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Summary  

During development, multicellular organisms undergo stereotypical patterns of tissue growth 

to yield organs of highly reproducible sizes and shapes. How this process is orchestrated 

remains unclear. Analysis of the temporal dynamics of tissue growth in the Drosophila 

abdomen reveals that cell cycle times are spatially correlated and that growth termination 

occurs through the rapid emergence of a population of arrested cells rather than a gradual 

slowing down of cell cycle time. Reduction in apical tension associated with tissue crowding 

has been proposed as a developmental growth termination mechanism. Surprisingly, we find 

that growth arrest in the abdomen occurs while apical tension increases, showing that in this 

tissue a reduction in tension does not underlie the mechanism of growth arrest. However, 

remodeling of the extracellular matrix is necessary for tissue expansion. Thus, changes in the 

tissue microenvironment, and a rapid exit from proliferation, control the formation of the adult 

Drosophila abdomen. 
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Introduction 

During development, patterns of growth must be tightly coordinated in time and space. This is 

dictated by chemical signals (hormones, morphogens, nutrients) and the physical environment 

(Boulan et al., 2015; Irvine and Shraiman, 2017; Penzo-Mendez and Stanger, 2015). However, 

due to the difficulty of measuring quantitative parameters of tissue growth in living organisms, 

we lack an integrated understanding of growth arrest in vivo. This has limited our ability to 

analyze developing systems in vivo with the same level of precision as expanding populations 

of unicellular organisms or animal cells in culture (Loeffler and Schroeder, 2019; Sauls et al., 

2016). 

 

Nevertheless, studies of the Drosophila wing imaginal disc have yielded several models of 

tissue growth and size determination (Boulan et al., 2015; Gou et al., 2020; Irvine and 

Shraiman, 2017). Wing disc cells arrest in G2 at the larval/pupal transition, when the organ has 

reached approximately 30,000 cells (Martin et al., 2009). As this tissue progresses through its 

most substantial growth phase, cell proliferation gradually slows down, with a cell cycle time 

of around 6-10 h increasing to over 20-30 h at the larval-pupal transition (Johnston and Sanders, 

2003; Mao et al., 2013; Martin et al., 2009; Milan et al., 1996; Wartlick et al., 2011b). This 

suggests that a mechanism triggered well in advance of the tissue reaching its target size leads 

to a slowdown and eventual arrest of proliferation.  

 

Proposed models to explain the growth kinetics of the developing wing disc generally assume 

a role for the growth-promoting action of diffusible morphogens or spatial and temporal 

changes in the mechanical state of disc cells (Gou et al., 2020; Irvine and Shraiman, 2017; 

Wartlick et al., 2011a). Thus, spatial variations in growth rates have been suggested to lead to 

a build-up of tensile and compressive forces that in turn affect growth rates through mechanical 

feedback (Aegerter-Wilmsen et al., 2007; Hufnagel et al., 2007; Shraiman, 2005). Laser 

ablations have indeed suggested that apical tension diminishes as wing disc development 

proceeds, correlating with decreased proliferation, providing a potential mechanism for growth 

termination (Pan et al., 2018; Rauskolb et al., 2014). Increased mechanical tension has also 

been demonstrated to drive cell division in a number of experimental systems, including the 

mouse skin and mammalian cells in culture (Irvine and Shraiman, 2017; LeGoff and Lecuit, 

2015). Thus, an attractive mechanism to account for developmental size control is one by which 
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mechanical tension promotes growth, and as cell density increases, tension decreases, leading 

to growth termination. 

 

The recent development of analytical tools that capture cell and tissue deformations (Etournay 

et al., 2016; Guirao et al., 2015), combined with progress in live imaging in vivo (Mavrakis et 

al., 2010) have transformed our ability to derive quantitative parameters that can be used to 

understand and model complex developmental processes. A limitation of studies in the 

Drosophila wing disc is its inaccessibility for these live imaging tools to follow individual cell 

behavior and mechanical properties over time in the growing tissue. Thus, we chose to analyze 

the growth of the Drosophila abdominal epidermis, where individual cells can be imaged and 

tracked in vivo during the pupal stages when the animal is sessile (Bischoff and Cseresnyes, 

2009; Mangione and Martin-Blanco, 2018; Prat-Rojo et al., 2020).  

 

The adult Drosophila abdominal epidermis develops from small islands (nests) of cells called 

histoblasts, which are specified during embryonic development (Guerra et al., 1973). Each 

abdominal hemisegment contains four nests, two located dorso-laterally (dorsal anterior and 

dorsal posterior), one located ventrally and one spiracular nest located laterally (Madhavan and 

Madhavan, 1980; Roseland and Schneiderman, 1979), Figure 1A). During the larval period, 

the histoblasts are quiescent (G2 arrest) (Bryant and Schneiderman, 1969; Mandaravally 

Madhavan and Schneiderman, 1977), and are induced to enter the cell cycle by the pulse of the 

steroid hormone ecdysone that triggers the larval/pupal transition (0 h After Puparium 

Formation – APF) (Ninov et al., 2007). Following a period of three cleavage divisions, the 

histoblasts enter an expansion phase (around 14-16 hAPF) when they proliferate and grow, 

displacing the surrounding Larval Epidermal Cells (LECs, large polyploid cells that formed 

the larval epidermis), which are extruded and engulfed by macrophages (hemocytes) patrolling 

the hemolymph underneath the epidermal layer (Bischoff and Cseresnyes, 2009; Michel and 

Dahmann, 2020; Nakajima et al., 2011; Ninov et al., 2007; Prat-Rojo et al., 2020; Teng et al., 

2017) (Figure 1B). LEC death requires both ecdysone signaling and displacement by the 

expanding histoblast nests (Michel and Dahmann, 2020; Nakajima et al., 2011; Ninov et al., 

2007; Prat-Rojo et al., 2020; Teng et al., 2017). Once the histoblasts cover the entire abdominal 

surface, proliferation ceases and differentiation proceeds to give rise to the adult abdomen. 

Here, using live imaging and cell tracking, we analyze the growth of the dorsal histoblast nests 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.10.376129doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.10.376129
http://creativecommons.org/licenses/by/4.0/


 5 

at the cellular and tissue scale to uncover how cellular behaviors give rise to tissue growth 

kinetics. 
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Results 

Measuring the growth kinetics of the Drosophila dorsal abdomen 

To derive quantitative parameters describing the growth of the Drosophila abdomen in wild 

type animals, we imaged cell junctions with E-cad::GFP from 16 h to 31 hAPF (see (Mangione 

and Martin-Blanco, 2020) and STAR Methods) (Figure 1A, B). The resultant movies were 

processed and analyzed using a custom-built pipeline to track cells (Figure 1B, Figure S1A-E, 

STAR Methods, Movie 1). We then defined an anterior “no border region of interest” (noborder 

ROI) consisting of complete lineages of histoblasts that never come into contact with the edge 

of the image frame during the movie (Figure 1B, bottom row, Movie 1 and Supplementary 

Theory). The emergence of specialized cells called Sensory Organ Precursors (SOPs) was used 

to temporally align four wild-type movies (Figure S1F-K and STAR Methods). 

 

The dorsal histoblast nests expand through cell division 

To analyze tissue growth, we performed a shear decomposition analysis of the segmented wild 

type movies using Tissue Miner (Etournay et al., 2016; Merkel et al., 2017). We focused our 

analysis on the expansion kinetics of the histoblast nests by examining how the relative rates 

of change in cell area and cell number, due to either proliferation or delamination contribute to 

the area expansion rate of the tissue (Figure 1C-F, Figure S1L-O). This quantitative analysis 

showed that the dorsal histoblast nests grow primarily via cell division (Figure 1C, E), as 

previously proposed (Ninov et al., 2007). The average cell area increase contributed modestly 

to tissue area expansion, and mainly in the early stages of expansion (Figure 1C, F). Cell loss 

(“extrusion”), through either cell death or delamination, had a minimal contribution to 

histoblast nest deformation (Figure 1C). The cell area contribution to growth is far more 

variable than that of cell divisions (Figure 1E, F). Furthermore, cell areas in the anterior nest 

are also spatially variable, with cells around the periphery of the nest having a larger apical 

area than their counterparts in the nest center (Figure 1B, middle row). This may be due to their 

location at the interface with LECs, which have been shown to exert forces on the boundary 

histoblast when undergoing apoptosis (Prat-Rojo et al., 2020; Teng et al., 2017). As cell 

division is the dominant factor in histoblast nest growth, we focused subsequent analysis on 

their proliferation dynamics. 

 

Histoblasts divide with a narrow distribution of cycle times, uncorrelated with cell 

geometry but correlated in space 
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When examining the contribution of cell division to tissue expansion (Figure 1E), we noticed 

that cell number increased in alternating periods of slower and faster rates. Indeed, plotting the 

cell division rate (number of cells created by division per unit time, relative to total cell number) 

as a function of time for different WT movies revealed an oscillatory behavior with a period of 

~ 4 h (Figure 2A). About three oscillatory peaks can be observed after 16 hAPF before the cell 

division rate starts to decrease around 28 hAPF (Figure 2A). All four analyzed wild type 

movies exhibited similar dynamics in the decay of cell division rate, although the oscillation 

peaks were variable in time between the different animals (Figure 2A). We explored whether 

the average cell cycle duration was oscillating through time and found that, in contrast to the 

proliferation rate, the average cycle time (~4.5h±0.6, mean ±SD over 4 analyzed WTs) varied 

only weakly in time (Figure 2B, S2A).  

 

Work in cell culture and several in vivo systems has suggested that geometric constraints 

influence proliferation, for instance cells with a larger surface area are generally more likely to 

divide than cells with a constrained area (Irvine and Shraiman, 2017; LeGoff and Lecuit, 2015; 

Lopez-Gay et al., 2020). We therefore wondered if there was a relationship between cell cycle 

time (time between two divisions) and cellular geometric features (Figure 2C). Surprisingly, 

the cell cycle time was neither correlated with histoblasts’ initial area at birth (Figure 2C) nor 

with the cell mean area or mean cell elongation over the entire cell cycle time (Figure S2B, C). 

This suggests that geometric constraints do not strongly influence histoblast proliferation rate, 

and therefore do not account for the oscillations observed.  

 

We then examined whether cycle times of mother and daughter cells were correlated, but found 

only a weak correlation coefficient (Figure 2D, E, S2D, Pearson correlation coefficient 𝜌 =

0.04 ± 0.04). In contrast, we noticed that sister cell cycle times, and, to a lesser extent, cousin 

cell cycle times were clearly correlated (Figure 2D, E, S2D, 𝜌 = 0.55 ± 0.04 for sisters and 

𝜌 = 0.31 ± 0.01 for cousins). Clusters of cell cycle synchrony have been suggested to occur 

in the growing wing disc based on fixed imaging of cell cycle markers (Milan et al., 1996). Do 

spatial correlations between neighboring cells explain that cousins have correlated lifetimes, 

despite daughters being uncorrelated with mothers? Indeed, nearest neighbors born within a 30 

minute interval of each other had cell cycle times which were positively correlated (Figure 2D, 

E, S2D, 𝜌 = 0.35 ± 0.04). Looking at cycle times for pairs of cells as a function of their 

distance, the cell cycle time spatial correlation decreased on the scale of a few cells (Figure 2E, 
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S2E). We wanted to test if these measured spatial correlations could explain correlations 

measured for cousin cells. We therefore obtained correlations between cells that are not cousins 

but are sharing the same statistical distribution of birth time difference and neighbor relations 

as cousins (Figure S2F-H, section 1.5 in the Supplementary Theory). Correlations between 

cycle time for these cells was comparable to cousin correlations, indicating that proximity 

relations can to a large extent explain cousin-cousin correlations. 

