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Summary

During development, multicellular organisms undergo stereotypical patterns of tissue growth
to yield organs of highly reproducible sizes and shapes. How this process is orchestrated
remains unclear. Analysis of the temporal dynamics of tissue growth in the Drosophila
abdomen reveals that cell cycle times are spatially correlated and that growth termination
occurs through the rapid emergence of a population of arrested cells rather than a gradual
slowing down of cell cycle time. Reduction in apical tension associated with tissue crowding
has been proposed as a developmental growth termination mechanism. Surprisingly, we find
that growth arrest in the abdomen occurs while apical tension increases, showing that in this
tissue a reduction in tension does not underlie the mechanism of growth arrest. However,
remodeling of the extracellular matrix is necessary for tissue expansion. Thus, changes in the
tissue microenvironment, and a rapid exit from proliferation, control the formation of the adult

Drosophila abdomen.
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Introduction

During development, patterns of growth must be tightly coordinated in time and space. This is
dictated by chemical signals (hormones, morphogens, nutrients) and the physical environment
(Boulan et al., 2015; Irvine and Shraiman, 2017; Penzo-Mendez and Stanger, 2015). However,
due to the difficulty of measuring quantitative parameters of tissue growth in living organisms,
we lack an integrated understanding of growth arrest in vivo. This has limited our ability to
analyze developing systems in vivo with the same level of precision as expanding populations
of unicellular organisms or animal cells in culture (Loeffler and Schroeder, 2019; Sauls et al.,

2016).

Nevertheless, studies of the Drosophila wing imaginal disc have yielded several models of
tissue growth and size determination (Boulan et al., 2015; Gou et al., 2020; Irvine and
Shraiman, 2017). Wing disc cells arrest in G2 at the larval/pupal transition, when the organ has
reached approximately 30,000 cells (Martin et al., 2009). As this tissue progresses through its
most substantial growth phase, cell proliferation gradually slows down, with a cell cycle time
of around 6-10 h increasing to over 20-30 h at the larval-pupal transition (Johnston and Sanders,
2003; Mao et al., 2013; Martin et al., 2009; Milan et al., 1996; Wartlick et al., 2011b). This
suggests that a mechanism triggered well in advance of the tissue reaching its target size leads

to a slowdown and eventual arrest of proliferation.

Proposed models to explain the growth kinetics of the developing wing disc generally assume
a role for the growth-promoting action of diffusible morphogens or spatial and temporal
changes in the mechanical state of disc cells (Gou et al., 2020; Irvine and Shraiman, 2017;
Wartlick et al., 2011a). Thus, spatial variations in growth rates have been suggested to lead to
a build-up of tensile and compressive forces that in turn affect growth rates through mechanical
feedback (Aegerter-Wilmsen et al., 2007; Hufnagel et al., 2007; Shraiman, 2005). Laser
ablations have indeed suggested that apical tension diminishes as wing disc development
proceeds, correlating with decreased proliferation, providing a potential mechanism for growth
termination (Pan et al., 2018; Rauskolb et al., 2014). Increased mechanical tension has also
been demonstrated to drive cell division in a number of experimental systems, including the
mouse skin and mammalian cells in culture (Irvine and Shraiman, 2017; LeGoff and Lecuit,

2015). Thus, an attractive mechanism to account for developmental size control is one by which
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mechanical tension promotes growth, and as cell density increases, tension decreases, leading

to growth termination.

The recent development of analytical tools that capture cell and tissue deformations (Etournay
et al., 2016; Guirao et al., 2015), combined with progress in live imaging in vivo (Mavrakis et
al., 2010) have transformed our ability to derive quantitative parameters that can be used to
understand and model complex developmental processes. A limitation of studies in the
Drosophila wing disc is its inaccessibility for these live imaging tools to follow individual cell
behavior and mechanical properties over time in the growing tissue. Thus, we chose to analyze
the growth of the Drosophila abdominal epidermis, where individual cells can be imaged and
tracked in vivo during the pupal stages when the animal is sessile (Bischoff and Cseresnyes,

2009; Mangione and Martin-Blanco, 2018; Prat-Rojo et al., 2020).

The adult Drosophila abdominal epidermis develops from small islands (nests) of cells called
histoblasts, which are specified during embryonic development (Guerra et al., 1973). Each
abdominal hemisegment contains four nests, two located dorso-laterally (dorsal anterior and
dorsal posterior), one located ventrally and one spiracular nest located laterally (Madhavan and
Madhavan, 1980; Roseland and Schneiderman, 1979), Figure 1A). During the larval period,
the histoblasts are quiescent (G2 arrest) (Bryant and Schneiderman, 1969; Mandaravally
Madhavan and Schneiderman, 1977), and are induced to enter the cell cycle by the pulse of the
steroid hormone ecdysone that triggers the larval/pupal transition (0 h After Puparium
Formation — APF) (Ninov et al., 2007). Following a period of three cleavage divisions, the
histoblasts enter an expansion phase (around 14-16 hAPF) when they proliferate and grow,
displacing the surrounding Larval Epidermal Cells (LECs, large polyploid cells that formed
the larval epidermis), which are extruded and engulfed by macrophages (hemocytes) patrolling
the hemolymph underneath the epidermal layer (Bischoff and Cseresnyes, 2009; Michel and
Dahmann, 2020; Nakajima et al., 2011; Ninov et al., 2007; Prat-Rojo et al., 2020; Teng et al.,
2017) (Figure 1B). LEC death requires both ecdysone signaling and displacement by the
expanding histoblast nests (Michel and Dahmann, 2020; Nakajima et al., 2011; Ninov et al.,
2007; Prat-Rojo et al., 2020; Teng et al., 2017). Once the histoblasts cover the entire abdominal
surface, proliferation ceases and differentiation proceeds to give rise to the adult abdomen.

Here, using live imaging and cell tracking, we analyze the growth of the dorsal histoblast nests
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at the cellular and tissue scale to uncover how cellular behaviors give rise to tissue growth

kinetics.
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Results

Measuring the growth kinetics of the Drosophila dorsal abdomen

To derive quantitative parameters describing the growth of the Drosophila abdomen in wild
type animals, we imaged cell junctions with E-cad::GFP from 16 h to 31 hAPF (see (Mangione
and Martin-Blanco, 2020) and STAR Methods) (Figure 1A, B). The resultant movies were
processed and analyzed using a custom-built pipeline to track cells (Figure 1B, Figure S1A-E,
STAR Methods, Movie 1). We then defined an anterior “no border region of interest” (noborder
ROI) consisting of complete lineages of histoblasts that never come into contact with the edge
of the image frame during the movie (Figure 1B, bottom row, Movie 1 and Supplementary
Theory). The emergence of specialized cells called Sensory Organ Precursors (SOPs) was used

to temporally align four wild-type movies (Figure SIF-K and STAR Methods).

The dorsal histoblast nests expand through cell division

To analyze tissue growth, we performed a shear decomposition analysis of the segmented wild
type movies using Tissue Miner (Etournay et al., 2016; Merkel et al., 2017). We focused our
analysis on the expansion kinetics of the histoblast nests by examining how the relative rates
of change in cell area and cell number, due to either proliferation or delamination contribute to
the area expansion rate of the tissue (Figure 1C-F, Figure S1L-O). This quantitative analysis
showed that the dorsal histoblast nests grow primarily via cell division (Figure 1C, E), as
previously proposed (Ninov et al., 2007). The average cell area increase contributed modestly
to tissue area expansion, and mainly in the early stages of expansion (Figure 1C, F). Cell loss
(“extrusion”), through either cell death or delamination, had a minimal contribution to
histoblast nest deformation (Figure 1C). The cell area contribution to growth is far more
variable than that of cell divisions (Figure 1E, F). Furthermore, cell areas in the anterior nest
are also spatially variable, with cells around the periphery of the nest having a larger apical
area than their counterparts in the nest center (Figure 1B, middle row). This may be due to their
location at the interface with LECs, which have been shown to exert forces on the boundary
histoblast when undergoing apoptosis (Prat-Rojo et al., 2020; Teng et al., 2017). As cell
division is the dominant factor in histoblast nest growth, we focused subsequent analysis on

their proliferation dynamics.

Histoblasts divide with a narrow distribution of cycle times, uncorrelated with cell

geometry but correlated in space
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When examining the contribution of cell division to tissue expansion (Figure 1E), we noticed
that cell number increased in alternating periods of slower and faster rates. Indeed, plotting the
cell division rate (number of cells created by division per unit time, relative to total cell number)
as a function of time for different WT movies revealed an oscillatory behavior with a period of
~ 4 h (Figure 2A). About three oscillatory peaks can be observed after 16 hAPF before the cell
division rate starts to decrease around 28 hAPF (Figure 2A). All four analyzed wild type
movies exhibited similar dynamics in the decay of cell division rate, although the oscillation
peaks were variable in time between the different animals (Figure 2A). We explored whether
the average cell cycle duration was oscillating through time and found that, in contrast to the
proliferation rate, the average cycle time (~4.5h+0.6, mean +SD over 4 analyzed WTs) varied

only weakly in time (Figure 2B, S2A).

Work in cell culture and several in vivo systems has suggested that geometric constraints
influence proliferation, for instance cells with a larger surface area are generally more likely to
divide than cells with a constrained area (Irvine and Shraiman, 2017; LeGoff and Lecuit, 2015;
Lopez-Gay et al., 2020). We therefore wondered if there was a relationship between cell cycle
time (time between two divisions) and cellular geometric features (Figure 2C). Surprisingly,
the cell cycle time was neither correlated with histoblasts’ initial area at birth (Figure 2C) nor
with the cell mean area or mean cell elongation over the entire cell cycle time (Figure S2B, C).
This suggests that geometric constraints do not strongly influence histoblast proliferation rate,

and therefore do not account for the oscillations observed.

We then examined whether cycle times of mother and daughter cells were correlated, but found
only a weak correlation coefficient (Figure 2D, E, S2D, Pearson correlation coefficient p =
0.04 + 0.04). In contrast, we noticed that sister cell cycle times, and, to a lesser extent, cousin
cell cycle times were clearly correlated (Figure 2D, E, S2D, p = 0.55 + 0.04 for sisters and
p = 0.31 % 0.01 for cousins). Clusters of cell cycle synchrony have been suggested to occur
in the growing wing disc based on fixed imaging of cell cycle markers (Milan et al., 1996). Do
spatial correlations between neighboring cells explain that cousins have correlated lifetimes,
despite daughters being uncorrelated with mothers? Indeed, nearest neighbors born within a 30
minute interval of each other had cell cycle times which were positively correlated (Figure 2D,
E, S2D, p = 0.35 + 0.04). Looking at cycle times for pairs of cells as a function of their

distance, the cell cycle time spatial correlation decreased on the scale of a few cells (Figure 2E,
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S2E). We wanted to test if these measured spatial correlations could explain correlations
measured for cousin cells. We therefore obtained correlations between cells that are not cousins
but are sharing the same statistical distribution of birth time difference and neighbor relations
as cousins (Figure S2F-H, section 1.5 in the Supplementary Theory). Correlations between
cycle time for these cells was comparable to cousin correlations, indicating that proximity

relations can to a large extent explain cousin-cousin correlations.

