

1 **Contagious Antibiotic Resistance: Plasmid Transfer Among Bacterial Residents of**
2 **the Zebrafish Gut.**

3

4 Wesley Loftie-Eaton^{1,2}, Angela Crabtree¹, David Perry¹, Jack Millstein^{1,2}, Barrie
5 Robinson^{1,2}, Larry Forney^{1,2} and Eva Top^{1,2 #}

6

7 ¹Department of Biological Sciences, ²Institute for Bioinformatics and Evolutionary Studies
8 (IBEST), University of Idaho, PO Box 443051, Moscow, Idaho, USA. Phone: +1-208-885-
9 8858; E-mail: evatop@uidaho.edu; Fax: 208-885-7905

10 # Corresponding author: Department of Biological Sciences, Institute for Bioinformatics
11 and Evolutionary Studies (IBEST), University of Idaho, PO Box 443051, Moscow, Idaho,
12 USA. Phone: +1-208-885-5015; Email: evatop@uidaho.edu; Fax: 208-885-7905

13

14

15 Running title: Plasmid transfer in the zebrafish gut microbiome

16

17 **Abstract**

18 By characterizing the trajectories of antibiotic resistance gene transfer in bacterial
19 communities such as the gut microbiome, we will better understand the factors that
20 influence this spread of resistance. Our aim was to investigate the host network of a multi-
21 drug resistance broad-host-range plasmid in the culturable gut microbiome of zebrafish.
22 This was done through *in vitro* and *in vivo* conjugation experiments with *Escherichia coli*
23 as donor of the plasmid pB10::*gfp*. When this donor was mixed with the extracted gut
24 microbiome, only transconjugants of *Aeromonas veronii* were detected. In separate
25 matings between the same donor and four prominent isolates from the gut microbiome, the
26 plasmid transferred to two of these four isolates, *A. veronii* and *Plesiomonas shigelloides*,
27 but not to *Shewanella putrefaciens* and *Vibrio mimicus*. When these *A. veronii* and *P.*
28 *shigelloides* transconjugants were the donors in matings with the same four isolates, the
29 plasmid now also transferred from *A. veronii* to *S. putrefaciens*. *P. shigelloides* was unable
30 to donate the plasmid and *V. mimicus* was unable to acquire it. Finally, when the *E. coli*
31 donor was added *in vivo* to zebrafish through their food, plasmid transfer was observed in
32 the gut but only to *Achromobacter sp.*, a rare member of the gut microbiome. This work
33 shows that the success of plasmid-mediated antibiotic resistance spread in a gut
34 microbiome depends on the donor-recipient species combinations and therefore their
35 spatial arrangement. It also suggests that rare gut microbiome members should not be
36 ignored as potential reservoirs of multi-drug resistance plasmids from food.

37

38 **Importance:**

39 To understand how antibiotic resistance plasmids end up in human pathogens it is crucial to learn

40 how, where and when they are transferred and maintained in members of bacterial communities
41 such as the gut microbiome. To gain insight into the network of plasmid-mediated antibiotic
42 resistance sharing in the gut microbiome, we investigated the transferability and maintenance of
43 a multi-drug resistance plasmid among the culturable bacteria of the zebrafish gut. We show that
44 the success of plasmid-mediated antibiotic resistance spread in a gut microbiome can
45 depend on which species are involved, as some are important nodes in the plasmid-host
46 network and others dead-ends. Our findings also suggest that rare gut microbiome members
47 should not be ignored as potential reservoirs of multi-drug resistance plasmids from food.

48

49 **1. Introduction**

50 Today many bacterial pathogens responsible for nosocomial infections are resistant to most
51 if not all available antibiotics (Kåhrström 2013; World Health Organization. 2018). In
52 contrast to the late 1960s when the US Surgeon General stated that it is “time to close the
53 book” on infectious diseases, we are now warned by authorities such as the WHO and
54 NIAID about an emanating ‘post-antibiotic’ era (World Health Organization 2014). What
55 was underestimated early on was the ability of bacteria to rapidly adapt to selective
56 pressures such as those created by the prolific use of antibiotics. One important mechanism
57 of bacterial adaptation to antibiotics is the acquisition of antibiotic resistance genes from
58 other, even distantly related bacteria through horizontal gene transfer (HGT) (Broaders *et*
59 *al.*, 2013). One of the main HGT mechanisms responsible for antibiotic resistance spread
60 to pathogens is conjugation (Carattoli, 2013; Mathers *et al.* 2015). Conjugation requires
61 cell-to-cell contact and allows transfer of plasmid DNA from a donor to a recipient cell.
62 To slow down the spread of antibiotic resistance we need to understand the bacterial

63 reservoirs of the resistance genes, and how and where pathogenic bacteria acquire these
64 genes from these reservoirs by conjugation (Andersson and Hughes, 2012; Piddock 2017).

65 One environment where antibiotic resistance genes are likely exchanged between
66 resident and transient bacteria is the gastrointestinal tract of humans and animals. The gut
67 is expected to be favorable to HGT for multiple reasons (Aminov, 2011). It provides near
68 continuous nutrition to the gut microbiota and environmental conditions that allow for
69 bacterial growth and high population densities that promote efficient conjugation. Plasmid
70 transfer has been demonstrated in the mouse gastrointestinal tract (for example Licht *et al.*,
71 1999; García-Quintanilla *et al.*, 2008), in the guts of fleas and houseflies (Hinnebusch *et*
72 *al.*, 2002; Fukuda *et al.*, 2015), and even in the gut of zebrafish (Fu *et al.*, 2017).

73 For quite some time there has been evidence for plasmid transfer in the human gut
74 (Broaders *et al.*, 2013; Balis *et al.*, 1996; Datta *et al.*, 1981). Moreover, a comparison of
75 1,183 human associated bacteria and 1,052 bacteria from a broad range of environmental
76 niches suggested that bacteria within the human gut microbiome may be 25-fold more
77 likely to share genetic material than bacteria from other environments (Smillie *et al.*, 2011).
78 Moreover, not only do plasmids carry accessory genes that encode antibiotic resistance but
79 they also encode various pathogenicity factors (see Ogilvie *et al.*, 2012 for a comprehensive
80 review) and genes that confer the ability to metabolize complex nutrients and degrade
81 xenobiotic compounds. Due to their prevalence and potentially high rate of transfer in the
82 gut, plasmids may provide functional redundancy to prevent the loss of key functions
83 (Ogilvie *et al.*, 2012). However, such a functionally redundant network of mobile genetic
84 elements could also lead to antibiotic resistance gene reservoirs that persist in the absence
85 of antibiotic selection.

86 To understand how antibiotic resistance plasmids end up in human pathogens it is crucial
87 to learn how, where and when they are transferred and maintained in members of bacterial
88 communities such as the gut microbiome. One desirable model system for such studies are
89 Zebrafish (*Danio rerio*) because they have a well-defined and comparatively simple core
90 microbiome, and a digestive tract that is similar in organization and function to that of
91 mammals. Therefore, they have been used to investigate host-microbe interactions, gut
92 colonization and differentiation (Burns *et al.*, 2016; Lan and Love, 2012; Russo *et al.*,
93 2015; Stephens *et al.*, 2016), and recently also plasmid transfer (Fu *et al.*, 2017). To gain
94 insight to the network of plasmid-mediated antibiotic resistance sharing in the gut
95 microbiome, we investigated the transferability and maintenance of the multi-drug
96 resistance (MDR) plasmid pB10::*gfp* among the culturable bacteria of the zebrafish gut
97 microbiome, through both *in vitro* and *in vivo* studies. This plasmid belongs to the
98 incompatibility group IncP-1, a well-known group of plasmids that are self-transmissible
99 to a broad host range (BHR) of bacteria and likely to be involved in the spread of antibiotic
100 resistance (Popowska 2013). In *in vitro* matings the efficiency of plasmid transfer was
101 found to depend on the combination of bacterial species acting as plasmid donors and
102 recipients. In our *in vivo* study only one particular species of the zebrafish gut microbiome
103 effectively received and maintained the plasmid even though it constituted a small fraction
104 of that community. Given conjugation requires cell contact, our findings suggest that the
105 successful spread and persistence of a plasmid in a gut microbiome depends on the bacterial
106 community composition and the spatial arrangement of its members. They also caution
107 against using *in vitro* conjugation results to identify the likely reservoirs of MDR plasmids
108 in a gut microbiome, as these can be rare community members.

109 **2. Results**

110 *2.1 Plasmid transfer to culturable bacteria from the zebrafish gut microbiome*

111 First we assessed the ability of plasmid pB10::*gfp* to transfer from an *E. coli* donor to
112 bacteria of the zebrafish gut microbiome. We performed these conjugation experiments on
113 an agar surface using *E. coli* (pB10::*gfp*) as a plasmid donor to either (i) the entire
114 microbiome isolated from the zebrafish intestinal tract or (ii) four numerically dominant
115 species that had been isolated from these gut microbiomes.

116 Conjugation experiments on R2A agar between *E. coli* AT1036 (pB10::*gfp*) and the
117 zebrafish gut microbiome (approximately 1×10^8 culturable bacteria) yielded pB10::*gfp*-
118 containing microbiome members (called transconjugants) at a frequency of $1.5 (\pm 1.5) \times$
119 10^{-4} per donor. For simplicity we often refer to this transconjugant/donor ratio from here
120 on as the ‘transfer frequency’. Based on analysis of their 16S rRNA gene sequences these
121 transconjugants all belonged to a single species, *Aeromonas veronii*. For the second *in vitro*
122 method we first isolated individual bacterial strains from the combined guts of four
123 zebrafish, using different growth media. Based on differences in colony morphology we
124 isolated and purified twenty nine strains. Based on their 16S rRNA gene sequences, they
125 belonged to the four gamma-Proteobacterial species *Aeromonas veronii*, *Plesiomonas*
126 *shigelloides*, *Shewanella putrefaciens* and *Vibrio mimicus*. Conjugation experiments done
127 using the *E. coli* (pB10::*gfp*) donor and these four species as recipients yielded
128 transconjugants for *A. veronii* and *P. shigelloides* at frequencies of $8.8 (\pm 5.5) \times 10^{-4}$ and
129 $2.2 (\pm 0.1) \times 10^{-3}$ per donor, respectively. In contrast, transfer to *V. mimicus* and *S.*
130 *putrefaciens* could not be detected ($< 1 \times 10^{-8}$ transconjugants per donor). The plasmid was

131 thus able to transfer from an *E. coli* donor to at least two of the four dominant culturable
132 members of the zebrafish gut microbiome.

