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Abstract

Purpose: Myelin has long been the target of neuroimaging research due to its importance in
brain development, plasticity, and disease. However, most available techniques can only
provide a voxel-averaged estimate of myelin content. In the human brain, white matter
fibre pathways connecting different brain areas and carrying different functions often cross
each other in the same voxel. A measure that can differentiate the degree of myelination of
crossing fibres would provide a more specific marker of myelination.

Theory & Methods: One MRI signal property sensitive to myelin is the phase accumulation,
which to date has also been limited to voxel-averaged myelin estimates. We use this
sensitivity by measuring the phase accumulation of the signal remaining after diffusion
weighting, which we call DIffusion-Prepared Phase Imaging (DIPPI). Including diffusion
weighting before estimating the phase accumulation has two distinct advantages for
estimating the degree of myelination: (1) it increases the relative contribution of intra-
axonal water, whose phase is related linearly to the amount of myelin surrounding the axon
(in particular the log g-ratio) and (2) it gives directional information, which can be used to
distinguish between crossing fibres.

Results: Using simulations and phantom data we argue that other sources of phase
accumulation (i.e., movement-induced phase shift during the diffusion gradients, eddy
currents, and other sources of susceptibility) can be either corrected for or are sufficiently
small to still allow the g-ratio to be reliably estimated.

Conclusions: This new sequence is capable of providing a g-ratio estimate per fibre
population crossing within a voxel.
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Introduction

Myelin is one of the main constituents of the brain’s white matter® and plays a key role in
modulating the speed of action potentials in axons®>. The degree of myelination has been
shown to change over a lifetime* with different white matter tracts myelinating at different
stages during childhood™®. Activity-dependent changes in myelination have also been
demonstrated in adults’. The amount of myelin typically decreases during ageing and has
been found to be altered in a variety of pathologies®, such as leukodystrophies, multiple
sclerosis®, and schizophrenia®. Accordingly, producing accurate in-vivo maps of myelin
content has been a long-standing goal in brain imaging.

A common metric to quantify the degree of myelination is the g-ratio, which is defined as
the inner over the outer radii of the myelin sheath®. Using multiple MRl modalities one can
obtain an estimate of the average voxel-wise g-ratio in a voxel in-vivo by combining
measurements of myelin and axonal volume fractions'®™. The axonal volume fraction can
be estimated from diffusion MRI, using a multi-compartment fit to the diffusion-weighted
signal™ %, A wide variety of different MRI modalities have been proposed to estimate the
myelin volume fraction®*°. Most of these rely on directly imaging the myelin water, which
can be distinguished from the rest of the water based on its short T, using multi-echo spin-
echo sequences® >, its short T, using multi-echo gradient-echo sequences®**, its short T,
using an inversion-recovery sequencezs, or based on magnetisation transfer between the
myelin macromolecules and water®’.

The interpretability of estimating the g-ratio from volume fractions is limited, as it only
gives an average g-ratio per voxel. It is an average across both myelinated and unmyelinated
axons®®, as the method assumes that all axons have the same g-ratio™’. It is also an average
across fibre populations in voxels where multiple fibres cross each other, which is a
common configuration in the human brain®>*°. Furthermore, this approach relies on the
accuracy of the volume fraction estimates®", which has been questioned for both the axonal
volume fractions* and the myelin volume fractions™>"**°. Here we aim to overcome these
limitations by proposing a novel sequence, which is directly sensitive to the g-ratio (rather
than the volume fractions) and allows to distinguish between crossing fibres.

Diffusion-weighting gradients can be used to distinguish between crossing fibres. Diffusion-
weighting has previously been combined with all of the myelin-sensitive metrics listed
above to obtain tract-specific metrics, namely T,>*>, T, %% 7,34 and magnetisation
transfer®®. Unfortunately, diffusion-weighted gradients take such a long time to build up this
sensitivity to fibre orientation that there will be very little signal left associated with the
myelin water due to its short T,>. Rather, after diffusion-weighting, the signal will mainly
come from water relatively distant from the myelin, which will reduce the sensitivity of the

relaxation and magnetisation transfer properties to myelin.

On the other hand, the off-resonance magnetic field generated by the myelin magnetic
susceptibility not only affects the local myelin water, but also has an effect throughout the
intra- and extra-axonal spaces in nearby tissue®™**. This provides a means to detect the
properties of myelin from more long-lived T, species still visible after diffusion weighting.
Hence, we propose a sequence called DIffusion-Prepared Phase Imaging (DIPPI), where we
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estimate the myelin-induced phase accumulation in the MR signal still visible after diffusion
weighting.

In this work we first derive how the phase accumulation measured by DIPPI is related to the
g-ratio in crossing fibre bundles. We then use simulations and phantom data to show under
which conditions we can reliably estimate the myelin-induced phase accumulation and
hence the g-ratio from DIPPI, despite many potential confounds, namely eddy currents,
non-myelin sources of susceptibility, and remaining signal from extra-axonal water after
diffusion weighting.

Theory

Overview

The DIPPI sequence consists of a standard diffusion-weighted spin echo sequence to which
we have added an additional refocusing pulse and readout. The acquisition window of the
second readout is offset from the second spin echo by a tuneable delay, which we refer to
as the phase accumulation time t 55, (Figure 1A). The phase difference between these two
readouts allows us to estimate the off-resonance frequency of the water still visible after
diffusion weighting without being confounded by any phase accumulation during the
diffusion weighting.

Combining diffusion-weighting with phase imaging provides two advantages to measure the
degree of myelination of individual tracts. Firstly, it increases the relative contribution of the
intra-axonal water to the final signal, particularly at high b-values*. This has the advantage
that while the myelin-induced magnetic field offset has a complicated spatial profile in the
extra-axonal and myelin space (Figure 1B,C), it is uniform within the intra-axonal space. For
a simplified model of myelinated axons as infinite cylinders, this myelin-induced off-
resonance frequency in the intra-axonal space (Wnyelin) is given by*:

Wnyelin = _ZwOXAIOg g 5in29’ (1)
where w, and y, are constants (respectively, the Larmor frequency and the anisotropic
component of the myelin susceptibility) and 8 is the angle between the fibres and the main
magnetic field, which we estimate using the magnitude data from DIPPI. The second
advantage of using diffusion weighting is that it adds directional information, which allows
us to measure the relative degree of myelination (i.e., log g-ratio) between crossing fibres
rather than a voxel-wide average.

With DIPPI is that we can also exploit the bimodal distribution of the intra-axonal off-
resonance frequency (Figure 1C) to fit a two-population model to data acquired with
multiple phase accumulation times (£phase)- While for a single 55, We can obtain the
average log g-ratio across both the myelinated and unmyelinated axons, the two-population
model allows us to estimate their relative signal fractions axons as well as the average log g-
ratio of the myelinated axons.
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Figure 1 A. Proposed DIPPI sequence to measure the off-resonance frequency of diffusion-weighted water. The sequence
consists of a standard Stejskal-Tanner sequence followed by a second EPI readout in an asymmetric spin echo. B.
Illustration of white matter with axons as parallel cylinders, some of which are myelinated (myelin sheaths are hashed).
Overlaid is the off-resonance field induced by the myelin according to the hollow cylinder model™. C. The distribution of
the field shown in B in the intra-axonal (orange), extra-axonal (green), and myelin (blue) compartments. After diffusion-
weighting the signal will be dominated by the intra-axonal water in axons perpendicular to the diffusion-weighting
gradient. For this intra-axonal water, the off-resonance frequency has a bimodal distribution corresponding to the
unmyelinated and myelinated axons with the latter having an off-resonance frequency proportional to the log g-ratio.

In order to explain the analysis, we split it into three parts. First, we estimate the
susceptibility-induced off-resonance frequency of diffusion-weighted water taking into
account other sources of phase accumulation (i.e., movement during the diffusion encoding
and eddy currents). Then we discuss how to subtract out the off-resonance frequency due
to susceptibility sources other than myelin. Finally, we relate the myelin-induced off-
resonance frequency to the average log g-ratio of crossing fibres.

