

1 **Running Title:**

2 *SISWEET15* unloads sucrose for fruit development

3 **Corresponding authors:**

4 Woei-Jiun Guo

5 **Address:**

6 Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University,
7 No.1, University Road, Tainan City, Taiwan 7013

8 **Tel:**

9 +886-6-2757575 ext 58212

10 **Fax:**

11 +886-6-2766490

12 **Email:**

13 wjguo@mail.ncku.edu.tw

14 **Research area:**

15 Membranes, Transport and Bioenergetics

16 **Title**

17

18 ***SISWEET15 exports sucrose from phloem and seed coat in tomato to supply carbon***
19 ***for fruit and seed development***

20

21 Han-Yu Ko¹, Li-Hsuan Ho¹, H. Ekkehard Neuhaus², Woei-Jiun Guo^{1,3}

22

23 **Footnotes:**

24 1. Department of Biotechnology and Bioindustry Sciences, National Cheng Kung
25 University, NO.1, University Road, Tainan City, Taiwan 7013

26 2. Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str. 22 D-67663,
27 Kaiserslautern, Germany

28 3. Corresponding author: wjguo@mail.ncku.edu.tw

29 **One-sentence Summary:** *SISWEET15*, a specific sucrose uniporter in tomato, mediates
30 apoplasmic sucrose unloading from releasing phloem cells and seed coat for carbon
31 supply during fruit expansion and seed filling.

32 **Author contributions:** H.Y.K. and W.J.G. conceived the project and designed the
33 experiments; H.Y.K. performed most of the experiments and analyzed the data; L.H.H.
34 preformed initial expression profiling in fruits. L.H.H. and H.E.N. assisted with yeast
35 uptake experiments; H.Y.K. and W.J.G. wrote the manuscript; H.E.N. edited the
36 manuscript.

37 **Key words:** SWEET, sugar unloading, *Solanum lycopersicum*, fruit development,
38 sucrose transport, uniporter

39

40

41 **ABSTRACT**

42 Tomato, an important fruit crop worldwide, requires efficient sugar allocation for fruit
43 development. However, molecular mechanisms for sugar import to fruits remain poorly
44 understood. Expression of SWEET (Sugars Will Eventually be Exported Transporters)
45 proteins is closely linked with hexose ratio in tomato fruits and may be involved in sugar
46 allocation. Here, using quantitative PCR, we discovered that *S/*SWEET15 was highly
47 expressed in developing fruits compared to vegetative organs. Based on *in situ*
48 hybridization and GUS fusion analyses, *S/*SWEET15 proteins accumulated in vascular
49 tissues and seed coats, major sites of sucrose unloading in fruits. Localizing *S/*SWEET15-
50 GFP to the plasma membrane supported its putative role in apoplastic sucrose unloading.
51 The sucrose transport activity of *S/*SWEET15 was confirmed by complementary growth
52 assays in a yeast mutant. Elimination of the *S/*SWEET15 function by CRISPR/cas9 gene
53 editing significantly decreased average sizes and weights of fruits, with severe defects in
54 seed filling and embryo development. Together, we confirmed the role of *S/*SWEET15 in
55 mediating sucrose efflux from the releasing phloem to the fruit apoplasm and subsequent
56 import into parenchyma cells during fruit development. Furthermore, *S/*SWEET15-
57 mediated sucrose efflux was also required for sucrose unloading from the seed coat to the
58 developing embryo.

59

60 Tomato (*Solanum lycopersicum*) is a key fruit crop worldwide with >\$80B annual
61 production value (FOASTAT, 2016). Development of tomato varieties with high yield and
62 excellent quality have been primary targets for genetic improvement (Ruan et al., 2012;
63 Wang et al., 2019). Photosynthetic assimilation supply is considered a major limiting factor
64 for fruit development (Paul et al., 2018; Quinet et al., 2019). Up to 80% of fruit carbon is
65 imported from source leaves (Hetherington et al., 1998), with sucrose the major form of
66 carbon translocated to tomato fruits (Walker and Ho, 1977; Abbes et al., 2009; Osorio et
67 al., 2014; Milne et al., 2018). Consequently, increased sucrose allocation to fruits is a
68 potential strategy to increase yield and quality (Ruan et al., 2012; Osorio et al., 2014).

