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Abstract 
Purpose: Myelin has long been the target of neuroimaging research due to its importance in 

brain development, plasticity, and disease. However, most available techniques can only 

provide a voxel-averaged estimate of myelin content. In the human brain, white matter 

fibre pathways connecting different brain areas and carrying different functions often cross 

each other in the same voxel. A measure that can differentiate the degree of myelination of 

crossing fibres would provide a more specific marker of myelination. 

Theory & Methods: One MRI signal property sensitive to myelin is the phase accumulation, 

which to date has also been limited to voxel-averaged myelin estimates. We use this 

sensitivity by measuring the phase accumulation of the signal remaining after diffusion 

weighting, which we call DIffusion-Prepared Phase Imaging (DIPPI). Including diffusion 

weighting before estimating the phase accumulation has two distinct advantages for 

estimating the degree of myelination: (1) it increases the relative contribution of intra-

axonal water, whose phase is related linearly to the amount of myelin surrounding the axon 

(in particular the log g-ratio) and (2) it gives directional information, which can be used to 

distinguish between crossing fibres.  

Results: Using simulations and phantom data we argue that other sources of phase 

accumulation (i.e., movement-induced phase shift during the diffusion gradients, eddy 

currents, and other sources of susceptibility) can be either corrected for or are sufficiently 

small to still allow the g-ratio to be reliably estimated.  

Conclusions: This new sequence is capable of providing a g-ratio estimate per fibre 

population crossing within a voxel. 
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Introduction 
Myelin is one of the main constituents of the brain’s white matter

1
 and plays a key role in 

modulating the speed of action potentials in axons
2,3

. The degree of myelination has been 

shown to change over a lifetime
4
 with different white matter tracts myelinating at different 

stages during childhood
5,6

. Activity-dependent changes in myelination have also been 

demonstrated in adults
7
. The amount of myelin typically decreases during ageing and has 

been found to be altered in a variety of pathologies
4
, such as leukodystrophies, multiple 

sclerosis
8
, and schizophrenia

9
. Accordingly, producing accurate in-vivo maps of myelin 

content has been a long-standing goal in brain imaging. 

 

A common metric to quantify the degree of myelination is the g-ratio, which is defined as 

the inner over the outer radii of the myelin sheath
2
. Using multiple MRI modalities one can 

obtain an estimate of the average voxel-wise g-ratio in a voxel in-vivo by combining 

measurements of myelin and axonal volume fractions
10–13

. The axonal volume fraction can 

be estimated from diffusion MRI, using a multi-compartment fit to the diffusion-weighted 

signal
14–18

. A wide variety of different MRI modalities have been proposed to estimate the 

myelin volume fraction
19,20

. Most of these rely on directly imaging the myelin water, which 

can be distinguished from the rest of the water based on its short T2 using multi-echo spin-

echo sequences
21–23

, its short  T2
*
 using multi-echo gradient-echo sequences

24,25
, its short T1 

using an inversion-recovery sequence
26

, or based on magnetisation transfer between the 

myelin macromolecules and water
27

. 

 

 The interpretability of estimating the g-ratio from volume fractions is limited, as it only 

gives an average g-ratio per voxel. It is an average across both myelinated and unmyelinated 

axons
28

, as the method assumes that all axons have the same g-ratio
11

. It is also an average 

across fibre populations in voxels where multiple fibres cross each other, which is a 

common configuration in the human brain
29,30

. Furthermore, this approach relies on the 

accuracy of the volume fraction estimates
31

, which has been questioned for both the axonal 

volume fractions
32

 and the myelin volume fractions
13,19,20

. Here we aim to overcome these 

limitations by proposing a novel sequence, which is directly sensitive to the g-ratio (rather 

than the volume fractions) and allows to distinguish between crossing fibres. 

 

Diffusion-weighting gradients can be used to distinguish between crossing fibres. Diffusion-

weighting has previously been combined with all of the myelin-sensitive metrics listed 

above to obtain tract-specific metrics, namely T2
33–35

, T2
*34,36

, T1
34,37

, and magnetisation 

transfer
38

. Unfortunately, diffusion-weighted gradients take such a long time to build up this 

sensitivity to fibre orientation that there will be very little signal left associated with the 

myelin water due to its short T2
39

. Rather, after diffusion-weighting, the signal will mainly 

come from water relatively distant from the myelin, which will reduce the sensitivity of the 

relaxation and magnetisation transfer properties to myelin. 

 

On the other hand, the off-resonance magnetic field generated by the myelin magnetic 

susceptibility not only affects the local myelin water, but also has an effect throughout the 

intra- and extra-axonal spaces in nearby tissue
40–44

. This provides a means to detect the 

properties of myelin from more long-lived T2 species still visible after diffusion weighting. 

Hence, we propose a sequence called DIffusion-Prepared Phase Imaging (DIPPI), where we 
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estimate the myelin-induced phase accumulation in the MR signal still visible after diffusion 

weighting.  

 

In this work we first derive how the phase accumulation measured by DIPPI is related to the 

g-ratio in crossing fibre bundles. We then use simulations and phantom data to show under 

which conditions we can reliably estimate the myelin-induced phase accumulation and 

hence the g-ratio from DIPPI, despite many potential confounds, namely eddy currents, 

non-myelin sources of susceptibility, and remaining signal from extra-axonal water after 

diffusion weighting.  

Theory 
Overview 
The DIPPI sequence consists of a standard diffusion-weighted spin echo sequence to which 

we have added an additional refocusing pulse and readout. The acquisition window of the 

second readout is offset from the second spin echo by a tuneable delay, which we refer to 

as the phase accumulation time �phase  (Figure 1A). The phase difference between these two 

readouts allows us to estimate the off-resonance frequency of the water still visible after 

diffusion weighting without being confounded by any phase accumulation during the 

diffusion weighting. 

 

Combining diffusion-weighting with phase imaging provides two advantages to measure the 

degree of myelination of individual tracts. Firstly, it increases the relative contribution of the 

intra-axonal water to the final signal, particularly at high b-values
45

. This has the advantage 

that while the myelin-induced magnetic field offset has a complicated spatial profile in the 

extra-axonal and myelin space (Figure 1B,C), it is uniform within the intra-axonal space. For 

a simplified model of myelinated axons as infinite cylinders, this myelin-induced off-

resonance frequency in the intra-axonal space (�myelin) is given by
40

: 

 �myelin � � �

�
���Alog � sin	�, (1) 

where �� and �A are constants (respectively, the Larmor frequency and the anisotropic 

component of the myelin susceptibility) and � is the angle between the fibres and the main 

magnetic field, which we estimate using the magnitude data from DIPPI. The second 

advantage of using diffusion weighting is that it adds directional information, which allows 

us to measure the relative degree of myelination (i.e., log g-ratio) between crossing fibres 

rather than a voxel-wide average.  