Given that cycle times are spatially, but not temporally correlated, can the oscillation in cell
division rate be attributed to the relatively narrow cell cycle time distribution (Figure S2A,
coefficient of variation of cell cycle times 0.22+0.02, mean +SD over 4 WTs)? To test this, we
simulated a growing population of cells with cycle time chosen stochastically from the
experimentally measured cell cycle time distribution. If cells initiate growth sufficiently
synchronously, the proliferation rate shows a damped oscillatory behavior, with the oscillation
amplitude decaying as the population becomes progressively unsynchronized (see Figure S21
and Figure 3H below). This suggests that a narrow distribution of cell cycle time together with

synchronized initiation of growth, can explain the oscillatory behavior in cell division rates.

Histoblasts transition to growth arrest

We wished to determine why cell division rates decay strongly after ~28 hAPF (Figure 2A). In
the Drosophila wing growth termination is associated with a gradual increase in cell cycle time
(Mao et al., 2013; Martin et al., 2009; Wartlick et al., 2011b). In contrast, histoblast cell cycle
times vary little throughout development and do not increase at late stages to an extent that can
account for proliferation arrest (Figure 2B). The discrepancy between average cycle times and
average cell division rate implies that a fraction of histoblasts stop dividing. We therefore
computationally labelled cells that did not divide until the end of our movies, which we denote
as arrested histoblasts (Figure 2F). Cell division rates have almost reached zero by the end of
each movie, indicating that histoblast cells have largely stopped proliferating by ~31 hAPF
(Figure 2A). Labelling these arrested cells revealed a spreading pattern of emerging arrested
histoblasts, which progressively cover the entire histoblast nest (Figure 2F, Movie 2). These
arrested cells start to appear with a low probability around 24 hAPF and after 28 hAPF, nearly
all newborn cells are arrested (Figure 2G). Do arrested histoblasts appear in a systematic spatial
pattern within the nest? To test this, we labelled all tracked arrested cells in the final frame of

our movies (which, by our definition, have all exited the cell cycle) according to their time of
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birth (Figure 2H). We did not find a consistent spatial trend across all WT movies (Figure 2H,
Movie 2).

We therefore treated the appearance of arrested cells as a stochastic process, and quantified,
for every cell division, the probability to give rise to one or two arrested cells (p) and, given
that at least one of the daughter cells is arrested, the probability that both the two daughter cells
are arrested («) (Figure 21-K). The probability p and a increased sharply from about 0 before
24 hAPF to almost 1 after 28 hAPF, indicating that histoblasts transition abruptly to
proliferative arrest, rather than gradually increasing cell cycle times as reported in other tissues

like the Drosophila wing disc.

Simulations recapitulate cell number increase from 0 hAPF to 36 hAPF

We wished to use numerical simulations to test whether (i) cycle times randomly chosen from
a narrow distribution and (ii) stochastic transition to cell cycle arrest with a probability
changing over time could quantitatively account for histoblast growth (Figure 3A). We first
quantified the number of histoblasts between 0 hAPF and 16 hAPF, during the prepupal and
early pupal stages (Figures 3B-C). At early times, before ~3 hAPF, we could follow cell
division by time lapse and measure an average cell cycle time of ~2.7h (Figure 3D and Movie
3). Later, between ~4 hAPF and ~16 hAPF, continuous live imaging was not possible because
of the extensive movements of the pupae. Therefore, we quantified the number of cells in the
anterior histoblast nest in fixed images at different times between 0 hAPF and 16 hAPF (Figure
3E, 3F). This indicated that the short cell cycle time measured before 3 hAPF was not
maintained at later times (Figure S3A) but instead was slowing down (Figure 3D-E). As
previously described (Ninov et al., 2007), our quantification was consistent with roughly 3
cleavage divisions occurring up to ~12 hAPF (Figure 3F). Cell number plateaus between ~12
hAPF and ~14 hAPF, before undergoing a sudden rise between ~14 hAPF and ~16 hAPF,;
supporting previous observations that growth occurs in two phases, a cleavage phase up to ~12

hAPF and an expansion phase starting after 14 hAPF (Ninov et al., 2007).

Using these data, we performed a simulation of tissue growth where (i) sister cells take a cycle
time at their birth out of a bivariate normal probability distribution with a time-varying mean,
coefficient of variation (CV) and fixed sister correlation coefficient, (ii) cells pause their

divisions between 12.5 hAPF and 14.7 hAPF but still age, giving rise to a burst of cell division
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around 15 hAPF (iii) cells stop proliferating according to the experimentally measured
probability distribution, (iv) cells transition to SOPs with a fixed probability in a time window
(Figure 3A, Supplementary Theory). The mean and SD of the simulated cycle time probability
distribution before 3.3 hAPF and after 14.7 hAPF were taken according to experimentally
measured distributions (Figure 3D, Supplementary Theory). Between these two phases, the
mean cell cycle time was taken as the starting value of the expansion phase at ~15 hAPF
(Figures 3D, S3B). This model of tissue growth could closely match the increase in the total
number of cells, the total number of arrested cells and the number of SOPs over time (Figure
3E-G, see Figures S3C-F for effect of changing model parameters). The simulated cell division
rate exhibited oscillations comparable in period and amplitude to experimental data, as well as
a similar decay phase (Figure 3H). As expected, oscillations in simulated cell division rate
were strongly dependent on the CV of cell cycle time, becoming much flatter with less precise
cycle times (Figure 3I). We conclude that the essential features of cell number increase in

histoblasts are accounted for by the key mechanisms captured in our simulations.

We noticed that in our simulations, oscillations in cell division rate after 16 hAPF were
enhanced by the pause in cell division that we introduced, which tends to resynchronize cell
division at the end of the pause, whereas a different implementation of a pause that did not
cause such resynchronization resulted in flatter oscillations (Figure S3C). To test whether our
simple simulation rules capture the cell division rate oscillation independently of this choice,
we simulated tissue growth for different WTs after 16 hAPF, taking the initial cell number and
experimental times to division as initial conditions (Figure S3G). The oscillation in cell
division rate was still present in these simulations, but in some cases was less pronounced than
in experiments (Figures S3H-J). These observations suggest that additional couplings between

cells in the tissue might contribute to further enhance the oscillation in cell division rate.

Overall, we identify two key events in abdomen growth: a pause in proliferation between the
cleavage and expansion phases, and a sudden transition of individual cells to arrest, ending
proliferation. Given the reported effects of tissue mechanics on proliferation in several
biological systems, we next investigated whether these key steps were associated to changes in

mechanical properties.

Junctional tension increases during abdomen development
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We explored whether mechanical stresses were changing in histoblast nests over time. We
performed single junction ablations in different regions of the anterior nest and calculated the
recoil velocity of the junction vertices (Figures 4A-E, S4A). We found two distinct behaviors
depending on the location of junctions with respect to the LECs: although there was little
change in the recoil velocity of junctions at the LEC/histoblast boundary, junctions away from
the boundary showed an increase recoil after 21 hAPF, as well as a bias towards the dorso-
ventral (DV axis) (Figures 4C-E and S4A). We tested whether this increase in junction recoil
after ablation was associated to cell shape changes, but found no clear correlation between
junction length and recoil velocity at all developmental stages (Figure S4B). As LECs are
contiguous with the histoblasts, we also examined if they experienced changes in tension.
Using laser ablation, we excised individual LECs, and followed the subsequent LEC
deformation (Figures 4F-H, S4C-E, Movie 4). At 16 and 21 hAPF, LECs showed minimal
shape changes (Figure 4G, H, S4C). At 26 hAPF however, there was a large reduction in apical
area upon ablation (Figure 4G, H, S4C) and the shape contraction was slightly more
pronounced along the antero-posterior (AP) than the DV axis. This is consistent with a recently
reported increase in recoil velocity in single LEC junction ablations between 20 and 27 hAPF
(Michel and Dahmann, 2020). Surprisingly, we therefore observe that recoil velocities of

histoblast and LECs increase over developmental time.

Examining Myosin II (Myo II) levels at junctions (Figures 4I-P, S4F, G, Movie 5) showed that
the highest levels in histoblasts are at the histoblast-LEC boundary (Figure 4I-K, Michel and
Dahmann, 2020), likely explaining the large interfacial recoil after ablation between the
histoblast nests and LECs (Figure 4C). However, Myo II junctional levels globally decline
throughout development, whilst also switching from a slight intensity bias along DV junctions
at 16 hAPF to being isotropic at 31 hAPF (Figure 4M-P). We also observed no strong
dependency of Myo Il intensity on junction length (Figure S4F). We conclude that the increase

in recoil velocity over time is not linked to an increase in Myo II junctional levels.

Junctional tension is only one of the components generating forces in the tissue, so we
wondered if the large-scale tissue tension was changing over time in the same way as junctional
recoil velocity. To test this, we performed apical annular cuts with a diameter of about 10 cells
in a defined region of the anterior histoblast nests at different time points (Figure SA, Movie

4). Consistent with observations of single-junction ablations, the strain and recoil velocity
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measured in the AP and DV directions were increasing over time (Figure 5B, S5A, B, Star
methods). In addition, the spatial pattern of cell area contraction within excised discs exhibited
a striking change over time. Cell area contraction was mostly confined to the disc edge at 16h,
and this edge bias disappeared at 31 hAPF (Figure 5C). Since a free elastic disc under isotropic
tension should constrict uniformly (Supplementary Theory), we reasoned that this observation
indicated that cell movement was initially limited by an external elastic resistance. We
therefore compared experimental patterns of isotropic shear (relative cell area change) and
anisotropic shear (change in cell elongation) to a continuum model where the tissue is described
as an elastic material under active tension, adhering to an external substrate through elastic
links (Figure 5D-H, S5D-F). Fitting this model to spatial profiles of excised discs and tissue
outer boundary deformation at different times (Figure SE), we found that the parameter
describing external resistance to the disc deformation was strongly decreasing over time
(Figure 5F). The model also indicated that the tissue internal AP tension was roughly constant
over time (Figure 5G), while the DV tension increased after 26 hAPF (Figure SH). We
therefore conclude that build-up of compressive stresses does not occur in the histoblast nest,
and therefore is not responsible for growth arrest as has been suggested for other tissues (Irvine

and Shraiman, 2017)

The basal extracellular matrix is degraded during histoblast expansion from 13 hAPF

Why does the external resistance to tissue deformation appear to decrease over time? The apical
surface of the histoblasts and LECs is in contact with the pupal cuticle, while the basal surface
is attached to a basement membrane containing Collagen IV (Viking — Vkg in flies) (Ninov et
al., 2010 and Figure S6A). We therefore quantified basal extracellular matrix (ECM) dynamics
during pupal abdominal development. We investigated the dynamics of the three major
Drosophila basal ECM components, Perlecan (Drosophila Trol), Collagen IV and Laminin B1
(LanB1) from 4 hAPF to 32 hAPF. During the pre-pupal stages (4 hAPF — 12 hAPF), all three
components are present as a dense network across the entire abdomen (Figure S6B, C), but are
slowly degraded (Figure S6B, C, Movie 6). At 12 hAPF, head eversion compresses the ECM
network along the AP axis, leading to an increase in ECM component intensity (Movie 6,
Figure S6B, C). This is followed by degradation of all three ECM components across the entire
abdominal region from around 13 hAPF, consistent with previous work indicating that

Collagen IV under the histoblasts is degraded between 16 and 28 hAPF (Ninov et al., 2010).
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We found that Perlecan is degraded at a faster rate than Collagen IV and Laminin B1 (Figure
S6B, C, Movie 6).