 

Given that cycle times are spatially, but not temporally correlated, can the oscillation in cell 

division rate be attributed to the relatively narrow cell cycle time distribution (Figure S2A, 

coefficient of variation of cell cycle times 0.22±0.02, mean ±SD over 4 WTs)? To test this, we 

simulated a growing population of cells with cycle time chosen stochastically from the 

experimentally measured cell cycle time distribution. If cells initiate growth sufficiently 

synchronously, the proliferation rate shows a damped oscillatory behavior, with the oscillation 

amplitude decaying as the population becomes progressively unsynchronized (see Figure S2I 

and Figure 3H below). This suggests that a narrow distribution of cell cycle time together with 

synchronized initiation of growth, can explain the oscillatory behavior in cell division rates.  

 

Histoblasts transition to growth arrest 

We wished to determine why cell division rates decay strongly after ~28 hAPF (Figure 2A). In 

the Drosophila wing growth termination is associated with a gradual increase in cell cycle time 

(Mao et al., 2013; Martin et al., 2009; Wartlick et al., 2011b). In contrast, histoblast cell cycle 

times vary little throughout development and do not increase at late stages to an extent that can 

account for proliferation arrest (Figure 2B). The discrepancy between average cycle times and 

average cell division rate implies that a fraction of histoblasts stop dividing. We therefore 

computationally labelled cells that did not divide until the end of our movies, which we denote 

as arrested histoblasts (Figure 2F). Cell division rates have almost reached zero by the end of 

each movie, indicating that histoblast cells have largely stopped proliferating by ~31 hAPF 

(Figure 2A). Labelling these arrested cells revealed a spreading pattern of emerging arrested 

histoblasts, which progressively cover the entire histoblast nest (Figure 2F, Movie 2). These 

arrested cells start to appear with a low probability around 24 hAPF and after 28 hAPF, nearly 

all newborn cells are arrested (Figure 2G). Do arrested histoblasts appear in a systematic spatial 

pattern within the nest? To test this, we labelled all tracked arrested cells in the final frame of 

our movies (which, by our definition, have all exited the cell cycle) according to their time of 
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birth (Figure 2H).  We did not find a consistent spatial trend across all WT movies (Figure 2H, 

Movie 2).  

 

We therefore treated the appearance of arrested cells as a stochastic process, and quantified, 

for every cell division, the probability to give rise to one or two arrested cells (𝑝) and, given 

that at least one of the daughter cells is arrested, the probability that both the two daughter cells 

are arrested (𝛼) (Figure 2I-K). The probability 𝑝 and 𝛼 increased sharply from about 0 before 

24 hAPF to almost 1 after 28 hAPF, indicating that histoblasts transition abruptly to 

proliferative arrest, rather than gradually increasing cell cycle times as reported in other tissues 

like the Drosophila wing disc. 

 

Simulations recapitulate cell number increase from 0 hAPF to 36 hAPF 

We wished to use numerical simulations to test whether (i) cycle times randomly chosen from 

a narrow distribution and (ii) stochastic transition to cell cycle arrest with a probability 

changing over time could quantitatively account for histoblast growth (Figure 3A). We first 

quantified the number of histoblasts between 0 hAPF and 16 hAPF, during the prepupal and 

early pupal stages (Figures 3B-C). At early times, before ~3 hAPF, we could follow cell 

division by time lapse and measure an average cell cycle time of ~2.7h (Figure 3D and Movie 

3). Later, between ~4 hAPF and ~16 hAPF, continuous live imaging was not possible because 

of the extensive movements of the pupae. Therefore, we quantified the number of cells in the 

anterior histoblast nest in fixed images at different times between 0 hAPF and 16 hAPF (Figure 

3E, 3F). This indicated that the short cell cycle time measured before 3 hAPF was not 

maintained at later times (Figure S3A) but instead was slowing down (Figure 3D-E). As 

previously described (Ninov et al., 2007), our quantification was consistent with roughly 3 

cleavage divisions occurring up to ~12 hAPF (Figure 3F). Cell number plateaus between ~12 

hAPF and ~14 hAPF, before undergoing a sudden rise between ~14 hAPF and ~16 hAPF; 

supporting previous observations that growth occurs in two phases, a cleavage phase up to ~12 

hAPF and an expansion phase starting after 14 hAPF (Ninov et al., 2007). 

 

Using these data, we performed a simulation of tissue growth where (i) sister cells take a cycle 

time at their birth out of a bivariate normal probability distribution with a time-varying mean, 

coefficient of variation (CV) and fixed sister correlation coefficient, (ii) cells pause their 

divisions between 12.5 hAPF and 14.7 hAPF but still age, giving rise to a burst of cell division 
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around 15 hAPF (iii) cells stop proliferating according to the experimentally measured 

probability distribution, (iv) cells transition to SOPs with a fixed probability in a time window 

(Figure 3A, Supplementary Theory). The mean and SD of the simulated cycle time probability 

distribution before 3.3 hAPF and after 14.7 hAPF were taken according to experimentally 

measured distributions (Figure 3D, Supplementary Theory). Between these two phases, the 

mean cell cycle time was taken as the starting value of the expansion phase at ~15 hAPF 

(Figures 3D, S3B). This model of tissue growth could closely match the increase in the total 

number of cells, the total number of arrested cells and the number of SOPs over time (Figure 

3E-G, see Figures S3C-F for effect of changing model parameters). The simulated cell division 

rate exhibited oscillations comparable in period and amplitude to experimental data, as well as 

a similar decay phase (Figure 3H).  As expected, oscillations in simulated cell division rate 

were strongly dependent on the CV of cell cycle time, becoming much flatter with less precise 

cycle times (Figure 3I). We conclude that the essential features of cell number increase in 

histoblasts are accounted for by the key mechanisms captured in our simulations. 

 

We noticed that in our simulations, oscillations in cell division rate after 16 hAPF were 

enhanced by the pause in cell division that we introduced, which tends to resynchronize cell 

division at the end of the pause, whereas a different implementation of a pause that did not 

cause such resynchronization resulted in flatter oscillations (Figure S3C). To test whether our 

simple simulation rules capture the cell division rate oscillation independently of this choice, 

we simulated tissue growth for different WTs after 16 hAPF, taking the initial cell number and 

experimental times to division as initial conditions (Figure S3G). The oscillation in cell 

division rate was still present in these simulations, but in some cases was less pronounced than 

in experiments (Figures S3H-J). These observations suggest that additional couplings between 

cells in the tissue might contribute to further enhance the oscillation in cell division rate. 

 

Overall, we identify two key events in abdomen growth: a pause in proliferation between the 

cleavage and expansion phases, and a sudden transition of individual cells to arrest, ending 

proliferation. Given the reported effects of tissue mechanics on proliferation in several 

biological systems, we next investigated whether these key steps were associated to changes in 

mechanical properties. 

 

Junctional tension increases during abdomen development 
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We explored whether mechanical stresses were changing in histoblast nests over time. We 

performed single junction ablations in different regions of the anterior nest and calculated the 

recoil velocity of the junction vertices (Figures 4A-E, S4A). We found two distinct behaviors 

depending on the location of junctions with respect to the LECs: although there was little 

change in the recoil velocity of junctions at the LEC/histoblast boundary, junctions away from 

the boundary showed an increase recoil after 21 hAPF, as well as a bias towards the dorso-

ventral (DV axis) (Figures 4C-E and S4A). We tested whether this increase in junction recoil 

after ablation was associated to cell shape changes, but found no clear correlation between 

junction length and recoil velocity at all developmental stages (Figure S4B). As LECs are 

contiguous with the histoblasts, we also examined if they experienced changes in tension. 

Using laser ablation, we excised individual LECs, and followed the subsequent LEC 

deformation (Figures 4F-H, S4C-E, Movie 4). At 16 and 21 hAPF, LECs showed minimal 

shape changes (Figure 4G, H, S4C). At 26 hAPF however, there was a large reduction in apical 

area upon ablation (Figure 4G, H, S4C) and the shape contraction was slightly more 

pronounced along the antero-posterior (AP) than the DV axis. This is consistent with a recently 

reported increase in recoil velocity in single LEC junction ablations between 20 and 27 hAPF 

(Michel and Dahmann, 2020). Surprisingly, we therefore observe that recoil velocities of 

histoblast and LECs increase over developmental time.  

 

Examining Myosin II (Myo II) levels at junctions (Figures 4I-P, S4F, G, Movie 5) showed that 

the highest levels in histoblasts are at the histoblast-LEC boundary (Figure 4I-K, Michel and 

Dahmann, 2020), likely explaining the large interfacial recoil after ablation between the 

histoblast nests and LECs (Figure 4C).  However, Myo II junctional levels globally decline 

throughout development, whilst also switching from a slight intensity bias along DV junctions 

at 16 hAPF to being isotropic at 31 hAPF (Figure 4M-P). We also observed no strong 

dependency of Myo II intensity on junction length (Figure S4F). We conclude that the increase 

in recoil velocity over time is not linked to an increase in Myo II junctional levels. 

 

Junctional tension is only one of the components generating forces in the tissue, so we 

wondered if the large-scale tissue tension was changing over time in the same way as junctional 

recoil velocity. To test this, we performed apical annular cuts with a diameter of about 10 cells 

in a defined region of the anterior histoblast nests at different time points (Figure 5A, Movie 

4).  Consistent with observations of single-junction ablations, the strain and recoil velocity 
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measured in the AP and DV directions were increasing over time (Figure 5B, S5A, B, Star 

methods). In addition, the spatial pattern of cell area contraction within excised discs exhibited 

a striking change over time. Cell area contraction was mostly confined to the disc edge at 16h, 

and this edge bias disappeared at 31 hAPF (Figure 5C). Since a free elastic disc under isotropic 

tension should constrict uniformly (Supplementary Theory), we reasoned that this observation 

indicated that cell movement was initially limited by an external elastic resistance. We 

therefore compared experimental patterns of isotropic shear (relative cell area change) and 

anisotropic shear (change in cell elongation) to a continuum model where the tissue is described 

as an elastic material under active tension, adhering to an external substrate through elastic 

links (Figure 5D-H, S5D-F). Fitting this model to spatial profiles of excised discs and tissue 

outer boundary deformation at different times (Figure 5E), we found that the parameter 

describing external resistance to the disc deformation was strongly decreasing over time 

(Figure 5F). The model also indicated that the tissue internal AP tension was roughly constant 

over time (Figure 5G), while the DV tension increased after 26 hAPF (Figure 5H).  We 

therefore conclude that build-up of compressive stresses does not occur in the histoblast nest, 

and therefore is not responsible for growth arrest as has been suggested for other tissues (Irvine 

and Shraiman, 2017) 

 

The basal extracellular matrix is degraded during histoblast expansion from 13 hAPF 

Why does the external resistance to tissue deformation appear to decrease over time? The apical 

surface of the histoblasts and LECs is in contact with the pupal cuticle, while the basal surface 

is attached to a basement membrane containing Collagen IV (Viking – Vkg in flies) (Ninov et 

al., 2010 and Figure S6A). We therefore quantified basal extracellular matrix (ECM) dynamics 

during pupal abdominal development. We investigated the dynamics of the three major 

Drosophila basal ECM components, Perlecan (Drosophila Trol), Collagen IV and Laminin B1 

(LanB1) from 4 hAPF to 32 hAPF. During the pre-pupal stages (4 hAPF – 12 hAPF), all three 

components are present as a dense network across the entire abdomen (Figure S6B, C), but are 

slowly degraded (Figure S6B, C, Movie 6). At 12 hAPF, head eversion compresses the ECM 

network along the AP axis, leading to an increase in ECM component intensity (Movie 6, 

Figure S6B, C). This is followed by degradation of all three ECM components across the entire 

abdominal region from around 13 hAPF, consistent with previous work indicating that 

Collagen IV under the histoblasts is degraded between 16 and 28 hAPF (Ninov et al., 2010). 
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We found that Perlecan is degraded at a faster rate than Collagen IV and Laminin B1 (Figure 

S6B, C, Movie 6). 