Estimating the off-resonance frequency

The DIPPI signal is modulated by both the diffusion-weighting gradients (i.e., the b-value
and orientation §) and the phase accumulation time tppase- For each set of b-value, gradient
orientation, and tppase, We acquire two images, one during the initial spin echo readout (Sgg)
and one during the second asymmetric spin echo readout (Sagg)- In this work we assume
that all data have been acquired with a single b-value (in addition to b = 0 scans), although
the model can be extended to multiple b-values by fitting all parameters independently at
each b-value, except for the fibre orientations and degree of myelination.
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Gradient orientation in plane with crossing fibres (6)

Figure 2 lllustration of the signal estimated from Monte Carlo simulations of two fibre populations (one fully myelinated
with a g-ratio of 0.7 and one fully unmyelinated) crossing at right angles and perpendicular to the main magnetic field (A).
For ease of illustration we only consider gradient orientations in the plane of the crossing fibres, but the same principle
holds for a 3D acquisition. The magnitude is fitted as a sum of 2 Gaussians (Watson distributions in 3D), which have
maxima perpendicular to the fibre orientation (B). These Gaussians will have a much lower amplitude in the second
readout, but are assumed to have the same width between the readouts. While the phase will be different for each
gradient orientation due to movement during the diffusion weighting (C), the phase difference between the two readouts
still provides an estimate of the difference in susceptibility-induced off-resonance frequency of the two fibre populations
(D).

For a single tyhase the expected signal across multiple gradient orientations is given by:
Sse(b, ) = Xk ASE,ke_bADk(g'ﬁk)zei%E; (2)
Snse (tohases D, G) = Tk AASE,ke_bADk(g'ﬁk)zei(¢SE+A¢Eddy+¢5“5°’k); (3)
where we sum the signal contributions from multiple crossing fibre populations k in an
effort to estimate the phase due to the off-resonance frequency associated with each fibre
population ¢y .- The other terms are explained below.

The first part of these equations (i.e., AASE/SE‘ke'bAD"(g'ﬁ")Z) is concerned with the
magnitude of the image (Figure 2B). As we are mainly interested in the phase, we fit to the
magnitude the simplest model that can distinguish between crossing fibres, namely one
where the signal profile for each crossing fibre is given by a Watson distribution with an
amplitude A;, and width AD,,. This is the signal profile expected if the signal for each fibre
population can be modelled by an axisymmetric diffusion tensor with eigenvalues 4, ; and
Ay, and volume fraction fj. In that case the amplitude corresponds to 4; = Sofie PALk
and the widthto AD, = 4, — A, .

The width of these Watson distributions (AD;,) only depends on the diffusion weighting and
hence should be the same for both the symmetric and asymmetric spin echoes. The signal
amplitudes (4;,) on the other hand will decrease over time due to T, and T; dephasing,
which means that we will have a different amplitude for each readout: Ag j and Ax .-
Using multiple phase accumulation times, it is possible to use the dependence of As ; on
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tohase tO estimate both the T, , and T, of the diffusion-weighted signal for each fibre
population.

The phase accumulation before the first readout will be affected by many factors, such as
eddy currents or movement during the diffusion encoding larger than a few tens of
micrometres. As such movements are unavoidable in in-vivo MRI we simply consider the
phase at the first readout to be a random number which has to be estimated independently
for each volume (¢gg). Our interest here is in the phase accumulation between the two
readouts, which is induced by the off-resonance frequency of any eddy currents (Agqqy)
and the brain’s susceptibility (¢¢,s.) (Figure 2C,D).

Eddy-current induced off-resonance frequency

Eddy currents caused by the strong diffusion gradients will introduce a phase offset that is
dependent on the gradient amplitude and orientation. Here, we are interested in the
contribution of eddy currents to the phase accumulated between the two readouts
(Aeqay)- We model this phase offset using spherical harmonics:

Aqbeddy (ﬁ. tphase) = Z;ZES( Z£n=—l Cim (tphase) Ylm (g); (4)

where Y/ are the spherical harmonic functions mapping the parameters c;,, onto the
sphere. Because the eddy currents decay over time following the diffusion-weighting
gradients, we cannot simply model these parameters using a linear equation as we will for
the susceptibility below.

We can estimate part of the eddy current contributions, because the other contributions to
the phase accumulation will be symmetric (i.e., they are identical for a gradient orientation
g orits inverse —g). This means that we can estimate the odd-order spherical harmonics
(which are asymmetric), but not the even-order spherical harmonics (which are symmetric
and hence degenerate with the susceptibility-induced phase offsets). Fortunately, the
dominant component of the eddy current induced phase offset is asymmetric as we will
confirm in the Results section.

One exception, where we can estimate part of the even-order components of the eddy-
current induced phase offset, is if we acquire a shell with ¢}, = 0 (i.e., both readouts are
at their respective spin echoes). For this shell the susceptibility-induced phase offset is zero,
so we can attribute any phase accumulated between the two readouts to the eddy currents
and hence estimate the even components of clm(tphase = 0). Then, rather than assuming
that the even-order components of Clm(tphase) are zero we can instead model them by
assuming they match clm(tphase = 0). This corrects for any eddy-current induced phase
accumulation between the spin echoes, although it still cannot correct for the evolution of
the even components of the spherical harmonics during the phase accumulation time.

Correcting for the non-myelin susceptibility
The susceptibility-induced off-resonance frequency will not only be influenced by the local
myelin (Wmyelin), but also by many other sources of susceptibility (wyyy):

¢susc;k = (wmyelin,k + wbulk)tphase (5)
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These other sources of susceptibility include both distant sources (e.g., the air-tissue
interface) and other local sources of susceptibility (e.g., blood vessels). To resolve between
these myelin and non-myelin susceptibility, we make the assumption that any non-myelin
source of susceptibility (i.e., wyyy) is equal for all crossing fibres. This allows us to estimate
the myelin-induced frequency offset difference between crossing fibres (with indices k and
k') as:

_ Psusck—Psusc (6)

Wryelink — Wmyelink' = ‘
phase

This assumption will be most accurate if the crossing fibres overlap spatially (i.e., they
interdigitate). On the other hand, if the crossing fibres are on opposite sides of a voxel, their
off-resonance frequency may differ due to any large-scale magnetic field gradients or
differences in local susceptibility field (e.g., one fibre population being closer to blood
vessels).

Equation 6 only gives the difference in the myelin-induced frequency offset between
crossing fibres, which would only allow one to estimate the difference in myelination
between crossing fibres. To obtain an absolute estimate of the g-ratio for each individual
fibre we need additional information. This can be obtained by changing the head
orientation, which modulates the relation between the off-resonance frequency w e, and
the g-ratio (equation 1). Once the frequency offset (equation 6) has been estimated for
multiple head orientations, the individual g-ratios can be obtained through linear
regression.

Estimating the g-ratio

One additional obstacle to estimating the g-ratio is that while there is a simple linear
relationship between the myelin-induced off-resonance frequency and the g-ratio within
each axon (equation 1), each fibre population consists of many axons with potentially
varying g-ratios. We propose two methods to still obtain a meaningful estimate of the g-
ratio.

The first method is only valid for £,,,s. Short enough that the signal phase from the most
myelinated axons is still in rough alignment with the signal phase from the least myelinated
axons (i.e., the unmyelinated axons with a g-ratio of 1 and hence wp,yejin = 0). In that limit
the myelin-induced phase accumulation is determined by the average of the off-resonance
frequency in each axon (weighted by its signal contribution) and hence we have:

3 .
wmyelin,k = - ZwOXAaOgg)k szgkl (7)
where (log g); is the signal-weighted average log g-ratio of the fibre population k across
both myelinated and unmyelinated axons.