We examined at higher spatial resolution whether the basal ECM is degraded in a similar
manner under the histoblasts and LECs, after 16 hAPF. Both Perlecan and Collagen IV are
degraded at a similar rate under both cell populations, and by 21 hAPF we only detect a residual
punctate signal in hemocytes (Figure 6A, B, Movie 6). LanB1, on the other hand, is degraded
under the LECs, but is maintained at a higher level under the histoblasts than under the LECs
(Figure 6A, B, Movie 6). To identify potential mechanisms for ECM degradation, we imaged
a transcriptional reporter for the secreted Drosophila matrix metalloprotease, MMP1 (Wang et
al., 2010). mmp1 is expressed in cells below the epidermis (e.g. muscles, fat body - FB and
hemocytes), and weakly in the polyploid LECs, but not in the histoblasts (Figure 6C). mmp1-
GFP levels rapidly increased during histoblast expansion, suggesting that MMP1 release by
the underlying cells triggers the remodeling of the ECM (Figure 6C, D, Movie 7).

To test whether the reduction in basal ECM components caused the loss of external mechanical
resistance inferred from annular ablations, we overexpressed MMP1 or TIMP (Tissue inhibitor
of metalloproteases, an endogenous MMP inhibitor) in the LECs (32B-GAL4 driver) and
performed annular cuts on the histoblasts. Area contraction was less concentrated at the edge
of excised discs in pupae overexpressing MMP1 than in WT at 21h APF (Figure 7A) and the
disc overall deformation magnitude was more pronounced at early times and comparable at
later times (Figure 7B, C, S7TA-D). In contrast, in TIMP overexpression at 26 hAPF, the area
deformation profile was concentrated near the boundary of the disc and the overall deformation
magnitude was reduced compared to WT (Figure 7A-C, STE-H). These results are intuitively
consistent with the ECM providing external resistance to tissue deformation; as resistance
decreases when the ECM is degraded early (MMP1 overexpression), and increases when the
ECM persists for longer (TIMP overexpression). To obtain a quantitative read-out, we fitted
our continuum model to experimental deformation profiles in MMP1 and TIMP
overexpression, as for annular ablations in WT pupae (Figure 5D). This confirmed that external
resistance to the disc deformation was decreasing early in MMP1 overexpression and was
strongly increased in TIMP overexpression (Figures 7F, G). Tissue tension was generally
similar to WT in these perturbations, except for an increase of isotropic tension at 16 hAPF in

MMP1 overexpression (Figures 7H, I and S71, J). Overall, these results are consistent with a

13


https://doi.org/10.1101/2020.11.10.376129
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.10.376129; this version posted November 10, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

progressive disappearance of essential ECM components after 13 hAPF, resulting in reduced

external resistance to deformation of the histoblast epithelium.

Basal ECM remodeling is necessary for histoblast nest expansion

The ECM degradation that occurs between 14 and 21 hAPF coincides with the transition from
the histoblast cleavage divisions to the expansion divisions (Figure 3). We therefore
investigated whether blocking ECM remodeling has an effect on histoblast proliferation by
overexpressing TIMP, which as expected prevented Collagen IV degradation (Figure 7J, S7TK,
Movie 7). Next, we analyzed the behavior of the histoblasts while preventing basal ECM
degradation with TIMP overexpression (Figures 7K). No proliferation was observed in the
histoblasts during the time period observed, from 16 to 31 hAPF (Figure 7K, Movie 7), which
is strikingly different from extensive proliferation seen in the wild type histoblasts over the
same time period (Figure 1B). The lack of proliferation was not due to early pupal death since
our experimental samples developed to the pharate adult stage with a normal head, thorax and
wing (Figures 7L, S7L). Moreover, a pupal wing imaged simultaneously with the abdomen in
a TIMP-expressing pupa proliferated normally at 16 hAPF (Figure STM, Movie 7). In contrast,
the larval abdomen failed to be replaced by the histoblasts, as evidenced by the lack of
pigmentation and sensory bristles (Figure 7L, S7L). Thus, the expansion phase of cell division
in the histoblasts fails to start in animals overexpressing TIMP. This provides evidence that
basal ECM remodeling triggers the start of cell growth and proliferation during Drosophila

abdominal epithelium expansion.
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Discussion

Our quantitative analysis has allowed us to identify the major landmarks of abdomen growth.
We find that following ~3 cleavage divisions, a pause in proliferation rate precedes an
expansion phase. After ~ 4 cell divisions (Table S1), the expansion phase ends with cells
individually transitioning to arrest. Beyond this global picture of histoblast growth, our dataset

and simulations provide several surprising insights.

Correlations in cell cycle times

We find that cell cycle times are not temporally correlated, nor are they dependent on cell
geometry, but exhibit spatial correlations on a scale of a few cells (Figures 2, S2). Tracking of
single cells in culture has led to the identification of a pervasive phenomenon known as the
“cousin-mother inequality”, whereby cousins display a surprising degree of cell cycle time
correlation given weak mother/daughter correlations (Mosheiff et al., 2018; Sandler et al.,
2015). This phenomenon has been attributed to the interplay of the cell cycle machinery with
the circadian clock (Chakrabarti et al., 2018; Sandler et al., 2015), or the inheritance of cell
mass or cell cycle regulators over several generations (Kuchen et al., 2020). In our developing
in vivo system, we propose that spatial correlations largely explain the ‘“cousin-mother
inequality” in cell cycle time correlations. While we cannot distinguish whether these spatial
correlations arise from cell-cell communication or exposure of neighbors to a common
microenvironment, we note that spatial patterns of cell cycle time vary significantly in time
and between pupae (Figure S2E). We speculate that these neighbor correlations are a signature
of cell-cell communication mechanisms which might also ensure that tissue-wide events, such

as transition to arrest take place in a coordinated manner.

Growth termination: a gradual or abrupt process?

The Drosophila wing imaginal disc is arguably the system in which growth and final size
control have been studied most extensively (Gou et al., 2020). A striking aspect of this system
is that cell proliferation decelerates progressively during roughly half of the larval growth
period (Gou et al., 2020). A similar scenario was observed during postnatal growth of the
mouse skin, where the cell cycle time of epidermal progenitors gradually increases over sixty
days following birth (Dekoninck et al., 2020). In contrast, we find that termination of tissue

growth is not mediated by a progressive increase in cell cycle time, but by the sharp, stochastic
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transition of a growing population of cells to proliferative arrest, with no visible large-scale
pattern (Figure 2). This is reminiscent of models which have been proposed for growth and
differentiation of neurons in the retina (He et al., 2012), growth of mouse intestinal crypts
(Itzkovitz et al., 2012) or the expansion of the mouse embryonic skin (Lechler and Fuchs,
2005). In these tissues, a relatively abrupt transition in modes of progenitor divisions switch
the tissue from expansion to maintenance and differentiation. This suggests that different
developing tissues can achieve reproducible sizes using radically different growth termination
strategies. It is possible that the sharp transition we observe here allows for fast expansion of
the histoblast nest, at the cost of a less refined control over the final number of cells than would
be allowed by a progressive slow-down in proliferation, as observed in the wing disc or mouse

skin (Itzkovitz et al., 2012).

Mechanical control of developmental growth

Mechanical control of growth is an attractive model for tissue size determination supported by
the study of the effects of cellular density on the proliferation of tissue culture cells (Irvine and
Shraiman, 2017; Panciera et al., 2017). In this scenario, crowding leads to cell cycle arrest as
cells reach confluence through compaction, driving a reduction in cell area. By analogy to cells
in culture gradually filling empty space on the culture dish surface, it is tempting to speculate
that histoblasts, which grow within a confined planar surface, are subjected to mechanical
crowding leading to growth termination. However, we did not find a signature of a feedback
of cell area affecting the cell division rate. Furthermore, laser ablation experiments indicate
that the tissue tension is either constant (in the AP direction) or increasing (in the DV direction)
(Figure 5, S5). Decreased Myo II accumulation has been proposed to mediate the effect of cell
crowding on proliferation in the wing disc (Pan et al., 2018; Rauskolb et al., 2014). However,
though an area of lower apical Myo II levels emerges in the medial part of the anterior dorsal
nest from around 21 hAPF (Figure S5F), this does not lead to a similar pattern of increased cell
cycle time or early exit from the proliferation phase. Finally, the transition from growth to
arrest in the abdomen occurs between ~24 and ~28 hAPF, whereas the displacement of the last
LECs and fusion of the dorsal nests at the midline takes place between 32 and 36 hAPF
(Madhavan and Madhavan, 1980; Michel and Dahmann, 2020). Thus, changes in cell geometry

or mechanical tension do not appear to provide a universal growth termination cue.

Matrix remodeling and tissue growth control
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The transition between the prepupal cleavage divisions to the expansion phase represents a key
step in abdominal development. This involves both a lengthening of the cell cycle, and a
resumption of tissue growth. The depletion of Cyclin E stores accumulated during the larval
growth period is thought to account for the increase in cell cycle length (Ninov et al., 2007).
Here, we show that remodeling of the basal ECM is an essential step to allow nest expansion
to take place. Dynamic remodeling of the ECM plays an instrumental role in organ
development by orchestrating processes such as cell migration and rearrangements (Ramos-
Lewis and Page-McCaw, 2019; Walma and Yamada, 2020). Partial degradation of the basal
ECM (Collagen IV and Perlecan are degraded, while some Laminin persists) initiates at around
13 hAPF and is required for histoblast expansion to occur. Indeed, blocking ECM degradation

through the expression of TIMP prevents the transition to expansion divisions (Figure 7K, L).