133 *2.2 Novel hosts may act as plasmid donor*

134 Since two culturable zebrafish gut microbiome members received the antibiotic resistance
135 plasmid from *E. coli*, we determined if they could further spread it to other species and
136 whether various donor/recipient combinations would affect the efficiency of plasmid
137 transfer. To do this, the *A. veronii* and *P. shigelloides* transconjugants were each employed
138 as donors in conjugation assays with five recipients: *E. coli* EC100 and rifampicin resistant
139 (RifR) mutants of each of the four gut isolates, *A. veronii*, *P. shigelloides*, *S. putrefaciens*,
140 and *V. mimicus*. As shown in Table 1 the frequency of plasmid transfer to one particular
141 recipient clearly depended on the identity of the donor, and the efficiency by which a donor
142 transferred the plasmid depended on the recipient. Strikingly, though *P. shigelloides* was a
143 good recipient, it was a bad plasmid donor as it was unable to transfer the plasmid to any
144 of the five recipients. The lack of plasmid transfer from this host was not due to plasmid
145 integration in the chromosome as extrachromosomal plasmid DNA was visualized on an
146 agarose gel (Fig. 2). What is also clear from Table 1 is that *A. veronii* but not *E. coli* was
147 able to transfer the plasmid to *S. putrefaciens*, albeit still at a low frequency, showing a
148 clear donor effect. We were unable to use *S. putrefaciens* as a donor in these reciprocal
149 transfer experiments since it was intrinsically resistant to both rifampicin (Rif) and
150 nalidixic acid (Nal), which precluded distinguishing between donors and transconjugants.
151 Transfer to *V. mimicus* could not be detected at all, making it also impossible to use it as a
152 plasmid donor. These results suggest that the trajectory of spread of a BHR MDR plasmid
153 in a microbiome is determined by the identity of both the donor and recipient.

154 2.3 The persistence of pB10::gfp in zebrafish gut bacteria was host-dependent

155 For a microbiome member to be an important reservoir of an MDR plasmid, it must not
156 only acquire an incoming plasmid but also retain it sufficiently long in the absence of
157 selection for plasmid-encoded genes. To determine whether pB10::gfp was able to persist
158 in our *A. veronii*, *P. shigelloides* and *S. putrefaciens* isolates, we monitored the fraction of
159 plasmid-containing cells in serially transferred populations in the absence of antibiotic
160 selection for 10 days (100 generations). The plasmid was very persistent in *P. shigelloides*
161 but much less so in the other two strains (Fig. 3). Thus, although *A. veronii* was both a
162 rather good recipient and donor of the plasmid (Table 1), it was not good at maintaining
163 the plasmid and may thus represent only a transient host. In contrast *P. shigelloides* was
164 very good at retaining the plasmid but unable to transfer it to other bacteria, suggesting a
165 dead-end for the plasmid in its transmission network. Finally, *S. putrefaciens* was very poor
166 both at receiving and retaining the plasmid. These results show that persistence of the
167 plasmid was variable in zebrafish gut bacteria and did not necessarily correlate with their
168 host's ability to receive or further transfer the plasmid.

169 2.4 Plasmid transfer in vivo

170 Next we examined if the plasmid could transfer to bacteria in the gut of zebrafish exposed
171 to tetracycline, one of the antibiotics for which the plasmid encodes resistance and which
172 is frequently used in aquaculture (Tuševljak *et al.*, 2013). Briefly, with 32 fish divided over
173 eight separate tanks, half of the fish were fed twice daily with food pre-mixed with the
174 plasmid donor (treated; tanks A to D), while the other half received food pre-mixed with
175 an isogenic plasmid-free strain (untreated; tanks E to H). After analyzing the gut
176 microbiomes of the eight fish populations harvested on the 23rd day, 23 green fluorescent

177 transconjugants were observed on transconjugant-selective agar plates at an average
178 frequency of $1.2 (\pm 0.8)$ per 10^6 culturable gut bacteria from the zebrafish in three of the
179 four treated tanks. In contrast, no green fluorescent strains were detected in the guts of the
180 untreated groups. No fluorescent *E. coli* AT1036 (pB10::*gfp*) donors were detected on
181 donor-permissive agar plates, verifying that this *E. coli* strain was incapable of establishing
182 itself in the zebrafish gut. All 23 transconjugant colonies looked identical and, based on
183 comparisons of a 1.3-kb fragment of their 16S rRNA gene sequences, they all belonged to
184 the genus *Achromobacter* (Fig. 4). Since plasmid donors were no longer fed to the fish
185 during the last two days before harvesting the microbiomes, these transconjugants were
186 present in the zebrafish gut for at least two days post treatment.

187 Since *Achromobacter* is generally described as a common water-borne organism (Garrity
188 *et al.*, 2005) and has not previously been referenced as a resident of the zebrafish gut
189 microbiome, we determined if *Achromobacter* sp. was indeed present within the guts of
190 our zebrafish populations. This was done by constructing and sequencing 16S rRNA
191 amplicon libraries using gDNA isolated from the gut microbiome samples. The DNA
192 sequence analysis showed that *Achromobacter* sp. was present at a low frequency in the
193 gut microbiome of both the treated and untreated populations [$7.9 (\pm 4.2) \times 10^{-3} \%$ and 8.2
194 $(\pm 5.6) \times 10^{-2} \%$, respectively] (Fig.5). In comparison, *Aeromonas* represented 40.3 ± 27.1
195 % and $16.2 \pm 5.0\%$ of the gut microbiomes of treated and untreated populations,
196 respectively. Despite being the most numerically dominant genus in these guts and a good
197 plasmid recipient *in vitro* (section 2.1), no transconjugants of this genus were identified at
198 the end of this *in vivo* experiment. Our findings suggest that factors other than species

199 abundance determine the *in vivo* trajectories of plasmid transfer and establishment in a gut
200 microbiome.

201 *2.5 Transferability to and persistence of pB10::gfp in Achromobacter sp.*

202 To determine if a high frequency of transfer from *E. coli* to *Achromobacter sp.* could in
203 part explain why *Achromobacter sp.* was the only species of *in vivo* transconjugants
204 detected, we determined the transfer frequency *in vitro*. On an agar surface, plasmid
205 pB10::gfp transferred from *E. coli* AT1036 to *Achromobacter sp.* at a frequency of 4.3 (\pm
206 $2.0) \times 10^{-2}$ transconjugants.donor $^{-1}$. When comparing this to plasmid transfer under the
207 same conditions from the same *E. coli* to other species used in this study (Table 1), this
208 frequency was on average 13 times higher compared to transfer to *A. veronii*, 287 times
209 higher than to *P. shigelloides*, and similar to the frequency of transfer between two
210 isogenic *E. coli* strains. Thus, even though *Achromobacter sp.* was present at only 0.008 %
211 of the gut microbiome, its high proficiency as a recipient for pB10::gfp likely allowed it to
212 acquire that plasmid within the zebrafish gut.

213 For gut bacteria to become new reservoirs of horizontally acquired MDR plasmids,
214 they not only need to receive the plasmid, but also retain it under conditions of low or no
215 antibiotic pressure. Therefore, we also measured the persistence of pB10::gfp in
216 *Achromobacter sp.* in serial batch culture. After approximately 100 generations of growth
217 in the absence of antibiotic selection for plasmid maintenance, about 80% of the
218 *Achromobacter sp.* population still retained the plasmid (Fig. 6). Since some bacterial
219 strains have shown no loss of plasmid pB10::gfp in this time frame and others a much more
220 rapid loss (De Gelder *et al.*, 2007), this *Achromobacter sp.* strain seems to be a moderately
221 good host for this plasmid. A combination of a high plasmid transfer frequency and

222 moderate plasmid persistence likely explained how this plasmid-host pair formed in the
223 gut and then persisted for at least two days since the last *E. coli* donor cells were added.

224

225 **3. Discussion**

226 If we want to slow down the alarmingly rapid spread of resistance to critically important
227 antibiotics we need to better understand the plasmid transfer networks that facilitate this
228 spread. Conjugation of self-transmissible plasmids is likely a major pathway for horizontal
229 gene transfer among bacteria, and so-called ‘epidemic’ plasmids play a critical role in
230 global resistance spread, in particular among multidrug-resistant *Enterobacteriaceae*
231 (Carattoli, 2013; Mathers *et al.*, 2015). Using zebrafish as a model system we showed here
232 that an MDR plasmid introduced with the fish food can transfer and establish itself in one
233 of the quite rare gut microbiome members, creating a new reservoir of mobile resistance
234 genes. We also showed that key factors to this successful spread are likely the efficiency
235 of plasmid transfer, which itself depends on the combination of donor and recipient bacteria
236 in the transfer network, and the strains’ ability to maintain an MDR plasmid in the absence
237 of antibiotics.

238 The gut microbiome of zebrafish appears to be relatively conserved, with a small
239 group of core genera that are present in most sampled zebrafish (Roeselers *et al.*, 2011),
240 including those in this study (Table S1). Of the most abundant bacterial genera in our
241 zebrafish microbiomes, *Aeromonas*, *Shewanella*, *Vibrio*, and *Plesiomonas*, the first three
242 are known to be part of this core microbiome (Roeselers *et al.*, 2011). Furthermore, most
243 of the bacteria present in the gut belonged to the Gram-negative phylum Proteobacteria.
244 This group of bacteria actively participates in HGT (Kloesges *et al.*, 2011) and is within

245 the host range of several MDR plasmid families including the IncP-1 plasmids such as our
246 model plasmid pB10 (Suzuki *et al.*, 2010). The phylum Proteobacteria also contain several
247 human pathogens listed by the WHO in 2017 as being of priority 1 ('critical') (World
248 Health Organization 2017). The gut microbiome of zebrafish is thus an ideal model system
249 for research pertaining to the transfer and maintenance of MDR plasmids in microbial
250 communities.

251 We clearly showed that the success of plasmid transfer between bacterial isolates
252 from the gut microbiome depends on the identity of both the donor and recipient. Some
253 hosts were good recipients but poor donors or *vice versa*, while others were both good
254 donors and recipients. This is in line with a previous study from our group showing that
255 the donor species defined the host range of pB10 within a wastewater activated sludge
256 community (De Gelder *et al.*, 2005). It is also consistent with an *in vitro* conjugation study
257 by Dionisio *et al.* (2002), who showed a significant difference among enterobacterial
258 species and even *E. coli* strains in the ability to donate the F-type plasmid R1. They
259 postulated that the best donor strains can act as 'amplifiers' in a community and thereby
260 facilitate the spread of antibiotic resistance. We confirm here that some strains can be
261 important nodes in the plasmid transfer network while others may be dead-ends. To slow
262 down the spread of antibiotic resistance it is important to identify these critical nodes in
263 microbiomes as well as the molecular mechanisms underlying their proficiency as plasmid
264 donor or recipient.

