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Abstract

Methods to model dynamic changes in gene expression at a genome-wide level are not currently sufficient
for large (temporally rich or single-cell) datasets. Variational autoencoders offer means to characterize large
datasets and have been used effectively to characterize features of single-cell datasets. Here we extend these
methods for use with gene expression time series data. We present RVAgene: a recurrent variational autoencoder
to model gene expression dynamics. RVAgene learns to accurately and efficiently reconstruct temporal gene
profiles. It also learns a low dimensional representation of the data via a recurrent encoder network that can be
used for biological feature discovery, and can generate new gene expression data by sampling from the latent
space. We test RVAgene on simulated and real biological datasets, including embryonic stem cell differentiation
and kidney injury response dynamics. In all cases, RVAgene accurately reconstructed complex gene expression
temporal profiles. Via cross validation, we show that a low-error latent space representation can be learnt
using only a fraction of the data. �rough clustering and gene ontology term enrichment analysis on the latent
space, we demonstrate the potential of RVAgene for unsupervised discovery. In particular, RVAgene identifies
new programs of shared gene regulation of Lox family genes in response to kidney injury.

1 Introduction 1

Dynamic changes in gene expression control the transcriptional state of a cell, and are responsible for modulating 2

cellular states and fates. Gene expression dynamics are in turn controlled by cell-internal and external signaling 3

networks. Despite the noisiness of gene expression in single cells (Raj & Van Oudenaarden 2008), over time 4

or over populations of cells, predictable pa�erns emerge. Here we address the challenge of classifying and 5

predicting gene expression dynamics across large groups of genes. 6

Machine learning (and deep learning in particular) has led to recent advances in our ability to explain 7

or predict biological phenomena (Ching et al. 2018). Deep learning modeling via autoencoders (Hinton & 8

Salakhutdinov 2006) and variational autoencoders (Kingma & Welling 2014) has been central to progress in the 9

field. Autoencoders learn two functions: one to encode each input data point to a low dimensional point, and 10

another (the decoder) to reconstruct the original data point from the low dimensional representation. Variational 11

autoencoders (VAEs) build on this architecture and instead encode input data points as distributions; VAEs are 12

less prone to overfi�ing and can offer meaningful representations of biological features in the latent space (Way 13

& Greene 2017). 14

Single-cell mRNA sequencing (scRNA-seq) data present appealing sources of data for deep learning models, 15

given their size and complexity (Svensson et al. 2018). Deep learning models have been used to analyze scRNA-seq 16

data and address a variety of challenges. Autoencoders have been developed to perform noise removal/batch 17

correction (Deng et al. 2019, Eraslan et al. 2019, Wang et al. 2019), imputation (Talwar et al. 2018), and visualization 18

& clustering (Lin et al. 2017). VAEs have been developed for the visualization and clustering of scRNA-seq data 19

(Ding et al. 2018, Wang & Gu 2018), and can provide a broad framework for generative modeling of scRNA-seq 20

data (Lopez et al. 2018): scVI can be used for batch correction, clustering, visualization, and differential expression 21

testing. 22

�e methods described above for single-cell data analysis by deep learning focus primarily on cell-centric 23

tasks; here we are interested in gene-centric inference. Particularly, we are interested in characterizing dynamic 24

changes in gene expression. �ese can be either changes with respect to real time or “pseudotime,” the la�er 25
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referring to the ordering of single cells along an axis describing a dynamic cell process such as development or 26

stem cell differentiation (see methods overview in (Saelens et al. 2019)). We can interpret any scRNA-seq data 27

as gene expression time series data, given an appropriate underlying temporal process, either in terms of real 28

(experimental) time (low resolution: around 2− 20 data points) or pseudotime (high resolution: 103 − 106 data 29

points). McDowell et al. (2018) introduced a non-parametric hierarchical Bayesian method (DPGP) to model such 30

data. Using a Gaussian process to cluster temporal gene profiles and a Dirichlet process to generate the Gaussian 31

processes, DPGP offers powerful and intuitive means with which to cluster gene expression time series data. 32

However, since learning Gaussian processes is equivalent to a fully agnostic search in function space, training 33

DPGP is computationally intensive and difficult to parallelize. 34

Clustering relies on strong assumptions about the underlying structure of the data. Even for methods that 35

move away from hard clustering towards probabilistic methods for cell type assignment (Jetka et al. 2018, Zhu 36

et al. 2019), assumptions remain and under certain conditions a continuous representation of the data may 37

be be�er. Here we take such an approach, and seek to find a low dimensional representation of the data, on 38

which further analyses (including but not limited to clustering) can be performed. VAEs are an obvious choice, 39

given their success on other scRNA-seq analysis tasks, but modeling temporal changes with a feed-forward VAE 40

would be equivalent to a fully agnostic search, similar to learning a Gaussian process. Recurrent networks offer 41

well-established architectures for learning sequential and temporal data, and have been successfully combined 42

with VAEs (Fabius & van Amersfoort 2014). We use a recurrent network architecture to structure the data and 43

reduce the computational cost. 44

We introduce a recurrent variational autoencoder for modeling gene dynamics from scRNA-seq data 45