How is the degradation of the basal ECM triggered at the correct time? MMP1 and MMP2, the
two Drosophila MMP family members, are responsible for most basement membrane turnover,
and have been implicated in the remodeling of a number of tissues during metamorphosis
(Diaz-de-la-Loza et al., 2018; Ramos-Lewis and Page-McCaw, 2019). We did not detect high
levels of the MMPs in the histoblasts or LECs, but MMP1 levels dramatically rose in the FB
and hemocytes beneath the epidermal epithelial layer (Figure 6C, D). The hemocytes might be
implicated in epidermal basement membrane remodeling, since they are highly active at that
stage and take up much of the GFP-tagged Collagen IV and Perlecan in large phagocytic
vesicles (Figure 6A). Alternatively, the release of MMPs into the hemolymph as the FB
disperses might trigger the degradation of the epidermal ECM and histoblast nest expansion.
Indeed, in response to the pupariation ecdysone pulse, FB cells secrete MMP1 and MMP2,
causing the destruction of the cell-cell junctions and ECM that hold them together between 6
and 12 hAPF (Bond et al., 2011; Jia et al., 2014).

How does ECM degradation enable tissue growth? One possibility is that loss of signaling from
the ECM via integrins signals the onset of the expansion divisions. However, this would be
unexpected as in many systems, integrin signaling promotes rather than inhibit growth and
proliferation (Hamidi and Ivaska, 2018). A second possibility is that the histoblast nests are
prevented from expanding because cell motion is impaired by strong adhesion to the ECM: the
increased tissue-ECM attachment observed in TIMP pupae (Figure 7G) might explain the lack

of growth of the histoblasts in this condition. Finally, basement membrane remodeling might
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free a source of trapped growth factor/morphogen, or allow a ligand present in the hemolymph
to access the histoblasts. Indeed, the ECM has been shown to act as a growth factor reservoir
(Bonnans et al., 2014; Hynes, 2009) or to restrict morphogen diffusion (Ma et al., 2017; Tian
and Jiang, 2014; Wang et al., 2008) in several tissues. It is interesting to consider this repressive
effect of the ECM on developmental proliferation in the context of the proposed role of the
normal cellular microenvironment in limiting cancer formation (Bissell and Hines, 2011). It is
likely that oncogenic transformation involves the exploitation of developmental ECM
remodeling mechanisms to convert the ECM from an anti-tumor to a pro-tumor environment
that promotes proliferation and tissue invasion (Bissell and Hines, 2011; Chang and Chaudhuri,

2019).

18


https://doi.org/10.1101/2020.11.10.376129
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.10.376129; this version posted November 10, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Acknowledgements

We thank Y. Bellaiche, D. Bohmann, B. Stramer, K. Irvine and the Bloomington Drosophila
Stock Centre for fly stocks. We are grateful to M. Renshaw (Crick Advanced Light Microscopy
facility) and the Crick Fly Facility for support, and R. Etournay, M. Popovic, M. Merkel and
H. Brandl for help with Tissue Miner. We are grateful to B. Aerne for generating the UAS-HA
fly stock. We thank JP Vincent and J. Briscoe for critical reading of the manuscript. JRD is
funded by a Sir Henry Wellcome Fellowship (201358/Z/16/Z). AF is funded by the European
Union’s Horizon 2020 research and innovation programme under the Marie Sktodowska-Curie
grant agreement MSCA-IF-EF-ST No 795060. This work was supported by a Wellcome Trust
Investigator award (107885/Z/15/Z) to NT. Work in the Salbreux and Tapon labs was
supported by the Francis Crick Institute, which receives its core funding from Cancer Research
UK (FC001317, FC001175), the UK Medical Research Council (FC001317, FC001175), and
the Wellcome Trust (FC001317, FC001175).

19


https://doi.org/10.1101/2020.11.10.376129
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.10.376129; this version posted November 10, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Author contributions

Conceptualization: all authors

Funding acquisition: JRD, AF, GS, NT

Experiments: APA, JRD, AF

Theory, simulations: JW, ATS, GS

Experimental methodology: FM, EMB

Software: JRD, JW, ATS, AH, MBS

Supervision: GS, NT

Writing — original draft: APA,JRD, JW, AF, AH, MBS, GS, NT
Writing — review & editing: all authors

20


https://doi.org/10.1101/2020.11.10.376129
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.10.376129; this version posted November 10, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Declaration of interests

The authors declare no competing interests.

21


https://doi.org/10.1101/2020.11.10.376129
http://creativecommons.org/licenses/by/4.0/

Pupa WTH
Prepupa p ° 3
®©
é 2 division
36 hAPF g
E cell area
Adult 3 01— extrusion
16 21 26 31
Time (hAPF)
D Tissue area
2 — WTT1
©
16 hAPF | 21 hAPF | 26 hAPF | 31 hAPF % 2 — WT2
R — WT3
o 12 ;s E
% SCof{ - — WT4
D 16 21 26 31
3 Time (hAPF)
L E Division
o 3 — WT1
S
g2 — WT2
Area (um) g — WT3
S w100 E
o [ Sop~Z  — WT4
o '0 16 21 26 31
o Time (hAPF)
F . Cell area
! g3 — WT1
| &) g 21 — WT2
anterior 2
.noborder E 11 — WT3
posterior = %_
m O o= WT4
16 21 26 31
Time (hAPF)

Figure 1


https://doi.org/10.1101/2020.11.10.376129
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.10.376129; this version posted November 10, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Figure 1. Quantitative analysis of cellular contributions to abdomen growth

(A) Drosophila life cycle, with histoblasts in green. The red dotted rectangle on the pupa
indicates the field of view imaged in (B). Adapted from (ISBN 9780879694722).

(B) Top row: Histoblasts in live pupa expressing E-cad::GFP at the time points indicated.
Yellow dotted line surrounds the histoblast nests. At 16 hAPF, the anterior (larger) and
posterior (smaller) histoblast nests are still visible and surrounded by the LECs. The nests then
spread and eventually occupy the entire surface of the segment. Middle row: Heat map
showing cell areas. Bottom row: labelled regions of interest (ROIs); Anterior (green+magenta),
posterior (red) and the ‘no border’ ROI (magenta). Scale bars=50 ym. Dorsal is to the top,
anterior is to the left in all images, unless otherwise indicated.

(C) Decomposition of the cumulative area expansion rate of the tissue into contributions from
cell division, cell area change and cell extrusion (WT1, noborder ROI).

(D-F) Cumulative tissue area expansion rate (D) and contributions from cell division (E) and
cell area (F), for 4 different WTs. WTs are time-aligned based on the appearance of sensory

organ precursor (SOP) cells (Figure S1G).
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Figure 2. Histoblast cell cycle times and transition to proliferative arrest

(A) Cell division rate in each WT movie as a function of time (after application of moving
average, with a top-hat smoothing kernel with window size 0.875 h). The cell division rate
oscillates up to ~28 hAPF before decaying. Data from noborder ROIs.

(B) Cell cycle time as a function of birth time for each WT movie. Data from noborder ROIs.
(C) Cell cycle time as a function of initial cell apical area, for each WT movie. Larger dots:
binned data. Error bars: SEM for the bin. Faint smaller dots: individual data points. Data from
noborder ROIs.

(D) Probability density of pairs of cell cycle times, where pairs are taken between, from left to
right, mother-daughters, sisters, cousins, and nearest-neighbors whose birth time differ by less
than 0.5 hours. Cells are taken from the visible anterior nests. Sister cells are excluded from
neighbor correlations. p , Pearson correlation coefficient (see Supplementary Theory).
Mean+SD are calculated over the values for the 4 WTs. Spearman correlation coefficients are
ps =0.06+0.04 (mother-daughters), ps =0.62+0.03 (sisters), ps =0.33+0.03 (cousins),
ps=0.41+0.02 (nearest-neighbours born at similar time).

(E) Pearson correlation coefficient p of cell cycle times for mother-daughter pairs, sisters,
cousins, and increasing cell-cell distance (sister cells excluded).

(F) Snapshots showing the appearance of SOPs and arrested cells within the noborder ROI
(WT1 movie).

(G) Fraction of created cells that are arrested as a function of time, for all WT movies (color
code as in panels A-C).

(H) Snapshots of the final frame for each WT movie with arrested cells colored by the time of
their appearance, relative to each movie’s “switch time” for the probability of arrested cell
creation (panel J).

(I) Schematic defining the parameters p and o characterizing arrested cell creation.

(J) Probability p that a division creates at least one arrested cell as a function of time. Each
movie’s p curve can be fitted with its own Hill function (not shown) and the switch time of
that function is referenced in (H). Black dashed line, manual fit to the average movie behavior.
(K) Probability a that a cell division gives rise to two arrested cells, conditioned on the cell

division giving rise to at least one arrested cell. Blacked dashed line, as in (J).
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Figure 3. Kinetics of histoblast growth can be explained by changes in cell cycle times and
stochastic transition of individual cells to an arrested state

(A) Schematic of histoblast growth simulations. Cells take their cycle time from a probability
distribution changing in time and become arrested or SOPs according to time-evolving
probabilities.

(B, C) Example time-lapse confocal images of histoblast nests at the times indicated during the
pre-pupal (B) and pupal (C) stages. Histoblasts are labelled by driving nls-GFP expression in
this tissue. In B, the orientation of the animal is rotated compared with other panels. Scale bar
=50 um. (A = Anterior, D = Dorsal, P = Posterior)

(D) Black points: experimental measurements of cycle times available in the first 3 hAPF.
Colored points and error bars: binned mean and standard deviation of cycle from WT1-WT4.
Grey line and ribbon: mean and standard deviation of cell cycle time inputted to the simulation.
In the time period covered by the colored points, the grey line is a 3«-order polynomial fit to
the data points.

(E) Quantification of anterior nest cell numbers from 0 hAPF until 16 hAPF (green dots, with
average and standard deviation indicated in black). During the first 10 h of pupal development
histoblasts undergo 3 divisions followed by a transient pause in cell number increase until the
expansion phase begins at around 15 hAPF. Grey line and ribbon: mean +/- SD of trajectories
from a representative simulation, as described in the text.

(F) Data from (E) scaled so that the vertical axis represents the mean number of division cycles
per cell.

(G) Comparison of normalized cell numbers for different cell classes in the noborder ROI
between experimental measurements (lighter ribbons) and base case simulations (darker lines
and ribbons). Cell numbers for different WTs are normalized as described in Supplementary
Theory.

(H) Comparison of the experimental cell division rates within the noborder ROI from each WT
movie (colored lines) with a representative simulation (grey line). Moving average applied as
in Figure 2A. Inset: Absolute value of the Fourier transform of the division rate data prior to

28.5 hAPF, normalized to its value at O frequency. The height and sharpness of the main peak
around 0.25 hr' characterizes the oscillatory component of waves of division. Inset; black:

mean and SD from n=4 experiments, red: mean and SD from n=10 simulations.
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(I) As H but for a simulation in which the CV after 14.7 hAPF is doubled to 0.4. The peaks in
the division rate become noticeably less sharp and more disordered, also reflected in the Fourier

transformed data (inset).
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Figure 4. Junctional tension increases through development

(A) Snapshots of laser ablation experiments. Red color; before laser ablation; green color; time
frames after laser ablation. Scale bar =5 um.