For longer t,p,se this simple relation above no longer holds and we need to adopt a two-
compartment model: the myelinated and unmyelinated fibres (Figure 1C). For the
myelinated fibres we assume that the g-ratios are sufficiently similar that we can
characterise this population based solely on their average log g-ratio. Hildebrand and
Hahn*® found a range of g-ratios from 0.6 up to 0.75 in the spinal cord of various mammals.
Because this is quite a narrow range compared with the g-ratio of 1 for unmyelinated fibres,
we expect the two-compartment model to be adequate for any reasonable t,,.. (at least in
healthy tissue). For this two-compartment model we expect a phase evolution of:
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.3 .2
_ 200 X(108 Gmyelini SN2 Ok Lon
wmyelin,ktphase - angle ((1 - fmyelin;k) + fmyelin;ke 470 mveln phase |, (8)

where fvelin;k IS the relative signal fraction of myelinated versus unmyelinated axons and
(log g )myelin;k is the average log g-ratio of just the myelinated axons and “angle” is a
function that returns the angle of a complex number. Equation 7 is the first-order Taylor
expansion of equation 8 with the average log g-ratio across all axons defined as (log g)x =

fmyelin;k<10g g)myelin;k'
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Figure 3 Signal evolution over time for the sum of unmyelinated axonal water (w = 0) and myelinated axonal water

(@ = Wpyelin)- Each line shows the evolution for a different signal fraction of myelinated axons (f,yelin; colour coded
according to legend on the right). Panel A shows the signal evolution through complex signal space with B and C showing
just the phase or magnitude evolution. For only myelinated axons (fmye“n = 1 in blue) the signal traces a circle in complex
space with constant magnitude and linearly increasing phase. As the fraction of unmyelinated axons increases the size of
this circle shrinks and importantly it no longer centres on the origin, which leads to non-linear phase and magnitude
evolution.

The phase evolution of the signal phase according to equation 8 is shown in Figure 3. At
small t;1,,e the phase evolution is approximately linear with a slope of f,,velin Wmyelins
however as W yyelintphase @PProaches 1 the phase starts to approach the phase within just
the dominant population (i.e., unmyelinated axons for 0 < f,veiin < 0.5 or myelinated
axons for 0.5 < fielin < 1) (Figure 3B). By combining data across multiple tyhase We can
capture this time-dependent non-linear phase evolution to characterise both the fraction of
myelinated axons (f,yeiin:k) @nd their average log g-ratio ({log g) myeink) for each crossing
fibre population. The evolution of the magnitude also contains information on the
myelination (Figure 3C), but in practice this will be very hard to disentangle from other
sources of T, dephasing, which we do not consider here. For this reason, we will constrain
the myelination purely on the phase and not the magnitude information. Table 1
summarises which parameters can be estimated for different acquisition schemes.

A summary of the model with definitions for all parameter is given in the supplementary
materials (S1) with a description of the fitting procedure in S2.
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Table 1 Acquisition requirements for the parameters of interest

Acquisition What can be estimated
(all single b-value)
Single non-zero typase (log g,) sin? 8; — {log g,) sin? 6,
Multiple head orientations (log g); per fibre population
Short and long t,,,se frnyelin;x @4 (108 9 myelin;k instead of (log g)y,
Any above and tphase =0 Also: TZ,ki T2’,kl ¢eddy, sym(tphase = O)
Methods

Phantom scan

The DIPPI sequence was implemented on a 7T Siemens scanner. To validate the sequence
and to characterise the influence of eddy currents we scanned an isotropic oil phantom.
Because the phantom is isotropic, we will attribute any variation in the signal phase
between different gradient orientations to eddy currents, which allows direct estimation of
their contribution. Three axial slices were acquired using the sequence shown in Figure 1A
with the following scan parameters: image resolution 2 mm x 2 mm, slice thickness 2 mm,
field of view 192 mm x 192 mm, 6/8 partial Fourier, 10 mm slice gap, echo spacing 0.81 ms,
b-value 2 ms/pm?, 60 diffusion directions and their reverse were acquired (i.e., 120 diffusion
weighted images in total) and 8 b = 0 volumes. The effective echo times for the two
readout were 81 and 165 ms, respectively (t,p.se = 30 ms),. After phase unwrapping across
gradient orientations (described in the supplementary materials S3), the phase offset
observed in the b = 0 images was subtracted. Spherical harmonics were then fitted to the
phase to estimate the ¢y, in our eddy current model (equation 4).

Reference susceptibility-weighted imaging

To quantify the magnitude of the off-resonance field including all sources of susceptibility,
we used publicly available phase imaging data from the QSM reconstruction challenge in
Graz". This dataset was acquired from a healthy volunteer using a wave-CAIPI sequence®
with an isotropic resolution of 1.05 mm and echo time of 25 ms on a 3T MRI scanner. The
provided data has already been phase unwrapped. We convert the phase image to
frequency by dividing it by the echo time. Then we compute the magnitude of the local
frequency gradient. This gradient gives a rough idea of how different the off-resonance field
might be for fibre populations on opposite sides of a voxel.

Simulations to test extra-axonal contribution

The proposed model assumes that any remaining signal after diffusion-weighting is intra-
axonal. To investigate potential biases due to any extra-axonal signal remaining we ran
Monte Carlo simulations using Camino’s datasynth® of crossing fibres using the default
diffusivity of 2 um?/ms. Fibres were crossing at 90 degrees (in the x- and y-direction) with
both being perpendicular to the main magnetic field (in the z-direction). All axons were
modelled as perfect cylinders in the x-direction or y-directions organised in interleaving
single-axon thick planes (Figure 2A). The distance between planes was fixed to 1
micrometre. By varying the outer axonal diameter between 0.5 and 0.98 micrometre, we
vary the extra-axonal volume fraction from 0.25 to 0.8. Within each plane half of the axons
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were myelinated (g = 0.7), with the other half being unmyelinated. The trajectory of
100,000 simulated spins was output.

The spin evolution over the sequence including the effect of the myelin susceptibility was
modelled for a 7T scanner at multiple different b-values. The myelin-induced off-resonance
frequency was modelled according to the hollow-fibre model*® with myelin susceptibility of
x1 = —100 ppb (isotropic component) and y, = —100 ppb (anisotropic component). In this
model the off-resonance field at every point is evaluated as the contribution of the
surrounding axon’s myelin (if any) given by equation 1 and the sum of the dipole-like extra-
axonal field of all other axons. The simulated data was fit using the procedure described in
supplementary material S2 to estimate the bias due to the signal contribution from extra-
axonal water. The confounds of eddy currents, non-myelin contributions to the
susceptibility, and measurement noise were not included in these simulations. In addition,
the myelin water itself was not explicitly modelled as its contribution is expected to be very
small due to its short T, (in fact the border between the intra- and extra-axonal water was
infinitely thin and non-permeable in the simulations).

Simulations to test degeneracy between parameters

Finally, we model and then fit DIPPI data using the model described in the Theory section to
investigate any degeneracies between parameter estimates. In these simulations the initial
amplitudes and signal widths are set assuming a stick-like diffusion model (d, = 1.7 %),

the phase at the first readout (¢gg) is set to a random value between 0 and 27 for each scan
and the off-resonance frequency due to non-myelin susceptibility (wqger) is Set to a random
large value (so that the phase wraps many times between each tyjas)- The l = 1
components of the eddy currents are computed from a + b t,p,s., where a and b are
random numbers drawn from Gaussian distributions N(0,¢ = 1.4 rad) and N(0,0 = 18
Hz) respectively. We set T, = 60 ms *° and T = 35 ms > as appropriate for 7T. We
consider two crossing fibres at 90 degrees, both of which have 50% of the axons being
myelinated with a g-ratio of 0.7. Either both fibre populations are perpendicular to the main
magnetic field or one is parallel and the other is perpendicular to the main magnetic field.
We also consider the case where we have data for both of these fibre configurations with
respect to the main magnetic field, which is an extreme case of what can be achieved by
scanning with multiple head orientations.

Results

Magnitude of myelin-induced off-resonance frequency

To understand the biases induced by phase accumulation due to other sources than myelin
susceptibility, we first need to investigate how large the contrast in myelin-induced
frequency is expected to be between crossing fibres. Within axons the off-resonance
frequency reaches its maximum (wy,,) for fibres perpendicular to the main magnetic field
(i.e., sin? 8 = 1). For a g-ratio of 0.7, this maximum off-resonance frequency is about 27
ppb, which corresponds to —3.4 Hz at 3T and —8 Hz at 7T (Figure 4A).