(RVAgene). RVAgene learns two functions during training, parameterized by encoder and decoder networks. �e 46

encoder network projects the training data into latent space (we use a 2 or 3 dimensions in order to visualize, 47

though there are no inherent limits). �e decoder network learns a reconstruction of training genes from their 48

latent representation. RVAgene facilitates clustering of other characterization of gene profiles in the latent space. 49

By sampling points from the latent space and decoding them, RVAgene provides means to generate new gene 50

expression time series data, drawn from the biological process that was encoded. Overall, RVAgene serves as a 51

multipurpose generative model for exploring gene expression time-series data. 52

�e remainder of the paper is structured as follows: we next present methodological details and development 53

of RVAgene. We produce a synthetic gene expression time-series dataset with innate cluster structure, and 54

demonstrate the accuracy of RVAgene on these data. We then explore two biological datasets with RVAgene: a 55

scRNA-seq dataset on stem cell differentiation, where gene expression changes are studied over pseudotime; and 56

a bulk RNA-seq dataset describing dynamic responses to kidney injury. We conclude by discussing key features 57

and limitations of RVAgene, and recent advances in machine learning that will pave the way for future work in 58

these directions. 59

2 Methods 60

We develop a recurrent variational autoencoder to model gene expression dynamics (RVAgene). Here we briefly 61

describe the methods underpinning variational autoencoders, and present the implementation of RVAgene. 62

2.1 Variational inference and variational autoencoders 63

In the most general se�ing of a Bayesian model, we seek to learn the latent variables z that best characterize some
data x. Given a generative process that draws latent variables from a prior distribution, p(z), and a likelihood of
the data observed that is given by p(x|z), then the posterior probability is given by Bayes rule:

p(z|x) =
p(x|z)p(z)∫

z
p(x|z)p(z)dz

. (1)

�e denominator is often intractable, making it difficult to estimate p(z|x). Markov Chain Monte Carlo methods
provide means to estimate posterior probability distributions. An alternative method to estimate hard-to-compute
probability distributions is Variational Inference (VI) (Hoffman et al. 2013), which starts from the assumption that
the posterior can be approximated by a distribution q(z) from the family Q. VI then amounts to an optimization
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problem to find the q∗ that minimizes the Kullback–Leibler (KL) divergence between the approximation and the
true posterior:

q∗(z) = argminq(z)∈QKL(q(z)||p(z|x)). (2)

Much recent effort has gone into solving VI problems in different se�ings (Zhang et al. 2018, Ingraham 64

& Marks 2017, Bouchard-Côté & Jordan 2010). VI can be framed as solving an optimization problem over 65

function families: neural networks are popular candidates for representing and learning complex functions. 66

VI was incorporated into autoencoders (Kingma & Welling 2014) to create the architecture of a variational 67

autoencoder (VAE). A VAE consists of an encoder network to approximate p(z|x) through a function qx(z), 68

and a decoder network p(x|z) (Fig. 1A). Conceptually, the encoder solves an inference problem: approximating 69

the posterior distribution p(z|x) as some q∗x(z), while the decoder solves a reconstruction problem: defining 70

a generative process for p(x|z), given the latent variables. �e VAE posterior is modeled by a multivariate 71

normal N (µ,Σ) of the same dimension as z. Training then comes down to minimizing two objective functions. 72

For the encoder network, which should learn a “well distributed” latent space, minimize the KL divergence: 73

KL(N (µ,Σ)||N (0, I)). For the decoder network, which should reconstruct the inputs x from the latent space, 74

minimizing either an L1 or L2 objective function with respect to x̂ is appropriate. �e use of KL-divergence 75

and an L2 objective solves the VI formulation of Eq. 2 (Kingma & Welling 2014), however, an L1 objective may 76

be preferred in practice, e.g. in cases where we want to suppress the effects of outliers on the structure of z 77

(Botchkarev 2018). 78

2.2 RVAgene: A recurrent variational autoencoder to model gene expression dynamics 79

Following the VAE architecture, RVAgene consists of an encoder and a decoder network with a reparameterization 80

step in between. To incorporate the knowledge that we are modeling temporal data, recurrent neural networks 81

offer an ideal architecture to use for both the encoder and the decoder networks. Recurrent and VAE networks 82

have been successfully combined elsewhere, e.g. for textual (Nallapati et al. 2016) and time series data (Malhotra 83

et al. 2015). 84

�e architecture of RVAgene is based on Fabius & van Amersfoort (2014). An input sequence (i.e. gene) x ∈ x,
x = (x1, x2, ..., xt, ..., xT ) is encoded using a recurrent function described by a long short-term memory (LSTM)
unit. LSTM units are the state-of-the-art in recurrent architectures, since they are robust against the vanishing
gradient problem for longer sequences, unlike other recurrent units (see details in Hochreiter & Schmidhuber
(1997)). We encode x in the following manner:

henct+1 = LSTM(WT
ench

enc
t +WT

inpxt + benc), (3)

where (Wenc, Winp and benc) are network weight parameters, and the hidden states ht represent information 85

shared over timepoints in the LSTM. �e dimension of the ht (and Wenc) is given by a hyperparameter (“hidden- 86

size”). �e encoded ht+1 are used to parametrize the posterior mean and variance from x, with mean µz and 87

diagonal covariance σz as: 88

µz = WT
µ h

enc
T+1 + bµ (4)

log(σz) = WT
σ h

enc
T+1 + bσ.