(B) Confocal image of dorsal histoblast nests at 16 hAPF where the position of boundary, distal
and proximal cells is highlighted.

(C-E) Quantification throughout development of recoil velocity for single junction ablations
for cells located along the boundary (C, perimeter junctions n=38, 31, 29 and orthogonal
junctions n=39, 31, 29 at successive times), or in the distal (D, DV junctions n=16, 19, 30, 20
and AP junctions n=16, 9, 24, 21) and proximal (E, DV junctions n=16, 11, 33, 21 and AP
junctions n=21, 22, 38, 22) positions within the nest.

(F) Snapshot of an LEC at 16 hAPF in the resting state after an annular ablation in an E-
cad::GFP-expressing animal. Excised LECs were segmented (yellow) and their shape change
analyzed to assess strain.

(G) Representative LEC segmentations after ablation, temporally overlaid for each
developmental stage examined.

(H) Quantification of Hencky’s true strain for LEC AP (short) and DV (long) axes, after
ablation.

(I-L) Example apical projections of confocal images from a pupa expressing Sgh::GFP (Myo
IT) and E-cad::mKate?2 at the indicated time points. Note the higher levels of Myo II intensity
at the Histoblast-LEC boundary (yellow arrowheads), and the Myo II supra-cellular cable at
the histoblast AP nest boundary (green arrowheads) (Umetsu et al., 2014). Scale bar = 50pum.

(M-P) Polar-plots of apical Myo II intensity (radius) as a function of junction angle (black line
denotes median intensity and dark grey denotes the inter-quartile range) at different times (as

in I-L).
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Figure S. Deformation of excised histoblasts reveals a reduction in external resistance

to histoblast movement

(A) Example time-lapse confocal images of histoblasts at the resting state following an annular
ablation (ablated region outlined in red) in E-cad::GFP-expressing animals, at different stages
of abdomen development. Scale bar = Sum.

(B) Quantification of Hencky’s true strain in the Dorsal-Ventral (DV) and Anterior-Posterior
(AP) axes of excised histoblasts throughout development. n=23, 24, 29, 16 experiments at
successive times.

(C) Averaged spatial map of relative area change after excision at 16 hAPF and 31 hAPF,
plotted on the undeformed discs (n=20 (16hAPF) and n=15 (31 hAPF) experiments).

As time progresses, the relative area change becomes more homogeneous in the disc

(D) The excised disc is described as an elastic material, subjected to anisotropic active tension
{x,{y, adhering to a substrate through elastic links, with effective elastic modulus per area k.
(E) Experiment (top) and simulation (bottom) deformation plots of excised histoblast discs.
Color code: relative area change, black lines: anisotropic shear or change in cell elongation.
Deformation fields are plotted on the deformed disc and are obtained from measurements
before and 3 minutes after ablation for experiments. Red circles indicate ablated region. Gray
squares and error bars in experimental plots: deformation of the outer circle of the ablated ring
(mean+95% confidence interval), averaged between top/down and left/right deformations.
Data is obtained from n=20, 12, 13, 15 experiments at successive times.

(F, G, H) Fitted model parameters to excised disc deformations, as a function of time. (F)
Normalized ratio of external elastic modulus per area k to tissue elastic modulus K. (G, H)

Normalized AP and DV tensions, respectively.
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Figure 6. Basal extracellular matrix remodeling

(A) Example maximum intensity projection of confocal images of the three major basal ECM
components during pupal stages. Histoblast nests are outlined in yellow. Scale bars = 50pm.
(B) Quantification of ECM components intensity underneath LECs (solid lines) and histoblasts
(dotted lines), after subtraction and normalization to the lowest measured ECM component
intensities under LECs (see STAR Methods), throughout pupal development (error bars: SD,
n=3 for each genotype).

(C) Still images of MMP1-GFP reporter expressing pupae in the basal hemolymph throughout
development. Scale bar = 50 ym. Histoblast nests are outlined in yellow.

(D) Quantification of MMP1-GFP maximum projection intensity in the basal hemolymph,
measured every 20 minutes (Error bars: SD, n=2). Intensities are normalized to the mean

intensity at 16 hAPF.
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Figure 7. Basal ECM remodeling is necessary for histoblast nest expansion

(A) Averaged spatial map of relative area change after excision at 21h APF for MMP and WT,
and at 26 hAPF for TIMP and WT, plotted on the undeformed discs. The relative area change
is more homogeneous in the MMP perturbation than in the WT, indicating reduced external
resistance to tissue deformation. From left to right, n=12, 7, 13, 5 experiments.

(B, C) Quantification of Hencky’s true strain along the AP (B) and DV (C) axes, calculated
from annular ablations in pupae expressing MMP1 or TIMP under the control of 32B-GAL4.
WT data is repeated from Figure 5. Mann-Whitney test was used to compare populations, with
0.05>*>0.01>**>0.001>*** . From left to right for both plots n=12, 23,7,7,24,7,29,9,6, 16
experiments.

(D, E) Experiment (top) and simulation (bottom) deformation plots for excised histoblast discs,
at 4 different time points, in pupae expressing MMP1 (D) or TIMP (E) under the control of
32B-GALA4.Representation is as in Figure SE. From left to right,n=11,7,7, 6,7, 5 experiments.
(F- T) Fitted model parameters for excised discs deformation, as a function of time, compared
to parameters for WT (red, data as in Figures 5F, S5D-E). (F, G) Normalized ratio of external
elastic modulus per area k to tissue bulk elastic modulus K in pupae expressing MMP1 (green,
F) and TIMP (blue, G). (H, I) Normalized isotropic (sum of AP and DV tensions, {,+d,)
tensions in pupae expressing MMP1 (green, H) and TIMP (blue, I).

(J) Quantification of the mean intensity of Collagen IV from movies of pupae expressing HA
(control) or TIMP under the control of 32B-GAL4 (Error bars: SD, HA n=2, TIMP n=2).

(K) Stills from a movie of a pupa expressing E-cad::GFP, and overexpressing TIMP under the
control of 32B-GAL4 at the time points indicated. Scale bar = 50 ym. Histoblast nests are
outlined in yellow.

(L) Images of WT and TIMP expressing pharate pupae. Yellow arrow indicates the normal
development of the thorax. In contrast, the abdominal cuticle is unpigmented and devoid of

sensory bristles.

36


https://doi.org/10.1101/2020.11.10.376129
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.10.376129; this version posted November 10, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Movie Legends

Movie 1. Overview of imaging and quantification pipeline to assess tissue growth
dynamics of the Drosophila pupal abdomen.

Example movies for WT1 after the initial movie has been processed through the image
analysis pipeline highlighted in Figure S1.

Movie 2. Appearance of arrested histoblasts shows no consistent spatial pattern.
Overlays of SOPs, dividing histoblasts and arrested histoblasts for each WT movie as
mentioned in Figure 2.

Movie 3. Example movie of early histoblast cleavage divisions. Histoblasts were labelled
with nls-GFP.

Movie 4. Annular ablations on histoblasts and LECs.
Example movies of annular ablations on WT, MMP and TIMP over-expression histoblasts
and WT LEC:s at the indicated developmental timepoints.

Movie 5. Myo II apical intensity during histoblast development.
Movie of the apical junctions of histoblasts labelled with Ecad::mCherry and Sqh::GFP
during development. Scale bar=50pum.

Movie 6. Basal ECM remodeling during the pre-pupal and pupal stages.
Example movies of the basal ECM components LamininB1, Perlecan and Collagen IV during
pupal development. Scale bar = 50um.

Movie 7. Histoblast and pupal wing epithelial dynamics with over-expression of TIMP.

Both the pupal wing and histoblasts were imaged at the same developmental time, but whilst
histoblasts are arrested, cell divisions still occur in the pupal wing.
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STAR Methods

RESOURCE AVAILABILITY
Lead contact
Further information and requests for resources and reagents should be directed to and will be

fulfilled by the Lead Contact, Nic Tapon (nic.tapon@crick.ac.uk).

Materials availability
All fly stocks are available upon request or from the Bloomington Drosophila Stock Center

(see key resources table).

Data and Code Availability
Data and code are available upon request from the corresponding authors. The software
developed for the analysis of annular ablation experiments is provided free of charge via a

Github repository (see key resources table).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experiments were performed in Drosophila melanogaster (see key resources table and
figure genotypes table for details of strains used). Flies were maintained at 25°C (unless
otherwise indicated) on food generated by the Francis Crick Institute Media Facility (360 g
agar, 3600 g maize, 3600 g malt, 1200 mL molasses, 440 g soya, 732 g yeast extract, 280 mL
of acid mix (500 mL propionic and 32 mL orthophosphoric acid) and 50 L water).

METHOD DETAILS

FLY GENETICS AND IMAGING

Fly rearing

Flies were raised at 25°C. Pupae were collected at a pupal stage before head eversion, kept at

25°C and then monitored hourly for head eversion to calculate pupal age as 12 hAPF, four

hours prior to imaging at 16 hAPF.
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The UAS-GAL4-GALS80O- system was used as (Brand and Perrimon, 1993; McGuire et al.,
2004). We induced 32B-GALA4 driven expression of TIMP and HA (control) in a temperature
sensitive manner using the tub-GALS80- system, co-expressing E-cad::Tom and vkg-GFP.
Virgins of the following genotype: E-cad::Tom, vkg-GFP; 32BGAL4 were crossed to
homozygous males tub-GALS80-; UAS-TIMP and UAS-HA (II). Crosses were kept at 25°C.
Larvae were raised at 18°C and placed at 29°C for 7 hours prior to imaging. Pupae were
collected at a pupal stage before head eversion, kept at 29°C and then monitored hourly for

head eversion to calculate pupal age as 12 hAPF, three hours prior to imaging at 16 hAPF.

Imaging

Pupae were dissected and mounted as described (Mangione and Martin-Blanco, 2020). All
movies were acquired on a Zeiss LSM 880 confocal microscope at 25°C, with a Plan-
Apochromat 40x/1.3 oil DIC M27 objective, unless stated. For the dorsal-lateral field of view,
images were acquired as two-tiles of 1024x1024 pixels with a 10% overlap, with 20-30 z-slices
1 um apart, and the tiled stacks were fused in Zen Blue. WT E-cad::GFP movies were acquired
with a frame every 2.5 minutes, TIMP overexpression movies with E-cad::GFP every 5
minutes, E-cad::mCherry and ECM components during the pupal stages every 10 minutes,
mmpl-GFP every 20 minutes, and the E-cad::mKate2; Sqh::GFP movies every 5 hours. The

TIMP overexpression movies with vkg::GFP were filmed at 29°C, every 20 minutes.