265 One striking finding of our study was the inability of *P. shigelloides* to transfer the
266 plasmid to any of the five different species tested, in spite of it being a rather good recipient
267 when combined with each donor. This seems to be a clear example of a dead-end species

268 in the transfer network. This poor conjugation proficiency could be due to inhibition of
269 conjugation by another resident plasmid. Fig. 2 shows that it was the only host showing a
270 second plasmid DNA band on agarose gel after plasmid extraction. Negative regulatory
271 effects of co-resident plasmids on the conjugative transfer of a specific plasmid have been
272 long known (Datta *et al.*, 1971). It is referred to as fertility inhibition and has previously
273 been demonstrated for IncP-1 plasmids like pB10 (Santini and Stanisish, 1998). Dioinizio
274 *et al.* (2002) also provided some evidence that plasmid-encoded fertility inhibition systems
275 like FinOP on plasmid R1 were involved in the variable ability to serve as a donor, likely
276 due to interaction with native plasmids of these strains. This phenomenon has also been
277 more recently described for several plasmid combinations (Gama *et al.*, 2017), but for
278 many the molecular mechanisms remain elusive. Whatever the mechanism here, given that
279 the combination of donor and recipient hosts determines successful plasmid transfer, the
280 transferability of a plasmid within a gut microbiome likely depends on who neighbors
281 whom. Our findings suggest the gene transfer network might not only be determined by
282 the composition of a bacterial community but also by the spatial arrangement of its
283 members.

284 Transfer of a plasmid to a given host does not necessarily translate to successful
285 establishment in that host (Bingle and Thomas, 2001; Adamczyk and Jagura-Burdzy,
286 2003). If the replication or partitioning systems do not function optimally, or if the cost of
287 the plasmid is high the plasmid will fail to persist in that population (Ponciano *et al.*, 2007).
288 This was shown here by the inability of the plasmid to persist in *A. veronii*. In contrast, the
289 plasmid was highly persistent in *P. shigelloides* and persisted moderately well in
290 *Achromobacter* sp. Thus, even in the absence of antibiotics, gastrointestinal bacteria that

291 efficiently acquire and retain an MDR plasmid could ensure the persistence of that plasmid
292 and its resistance genes within the gut microbiome. Importantly, the efficiency by which a
293 host receives a plasmid does not necessarily correlate with its ability to subsequently retain
294 it. This serves as a reminder that plasmid transfer from a donor, establishment in a recipient
295 and its subsequent persistence are distinctly unique processes that all contribute to the
296 success of plasmids in any microbiome.

297 The zebrafish gut microbiome members that were detected as new hosts of our BHR
298 MDR plasmid differed between the *in vitro* and *in vivo* conjugation experiments. In *in vitro*
299 matings between *E. coli* and the extracted zebrafish gut microbiome, the only species of
300 transconjugants detected (*A. veronii*) was numerically dominant in this microbiome, both
301 based on 16S rRNA gene amplicon sequencing (Fig. 5) and plate counts (Fig. 1). In matings
302 between pure cultures it acquired the plasmid at a moderately high frequency compared to
303 other tested species (Table 1). Consistent with this, Fu *et al.*, (2017) recently demonstrated
304 that *Aeromonas* species represented the dominant fraction of the zebrafish gut microbiome
305 based on a cultivation-independent methods. They also showed that members of this genus
306 were common among the transconjugants of the IncP-1 α plasmid they introduced in *in vivo*
307 experiments. In contrast to the findings of Fu *et al.* (2017) and of our *in vitro* experiment,
308 the only transconjugant we detected in our *in vivo* experiment was *Achromobacter sp.*, a
309 minority member of the zebrafish gut microbiome (Fig. 5). Its low proportion in the gut
310 community explains why it was not detected on any of the agar media, nor as a
311 transconjugant in the *in vitro* mating with extracted gut microbiome, where the roughly
312 5,000-fold more dominant *A. veronii* apparently crowded the transconjugant plates.
313 *Achromobacter* was also present in the gut of the zebrafish used by Fu *et al.*, (2017),

314 varying in abundance along the fore-, mid- and hindgut, but it was not shown to acquire
315 their resistance plasmid. There could be several possible reasons for this discrepancy, none
316 of which are mutually exclusive: i) differences in plasmid donor strains and the way they
317 were administered to the fish; ii) *Achromobacter* may not be a favorable host for IncP-1 α
318 plasmids used by Fu *et al.* as there is no complete overlap between the host ranges of IncP-
319 1 α and - β plasmids (pB10 in our study) (Norberg *et al.*, 2011), iii) the *Achromobacter*.
320 strains in these two studies may have been distinctly different and plasmid host range is
321 known to vary greatly between and even within species (De Gelder *et al.*, 2007), and iv)
322 our cultivation-dependent technique had a better detection limit, allowing to identify
323 transconjugants present at low abundance.

324 *Achromobacter sp.* was the best recipient in *in vitro* conjugation experiments
325 between *E. coli* (pB10) and pure cultures of recipients. The plasmid was also rather
326 persistent in this host, more so than in *A. veronii*. High plasmid transfer frequencies and
327 plasmid persistence can satisfy the ‘existence conditions’ for plasmids in bacterial
328 populations, as any plasmid loss can possibly be overcome by reinfection of the plasmid
329 from neighboring cells (Stewart and Levin, 1977, Ponciano *et al.*, 2007). Using *in vitro*
330 conjugation experiments to identify which microbiome members play an important role in
331 the spread of a particular plasmid may thus be misleading, as these results may be
332 determined by relative abundance and plasmid transfer frequency but not by plasmid
333 persistence and *in vivo* conditions. Our findings uniquely emphasize that even rather rare
334 species in a gut microbiome may become important reservoirs of antibiotic resistance if
335 their ability to acquire resistance plasmids from bacteria introduced with food is high.

336 The detection of only one species in the zebrafish gut that received our plasmid in
337 our *in vivo* experiments does not by any means imply that it was the only member that
338 received the plasmid. It has been demonstrated that the host range of bacteria to which a
339 plasmid can transfer exceeds the range in which they can replicate (Musovic *et al.*, 2006,
340 Waters, 1999). Therefore some members like *A. veronii* here may have received the
341 plasmid in the zebrafish gut, passed it on to others, and subsequently lost it. Other members
342 were likely not culturable (Cantas *et al.*, 2012; Roeselers *et al.*, 2011, Fu *et al.*, 2017). Thus,
343 the frequency and range of plasmid transfer is likely underestimated. We can also not
344 exclude that conjugative transfer of the plasmid from the *E. coli* donor to *Achromobacter*
345 *sp.* took place in the water environment prior to *Achromobacter* establishing in the gut.
346 Irrespective of the route *Achromobacter sp.* transconjugants were present in the zebrafish
347 gut for at least two days post donor treatment and are thus likely an important link in this
348 plasmid transfer network.

349 While a full understanding of the plasmid transfer network in a gut microbiome will
350 require cultivation-independent monitoring of introduced and indigenous plasmids with
351 methods such as proximity ligation (Hi-C) (Marbouti *et al.* 2017; Stalder *et al.*, 2019),
352 several important messages can be drawn from this cultivation-dependent study: i)
353 successful transfer of the plasmid is very much dependent on the combination of donor and
354 recipient, and therefore an MDR plasmid network in a non-well mixed system like the gut
355 is in part defined by both the composition and spatial organization of the microbiome; ii)
356 caution should be taken when drawing conclusions about the range of MDR plasmid spread
357 from *in vitro* data, as *Achromobacter sp.* would have been missed here without the *in vivo*

358 experiment, and iii) in spite of their low relative abundance, rare gut microbiome members
359 could be important reservoirs of MDR plasmids introduced through food.

360

361 **4. Materials and Methods**

362 *4.1 Bacterial strains, plasmids, media, and growth conditions.*

363 Our model plasmid was the BHR MDR plasmid of the IncP-1 β family, pB10::*gfp*. This
364 plasmid was previously constructed by inserting mini-Tn5-PA1- 04/03::*gfp*, a Tn5
365 derivative transposon encoding green fluorescent protein (GFP), in the 68.3-kb plasmid
366 pB10 (Van Meervenne *et al.* 2012). This plasmid is self-transmissible and codes for
367 resistance to tetracycline, amoxicillin, sulfonamide, streptomycin, ionic mercury, and
368 kanamycin (the latter encoded on the mini-Tn5). Antibiotics kanamycin (50 $\mu\text{g.ml}^{-1}$) and
369 tetracycline (10 $\mu\text{g.ml}^{-1}$) were used to select for the plasmid.

370 Table 2 specifies relevant characteristics of each bacterial strain used in the study.

371 *E. coli* AT1036 was cultured on Luria-Bertani (LB) or tryptic soy (TS) media at 30 °C, and
372 diaminopimelic acid (DAP) was added to a final concentration of 100 $\mu\text{g.ml}^{-1}$ when
373 required. *Achromomacter* sp., *Aeromonas veronii*, *Plesiomonas shigelloides*, *Shewanella*
374 *putrefaciens* and *Vibrio mimicus* were cultured in TS at 26 °C. To obtain Rif resistant
375 (RifR) mutants of the latter four strains they were serially sub-cultured in TS supplemented
376 with increasing concentrations of rifampicin, from 20 to 200 $\mu\text{g.ml}^{-1}$.

377 *4.2 General DNA manipulation techniques*

378 Plasmid DNA was isolated and purified using a PureYield Plasmid Miniprep System
379 (Promega) and gel electrophoresis were carried out using standard techniques (Sambrook
380 and Russell, 2001). Genomic DNA (gDNA) was isolated using a Genelute bacterial gDNA

381 kit (Sigma-Aldrich). All polymerase chain reaction (PCR) experiments, except those
382 described in section 4.8, were performed using *Taq* Master Mix (NEB) as per the
383 manufacturer's instructions. The reaction parameters included an initial denaturation step
384 of 10 min at 94°C, followed by 30 cycles of denaturation (30 s at 94°C), a variable
385 annealing step dependent upon the average primer annealing temperature, and an
386 elongation step at 72°C with the extension time depending on the amplicon size.

387 *4.3 General zebrafish husbandry and gut bacteria isolation*

388 Zebrafish (Scientific Hatcheries Inc) of unknown genetic background were maintained in
389 a recirculating system (Aquaneering) at 28.5°C and fed twice daily with soy protein
390 concentrate-based pellet food unless otherwise stated. Procedures involving animals were
391 approved by the University of Idaho Institutional Animal Care and Use Committee. Prior
392 to harvesting the gut bacteria, the fish were starved for 24 hours and individually
393 anesthetized with 170 mg/l MS222 (Tricaine methanosulfonate; pH ~7.0; Argent
394 Laboratories). Each fish was aseptically dissected in a petri dish using a surgical blade. The
395 entire fore-, mid- and hind gut were placed into sterile 2 ml microfuge tubes and placed on
396 ice. Disposable plastic inoculation loops were used to grind the guts and squeeze out the
397 bacteria against the round bottom of the microfuge tube. To suspend the bacteria 2 ml of
398 PBS (pH 7.4; 4 °C) was added and the samples were vortexed vigorously for 1 min. To
399 separate the bacterial suspension and the gut lining, the samples were centrifuged at 800
400 rpm for 1 min and the bacteria-containing supernatant transferred to a sterile 2 ml
401 microfuge tube. To collect the bacterial cells, the bacterial suspensions were centrifuged at
402 8000 rpm for 4 min and the pellet suspended in 2 ml PBS (pH 7.4; 4 °C). This procedure
403 was repeated twice to wash the bacterial cells.