 

With DIPPI is that we can also exploit the bimodal distribution of the intra-axonal off-

resonance frequency (Figure 1C) to fit a two-population model to data acquired with 

multiple phase accumulation times (�phase). While for a single �phase, we can obtain the 

average log g-ratio across both the myelinated and unmyelinated axons, the two-population 

model allows us to estimate their relative signal fractions axons as well as the average log g-

ratio of the myelinated axons. 
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Figure 1 A. Proposed DIPPI sequence to measure the off-resonance frequency of diffusion-weighted water. The sequence 

consists of a standard Stejskal-Tanner sequence followed by a second EPI readout in an asymmetric spin echo. B. 

Illustration of white matter with axons as parallel cylinders, some of which are myelinated (myelin sheaths are hashed). 

Overlaid is the off-resonance field induced by the myelin according to the hollow cylinder model
40

. C. The distribution of 

the field shown in B in the intra-axonal (orange), extra-axonal (green), and myelin (blue) compartments. After diffusion-

weighting the signal will be dominated by the intra-axonal water in axons perpendicular to the diffusion-weighting 

gradient. For this intra-axonal water, the off-resonance frequency has a bimodal distribution corresponding to the 

unmyelinated and myelinated axons with the latter having an off-resonance frequency proportional to the log g-ratio. 

In order to explain the analysis, we split it into three parts. First, we estimate the 

susceptibility-induced off-resonance frequency of diffusion-weighted water taking into 

account other sources of phase accumulation (i.e., movement during the diffusion encoding 

and eddy currents). Then we discuss how to subtract out the off-resonance frequency due 

to susceptibility sources other than myelin. Finally, we relate the myelin-induced off-

resonance frequency to the average log g-ratio of crossing fibres. 

 

Estimating the off-resonance frequency 
The DIPPI signal is modulated by both the diffusion-weighting gradients (i.e., the 
-value 

and orientation ��) and the phase accumulation time �phase. For each set of b-value, gradient 

orientation, and �phase, we acquire two images, one during the initial spin echo readout (�SE) 

and one during the second asymmetric spin echo readout (�ASE). In this work we assume 

that all data have been acquired with a single b-value (in addition to 
 � 0 scans), although 

the model can be extended to multiple b-values by fitting all parameters independently at 

each b-value, except for the fibre orientations and degree of myelination. 
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Figure 2 Illustration of the signal estimated from Monte Carlo simulations of two fibre populations (one fully myelinated 

with a g-ratio of 0.7 and one fully unmyelinated) crossing at right angles and perpendicular to the main magnetic field (A). 

For ease of illustration we only consider gradient orientations in the plane of the crossing fibres, but the same principle 

holds for a 3D acquisition. The magnitude is fitted as a sum of 2 Gaussians (Watson distributions in 3D), which have 

maxima perpendicular to the fibre orientation (B). These Gaussians will have a much lower amplitude in the second 

readout, but are assumed to have the same width between the readouts. While the phase will be different for each 

gradient orientation due to movement during the diffusion weighting (C), the phase difference between the two readouts 

still provides an estimate of the difference in susceptibility-induced off-resonance frequency of the two fibre populations 

(D). 

For a single tphase the expected signal across multiple gradient orientations is given by: 

 �SE�
, ��� �  ∑ �SE,�������������������SE
� , (2) 

 �ASE��phase , 
, ��� � ∑ �ASE,��������������������SE���eddy��susc;k�
� , (3) 

 

where we sum the signal contributions from multiple crossing fibre populations � in an 

effort to estimate the phase due to the off-resonance frequency associated with each fibre 

population �susc;k. The other terms are explained below. 

 

The first part of these equations (i.e., �ASE/SE,����������������) is concerned with the 

magnitude of the image (Figure 2B). As we are mainly interested in the phase, we fit to the 

magnitude the simplest model that can distinguish between crossing fibres, namely one 

where the signal profile for each crossing fibre is given by a Watson distribution with an 

amplitude �� and width Δ��. This is the signal profile expected if the signal for each fibre 

population can be modelled by an axisymmetric diffusion tensor with eigenvalues ��,� and 

� ,� and volume fraction ��. In that case the amplitude corresponds to �� � �������!�,� 

and the width to Δ�� � ��,� � � ,�.  

 

The width of these Watson distributions (Δ��) only depends on the diffusion weighting and 

hence should be the same for both the symmetric and asymmetric spin echoes. The signal 

amplitudes (��) on the other hand will decrease over time due to �	 and �	
"  dephasing, 

which means that we will have a different amplitude for each readout: �SE,� and �ASE,�. 

Using multiple phase accumulation times, it is possible to use the dependence of �ASE,� on  
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�phase to estimate both the �	,� and �	,�
"  of the diffusion-weighted signal for each fibre 

population. 

 

The phase accumulation before the first readout will be affected by many factors, such as 

eddy currents or movement during the diffusion encoding larger than a few tens of 

micrometres. As such movements are unavoidable in in-vivo MRI we simply consider the 

phase at the first readout to be a random number which has to be estimated independently 

for each volume (�SE). Our interest here is in the phase accumulation between the two 

readouts, which is induced by the off-resonance frequency of any eddy currents (Δ�eddy) 

and the brain’s susceptibility (�susc) (Figure 2C,D). 

 
Eddy-current induced off-resonance frequency 
Eddy currents caused by the strong diffusion gradients will introduce a phase offset that is 

dependent on the gradient amplitude and orientation. Here, we are interested in the 

contribution of eddy currents to the phase accumulated between the two readouts 

(Δ�eddy). We model this phase offset using spherical harmonics: 

 

 Δ�eddy���, �phase� � ∑ ∑ �'(��phase�'
()�'

'max

')� �'
(����, (4) 

 

where �'
( are the spherical harmonic functions mapping the parameters �'( onto the 

sphere. Because the eddy currents decay over time following the diffusion-weighting 

gradients, we cannot simply model these parameters using a linear equation as we will for 

the susceptibility below.  