We then use the reparameterization trick described in Kingma & Welling (2014) to sample z from the distribution:

z = µz + εσz, (5)

where, for known ε, backpropagation through the sampling step is possible while training the network. 89

For the decoder network, the first state h1 is calculated from z, and the recurrent formulation follows by
reconstructing x as x̂ = (x̂1, x̂2, ..., x̂t, ..., x̂T ), thus:

hdec1 = sigm(WT
z z + bz)

hdect+1 = LSTM(WT
dech

dec
t +WT

outx̂t + bdec) (6)

x̂t = sigm(WT
outh

dec
t + bout),
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where sigm(u) = 1
1+e−u is the sigmoid activation function, and (Wi, bi) are the network weight parameters. A

schematic diagram of the network is shown in Fig. 1A, which can now be trained using backpropagation, to
minimize the objective function:

L(θ, x) = DKL(N (µz,Σz)||N (0, I)) + |x− x̂|, (7)

where µz and Σz = diag(σz) are calculated from x by the encoder. 90

To evaluate the accuracy of RVAgene, we need an appropriate error measure. For each gene in the test set,
we calculate the L1 reconstruction error between generated data x̂ and true data x, averaged over all time points.
We normalize the data to lie in [0, 1] to avoid skewing the error by differences in gene expression magnitudes.
�us we define:

Reconstruction error(x, x̂) =
1

T

∑
t

|s(x̂)t − s(x)t|, where s(x) =
x∑T
t=1 xt

. (8)

2.3 Generating synthetic gene expression time series data 91

To test RVAgene, we generate a synthetic time series dataset. Six clusters each containing 20 genes are simulated, 92

where for each cluster c, the mean gene expression time series Yc = (yc1, yc2, ..., yct) was generated using 93

addition or convolution and rescaling of two random sinusoidal functions of the form k1sin(k2t), where k1, k2 94

are randomly chosen positive integers. Trajectories of cluster members were then generated by sampling from the 95

multivariate normalN (Yc,Σc). We model Σc as the positive definite matrix αYcY Tc , where α is a scaling factor, 96

we use: α = 1/|YcY Tc |. As defined, Σc will describe nonzero correlations for all pairs of time points, (ti, tj). 97

�is is unrealistic, so we set to 0 the entries of Σc for which column and row indices have a difference of more 98

than some threshold T (we used T = 50), reflecting the fact that correlations between time points are lost over 99

larger time windows (temporal correlations are local). Note that under this condition, Σc is no longer necessarily 100

positive definite. �e multivariate Gaussian sampler numpy.random.multivariate_normal() implemented in 101

numpy (Harris et al. 2020) was used to sample from this augmented Σc. 102

3 Results 103

3.1 RVAgene can accurately and efficiently reconstruct temporal profiles from synthetic 104

data 105

We generated a dataset of 120 genes using convolutions of sinusoidal functions (see Methods) to test the ability 106

of RVAgene (Fig. 1A) to learn and predict noisy nonlinear temporal profiles. An RVAgene model was trained on 107

all 120 genes from 6 clusters with a hidden size of 70 and a 3 dimensional latent space. �e model was trained 108

for 400 epochs, after which the average batch objective L function indicates convergence (Fig. 1B), producing a 109

three-dimensional latent space representation (Fig. 1C). K-means clustering on the latent space (k=6) identified 110

well-separated clusters (Fig. 1D). 111

RVAgene modeling followed by k-means clustering on the latent space identified 6 clusters with perfect 112

fidelity between predicted and true clusters. One might reasonably ask, why use a neural network for this task? 113

Simpler dimensionality reduction methods (e.g. PCA, t-SNE, or a non-variational autoencoder) would also find 114

the correct solution. RVAgene has the advantage over these methods that the underlying structure of the latent 115

space leads to interpretability. A point in reduced PCA or t-SNE space that does not overlap with a data point is 116

not interpretable. Traditional autoencoders lack regularity in the latent space, i.e. even for a representation with 117

arbitrary accuracy (a reconstruction error of zero), decoding a point that does not correspond to a training data 118

point can result in nonsensical generated data, even if the decoded point is arbitrarily close to a training data 119

point. Variational Auoencoders remedy this by learning a regularised or smoother distribution on the latent 120

space. In this sense, the KL-divergence term in the VAE loss function can be thought of as a regulariser. �is 121

property enables RVAgene to generate new gene expression dynamics by decoding points from different regions 122

of the latent space, having properties similar to clusters nearby to those points. 123

To demonstrate the generative properties of the RVAgene latent space, we sample points from multivariate 124