We compute the myelin-induced off-resonance frequency for two randomly oriented fibre
populations (i.e., randomly oriented with respect to each other and the main magnetic field,
excluding any fibre crossings with angles less than 45 degrees). Figure 4B shows the
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distributions of the difference in this myelin-induced off-resonance frequency with respect
to this maximum frequency offset for two extreme cases: (1) myelinated axons crossing
unmyelinated ones or (2) two identically myelinated populations crossing each other. When
myelinated fibres cross unmyelinated fibres, the frequency offset between the two will be
fully determined by the angle of the myelinated fibres with the main magnetic field. The
offset reaches its maximum of w,,,, when the myelinated fibres are perpendicular to the
main magnetic field and minimum of 0 when parallel to the main magnetic field with a

mean offset ofgwmax {(blue in Figure 4B). For two crossing fibres with identical levels of

myelination, the frequency offset will be typically lower with an offset of 0 when the fibres
have the same angle to the main magnetic field, while the maximum offset w., is only
reached when one fibre is parallel and the other is perpendicular to the main magnetic field.
For randomly oriented fibres the mean offset is approximately 0.4 w,,,, (orange in Figure
4B).

This analysis suggests that we can expect the typical difference in myelin-induced frequency
offset between crossing fibres to be on the order of half of w,,,,, which for a typical g-ratio
of 0.7 is about 1.7 Hz at 3T and 4 Hz at 7T. Hence, any other uncorrected differences in
phase accumulation between the crossing fibres need to be lower than this level to allow
reliable measurement of the g-ratio.

Ao- B '

crossing
unmyelinated
similar

Wmax/Bo(Hz/T)
|
I

|
N
1

| I ] 1 I
0.6 0.8 1.0 —Wmax 0 Wmax

g-ratio AWmyelin
Figure 4 Distribution of the expected difference in off-resonance frequency due to myelin for two crossing fibres. A)
maximum off-resonance frequency obtained for fibres perpendicular to the main magnetic field as a function of g-ratio. B)
distribution of off-resonance frequency difference for two randomly oriented crossing fibres relative to the maximum off-
resonance frequency shown in panel A. The distribution is shown for crossing fibres that either have the same g-ratio
(orange) or for myelinated fibres crossing unmyelinated fibres (blue). The coloured, dashed lines show the mean of the

absolute values of these distributions at 0.4 w,,, for similar crossing fibres (orange) and gwmax for myelinated crossing

unmyelinated fibres (blue). The black dashed line shows the intermediate value (0.5 wp,x) that we adopt as a reference for
the typical true effect size for comparison with potential biases in the rest of this work. Only crossings of more than 45
degrees between the two fibre populations are considered.
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Figure 5 Phase accumulation between the two readouts due to non-zero eddy currents measured in an isotropic oil
phantom at b = 2 ms/um? for a phase accumulation time tohase OF 30 ms on a 7T Siemens scanner. The phase
accumulation measured at b=0 is subtracted out (to subtract out the susceptibility field) and then spherical harmonics are
fitted to the eddy-current induced field offset. A. Map of the power in these spherical harmonics. B. Histogram of the maps
shown in A. Dashed lines show the odd components (that can be corrected for); solid lines show the even components
(that cannot be corrected for). C. Phase accumulation between the first and second spin echoes (measured using tyhase 0f 0
ms). D. Phase accumulation in the 30 ms between the second spin echo and the readout. The dashed vertical line shows
the expected approximate magnitude of the myelin-induced phase accumulation expected in the brain.

Bias due to eddy currents

To investigate the potential bias due to eddy-current induced phase accumulation, we
compare the expected myelin-induced phase offsets with the phase offsets induced by eddy
currents found in an isotropic phantom on a 7T scanner. The eddy-current induced phase
offset is dominated by the [ = 1 components of the spherical harmonics (Figure 5A).
Fortunately, these and the other odd-order components can be estimated even when
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scanning an anisotropic medium like the brain’s white matter. The even components of the
spherical harmonics (for [ # 0) are more problematic as they are degenerate with the
myelin-induced frequency offset between crossing fibres. Fortunately, the power in the
even components is typically much smaller than in the odd components (Figure 5B). The
only exception is the [ = 2 component. For comparison, the vertical line shows the
magnitude of the expected myelin-induced offset, which we estimated above to be 4 Hz at
7T, which after 30 ms comes to 0.75 rad. For most of the phantom even the [ = 2
component is ~5 times smaller than the myelin-induced offset, which suggests it would not
cause a major bias. However, at the edge of the phantom it becomes comparable. This large
[ = 2 component at the edge of the phantom accumulates mostly between the two spin
echoes (Figure 5C), rather than between the second spin echo and the readout (Figure 5D).
This suggests that it might be better to approximate the [ = 2 component in a separate scan
with typase = 0 rather thanignoring it altogether.

Unexpectedly, despite subtracting out the phase offset due to the BO field (estimated using
the b = 0 scans) the I = 0 component is still substantial (Figure 5B). This means that after
averaging out all gradient orientations there is a net phase offset on the order of 0.5-1 rad
betweenthe b = 0 and b = 2 ms/um? scans. The origin of this component is unclear,
however we note that it is swamped by the size of the BO field (discussed below) and will
not cause a bias in the frequency offset measured between different fibre orientations.

T 0Odd spherical And even spherical harmonics
A Raw phase distribution B °P P
harmonics removed at fnase = 0 removed
025 125
0.20 1.00
015 0.75
0.10 050
0.05 0.25

onn nnn

0

Figure 6 Distribution of difference in the eddy-current induced phase offset between two roughly orthogonal gradient
orientations without correction (A), after correcting only the odd-order spherical harmonics (B) or after also subtracting
the even-order spherical harmonics estimated at tpp,s. = 0 (C). Top panels show the histogram across all three slices.
Bottom panels show the phase map for the centre slice. The vertical dashed lines in the top panel show the expected
approximate magnitude of the myelin-induced phase offset. In all panels this figure shows the phase difference at
Lphase = 30 ms for an isotropic phantom in a 7T scanner.

Figure 6 illustrates the result of the correction of the eddy-induced phase offset between
two nearly orthogonal fibre orientations. Without correcting for eddy currents there is a
substantial phase offset, which would hide any myelin-induced phase offsets (Figure 6A).
Subtracting out the odd-order spherical harmonics gets rid of most of the eddy-current
induced phase (Figure 6B). The remaining phase deviations, particularly at the edge of the
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phantom, are due to the large size of the [ = 2 spherical harmonic components (Figure 5A)
and can be further reduced by subtracting out the phase difference accumulated at

tohase = 0 (Figure 6C). The histogram of the resulting phase offset does not nicely centre at
zero. Although this indicates that a non-zero bias in the phase offset remains, it is small
compared with the expected size of the myelin-induced phase offset (indicated by the
dashed vertical lines).

Bias due to bulk susceptibility

The large-scale background off-resonance frequency field is much larger than the expected
myelin-induced frequency offset (Figure 7A). This field can bias the g-ratio estimate If
crossing fibres do not interdigitate, but are actually on opposite sides of the same voxel. In
such a case, they may have different contributions from the large-scale off-resonance field.
To estimate the size of this effect we computed the spatial gradient of the off-resonance
frequency field (Figure 7B). For most of the brain, the gradient of this field is so small that
even if the crossing fibres were on the opposite side of a voxel (i.e., about 0.5 mm apart),
the resulting frequency offset would still be ~5 times smaller than that expected from
myelin. However, close to the major arteries or the air-brain interface (e.g., the
orbitofrontal regions), the gradient of the off-resonance frequency becomes large enough
to significantly bias the estimated g-ratios in the case that the crossing fibres are not
interdigitated.