 

We can estimate part of the eddy current contributions, because the other contributions to 

the phase accumulation will be symmetric (i.e., they are identical for a gradient orientation �� or its inverse ���). This means that we can estimate the odd-order spherical harmonics 

(which are asymmetric), but not the even-order spherical harmonics (which are symmetric 

and hence degenerate with the susceptibility-induced phase offsets). Fortunately, the 

dominant component of the eddy current induced phase offset is asymmetric as we will 

confirm in the Results section. 

 

One exception, where we can estimate part of the even-order components of the eddy-

current induced phase offset, is if we acquire a shell with �phase � 0 (i.e., both readouts are 

at their respective spin echoes). For this shell the susceptibility-induced phase offset is zero, 

so we can attribute any phase accumulated between the two readouts to the eddy currents 

and hence estimate the even components of �'(��phase � 0�. Then, rather than assuming 

that the even-order components of �'(��phase� are zero we can instead model them by 

assuming they match �'(��phase � 0�. This corrects for any eddy-current induced phase 

accumulation between the spin echoes, although it still cannot correct for the evolution of 

the even components of the spherical harmonics during the phase accumulation time. 

 

Correcting for the non-myelin susceptibility 
The susceptibility-induced off-resonance frequency will not only be influenced by the local 

myelin (�myelin), but also by many other sources of susceptibility (�bulk): 

 �susc;k � ��myelin,k � �bulk��phase (5) 
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These other sources of susceptibility include both distant sources (e.g., the air-tissue 

interface) and other local sources of susceptibility (e.g., blood vessels). To resolve between 

these myelin and non-myelin susceptibility, we make the assumption that any non-myelin 

source of susceptibility (i.e., �bulk) is equal for all crossing fibres. This allows us to estimate 

the myelin-induced frequency offset difference between crossing fibres (with indices k and 

k') as:  

 �myelin;k � �myelin,k' � �susc,k��susc,k'

0phase
 (6) 

This assumption will be most accurate if the crossing fibres overlap spatially (i.e., they 

interdigitate). On the other hand, if the crossing fibres are on opposite sides of a voxel, their 

off-resonance frequency may differ due to any large-scale magnetic field gradients or 

differences in local susceptibility field (e.g., one fibre population being closer to blood 

vessels). 

 

Equation 6 only gives the difference in the myelin-induced frequency offset between 

crossing fibres, which would only allow one to estimate the difference in myelination 

between crossing fibres. To obtain an absolute estimate of the g-ratio for each individual 

fibre we need additional information. This can be obtained by changing the head 

orientation, which modulates the relation between the off-resonance frequency �myelin and 

the g-ratio (equation 1). Once the frequency offset (equation 6) has been estimated for 

multiple head orientations, the individual g-ratios can be obtained through linear 

regression. 

 

Estimating the g-ratio 
One additional obstacle to estimating the g-ratio is that while there is a simple linear 

relationship between the myelin-induced off-resonance frequency and the g-ratio within 

each axon (equation 1), each fibre population consists of many axons with potentially 

varying g-ratios. We propose two methods to still obtain a meaningful estimate of the g-

ratio. 

 

The first method is only valid for �phase short enough that the signal phase from the most 

myelinated axons is still in rough alignment with the signal phase from the least myelinated 

axons (i.e., the unmyelinated axons with a g-ratio of 1 and hence �myelin � 0). In that limit 

the myelin-induced phase accumulation is determined by the average of the off-resonance 

frequency in each axon (weighted by its signal contribution) and hence we have: 

  �myelin,k � � �

�
���A log �$1 sin	�� , (7) 

where  log �$� is the signal-weighted average log g-ratio of the fibre population k across 

both myelinated and unmyelinated axons. 

 

For longer �phase this simple relation above no longer holds and we need to adopt a two-

compartment model: the myelinated and unmyelinated fibres (Figure 1C). For the 

myelinated fibres we assume that the g-ratios are sufficiently similar that we can 

characterise this population based solely on their average log g-ratio. Hildebrand and 

Hahn
46

 found a range of g-ratios from 0.6 up to 0.75 in the spinal cord of various mammals. 

Because this is quite a narrow range compared with the g-ratio of 1 for unmyelinated fibres, 

we expect the two-compartment model to be adequate for any reasonable �phase (at least in 

healthy tissue). For this two-compartment model we expect a phase evolution of: 
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 �myelin,��phase � angle (�1 � �myelin;k� � �myelin;k����
�

2�3A4567 �8myelin,	 sin�:�0phase*, (8) 

where �myelin;k is the relative signal fraction of myelinated versus unmyelinated axons and 

 log �$myelin;1 is the average log g-ratio of just the myelinated axons and “angle” is a 

function that returns the angle of a complex number. Equation 7 is the first-order Taylor 

expansion of equation 8 with the average log g-ratio across all axons defined as  log �$1 ��myelin;k log �$myelin;1. 

 
Figure 3 Signal evolution over time for the sum of unmyelinated axonal water (� � 0) and myelinated axonal water 

(� � �myelin). Each line shows the evolution for a different signal fraction of myelinated axons (�myelin; colour coded 

according to legend on the right). Panel A shows the signal evolution through complex signal space with B and C showing 

just the phase or magnitude evolution. For only myelinated axons (�myelin � 1 in blue) the signal traces a circle in complex 

space with constant magnitude and linearly increasing phase. As the fraction of unmyelinated axons increases the size of 

this circle shrinks and importantly it no longer centres on the origin, which leads to non-linear phase and magnitude 

evolution. 

The phase evolution of the signal phase according to equation 8 is shown in Figure 3. At 

small �phase the phase evolution is approximately linear with a slope of �myelin�myelin, 

however as �myelin�phase approaches + the phase starts to approach the phase within just 

the dominant population (i.e., unmyelinated axons for 0 , �myelin , 0.5 or myelinated 

axons for 0.5 , �myelin , 1) (Figure 3B). By combining data across multiple �phase we can 

capture this time-dependent non-linear phase evolution to characterise both the fraction of 

myelinated axons (�myelin;k) and their average log g-ratio ( log �$myelin;k) for each crossing 

fibre population. The evolution of the magnitude also contains information on the 

myelination (Figure 3C), but in practice this will be very hard to disentangle from other 

sources of �	
" dephasing, which we do not consider here. For this reason, we will constrain 

the myelination purely on the phase and not the magnitude information. Table 1 

summarises which parameters can be estimated for different acquisition schemes. 