Normal distributions, centered on the empirical mean of each cluster with variance of 0.4, i.e. N (µc, 0.4I), 125
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Figure 1. Unsupervised representation learning with RVAgene using synthetic data. (A) Schematic diagram
of the RVAgene model. (B) Average loss function L as over duration of training. (C) Latent space representation
learnt by RVAgene model after training. (D) Clusters detected by k-means clustering on the latent space, with
k = 6 (E) First and third rows show input training data used (20 simulated genes in each of six clusters); cluster
means shown in black. Second and fourth rows show the model-generated data, obtained by sampling and
decoding points from the latent space; decoded cluster empirical means shown in black.
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where µc is the empirical mean of the cluster and I is the identity matrix in R3. Corresponding to each cluster, 126

we sample 20 points in the latent space, and use the decoder network to generate new time series data (Fig. 1E). 127

Most of the points sampled generate trajectories that belong to the correct cluster. Moreover, we identify cases 128

where corresponding to transitions between clusters. For example, some points sampled near Cluster 2 generate 129

trajectories that are similar to members of Cluster 4, and vice versa. �is makes sense due to the similarity 130

between the temporal profiles of Clusters 2 and 4. A similar correspondence is observed between Clusters 1 and 131

5. We also observe some generated trajectories that display intermediate profiles between two or more clusters: 132

the decoder function learnt by RVAgene is smooth, and gives rise to meaningful representations of points across 133

regions of the latent space. 134

RVAgene offers additional functionality as a tool for removing noise the data. RVAgene model reconstructions 135

generated by decoding points in the latent space denoise the data, with trajectories that are smooth relative to 136

the input data (Fig. 1E). Similar neural network approaches have been proposed to denoise from single-cell data, 137

e.g. using a deep count autoencoder (Eraslan et al. 2019). RVAgene provides data denoising as a by-product of its 138

primary functionality: modeling dynamic changes in gene expression. 139

Similar to other VAE-based tools for the analysis of single-cell data, RVAgene is efficient and scalable for 140

use with large datasets. We compared the performance of RVAgene with a Bayesian nonparametric approach 141

for the analysis of gene expression time series data (Dirichlet Process Gaussian Process (McDowell et al. 2018). 142

Using either CPU or GPU computing, the time and memory gains are substantial, enabling the analysis of 143

larger datasets than would otherwise be possible (Fig. S1). Analysis of RVAgene using simulated temporal data 144

highlights the ability of such an architecture as means to study and generate gene expression dynamics. It enables 145

learning of an unsupervised representation space, on which post-processing (e.g. unsupervised clustering) can 146

be performed, as well as data denoising, and the generation of new time series data from arbitrary points in the 147

latent space. 148

It is inevitably challenging to include sufficient dimensionality and variation in synthetic datasets to accurately 149

capture biological processes such as those we observe in experimental datasets. �us, in the subsequent two 150

sections, we test the capabilities of RVAgene on two whole-genome biological datasets: embryonic stem cell 151

differentiation, and kidney injury response. As we will see, in these cases it may not be possible to characterize 152

the latent space by simple (e.g. k-means) clustering; we need to use other means to gain insight into the features 153

of the latent space. 154

3.2 Characterization of embryonic stem cell differentiation with RVAgene 155

We applied RVAgene to model gene expression dynamics during embryonic stem cell (ESC) differentiation. Klein 156

et al. (2015) identified 732 differentially expressed genes over the time course of mouse ESC differentiation 157

following leukemia inhibitory factor (LIF) withdrawal. Data is gathered at four time points: 0, 2, 4, and 7 days after 158

LIF withdrawal. (Table S2 in Klein et al. (2015)). We ordered the data (2717 single cells) using diffusion pseudotime 159

(DPT), which provides robust methods for the reconstruction of single-cell temporal processes (Haghverdi et al. 160

2016). �e root cell was randomly sampled from the initial time point (Fig. 2A-C). �e inferred pseudotime 161

is highly correlated with the experimental time points, giving confidence that true biological processes are 162

represented over the DPT pseudotime. �e gene expression dynamics over pseudotime show considerable 163

variability among cells. To smooth the data, we apply a moving window average, over windows of length 40, to 164

give 68 time points after smoothing (Fig. 2A-C). We fit linear regression models to the smoothed pseudotime 165

profiles of each gene (Fig. S2), and see that for the majority of genes the correlation coefficients are > 0.5 (Fig. 166

2D), with a clear distinction between the up- and down-regulated genes over pseudotime. 167

An RVAgene model was trained on the data with a two-dimensional latent space, on which genes are classified 168

based on their correlation coefficients (Fig. 3A). Two distinctive characteristics emerge: a) the two groups (up- 169

and down-regulated genes) are well-separated in the latent space, and b) the two groups merge and overlap 170

at some point, illustrating the continuity of the latent space, as discussed above. We compared the results of 171

RVAgene with DPGP, an unsupervised approach for gene expression time series clustering (McDowell et al. 2018). 172