 

We examined at higher spatial resolution whether the basal ECM is degraded in a similar 

manner under the histoblasts and LECs, after 16 hAPF. Both Perlecan and Collagen IV are 

degraded at a similar rate under both cell populations, and by 21 hAPF we only detect a residual 

punctate signal in hemocytes (Figure 6A, B, Movie 6). LanB1, on the other hand, is degraded 

under the LECs, but is maintained at a higher level under the histoblasts than under the LECs 

(Figure 6A, B, Movie 6). To identify potential mechanisms for ECM degradation, we imaged 

a transcriptional reporter for the secreted Drosophila matrix metalloprotease, MMP1 (Wang et 

al., 2010). mmp1 is expressed in cells below the epidermis (e.g. muscles, fat body - FB and 

hemocytes), and weakly in the polyploid LECs, but not in the histoblasts (Figure 6C). mmp1-

GFP levels rapidly increased during histoblast expansion, suggesting that MMP1 release by 

the underlying cells triggers the remodeling of the ECM (Figure 6C, D, Movie 7).  

 

To test whether the reduction in basal ECM components caused the loss of external mechanical 

resistance inferred from annular ablations, we overexpressed MMP1 or TIMP (Tissue inhibitor 

of metalloproteases, an endogenous MMP inhibitor) in the LECs (32B-GAL4 driver) and 

performed annular cuts on the histoblasts. Area contraction was less concentrated at the edge 

of excised discs in pupae overexpressing MMP1 than in WT at 21h APF (Figure 7A) and the 

disc overall deformation magnitude was more pronounced at early times and comparable at 

later times (Figure 7B, C, S7A-D). In contrast, in TIMP overexpression at 26 hAPF, the area 

deformation profile was concentrated near the boundary of the disc and the overall deformation 

magnitude was reduced compared to WT (Figure 7A-C, S7E-H). These results are intuitively 

consistent with the ECM providing external resistance to tissue deformation; as resistance 

decreases when the ECM is degraded early (MMP1 overexpression), and increases when the 

ECM persists for longer (TIMP overexpression). To obtain a quantitative read-out, we fitted 

our continuum model to experimental deformation profiles in MMP1 and TIMP 

overexpression, as for annular ablations in WT pupae (Figure 5D). This confirmed that external 

resistance to the disc deformation was decreasing early in MMP1 overexpression and was 

strongly increased in TIMP overexpression (Figures 7F, G). Tissue tension was generally 

similar to WT in these perturbations, except for an increase of isotropic tension at 16 hAPF in 

MMP1 overexpression (Figures 7H, I and S7I, J). Overall, these results are consistent with a 
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progressive disappearance of essential ECM components after 13 hAPF, resulting in reduced 

external resistance to deformation of the histoblast epithelium. 

 

Basal ECM remodeling is necessary for histoblast nest expansion 

The ECM degradation that occurs between 14 and 21 hAPF coincides with the transition from 

the histoblast cleavage divisions to the expansion divisions (Figure 3). We therefore 

investigated whether blocking ECM remodeling has an effect on histoblast proliferation by 

overexpressing TIMP, which as expected prevented Collagen IV degradation (Figure 7J, S7K, 

Movie 7). Next, we analyzed the behavior of the histoblasts while preventing basal ECM 

degradation with TIMP overexpression (Figures 7K). No proliferation was observed in the 

histoblasts during the time period observed, from 16 to 31 hAPF (Figure 7K, Movie 7), which 

is strikingly different from extensive proliferation seen in the wild type histoblasts over the 

same time period (Figure 1B). The lack of proliferation was not due to early pupal death since 

our experimental samples developed to the pharate adult stage with a normal head, thorax and 

wing (Figures 7L, S7L). Moreover, a pupal wing imaged simultaneously with the abdomen in 

a TIMP-expressing pupa proliferated normally at 16 hAPF (Figure S7M, Movie 7). In contrast, 

the larval abdomen failed to be replaced by the histoblasts, as evidenced by the lack of 

pigmentation and sensory bristles (Figure 7L, S7L). Thus, the expansion phase of cell division 

in the histoblasts fails to start in animals overexpressing TIMP. This provides evidence that 

basal ECM remodeling triggers the start of cell growth and proliferation during Drosophila 

abdominal epithelium expansion. 
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Discussion 

 

Our quantitative analysis has allowed us to identify the major landmarks of abdomen growth. 

We find that following ~3 cleavage divisions, a pause in proliferation rate precedes an 

expansion phase. After ~ 4 cell divisions (Table S1), the expansion phase ends with cells 

individually transitioning to arrest. Beyond this global picture of histoblast growth, our dataset 

and simulations provide several surprising insights. 

 

Correlations in cell cycle times 

We find that cell cycle times are not temporally correlated, nor are they dependent on cell 

geometry, but exhibit spatial correlations on a scale of a few cells (Figures 2, S2). Tracking of 

single cells in culture has led to the identification of a pervasive phenomenon known as the 

“cousin-mother inequality”, whereby cousins display a surprising degree of cell cycle time 

correlation given weak mother/daughter correlations (Mosheiff et al., 2018; Sandler et al., 

2015). This phenomenon has been attributed to the interplay of the cell cycle machinery with 

the circadian clock (Chakrabarti et al., 2018; Sandler et al., 2015), or the inheritance of cell 

mass or cell cycle regulators over several generations (Kuchen et al., 2020). In our developing 

in vivo system, we propose that spatial correlations largely explain the “cousin-mother 

inequality” in cell cycle time correlations. While we cannot distinguish whether these spatial 

correlations arise from cell-cell communication or exposure of neighbors to a common 

microenvironment, we note that spatial patterns of cell cycle time vary significantly in time 

and between pupae (Figure S2E). We speculate that these neighbor correlations are a signature 

of cell-cell communication mechanisms which might also ensure that tissue-wide events, such 

as transition to arrest take place in a coordinated manner. 

 

Growth termination: a gradual or abrupt process? 

The Drosophila wing imaginal disc is arguably the system in which growth and final size 

control have been studied most extensively (Gou et al., 2020). A striking aspect of this system 

is that cell proliferation decelerates progressively during roughly half of the larval growth 

period (Gou et al., 2020). A similar scenario was observed during postnatal growth of the 

mouse skin, where the cell cycle time of epidermal progenitors gradually increases over sixty 

days following birth (Dekoninck et al., 2020). In contrast, we find that termination of tissue 

growth is not mediated by a progressive increase in cell cycle time, but by the sharp, stochastic 
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transition of a growing population of cells to proliferative arrest, with no visible large-scale 

pattern (Figure 2). This is reminiscent of models which have been proposed for growth and 

differentiation of neurons in the retina (He et al., 2012), growth of mouse intestinal crypts 

(Itzkovitz et al., 2012) or the expansion of the mouse embryonic skin (Lechler and Fuchs, 

2005). In these tissues, a relatively abrupt transition in modes of progenitor divisions switch 

the tissue from expansion to maintenance and differentiation. This suggests that different 

developing tissues can achieve reproducible sizes using radically different growth termination 

strategies. It is possible that the sharp transition we observe here allows for fast expansion of 

the histoblast nest, at the cost of a less refined control over the final number of cells than would 

be allowed by a progressive slow-down in proliferation, as observed in the wing disc or mouse 

skin (Itzkovitz et al., 2012). 

 

Mechanical control of developmental growth 

Mechanical control of growth is an attractive model for tissue size determination supported by 

the study of the effects of cellular density on the proliferation of tissue culture cells (Irvine and 

Shraiman, 2017; Panciera et al., 2017). In this scenario, crowding leads to cell cycle arrest as 

cells reach confluence through compaction, driving a reduction in cell area. By analogy to cells 

in culture gradually filling empty space on the culture dish surface, it is tempting to speculate 

that histoblasts, which grow within a confined planar surface, are subjected to mechanical 

crowding leading to growth termination. However, we did not find a signature of a feedback 

of cell area affecting the cell division rate. Furthermore, laser ablation experiments indicate 

that the tissue tension is either constant (in the AP direction) or increasing (in the DV direction) 

(Figure 5, S5). Decreased Myo II accumulation has been proposed to mediate the effect of cell 

crowding on proliferation in the wing disc (Pan et al., 2018; Rauskolb et al., 2014). However, 

though an area of lower apical Myo II levels emerges in the medial part of the anterior dorsal 

nest from around 21 hAPF (Figure S5F), this does not lead to a similar pattern of increased cell 

cycle time or early exit from the proliferation phase. Finally, the transition from growth to 

arrest in the abdomen occurs between ~24 and ~28 hAPF, whereas the displacement of the last 

LECs and fusion of the dorsal nests at the midline takes place between 32 and 36 hAPF 

(Madhavan and Madhavan, 1980; Michel and Dahmann, 2020). Thus, changes in cell geometry 

or mechanical tension do not appear to provide a universal growth termination cue. 

 

Matrix remodeling and tissue growth control 
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The transition between the prepupal cleavage divisions to the expansion phase represents a key 

step in abdominal development. This involves both a lengthening of the cell cycle, and a 

resumption of tissue growth. The depletion of Cyclin E stores accumulated during the larval 

growth period is thought to account for the increase in cell cycle length (Ninov et al., 2007). 

Here, we show that remodeling of the basal ECM is an essential step to allow nest expansion 

to take place. Dynamic remodeling of the ECM plays an instrumental role in organ 

development by orchestrating processes such as cell migration and rearrangements (Ramos-

Lewis and Page-McCaw, 2019; Walma and Yamada, 2020). Partial degradation of the basal 

ECM (Collagen IV and Perlecan are degraded, while some Laminin persists) initiates at around 

13 hAPF and is required for histoblast expansion to occur. Indeed, blocking ECM degradation 

through the expression of TIMP prevents the transition to expansion divisions (Figure 7K, L).   