 

A summary of the model with definitions for all parameter is given in the supplementary 

materials (S1) with a description of the fitting procedure in S2.  
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Table 1 Acquisition requirements for the parameters of interest 

Acquisition  

(all single b-value) 

What can be estimated 

Single non-zero /phase   log �<$ sin	 �< �  log �	$ sin	 �	 

Multiple head orientations  log �$� per fibre population 

Short and long /phase �myelin;k and  log �$myelin;� instead of  log �$� 

Any above and /phase � 2 Also: �	,�, �	,�
" , �eddy, sym��phase � 0� 

 

Methods 
Phantom scan 
The DIPPI sequence was implemented on a 7T Siemens scanner. To validate the sequence 

and to characterise the influence of eddy currents we scanned an isotropic oil phantom. 

Because the phantom is isotropic, we will attribute any variation in the signal phase 

between different gradient orientations to eddy currents, which allows direct estimation of 

their contribution. Three axial slices were acquired using the sequence shown in Figure 1A 

with the following scan parameters: image resolution 2 mm x 2 mm, slice thickness 2 mm, 

field of view 192 mm x 192 mm, 6/8 partial Fourier, 10 mm slice gap, echo spacing 0.81 ms, 

b-value 2 ms/µm
2
, 60 diffusion directions and their reverse were acquired (i.e., 120 diffusion 

weighted images in total) and 8 
 � 0 volumes. The effective echo times for the two 

readout were 81 and 165 ms, respectively (�phase � 30 ms),. After phase unwrapping across 

gradient orientations (described in the supplementary materials S3), the phase offset 

observed in the 
 � 0 images was subtracted. Spherical harmonics were then fitted to the 

phase to estimate the �'( in our eddy current model (equation 4). 

 

Reference susceptibility-weighted imaging 
To quantify the magnitude of the off-resonance field including all sources of susceptibility, 

we used publicly available phase imaging data from the QSM reconstruction challenge in 

Graz
47

. This dataset was acquired from a healthy volunteer using a wave-CAIPI sequence
48

 

with an isotropic resolution of 1.05 mm and echo time of 25 ms on a 3T MRI scanner. The 

provided data has already been phase unwrapped. We convert the phase image to 

frequency by dividing it by the echo time. Then we compute the magnitude of the local 

frequency gradient. This gradient gives a rough idea of how different the off-resonance field 

might be for fibre populations on opposite sides of a voxel. 

 

Simulations to test extra-axonal contribution 
The proposed model assumes that any remaining signal after diffusion-weighting is intra-

axonal. To investigate potential biases due to any extra-axonal signal remaining we ran 

Monte Carlo simulations using Camino’s datasynth
49

 of crossing fibres using the default 

diffusivity of 2 µm	/ms. Fibres were crossing at 90 degrees (in the x- and y-direction) with 

both being perpendicular to the main magnetic field (in the z-direction). All axons were 

modelled as perfect cylinders in the x-direction or y-directions organised in interleaving 

single-axon thick planes (Figure 2A). The distance between planes was fixed to 1 

micrometre. By varying the outer axonal diameter between 0.5 and 0.98 micrometre, we 

vary the extra-axonal volume fraction from 0.25 to 0.8. Within each plane half of the axons 
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were myelinated (� � 0.7), with the other half being unmyelinated. The trajectory of 

100,000 simulated spins was output.  

 

The spin evolution over the sequence including the effect of the myelin susceptibility was 

modelled for a 7T scanner at multiple different b-values. The myelin-induced off-resonance 

frequency was modelled according to the hollow-fibre model
40

 with myelin susceptibility of �I � �100 ppb (isotropic component) and �A � �100 ppb (anisotropic component). In this 

model the off-resonance field at every point is evaluated as the contribution of the 

surrounding axon’s myelin (if any) given by equation 1 and the sum of the dipole-like extra-

axonal field of all other axons. The simulated data was fit using the procedure described in 

supplementary material S2 to estimate the bias due to the signal contribution from extra-

axonal water. The confounds of eddy currents, non-myelin contributions to the 

susceptibility, and measurement noise were not included in these simulations. In addition, 

the myelin water itself was not explicitly modelled as its contribution is expected to be very 

small due to its short T2 (in fact the border between the intra- and extra-axonal water was 

infinitely thin and non-permeable in the simulations). 

 

Simulations to test degeneracy between parameters 
Finally, we model and then fit DIPPI data using the model described in the Theory section to 

investigate any degeneracies between parameter estimates. In these simulations the initial 

amplitudes and signal widths are set assuming a stick-like diffusion model (;� � 1.7 ms

µm�
), 

the phase at the first readout (�SE) is set to a random value between 0 and 2+ for each scan 

and the off-resonance frequency due to non-myelin susceptibility (�other) is set to a random 

large value (so that the phase wraps many times between each �phase). The < � 1 

components of the eddy currents are computed from = � 
 �phase, where = and 
 are 

random numbers drawn from Gaussian distributions >�0, ? � 1.4 rad� and >�0, ? � 18  Hz� respectively. We set �	 � 60 ms 
50

 and �	
B � 35 ms 

25
 as appropriate for 7T. We 

consider two crossing fibres at 90 degrees, both of which have 50% of the axons being 

myelinated with a g-ratio of 0.7. Either both fibre populations are perpendicular to the main 

magnetic field or one is parallel and the other is perpendicular to the main magnetic field. 

We also consider the case where we have data for both of these fibre configurations with 

respect to the main magnetic field, which is an extreme case of what can be achieved by 

scanning with multiple head orientations.  

Results 
Magnitude of myelin-induced off-resonance frequency 
To understand the biases induced by phase accumulation due to other sources than myelin 

susceptibility, we first need to investigate how large the contrast in myelin-induced 

frequency is expected to be between crossing fibres. Within axons the off-resonance 

frequency reaches its maximum (�max) for fibres perpendicular to the main magnetic field 

(i.e., sin	 � � 1). For a g-ratio of 0.7, this maximum off-resonance frequency is about 27 

ppb, which corresponds to �3.4 Hz at 3T and �8 Hz at 7T (Figure 4A). 