DPGP is a hierarchical Bayesian model that estimates the number of clusters along with the cluster membership, 173

although to do so it has considerably higher resource consumption (Fig. S1). To assess the correspondence 174

between methods, genes clustered by DPGP (Fig. S3) were projected onto the RVAgene latent space (Fig. 3B). Of 175

the 12 clusters detected by DPGP, the four largest can be characterized by their up- and down-regulation profiles 176
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Figure 2. Analysis of embryonic stem cell differentiation gene expression dynamics in single cells. (A-C)
Pseudotemporal ordering of 2717 single cells (data from (Klein et al. 2015)), calculated using DPT; three example
genes shown: Dppa5a, Ahsa1, and Krt8. Gene expression values given as log2(counts+1) for all cells (left), and
for sliding window average (right). (D) Pearson correlation coefficient between gene expression and time for 732
differentially expressed genes.

over pseudotime. On the RVAgene latent space, we find that genes sampled from each of the DPGP clusters 177

appear close together, and moreover, are represented on a spectrum from upregulation to downregulation (Fig. 178

3B). �e goals of RVAgene and DPGP are to some degree complementary: DPGP characterizes gene expression 179

profiles discretely with no need for prior information, while RVAgene characterizes profiles with a continuous 180

representation, that can explain smooth changes in pa�erns. 181

To assess model predictions for individual genes, we kept aside 300 genes for testing and trained RVAgene on 182

the remaining 432 genes. Predicted gene expression profiles are shown for three reconstructed genes, chosen to 183

sample across the spectrum of reconstruction errors (Fig. 3C). �e prediction for Ddt, which has a reconstruction 184

error near the mode (Fig. 3D), shows very high accuracy. �e prediction for Hmgb2, which has twice the 185

reconstruction error, still broadly captures the temporal profile but with lesser accuracy. Finally we show the 186

prediction for Rhox4e, a gene that was sampled from the long tail of the reconstruction error distribution, i.e. 187

does not well match the data. Comparing these three examples with the full distribution of reconstruction 188

errors (Fig. 3D), we see that the large majority of genes lie to the left of Hmgb2, i.e. have be�er-than-moderate 189

prediction accuracy. �e reconstruction error of Hmgb2 is close to 0.005, which we use as a cut off for “well- 190

reconstructed” genes, based on analysis of individual gene predictions. �e cumulative reconstruction error 191

distribution reiterates this point: 230 out of 300 genes (77%) have a reconstruction error ≤ 0.005 (Fig. 3E); we 192

can conclude that the majority of test genes were faithfully reconstructed by the model. 193

RVAgene accurately reconstructed most gene profiles using only∼ 60% of the data for training (Fig. 4), likely 194

due to co-regulation of gene expression programs. �is led to a question: what is the smallest training gene set 195

that can be used to accurately reconstruct gene dynamics? We subset the data randomly into train/test sets and 196

trained separate RVAgene models on each. We found that reconstruction errors slowly increase as the size of the 197

training set decreases, but not until the training set was as low as 18% of the data did the reconstruction errors 198

significantly increase (Fig. 4). Analysis of the cumulative distribution of reconstruction errors across all groups 199

found that RVAgene predicts the majority of gene temporal profiles well (defined as below a reconstruction error 200

of 0.005) if ≥ 45% of the data is used for training. �e successful prediction of gene expression dynamics de 201

novo using small subsets of the data suggests widespread co-regulation of gene expression programs during 202

embryonic stem cell differentiation, as found in previous work (Jang et al. 2017). 203
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Figure 3. Accurate reconstruction of embryonic stem cell differentiation dynamics with RVAgene. (A) �e
2D latent space learnt by an RVAgene model trained on 732 gene profiles over pseudotime, showing clear
separation between upregulated and downregulated genes. (B) Comparison of RVAgene and DPGP. �e four
largest clusters from DPGP are plo�ed on the RVAgene latent space: temporal expression pa�erns (from highly
upregulated to highly downregulated) are in close agreement between methods. (C) Comparison of experimental
data and predictions. Model-generated reconstructions of three genes from the test set not used in training:
Ddt, Hmgb2, and Rhox4e. Expression values are log2(counts+1). (D) Distribution of average L1 reconstruction
errors for the 300 genes used in the test set. Genes plo�ed in C are marked. (E) Cumulative distribution of
reconstruction error: 77% of genes (230/300) have reconstruction error less than 0.005.
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Figure 4. Accuracy of RVAgene reconstructions for different train/test group sizes. Distributions of recon-
struction errors on randomly sampled sets of test genes, where the full data were split into test groups of: 200
genes (train on 72%), 300 genes (train on 59%), 400 genes (train on 45%), 500 genes (train on 31%), and 600 genes
(train on 18%). Cumulative fractional distribution of reconstruction errors (cumulative count/test set size) for all
groups.