 

How is the degradation of the basal ECM triggered at the correct time? MMP1 and MMP2, the 

two Drosophila MMP family members, are responsible for most basement membrane turnover, 

and have been implicated in the remodeling of a number of tissues during metamorphosis 

(Diaz-de-la-Loza et al., 2018; Ramos-Lewis and Page-McCaw, 2019). We did not detect high 

levels of the MMPs in the histoblasts or LECs, but MMP1 levels dramatically rose in the FB 

and hemocytes beneath the epidermal epithelial layer (Figure 6C, D). The hemocytes might be 

implicated in epidermal basement membrane remodeling, since they are highly active at that 

stage and take up much of the GFP-tagged Collagen IV and Perlecan in large phagocytic 

vesicles (Figure 6A). Alternatively, the release of MMPs into the hemolymph as the FB 

disperses might trigger the degradation of the epidermal ECM and histoblast nest expansion. 

Indeed, in response to the pupariation ecdysone pulse, FB cells secrete MMP1 and MMP2, 

causing the destruction of the cell-cell junctions and ECM that hold them together between 6 

and 12 hAPF (Bond et al., 2011; Jia et al., 2014).  

 

How does ECM degradation enable tissue growth? One possibility is that loss of signaling from 

the ECM via integrins signals the onset of the expansion divisions. However, this would be 

unexpected as in many systems, integrin signaling promotes rather than inhibit growth and 

proliferation (Hamidi and Ivaska, 2018). A second possibility is that the histoblast nests are 

prevented from expanding because cell motion is impaired by strong adhesion to the ECM: the 

increased tissue-ECM attachment observed in TIMP pupae (Figure 7G) might explain the lack 

of growth of the histoblasts in this condition. Finally, basement membrane remodeling might 
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free a source of trapped growth factor/morphogen, or allow a ligand present in the hemolymph 

to access the histoblasts. Indeed, the ECM has been shown to act as a growth factor reservoir 

(Bonnans et al., 2014; Hynes, 2009) or to restrict morphogen diffusion (Ma et al., 2017; Tian 

and Jiang, 2014; Wang et al., 2008) in several tissues. It is interesting to consider this repressive 

effect of the ECM on developmental proliferation in the context of the proposed role of the 

normal cellular microenvironment in limiting cancer formation (Bissell and Hines, 2011). It is 

likely that oncogenic transformation involves the exploitation of developmental ECM 

remodeling mechanisms to convert the ECM from an anti-tumor to a pro-tumor environment 

that promotes proliferation and tissue invasion (Bissell and Hines, 2011; Chang and Chaudhuri, 

2019). 
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Figure 1. Quantitative analysis of cellular contributions to abdomen growth  

(A) Drosophila life cycle, with histoblasts in green. The red dotted rectangle on the pupa 

indicates the field of view imaged in (B). Adapted from (ISBN 9780879694722). 

(B) Top row: Histoblasts in live pupa expressing E-cad::GFP at the time points indicated. 

Yellow dotted line surrounds the histoblast nests. At 16 hAPF, the anterior (larger) and 

posterior (smaller) histoblast nests are still visible and surrounded by the LECs. The nests then 

spread and eventually occupy the entire surface of the segment.  Middle row: Heat map 

showing cell areas. Bottom row: labelled regions of interest (ROIs); Anterior (green+magenta), 

posterior (red) and the ‘no border’ ROI (magenta). Scale bars=50 µm. Dorsal is to the top, 

anterior is to the left in all images, unless otherwise indicated. 

(C) Decomposition of the cumulative area expansion rate of the tissue into contributions from 

cell division, cell area change and cell extrusion (WT1, noborder ROI). 

(D-F) Cumulative tissue area expansion rate (D) and contributions from cell division (E) and 

cell area (F), for 4 different WTs. WTs are time-aligned based on the appearance of sensory 

organ precursor (SOP) cells (Figure S1G). 
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Figure 2. Histoblast cell cycle times and transition to proliferative arrest 

(A) Cell division rate in each WT movie as a function of time (after application of moving 

average, with a top-hat smoothing kernel with window size 0.875 h). The cell division rate 

oscillates up to ~28 hAPF before decaying. Data from noborder ROIs. 

(B) Cell cycle time as a function of birth time for each WT movie. Data from noborder ROIs. 

(C) Cell cycle time as a function of initial cell apical area, for each WT movie. Larger dots: 

binned data. Error bars: SEM for the bin.  Faint smaller dots: individual data points. Data from 

noborder ROIs. 

(D) Probability density of pairs of cell cycle times, where pairs are taken between, from left to 

right, mother-daughters, sisters, cousins, and nearest-neighbors whose birth time differ by less 

than 0.5 hours. Cells are taken from the visible anterior nests. Sister cells are excluded from 

neighbor correlations. 𝜌 , Pearson correlation coefficient (see Supplementary Theory). 

Mean±SD are calculated over the values for the 4 WTs. Spearman correlation coefficients are 

𝜌- =0.06±0.04 (mother-daughters), 𝜌- =0.62±0.03 (sisters), 𝜌- =0.33±0.03 (cousins), 

𝜌-=0.41±0.02 (nearest-neighbours born at similar time). 

(E) Pearson correlation coefficient 𝜌 of cell cycle times for mother-daughter pairs, sisters, 

cousins, and increasing cell-cell distance (sister cells excluded). 

(F) Snapshots showing the appearance of SOPs and arrested cells within the noborder ROI 

(WT1 movie).  

(G) Fraction of created cells that are arrested as a function of time, for all WT movies (color 

code as in panels A-C). 

(H) Snapshots of the final frame for each WT movie with arrested cells colored by the time of 

their appearance, relative to each movie’s “switch time” for the probability of arrested cell 

creation (panel J).  

(I) Schematic defining the parameters 𝑝 and α characterizing arrested cell creation.  

(J) Probability 𝑝 that a division creates at least one arrested cell as a function of time. Each 

movie’s 𝑝 curve can be fitted with its own Hill function (not shown) and the switch time of 

that function is referenced in (H). Black dashed line, manual fit to the average movie behavior. 

(K) Probability 𝛼 that a cell division gives rise to two arrested cells, conditioned on the cell 

division giving rise to at least one arrested cell. Blacked dashed line, as in (J). 
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Figure 3. Kinetics of histoblast growth can be explained by changes in cell cycle times and 

stochastic transition of individual cells to an arrested state 

(A) Schematic of histoblast growth simulations. Cells take their cycle time from a probability 

distribution changing in time and become arrested or SOPs according to time-evolving 

probabilities. 

(B, C) Example time-lapse confocal images of histoblast nests at the times indicated during the 

pre-pupal (B) and pupal (C) stages. Histoblasts are labelled by driving nls-GFP expression in 

this tissue. In B, the orientation of the animal is rotated compared with other panels. Scale bar 

= 50 µm. (A = Anterior, D = Dorsal, P = Posterior) 

(D) Black points: experimental measurements of cycle times available in the first 3 hAPF. 

Colored points and error bars: binned mean and standard deviation of cycle from WT1-WT4. 

Grey line and ribbon: mean and standard deviation of cell cycle time inputted to the simulation. 

In the time period covered by the colored points, the grey line is a 3rd-order polynomial fit to 

the data points.  

(E) Quantification of anterior nest cell numbers from 0 hAPF until 16 hAPF (green dots, with 

average and standard deviation indicated in black). During the first 10 h of pupal development 

histoblasts undergo 3 divisions followed by a transient pause in cell number increase until the 

expansion phase begins at around 15 hAPF. Grey line and ribbon: mean +/- SD of trajectories 

from a representative simulation, as described in the text. 

(F) Data from (E) scaled so that the vertical axis represents the mean number of division cycles 

per cell. 

(G) Comparison of normalized cell numbers for different cell classes in the noborder ROI 

between experimental measurements (lighter ribbons) and base case simulations (darker lines 

and ribbons). Cell numbers for different WTs are normalized as described in Supplementary 

Theory.  

(H) Comparison of the experimental cell division rates within the noborder ROI from each WT 

movie (colored lines) with a representative simulation (grey line). Moving average applied as 

in Figure 2A. Inset: Absolute value of the Fourier transform of the division rate data prior to 

28.5 hAPF, normalized to its value at 0 frequency. The height and sharpness of the main peak 

around 0.25 hr-1 characterizes the oscillatory component of waves of division. Inset; black: 

mean and SD from n=4 experiments, red: mean and SD from n=10 simulations. 
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(I) As H but for a simulation in which the CV after 14.7 hAPF is doubled to 0.4. The peaks in 

the division rate become noticeably less sharp and more disordered, also reflected in the Fourier 

transformed data (inset). 
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Figure 4. Junctional tension increases through development 

(A) Snapshots of laser ablation experiments. Red color; before laser ablation;  green color; time 

frames after laser ablation. Scale bar = 5 𝜇m.  

(B) Confocal image of dorsal histoblast nests at 16 hAPF where the position of boundary, distal 

and proximal cells is highlighted. 

(C-E) Quantification throughout development of recoil velocity for single junction ablations 

for cells located along the boundary (C, perimeter junctions n=38, 31, 29 and orthogonal 

junctions n=39, 31, 29 at successive times), or in the distal (D, DV junctions n=16, 19, 30, 20 

and AP junctions n=16, 9, 24, 21) and proximal (E, DV junctions n=16, 11, 33, 21 and AP 

junctions n=21, 22, 38, 22) positions within the nest. 

 (F) Snapshot of an LEC at 16 hAPF in the resting state after an annular ablation in an E-

cad::GFP-expressing animal. Excised LECs were segmented (yellow) and their shape change 

analyzed to assess strain.  

(G) Representative LEC segmentations after ablation, temporally overlaid for each 

developmental stage examined. 

(H) Quantification of Hencky’s true strain for LEC AP (short) and DV (long) axes, after 

ablation.  

(I-L) Example apical projections of confocal images from a pupa expressing Sqh::GFP (Myo 

II) and E-cad::mKate2 at the indicated time points. Note the higher levels of Myo II intensity 

at the Histoblast-LEC boundary (yellow arrowheads), and the Myo II supra-cellular cable at 

the histoblast AP nest boundary (green arrowheads) (Umetsu et al., 2014). Scale bar = 50µm. 

(M-P) Polar-plots of apical Myo II intensity (radius) as a function of junction angle (black line 

denotes median intensity and dark grey denotes the inter-quartile range) at different times (as 

in I-L). 
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Figure 5. Deformation of excised histoblasts reveals a reduction in external resistance 

 to histoblast movement 

(A) Example time-lapse confocal images of histoblasts at the resting state following an annular 

ablation (ablated region outlined in red) in E-cad::GFP-expressing animals, at different stages 

of abdomen development. Scale bar = 5µm. 

(B) Quantification of Hencky’s true strain in the Dorsal-Ventral (DV) and Anterior-Posterior 

(AP) axes of excised histoblasts throughout development. n=23, 24, 29, 16 experiments at 

successive times. 

(C) Averaged spatial map of relative area change after excision at 16 hAPF and 31 hAPF, 

plotted on the undeformed discs (n=20 (16hAPF) and n=15 (31 hAPF) experiments). 