 

We compute the myelin-induced off-resonance frequency for two randomly oriented fibre 

populations (i.e., randomly oriented with respect to each other and the main magnetic field, 

excluding any fibre crossings with angles less than 45 degrees). Figure 4B shows the 
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distributions of the difference in this myelin-induced off-resonance frequency with respect 

to this maximum frequency offset for two extreme cases: (1) myelinated axons crossing 

unmyelinated ones or (2) two identically myelinated populations crossing each other. When 

myelinated fibres cross unmyelinated fibres, the frequency offset between the two will be 

fully determined by the angle of the myelinated fibres with the main magnetic field. The 

offset reaches its maximum of �max when the myelinated fibres are perpendicular to the 

main magnetic field and minimum of 0 when parallel to the main magnetic field with a 

mean offset of 
	

�
�max (blue in Figure 4B). For two crossing fibres with identical levels of 

myelination, the frequency offset will be typically lower with an offset of 0 when the fibres 

have the same angle to the main magnetic field, while the maximum offset �max is only 

reached when one fibre is parallel and the other is perpendicular to the main magnetic field. 

For randomly oriented fibres the mean offset is approximately 0.4 �max  (orange in Figure 

4B). 

 

This analysis suggests that we can expect the typical difference in myelin-induced frequency 

offset between crossing fibres to be on the order of half of �max, which for a typical g-ratio 

of 0.7 is about 1.7 Hz at 3T and 4 Hz at 7T. Hence, any other uncorrected differences in 

phase accumulation between the crossing fibres need to be lower than this level to allow 

reliable measurement of the g-ratio. 

 
Figure 4 Distribution of the expected difference in off-resonance frequency due to myelin for two crossing fibres. A) 

maximum off-resonance frequency obtained for fibres perpendicular to the main magnetic field as a function of g-ratio. B) 

distribution of off-resonance frequency difference for two randomly oriented crossing fibres relative to the maximum off-

resonance frequency shown in panel A. The distribution is shown for crossing fibres that either have the same g-ratio 

(orange) or for myelinated fibres crossing unmyelinated fibres (blue). The coloured, dashed lines show the mean of the 

absolute values of these distributions at 0.4 �max for similar crossing fibres (orange) and 
	



�max for myelinated crossing 

unmyelinated fibres (blue). The black dashed line shows the intermediate value (0.5 �max
 that we adopt as a reference for 

the typical true effect size for comparison with potential biases in the rest of this work. Only crossings of more than 45 

degrees between the two fibre populations are considered. 
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Figure 5 Phase accumulation between the two readouts due to non-zero eddy currents measured in an isotropic oil 

phantom at � � 2 ms/µm	  for a phase accumulation time tphase of 30 ms on a 7T Siemens scanner. The phase 

accumulation measured at b=0 is subtracted out (to subtract out the susceptibility field) and then spherical harmonics are 

fitted to the eddy-current induced field offset. A. Map of the power in these spherical harmonics. B. Histogram of the maps 

shown in A. Dashed lines show the odd components (that can be corrected for); solid lines show the even components 

(that cannot be corrected for). C. Phase accumulation between the first and second spin echoes (measured using tphase of 0 

ms). D. Phase accumulation in the 30 ms between the second spin echo and the readout. The dashed vertical line shows 

the expected approximate magnitude of the myelin-induced phase accumulation expected in the brain. 

Bias due to eddy currents 
To investigate the potential bias due to eddy-current induced phase accumulation, we 

compare the expected myelin-induced phase offsets with the phase offsets induced by eddy 

currents found in an isotropic phantom on a 7T scanner. The eddy-current induced phase 

offset is dominated by the < � 1 components of the spherical harmonics (Figure 5A). 

Fortunately, these and the other odd-order components can be estimated even when 
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scanning an anisotropic medium like the brain’s white matter. The even components of the 

spherical harmonics (for < G 0) are more problematic as they are degenerate with the 

myelin-induced frequency offset between crossing fibres. Fortunately, the power in the 

even components is typically much smaller than in the odd components (Figure 5B). The 

only exception is the < � 2 component. For comparison, the vertical line shows the 

magnitude of the expected myelin-induced offset, which we estimated above to be 4 Hz at 

7T, which after 30 ms comes to 0.75 rad. For most of the phantom even the < � 2 

component is ~5 times smaller than the myelin-induced offset, which suggests it would not 

cause a major bias. However, at the edge of the phantom it becomes comparable. This large < � 2 component at the edge of the phantom accumulates mostly between the two spin 

echoes (Figure 5C), rather than between the second spin echo and the readout (Figure 5D). 

This suggests that it might be better to approximate the < � 2 component in a separate scan 

with �phase � 0 rather than ignoring it altogether. 

 

Unexpectedly, despite subtracting out the phase offset due to the B0 field (estimated using 

the 
 � 0  scans) the < � 0 component is still substantial (Figure 5B). This means that after 

averaging out all gradient orientations there is a net phase offset on the order of 0.5-1 rad 

between the 
 � 0  and 
 � 2 ms/µm	  scans. The origin of this component is unclear, 

however we note that it is swamped by the size of the B0 field (discussed below) and will 

not cause a bias in the frequency offset measured between different fibre orientations. 

 
Figure 6 Distribution of difference in the eddy-current induced phase offset between two roughly orthogonal gradient 

orientations without correction (A), after correcting only the odd-order spherical harmonics (B) or after also subtracting 

the even-order spherical harmonics estimated at �phase � 0 (C). Top panels show the histogram across all three slices. 

Bottom panels show the phase map for the centre slice. The vertical dashed lines in the top panel show the expected 

approximate magnitude of the myelin-induced phase offset. In all panels this figure shows the phase difference at 

�phase � 30 ms for an isotropic phantom in a 7T scanner. 

Figure 6 illustrates the result of the correction of the eddy-induced phase offset between 

two nearly orthogonal fibre orientations. Without correcting for eddy currents there is a 

substantial phase offset, which would hide any myelin-induced phase offsets (Figure 6A). 

Subtracting out the odd-order spherical harmonics gets rid of most of the eddy-current 

induced phase (Figure 6B). The remaining phase deviations, particularly at the edge of the 
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phantom, are due to the large size of the < � 2 spherical harmonic components (Figure 5A) 

and can be further reduced by subtracting out the phase difference accumulated at  �phase � 0 (Figure 6C). The histogram of the resulting phase offset does not nicely centre at 

zero. Although this indicates that a non-zero bias in the phase offset remains, it is small 

compared with the expected size of the myelin-induced phase offset (indicated by the 

dashed vertical lines). 