0.025
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0.015
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0.000 "
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Figure 7 A) Off-resonance frequency distribution estimated for a healthy volunteer at TE=25ms on a 3T scanner (after
phase unwrapping) with the dashed vertical lines showing the expected approximate magnitude of the myelin-induced off-
resonance frequency difference between crossing fibres. B) Distribution of the gradients in the off-resonance field. The
dashed vertical line indicates how large the gradient would have to be to cause an effect as big as expected from myelin if
the crossing fibre populations were half a millimetre apart.
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Bias due to extra-axonal water signal

Finally, bias in the estimated parameters can also come from the remaining contribution of
the extra-axonal water even after diffusion weighting. For reasonable b-values (~

3 ms/pm?) we find that the actual off-resonance frequency is ~10-20% smaller than
expected for pure intra-axonal water (Figure 8A), which would lead to a similar
underestimation in the log g. This underestimation is caused by the ~15% extra-axonal
signal contribution remaining at b = 3 ms/pm? (Figure 8B) modulated by the average off-
resonance frequency of the extra-axonal water (Figure 8A). Interestingly, in the simulations
the 15% extra-axonal signal contribution was consistent across a wide variety of different
axonal densities (colour scales). The fibre packing configuration will affect both the average
extra-axonal off-resonance frequency*>! and how fast the extra-axonal signal decays with
b-value. The simulations here use an unrealistic fibre configuration of perfectly straight
cylinders crossing each other at right angles in a perfect grid, which means that the bias
found here is a only rough estimate of the bias size expected in real tissue.
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Figure 8 Bias on the off-resonance frequency due to extra-axonal water. A) Average myelin-induced off-resonance
frequency in Camino Monte Carlo simulations of infinitely long crossing cylinders (half are unmyelinated and half have
g=0.7) with different spacings (see colour legend). As the b-value increases the off-resonance frequency of the total signal
(solid line) approaches that of the intra-axonal water (dashed), although some bias to the extra-axonal frequency (dotted)
remains. B) This approach is caused by the decrease in the extra-axonal signal fraction with b-value in these Monte Carlo
simulations.

Degeneracies between fitted parameters

While the eddy currents, gradients in the non-myelin susceptibility, and extra-axonal water
all might bias the estimated g-ratios as discussed above, a more fundamental limitation
arises because we can only estimate the difference in the myelin-induced frequency
between crossing fibres. In case of data only acquired with a single head orientation and
single tphase We can only estimate a weighted difference in log g between two crossing fibres
({log g1) sin? 8; — (log g,) sin? 8,). If both fibres have the same angle with the main
magnetic field (i.e., 8; = 8,), this implies we can estimate the difference in (log g) between
the crossing fibres, not what the (log g,) and (log g,) actually are. This case is illustrated in
Figure 9A by the distributions of blue dots, which all have a very similar {log g,) — (logg.),
even while the individual estimates of {log g) are unconstrained. On the other hand, if
fibres have different angles with the main magnetic field we are less sensitive to the (log g)
that is more parallel to the main magnetic field, which changes the slope of the degeneracy
(i.e., the line along which the points lie in Figure 9A). The most extreme case of this is when
one fibre population is parallel to the main magnetic field (e.g., sin 8, = 0), in which case
we are completely insensitive to the myelination of that population (i.e., {log g,)), but can
estimate the (log g) of the other population (orange in Figure 9A). By combining
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information across multiple head orientations, we can constrain the g-ratios of the crossing
fibres as the intersection between the different degenerate solutions (green in Figure 9A).
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Figure 9 Results for fitting the model with various head orientations (A,C,E) or different phase accumulation times t,pase
(B,D,F). We either consider data with a single Z,p,5. {20 ms in A), where we estimate the average log g-ratio across both
myelinated and unmyelinated fibres (A,B), or data with four different t,.se uniformly distributed from 0 to the maximum
tonase (60 ms in C and E) for which we estimate the average log g-ratio of the myelinated axons (gmyelin) and the fraction of
myelinated axons (fyelin)- In the left column (A,C,E) each dot represents the estimated value for one of 100 different noise
iterations for the case where both fibres are perpendicular to the main magnetic field (blue), one of the fibres is parallel
and the other is perpendicular to the main magnetic field (orange), or we have multiple head orientations combining the
information from the first two (green). The ground truth value is given by the black star. The right column (B,D,F) shows
the distribution of these individual estimates as a function of the maximum t,,,.. for various values of the fraction of
myelinated axons (fmyein) for the case of multiple head orientations (green in left column).

Figure 9A considers the case where we aim to estimate the average log g across both
myelinated and unmyelinated axons (equation 7) using a single tyhase. However, as this tphase
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becomes too long the signal from the unmyelinated and myelinated axons become out of
phase with each other and the resulting phase approaches that of the dominant component
(Figure 3B). As a result, the estimated average log g will then match that of the dominant
component (i.e., the myelinated axons if f,,elin > 0.5 or the unmyelinated axons if

fryelin < 0.5) (Figure 9B). When we have data across multiple tpnase we can exploit this
behaviour to estimate both the average log g across both components and the log g of the
dominant component, which allows the estimation of both the fraction and g-ratio of
myelinated axons (Figure 9D,F). In Figure 9D,F we see that this technique works best if the
signal is dominated by myelinated axons (i.e., large fy,iin), although as long as the tyj, is
long enough the fi,,.jin @and to a lesser extent the gpyejin Can be estimated even when the
unmyelinated compartment dominates (fye1in = 0.25, blue violins plots).

The non-linear time evolution of the myelin-induced phase offset can also be exploited to
distinguish it from the non-myelin susceptibility. This leads to reasonable fits to the fraction
and g-ratio of myelinated axons even if data was only acquired with a single head
orientation (blue in Figure 9C,E). With multiple head orientations, these estimates are still
substantially improved (green in Figure 9C,E).

Discussion

We propose a sequence, DIPPI, to estimate the g-ratio of axons within the white matter by
measuring the off-resonance frequency of the water remaining visible after diffusion
weighting. After diffusion-weighting the signal is dominated by intra-axonal water in axons
that run perpendicular to the diffusion gradient orientation. We exploit the linear
relationship between the log g-ratio and the myelin-induced frequency offset in this intra-
axonal water (equation 1) to estimate the g-ratio after correcting for several other sources
of off-resonance frequency. DIPPI allows one to go beyond the voxel-wise average estimates
of g-ratio to get an estimate of the average log g-ratio in every fibre population. For a single,
short tppase this log g-ratio will be averaged across both myelinated and unmyelinated
axons, but by varying t,p,s. We can separate the myelinated and unmyelinated axons to
estimate the volume fraction and g-ratio of the myelinated axons in each crossing fibre
population.

Many other sources can affect the amount of phase accumulated in the diffusion weighted
signal besides the myelin susceptibility. In DIPPI we measure the phase accumulation
between the two readouts after diffusion weighting, which will be unaffected by any phase
accumulated during the diffusion weighting (Figure 2). However, phase accumulation
between these readouts will still be affected by remaining extra-axonal signal, eddy
currents, and non-myelin sources of susceptibility.

In Monte Carlo simulations with greatly simplified geometries we found that the remaining
extra-axonal water signal at b = 3 pm? /ms is around 15% (Figure 8B). To first order, this
extra-axonal water has a similar myelin-induced frequency as the water within
unmyelinated axons, which suggests that this would lead to an overestimation of the
fraction of unmyelinated axons (and a corresponding bias in the average log g-ratio; Figure
8A).
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The phase accumulated due to eddy currents can be mostly corrected for by modelling
them as depending linearly on the gradient orientations. However, not all higher order
terms can be so easily corrected. DIPPI data in an isotropic phantom (7T scanner with

b = 2 um?/ms) suggests these higher-order terms might bias our g-ratio estimates up to
about 20% (Figure 6).

The off-resonance field generated by any non-myelin sources of susceptibility is generally
much larger than that generated by myelin (Figure 7A). As long as the crossing fibres
interdigitate, we can assume that the non-myelin susceptibility contributes equally to their
non-resonance fields, which allows us to estimate the difference in myelin-induced
susceptibility between the crossing fibres. If the fibres do not interdigitate, but are instead
0.5 mm apart, this assumption could lead to a substantial bias especially close to the air-
brain tissue boundary and major arteries (Figure 7B).