 As time progresses, the relative area change becomes more homogeneous in the disc 

(D) The excised disc is described as an elastic material, subjected to anisotropic active tension 

𝜁0, 𝜁2 , adhering to a substrate through elastic links, with effective elastic modulus per area 𝑘.   

(E) Experiment (top) and simulation (bottom) deformation plots of excised histoblast discs. 

Color code: relative area change, black lines: anisotropic shear or change in cell elongation. 

Deformation fields are plotted on the deformed disc and are obtained from measurements 

before and 3 minutes after ablation for experiments. Red circles indicate ablated region. Gray 

squares and error bars in experimental plots: deformation of the outer circle of the ablated ring 

(mean±95% confidence interval), averaged between top/down and left/right deformations. 

Data is obtained from n=20, 12, 13, 15 experiments at successive times. 

 (F, G, H) Fitted model parameters to excised disc deformations, as a function of time. (F) 

Normalized ratio of external elastic modulus per area 𝑘 to tissue elastic modulus 𝐾5. (G, H) 

Normalized AP and DV tensions, respectively.  
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Figure 6. Basal extracellular matrix remodeling 

(A) Example maximum intensity projection of confocal images of the three major basal ECM 

components during pupal stages. Histoblast nests are outlined in yellow. Scale bars = 50µm. 

(B) Quantification of ECM components intensity underneath LECs (solid lines) and histoblasts 

(dotted lines), after subtraction and normalization to the lowest measured ECM component 

intensities under LECs (see STAR Methods), throughout pupal development (error bars: SD, 

n=3 for each genotype). 

(C) Still images of MMP1-GFP reporter expressing pupae in the basal hemolymph throughout 

development. Scale bar = 50 µm. Histoblast nests are outlined in yellow. 

(D) Quantification of MMP1-GFP maximum projection intensity in the basal hemolymph, 

measured every 20 minutes (Error bars: SD, n=2). Intensities are normalized to the mean 

intensity at 16 hAPF.  
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Figure 7. Basal ECM remodeling is necessary for histoblast nest expansion  

(A) Averaged spatial map of relative area change after excision at 21h APF for MMP and WT, 

and at 26 hAPF for TIMP and WT, plotted on the undeformed discs. The relative area change 

is more homogeneous in the MMP perturbation than in the WT, indicating reduced external 

resistance to tissue deformation. From left to right, n=12, 7, 13, 5 experiments. 

(B, C) Quantification of Hencky’s true strain along the AP (B) and DV (C) axes, calculated 

from annular ablations in pupae expressing MMP1 or TIMP under the control of 32B-GAL4. 

WT data is repeated from Figure 5. Mann-Whitney test was used to compare populations, with 

0.05>*>0.01>**>0.001>***. From left to right for both plots n=12, 23, 7, 7, 24, 7, 29, 9, 6, 16 

experiments. 

(D, E) Experiment (top) and simulation (bottom) deformation plots for excised histoblast discs, 

at 4 different time points, in pupae expressing MMP1 (D) or TIMP (E) under the control of 

32B-GAL4. Representation is as in Figure 5E. From left to right, n=11, 7, 7, 6, 7, 5 experiments.  

(F- I) Fitted model parameters for excised discs deformation, as a function of time, compared 

to parameters for WT (red, data as in Figures 5F, S5D-E).  (F, G) Normalized ratio of external 

elastic modulus per area 𝑘 to tissue bulk elastic modulus 𝐾5 in pupae expressing MMP1 (green, 

F) and TIMP (blue, G). (H, I) Normalized isotropic (sum of AP and DV tensions, 𝜁0+𝜁2) 

tensions in pupae expressing MMP1 (green, H) and TIMP (blue, I).  

(J) Quantification of the mean intensity of Collagen IV from movies of pupae expressing HA 

(control) or TIMP under the control of 32B-GAL4 (Error bars: SD, HA n=2, TIMP n=2).  

(K) Stills from a movie of a pupa expressing E-cad::GFP, and overexpressing TIMP under the 

control of 32B-GAL4 at the time points indicated. Scale bar = 50 µm. Histoblast nests are 

outlined in yellow. 

(L) Images of WT and TIMP expressing pharate pupae. Yellow arrow indicates the normal 

development of the thorax. In contrast, the abdominal cuticle is unpigmented and devoid of 

sensory bristles. 
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Movie Legends 
 
Movie 1. Overview of imaging and quantification pipeline to assess tissue growth 
dynamics of the Drosophila pupal abdomen.  
Example movies for WT1 after the initial movie has been processed through the image 
analysis pipeline highlighted in Figure S1. 
 
Movie 2. Appearance of arrested histoblasts shows no consistent spatial pattern.  
Overlays of SOPs, dividing histoblasts and arrested histoblasts for each WT movie as 
mentioned in Figure 2. 
 
Movie 3. Example movie of early histoblast cleavage divisions. Histoblasts were labelled 
with nls-GFP. 
 
Movie 4. Annular ablations on histoblasts and LECs.  
Example movies of annular ablations on WT, MMP and TIMP over-expression histoblasts 
and WT LECs at the indicated developmental timepoints. 
 
Movie 5. Myo II apical intensity during histoblast development.  
Movie of the apical junctions of histoblasts labelled with Ecad::mCherry and Sqh::GFP 
during development. Scale bar=50µm.  
 
Movie 6. Basal ECM remodeling during the pre-pupal and pupal stages.  
Example movies of the basal ECM components LamininB1, Perlecan and Collagen IV during 
pupal development. Scale bar = 50µm.  
 
Movie 7. Histoblast and pupal wing epithelial dynamics with over-expression of TIMP.  
Both the pupal wing and histoblasts were imaged at the same developmental time, but whilst 
histoblasts are arrested, cell divisions still occur in the pupal wing. 	  
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STAR Methods 
 

RESOURCE AVAILABILITY 

Lead contact 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Nic Tapon (nic.tapon@crick.ac.uk). 

 

Materials availability 

All fly stocks are available upon request or from the Bloomington Drosophila Stock Center 

(see key resources table). 

 

Data and Code Availability 

Data and code are available upon request from the corresponding authors. The software 

developed for the analysis of annular ablation experiments is provided free of charge via a 

Github repository (see key resources table). 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

All experiments were performed in Drosophila melanogaster (see key resources table and 

figure genotypes table for details of strains used). Flies were maintained at 25°C (unless 

otherwise indicated) on food generated by the Francis Crick Institute Media Facility (360 g 

agar, 3600 g maize, 3600 g malt, 1200 mL molasses, 440 g soya, 732 g yeast extract, 280 mL 

of acid mix (500 mL propionic and 32 mL orthophosphoric acid) and 50 L water). 

 

 

METHOD DETAILS 

 

FLY GENETICS AND IMAGING 

 

Fly rearing 

Flies were raised at 25°C. Pupae were collected at a pupal stage before head eversion, kept at 

25°C and then monitored hourly for head eversion to calculate pupal age as 12 hAPF, four 

hours prior to imaging at 16 hAPF.  
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The UAS-GAL4-GAL80ts system was used as (Brand and Perrimon, 1993; McGuire et al., 

2004). We induced 32B-GAL4 driven expression of TIMP and HA (control) in a temperature 

sensitive manner using the tub-GAL80ts system, co-expressing E-cad::Tom and vkg-GFP. 

Virgins of the following genotype: E-cad::Tom, vkg-GFP; 32BGAL4 were crossed to 

homozygous males tub-GAL80ts; UAS-TIMP and UAS-HA (II). Crosses were kept at 25°C. 

Larvae were raised at 18°C and placed at 29°C for 7 hours prior to imaging. Pupae were 

collected at a pupal stage before head eversion, kept at 29°C and then monitored hourly for 

head eversion to calculate pupal age as 12 hAPF, three hours prior to imaging at 16 hAPF. 

 

Imaging 

Pupae were dissected and mounted as described (Mangione and Martin-Blanco, 2020). All 

movies were acquired on a Zeiss LSM 880 confocal microscope at 25°C, with a Plan-

Apochromat 40x/1.3 oil DIC M27 objective, unless stated. For the dorsal-lateral field of view, 

images were acquired as two-tiles of 1024x1024 pixels with a 10% overlap, with 20-30 z-slices 

1μm apart, and the tiled stacks were fused in Zen Blue. WT E-cad::GFP movies were acquired 

with a frame every 2.5 minutes, TIMP overexpression movies with E-cad::GFP every 5 

minutes, E-cad::mCherry and ECM components during the pupal stages every 10 minutes, 

mmp1-GFP every 20 minutes, and the E-cad::mKate2; Sqh::GFP movies every 5 hours. The 

TIMP overexpression movies with vkg::GFP were filmed at 29°C, every 20 minutes.  

 

For imaging of the ECM during pre-pupal stages, pre-pupae were placed dorsal-laterally with 

their posterior in Voltalef 10s to image the abdominal segments. Movies were filmed on a Zeiss 

LSM 880 confocal microscope at 25°C, with a Plan-Apochromat 40x/1.3 oil DIC M27 

objective. Images were acquired as two by four tiles of 512x512 pixels with 10% overlap, 24 

z-slices 2µm apart every 30 minutes, and the tiles fused in Zen Blue.  

 

Laser ablations  

Pupae were dissected and mounted as above. All movies were acquired on a Zeiss LSM 780 

confocal microscope with a Coherent Chameleon NIR tunable laser, at 25˚C. For single 

junction ablations, an alpha Plan-Apochromat 63x/1.46 Oil Korr M27 objective was used to 

acquire a single tile of 512 x 512 pixels with 5x zoom every 500ms for 31 seconds. Junctions 

were ablated with a wavelength of 780nm at 35% power with a 4 x 25 pixel ROI positioned 

across the junction with the ablation taking 0.254ms. The vertex location was identified 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.10.376129doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.10.376129
http://creativecommons.org/licenses/by/4.0/


 57 

manually and the recoil velocity calculated using the methodology outlined in (Liang et al., 

2016). 

 

For annular ablations, a Plan-Apochromat 40x/1.3 oil DIC M27 objective was used to acquire 

a single 512 x 512 pixel tile with 5 z-slices 1µm apart every 5s for 5 – 10 minutes. For 

generating ROIs, the freehand ROI tool was used to draw between two circles/ellipses. For 

histoblasts, the ROI was a circular annulus with an inner diameter of 45.54µm (110 pixels) and 

an outer diameter of 57.96µm (140 pixels), and the multi-photon was set at 780nm between 25 

– 35% power, and the ablation was of a single z-plane at the apical surface and lasted 9.3ms. 