 
Bias due to bulk susceptibility 
The large-scale background off-resonance frequency field is much larger than the expected 

myelin-induced frequency offset (Figure 7A). This field can bias the g-ratio estimate If 

crossing fibres do not interdigitate, but are actually on opposite sides of the same voxel. In 

such a case, they may have different contributions from the large-scale off-resonance field. 

To estimate the size of this effect we computed the spatial gradient of the off-resonance 

frequency field (Figure 7B). For most of the brain, the gradient of this field is so small that 

even if the crossing fibres were on the opposite side of a voxel (i.e., about 0.5 mm apart), 

the resulting frequency offset would still be ~5 times smaller than that expected from 

myelin. However, close to the major arteries or the air-brain interface (e.g., the 

orbitofrontal regions), the gradient of the off-resonance frequency becomes large enough 

to significantly bias the estimated g-ratios in the case that the crossing fibres are not 

interdigitated. 

 
Figure 7 A) Off-resonance frequency distribution estimated for a healthy volunteer at TE=25ms on a 3T scanner (after 

phase unwrapping) with the dashed vertical lines showing the expected approximate magnitude of the myelin-induced off-

resonance frequency difference between crossing fibres. B) Distribution of the gradients in the off-resonance field. The 

dashed vertical line indicates how large the gradient would have to be to cause an effect as big as expected from myelin if 

the crossing fibre populations were half a millimetre apart.  
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Bias due to extra-axonal water signal 
Finally, bias in the estimated parameters can also come from the remaining contribution of 

the extra-axonal water even after diffusion weighting. For reasonable b-values (I3 ms/µm	) we find that the actual off-resonance frequency is ~10-20% smaller than 

expected for pure intra-axonal water (Figure 8A), which would lead to a similar 

underestimation in the log �. This underestimation is caused by the ~15% extra-axonal 

signal contribution remaining at 
 � 3 ms/µm	 (Figure 8B) modulated by the average off-

resonance frequency of the extra-axonal water (Figure 8A). Interestingly, in the simulations 

the 15% extra-axonal signal contribution was consistent across a wide variety of different 

axonal densities (colour scales). The fibre packing configuration will affect both the average 

extra-axonal off-resonance frequency
41,51

 and how fast the extra-axonal signal decays with 

b-value. The simulations here use an unrealistic fibre configuration of perfectly straight 

cylinders crossing each other at right angles in a perfect grid, which means that the bias 

found here is a only rough estimate of the bias size expected in real tissue. 

 
Figure 8 Bias on the off-resonance frequency due to extra-axonal water. A) Average myelin-induced off-resonance 

frequency in Camino Monte Carlo simulations of infinitely long crossing cylinders (half are unmyelinated and half have 

g=0.7) with different spacings (see colour legend). As the b-value increases the off-resonance frequency of the total signal 

(solid line) approaches that of the intra-axonal water (dashed), although some bias to the extra-axonal frequency (dotted) 

remains. B) This approach is caused by the decrease in the extra-axonal signal fraction with b-value in these Monte Carlo 

simulations. 

Degeneracies between fitted parameters 
While the eddy currents, gradients in the non-myelin susceptibility, and extra-axonal water 

all might bias the estimated g-ratios as discussed above, a more fundamental limitation 

arises because we can only estimate the difference in the myelin-induced frequency 

between crossing fibres. In case of data only acquired with a single head orientation and 

single �phase we can only estimate a weighted difference in log g between two crossing fibres 

( log �<$ sin	 �< �  log �	$ sin	 �	). If both fibres have the same angle with the main 

magnetic field (i.e., �< � �	), this implies we can estimate the difference in  log �$ between 

the crossing fibres, not what the  log �<$ and  log �	$ actually are. This case is illustrated in 

Figure 9A by the distributions of blue dots, which all have a very similar  log �<$ �  log �	$, 

even while the individual estimates of  log �$ are unconstrained. On the other hand, if 

fibres have different angles with the main magnetic field we are less sensitive to the  log �$ 

that is more parallel to the main magnetic field, which changes the slope of the degeneracy 

(i.e., the line along which the points lie in Figure 9A). The most extreme case of this is when 

one fibre population is parallel to the main magnetic field (e.g., sin �	 � 0), in which case 

we are completely insensitive to the myelination of that population (i.e.,  log �	$), but can 

estimate the  log �$ of the other population (orange in Figure 9A). By combining 
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information across multiple head orientations, we can constrain the g-ratios of the crossing 

fibres as the intersection between the different degenerate solutions (green in Figure 9A). 

 
Figure 9 Results for fitting the model with various head orientations (A,C,E) or different phase accumulation times tphase 

(B,D,F). We either consider data with a single tphase (20 ms in A), where we estimate the average log g-ratio across both 

myelinated and unmyelinated fibres (A,B), or data with four different tphase uniformly distributed from 0 to the maximum 

tphase (60 ms in C and E) for which we estimate the average log g-ratio of the myelinated axons (�myelin) and the fraction of 

myelinated axons (�myelin). In the left column (A,C,E) each dot represents the estimated value for one of 100 different noise 

iterations for the case where both fibres are perpendicular to the main magnetic field (blue), one of the fibres is parallel 

and the other is perpendicular to the main magnetic field (orange), or we have multiple head orientations combining the 

information from the first two (green). The ground truth value is given by the black star. The right column (B,D,F) shows 

the distribution of these individual estimates as a function of the maximum tphase for various values of the fraction of 

myelinated axons (fmyelin) for the case of multiple head orientations (green in left column). 

Figure 9A considers the case where we aim to estimate the average log g across both 

myelinated and unmyelinated axons (equation 7) using a single tphase. However, as this tphase 
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becomes too long the signal from the unmyelinated and myelinated axons become out of 

phase with each other and the resulting phase approaches that of the dominant component 

(Figure 3B). As a result, the estimated average log g will then match that of the dominant 

component (i.e., the myelinated axons if �myelin J 0.5 or the unmyelinated axons if 

�myelin , 0.5) (Figure 9B). When we have data across multiple tphase we can exploit this 

behaviour to estimate both the average log g across both components and the log g of the 

dominant component, which allows the estimation of both the fraction and g-ratio of 

myelinated axons (Figure 9D,F). In Figure 9D,F we see that this technique works best if the 

signal is dominated by myelinated axons (i.e., large �myelin), although as long as the �phase is 

long enough the �myelin and to a lesser extent the �myelin can be estimated even when the 

unmyelinated compartment dominates (�myelin � 0.25, blue violins plots). 