404 4.4 16S rRNA identity of clonal isolates

405 Individual bacterial colonies from the combined guts of four zebrafish were obtained by
406 spreading 100 µl of a 10-fold dilution series onto Brain-Heart-Infusion (BHI), Reasoner's
407 2A (R2A), TS and Chocolate agar and incubated at 26 °C for 48 hours. All media contained
408 cycloheximide (100 µg.ml-1) to inhibit fungal growth. To obtain clonal isolates, a total of
409 29 colonies with unique morphologies were streaked onto their respective isolation media
410 and TS agar (TSA). Single colonies were inoculated into 5 ml TS broth and grown
411 overnight at 26 °C, and 1 ml of each culture was used for gDNA purification. 1 ng of gDNA
412 was used as template for 16S rRNA gene amplification using the 27f (5'-
413 AGAGTTTGATCMTGGCTCAG-3') and 1492r (5'-
414 TACGGYTACCTTGTACGACTT-3') 16S rRNA primers described by Roeselers *et al.*
415 (2011). The ~1.6-kb PCR products were sequenced by Sanger sequencing at Elim
416 Biopharmaceuticals Inc (California). The species identity of clonal isolates was determined
417 by comparisons of their 16S rRNA gene sequences to known sequences within the RDP
418 database. Phylogenetic trees were constructed using the default Alignment and Tree
419 Builder functions within the Geneious R10 software package.

420 4.5 *In vitro* plasmid transfer

421 The original plasmid donor in the quantitative conjugation assays with zebrafish gut
422 isolates as recipients was *E. coli* AT1036 (pB10::*gfp*), a DAP auxotroph. After these
423 conjugation assays the resulting transconjugants served as donors in subsequent matings
424 with Rif^R mutants of these isolates, and with Nal^R *E. coli* EC100.

425 To investigate plasmid transfer from the *E. coli* donor to the zebrafish gut microbial
426 community *in vitro*, the recipient community was prepared in 1 ml PBS from the combined

427 guts of four zebrafish as described in Section 4.3, and the conjugation assay was carried
428 out on R2A. For all other *in vitro* conjugation experiments, the donors and recipients were
429 prepared from cultures that were grown overnight at 30°C for *E. coli* and 26 °C for
430 zebrafish gut isolates, and the matings were carried out on TSA.

431 Cells from 1 ml of each culture were collected by centrifugation at 8,000 x g for 2
432 minutes and resuspended in 100 µl PBS. The donor and recipient cultures were mixed in
433 equal parts, spotted onto agar plates and incubated for 16 hours at 26 °C. The media did
434 not contain any antibiotics, nor DAP to prevent *E. coli* AT1036 from proliferating. An
435 equal volume of donor and recipient was also spotted onto separate agar plates. The cells
436 were scraped from the plate using a sterile inoculation loop, resuspended in 1.0 ml PBS
437 buffer, and a dilution series was spread onto differentially selective agar media to
438 enumerate the donors (50 µg.mL⁻¹ Km, 10 µg.mL⁻¹ Tc, 100 µg.mL⁻¹ DAP), recipients (200
439 µg.mL⁻¹ Rif or Nal) and transconjugants (200 µg.mL⁻¹ Rif or Nal, 50 µg.mL⁻¹ Km, 10
440 µg.mL⁻¹ Tc). Colonies were counted after 2-3 days of incubation at 26°C. Green-
441 fluorescent transconjugants were also verified by excitation at 488 nm and donor, recipient
442 and transconjugant identities were determined by comparing their 16S rRNA gene
443 sequences to known sequences within the RDP database, as described above.

444 *4.6 Plasmid persistence assays*

445 The ability of pB10::*gfp* to persist in a host was determined by monitoring the fraction of
446 plasmid-containing cells in a population over 10 days, as described previously (Loftie-
447 Eaton *et al.*, 2016). Briefly, precultures were grown overnight in the presence of kanamycin
448 and tetracycline, and on each subsequent day 4.9 µl of culture was transferred into 5 ml of
449 fresh medium without antibiotics and incubated in a shaking incubator for 24 hours,

450 yielding approximately 10 generations per day. Cultures were spread daily onto
451 nonselective TSA agar such that approximately 100 to 400 colonies were obtained per
452 sample. The fraction of plasmid-containing colonies within each sampled population was
453 determined by counting the fluorescent and non-fluorescent colonies during exposure to a
454 488-nm light source.

455 *4.7 In vivo plasmid transfer*

456 Thirty-two zebrafish of mixed sex were randomly divided into eight groups of four. Each
457 group was put into one of eight tanks (width 10 cm, height 15 cm, depth 25 cm) containing
458 2 l of filtered water. The eight tanks were divided into two treatment groups in which the
459 fish were fed dry food treated with *E. coli* AT1036 that either contained plasmid pB10::gfp
460 (treated tanks, A-D) or was plasmid-free (untreated tanks, E-H). The water was replaced
461 daily with fresh water containing 20 $\mu\text{g.ml}^{-1}$ tetracycline and the fish were fed twice daily
462 with \sim 35 mg food per tank. The food was prepared every 7 days by suspending the *E. coli*
463 AT1036 with or without plasmid in soybean oil and mixing it with the soy protein-based
464 pellet food (Tetramin) such that the final concentration was \sim 1 \times 10^6 CFU.mg^{-1} dry food
465 (the CFU count dropped slightly to \sim 5 \times 10^5 CFU.mg^{-1} during storage over a 9-day period).
466 Thus each 2-l tank received approximately $3 \times 10^7 \text{ CFU}$ daily. The fish were fed with the
467 *E. coli*-containing food for 20 days. During the last two days, they were fed with untreated
468 food to minimize *E. coli* donor cells in the gut at the time of harvest. The presence of the
469 donor at that time could confound the transconjugant counts as it may result in plasmid
470 transfer on agar plates rather than in the zebrafish gut.

471 On the 23rd day, all fish were euthanized and their gut material was harvested
472 aseptically by dissection as described in section 4.3. The gut content from four fish per tank

473 was then pooled and suspended in PBS using the pestle and mortar technique, and bacterial
474 counts were determined by plating a 10-fold dilution series onto different selective TS agar
475 media as follows. Total culturable colony forming units (CFU) were quantified on TSA
476 lacking all antibiotics except cycloheximide ($100 \mu\text{g.ml}^{-1}$). Donor bacteria were quantified
477 based on fluorescence on TSA supplemented with the pB10::*gfp*-selective antibiotics
478 tetracycline ($10 \mu\text{g.ml}^{-1}$), kanamycin ($50 \mu\text{g.ml}^{-1}$), streptomycin ($50 \mu\text{g.ml}^{-1}$) as well as with
479 $100 \mu\text{M}$ DAP to support the growth of the auxotrophic *E. coli* AT1036 host.
480 Transconjugant bacteria were enumerated on TSA plates supplemented with the same
481 plasmid-selective antibiotics but no DAP (thus counter-selecting the donor). The
482 transconjugant bacteria were distinguishable from the intrinsically resistant gut microbiota
483 based on the fluorescent phenotype encoded by pB10::*gfp*. It should be noted that such
484 transconjugant enumerations will always be an underestimation not only due to limited
485 culturability of all gut bacteria but also because not all bacteria can properly express and
486 fold the fluorescent protein (Cormack *et al.*, 1996).

487 *4.8 Zebrafish gut microbiome diversity*

488 After sampling the bacterial cell suspensions from the *in vivo* plasmid transfer experiment
489 for enumeration by plate counting, the remainder of the bacterial cells were collected by
490 centrifugation at $8,000 \times g$ and stored at -20°C . To account for the bacterial diversity in
491 the water and food, a water control was constructed as follows. Approximately 20 mg of
492 food was mixed with 20 μl of soybean oil and suspended in 2 ml of the system water.

493 The gDNA was extracted from the zebrafish gut microbiome and water control
494 samples using the two-step enzymatic and bead-beating lysis method described by Yuan *et*
495 *al.* (2012). Briefly, the frozen cells were thawed on ice and suspended in 900 μl Tris-EDTA

496 buffer (TE; pH 8.0). 50 μ l lysozyme (10 mg/ml, Sigma-Aldrich), 6 μ l mutanolysin (25
497 KU/ml, Sigma-Aldrich), and 3 μ l lysostaphin (4000 U/ml, Sigma-Aldrich) were added to
498 250 μ l cell suspension and incubated for 1 hour at 37°C. Thereafter, 600 mg of 0.1-mm-
499 diameter zirconia/silica beads (BioSpec) were added to the lysate and the microbial cells
500 were mechanically disrupted using Mini-BeadBeater-96 (BioSpec) at 2100 rpm for 1
501 minute. The gDNA was purified from the lysate using a QIAamp DNA mini kit (Qiagen).
502 Sequence libraries of the V1 and V3 region of the 16S rRNA genes from each of the
503 samples were constructed in accordance with the Dual Barcoded Two-Step PCR procedure
504 from Illumina (Illumina, 2013). Briefly, using the universal 16S rRNA primers 27F and
505 534R, the V1-V3 region of 16S rRNA genes was amplified from 2 ng of DNA in 50 μ l
506 reactions containing the following components: 1x Standard *Taq* Reaction Buffer (NEB),
507 3 mM MgCl₂ (NEB), 0.24 mg.ml⁻¹ BSA (Fermentas), 200 μ M dNTPs (Fermentas), 50 nM
508 of each of the 27f and 534r primer mixes and 0.025U. μ l⁻¹ *Taq* DNA polymerase (NEB).
509 The cycling parameters were 95 °C for 2 minutes, 20 cycles of 95 °C for 1 minute, 51 °C
510 for 1 minute and 68 °C for 1 minute, followed by 68 °C 10 minutes and a hold step at 10°
511 C. The PCR products were purified using a QIAquick PCR Purification Kit and visualized
512 on a 1% agarose gel. To attach the barcodes, the PCR products were diluted 15-fold in PCR
513 grade water and 1 μ l of each was transferred into 20 μ l PCR reaction mix containing 1x
514 Standard *Taq* reaction Buffer, 4.5 mM MgCl₂, 0.24 mg.ml⁻¹ BSA , 75 nM of the barcoded
515 primer, 200 μ M dNTPs and 0.05 U. μ l-1 *Taq* DNA polymerase. The cycling parameters
516 were 95 °C for 1 minute, 10 cycles of 95 °C for 30 seconds, 60 °C for 30 seconds and 68
517 °C for 1 minute, followed by 68 °C 5 minutes and a hold step at 10°C. The PCR products
518 were once again purified using a QIAquick PCR Purification Kit and visualized on a 1%

519 agarose gel. The purified, barcoded amplicon libraries were quantified, pooled equimolar
520 and prepared for sequencing on a MiSeq DNA Sequencer (Illumina) by the Genomics
521 Resources Core Facility at the Institute for Bioinformatics and Evolutionary Studies
522 (Moscow, ID) according to their standard operating procedures.