Even if the fibres interdigitate, the large size of the non-myelin induced field still means that
we can only estimate the difference in myelination between crossing fibres. For data with
multiple head orientations we can get around this limitation to get an estimate of the
myelination for each crossing fibre population (green in Figure 9A,C,E). However, this
technique will not work in single-fibre regions. There are alternative approaches that do not
require multiple head orientations. Background field removal might be sufficient to remove
wpyc Under the assumption that the local susceptibility is dominated by myelin®™*.
Alternatively, the curvature of white matter tracts naturally varies the angle between the
fibre orientation and the main magnetic field, which we can exploit under the assumption
that the fibre myelination is constant along the tract. The reliability of these various
approaches will be investigated in future work.

When fitting the two-pool model to estimate both the fraction and g-ratio of the myelinated
axons, additional sources of bias might occur. These estimates rely on the time-dependence
of the off-resonance frequency due to the difference in off-resonance frequency between
myelinated and unmyelinated axons (Figure 3). Hence, the estimates will be biased by any
other sources of time dependence in the off-resonance frequency, which could arise by
having multiple compartments with different T, and off-resonance frequency. However, we
are unaware of any evidence for such time-dependence in the off-resonance frequency at
these long echo times.

Finally, we note that there are substantial uncertainties in our estimates of the anisotropic
component of the myelin susceptibility (x,)* limiting the accuracy of the resulting g-ratio. A
reliable estimate of this constant is crucial to accurately map the g-ratio to the intra-axonal
myelin-induced frequency offset (equation 1).

The combination of theory, simulations, and phantom data presented here suggests that
DIPPI would be able to obtain a reliable measure of the g-ratio in crossing fibres. We plan to
further explore this using both in-vivo and ex-vivo data in future work.


https://doi.org/10.1101/2020.11.10.376657
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.10.376657; this version posted November 11, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Acknowledgements

MC and SJ are funded by a Wellcome Collaborative Award (215573/2/19/Z). KM and BT are
funded by the Wellcome Trust (202788/Z/16/Z). WW is funded by the Royal Academy of
Engineering (RF201819/18/92). The Wellcome Centre for Integrative Neuroimaging is
supported by core funding from the Wellcome Trust (203139/2/16/Z). Human SWI data was
used from the QSM reconstruction challenge*® with permission from Ferdinand Schweser.
We thank Johanna Vannesjo and Jesper Andersson for insightful discussions on the
modelling of eddy currents.

References

1.

10.

11.

Baumann N, Pham-Dinh D. Biology of Oligodendrocyte and Myelin in the Mammalian
Central Nervous System. Physiol Rev. 2001;81(2):871-927.
doi:10.1152/physrev.2001.81.2.871

Rushton WAH. A theory of the effects of fibre size in medullated nerve. J Physiol.
1951;115(1):101-122. doi:10.1113/jphysiol.1951.sp004655

Waxman SG. Determinants of conduction velocity in myelinated nerve fibers. Muscle
Nerve. 1980;3(2):141-150. doi:10.1002/mus.880030207

Fields RD. White Matter in Learning, Cognition and Psychiatric Disorders. Trends
Neurosci. 2008;31(7):361-370. doi:10.1016/j.tins.2008.04.001

Yakovlev P. The myelogenetic cycles of regional maturation of the brain. Reg Dev Brain
Early Life. Published online 1967:3-70.

Dubois J, Dehaene-Lambertz G, Kulikova S, Poupon C, Hiippi PS, Hertz-Pannier L. The
early development of brain white matter: a review of imaging studies in fetuses,
newborns and infants. Neuroscience. 2014;276:48-71.
doi:10.1016/j.neuroscience.2013.12.044

Fields RD. A New Mechanism of Nervous System Plasticity: Activity-Dependent
Myelination. Nat Rev Neurosci. 2015;16(12):756-767. doi:10.1038/nrn4023

Reich DS, Lucchinetti CF, Calabresi PA. Multiple Sclerosis. N Engl J Med.
2018;378(2):169-180. doi:10.1056/nejmra1401483

Davis KL, Stewart DG, Friedman JI, et al. White Matter Changes in Schizophrenia. Arch
Gen Psychiatry. 2003;60(5):443. doi:10.1001/archpsyc.60.5.443

Stikov N, Perry LM, Mezer A, et al. Bound pool fractions complement diffusion
measures to describe white matter micro and macrostructure. Neurolmage.
2011;54(2):1112-1121. doi:10.1016/j.neuroimage.2010.08.068

Stikov N, Campbell JSW, Stroh T, et al. In vivo histology of the myelin g-ratio with
magnetic resonance imaging. Neuroimage. 2015;118:397-405.
doi:10.1016/j.neuroimage.2015.05.023


https://doi.org/10.1101/2020.11.10.376657
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.10.376657; this version posted November 11, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

available under aCC-BY 4.0 International license.

Duval T, Le Vy S, Stikov N, et al. g-Ratio weighted imaging of the human spinal cord in
vivo. Neuroimage. 2017;145(Pt A):11-23. doi:10.1016/j.neuroimage.2016.09.018

Mohammadi S, Callaghan MF. Towards in Vivo G-Ratio Mapping Using Mri: Unifying
Myelin and Diffusion Imaging. J Neurosci Methods. 2020;nil(nil):108990.
d0i:10.1016/j.jneumeth.2020.108990

Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: practical in vivo
neurite orientation dispersion and density imaging of the human brain. Neuroimage.
2012;61(4):1000-1016. d0i:10.1016/j.neuroimage.2012.03.072

Raffelt D, Tournier J-D, Rose S, et al. Apparent Fibre Density: a novel measure for the
analysis of diffusion-weighted magnetic resonance images. Neuroimage.
2012;59(4):3976-3994. d0i:10.1016/j.neuroimage.2011.10.045

Lampinen B, Szczepankiewicz F, Martensson J, van Westen D, Sundgren PC, Nilsson M.
Neurite density imaging versus imaging of microscopic anisotropy in diffusion MRI: A
model comparison using spherical tensor encoding. Neuroimage. 2017;147:517-531.
doi:10.1016/j.neuroimage.2016.11.053

Jensen JH, Helpern JA. Characterizing intra-axonal water diffusion with direction-
averaged triple diffusion encoding MRI. NMR Biomed. 2018;31(7):e3930.
doi:10.1002/nbm.3930

GongT, Tong Q, He H, Sun Y, Zhong J, Zhang H. MTE-NODDI: Multi-TE NODDI for
disentangling non-T2-weighted signal fractions from compartment-specific T2
relaxation times. Neuroimage. 2020;?116906. doi:10.1016/j.neuroimage.2020.116906

Mancini M, Karakuzu A, Nichols T, Julien Cohen-Adad, Cercignani M, Stikov N. The
quest for measuring myelin with MRI - An interactive meta-analysis of quantitative
comparisons with histology. Published online 2020. doi:10.1101/2020.07.13.200972

z A, Lipp I. Can MRI measure myelin? Systematic review, qualitative assessment, and
meta-analysis of studies validating microstructural imaging with myelin histology.
bioRxiv. Published online 2020. doi:10.1101/2020.09.08.286518

Whittall KP, Mackay AL, Graeb DA, Nugent RA, Li DKB, Paty DW. In vivo measurement
ofT2 distributions and water contents in normal human brain. Magn Reson Med.
1997;37(1):34-43. doi:10.1002/mrm.1910370107

Mackay A, Whittall K, Adler J, Li D, Paty D, Graeb D. In vivo visualization of myelin
water in brain by magnetic resonance. Magn Reson Med. 1994;31(6):673—677.
doi:10.1002/mrm.1910310614

MacKay A, Laule C, Vavasour |, Bjarnason T, Kolind S, Madler B. Insights into brain
microstructure from the T2 distribution. Magn Reson Imaging. 2006;24{4):515-525.
doi:10.1016/j.mri.2005.12.037


https://doi.org/10.1101/2020.11.10.376657
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.10.376657; this version posted November 11, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

available under aCC-BY 4.0 International license.