The non-linear time evolution of the myelin-induced phase offset can also be exploited to 

distinguish it from the non-myelin susceptibility. This leads to reasonable fits to the fraction 

and g-ratio of myelinated axons even if data was only acquired with a single head 

orientation (blue in Figure 9C,E). With multiple head orientations, these estimates are still 

substantially improved (green in Figure 9C,E). 

 

Discussion 
We propose a sequence, DIPPI, to estimate the g-ratio of axons within the white matter by 

measuring the off-resonance frequency of the water remaining visible after diffusion 

weighting. After diffusion-weighting the signal is dominated by intra-axonal water in axons 

that run perpendicular to the diffusion gradient orientation. We exploit the linear 

relationship between the log g-ratio and the myelin-induced frequency offset in this intra-

axonal water (equation 1) to estimate the g-ratio after correcting for several other sources 

of off-resonance frequency. DIPPI allows one to go beyond the voxel-wise average estimates 

of g-ratio to get an estimate of the average log g-ratio in every fibre population. For a single, 

short �phase  this log g-ratio will be averaged across both myelinated and unmyelinated 

axons, but by varying �phase we can separate the myelinated and unmyelinated axons to 

estimate the volume fraction and g-ratio of the myelinated axons in each crossing fibre 

population. 

 

Many other sources can affect the amount of phase accumulated in the diffusion weighted 

signal besides the myelin susceptibility. In DIPPI we measure the phase accumulation 

between the two readouts after diffusion weighting, which will be unaffected by any phase 

accumulated during the diffusion weighting (Figure 2). However, phase accumulation 

between these readouts will still be affected by remaining extra-axonal signal, eddy 

currents, and non-myelin sources of susceptibility.  

 

In Monte Carlo simulations with greatly simplified geometries we found that the remaining 

extra-axonal water signal at 
 � 3 µm	/ms is around 15% (Figure 8B). To first order, this 

extra-axonal water has a similar myelin-induced frequency as the water within 

unmyelinated axons, which suggests that this would lead to an overestimation of the 

fraction of unmyelinated axons (and a corresponding bias in the average log g-ratio; Figure 

8A). 
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The phase accumulated due to eddy currents can be mostly corrected for by modelling 

them as depending linearly on the gradient orientations. However, not all higher order 

terms can be so easily corrected. DIPPI data in an isotropic phantom (7T scanner with 
 � 2 µm	/ms) suggests these higher-order terms might bias our g-ratio estimates up to 

about 20% (Figure 6). 

 

The off-resonance field generated by any non-myelin sources of susceptibility is generally 

much larger than that generated by myelin (Figure 7A). As long as the crossing fibres 

interdigitate, we can assume that the non-myelin susceptibility contributes equally to their 

non-resonance fields, which allows us to estimate the difference in myelin-induced 

susceptibility between the crossing fibres. If the fibres do not interdigitate, but are instead 

0.5 mm apart, this assumption could lead to a substantial bias especially close to the air-

brain tissue boundary and major arteries (Figure 7B). 

 

Even if the fibres interdigitate, the large size of the non-myelin induced field still means that 

we can only estimate the difference in myelination between crossing fibres. For data with 

multiple head orientations we can get around this limitation to get an estimate of the 

myelination for each crossing fibre population (green in Figure 9A,C,E). However, this 

technique will not work in single-fibre regions. There are alternative approaches that do not 

require multiple head orientations. Background field removal might be sufficient to remove �bulk under the assumption that the local susceptibility is dominated by myelin
52–54

. 

Alternatively, the curvature of white matter tracts naturally varies the angle between the 

fibre orientation and the main magnetic field, which we can exploit under the assumption 

that the fibre myelination is constant along the tract. The reliability of these various 

approaches will be investigated in future work. 

 

When fitting the two-pool model to estimate both the fraction and g-ratio of the myelinated 

axons, additional sources of bias might occur. These estimates rely on the time-dependence 

of the off-resonance frequency due to the difference in off-resonance frequency between 

myelinated and unmyelinated axons (Figure 3). Hence, the estimates will be biased by any 

other sources of time dependence in the off-resonance frequency, which could arise by 

having multiple compartments with different �	 and off-resonance frequency. However, we 

are unaware of any evidence for such time-dependence in the off-resonance frequency at 

these long echo times. 

 

Finally, we note that there are substantial uncertainties in our estimates of the anisotropic 

component of the myelin susceptibility (�D)
43

 limiting the accuracy of the resulting g-ratio. A 

reliable estimate of this constant is crucial to accurately map the g-ratio to the intra-axonal 

myelin-induced frequency offset (equation 1). 

 

The combination of theory, simulations, and phantom data presented here suggests that 

DIPPI would be able to obtain a reliable measure of the g-ratio in crossing fibres. We plan to 

further explore this using both in-vivo and ex-vivo data in future work. 
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Supplementary Materials 
S1: Model summary 
For clarity we provide here a summary of the full model fitted to the complex signal of the 

first spin echo (SE) readout and the second asymmetric spin echo (ASE) readout: 

 �SE�
, ��� �  ���SE ∑ �SE,����������������
� , (9) 

 �ASE��phase, 
, ��� � eE�FSE��Feddy�2bulk0phase� ∑ �ASE,������������������Gmyelin,k0phase
� , (10) 

where we sum over multiple crossing fibre populations �. 

The parameters in this equation are: 

• Acquisition parameters 

o 
: quantifies the sensitivity to the diffusivity 

o ��: orientation of the diffusion-weighted gradient 

o �phase: phase accumulation time between the second spin echo and the 

centre of the second readout 

• Free parameters fitting the signal magnitude 

o �SE,�: signal amplitude perpendicular to the fibre orientation at the first 

readout 

o Δ��: signal width corresponding to parallel minus perpendicular apparent 

diffusivity 

o K��: average fibre orientation 

o �ASE,�: signal amplitude perpendicular to the fibre orientation at the second 

(asymmetric) readout, which is fitted independently for each �phase. With 

multiple �phase can be used to estimate �	;� and �	;�
B . 