523 Raw unclipped DNA sequence reads from the Illumina platform were cleaned,
524 assigned and filtered by the Genomics Resources Core Facility using custom scripts, after
525 which the sequence reads were assigned to bacterial taxa using the Naïve Bayesian
526 Classifier for Rapid Assignment of rRNA Sequences (Wang *et al.* 2007) at the Ribosomal
527 Database Project (<https://rdp.cme.msu.edu/>). The OTU table was interrogated and
528 visualized using R 3.3.0. The 16S RNA gene sequences have been deposited in the
529 Sequence Read Archive at NCBI (Accession: PRJNA601447).

530

531 **5. Acknowledgements**

532 This work was funded in part by the National Institute of Allergy and Infectious Diseases
533 grant R01 AI084918 of the National Institutes of Health (NIH). We are grateful to the
534 IBEST Genomics Research Core for help with DNA sequencing, supported by the
535 Institutional Development Award (IDeA) from the National Institute of General Medical
536 Sciences (NIGMS) of the NIH under grant number P30 GM103324. We also thank Matt
537 Singer for dissecting the zebrafish from the *in vivo* experiment.

538

539

540 **6. References**

541 Adamczyk, M, Jagura-Burdzy G. 2003. Spread and survival of promiscuous IncP-1
542 plasmids. *Acta Biochim Pol* 50:425-453.

543 Aminov RI. 2011. Horizontal gene exchange in environmental microbiota. *Frontiers in*
544 *Microbiol* 2:158; <https://doi.org/10.3389/fmicb.2011.00158>

545 Andersson DI, Hughes D. 2012. Evolution of antibiotic resistance at non-lethal drug
546 concentrations. *Drug Resistance Updates* 15(3):162-172;
547 <https://doi.org/10.1016/j.drup.2012.03.005>

548 Balis E, Vatopoulos AC, Kanelopoulou M, Mainas E, Hatzoudis G *et al.*, 1996
549 Indications of *in vivo* transfer of an epidemic R plasmid from *Salmonella enteritidis* to
550 *Escherichia coli* of the normal human gut flora. *J Clin Microbiol* 34: 977–979

551 Bingle LE, Thomas CM. 2001. Regulatory circuits for plasmid survival. *Curr Opin*
552 *Microbiol* 4:194-200; [https://doi.org/10.1016/S1369-5274\(00\)00188-0](https://doi.org/10.1016/S1369-5274(00)00188-0)

553 Broaders E, Cormac GM, Marchesi G and J. R. Marchesi. 2013. Mobile genetic
554 elements of the human gastrointestinal tract, *Gut Microbes*, 4:4, 271-280, DOI:
555 10.4161/gmic.24627

556 Burns AR, Stephens WZ, Stagaman K, Wong S, Rawls JF, Guillemin K, Bohannan BJM.
557 2016. Contribution of neutral processes to the assembly of gut microbial communities
558 in the zebrafish over host development. *ISME J* 10:655–664;
559 <https://doi.org/10.1038/ismej.2015.142>

560 Cantas L, Roger J, Sørby T, Aleström P, Sørum H. 2012. Culturable gut microbiota
561 diversity in zebrafish. *Zebrafish* 9(1): 26–37; <https://doi.org/10.1089/zeb.2011.0712>

562 Carattoli A. 2013. Plasmids and the spread of resistance. *IJMM* 303:298-304;

563 <https://doi.org/10.1016/j.ijmm.2013.02.001>

564 Cormack BP, Valdivia RH, Falkow S. 1996. FACS-optimized mutants of the green
565 fluorescent protein (GFP). Gene 173(1):33-38; [https://doi.org/10.1016/0378-1119\(95\)00685-0](https://doi.org/10.1016/0378-1119(95)00685-0)

566

567 Datta N, Hedges RW, Shaw EJ, Sykes RB, Richmond MH. 1971. Properties of an R
568 factor from *Pseudomonas aeruginosa*. J Bacteriol 108(3):1244–1249

569 Datta N, Richards H, Datta C. 1981. *Salmonella typhi* *in vivo* acquires resistance to both
570 chloramphenicol and co-trimoxazole. The Lancet. 317:1181-1183;
571 [https://doi.org/10.1016/S0140-6736\(81\)92350-3](https://doi.org/10.1016/S0140-6736(81)92350-3)

572 De Gelder L, Vandecasteele FPJ, Brown CJ, Forney LJ, Top EM. 2005. Plasmid donor
573 affects host range of promiscuous IncP-1β plasmid pB10 in an activated-sludge
574 microbial community. Appl Environ Microbiol 71(9):5309-5317;
575 <https://doi.org/10.1128/AEM.71.9.5309-5317.2005>

576 De Gelder, L, Ponciano JM, Joyce P, Top EM. 2007. Stability of a promiscuous plasmid
577 in different hosts: No guarantee for a long-term relationship. Microbiology 153: 452-
578 463; <https://doi.org/10.1099/mic.0.2006/001784-0>

579 Dionisio F, Matic I, Radman M, Rodrigues OR, Taddei F. 2002. Plasmids spread very
580 fast in heterogeneous bacterial communities. Genetics 162:1525–1532

581 Frost LS, Koraimann G. 2010. Regulation of bacterial conjugation: balancing opportunity
582 with adversity. Future Microbiol 5:1057-1071; <https://doi.org/10.2217/fmb.10.70>

583 Fu J, Yang D, Jin M, Liu W, Zhao X., Li C., Zhao T, *et al.* 2017. Aquatic animals
584 promote antibiotic resistance gene dissemination in water via conjugation: Role of
585 different regions within the zebra fish intestinal tract, and impact on fish intestinal

586 microbiota. Mol Ecol 26:5318– 5333; <https://doi.org/10.1111/mec.14255>

587 Fukuda A, Usui M, Okubo T, Tamura Y. 2015. Horizontal transfer of plasmid-mediated

588 cephalosporin resistance genes in the intestine of houseflies (*Musca domestica*).
589 Microbial Drug Resistance 22:336-341; <https://doi.org/10.1089/mdr.2015.0125>

590 Gama JA, Zilhão R, Dionisio F. 2017. Conjugation efficiency depends on intra and

591 intercellular interactions between distinct plasmids: Plasmids promote the immigration

592 of other plasmids but repress co-colonizing plasmids. Plasmid 93:6-16;
593 <https://doi.org/10.1016/j.plasmid.2017.08.003>

594 García-Quintanilla M, Ramos-Morales F, Casadesús J. 2008. Conjugal transfer of the

595 *Salmonella enterica* virulence plasmid in the mouse intestine. J Bacteriol 190:1922-1927;
596 <https://doi.org/10.1128/JB.01626-07>

597 Garrity GM, Brenner DJ, Krieg NR, Staley JT. (eds.). 2005. Bergey's manual of

598 systematic bacteriology. Volume Two: The Proteobacteria, Part C: The Alpha-, Beta-,
599 Delta-, and Epsilonproteobacteria. New York: Springer. ISBN 978-0-387-24145-6

600 Hinnebusch BJ, Rosso ML, Schwan TG, Carniel E. 2002. High-frequency conjugative

601 transfer of antibiotic resistance genes to *Yersinia pestis* in the flea midgut. Mol

602 Microbiol 46:349-354; <https://doi.org/10.1046/j.1365-2958.2002.03159.x>

603 Illumina. 2013. 16S Metagenomic sequencing library preparation.
604 http://www.support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf

607 Kåhrström CT. 2013. Entering a post-antibiotic era? Nat Rev Microbiol. 11:146;

608 <https://doi.org/10.1038/nrmicro2983>

609 Kloesges T, Popa O, Martin W, Dagan T. 2011. Networks of gene sharing among 329
610 proteobacterial genomes reveal differences in lateral gene transfer frequency at
611 different phylogenetic depths. *Mol Biol Evol* 28:1057-1074;
612 <https://doi.org/10.1093/molbev/msq297>

613 Lan CC, Love DR. 2012. Molecular characterization of bacterial community structure
614 along the intestinal tract of zebrafish (*Danio rerio*): A Pilot Study. *ISRN Microbiol.*
615 2012: 590385; <https://doi.org/10.5402/2012/590385>

616 Licht T, B. Christensen, K. Krogfelt, S. Molin. 1999. Plasmid transfer in the animal
617 intestine and other dynamic bacterial populations: the role of community structure and
618 environment. *Microbiol* 145:2615-2622; <https://doi.org/10.1099/00221287-145-9-2615>

619 Loftie-Eaton W, Yano H, Burleigh S, Simmons RS, Hughes JM, Rogers LM, Hunter SS,
620 Settles ML, Forney LJ, Ponciano JM, Top EM. 2016. Evolutionary paths that expand
621 plasmid host-range: Implications for spread of antibiotic resistance. *Mol Biol Evol*
622 33:885–897; <https://doi.org/10.1093/molbev/msv339>

623 Marbouy M, Baudry L, Cournac A, Koszul R. 2017. Scaffolding bacterial genomes and
624 probing host-virus interactions in gut microbiome by proximity ligation (chromosome
625 capture) assay. *Sci Adv.* 3:e1602105; <https://doi.org/10.1126/sciadv.1602105>

626 Mathers, AJ, Peirano G, Pitout JDD. 2015. The role of epidemic resistance plasmids and
627 international high-risk clones in the spread of multidrug-resistant *Enterobacteriaceae*.
628 *Clin Microbiol Rev* 28:565-591; <https://doi.org/10.1128/CMR.00116-14>

629 Musovic S, Oregaard G, Kroer N, SJ Sørensen. 2006. Cultivation-independent
630 examination of horizontal transfer and host range of an IncP-1 plasmid among Gram-
631 positive and Gram-negative bacteria indigenous to the barley rhizosphere. *AEM*

632 72(10):6687-6692; <https://doi.org/10.1128/AEM.00013-06>

633 Norberg P, Bergström M, Jethava V, Dubhashi D, Hermansson M. The IncP-1 plasmid
634 backbone adapts to different host bacterial species and evolves through homologous
635 recombination. *Nat Commun* 2:268. doi:10.1038/ncomms1267 2:268.