69 Tomato fruit development is typically divided into four stages: cell division,
70 expansion, ripening and maturation (Pesaresi et al., 2014; Quinet et al., 2019). During early
71 stage-cell division, from 0 to 14 days after anthesis (DAA), based on symplastic tracer and
72 radiotracer studies, sucrose is mainly unloaded from sieve element-companion cell (SE-
73 CC) lumens to surrounding vascular and storage parenchyma cells (PCs) via connecting
74 plasmodesmata, with a small portion transported via an apoplastic pathway (Ruan and
75 Patrick, 1995; Patrick and Offler, 1996). However, during rapid expansion (14 to 40 DAA;
76 Quinet et al., 2019), the young fruit switches to complete apoplastic sucrose unloading
77 from the SE-CCs to PCs (Ruan and Patrick, 1995). Apoplastic sugar transport is indicated
78 by a reduced abundance of plasmodesmata connections between SE-CCs and PCs and loss
79 of mobility of symplastic dyes in the area of release phloem of tomato pericarp cells
80 (Johnson et al., 1988; Ruan and Patrick, 1995). Apoplastic unloading of sugars continues
81 for the remaining stages of tomato fruit ripening (Johnson et al., 1988). A feature of the
82 expansion stage is high sugar accumulation, which requires extensive sucrose unloading
83 (Walker and Ho, 1977; Damon et al., 1988; Quinet et al., 2019). This would require a
84 plasma membrane-localized sugar transport mechanism to enable sucrose export from the
85 release phloem to the fruit apoplasm (Lalonde et al., 2003; Osorio et al., 2014; Milne et al.,
86 2018). Involvement of sugar carriers for apoplastic unloading has been reported in several
87 fruit crops (Braun et al., 2014; Milne et al., 2018), including cucumber (Hu et al., 2011),
88 apple (Zhang et al., 2004) and grape (Wang et al., 2003).

89 However, the molecular carrier responsible for initial sucrose unloading from SE-CCs
90 to fruit apoplasm has been elusive. Localization in the plasma membrane of SEs in tomato
91 fruits implies that the sucrose transporter *LeSUT2* may participate in sugar unloading in
92 fruits (Barker et al., 2000; Hackel et al., 2006). Knockdown of *LeSUT2* expression caused
93 a 20 to 40% reduction of both fruit sugar concentration and fruit size (Hackel et al., 2006),
94 whereas overexpression of the pear sugar transporter *PbSUT2* in tomato enhanced sucrose
95 concentrations and numbers of fruit produced (Wang et al., 2016). Nevertheless, based on
96 the active transport properties of this symporter (Schulze et al., 2000; Carpaneto et al., 2010;
97 Kuhn and Grof, 2010), *LeSUT2* likely functions as a retrieval system to prevent sugar loss
98 from SE-CCs, instead of exporting sucrose to the fruit apoplast (Hackel et al., 2006; Milne
99 et al., 2018). Passive SWEET (sugar will eventually be exported transporter) uniporters are
100 likely candidate carriers responsible for initial apoplasmic phloem unloading in sink fruits
101 (Osorio et al., 2014; Milne et al., 2018). Latter hypothesis is consistent with the passive
102 transport nature of sucrose unloading in tomato fruit (Damon et al., 1988; Johnson et al.,
103 1988).