For LECs, an elliptical annulus ROI with inner diameter dimensions of 28.98µm (70 pixels) 

by 57.96µm (155 pixels) and outer dimensions of 38.916µm (94 pixels) by 57.96µm (185 

pixels), and the multi-photon was set at 780nm at 40% power, and the ablation was of a single 

z-plane and lasted 8.3ms. To analyze the various parameters, we followed the methodology 

outlined in (Bonnet et al., 2012). Briefly, cells within the inner disc were segmented using 

Skeletor and the inner disc axes lengths measured. To obtain strain, a bounding ellipse was 

fitted to calculate the long and short axis and then the ellipse matrix was multiplied by a rotation 

matrix and transpose rotation matrix, to calculate the deformation along the DV (y) and AP (x) 

axes; the shear component was close to zero. Strain was then calculated by taking the natural 

log of the non-ablated axis length (L) divided by the relaxed axis length (Lr); (e = ln(L/Lr). To 

calculate disc recoil velocity, we measured the change in axis length between successive 

frames. To calculate relaxation time, we took the inverse of the gradient from a straight line 

model fitted to recoil velocity as a function of axis length.  

 

Quantification of cell number in early pupal stages 

For pupal staging, white pupae (0 hAPF) were collected with a paintbrush. After selection, 

animals were transferred to fresh vials and allowed to develop at 25℃ until time of dissection. 

Before dissection pupae were gently cleaned with 1xPBS and placed in double sided tape. First, 

both the anterior and posterior ends were cut with scissors. Then, pupae were bisected laterally 

along the antero-posterior axis. Animals were then transferred to sterilized 1x PBS and the 

internal organs were cleaned from the epidermis by flushing with 1x PBS. Using forceps, the 

epidermis was detached from the pupal case and transferred to an eppendorf. Fixation was 

performed for 20 minutes in 4% formaldehyde. After fixation, the epidermis was rinsed three 
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times in 1xPBS (3x5 minutes). Finally, the tissue was equilibrated in Vectashield (with DAPI) 

overnight and mounted on coverslips. 

 

For the first hours of pupa development, 0 hAPF animals were selected and imaged every 5 

minutes for the following 4 hours to allow for manual scoring the time of first and second 

divisions. 

 

Myo II, ECM and MMP1 quantification  

To quantify apical Sqh::GFP intensity throughout development, movies were generated of E-

cad::mKate2; Sqh::GFP as previously mentioned with a five hour frame rate to minimize 

photo-bleaching. Using the E-cad channel, the apical surface was projected as mentioned 

previously, for both E-cad and Sqh channels. The E-cad was then segmented using the AI 

algorithm and manually corrected. The intensity of Sqh was calculated for each junction, as 

well as the length and angle of junction relative to the DV axis.  

 

To quantify ECM dynamics, movies were acquired as mentioned previously. For analyzing 

pre-pupal dynamics an ROI of the final abdominal position within the field of view was 

generated and the mean intensity of ECM components measured over-time. Intensity data was 

normalized to the value at 13 hAPF for each movie which is the first timepoint after head 

eversion where all movement has ceased. For analyzing pupal dynamics an ROI was generated 

for the ECM under histoblasts and LECs, and the intensity for each cell population calculated 

over-time. Values were subtracted and normalized to the mean value of the five frames with 

the lowest mean intensity under the LECs.  

 

Figure genotypes 

Figure  Cross 
 

Genotypes 
 

Figure 1B-F, 
S1C-O, 2, S2, 3D, 
3G-I, S3D, S3C-
F, S3H-J, 4, S4, 
5A-E, S5A-B, 
7A-B, 7G-I 

 y[1] w[*]; TI{TI}shg[GFP] (E-
cad::GFP); FRT82B ubi-nlsGFP/+ 

Figure 3B-F, 
S3A-C, S3E 

Crossed virgins of  

esgNP1248-GAL4/CyO 

to males of  

esgNP1248-GAL4/UAS-FLP; 
act>y+>Gal4 UAS-GFP/+ 
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UAS-FLP/CyO; act>y+>Gal4 UAS-
GFP/TM6b 

Figure 3D Crossed virgins of  

esgNP1248-GAL4, E-cad::GFP/CyO 

to males of  

UAS-mCherry.NLS 

esgNP1248-GAL4, E-Cad::GFP/UAS-
mCherry.NLS 

Figure 5I-L, S5F-
H 

Crossed virgins of  

E-cad::mKate2  

to males of  

sqh-GFP.RLC 

E-cad::mKate2 ; sqh-GFP.RLC 

Figure 6A, B, 
S6B, C 

Crossed virgins of  

E-cad::mTomato  

to males of 

trol (Perl)::GFP or lanB1::GFP 

trol (Perl)::GFP/+ ; E-
cad::mTomato / + and E-
cad::mTomato / lanB1::GFP 
 
 

Figure 6A-B, 
S6B-C 

 E-cad::mTomato, vkg-GFP 

Figure 6C, D  Mmp1.GFP ; +/+ 

Figure S6A Crossed virgins of  

wiso to  

vkg-GFP, E-cad::mTomato 

vkg-GFP, E-cad::mTomato /+ 

Figure 7A-D, 7F, 
7H, S7A-D, S7I 

Crossed virgins of  

E-cad::GFP ; 32B-GAL4  

to males of 

UAS-MMP1 (III) 

E-cad::GFP/+ ; 32B-GAL4/UAS-
MMP1 
 

Figure 7A-C, 7E, 
7G, 7I, 7J-L,  
S7E-H, S7J-M 

Crossed virgins of  

E-cad::GFP ; 32B-GAL4  

to males of  

UAS-TIMP (III) 

E-cad::GFP/+ ; 32B-GAL4/UAS-
TIMP 
 

Figure S7K Crossed virgins of  

tub-GAL80ts ; 32B-GAL4  

to males of  

vkg-GFP, E-cad::mTomato; UAS-HA or 
vkg-GFP, E-cad::mTomato; UAS-TIMP 

vkg-GFP, E-
cad::mTomato/tubGAL80ts ; 32B-
GAL4/UAS-HA 
vkg-GFP, E-
cad::mTomato/tubGAL80ts ; 32B-
GAL4/UAS-TIMP 

 

MOVIE SEGMENTATION AND ANALYSIS 
 
Overview of the segmentation and tracking pipeline  
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The aim of the image analysis pipeline was to identify, track and classify individual cells within 

the developing histoblast nests. The image processing was performed on projected cell surfaces 

which were subsequently segmented (skeletonized) first before being tracked. These two steps 

were designed to be complementary. The segmentation informed the tracking which 

highlighted issues with the segmentation. Any errors detected through the cell tracking allowed 

the segmentation to be corrected and improved. The subsequent analysis in TissueMiner 

required a segmented and tracked cell image sequence which was of sufficiently good accuracy 

in order to provide reliable and meaningful interpretations. Therefore, in addition to an 

automated tracker, a set of interactive tools were developed to provide the option to manually 

correct the segmented image sequences and the results from the tracking. 

 

Post-imaging 
Input: Microscope creates .czi file with Z-stacks in time 
Open .czi Zeiss Microscopy Image file in ImageJ/Fiji and export as .btf (BigTif) 
Output: BigTif: Z-stacks in time  
 
Projection 
Input: Btf file saved in ImageJ/Fiji, full Z-stacks for each time point  
Open surface projection programme in Matlab 
Use GUI to manually identify the desired projection regions in every 10th frame 
Projection programme automatically interpolates projection for the frames in between 
Output: Tif: single projected slice for each time point 
 
Skeletonization 
Input: Tif: single projected slice for each time point 
Using Skeletor, set threshold to between 0.2-0.3 
Generates separate .tiff files of individual skeletonized frames 
Use ImageJ to concatenate frames 
Output: Tif: skeletonized image for each time point (Skeleton v1) 
 
Manual correction  
Input: Tif: Skeleton v1, and Tif: single projected slice for each time point 
Add Matlab files in Manual Correction folder to Matlab file path 
Add projection and Skeleton v1 images to Matlab file path 
Run SkeletonStart.m 
Load Projection Tif stack 
Load Skeleton Tif stack 
Manually correct as many missing or extra junctions as possible using hotkeys 
Save corrected skeleton 
Output: Tif: Corrected skeletonized image for each time point (Skeleton v2) 
 
Preliminary tracking and further manual correction  
Input: Tif: Corrected skeletonized image for each time point (Skeleton v2) 
Add Matlab files in Tracking Correction folder to Matlab file path 
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Add projection and Skeleton v2 images to Matlab file path 
Run TrackingCorrectionStart.m 
Load Projection Tif stack  
‘Find cells’, Matlab finds the centroids of uploaded skeleton 
‘Tracking’, preliminary tracking identifies points where track is lost due to skeleton errors 
‘Problems’ selected from drop-down menu, this will automatically start selecting lost tracks 
Manually correct the junction errors identified 
Click ‘Export Skeleton’ to save corrected Skeleton v3 
Binarize stack in ImageJ 
Use ‘SaveAsSingleTIFFs’ Matlab programme to separate into individual tifs 
Output: Individual Tif files, corrected binarized skeletonized image for each time point 
(Skeleton v3) 
 
Tissue Analyser skeleton processing  
Input: Skeleton v3: corrected binarized skeletonized image for each time point  
Transfer individual Tifs of Skeleton v3 into Tissue Analyzer 
Use the Detect Bonds (Save Watershed) function in Tissue Analyser to export Tissue Miner-
compatible skeleton into individual folders 
No blur and no removal of cells with x pixels 
Use Mac terminal to transfer the individual Tifs into individual folders within the same 
directory 
CODE 
 
for d in */ ; do (cd "$d" && pwd && cp handCorrection.tif"../dv$(basename "$d").tif" 
);done; 
 
Concatenate individual tifs to a single Tif stack in ImageJ 
This creates an RGB Tif stack in time, use ImageJ to create 8-bit image 
Check for any new errors that may have been introduced by Tissue Analyser processing by 
repeating the preliminary tracking correction 
Correct errors and repeat Tissue Analyser processing 
Output: Tif: Corrected skeletonized image for each time point (Skeleton #4) 
 
Tracking in Matlab 
Input: Tif file, corrected skeletonized images over time (Skeleton #4) 
Alter AutoTrackingStart.m code to ensure it has the correct filename of skeleton #4 
To start tracker: 
CODE: 
 
cd ~/filepath/Tracker/data 
export MATLABPATH=/home/ainsli01/Documents/Tracker:/home/ainsli0 
1/Documents/Tracker/data 
nohup matlab -nodesktop -nodisplay -noFigureWindows -nosplash -r 
"cd('/home/ainsli01/Documents/Tracker/data');AutoTrackingStart; quit" -logfile logfile.out < 
/dev/null & 
 
This will generate three .tif stacks over time, TrackedCellsRGB: each cell colored with a 
unique cell I.D., DivisionsRGB: divisions highlighted in blue, ErrorsRGB: errors highlighted 
in red 
Output: RGB Tif stacks of Tracked Cells, Divisions and Errors 
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Using ErrorRGB output in to correct skeleton 
Input: Skeleton v4 and ErrorRGB Tif stack 
In ImageJ, separate red channel from ErrorRGB Tif stack, and subtract the skeleton resulting 
in an image with only red cells 
Binarize red cells and use ‘Analyze Particles’ in ImageJ to generate list of coordinates and 
time points of red cells 
Open skeleton in Image J, use ‘SpecifyArea’ macro to find errors in list of particles: 
 
IMAGEJ MACRO CODE: 
 
macro"SpecifyArea [c]"{run("Specify...");} 
 
Enter x,y,t coordinates, automatically takes you to error 
Annotate list of errors, label as either: tracking, division, skeleton or edge (edge errors can be 
ignored) 
 