636 <https://doi.org/10.1038/ncomms1267>

637 Ogilvie LA, Firouzmand S, Jones BV. 2012. Evolutionary, ecological and
638 biotechnological perspectives on plasmids resident in the human gut mobile
639 metagenome. *Bioengineered* 3(1):13-31; <https://doi.org/10.4161/bbug.3.1.17883>

640 Ponciano, JM, De Gelder L, Top EM, Joyce P. 2007. The population biology of bacterial
641 plasmids: a hidden Markov model approach. *Genetics* 176:957-968;
642 <https://doi.org/10.1534/genetics.106.061937>

643 Popowska M, Krawczyk-Balska A. 2013. Broad-host-range IncP-1 plasmids and their
644 resistance potential. *Front Microbiol* 4:1-8; <https://doi.org/10.3389/fmicb.2013.00044>

645 Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, Guillemin K,
646 Rawls JF. 2011. Evidence for a core gut microbiota in the zebrafish. *ISME J* 5:1595-
647 1608; <https://doi.org/10.1038/ismej.2011.38>

648 Russo P, Iturria I, Mohedano ML, Caggianiello G, Rainieri S, Fiocco D, Angel Pardo M,
649 López P, Spano G. 2015. Zebrafish gut colonization by mCherry-labelled lactic acid
650 bacteria. *Appl Microbiol Biotechnol* 99: 3479; <https://doi.org/10.1007/s00253-014-6351-x>

652 Sambrook J, Russell DW. 2001. Molecular cloning: a laboratory manual, 3rd ed. Cold
653 Spring Harbor Laboratory Press, Cold Spring Harbor, NY

654 Santini JM, Stanisich VA, 1998. Both the *fipA* gene of pKM101 and the *pifC* gene of F

655 inhibit conjugal transfer of RP1 by an effect on *traG*. *J. Bacteriol* 180:4093–4101

656 Smillie CS, Smith MB, Friedman J, Cordero OX, David LA, Alm EJ. 2011. Ecology

657 drives a global network of gene exchange connecting the human microbiome. *Nature*

658 480(7376): 241-244; <https://doi.org/10.1038/nature10571>

659 Stalder T, Press MO, Sullivan S, Liachko I, Top EM. 2019. Linking the resistome and

660 plasmidome to the microbiome. *ISME J* 13: 2437–2446;

661 <https://doi.org/10.1038/s41396-019-0446-4>

662 Stephens WZ, Burns AR, Stagaman K, Wong S, Rawls JF, Guillemin K, Bohannan BJM.

663 2016. The composition of the zebrafish intestinal microbial community varies across

664 development. *ISME J* 10:644–654; <https://doi.org/10.1038/ismej.2015.140>

665 Stewart FM, BR Levin. 1977. The population biology of bacterial plasmids: a priori

666 conditions for the existence of conjugationally transmitted factors. *Genetics* 87:209–

667 228

668 Suzuki H, Yano H, Brown CJ, Top EM. 2010. Predicting plasmid promiscuity based on

669 genomic signature. *J Bacteriol* 192:6045-6055; <https://doi.org/10.1128/JB.00277-10>

670 Thomas CM, Nielsen KM. 2005. Mechanisms of, and barriers to, horizontal gene transfer

671 between bacteria. *Nat Rev Microbiol* 3:711-721

672 Tuševljak N, Dutil L, Rajić A, Uhland FC, McClure C, St - Hilaire S, Reid - Smith RJ,

673 McEwen SA. 2013. Antimicrobial use and resistance in aquaculture: Findings of a

674 globally administered survey of aquaculture - Allied Professionals. *Zoonoses Public*

675 *Health* 60:426-436; <https://doi.org/doi:10.1111/zph.12017>

676 Van Meervenne E, Van Coillie E, Kerckhof FM, Devlieghere F, Herman L, De Gelder

677 LS, Top EM, Boon N. 2012. Strain-specific transfer of antibiotic resistance from an

678 environmental plasmid to foodborne pathogens. *J. Biomed. Biotechnol.* 2012:834598;

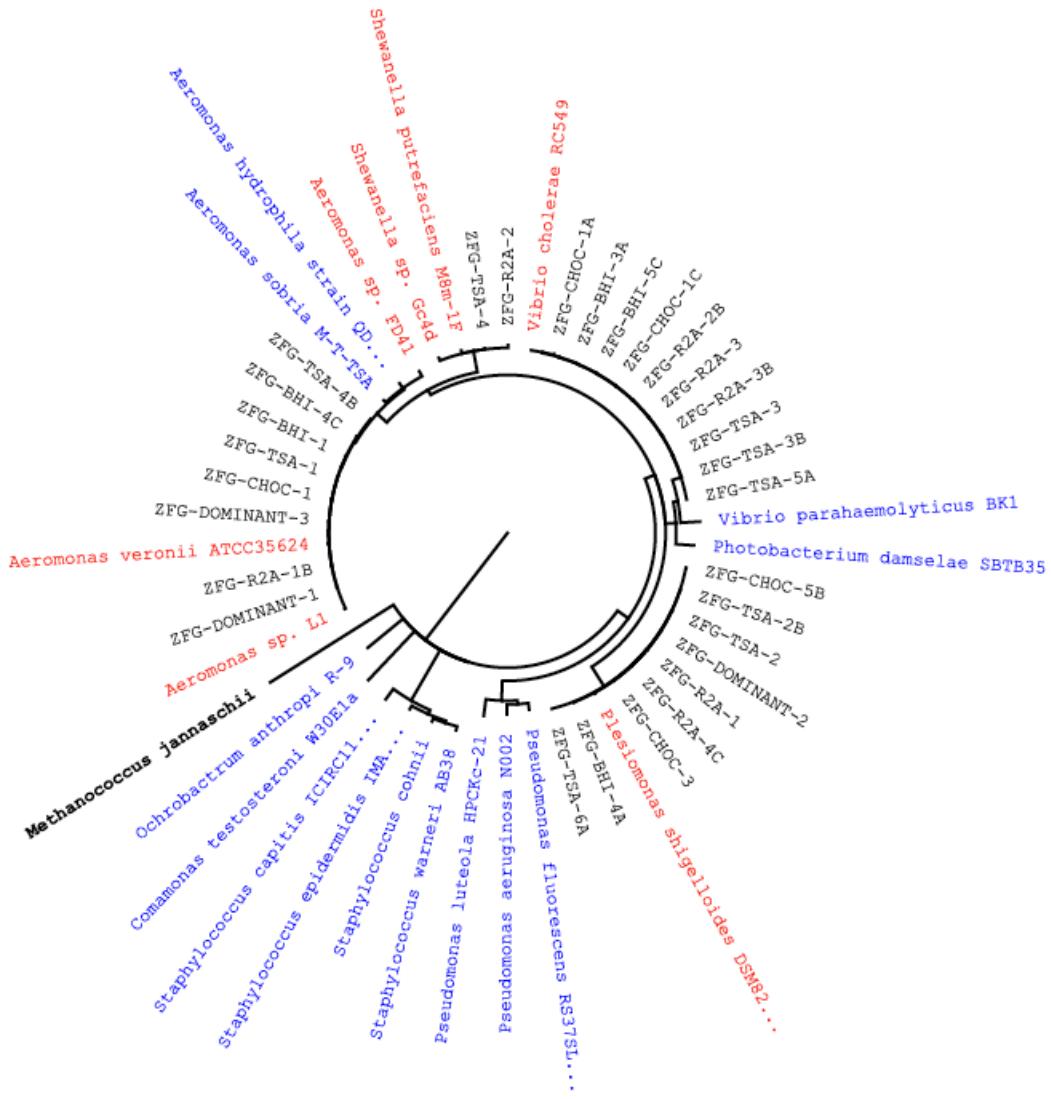
679 <https://doi.org/10.1155/2012/834598>

680 Yuan S, Cohen DB, Ravel J, Abdo Z, Forney LJ. 2012. Evaluation of methods for the
681 extraction and purification of DNA from the human microbiome. *PLoS One* 7;

682 <https://doi.org/10.1371/journal.pone.0033865>

683 Waters VL. 1999. Conjugative transfer in the dissemination of beta-lactam and
684 aminoglycoside resistance. *Front Biosci* 4:d433-456

685 Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naïve bayesian classifier for rapid
686 assignment of rRNA sequences into the new bacterial taxonomy. *Appl Environ
687 Microbiol* 73(16):5261-7; <https://doi.org/10.1128/AEM.00062-07>


688 Wilkins BM. 2002. Plasmid promiscuity: meeting the challenge of DNA immigration
689 control. *Environ Microbiol* 4:495-500; [https://doi.org/10.1046/j.1462-2920.2002.00332.x](https://doi.org/10.1046/j.1462-
690 2920.2002.00332.x)

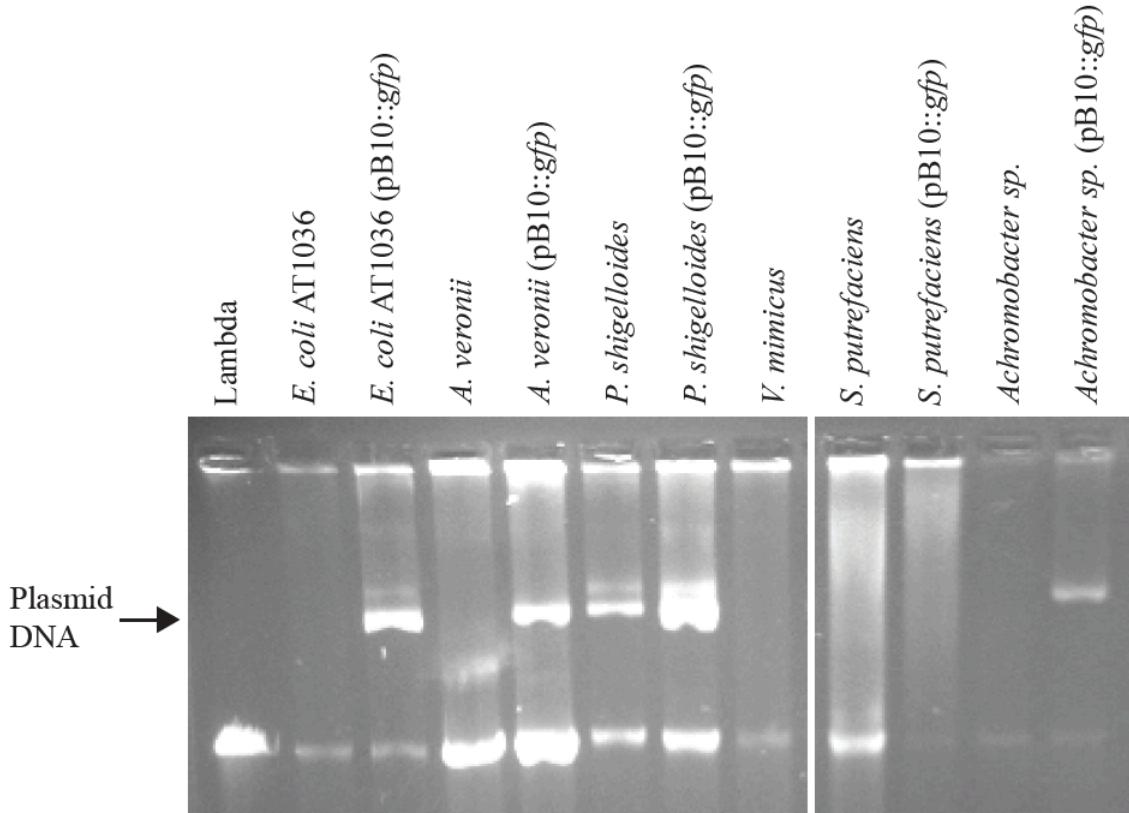
691 World Health Organization. 2014. Antimicrobial resistance: global report on surveillance.
692 http://apps.who.int/iris/bitstream/10665/112642/1/9789241564748_eng.pdf