104 The SWEET gene family has been identified in a wide variety of plants, including
105 tomato (Chen et al., 2015; Feng et al., 2015). Based on their amino acid sequences, SWEET
106 proteins are divided into four distinct clades (Chen, 2013; Chen et al., 2015). Clades I and
107 II mainly transport glucose, clade III could transport sucrose and clade IV can transport
108 fructose. SWEET was first identified as the central player that mediates sucrose efflux from
109 mesophyll cells to the apoplast prior to phloem loading (Chen et al., 2012; Bezrutczyk et
110 al., 2018; Gao et al., 2018). Furthermore, the passive uniporter feature of SWEET members
111 provides an energy-efficient mechanism for unloading sugar in sink organs. In *Arabidopsis*,
112 *AtSWEET11*, 12 and 15 are localized on plasma membranes of maternal integument and
113 filial endosperm cells to mediate a cascade of sugar unloading that supports embryo
114 development (Chen et al., 2015). Furthermore, *OsSWEET11* and 15 in rice (Yang et al.,
115 2018), *ZmSWEET4c* in maize (Sosso et al., 2015), and *GmSWEET15* in soybean (Wang
116 et al., 2019) also participated in apoplasmic sucrose unloading in developing seeds to
117 support endosperm and embryo development. In tomato, based on transient silencing and
118 genetic analyses, *SlSWEET1a* also participated in sucrose unloading to sink leaves, as well

119 as regulating the fructose/glucose ratio in ripening fruits (Shamai et al., 2018; Ho et al.,
120 2019). Similarly, expression of pear *PuSWEET15* was closely linked with sucrose contents
121 in pear fruit (Li et al., 2020). These findings led us to hypothesize that a *SISWEET* member
122 expressed in developing tomato fruits is involved in sucrose unloading for fruit
123 development.

124 In this study, we determined that *SISWEET15*, belonging to clade III, was highly
125 expressed during the expansion stage of fruit development. Both *SISWEET15* RNA and
126 protein were localized in vascular tissues of most fruit tissues. Moreover, *SISWEET15*
127 protein was also present in seed coat and ripening fruits, implicating *SISWEET15* in sugar
128 transport throughout fruit development. Expression in yeast demonstrated that
129 *SISWEET15* probably functions as a sucrose-specific transporter on the plasma membrane.
130 Knocking-out the *SISWEET15* function, by CRISPR-Cas9-mediated gene editing, retarded
131 fruit development and impaired seed filling. In summary, our findings indicate that the
132 *SISWEET15* facilitator had an essential role in sucrose unloading from releasing phloem
133 to support fruit and seed development in tomato.

134 **RESULTS**

135 ***SISWEET15* was highly expressed in phloem cells of developing fruits**

136 To identify which *SISWEET* gene is critical for sugar unloading during fruit expansion,
137 cDNA samples for expression profiling were prepared from immature green tomato fruits
138 14 days after anthesis (DAA). Based on preliminary quantitative reverse transcription
139 (qRT)-PCR analysis, *SISWEET15*, which belongs to clade III *SWEET* members, was
140 strongly expressed during fruit expansion when compared to all other *SISWEET* genes
141 (Supplemental Fig. S1). In expression profiles of clade III *SISWEETs* during fruit
142 development (14 to 42 DAA), *SISWEET15* had the highest expression in developing green
143 fruits (14-21 DAA), but relatively low expression in mature ripening fruits (35-42 DAA,
144 Fig. 1A). Expression of *SISWEET15* was low in vegetative organs (e.g. roots and leaves;
145 Fig. 1B) and only slightly in flower organs (Fig. 1B). Based on these results, we inferred
146 that *SISWEET15a* had a specific role during fruit development.

147 To address where *SISWEET15* was expressed, tissue-specific localization of
148 *SISWEET15* transcripts was examined in mature green fruits (21 DAF) by *in situ*
149 hybridization with gene-specific probes. Compared to the background condition (sense
150 probe), anti-sense signals were detected in all fruit cells (Fig. 2A). In particular, there were
151 substantial signals in phloem cells and neighboring PCs in pericarp, columella, placenta,
152 as well as seed coat (arrow heads in Fig. 2A; Supplemental Fig. S2A).