For imaging of the ECM during pre-pupal stages, pre-pupae were placed dorsal-laterally with
their posterior in Voltalef 10s to image the abdominal segments. Movies were filmed on a Zeiss
LSM 880 confocal microscope at 25°C, with a Plan-Apochromat 40x/1.3 oil DIC M27
objective. Images were acquired as two by four tiles of 512x512 pixels with 10% overlap, 24

z-slices 2um apart every 30 minutes, and the tiles fused in Zen Blue.

Laser ablations

Pupae were dissected and mounted as above. All movies were acquired on a Zeiss LSM 780
confocal microscope with a Coherent Chameleon NIR tunable laser, at 25°C. For single
junction ablations, an alpha Plan-Apochromat 63x/1.46 Oil Korr M27 objective was used to
acquire a single tile of 512 x 512 pixels with 5x zoom every 500ms for 31 seconds. Junctions
were ablated with a wavelength of 780nm at 35% power with a 4 x 25 pixel ROI positioned

across the junction with the ablation taking 0.254ms. The vertex location was identified
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manually and the recoil velocity calculated using the methodology outlined in (Liang et al.,

2016).

For annular ablations, a Plan-Apochromat 40x/1.3 oil DIC M27 objective was used to acquire
a single 512 x 512 pixel tile with 5 z-slices 1um apart every S5s for 5 — 10 minutes. For
generating ROIs, the freehand ROI tool was used to draw between two circles/ellipses. For
histoblasts, the ROI was a circular annulus with an inner diameter of 45.54pum (110 pixels) and

an outer diameter of 57.96um (140 pixels), and the multi-photon was set at 780nm between 25
— 35% power, and the ablation was of a single z-plane at the apical surface and lasted 9.3ms.
For LECs, an elliptical annulus ROI with inner diameter dimensions of 28.98um (70 pixels)
by 57.96um (155 pixels) and outer dimensions of 38.916um (94 pixels) by 57.96um (185
pixels), and the multi-photon was set at 780nm at 40% power, and the ablation was of a single
z-plane and lasted 8.3ms. To analyze the various parameters, we followed the methodology
outlined in (Bonnet et al., 2012). Briefly, cells within the inner disc were segmented using
Skeletor and the inner disc axes lengths measured. To obtain strain, a bounding ellipse was
fitted to calculate the long and short axis and then the ellipse matrix was multiplied by a rotation
matrix and transpose rotation matrix, to calculate the deformation along the DV (y) and AP (x)
axes; the shear component was close to zero. Strain was then calculated by taking the natural
log of the non-ablated axis length (L) divided by the relaxed axis length (Lr); (¢ = In(L/Lr). To
calculate disc recoil velocity, we measured the change in axis length between successive
frames. To calculate relaxation time, we took the inverse of the gradient from a straight line

model fitted to recoil velocity as a function of axis length.

Quantification of cell number in early pupal stages

For pupal staging, white pupae (0 hAPF) were collected with a paintbrush. After selection,
animals were transferred to fresh vials and allowed to develop at 25°C until time of dissection.
Before dissection pupae were gently cleaned with 1xPBS and placed in double sided tape. First,
both the anterior and posterior ends were cut with scissors. Then, pupae were bisected laterally
along the antero-posterior axis. Animals were then transferred to sterilized 1x PBS and the
internal organs were cleaned from the epidermis by flushing with 1x PBS. Using forceps, the
epidermis was detached from the pupal case and transferred to an eppendorf. Fixation was

performed for 20 minutes in 4% formaldehyde. After fixation, the epidermis was rinsed three
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times in 1xPBS (3x5 minutes). Finally, the tissue was equilibrated in Vectashield (with DAPI)

overnight and mounted on coverslips.

For the first hours of pupa development, 0 hAPF animals were selected and imaged every 5
minutes for the following 4 hours to allow for manual scoring the time of first and second

divisions.

Myo II, ECM and MMP1 quantification

To quantify apical Sqgh::GFP intensity throughout development, movies were generated of E-
cad::mKate2; Sqh::GFP as previously mentioned with a five hour frame rate to minimize
photo-bleaching. Using the E-cad channel, the apical surface was projected as mentioned
previously, for both E-cad and Sqgh channels. The E-cad was then segmented using the Al
algorithm and manually corrected. The intensity of Sgh was calculated for each junction, as

well as the length and angle of junction relative to the DV axis.

To quantify ECM dynamics, movies were acquired as mentioned previously. For analyzing
pre-pupal dynamics an ROI of the final abdominal position within the field of view was
generated and the mean intensity of ECM components measured over-time. Intensity data was
normalized to the value at 13 hAPF for each movie which is the first timepoint after head
eversion where all movement has ceased. For analyzing pupal dynamics an ROI was generated
for the ECM under histoblasts and LECs, and the intensity for each cell population calculated
over-time. Values were subtracted and normalized to the mean value of the five frames with

the lowest mean intensity under the LECs.

Figure genotypes
Figure Cross Genotypes
Figure 1B-F, y[1] w[*]; THTI}shg[GFP] (E-
S1C-0, 2,82, 3D, cad::GFP); FRT82B ubi-nlsGFP/+
3G-1, S3D, S3C-
F,S3H-], 4, S4,
5A-E, S5A-B,
7A-B, 7G-1
Figure 3B-F, Crossed virgins of esgr-GAL4/UAS-FLP;
S3A-C, S3E act>y+>Gal4 UAS-GFP/+

esgr-GAL4/CyO

to males of
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Figure 3D

Figure 5I-L, S5F-
H

Figure 6A, B,
S6B, C

Figure 6A-B,
S6B-C
Figure 6C, D

Figure S6A

Figure 7A-D, 7F,
7H, S7TA-D, S71

Figure 7A-C, 7E,
7G, 71, 7J-L,
S7E-H, S7J-M

Figure S7K

UAS-FLP/CyO; act>y+>Gal4 UAS-
GFP/TM6b

Crossed virgins of
esgr+-GALA4, E-cad::GFP/CyO
to males of
UAS-mCherry.NLS
Crossed virgins of
E-cad::mKate?2

to males of
sqh-GFP.RLC
Crossed virgins of
E-cad::mTomato
to males of

trol (Perl)::GFP or lanB1 ::GFP

Crossed virgins of

we 1o

vkg-GFP, E-cad::mTomato
Crossed virgins of
E-cad::GFP ; 32B-GAL4
to males of

UAS-MMPI (1II)
Crossed virgins of
E-cad::GFP ; 32B-GAL4
to males of

UAS-TIMP (11])

Crossed virgins of
tub-GALS8Ots ; 32B-GAL4
to males of

vkg-GFP, E-cad::mTomato; UAS-HA or
vkg-GFP, E-cad::mTomato; UAS-TIMP

MOVIE SEGMENTATION AND ANALYSIS

Overview of the segmentation and tracking pipeline

esg,vplm_GAM, E-Cad,','GFP/UAS'
mCherry.NLS

E-cad::mKate2 ; sgh-GFP.RLC

trol (Perl)::GFP/+ ; E-
cad::mTomato / + and E-
cad::mTomato / lanB1::GFP

E-cad::mTomato, vkg-GFP

Mmpl.GFP ; +/+
vkg-GFP, E-cad::mTomato /+

E-cad::GFP/+ ; 32B-GAL4/UAS-
MMP]

E-cad::GFP/+ ; 32B-GAL4/UAS-
TIMP

vkg-GFP, E-
cad::mTomato/tubGALS8Ots ; 32B-
GAL4/UAS-HA

vkg-GFP, E-
cad::mTomato/tubGALS8Ots ; 32B-
GAL4/UAS-TIMP
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The aim of the image analysis pipeline was to identify, track and classify individual cells within
the developing histoblast nests. The image processing was performed on projected cell surfaces
which were subsequently segmented (skeletonized) first before being tracked. These two steps
were designed to be complementary. The segmentation informed the tracking which
highlighted issues with the segmentation. Any errors detected through the cell tracking allowed
the segmentation to be corrected and improved. The subsequent analysis in TissueMiner
required a segmented and tracked cell image sequence which was of sufficiently good accuracy
in order to provide reliable and meaningful interpretations. Therefore, in addition to an
automated tracker, a set of interactive tools were developed to provide the option to manually

correct the segmented image sequences and the results from the tracking.

Post-imaging

Input: Microscope creates .czi file with Z-stacks in time

Open .czi Zeiss Microscopy Image file in Imagel/Fiji and export as .btf (BigTif)
Output: BigTif: Z-stacks in time

Projection

Input: Btf file saved in Imagel/Fiji, full Z-stacks for each time point

Open surface projection programme in Matlab

Use GUI to manually identify the desired projection regions in every 10th frame
Projection programme automatically interpolates projection for the frames in between
Output: Tif: single projected slice for each time point

Skeletonization

Input: Tif: single projected slice for each time point

Using Skeletor, set threshold to between 0.2-0.3

Generates separate .tiff files of individual skeletonized frames
Use ImagelJ to concatenate frames

Output: Tif: skeletonized image for each time point (Skeleton v1)

Manual correction

Input: Tif: Skeleton v1, and Tif: single projected slice for each time point
Add Matlab files in Manual Correction folder to Matlab file path

Add projection and Skeleton v1 images to Matlab file path

Run SkeletonStart.m

Load Projection Tif stack

Load Skeleton Tif stack

Manually correct as many missing or extra junctions as possible using hotkeys
Save corrected skeleton

Output: Tif: Corrected skeletonized image for each time point (Skeleton v2)

Preliminary tracking and further manual correction
Input: Tif: Corrected skeletonized image for each time point (Skeleton v2)
Add Matlab files in Tracking Correction folder to Matlab file path
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Add projection and Skeleton v2 images to Matlab file path

Run TrackingCorrectionStart.m

Load Projection Tif stack

‘Find cells’, Matlab finds the centroids of uploaded skeleton

‘Tracking’, preliminary tracking identifies points where track is lost due to skeleton errors
‘Problems’ selected from drop-down menu, this will automatically start selecting lost tracks
Manually correct the junction errors identified

Click ‘Export Skeleton’ to save corrected Skeleton v3

Binarize stack in Imagel

Use ‘SaveAsSingleTIFFs’ Matlab programme to separate into individual tifs

Output: Individual Tif files, corrected binarized skeletonized image for each time point
(Skeleton v3)

Tissue Analyser skeleton processing

Input: Skeleton v3: corrected binarized skeletonized image for each time point

Transfer individual Tifs of Skeleton v3 into Tissue Analyzer

Use the Detect Bonds (Save Watershed) function in Tissue Analyser to export Tissue Miner-
compatible skeleton into individual folders

No blur and no removal of cells with x pixels

Use Mac terminal to transfer the individual Tifs into individual folders within the same
directory

CODE

for d in */; do (cd "$d" && pwd && cp handCorrection.tif"../dv$(basename "$d").tif"
);done;