693 World Health Organization. 2017. Global priority list of antibiotic-resistant bacteria to
694 guide research, discovery, and development of new antibiotics.
695 [https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-
ET_NM_WHO.pdf](https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-
696 ET_NM_WHO.pdf)

697 World Health Organization. 2018. Global antimicrobial resistance surveillance system
698 (GLASS) report: early implementation 2017-2018.
699 [https://www.who.int/glass/resources/publications/early-implementation-report-2017-
2018/en/](https://www.who.int/glass/resources/publications/early-implementation-report-2017-
700 2018/en/)

701 7. Figures

702


703 **Fig. 1. All 29 unique zebrafish gut isolates grouped into four different genera based**
704 **on their 16S rRNA gene sequences: *Aeromonas*, *Plesiomonas*, *Vibrio* and *Shewanella*.**
705 ZFG, bacterial strains isolated from the zebrafish gut; DOMINANT, numerically dominant
706 colony morphology types, originally identified on R2A agar, and which successfully
707 acquired the plasmid following conjugation with the donor *E. coli*; BHI, CHOC, R2A and
708 TSA, abbreviations of media used to isolate the strains (see Materials and Methods); Red,

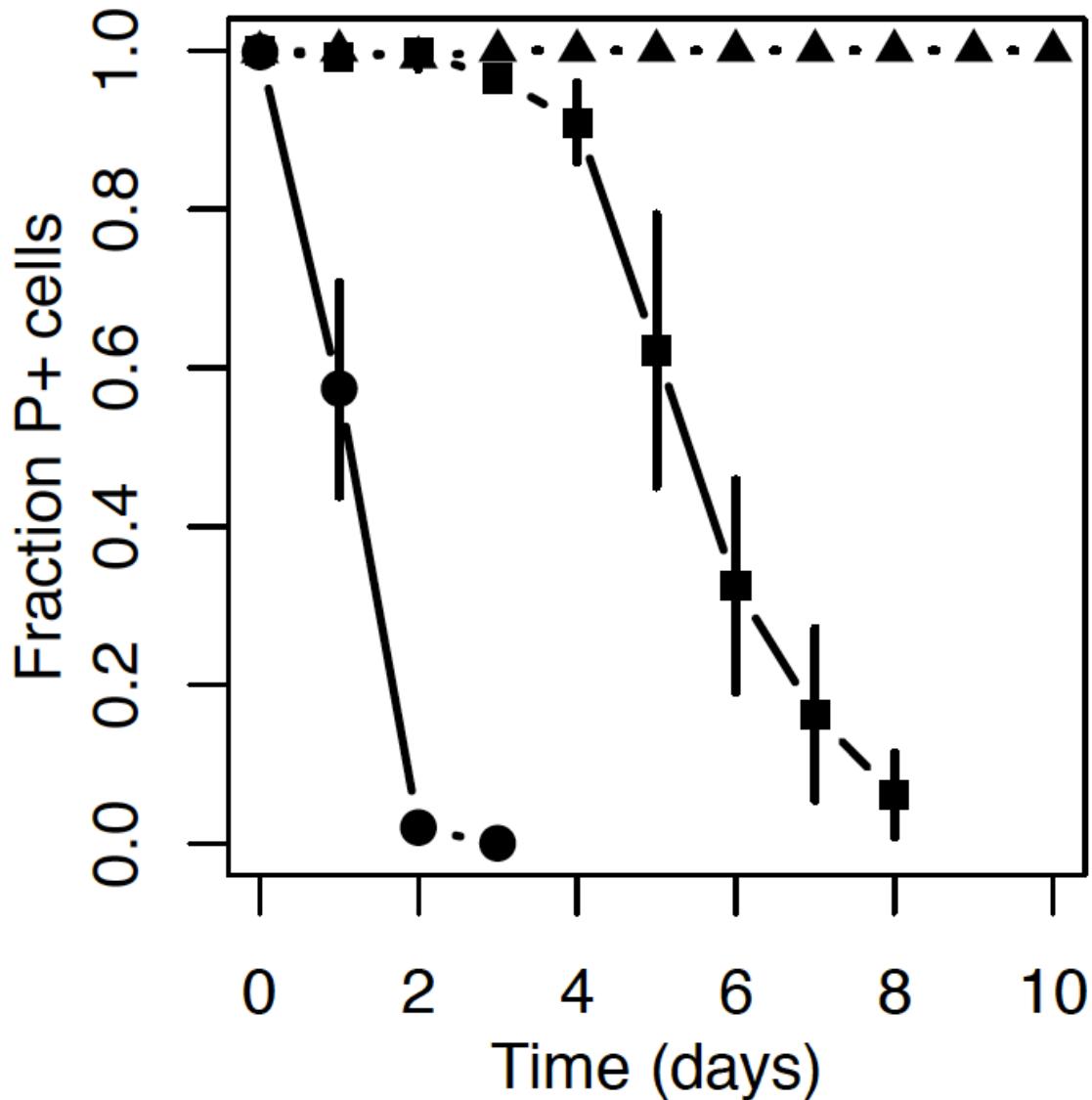
709 culture collection strains most similar to isolates; Blue, zebrafish core microbiome
710 reference strains (Cantas *et al.*, 2012); The tree was rooted using the Archaean
711 *Methanococcus jannaschii*.