153 ***SISWEET15* proteins accumulated in sugar unloading cells**

154 For several SWEET members, there are varying ratios of gene expression and protein
155 abundance exist (Abbes et al., 2009; Guo et al., 2014; Chen et al., 2015). To examine
156 protein expression, we generated transgenic tomato plants expressing *SISWEET15*-GUS
157 fusion proteins that were derived from the full *SISWEET15* genomic DNA sequence under
158 control of its native promoter. In T1 transgenic plants, *SISWEET15*-GUS fusion proteins
159 were in very low abundance in roots, leaves or developing flower buds (Fig. 2B-D). In
160 mature flowers, however, histochemical staining readily detected GUS fusion protein in
161 pollen (Fig. 2D-F). In young developing fruits (14 to 21 DAA), *SISWEET15*-GUS protein
162 was highly abundant in seed coats, with moderate amounts in vascular tissues of pericarp
163 or placenta (asterisks in Fig. 2G, H; Supplemental Fig. S2B). During fruit maturation (35
164 to 42 DAA), in addition to seed coat and vascular tissues, GUS activity was also detected
165 in all pericarp cells (Fig. 2I-J). Substantial accumulation of the GUS fusion protein in
166 vascular tissues and seed coats strongly implicated the *SISWEET15* transporter in sugar
167 unloading in fruits and during seed development.

168 **Dual targeting *SISWEET15* to the plasma membrane and the vacuolar membrane**

169 To examine how *SISWEET15* may participate in sugar transport, subcellular
170 localization of C-terminal translational GFP-fusions of *SISWEET15* (*SISWEET15*-GFP)
171 was examined in Arabidopsis protoplasts. When co-transformed with the plasma
172 membrane marker *AtPIP2A*-RFP (Nelson et al., 2007), green fluorescence signals derived
173 from *SISWEET15*-GFP fusion overlapped with red fluorescence derived from *AtPIP2A*-
174 RFP fusions (arrowhead in the top row of Fig. 3). When cells were lysed, red signals from
175 the plasma membrane marker, *AtPIP2A*-RFP, were greatly reduced (Supplemental Fig. S3).

176 However, green fluorescence was still observed in a cell internal structure, likely to be the
177 vacuolar membrane. To examine this possibility, the vacuolar membrane marker At γ TIP-
178 RFP {Jauh, 1999 #555} was co-transformed with *S/SWEET15*-GFP. Consistently, green
179 fluorescence colocalized with red signals derived from the *At γ TIP*-RFP fusion on the
180 tonoplast, in either intact or lysed protoplasts (arrow-heads in the middle and bottom rows
181 of Fig. 3), and lined the inside of chloroplast (asterisk in the middle row of Fig. 3). Latter
182 results suggest that *S/SWEET15* proteins probably mediate sugar transport function on
183 both, the plasma membrane and tonoplast, in tomato fruit cells.

184 **Transport activity of *S/SWEET15***

185 When comparing amino acid sequence similarity, tomato *S/SWEET15* had high
186 identity (up to 50%) to the Arabidopsis homolog *AtSWEET15* (Supplemental Fig. S4), a
187 sucrose transporter (Chen et al., 2012). To examine transport activity, *S/SWEET15* was
188 expressed in the bakers-yeast (*Saccharomyces cerevisiae*) mutant YSL2-1, which lacks all
189 endogenous hexose transporters and the extracellular invertase. Accordingly, this mutant
190 yeast was unable to grow on medium containing hexoses or sucrose (Chen et al., 2015).
191 However, expression of the Arabidopsis sucrose transporter *AtSUC2* or yeast hexose
192 transporter (HXT) restored growth on sucrose and hexose-containing medium, respectively
193 (Fig. 4; Supplemental Fig. S5). *S/SWEET15* also complemented the growth deficiency of
194 YSL2-1 on medium containing 2 or 5% sucrose (Fig. 4). Conversely, no yeast growth was
195 present on glucose, fructose or galactose-containing medium (Supplemental Fig. S5),
196 implying that *S/SWEET15* functioned as a sucrose-specific membrane transporter.