Output: Skeleton #5 and a list of annotated errors 
 
If skeleton errors above 50, RETURN TO FIRST STAGE OF MANUAL CORRECTION 
If skeleton errors below 50, correct skeleton errors and divisions in ImageJ 
Correcting missed divisions: 

• Using the ‘SpecifyArea’ macro go through Divisions Tif stack finding the errors 
annotated as ‘Divisions’ 

• Use ‘pick color’ to select division blue color, and use ‘fill’ function (4-connected) to 
fill just-divided cells that have been missed 

 
Correcting skeleton: 

• Correcting raw skeleton tiff stack using 1-pixel thick paintbrush in ImageJ, taking 
care to only generate junctions that are 1-pixel thick 

• Copy-paste new junction into TrackedCellsRGB and Divisions tiff stacks 
• Making sure to correct the colors by using the ‘pick color’ and ‘fill’ function in 

ImageJ 
 
Make Tracker output compatible with Tissue Analyser and Tissue Miner 
Input: Projected image stack and TrackedCellsRGB and Divisions image stacks 
Open ‘SaveAsTissueMiner.m’ and make sure filenames are correct 
Run ‘SaveAsTissueMiner’ 
Output: individual folders containing an individual projection, TrackedCellsRGB and 
division image for each time point 
 
Correct Tracks using Tissue Analyser 
Input: individual folders containing projection, TrackedCellsRGB and division image for 
each time point, as well a list of tracking errors 
Fix broken and swapped tracks using the tools in Tissue Analyser 
Output: corrected TrackedCellsRGB files 
 
Tissue Miner analysis and further Quality Control 
Input: corrected Tracked Cells and Divisions 
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Use Tissue Miner to highlight cell I.D.s that disappear in red in final frame visible, these are 
either apoptoses or tracking and skeleton errors 
In ImageJ, separate red channel 
Binarize red cells and use ‘Analyze Particles’ in ImageJ to generate list of coordinates and 
time points of red cells 
Save list of red cells as an Excel file 
Use ‘SpecifyArea’ macro to find errors and annotate list of particles 
Correct errors as described in Steps 11 and 13 
Output: individual folders containing an individual projection, fully corrected 
TrackedCellsRGB and division images for each time point 
 
RETURN TO MANUAL CORRECTION if there are significant remaining skeleton and 
tracking errors 
Otherwise, continue Tissue Miner data analysis 
 

Projection 

The cell projection tool was developed to provide a semi-automated means of creating cell 

surface projections of histoblast and LEC image stacks. This was necessary as strong cell signal 

could often be found above and below the main cell surface which sometimes required manual 

corrections. The vast data volumes to be processed required an efficient approach with as little 

manual intervention as possible and a convenient approach to correcting the surface projection 

where necessary. We carried out the corrections on a sub-sampled image sequence with 

subsequent spatial and temporal interpolation over the whole sequence. A tool featuring a 

graphical user interface was developed for this purpose in Matlab. 

 

After sub-sampling in the time domain (typically 1/10 frames) to generate key frames, the 

maximum intensity projection over the z-depth provided a first estimate where surface markers 

would be placed at depth levels expressing intensity values in the top. Only a subset of markers 

was used to keep the number of markers low. These markers could be deleted and added 

interactively by the user (Tetley et al., 2019). Markers could also be copied to the next frame 

and translated to correct for a z-shift. Markers would then be used to calculate a depthmap by 

iteratively averaging marker depth values greater than zero for all image values resulting in a 

smooth, interpolated depthmap.  

 

The surface for the whole sequence was generated from the depthmaps of key frames by means 

of linear interpolation in the time and spatial domain. Cell surface intensities were obtained by 

the max intensity in the vicinity of the interpolated surface from the original 3D image volume 
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for each time frame. The cell surface was stored as a 2D image sequence which was then 

imported into the image segmentation and skeletonization step. 

 

Skeletonization using Skeletor 

For the initial segmentation and ground-truthing for the machine-learning segmentation 

algorithm, we developed a filter-based watershed algorithm in Mathematica which we called 

Skeletor. Initially, projections were filtered using seven filter kernels, which are as follows: to 

highlight edges we developed a new convolution matrix which we termed the davisfilter, where 

the median intensity of a 3x3 pixel kernel was compared to the median intensity of an 11x11 

pixel kernel, if the median for the smaller kernel was greater than for the larger kernel then the 

origin pixel intensity was kept, if not then the median intensity of the 11x11 pixel kernel was 

subtracted from the origin pixel value. The next filter was a modified salt and pepper filter 

called saltpepper which aimed to de-noise the images, here the three largest and smallest pixel 

values of an 11x11 kernel were removed, and the nearest pixel value to the mean of remaining 

pixels was used as the origin pixel intensity value. The third filter was a contrast enhancing 

median filter which we called medianfilter, where if the origin pixel intensity was greater than 

the median for an 11x11 pixel kernel then the origin value was kept, if not then it was replaced 

with 0. The fourth and fifth filters both calculated the median and the median deviation for an 

11x11 pixel kernel, and kept the origin pixel value if it was greater than the median plus the 

median deviation, if not then filter four, which we termed MADfilter, would subtract the 

median for the 11x11 kernel to improve contrast; filter five which we termed MADsmoother, 

would replace the origin pixel value with the median of the 11x11 kernel, smoothing the 

background. Finally, the sixth and seventh filters were both in-built Mathematica functions 

which smooth edges, the sixth being an image convolution with a Shen-Castan Matrix function 

with an exponential radius of 5 pixels and the seventh the CurvatureFlowFilter function with 

curvature time of 1. The average intensity for each pixel was then calculated from all seven 

filtered images, and then convolved with a Shen-Castan Matrix with a 2 pixel radius.  

 

Once the image had been filtered, it was segmented using Mathematica’s gradient descent 

watershed algorithm, where junctions were merged if the minimum boundary height was below 

a user-defined value, normally in the range of 0.2 – 0.3. The perimeter of each component was 

then obtained and all the perimeters combined to produce the initial skeleton. To remove 

erroneous segmentation two tests were performed on each junction. The first test compared 
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intensity between of junctions to the interior of the cell in order to remove ‘phantom’ junctions; 

specifically, the median plus quartile deviation intensity for the cell interior was measured and 

set as a threshold, if the median intensity for each junction was below this value it was removed. 

The second test removed junctions that had a meandering topology; specifically, the length of 

a straight line between each junction vertexes was divided by the length of each junction and 

if the value was below 0.75 (i.e. junctions were 25% longer than a straight line) then they were 

removed. Both of these tests mainly removed erroneous junctions in the LECs with few 

junctions in the histoblasts being removed.  

 

Skeletonization using machine learning 

For the movies WT1-3, skeletonization was carried out using Skeletor. For WT4, we used a 

UNet Neural Network [arXiv:1606.06650v1] trained using WT1-3 data segmented with 

Skeletor and manually corrected. We used a 3D version of the network treating the time as a z 

component of input data. Different training conditions, varying the loss functions, optimizer 

and learning rate, were tested. After training, predictions were obtained from new images, then 

used in Tissue Analyzer to segment the epithelia.  

 

Manual Correction of skeletons – Skeleton Correction Tool 

A second interactive tool was developed to verify and correct the result of the skeletonization 

in an efficient manner. The tool was written in Matlab and featured a graphical user interface 

and the ability to use a Wacom Tablet to correct missing or extra cell junctions.  The tool allows 

the overlay of original cell surface and skeletonized images, also blending these image layers 

together. To aid this process, cells could be identified from the skeletonized image and their 

centroid position was marked on the surface image. Potential segmentation errors could be 

easily spotted as the markers were off the cell center. In addition, a previous developed 

automated cell centroid seed tracker (Heller et al., 2016) was incorporated into the tool as a 

means of quick, preliminary tracking to highlight potential issues caused by segmentation 

errors. This would support the user to identify and correct such errors. 

 

The tracking results from the offline tracker could also be shown as an additional image layer. 

Drawing and erasing of cell junctions on the skeletonized image could be performed using a 

pen on the Wacom Drawing Tablet. Hotkeys allowed the fast switching between different 
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editing modes which contributes to an efficient workflow. The corrected skeleton image 

sequence was exported for the automated offline tracking step. 

 

In order to quantify the changes at each stage of corrections in Figure S1B, a thickened version 

of the original Skeletor output skeleton was created was subtracted from the wild type movie 

post ‘Manual Correction’ and post ‘Manual Tracking Correction’ in ImageJ. The ‘Analyze 

Particles’ function was used in ImageJ to count the remaining pixels.  

 

Automated Tracking procedure – Tracking Tool 

The tracking algorithm was designed to fully automatically track cells in the projected 

skeletonized images. This was achieved in a three-step process and was performed frame by 

frame for all cells in the sequence. The first iteration tracked cells by identifying suitable 

matching cell candidates by means of the best-fit of the cell area. Only cells with a good-fit 

were included in this sequence with the aim is to get a first estimate of the cell surface motion. 

In a second step, the motion (flow) field of the whole cell surface was calculated through the 

interpolation of individual movement vectors from the initial tracking results. In the third step 

the tracking is guided by the flow estimates. Finally, the tracked cell sequence was further 

processed to determine the cell lineages and divisions and exported as a number of different 

image sequences. The following paragraphs describe these steps in more detail: 

 

1. Find initial tracks 

The initial tracking is performed by identifying potential matching candidates in the next image 

frame. The area of each cell in a frame is obtained from the labelled binary skeleton image. 

Any cell in the next frame that slightly overlaps with the source cell area was a potential 

candidate. For each target candidate, the cell areas were aligned by centroid position. 

Similarities in terms of the overlapping cell area were used to determine a good fit. The 

confidence c (a metric for a good-fit) was calculated for each candidate as the ratio between 

the overlapping aligned cell area and the total combined area of source and target cells. 

 

𝑐 = 1 −
∑𝐴 ∩ 𝐵
∑𝐴 ∪ 𝐵 

 

This would exclude fast moving smaller cells that were not overlapping which made the flow 

guided tracking step necessary. 
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Once a list of candidates and their confidences was established, the best candidate for each 

source cell was identified amongst the several potential target candidates. Each source cell was 

assigned the target cell with the highest confidence first. This is performed iteratively for all 

source cells for each iteration starting with the highest confidences first and iterating down as 

long as the confidences are above the minimum threshold of 0.7. The source cells were thus 

competing for target cell candidates as neighboring cells could have the same potential target 

candidates which ensured that the best candidate was assigned for each source cell. It is 

important to note that in the first iteration of the tracking we only used cells with high 

confidences ≧0.7, i.e. cells which we could be confident about to be correct. In a final step new 

track IDs were assigned to cells which were not paired due to having a low confidence value.  

 

This first tracking step returned an image matrix consisting of 16-bit grayscale images. The 

color zero (black) denoted the cell boundaries. Each cell area had a uniform numerical value 

which denoted the track ID. The track ID remained the same for matching cells in subsequent 

frames. New cells or broken tracks received with a new track ID. 