3.3 RVAgene can classify and predict gene expression dynamics in response to kidney 204

injury 205

We investigated gene expression dynamics in the murine kidney by applying RVAgene to a dataset that describes 206

gene expression profiles before, during, and after a kidney injury (Liu et al. 2017). �e dataset is temporally rich, 207

with a total of ten bulk samples over twelve months. Since in this case no single-cell information is available, 208

we cannot order samples by pseudotime to smooth the data. Moreover, the temporal gene expression profiles 209

described in Liu et al. (2017) display more complex dynamics than for the previous dataset (Klein et al. 2015), and 210

are not readily separable by linear pa�erns of up- and down-regulated genes (cf. Fig. 3A). �us, below, we must 211

consider nonlinear models in order to characterize the temporal pa�erns observed. 212

�e data consist of one initial timepoint (t = 0) before the injury event (an ischemia/reperfusion injury 213

model) and nine subsequent time points (t = 1 to 10) following the injury (48 hours, 72 hours, 7 days, 14 days, 214

28 days, 6 months and 12 months). We note that the timepoints are not uniformly spaced, which is not taken 215

into account in RVAgene, which only models the broad temporal trend (see Discussion). From an initial list of 216

1927 differentially expressed genes measured over the time course in three biological replicates, we removed 217

putative/predicted and non-protein coding genes, retaining a list of 1713 genes as input to the model. 218

We ran RVAgene separately for each of three biological replicates. Independent replicates & independently 219

trained models provide additional means with which to test the reproducibility of these methods. For each 220

replicate, RVAgene was trained with a two-dimensional latent space and a hidden size of 10, on the full set of 221

genes over 200 epochs: found to be sufficient for the convergence of L (see Methods for further details). We 222

fit linear regression models to the temporal gene profiles (Fig. S4) and found that linear fits rarely described 223

the gene temporal profiles well (most correlation coefficients had values close to zero), not did they identify 224

separate clusters in the latent space. Normalizing the data to lie in [0, 1] improved our ability to discriminate 225

clusters in the latent space (Fig. S4C), but came at the expense of a significant loss of information, as the variance 226

captured in the latent space was dramatically reduced. �e absence of evidence for linear correlations could 227

9

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2020. ; https://doi.org/10.1101/2020.11.10.375436doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.10.375436
http://creativecommons.org/licenses/by-nc/4.0/


Figure 5. Accurate reconstruction of kidney injury response gene dynamics with RVAgene. (A) Latent space
representations of RVAgene models trained separately on three independent replicates (R1-R3); classified by
quadratic fit coefficient a. (B) Model generation of gene dynamics for genes not used in training: Foxm1, Cxcl9 and
Ctsk. (C) Histograms of reconstruction errors for RVAgene models trained on R1-R3 (truncated). (D) Cumulative
distribution of reconstruction errors.
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indicate expression dynamics that are uncorrelated with time, but could of course also indicate more complicated 228

(nonlinear) gene expression dynamics, which are explored below. 229

To study nonlinear gene expression dynamics, we fit a 2nd degree polynomial, i.e. we fit the temporal 230

trajectory of each gene x to: x = at2 + bt + c, where a, b, c are constants (Fig. S5). We hypothesized that 231

this function could adequately describe the transient dynamics observed by Liu et al. (2017) for most genes in 232

response to the kidney injury. �us, we classified genes into one of two groups, a < 0: convex (up-down pa�ern), 233

1200 genes; and a ≥ 0: concave (down-up pa�ern), 512 genes. In the latent space, the separation of these two 234

groups is clearly visible for each replicate (Fig. 5A). Moreover, the classification is in agreement with Liu et al. 235

(2017), where the majority of differentially expressed genes are upregulated transiently. To explore the ability of 236

RVAgene to generate gene expression dynamic profiles de novo, we kept aside 300 randomly sampled genes for 237

testing, and trained RVAgene models on the remaining genes for each of the three replicates. Independently for 238

each model, we then generated dynamic profiles for the test genes. �ree genes sampled randomly from the test 239

set are plo�ed in Fig. 5B. Of particular note, for each of genes, the model-generated data captures the temporal 240

pa�erns while displaying a higher degree of similarity across replicates than the experimental data itself. �is 241

illustrates that the model is neither under- nor overfi�ing, but capturing the underlying biological pa�erns while 242

sufficiently accounting for the noise. Reconstruction errors are comparable across the three replicates, albeit 243

with slightly higher overall errors in replicate 1 (Fig. 5C-D). Overall, the reconstruction errors are higher than 244

for the previous section (averaging over many pseudotemporal time points allowed us to significantly reduced 245

the noise). 246

To investigate in more depth the features that are captured in the RVAgene latent space, we studied three 247

distinct areas of the latent space of each model. Areas were defined using three gene groups, chosen simply 248

based on their co-location in distinct regions of the latent space: 1) a Wnt group consisting of family members 249

Wnt2 & Wnt4; 2) an Slc group consisting of family members Slc7a13 & Slc22a18; and 3) a Sdc1 group, consisting 250

of only Sdc1. For each group, we characterized neighboring genes by defining a circular neighborhood around 251

each gene in the group, with radius r (depending on the local density, the radius was varied, giving: r2 = 1 252

for Slc, r2 = 0.3 for Sdc, r2 = 0.05 for Wnt. We then took all genes inside this radius for each replicate, and 253

found the intersection of genes over the three replicates (Fig. 6A-B). We analyzed the intersection gene set for 254

each group by studying their temporal profiles and their gene ontology (GO) term associations. Each group was 255

characterized by a strikingly clear temporal profile. �e Sdc1 and Wnt groups both show transient upregulation, 256

over different timescales: the Sdc1 group is upregulated from 24 hours post-injury until 14-28 days post-injury 257