197 **Establishment of *S/SWEET15* mutants using the CRISPR/Cas9 system**

198 To provide genetic evidence of *S/SWEET15* function during fruit development, the
199 CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats and CRISPR-
200 associated protein 9) gene-editing strategy was used to generate knockout mutants (Brooks
201 et al., 2014). The plasmid was designed to produce two guide RNAs (T1 and T2-gRNAs),
202 that would target +266 and +323 positions in exon 3 of *S/SWEET15*, with potential for a
203 substantial deletion (red triangles in Fig. 5A; Brooks et al., 2014). To screen for editing
204 mutations, we performed PCR on 15 individual T0 transgenic plants (Cas-15-1 to -19)

205 using primers flanking both gRNA targets (Fig. 5A, P1 and P2). Lines 5 and 12 were
206 identified as potentially having distinct deletions (Supplemental Fig. S6A). Detailed DNA
207 sequencing of all PCR products confirmed that Cas-15-5, 15-12, 15-14 were bi-allelic
208 knock-out mutants, whereas Cas-15-6, 15-7, 15-11 were heterozygous mutants (Fig. 5B).
209 Mutations included deletions and point mutations (Fig. 5B). The Cas9 gene was detected
210 in all mutant lines (the lower band in Supplemental Fig. S6A). Non-mutated transgenic
211 plants that contained the transgene construct (denoted -V, e.g. Cas-15-1-V) or lacked the
212 transgenes (denoted -WT, e.g. Cas-15-2-WT) were used as control plants for growth
213 comparisons.

214 **Loss of *SISWEET15* function inhibited fruit development**

215 There were no consistent growth differences in plant size between T0 mutated
216 transgenic tomato plants (Cas-15-5, 15-12, 15-14) and wild type plants (Supplemental Fig.
217 S6B). However, mature red fruits derived from three independent homozygous knock-out
218 lines were significantly smaller in size (polar and equatorial lengths, Fig. 6A) and fresh
219 weight (~40%, Fig. 6B). Interestingly, fruit size and weight were also reduced in
220 heterozygous mutant plants (Fig. 6B). In addition, most seeds derived from homozygous
221 knockout fruits had suppressed development (data not shown). The few seeds that did
222 develop were smaller and flaky compared to those from non-mutated plants (WT/WT-V)
223 (Fig. 6C). Consequently, seed weights of mutant plants were greatly decreased by 90%
224 (Fig. 6D). The embryo and cotyledons had not developed in the mutant seeds (Cas-15-12)
225 compared to non-mutated seeds (WT-V), where a well-developed embryo was enclosed by
226 a thin layer of endosperm and seed coat (Fig. 6E). These T1 flaky seeds were unable to
227 germinate even when supplied with sugars (data not shown). Unfortunately, no further
228 phenotypes can be examined in T1 transgenic plants. Heterozygous mutant plants also had
229 the same seed defects as those in homozygous plants (Fig. 6C), suggesting that
230 *SISWEET15* likely must form homotrimeric complex to be functional, as reported for a
231 rice *Ossweet* (Tao et al., 2015; Gao et al., 2018).

232 **DISCUSSION**

233 ***SISWEET15* was involved in vascular sugar transport during fruit development**

234 In tomato fruits, sugars are critical for fruit yield and quality (Pesaresi et al., 2014;
235 Quinet et al., 2019). In particular, once reaching the rapid fruit growth stage, high sugar
236 concentrations will quickly accumulate in pericarp or placenta cells, generating turgor
237 pressure required for fruit expansion (Obiadalla-Ali et al., 2004; Quinet et al., 2019).
238 During tomato fruit development, the cellular pathway of sucrose efflux from the releasing
239 phloem SE-CCs switches from a symplasmic pathway to a complete apoplastic pathway
240 (Ruan and Patrick, 1995; Patrick, 1997). Accordingly, a plasma-membrane sucrose carrier
241 in phloem cells is required, yet still elusive. In the current study, we concluded that
242 *S/SWEET15* was the candidate sucrose carrier to mediate initial sucrose unloading for fruit
243 expansion and seed filling in tomato.