 

2. Calculate the flow field estimate 

In this step an interpolated flow field from the cell movements of the previous tracking step 

was calculated. The displacement vector for each cell was calculated from the centroid 

positions of the tracked cells. The flow field was calculated for each position in the image 

matrix by a weighted average of all the displacement vectors with a weighting factor which 

was the inverse of the distance to all the other cell positions in the frame. The influence of 

nearby cells is thus much greater than cells at greater distances. The interpolation was 

completed when all the values in the image matrix had been calculated. This step returned the 

interpolated flow field for each frame in the sequence. 

 

3. Re-track all cells by using the flow estimate 

The final cell tracking was performed by taking into account the flow estimates of cells. As in 

the first tracking step, any cell in the next frame that slightly overlapped with the source cell 

area was a potential candidate. However, in this step, the source cell area was translated by the 

average flow field displacement of that area obtained from the initial tracking. The overlap 

between the translated area of source and target cells was then calculated as in step 1 above.  
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The assignment process was more complex as in the first tracking iteration. The aim was to 

find the best candidate for each source cell amongst the several potential target candidates. 

However, this was performed over several steps as all the source cells needed to be paired, not 

just the most obvious fits. During the first step, each source cell was assigned the candidate 

cell with the highest confidence first. This was run competitively for all source cells for each 

iteration starting with the highest confidences first and iterating down as long as the 

confidences were above the minimum threshold of 0.2. The source cells were thus competing 

for target cell candidates as neighboring cells could have the same potential target candidates 

which ensures that the best candidate was assigned for each source cell. 

 

In a second step, the above process was repeated for not yet assigned source cells by going 

through the remaining candidates. In a third iteration, the not yet assigned source cells were 

assigned by distance up to a max distance to target cells. 

 

Finally, any unassigned cells were treated as new cells which were assigned a new cellID and 

denoting the start of a new track sequence. 

 

This second tracking step returned an image matrix consisting of 16-bit grayscale images. The 

color zero (black) denoted the cell boundaries. Each cell area had a uniform numerical value 

denoting the track ID. The track ID remained the same for a matching cell in subsequent 

frames. New cells or broken tracks received with a new track ID. 

 

4. Exporting tracking result 

The track sequence was exported as an RGB image sequence whereby each cell track was 

given a unique RGB color. Divisions were identified by a sudden increase in cell size in a 

tracked sequence which also coincided with a new cell track emerging in a subsequent frame 

in its locality. The ratio of the cell size change between frames was used a measure to identify 

divisions. A cell which underwent such transformation was identified as the mother cell while 

a new cell it is vicinity was labelled as the daughter cell.  From these divisions, a lineage 

sequence could be created, highlighting cell divisions in different shades of blue. Potential 

errors in the lineage emerged when new cells did not originate from a division event or when 
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the lineage was not clear. Cells with such issues were labelled in red in an additional ‘Error’ 

sequence and exported for further manual inspection and correction if deemed necessary. 

 

5. Manual Correction of Tracking  

The output from the offline tracker, including the lineage and error sequences were imported 

into ImageJ for further inspection and correction. Cells highlighted in red ‘Error’, i.e., cells 

with a new cell ID that do not originate from a division were labelled manually using the 

‘Analyze Particles’ function in ImageJ. This creates a list of red cells that are manually checked 

and annotated according to the type of error, either a ‘Tracking’ error due to the cell migrating 

quickly, or a ‘Division’ error where Tracker has failed to pick up a division, or a ‘Skeleton’ 

error that remains. Using this information, each type of error was corrected in a different way. 

If the number of remaining skeleton errors was significant (above 50), then only the input 

skeleton would be corrected, and the automatic tracking process would start again. If the 

number of remaining skeleton errors was below 50, then all the errors would be corrected 

manually using the coordinates lifted from the error layer. First the ‘Division’ errors were 

corrected in the division layer using the ‘fill’ function in ImageJ to fill daughter cells of missed 

divisions in the correct shade of blue. Then the ‘Skeleton’ errors were corrected in both the 

division layer and the unique cell ID. layer using ImageJ. White lines were added or removed 

manually in the division channel in ImageJ, taking care to ensure all lines were maintained at 

a 1-pixel thickness. Then the affected area was copied and pasted into the unique cell ID. 

channel to ensure the white lines were the same. Using the fill function ensured the colors in 

the unique cell ID. channel were unaffected. Finally, the ‘Tracking’ errors were corrected in 

Tissue Analyser (Aigouy et al., 2010; Etournay et al., 2016). Once the affected coordinates 

were found, it was possible to swap tracks around, join truncated tracks or create new cell IDs 

wherever necessary. The corrected lineage sequence was finally converted and exported into a 

format that was readable by Tissue Miner. 

 

Tracking validation and quality control 

All sequences went through a thorough process of quality control. The tracker supported this 

approach by highlighting potential issues in an ‘error’ sequence. Once the skeleton errors were 

corrected, any subsequent errors were due to tracking errors and cell division errors. A typical 

sequence featured between five and six thousand cell tracks. The tracker would typically 

highlight a total of around 300 (5-6%) of these tracks as having potential issues which required 
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inspection: Approx. 1-2% of the tracks had tracking errors whereby the tracker did not correctly 

identify a matching cell. These could be amended by linking up broken tracks or swapping 

tracks. However, most issues, approx. 3-4% of all the tracks arose at or in the vicinity of 

dividing cells when mother or daughter cells were not identified, swapped or not classified as 

being part of the lineage.  Not all these issues were genuine errors that required correction, but 

all these issues required inspection by an operator to ensure a high level of quality control. 

 

Tissue Miner Analysis 

Once these correction steps have been completed using ImageJ and Tissue Analyser, Tissue 

Miner was then used to extract data from the tracked cells (Etournay et al., 2016; Etournay et 

al., 2015); see Supplementary Theory for details. Tissue Miner was also used to identify any 

remaining errors by detecting loss of cell I.D., as well as detecting with an anomalously short 

‘cycle time’ in between divisions. Any errors that were detected using these criteria were 

corrected in the manner described under ‘Manual Correction of Tracking’, and then the final 

data is re-entered into Tissue Miner. 

 

Temporal alignment of WT movies 

A salient feature of abdomen development is the formation of the sensory organs of the adult 

abdomen, which are  mechanosensory bristles that arise through multiple stereotypical rounds 

of asymmetric cell divisions from a single progenitor, the Sensory Organ Precursor (SOP) 

(Fabre et al., 2008). We tracked the SOP lineages and excluded them from all subsequent 

analysis on histoblast growth and proliferation (Figure S1F). However, we noticed that the 

emergence of SOPs over time, identified by the initial asymmetric division, followed a 

sigmoidal temporal distribution that could readily be fitted by a Hill function (Figure S1G-K). 

To allow comparison of the growth parameters, these curves were used to temporally align our 

wild type movies (WT1-4) (Figure S1K). 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

All statistical tests were performed using R or Graphpad Prism. Statistical tests used and 

number of repeats are indicated in the figure legends or in the text. 

 

 

KEY RESOURCES TABLE 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.10.376129doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.10.376129
http://creativecommons.org/licenses/by/4.0/


 71 

 
Reagent or Resource 
 

Source 
 

Identifier 

Experimental Models: Organisms/Strains 
 
D. melanogaster:  

y[1] w[*]; TI[TI]shg[GFP] (E-
cad::GFP) 

Bloomington 
Drosophila 
stock center 

(Huang et al., 
2009)  

BDSC Cat #60584 

RRID:BDSC_60584 

D. melanogaster:  

y[1] w[*]; TI[TI]shg[3x mKate2] 
(E-cad::mKate2) 

Yohanns 
Bellaïche 

(Pinheiro et 
al., 2017) 

N/A 

D. melanogaster:  

w[*]; P[w[+mW.hs]=GawB]32B 
(32B-GAL4) 

Bloomington 
Drosophila 
stock center 

(Prat-Rojo et 
al., 2020) 

BDSC Cat #1782 

RRID:BDSC_1782 

D. melanogaster:  

w[*]; P[w[+mC]=UAS-Timp.P]3 

Bloomington 
Drosophila 
stock center 

BDSC Cat #58708 

RRID:BDSC_58708 

D. melanogaster:  

PBac[fTRG10075.sfGFP-
FT]VK00033 (Sqh::GFP) 

Vienna 
Drosophila 
Resource 
Center  

VDRC Cat #318484 

 

D. melanogaster:  

w[*]; P[w[+mC]=tubP-
GAL80[ts]]2/TM2 

Bloomington 
Drosophila 
stock center  

BDSC Cat #7017 

RRID:BDSC_7017 

D. melanogaster:  

P[Mmp1.GFP] 

Dirk 
Bohmann 

(Wang et al., 
2010) 

N/A 

D. melanogaster:  

y[1] w[1118]; UAS-HA/TM6b 

This study N/A 

D. melanogaster:  

w[*]; vkg::GFP, E-cad::mTomato 

Brian Stramer 

 

N/A 

D. melanogaster: 

w[*]; P[w[+mC]=UAS-
mCherry.NLS]3 

Bloomington 
Drosophila 
Stock Center 

BDSC Cat #38424  

RRID:BDSC 38424                 

D. melanogaster:  

w[*]; act>y+>Gal4 UAS-GFP 

Kenneth 
Irvine 

 

N/A 

 

D. melanogaster:  

y[1] w[*]; P[w[+mC]=UAS-
FLP.D]JD1 

Bloomington 
Drosophila 
Stock Center 

 

BDSC Cat #4539 RRID:BDSC 4539                    
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D. melanogaster:  

y[*] w[*]; 
[w[+mW.hs]=GawB]NP1248 / 
CyO, P[w[-]=UAS-
lacZ.UW14]UW14 (esgNP1248-
GAL4) 

Kyoto Stock 
Center 
(DGRC) 

 

DGRC 112589 

 

D. melanogaster:  

w[*] P[w[+mC]=PTT-
un1]ZCL1700 (Perlecan-GFP) 

Kyoto Stock 
Center 
(DGRC) 

 

DGRC 110807 

 

D. melanogaster:  

w[*], vkg (Col IV)::GFP 

Brian Stramer 

(Buszczak et 
al., 2007) 

N/A 

D. melanogaster:  

w[*]; PBac[fTRG00681.sfGFP-
TVPTBF]VK00033 (lanB1::GFP) 

Brian Stramer 

(Sarov et al., 
2016) 

VDRC 318180 

   
Software and algorithms 
Fiji 
 

(Schindelin 
et al., 2012) 

http://fiji.sc 

Matlab2014a 
 

 https://uk.mathworks.com/products/matlab 

Mathematica 11.0.1.0 
 

 https://www.wolfram.com/mathematica/ 
 

Python, Numpy, Scipy  https://www.python.org 
https://numpy.org 
https://www.scipy.org 

R 
 

 https://www.r-project.org/ 
 

Tissue Analyzer 
 

(Aigouy et 
al., 2016) 

https://grr.gred-
clermont.fr/labmirouse/software/WebPA/ 

Tissue Miner 
 

(Etournay et 
al., 2016) 

https://github.com/mpicbg-scicomp/tissue_miner 

Projection/Skeletor/Skeleton 
Correction tool/Tracker 

This work  

Anabfem This work https://github.com/FrancisCrickInstitute/anabfem 
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