Concatenate individual tifs to a single Tif stack in ImageJ

This creates an RGB Tif stack in time, use Imagel to create 8-bit image

Check for any new errors that may have been introduced by Tissue Analyser processing by
repeating the preliminary tracking correction

Correct errors and repeat Tissue Analyser processing

Output: Tif: Corrected skeletonized image for each time point (Skeleton #4)

Tracking in Matlab
Input: Tif file, corrected skeletonized images over time (Skeleton #4)
Alter AutoTrackingStart.m code to ensure it has the correct filename of skeleton #4

To start tracker:
CODE:

cd ~/filepath/Tracker/data

export MATLABPATH=/home/ainsli01/Documents/Tracker:/home/ainsliO
1/Documents/Tracker/data

nohup matlab -nodesktop -nodisplay -noFigureWindows -nosplash -r
"cd('/home/ainsliO1/Documents/Tracker/data’); AutoTrackingStart; quit" -logfile logfile.out <
/dev/null &

This will generate three .tif stacks over time, TrackedCellsRGB: each cell colored with a
unique cell I.D., DivisionsRGB: divisions highlighted in blue, ErrorsRGB: errors highlighted
in red

Output: RGB Tif stacks of Tracked Cells, Divisions and Errors
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Using ErrorRGB output in to correct skeleton

Input: Skeleton v4 and ErrorRGB Tif stack

In ImagelJ, separate red channel from ErrorRGB Tif stack, and subtract the skeleton resulting
in an image with only red cells

Binarize red cells and use ‘Analyze Particles’ in ImageJ to generate list of coordinates and
time points of red cells

Open skeleton in Image J, use ‘SpecifyArea’ macro to find errors in list of particles:

IMAGEJ MACRO CODE:
macro"SpecifyArea [c]"{run("Specify...");}

Enter x,y,t coordinates, automatically takes you to error
Annotate list of errors, label as either: tracking, division, skeleton or edge (edge errors can be
ignored)

Output: Skeleton #5 and a list of annotated errors

If skeleton errors above 50, RETURN TO FIRST STAGE OF MANUAL CORRECTION
If skeleton errors below 50, correct skeleton errors and divisions in Image]
Correcting missed divisions:
e Using the ‘SpecifyArea’ macro go through Divisions Tif stack finding the errors
annotated as ‘Divisions’
e Use ‘pick color’ to select division blue color, and use ‘fill” function (4-connected) to
fill just-divided cells that have been missed

Correcting skeleton:
e Correcting raw skeleton tiff stack using 1-pixel thick paintbrush in Image]J, taking
care to only generate junctions that are 1-pixel thick
e Copy-paste new junction into TrackedCellsRGB and Divisions tiff stacks
e Making sure to correct the colors by using the ‘pick color’ and ‘fill” function in
ImageJ

Make Tracker output compatible with Tissue Analyser and Tissue Miner

Input: Projected image stack and TrackedCellsRGB and Divisions image stacks
Open ‘SaveAsTissueMiner.m’ and make sure filenames are correct

Run ‘SaveAsTissueMiner’

Output: individual folders containing an individual projection, TrackedCellsRGB and
division image for each time point

Correct Tracks using Tissue Analyser

Input: individual folders containing projection, TrackedCellsRGB and division image for
each time point, as well a list of tracking errors

Fix broken and swapped tracks using the tools in Tissue Analyser

Output: corrected TrackedCellsRGB files

Tissue Miner analysis and further Quality Control
Input: corrected Tracked Cells and Divisions
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Use Tissue Miner to highlight cell I.D.s that disappear in red in final frame visible, these are
either apoptoses or tracking and skeleton errors

In ImagelJ, separate red channel

Binarize red cells and use ‘Analyze Particles’ in ImageJ to generate list of coordinates and
time points of red cells

Save list of red cells as an Excel file

Use ‘SpecifyArea’ macro to find errors and annotate list of particles

Correct errors as described in Steps 11 and 13

Output: individual folders containing an individual projection, fully corrected
TrackedCellsRGB and division images for each time point

RETURN TO MANUAL CORRECTION if there are significant remaining skeleton and
tracking errors
Otherwise, continue Tissue Miner data analysis

Projection

The cell projection tool was developed to provide a semi-automated means of creating cell
surface projections of histoblast and LEC image stacks. This was necessary as strong cell signal
could often be found above and below the main cell surface which sometimes required manual
corrections. The vast data volumes to be processed required an efficient approach with as little
manual intervention as possible and a convenient approach to correcting the surface projection
where necessary. We carried out the corrections on a sub-sampled image sequence with
subsequent spatial and temporal interpolation over the whole sequence. A tool featuring a

graphical user interface was developed for this purpose in Matlab.

After sub-sampling in the time domain (typically 1/10 frames) to generate key frames, the
maximum intensity projection over the z-depth provided a first estimate where surface markers
would be placed at depth levels expressing intensity values in the top. Only a subset of markers
was used to keep the number of markers low. These markers could be deleted and added
interactively by the user (Tetley et al., 2019). Markers could also be copied to the next frame
and translated to correct for a z-shift. Markers would then be used to calculate a depthmap by
iteratively averaging marker depth values greater than zero for all image values resulting in a

smooth, interpolated depthmap.
The surface for the whole sequence was generated from the depthmaps of key frames by means

of linear interpolation in the time and spatial domain. Cell surface intensities were obtained by

the max intensity in the vicinity of the interpolated surface from the original 3D image volume
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for each time frame. The cell surface was stored as a 2D image sequence which was then

imported into the image segmentation and skeletonization step.

Skeletonization using Skeletor

For the initial segmentation and ground-truthing for the machine-learning segmentation
algorithm, we developed a filter-based watershed algorithm in Mathematica which we called
Skeletor. Initially, projections were filtered using seven filter kernels, which are as follows: to
highlight edges we developed a new convolution matrix which we termed the davisfilter, where
the median intensity of a 3x3 pixel kernel was compared to the median intensity of an 11x11
pixel kernel, if the median for the smaller kernel was greater than for the larger kernel then the
origin pixel intensity was kept, if not then the median intensity of the 11x11 pixel kernel was
subtracted from the origin pixel value. The next filter was a modified salt and pepper filter
called saltpepper which aimed to de-noise the images, here the three largest and smallest pixel
values of an 11x11 kernel were removed, and the nearest pixel value to the mean of remaining
pixels was used as the origin pixel intensity value. The third filter was a contrast enhancing
median filter which we called medianfilter, where if the origin pixel intensity was greater than
the median for an 11x11 pixel kernel then the origin value was kept, if not then it was replaced
with 0. The fourth and fifth filters both calculated the median and the median deviation for an
11x11 pixel kernel, and kept the origin pixel value if it was greater than the median plus the
median deviation, if not then filter four, which we termed MADfilter, would subtract the
median for the 11x11 kernel to improve contrast; filter five which we termed MADsmoother,
would replace the origin pixel value with the median of the 11x11 kernel, smoothing the
background. Finally, the sixth and seventh filters were both in-built Mathematica functions
which smooth edges, the sixth being an image convolution with a Shen-Castan Matrix function
with an exponential radius of 5 pixels and the seventh the CurvatureFlowFilter function with
curvature time of 1. The average intensity for each pixel was then calculated from all seven

filtered images, and then convolved with a Shen-Castan Matrix with a 2 pixel radius.

Once the image had been filtered, it was segmented using Mathematica’s gradient descent
watershed algorithm, where junctions were merged if the minimum boundary height was below
a user-defined value, normally in the range of 0.2 —0.3. The perimeter of each component was
then obtained and all the perimeters combined to produce the initial skeleton. To remove

erroneous segmentation two tests were performed on each junction. The first test compared
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intensity between of junctions to the interior of the cell in order to remove ‘phantom’ junctions;
specifically, the median plus quartile deviation intensity for the cell interior was measured and
set as a threshold, if the median intensity for each junction was below this value it was removed.
The second test removed junctions that had a meandering topology; specifically, the length of
a straight line between each junction vertexes was divided by the length of each junction and
if the value was below 0.75 (i.e. junctions were 25% longer than a straight line) then they were
removed. Both of these tests mainly removed erroneous junctions in the LECs with few

junctions in the histoblasts being removed.

Skeletonization using machine learning
For the movies WT1-3, skeletonization was carried out using Skeletor. For WT4, we used a

UNet Neural Network [arXiv:1606.06650v1] trained using WT1-3 data segmented with

Skeletor and manually corrected. We used a 3D version of the network treating the time as a z
component of input data. Different training conditions, varying the loss functions, optimizer
and learning rate, were tested. After training, predictions were obtained from new images, then

used in Tissue Analyzer to segment the epithelia.

Manual Correction of skeletons — Skeleton Correction Tool

A second interactive tool was developed to verify and correct the result of the skeletonization
in an efficient manner. The tool was written in Matlab and featured a graphical user interface
and the ability to use a Wacom Tablet to correct missing or extra cell junctions. The tool allows
the overlay of original cell surface and skeletonized images, also blending these image layers
together. To aid this process, cells could be identified from the skeletonized image and their
centroid position was marked on the surface image. Potential segmentation errors could be
easily spotted as the markers were off the cell center. In addition, a previous developed
automated cell centroid seed tracker (Heller et al., 2016) was incorporated into the tool as a
means of quick, preliminary tracking to highlight potential issues caused by segmentation

errors. This would support the user to identify and correct such errors.
The tracking results from the offline tracker could also be shown as an additional image layer.

Drawing and erasing of cell junctions on the skeletonized image could be performed using a

pen on the Wacom Drawing Tablet. Hotkeys allowed the fast switching between different
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editing modes which contributes to an efficient workflow. The corrected skeleton image

sequence was exported for the automated offline tracking step.

In order to quantify the changes at each stage of corrections in Figure S1B, a thickened version
of the original Skeletor output skeleton was created was subtracted from the wild type movie
post ‘Manual Correction’ and post ‘Manual Tracking Correction’ in ImageJ. The ‘Analyze

Particles’ function was used in ImageJ to count the remaining pixels.

Automated Tracking procedure — Tracking Tool

The tracking algorithm was designed to fully automatically track cells in the projected
skeletonized images. This was achieved in a three-step process and was performed frame by
frame for all cells in the sequence. The first iteration tracked cells by identifying suitable
matching cell candidates by means of the best-fit of the cell area. Only cells with a good-fit
were included in this sequence with the aim is to get a first estimate of the cell surface motion.
In a second step, the motion (flow) field of the whole cell surface was calculated through the
interpolation of individual movement vectors from the initial tracking results. In the third step
the tracking is guided by the flow estimates. Finally, the tracked cell sequence was further
processed to determine the cell lineages and divisions and exported as a number of different

image sequences. The following paragraphs describe these steps in more detail:

1. Find initial tracks

The initial tracking is performed by identifying potential matching candidates in the next image
frame. The area of each cell in a frame is obtained from the labelled binary skeleton image.
Any cell in the next frame that slightly overlaps with the source cell area was a potential
candidate. For each target candidate, the cell areas were aligned by centroid position.
Similarities in terms of the overlapping cell area were used to determine a good fit. The
confidence ¢ (a metric for a good-fit) was calculated for each candidate as the ratio between

the overlapping aligned cell area and the total combined area of source and target cells.