(fast response) (Supplementary Fig. S6B), whereas the Wnt group is upregulated at 7 days post-injury until 28 258

days post-injury (slow response) (Fig. 6C). In contrast, the Slc group is downregulated at 24 hours post-injury, 259

and remains suppressed until 7-28 days post-injury (Fig. 6D). 260

Analysis of GO biological process terms enriched in each gene group further highlighted the power of 261

the latent space for biological discovery. �e fast response (Sdc1) group was characterized by upregulation of 262

programs related to apoptosis, stress response, wound healing and chemotaxis, i.e. the first responders to the 263

site of injury (Fig. S6C). In addition all five Lox genes comprising the GO term “peptidyl-lysine oxidization” were 264

found in this group. �is is consistent with the oxidative stress resulting from the renal ischemia-reperfusion 265

injury that was performed. However, distinct factors regulate the Lox family genes, as can be partly observed by 266

their subtle differences in temporal profile (Fig. S6D). �eir co-location in the latent spaces of all three models 267

thus highlights the potential use of RVAgene for discovery of complex temporal regulatory events from gene 268

expression data. 269

�e slow response (Wnt) group was primarily characterized by immune response processes, including 270

leukocyte activation, platelet aggregation, and various cytokine-mediated pathways including IL-1 and IL-33 271

(Fig. 6E). Notably, the Wnt group identies multiple gene orthologs (Fig. 6C) with very similar profiles: likely 272

evidence of shared temporal regulation. �is illustrates once again (as for the Lox genes above) the potency of 273

RVAgene for the discovery of temporally co-regulated genes. 274

Finally, the Slc group of genes shows a transiently down-regulated pa�ern between 24 hours and 7-28 days, 275

although some gene in this group deviate from this pa�ern (Fig. 6D). GO term enrichment identifies the positive 276

regulation of metabolic processes (Fig. 6F). �e downregulation of metabolic programs during the response 277

to kidney injury is agreement with the findings of Liu et al. (2017). Notably, this metabolism-sensitive group 278

contains many genes that also display sexually dimorphic expression, primarily in specific regions of the proximal 279

tubule (Ransick et al. 2019), thus independently identifying the well-established (though under-studied) interplay 280
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Figure 6. RVAgene latent space captures biological processes driving concordant gene expression �anges.
(A) Z-plots for replicates R1-R3 with local neighborhoods of Wnt2 and Wnt4 marked (circles). (B) As in A, for
Slc family members Slc22a18 and Slc7a13. (C) Heatmap of expression changes over time course of injury for the
Wnt neighborhood genes in the intersection of R1-R3. Selected genes marked (black), as well as ortholog gene
pairs (blue). (D) As in C, for Slc neighborhood genes. (E) Histogram of -log10 p values of gene ontology terms
for biological processes terms associated with the Wnt neighborhood (gene set in C). (F) As in E, with the Slc
neighborhood (gene set in D).
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between sex differences and injury responses in the kidney (Neugarten et al. 2000). 281

In summary, unsupervised analysis of groups of genes co-located in the latent spaces of RVAgene finds: 1) 282

high similarity between temporal gene profiles of genes nearby in latent space, and 2) clear biological signatures 283

represented by these groups of nearby genes, in strong agreement with prior knowledge (Liu et al. 2017). 284

Moreover, the latent spaces of RVAgene models can be used to predict programs of temporal co-regulation. 285

4 Discussion 286

We have presented RVAgene, a recurrent variational autoencoder for generative modeling of gene expression 287

time series data. �rough its encoder network, RVAgene provides means to visualize and classify gene expression 288

dynamic profiles, which can lead to the discovery of biological processes. �rough its decoder network, RVAgene 289

provides means to generate new gene expression dynamic profiles by sampling points from the latent space, 290

and can accurately predict gene dynamics in complex biological data. As a by-product, the model produces 291

smoothed outputs, which can be used for denoising gene expression time series data. RVAgene is efficient on 292

temporally-rich whole genome datasets, in comparison to current methods used (Gaussian processes). 293

RVAgene can be used to discover structure in the data, such as gene profile clusters. Popular methods for 294

clustering gene profiles such as Bayesian hierarchical clustering (Cooke et al. 2011) or DPGP (McDowell et al. 295

2018) detect the number of clusters in the data by fi�ing a hyperparameter α, the concentration parameter of 296

the governing Dirichlet process (Ferguson 1973). Although unsupervised, inevitably, the choice of α affects the 297

number of clusters output. Visualizing the data first with RVAgene can give an idea whether the data favor 298

clustering or a continuous representation. �us analysis in RVAgene can guide the se�ing of the hyperparameter 299