Gelderen P van, Zwart JA de, Lee J, Sati P, Reich DS, Duyn JH. Nonexponential T 2 *
Decay in White Matter. Magn Reson Med. 2011;67(1):110-117.
doi:10.1002/mrm.22990

Sati P, van Gelderen P, Silva AC, et al. Micro-compartment specific T2* relaxation in the
brain. Neuroimage. 2013;77:268-278. doi:10.1016/j.neuroimage.2013.03.005

Travis AR, Does MD. Selective excitation of myelin water using inversion-recovery-
based preparations. Magn Reson Med. 2005;54(3):743-747. doi:10.1002/mrm.20606

Sled JG. Modelling and interpretation of magnetization transfer imaging in the brain.
Neuroimage. 2018;182:128-135. doi:10.1016/j.neuroimage.2017.11.065

West KL, Kelm ND, Carson RP, Does MD. A Revised Model for Estimating G-Ratio From
Mri. Neurolmage. 2016;125(nil):1155-1158. d0i:10.1016/j.neuroimage.2015.08.017

Behrens TEJ, Berg HJ, Jbabdi S, Rushworth MFS, Woolrich MW. Probabilistic diffusion
tractography with multiple fibre orientations: What can we gain? Neuroimage.
2007;34(1):144-155. doi:10.1016/j.neuroimage.2006.09.018

Jeurissen B, Leemans A, Tournier J-D, Jones DK, Sijbers J. Investigating the prevalence
of complex fiber configurations in white matter tissue with diffusion magnetic
resonance imaging. Hum Brain Mapp. 2012;34(11):2747-2766.
doi:10.1002/hbm.22099

Campbell ISW, Leppert IR, Narayanan S, et al. Promise and pitfalls of g-ratio estimation
with MRI. Neuroimage. 2018;182:80-96. doi:10.1016/j.neuroimage.2017.08.038

Lampinen B, Szczepankiewicz F, Novén M, et al. Searching for the neurite density with
diffusion MRI: Challenges for biophysical modeling. Hum Brain Mapp. 2019;40(8):2529-
2545. d0i:10.1002/hbm.24542

Veraart J, Novikov DS, Fieremans E. TE dependent Diffusion Imaging (TEdDI)
distinguishes between compartmental T2 relaxation times. Neuro/mage. Published
online 2017. doi:https://doi.org/10.1016/j.neuroimage.2017.09.030

Hutter J, Slator PJ, Christiaens D, et al. Integrated and efficient diffusion-relaxometry
using ZEBRA. Sci Rep. 2018;8(1):15138. d0i:10.1038/s41598-018-33463-2

de Almeida Martins JP, Tax CMW, Reymbaut A, et al. Computing and Visualising
Intra-voxel Orientation-specific Relaxation-Diffusion Features in the Human Brain. Hum
Brain Mapp. 2020;nil(nil):hbm.25224. doi:10.1002/hbm.25224

Kleban E, Tax CMW, Rudrapatna US, Jones DK, Bowtell R. Strong diffusion gradients
allow the separation of intra- and extra-axonal gradient-echo signals in the human
brain. Neuroimage. 2020;?116793. doi:10.1016/j.neuroimage.2020.116793

De Santis S, Barazany D, Jones DK, Assaf Y. Resolving relaxometry and diffusion
properties within the same voxel in the presence of crossing fibres by combining


https://doi.org/10.1101/2020.11.10.376657
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.10.376657; this version posted November 11, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

available under aCC-BY 4.0 International license.

inversion recovery and diffusion-weighted acquisitions. Magn Reson Med.
2016;75(1):372-380. d0i:10.1002/mrm.25644

Avram AV, Guidon A, Song AW. Myelin water weighted diffusion tensor imaging.
Neuroimage. 2010;53(1):132-138. doi:10.1016/j.neuroimage.2010.06.019

Peled S, Cory DG, Raymond SA, Kirschner DA, Jolesz FA. Water diffusion, T2, and
compartmentation in frog sciatic nerve. Magn Reson Med Off J Soc Magn Reson Med
Magn Reson Med. 1999;42(5):911.

Wharton S, Bowtell R. Fiber orientation-dependent white matter contrast in gradient
echo MRI. Proc Natl Acad Sci USA. 2012;109(45):18559-18564.
doi:10.1073/pnas.1211075109

Chen WC, Foxley S, Miller KL. Detecting microstructural properties of white matter
based on compartmentalization of magnetic susceptibility. Neuroimage. 2013;70:1-9.
d0i:10.1016/j.neuroimage.2012.12.032

Liu C, Li W, Tong KA, Yeom KW, Kuzminski S. Susceptibility-weighted imaging and
quantitative susceptibility mapping in the brain. J Magn Reson Imaging. 2015;42(1):23-
41. doi:10.1002/jmri.24768

Yablonskiy DA, Sukstanskii AL. Effects of biological tissue structural anisotropy and
anisotropy of magnetic susceptibility on the gradient echo MRI signal phase:
theoretical background. NMR Biomed. 2017;30(4). doi:10.1002/nbm.3655

Duyn JH. Studying brain microstructure with magnetic susceptibility contrast at high-
field. Neuroimage. 2018;168:152-161. doi:10.1016/j.neuroimage.2017.02.046

Veraart J, Fieremans E, Novikov DS. On the scaling behavior of water diffusion in
human brain white matter. Neuroimage. 2019;185:379-387.
doi:10.1016/j.neuroimage.2018.09.075

Hildebrand C, Hahn R. Relation between myelin sheath thickness and axon size in
spinal cord white matter of some vertebrate species. J Neurol Sci. 1978;38(3):421-434.
doi:10.1016/0022-510x(78)90147-8

Langkammer C, Schweser F, Shmueli K, et al. Quantitative Susceptibility Mapping:
Report From the 2016 Reconstruction Challenge. Magn Reson Med. 2017;79(3):1661-
1673. doi:10.1002/mrm.26830

Bilgic B, Gagoski BA, Cauley SF, et al. Wave-Caipi for Highly Accelerated 3d Imaging.
Magn Reson Med. 2014;73(6):2152-2162. doi:10.1002/mrm.25347

Hall MG, Alexander DC. Convergence and parameter choice for Monte-Carlo
simulations of diffusion MRI. IEEE Trans Med Imaging. 2009;28(9):1354-1364.
doi:10.1109/TMI.2009.2015756

Wiggermann V, MacKay AL, Helms G, Rauscher A. In vivo high field myelin water
imaging: Investigating the T2 distribution at 7T. In: In Vivo High Field Myelin Water


https://doi.org/10.1101/2020.11.10.376657
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.10.376657; this version posted November 11, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

51.

52.

53.

54.

55.

56.

57.

58.

59.

available under aCC-BY 4.0 International license.

Imaging: Investigating the T2 Distribution at 7T. Vol 26. Proceedings of the ISMRM.
International Society for Magnetic Resonance in Medicine; 2018.
http://indexsmart.mirasmart.com/ISMRM2018/PDFfiles/5499.html

Xu T, Foxley S, Kleinnijenhuis M, Chen WC, Miller KL. The effect of realistic geometries
on the susceptibility-weighted MR signal in white matter. Magn Reson Med.
2018;79(1):489-500. d0i:10.1002/mrm.26689

Zhong K, Ernst T, Buchthal S, Speck O, Anderson L, Chang L. Phase Contrast Imaging in
Neonates. Neurolmage. 2011;55(3):1068-1072. doi:10.1016/j.neuroimage.2010.11.086

Liu C, Li W, Johnson GA, Wu B. High-Field (9.4T) Mri of Brain Dysmyelination By
Quantitative Mapping of Magnetic Susceptibility. Neuroimage. 2011;56(3):930-938.
doi:10.1016/j.neuroimage.2011.02.024

Lee J, Shmueli K, Kang B-T, et al. The Contribution of Myelin To Magnetic Susceptibility-
Weighted Contrasts in High-Field Mri of the Brain. Neuro/mage. 2012;59(4):3967-3975.
doi:10.1016/j.neuroimage.2011.10.076

Jezzard P, Balaban RS. Correction for Geometric Distortion in Echo Planar Images From
BO Field Variations. Magn Reson Med. 1995;34(1):65-73.
d0i:10.1002/mrm.1910340111

Tournier J-D, Calamante F, Connelly A. Robust determination of the fibre orientation
distribution in diffusion MRI: non-negativity constrained super-resolved spherical
deconvolution. Neuroimage. 2007;35(4):1459-1472.
doi:10.1016/j.neuroimage.2007.02.016

Barber CB, Dobkin DP, Huhdanpaa H. The Quickhull algorithm for convex hulls. ACM
Trans Math Softw. 1996;22(4):469-483.