YANB

=1-=
¢ YAUB

This would exclude fast moving smaller cells that were not overlapping which made the flow

guided tracking step necessary.
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Once a list of candidates and their confidences was established, the best candidate for each
source cell was identified amongst the several potential target candidates. Each source cell was
assigned the target cell with the highest confidence first. This is performed iteratively for all
source cells for each iteration starting with the highest confidences first and iterating down as
long as the confidences are above the minimum threshold of 0.7. The source cells were thus
competing for target cell candidates as neighboring cells could have the same potential target
candidates which ensured that the best candidate was assigned for each source cell. It is
important to note that in the first iteration of the tracking we only used cells with high
confidences =0.7, i.e. cells which we could be confident about to be correct. In a final step new

track IDs were assigned to cells which were not paired due to having a low confidence value.

This first tracking step returned an image matrix consisting of 16-bit grayscale images. The
color zero (black) denoted the cell boundaries. Each cell area had a uniform numerical value
which denoted the track ID. The track ID remained the same for matching cells in subsequent

frames. New cells or broken tracks received with a new track ID.

2. Calculate the flow field estimate

In this step an interpolated flow field from the cell movements of the previous tracking step
was calculated. The displacement vector for each cell was calculated from the centroid
positions of the tracked cells. The flow field was calculated for each position in the image
matrix by a weighted average of all the displacement vectors with a weighting factor which
was the inverse of the distance to all the other cell positions in the frame. The influence of
nearby cells is thus much greater than cells at greater distances. The interpolation was
completed when all the values in the image matrix had been calculated. This step returned the

interpolated flow field for each frame in the sequence.

3. Re-track all cells by using the flow estimate

The final cell tracking was performed by taking into account the flow estimates of cells. As in
the first tracking step, any cell in the next frame that slightly overlapped with the source cell
area was a potential candidate. However, in this step, the source cell area was translated by the
average flow field displacement of that area obtained from the initial tracking. The overlap

between the translated area of source and target cells was then calculated as in step 1 above.
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The assignment process was more complex as in the first tracking iteration. The aim was to
find the best candidate for each source cell amongst the several potential target candidates.
However, this was performed over several steps as all the source cells needed to be paired, not
just the most obvious fits. During the first step, each source cell was assigned the candidate
cell with the highest confidence first. This was run competitively for all source cells for each
iteration starting with the highest confidences first and iterating down as long as the
confidences were above the minimum threshold of 0.2. The source cells were thus competing
for target cell candidates as neighboring cells could have the same potential target candidates

which ensures that the best candidate was assigned for each source cell.

In a second step, the above process was repeated for not yet assigned source cells by going
through the remaining candidates. In a third iteration, the not yet assigned source cells were

assigned by distance up to a max distance to target cells.

Finally, any unassigned cells were treated as new cells which were assigned a new cellID and

denoting the start of a new track sequence.

This second tracking step returned an image matrix consisting of 16-bit grayscale images. The
color zero (black) denoted the cell boundaries. Each cell area had a uniform numerical value
denoting the track ID. The track ID remained the same for a matching cell in subsequent

frames. New cells or broken tracks received with a new track ID.

4. Exporting tracking result

The track sequence was exported as an RGB image sequence whereby each cell track was
given a unique RGB color. Divisions were identified by a sudden increase in cell size in a
tracked sequence which also coincided with a new cell track emerging in a subsequent frame
in its locality. The ratio of the cell size change between frames was used a measure to identify
divisions. A cell which underwent such transformation was identified as the mother cell while
a new cell it is vicinity was labelled as the daughter cell. From these divisions, a lineage
sequence could be created, highlighting cell divisions in different shades of blue. Potential

errors in the lineage emerged when new cells did not originate from a division event or when
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the lineage was not clear. Cells with such issues were labelled in red in an additional ‘Error’

sequence and exported for further manual inspection and correction if deemed necessary.

5. Manual Correction of Tracking

The output from the offline tracker, including the lineage and error sequences were imported
into ImagelJ for further inspection and correction. Cells highlighted in red ‘Error’, i.e., cells
with a new cell ID that do not originate from a division were labelled manually using the
‘Analyze Particles’ function in ImageJ. This creates a list of red cells that are manually checked
and annotated according to the type of error, either a ‘Tracking’ error due to the cell migrating
quickly, or a ‘Division’ error where Tracker has failed to pick up a division, or a ‘Skeleton’
error that remains. Using this information, each type of error was corrected in a different way.
If the number of remaining skeleton errors was significant (above 50), then only the input
skeleton would be corrected, and the automatic tracking process would start again. If the
number of remaining skeleton errors was below 50, then all the errors would be corrected
manually using the coordinates lifted from the error layer. First the ‘Division’ errors were
corrected in the division layer using the ‘fill” function in ImageJ to fill daughter cells of missed
divisions in the correct shade of blue. Then the ‘Skeleton’ errors were corrected in both the
division layer and the unique cell ID. layer using ImageJ. White lines were added or removed
manually in the division channel in ImageJ, taking care to ensure all lines were maintained at
a 1-pixel thickness. Then the affected area was copied and pasted into the unique cell ID.
channel to ensure the white lines were the same. Using the fill function ensured the colors in
the unique cell ID. channel were unaffected. Finally, the ‘Tracking’ errors were corrected in
Tissue Analyser (Aigouy et al., 2010; Etournay et al., 2016). Once the affected coordinates
were found, it was possible to swap tracks around, join truncated tracks or create new cell IDs
wherever necessary. The corrected lineage sequence was finally converted and exported into a

format that was readable by Tissue Miner.

Tracking validation and quality control

All sequences went through a thorough process of quality control. The tracker supported this
approach by highlighting potential issues in an ‘error’ sequence. Once the skeleton errors were
corrected, any subsequent errors were due to tracking errors and cell division errors. A typical
sequence featured between five and six thousand cell tracks. The tracker would typically

highlight a total of around 300 (5-6%) of these tracks as having potential issues which required
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inspection: Approx. 1-2% of the tracks had tracking errors whereby the tracker did not correctly
identify a matching cell. These could be amended by linking up broken tracks or swapping
tracks. However, most issues, approx. 3-4% of all the tracks arose at or in the vicinity of
dividing cells when mother or daughter cells were not identified, swapped or not classified as
being part of the lineage. Not all these issues were genuine errors that required correction, but

all these issues required inspection by an operator to ensure a high level of quality control.

Tissue Miner Analysis

Once these correction steps have been completed using ImageJ and Tissue Analyser, Tissue
Miner was then used to extract data from the tracked cells (Etournay et al., 2016; Etournay et
al., 2015); see Supplementary Theory for details. Tissue Miner was also used to identify any
remaining errors by detecting loss of cell I.D., as well as detecting with an anomalously short
‘cycle time’ in between divisions. Any errors that were detected using these criteria were
corrected in the manner described under ‘Manual Correction of Tracking’, and then the final

data is re-entered into Tissue Miner.

Temporal alignment of WT movies

A salient feature of abdomen development is the formation of the sensory organs of the adult
abdomen, which are mechanosensory bristles that arise through multiple stereotypical rounds
of asymmetric cell divisions from a single progenitor, the Sensory Organ Precursor (SOP)
(Fabre et al., 2008). We tracked the SOP lineages and excluded them from all subsequent
analysis on histoblast growth and proliferation (Figure SI1F). However, we noticed that the
emergence of SOPs over time, identified by the initial asymmetric division, followed a
sigmoidal temporal distribution that could readily be fitted by a Hill function (Figure S1G-K).
To allow comparison of the growth parameters, these curves were used to temporally align our

wild type movies (WT1-4) (Figure S1K).

QUANTIFICATION AND STATISTICAL ANALYSIS
All statistical tests were performed using R or Graphpad Prism. Statistical tests used and

number of repeats are indicated in the figure legends or in the text.

KEY RESOURCES TABLE
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Reagent or Resource

Source

Experimental Models: Organisms/Strains

D. melanogaster:

y(1] wl*]; TI[T1]shg[GFP] (E-
cad::GFP)

D. melanogaster:

y[1] wl*]; TI[TI]shg[3x mKate2]
(E-cad::mKate2)

D. melanogaster:

w[*]; P[w[+mW.hs]=GawB]32B
(32B-GAILA4)

D. melanogaster:

w[*]; P[w[+mC[=UAS-Timp.P]3

D. melanogaster:
PBac[fTRG10075 sfGFP-
FTJVK00033 (Sqh::GFP)
D. melanogaster:

w[*]; P[w[+mC ]=tubP-
GALS80[ts]]2/TM?2

D. melanogaster:

P[Mmpl .GFP]

D. melanogaster:

y[1]w[1118]; UAS-HA/TM6b

D. melanogaster:

wl*]; vkg::GFP, E-cad::mTomato
D. melanogaster:

w[*]; P[w[+mCJ]=UAS-
mCherry.NLS]3

D. melanogaster:

w[*]; act>y+>Gal4 UAS-GFP

D. melanogaster:

y[1] w[*]; P[w[+mC]=UAS-
FLP.D]IDI

Bloomington
Drosophila
stock center

(Huang et al.,
2009)

Yohanns
Bellaiche

(Pinheiro et
al., 2017)

Bloomington
Drosophila
stock center

(Prat-Rojo et
al., 2020)

Bloomington
Drosophila
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D. melanogaster:

YFI wl*;
[w[+mW.hs]=GawB[NP1248 |
Cy0, P[w[-]=UAS-
lacZ.UW14]JUW14 (esg=»-
GAL4)

D. melanogaster:

w[*] P[w[+mC]=PTT-
unl JZCL1700 (Perlecan-GFP)

D. melanogaster:

w[*], vkg (Col IV)::GFP

D. melanogaster:

w[*]; PBac[fTRGO0681 sfGFP-
TVPTBF]VK00033 (lanB1::GFP)

Software and algorithms
Fiji

Matlab2014a
Mathematica 11.0.1.0

Python, Numpy, Scipy

R

Tissue Analyzer

Tissue Miner
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Center
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Kyoto Stock
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N/A
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http://fiji.sc

https://uk.mathworks.com/products/matlab

https://www.wolfram.com/mathematica/

https://www.python.org
https:/numpy.org
https://wWww.scipy.org
https://www.r-project.org/

https://grr.gred-
clermont.fr/labmirouse/software/WebPA/

https://github.com/mpicbg-scicomp/tissue miner

https://github.com/FrancisCrickInstitute/anabfem
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