• Free parameters fitting the signal phase 

o �SE: any phase accumulated before the first readout. This is estimated 

independently for each volume. 

o Δ�eddy: eddy-current induced phase offset between the two readouts, which 

is modelled as a function of gradient orientation using spherical harmonics 

(equation 4). Odd and even components of the spherical harmonics are 

treated differently: 

� Odd components of the spherical harmonics are estimated 

independently for each �phase 

� Even components are either assumed to be 0 or if only data with �phase J 0 is acquired or constant across all �phase if data with 

�phase � 0 is also acquired, effectively setting them to the value 

estimated at �phase � 0. Any more realistic model that allows for 

variability with �phase will lead to degeneracies with the estimated g-

ratio 

o ωbulk: off-resonance frequency due to non-myelin sources. Assumed to be a 

constant in each voxel (i.e., does not depend on fibre population or any of 

the acquisition parameters) 

o ωmyelin;1: myelin-induced frequency offset. If only short �phase are acquired, 

can be related to the average log g-ratio ( log �$�) through equation 7. 

Alternatively, a two-compartment fit (equation 8) can be applied if multiple 

including long �phase were acquired. The latter estimates both the signal 

fraction (�myelin;k) and log g-ratio ( log �$myelin;� ) of the myelinated axons. 
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S2: Parameter fitting 
Parameter estimation is complicated by the phase wrapping inherent in fitting complex MRI 

data. The signal is identical for a phase of � and � � 2+K for any integer K, which leads to 

many unphysical, local minima when fitting the phase. While phase unwrapping
55

 could 

potentially deal with this by estimating K for each gradient orientation relative to the 

others, such unwrapping is complicated by the low SNR inherent in diffusion MRI for 

gradient orientations aligned with the dominant fibre orientation. Instead, we propose to 

deal with the phase wraps through a careful initialisation of the parameters and a multi-step 

fitting procedure. At each step the results of the previous fit are used to initialise the new 

fit: 

1. In actual DIPPI data the number of fibres and their orientations can be estimated 

from any model allowing for crossing fibres such as ball & stick
29

 or constrained 

spherical deconvolution
56

. In this work, we only simulate data with two crossing 

fibres and then fit it assuming two crossing fibres. Fibre orientations are initialised in 

this work to the first two eigenvectors of a diffusion tensor fit. 

2. In the initial part of the fitting we only fit the signal magnitude. First, we just fit the 

amplitudes (�SE,� and �ASE,� or �	;� and �	;�
B ), then we fit the amplitudes and width, 

and finally the amplitude, width and orientation (i.e., the full Watson distribution). 

3. Once we have a decent fit for the signal magnitude, we can estimate the parameters 

influencing the signal phase: 

a. The phase offsets induced during the diffusion encoding (�SE) are initialised 

by the phase measured during the first readout. While such direct phase 

estimates can be very noisy for gradient orientations with very low SNR (M1), any gradient orientations with such low SNR at the first readout will be so 

dominated by noise at the second readout that they do not contribute 

significantly to the final fit. 

b. The < � 1 spherical harmonic components of the eddy currents across 

gradient orientations are then estimated for each �phase  through the 

following algorithm: 

i. We compute a convex hull containing all the gradient orientations 

using the Quickhull algorithm
57

 from www.quickhull.org. Any gradient 

orientations connected in this hull are considered neighbours. 

ii. For each pair of neighbouring gradient orientations the phase 

difference is computed (and mapped between �+ and + by adding or 

subtracting 2+). 

iii. The linear phase gradient in the x-direction NH is then estimated by 

solving: minI� ∑ O�
	�NHΔ�H;� � Δ���	

� , where the sum is over each 

pair of neighbours P,  Δ�� is the phase difference computed in step 2, O� is the average magnitude of the signal for the neighbouring 

gradient orientations, and Δ�H;� is the difference in the x-component 

of the gradient between the neighbours. The same equation is solved 

for the y- and z-components. The phase gradient estimates are 

multiplied byQ�J

�
 to get the first-order spherical harmonic 

components. 

c. The non-myelin off-resonance frequency (ωbulk) and g-ratio parameters are 

randomly initialised. ωbulk is drawn from a uniform distribution between -300 
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and 300 Hz, which is a substantially larger range than seen in susceptibility-

weighted MRI. For a single-population model the  log �$� is initialised 

randomly between log 0.6 and log 1 (= 0). For the two-population model �myelin;k is initialised randomly between 0 and 1 and  log �$� between log 0.6 

and log 0.8. 

d. We then fit in order just the non-myelin off-resonance frequency (ωother), the 

non-myelin off-resonance frequency and the spherical harmonic components 

of the eddy currents, and finally also include the g-ratio parameters (average 

log g-ratio and �myelin;k). 

e. Steps c-d are repeated until the global minimum is found 

4. Finally, we include a fit including all free parameters (both phase- and amplitude-

related) initialised from the values found above. 

All fits were carried out in python using local optimisation with the quasi-Newton method L-

BFGS-B
58,59

 from the scipy library with gradients computed symbolically using the sympy 

library. 
 

S3: Unwrapping the phase on a sphere 
Another way to avoid the local minima when fitting phase data as discussed in S2 is to 

unwrap the phase of the data before fitting. Note that as opposed to the more commonly 

spatial phase unwrapping across an image
55

, we apply phase unwrapping here across the 

gradient orientations within each voxel. 

 

Similarly, to the estimation of the < � 1 components in S2 we start by defining neighbouring 

gradient orientations as those connected in a convex hull
57

. Starting from some random 

gradient orientations, any phase wraps in the neighbouring gradients are corrected by 

subtracting or adding 2+ to their phases. For each of the neighbours the algorithm is then 

repeated and so on, until all the phases for all gradient orientations have been unwrapped. 

 

This approach is only expected to work if the SNR is consistently high enough to produce 

reliable phase estimates for all gradient orientations. This is the case for the phantom data, 

where we apply phase unwrapping, however it will not generally be the case for DIPPI data, 

which is why we do not propose to use phase unwrapping when fitting the DIPPI model 

(where instead we fit directly to the complex data). This phase unwrapping algorithm could 

probably be made more accurate by adopting some of the techniques used in Jezzard and 

Balaban (1995)
55

, but we do not explore that here. 
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