712

713

714

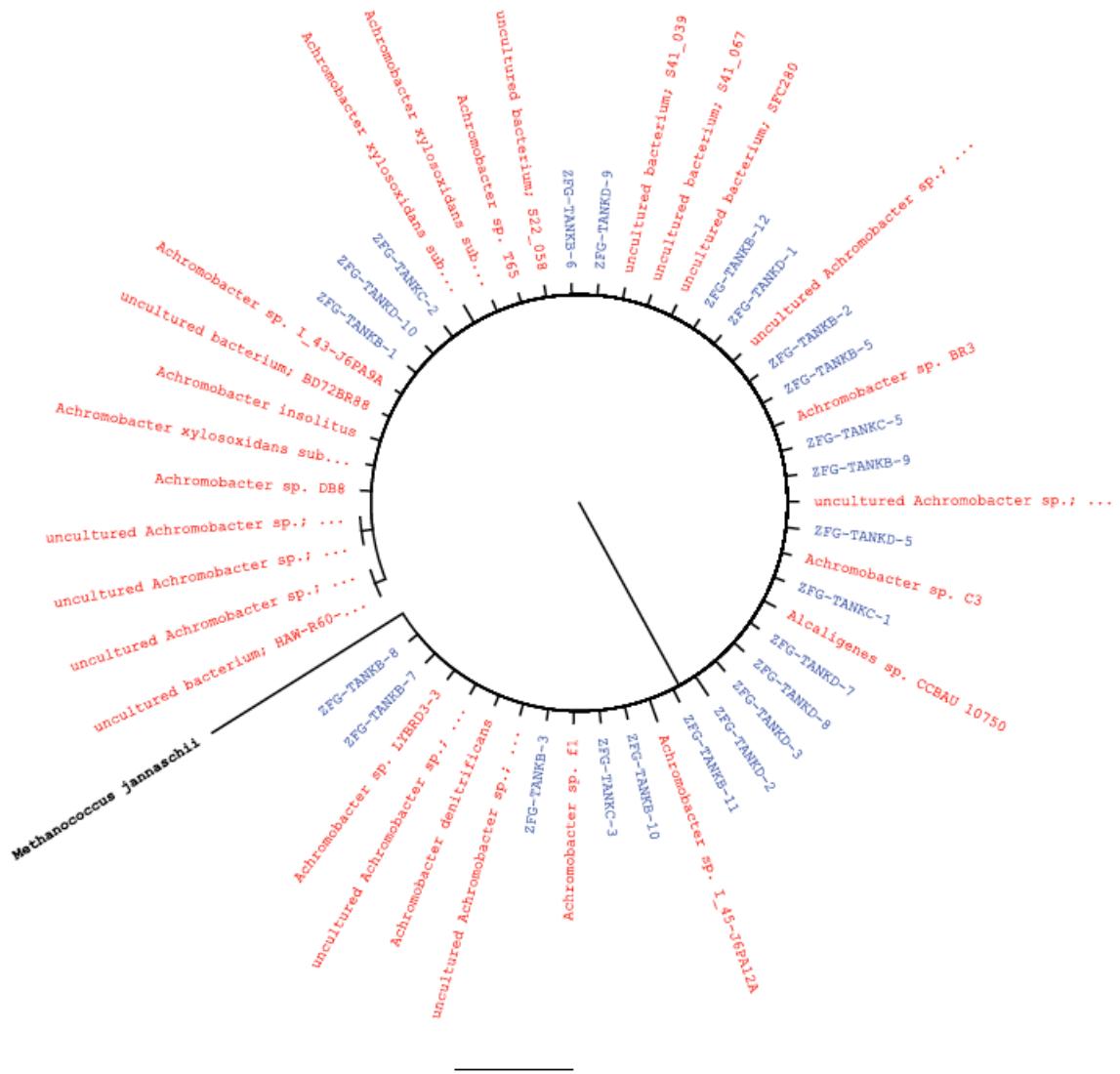
715


716

717

718

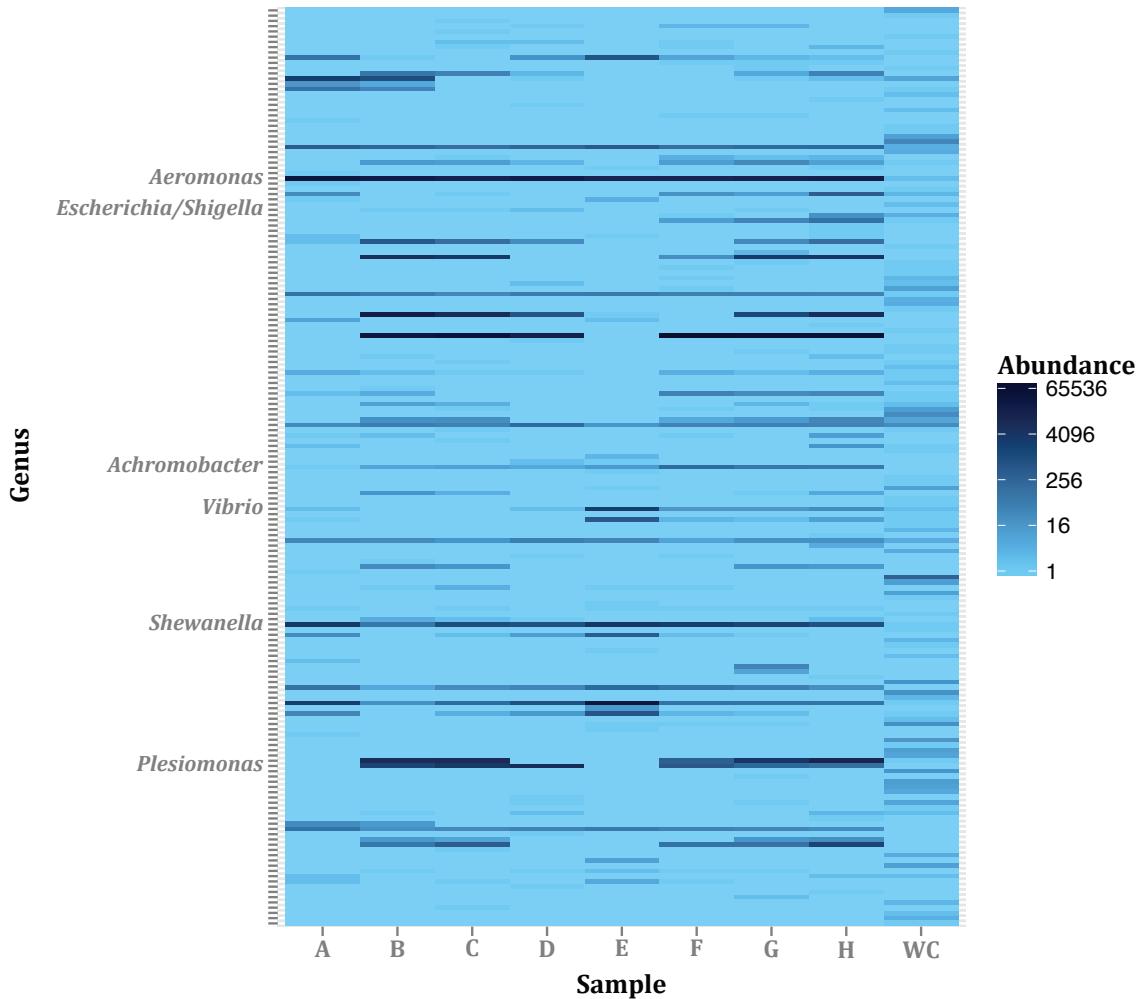
719 **Fig. 2. Agarose gel electrophoresis of plasmid DNA extracted from plasmid-free and**
720 **plasmid-containing strains.**


721

722

723 Fig. 3. The persistence of plasmid pB10::gfp in zebrafish gut isolates over 100
724 generations of growth in the absence of antibiotic selection varied greatly from high
725 persistence (*P. shigelloides*; triangles) to moderate (*A. veronii*; squares) and poor
726 persistence (*S. putrefaciens*; circles).

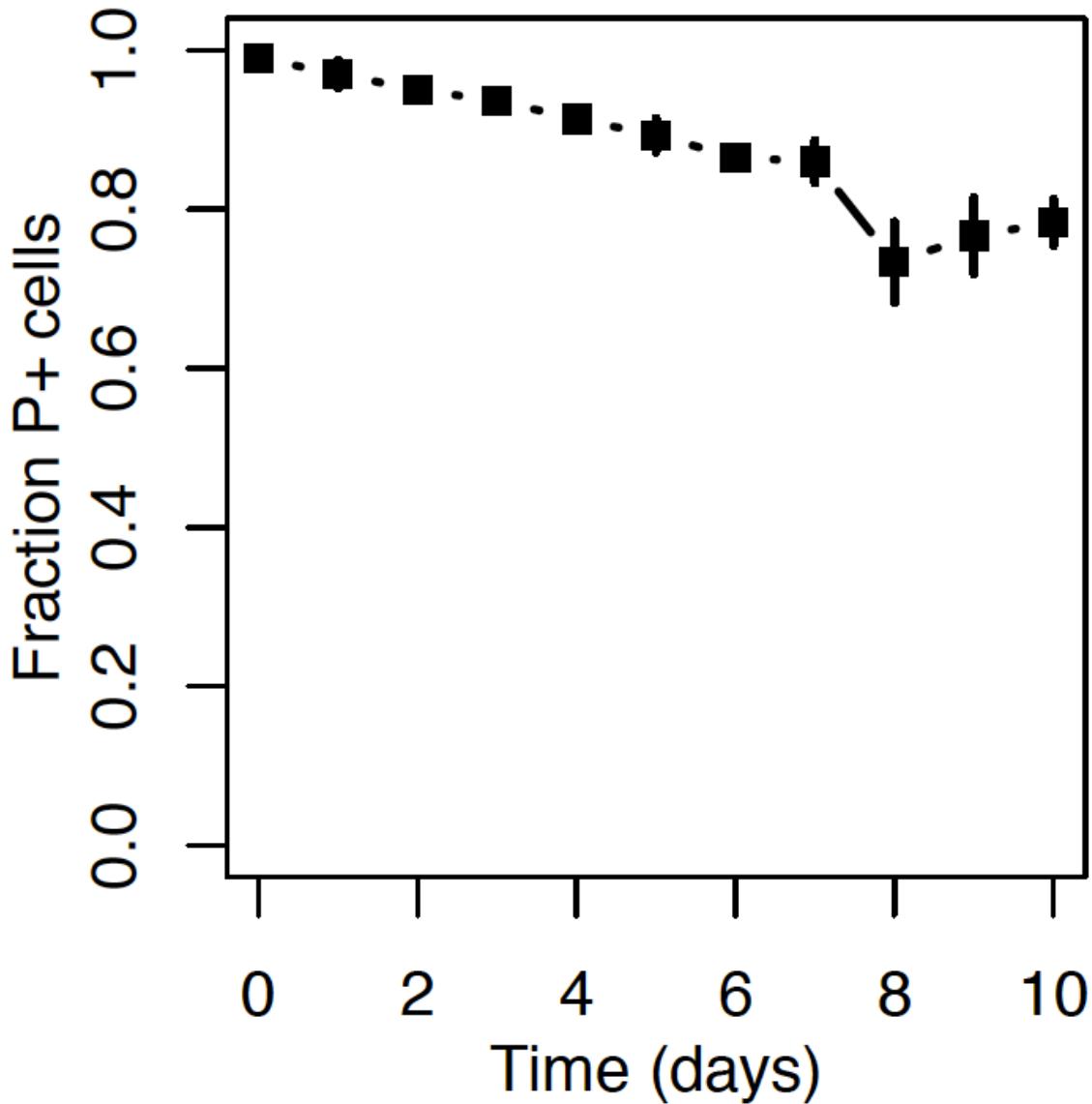
727



728

0.2

729 **Fig. 4. Phylogenetic diversity of 23 *Achromobacter* sp. transconjugants isolated from**
730 **the guts of zebrafish (ZFG, blue) (3 of 4 tanks) after 21 days of repeated inoculation**
731 **with the plasmid donor.** Strains most similar to these isolates are shown in red. The tree
732 was rooted using the Archaean *Methanococcus jannaschii*.


733

734

735 **Fig. 5. *Achromobacter* sp. was present at low abundance among the many genera in**
736 **the gut microbiota of the treated zebrafish populations (A to D: $7.9 (\pm 4.2) \times 10^{-3} \%$)**
737 **and untreated populations (E to H: $8.2 (\pm 5.6) \times 10^{-2} \%$), and not detectable in the**
738 **water control (WC).** Only the relevant cultured genera or operational taxonomic units
739 (OTUs) are indicated. Abundance is expressed in 16S rRNA gene sequence reads. A
740 complete list of all the OTUs can be found in Table S1.

741

742

743 **Fig. 6. Plasmid pB10::gfp is moderately persistent in *Achromobacter* sp.**

744

745

746

747

748

749

750 **8. Tables**

751

752 **Table 1. Plasmid transfer frequencies* in reciprocal matings demonstrate the**
753 **importance of both donor and recipient identity in the efficiency of plasmid transfer.**

Recipient	Donor of pB10::gfp		
	<i>E. coli</i> AT1036	<i>A. veronii</i>	<i>P. shigelloides</i>
<i>E. coli</i> EC100 Nal ^R	2.8 (± 1.4) $\times 10^{-2}$	8.8 (± 5.5) $\times 10^{-4}$	ND
<i>A. veronii</i> Rif ^R	3.4 (± 0.7) $\times 10^{-3}$	2.9 (± 0.2) $\times 10^{-1}$	ND
<i>P. shigelloides</i> Rif ^R	1.5 (± 0.0) $\times 10^{-4}$	2.2 (± 1.0) $\times 10^{-3}$	ND
<i>V. mimicus</i> Rif ^R	ND**	ND	ND
<i>S. putrefaciens</i>	ND	4.2 (± 3.2) $\times 10^{-5}$	ND

754 * Frequencies are expressed as transconjugants per donor after the matings (n = 3).

755 ** ND, transconjugants were below the detection limit of 10⁻⁸.

756

757 **Table 2. Bacterial strains used in this study**

Bacterial strain	Genotypes and relevant characteristics	Reference
<i>Escherichia coli</i> AT1036	<i>dapD4</i> , $\Delta(gpt\text{-}proA)62$, <i>lacY1</i> , <i>glnX44</i> (AS), λ , <i>rfbC1</i> , <i>mgl51</i> , <i>lysA27::Mu</i> , <i>rpsL20</i> (strR), <i>xylA5</i> , <i>mtl-1</i> , <i>thiE1</i>	Coli Genetic Stock Center
<i>E. coli</i> EC100 Nal ^R	Nal ^R mutant of <i>E. coli</i> EC100 [<i>F</i> ⁻ <i>mcrA</i> $\Delta(mrr\text{-}hsdRMS\text{-}mcrBC)$ $\Phi 80dlacZ\Delta M15$ $\Delta lacX74$ <i>recA1</i> <i>endA1</i> <i>araD139</i> $\Delta(ara, leu)7697$ <i>galU</i> <i>galK</i> λ^- <i>rpsL</i> (<i>Str^R</i>) <i>nupG</i>]	Epicenter
<i>Achromobacter</i> sp. (pB10::gfp)	Zebrafish gut isolate containing plasmid pB10::gfp	This study
<i>Achromobacter</i> sp.	Plasmid-free derivative of <i>Achromobacter</i> sp.	This study
<i>Aeromonas veronii</i>	Zebrafish gut isolate	This study
<i>A. veronii</i> (pB10::gfp)	Zebrafish gut isolate containing plasmid pB10::gfp	This study
<i>A. veronii</i> Rif ^R	RifR mutant of <i>A. veronii</i>	This study
<i>A. veronii</i> Rif ^R (pB10::gfp)	RifR mutant of <i>A. veronii</i> containing pB10::gfp	This study
<i>Plesiomonas shigelloides</i>	Zebrafish gut isolate	This study
<i>P. shigelloides</i> Rif ^R	Rif ^R mutant of <i>P. shigelloides</i>	This study
<i>P. shigelloides</i> Rif ^R (pB10::gfp)	Rif ^R mutant of <i>P. shigelloides</i> containing pB10::gfp	This study
<i>Shewanella putrefaciens</i>	Zebrafish gut isolate	This study
<i>S. putrefaciens</i> (pB10::gfp)	<i>S. putrefaciens</i> containing pB10::gfp	This study
<i>Vibrio mimicus</i>	Zebrafish gut isolate	This study
<i>V. mimicus</i> Rif ^R	Rif ^R mutant of <i>V. mimicus</i>	This study