Byrd RH, Lu P, Nocedal J, Zhu C. A limited memory algorithm for bound constrained
optimization. SIAM J Sci Comput. 1995;16(5):1190-1208.

Zhu C, Byrd RH, Lu P, Nocedal J. Algorithm 778: L-BFGS-B: Fortran subroutines for large-
scale bound-constrained optimization. ACM Trans Math Softw TOMS. 1997;23(4):550—
560.


https://doi.org/10.1101/2020.11.10.376657
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.10.376657; this version posted November 11, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Supplementary Materials

S1: Model summary
For clarity we provide here a summary of the full model fitted to the complex signal of the
first spin echo (SE) readout and the second asymmetric spin echo (ASE) readout:
Sse(b, §) = e'Pse Y, ASE,ke_bAD"(g'ﬁk)z. (9)
Shse (tphase: b, g‘) = l(Pse+Adeday+@buktphase) Sk AASE'ke_bADk(g'ﬁk)zeimmyelin,ktphase' (10)
where we sum over multiple crossing fibre populations k.
The parameters in this equation are:
e Acquisition parameters
o b: quantifies the sensitivity to the diffusivity
o g: orientation of the diffusion-weighted gradient
O tphase: Phase accumulation time between the second spin echo and the
centre of the second readout
e Free parameters fitting the signal magnitude
o Asg: signal amplitude perpendicular to the fibre orientation at the first
readout
o AD,: signal width corresponding to parallel minus perpendicular apparent
diffusivity
o fi: average fibre orientation
o Apse: signal amplitude perpendicular to the fibre orientation at the second
(asymmetric) readout, which is fitted independently for each ¢ 5. With
multiple t,hase Can be used to estimate T, and Ty
e Free parameters fitting the signal phase
O ¢ any phase accumulated before the first readout. This is estimated
independently for each volume.
O Ageqqy: eddy-current induced phase offset between the two readouts, which
is modelled as a function of gradient orientation using spherical harmonics
(equation 4). Odd and even components of the spherical harmonics are
treated differently:
®* QOdd components of the spherical harmonics are estimated
independently for each ¢ s
= Even components are either assumed to be 0 or if only data with
tohase > 0 is acquired or constant across all £, if data with
tohase = 0 is also acquired, effectively setting them to the value
estimated at fyp,se = 0. Any more realistic model that allows for
variability with £, Will lead to degeneracies with the estimated g-
ratio
O  Wpyk: Off-resonance frequency due to non-myelin sources. Assumed to be a
constant in each voxel (i.e., does not depend on fibre population or any of
the acquisition parameters)
O  Wmyelin;k: Myelin-induced frequency offset. If only short t 5. are acquired,
can be related to the average log g-ratio ({log g),) through equation 7.
Alternatively, a two-compartment fit (equation 8) can be applied if multiple
including long t ... Were acquired. The latter estimates both the signal
fraction (fiyelin;) @nd log g-ratio ({log g)myelin;x ) Of the myelinated axons.
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S2: Parameter fitting

Parameter estimation is complicated by the phase wrapping inherent in fitting complex MRI
data. The signal is identical for a phase of ¢ and ¢ + 27n for any integer n, which leads to
many unphysical, local minima when fitting the phase. While phase unwrapping> could
potentially deal with this by estimating n for each gradient orientation relative to the
others, such unwrapping is complicated by the low SNR inherent in diffusion MRI for
gradient orientations aligned with the dominant fibre orientation. Instead, we propose to
deal with the phase wraps through a careful initialisation of the parameters and a multi-step
fitting procedure. At each step the results of the previous fit are used to initialise the new
fit:

1. Inactual DIPPI data the number of fibres and their orientations can be estimated
from any model allowing for crossing fibres such as ball & stick’® or constrained
spherical deconvolution®®. In this work, we only simulate data with two crossing
fibres and then fit it assuming two crossing fibres. Fibre orientations are initialised in
this work to the first two eigenvectors of a diffusion tensor fit.

2. Inthe initial part of the fitting we only fit the signal magnitude. First, we just fit the
amplitudes (Asg and Apse g Or Ty and T5..), then we fit the amplitudes and width,
and finally the amplitude, width and orientation (i.e., the full Watson distribution).

3. Once we have a decent fit for the signal magnitude, we can estimate the parameters
influencing the signal phase:

a. The phase offsets induced during the diffusion encoding (¢sg) are initialised
by the phase measured during the first readout. While such direct phase
estimates can be very noisy for gradient orientations with very low SNR (<
1), any gradient orientations with such low SNR at the first readout will be so
dominated by noise at the second readout that they do not contribute
significantly to the final fit.

b. Thel = 1 spherical harmonic components of the eddy currents across
gradient orientations are then estimated for each ¢y, through the
following algorithm:

i. We compute a convex hull containing all the gradient orientations
using the Quickhull algorithm®” from www.quickhull.org. Any gradient
orientations connected in this hull are considered neighbours.

ii. For each pair of neighbouring gradient orientations the phase
difference is computed {(and mapped between —mr and m by adding or
subtracting 2m).

iii. The linear phase gradient in the x-direction G, is then estimated by

solving: ming_ Y;; m? (GxAgx;,- — Agbi)z, where the sum is over each
pair of neighbours i, A¢; is the phase difference computed in step 2,
m; is the average magnitude of the signal for the neighbouring
gradient orientations, and Ag,.; is the difference in the x-component
of the gradient between the neighbours. The same equation is solved
for the y- and z-components. The phase gradient estimates are

multiplied by\/% to get the first-order spherical harmonic

components.
c. The non-myelin off-resonance frequency (wy,,y) and g-ratio parameters are
randomly initialised. wyy is drawn from a uniform distribution between -300
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and 300 Hz, which is a substantially larger range than seen in susceptibility-
weighted MRI. For a single-population model the (log g}y is initialised
randomly between log 0.6 and log 1 (= 0). For the two-population model
fmyelin; & is initialised randomly between 0 and 1 and (log g), between log 0.6
and log 0.8.

d. We then fit in order just the non-myelin off-resonance frequency (W, ey ), the
non-myelin off-resonance frequency and the spherical harmonic components
of the eddy currents, and finally also include the g-ratio parameters (average
log g-ratio and fyyelin; -

e. Steps c-d are repeated until the global minimum is found

4. Finally, we include a fit including all free parameters (both phase- and amplitude-
related) initialised from the values found above.
All fits were carried out in python using local optimisation with the quasi-Newton method L-
BFGS-B***° from the scipy library with gradients computed symbolically using the sympy
library.

S3: Unwrapping the phase on a sphere

Another way to avoid the local minima when fitting phase data as discussed in S2 is to
unwrap the phase of the data before fitting. Note that as opposed to the more commonly
spatial phase unwrapping across an image”, we apply phase unwrapping here across the
gradient orientations within each voxel.

Similarly, to the estimation of the [ = 1 components in S2 we start by defining neighbouring
gradient orientations as those connected in a convex hull®’. Starting from some random
gradient orientations, any phase wraps in the neighbouring gradients are corrected by
subtracting or adding 27 to their phases. For each of the neighbours the algorithm is then
repeated and so on, until all the phases for all gradient orientations have been unwrapped.

This approach is only expected to work if the SNR is consistently high enough to produce
reliable phase estimates for all gradient orientations. This is the case for the phantom data,
where we apply phase unwrapping, however it will not generally be the case for DIPPI data,
which is why we do not propose to use phase unwrapping when fitting the DIPPI model
(where instead we fit directly to the complex data). This phase unwrapping algorithm could
probably be made more accurate by adopting some of the techniques used in Jezzard and
Balaban (1995)%, but we do not explore that here.
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