed to the
detection of additional low-level features in the low, medium and high complexity condition,
activating a larger set of neurons that participate in the first feed-forward sweep (Lamme and
Roelfsema, 2000). In the second and third time window (120-217 ms), differences between
the complexity conditions emerged. We interpret these differences as reflecting the increasing
need for recurrent processes when backgrounds are more complex.

Our results are generally consistent with prior work investigating the time course of
visual processing of objects under more or less challenging conditions (DiCarlo and Cox,
2007; Cichy et al., 2014; Contini et al., 2017; Tang et al., 2018; Rajaei et al., 2019). In line with
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multiple earlier studies, masking left the early evoked neural activity (<120 ms) relatively intact,
whereas the neural activity after ~150 ms was decreased (Lamme and Roelfsema, 2000;
Lamme et al., 2002; Del Cul et al., 2007; Fahrenfort et al., 2007; Boehler et al., 2008; Koivisto
and Revonsuo, 2010).

Decoding results corroborated these findings, showing decreased or delayed decoding
onsets for objects embedded in more complex backgrounds, suggesting that object
representations for those images emerge later. Additionally, when recurrent processing was
impaired using backward masking, only objects presented in isolation or in ‘simple’
environments evoked reliably different sensor patterns that our classifiers were able to pick up
(Figure 5 and 6).

Influence of masking on behavior

Based on the strong interaction effect on behavior, it is tempting to conclude that complexity
significantly increases the effect of masking on recognition accuracy. However, performance
on all unmasked trials was virtually perfect (96-97%) raising concerns about ceiling effects
obscuring the actual variation between these conditions (Uttl, 2005). Therefore, although
masked stimuli show a decrease in performance along increases in complexity; based on the
current findings we cannot conclude that this is because of masking (i.e. reducing recurrent
processes). While we do not claim that unmasked segmented, low, medium, or high images
are equally difficult or processed in the same way (we actually argue for the opposite), our
results show that apparently the brain is capable of arriving at the correct answer with enough
time. It is hard to come up with an alternative (more difficult) task without affecting our
experimental design and subsequent visual processing (e.g. stimulus degradation generally
affects low-level complexity; reducing object size or varying object location creates a visual
search task that could benefit from spatial layout properties). Combined fMRI and EEG results
from an earlier study already showed that for complex scenes only, early visual areas were
selectively engaged by means of a feedback signal (Groen et al., 2018). Here, using controlled
stimuli and backward masking, we replicate and expand on these findings. Importantly, results
from both EEG and deep convolutional neural networks support the notion that recurrent

computations drive figure-ground segmentation of objects in complex scenes.

Consistency of object decoding results

In the exploratory set, results from the multivariate decoding analyses indicated early above
chance decoding for ‘simple’ scenes (segmented and low) in both unmasked and masked
trials. For more complex scenes decoding emerged later (medium) or was absent (high) for

unmasked trials. In the confirmatory set, however, there were fewer instances of successful
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object decoding, and if present, successful decoding was delayed. A likely explanation for this
finding could be that the sample size in the confirmatory dataset was inadequate for the
chosen multivariate decoding analyses, resulting in reduced statistical power. A simulation
analysis on the exploratory set, in which we randomly selected 20 participants (repeated 1000
times) indicated reduced decoding accuracy, similar to our confirmatory results. Our choice
for the number of participants in the confirmatory dataset thus does not seem to be sufficient

(Supplementary Figure S1).

Probing cognition with Deep Convolutional Neural Networks

One way to understand how the human visual system processes visual information involves
building computational models that account for human-level performance under different
conditions. Here we used Deep Convolutional Neural Networks, because they show
remarkable performance on both object and scene recognition (e.g. (Russakovsky et al., 2015;
He et al., 2016). While we certainly do not aim to claim that DCNNs are identical to the human
brain, we argue that studying how performance of different architectures compares to human
behaviour could be informative about the type of computations that are underlying this
behavior (Cichy and Kaiser, 2019). In the current study, it provides an additional test for the
involvement of recurrent connections. Comparing the (behavioral) results of DCNNs with
findings in humans, our study adds to a growing realization that more extensive processing,
in the form of recurrent computations, is required for object recognition in more complex,
natural environments (Groen et al., 2018; Tang et al., 2018; Kar et al., 2019; Rajaei et al.,
2019).

Conclusion

Results from the current study show that how object recognition is resolved depends on the
context in which the target object appears: for objects presented in isolation or in ‘simple’
environments, object recognition appears to be dependent on the object itself, resulting in a
problem that can likely be solved within the first feed-forward sweep of visual information
processing on the basis of unbound features (Crouzet and Serre, 2011). When the
environment is more complex, recurrent processing is necessary to group the elements that

belong to the object and segregate them from the background.
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Supplementary Figure S1. Simulation analysis on the exploratory set. Random selection of 20
participants (repeated 1000 times) indicated reduced chances of finding significant decoding results.
Plotted are the proportion (number of instances divided by 1000) in which the results remained
significant.
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