α in DPGP and similar methods. In the case of ESC differentiation, DPGP predicts 12 clusters (Fig. S3), yet 300

most have very few members and many share similar pa�erns. �e RVAgene latent space for this dataset finds 301

two major divisions in the data, and orders the largest DPGP clusters along a spectrum (Fig. 3B), suggesting 302

that DPGP might be overfi�ing the data. Indeed, the two methods can be used complementarily: RVAgene for 303

high-level structure discovery and DPGP for clustering. We note however that DPGP does not scale well with 304

large datasets and thus cannot always be used (Fig. S1). 305

�e latent space of an RVAgene model encodes useful information about biological features, and in that sense 306

provides biologically interpretable representations of the data. However, the representation is not interpretable 307

in the sense that the components of the latent space do not have a physical meaning nor are they necessarily 308

independent. Recent methods have tackled this issue of interpretability, by either modifying the loss function to 309

make components independent (Higgins et al. 2016) or substituting linear functions in parts of the VAE (Svensson 310

et al. 2020, Ainsworth et al. 2018). �ese methods have clear advantages regarding the analysis and interpretation 311

of features in the latent space. In future work, decoding an RVAgene model with a linear function (Svensson 312

et al. 2020) could facilitate additional discovery and improve our ability to gain insight into dynamic biological 313

processes through the analysis of the latent space. 314

Dynamic changes in gene expression underlie essential cell processes. As such, modeling gene expression 315

changes can also facilitate downstream analysis tasks, including gene regulatory network (GRN) inference. 316

Inferring gene regulatory networks from single-cell data is challenging (Chen & Mar 2018), particularly due 317

to cell-cell heterogeneity and high levels of noise. Several recent approaches to GRN inference use differential 318

equations in their formulation to model gene expression changes (Ma et al. 2020, Aubin-Frankowski & Vert 319

2020, Matsumoto et al. 2017). RVAgene could either supplement such methods directly by providing denoised 320

input data, or could be used to replace the differential equation-based components of these methods (which are 321

notoriously difficult to parameterize) with a generative model of gene expression dynamics. 322

RVAgene is currently agnostic of irregular time intervals between consecutive points in a time series, i.e. it 323

standardizes the time interval. �is is not usually a concern for single-cell data, since with pseudotime information 324

we can choose appropriate time intervals. However, in other cases, such as in response to kidney injury (Liu et al. 325

2017), standardizing time intervals distorts the dynamic profiles. Since RVAgene seeks to describe broad temporal 326

pa�erns, we do not see this as a critical issue, though it would be desirable to generalize the model. A simple 327

way to model irregularly spaced time points would be to augment the data through interpolation, though this 328

is difficult without making strong assumptions about the (generally unknown) noise model. Gaussian process 329

models (McDowell et al. 2018, Hensman et al. 2013) can take irregular data as input, although (as noted above) 330
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are not efficient enough to run on large datasets. An alternative approach would be to modify the recurrent 331

network architecture to take time points explicitly as input values, this would enable modeling of irregular or 332

asynchronous data (Wu et al. 2018). 333

RVAgene models in discrete time steps. �ere is no simple modification to the recurrent network structure 334

that allows for prediction on continuously valued time. However, a recent development: neural ordinary 335

differential equations (ODEs) (Chen et al. 2018), enables modeling of time series data with continuous timepoints. 336

Chen et al. (2018) describe a generative latent ODE architecture similar to that of RVAgene, except that in 337

their case the recurrent decoder network is replaced by a neural ODE decoder network. Chen et al. (2018) 338

demonstrate accurate results using synthetic data, however when we applied the method to the ESC single-cell 339

differentiation dataset (Klein et al. 2015), the neural ODE network was found to converge very slowly and was 340

overall underfit (Fig. S7). �e latent ODE method used by Chen et al. (2018) does not address the challenge of 341

modeling asynchronous/irregularly spaced data, but this has been more recently addressed (Rubanova et al. 342

2019). �ese new models may well lead to future improvements in network architectures, although it seems that 343

computational progress is needed before they can be successfully applied to complex biological systems. 344

In the current work, the prior on latent space used throughout was a unit spherical Normal, appropriate for 345

exploratory data analysis where we have no further knowledge about structure in the latent space. However, 346

given more information, e.g. that the data is contains k clusters, a different prior on the latent space might 347

be more appropriate. A multi-modal prior – such as a Gaussian Mixture Model (GMM) prior – would permit 348

structured (multi-modal) representations. However, the KL-divergence for an arbitrary GMM is not tractable; 349

approximation (Hershey & Olsen 2007) or numerical computation would be necessary. Moreover, there is a 350

greater problem: mixture models contain discrete parameters and VAE models are ill-suited for the optimization 351

of discrete parameters (Dilokthanakul et al. 2016), thus directly replacing the Normal prior of a VAE with a GMM 352

is not feasible. A workaround to this problem is presented in (Dilokthanakul et al. 2016), however implementing 353

this for a recurrent model architecture remains an open problem. 354

�e points raised above offer much scope for future work. �ese include the design of new latent space models 355

with informative priors, modeling irregular time series data, and modeling in continuous time. Developments in 356

some of these areas (Chen et al. 2018), while promising, tend to rely on training data with relatively low levels of 357

noise: far from the reality of most biological data. �us it seems highly likely to be beneficial for both machine 358

learning and biology to develop new neural network architectures in light of biological data. 359
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