244 Within all *S/SWEET* members, *S/SWEET15* transcripts were the sole isoform highly
245 expressed in reproductive organs, in particular, in fruits that undergo expansion (Fig. 1;
246 Supplemental Fig. S1). *In situ* hybridization analysis documented that during fruit
247 expansion, the *S/SWEET15* transcripts accumulated in all releasing phloem units, namely
248 the SE-CC complexes and surrounding PCs of major fruit tissues, e.g. pericarp, columella,
249 and placenta (Fig 2A; Supplemental Fig. S2A). The pericarp is composed of layers of large,
250 highly vacuolated parenchymatic cells (Czerednik et al., 2012), where sugars largely
251 accumulate for cell expansion. The pericarp accounts for ~50% of the fruit fresh weight at
252 the expansion phase (Gillaspy et al., 1993; Obiadalla-Ali et al., 2004), making a substantial
253 sugar influx mandatory for controlled fruit development. The vascular bundles of fruit
254 columella represent the primary structure connecting the whole-plant vascular system and
255 is the first location in fruits where sugars are unloaded from long-distance allocation
256 (Gillaspy et al., 1993; Baxter et al., 2005). Sucrose and starch consistently accumulate in
257 columella cells during fruit expansion (Baxter et al., 2005; Lemaire-Chamley et al., 2019).
258 The placenta, interfacing maternal tissue, is clustered with vascular cells and
259 parenchymatic tissues, from which the ovule primordia develops and the seeds are attached
260 (Gillaspy et al., 1993; Brukhin et al., 2003). During fruit expansion, sucrose concentrations
261 are generally higher in placentae than in the pericarp (Obiadalla-Ali et al., 2004). Thus,
262 accumulation of *S/SWEET15* transcripts in phloem cells of sugar accumulating fruit tissues
263 was closely associated with increased sugar import activity during the fruit expansion stage,

264 which is almost twice as much as present during fruit maturation (Walker and Ho, 1977).
265 In sum, our observations on gene expression, protein abundance and sugar accumulation
266 implicated *SISWEET15* in apoplastic sugar transport in phloem cells during fruit
267 expansion.

268 ***SISWEET15* may mediate apoplastic sugar unloading from phloem cells**

269 The role of *SISWEET15* in phloem was supported by specific accumulation of
270 *SISWEET15* proteins in vascular bundles of tomato fruits, based on a whole-gene
271 *SISWEET15*-GUS translational fusion (Fig. 2B-J and Supplementary Fig. S2B).
272 Additionally, co-localization of *SISWEET15*-GFP fusion proteins with a plasma
273 membrane marker *AtPIP2*-RFP (Fig. 3) revealed that *SISWEET15* was located on the
274 plasma membrane, the major site catalyzing apoplastic sugar transport (Osorio et al.,
275 2014; Milne et al., 2018). Localization of *SISWEET15* on the plasma membrane was
276 consistent with subcellular localization of other SWEET15 homologs, e.g. *Arabidopsis*
277 *AtSWEET15* (Chen et al., 2015) and pear *PuSWEET15* (Li et al., 2020), as well as other
278 clade III SWEET members involved in sucrose loading in source leaves (Chen et al.,
279 2010; Chen et al., 2012).

280 Most importantly, the constant accumulation of *SISWEET15* proteins after 21 DAA
281 in fruits was fully consistent with the transition timeframe of sucrose unloading from a
282 symplasmic route in fruits at 13 to 14 DAA to a complete apoplastic route at 23 to 25
283 DAA (Johnson et al., 1988; Ruan and Patrick, 1995; Patrick, 1997). Such apoplastic sugar
284 unloading from the phloem also persists throughout fruit maturation (Johnson et al., 1988).
285 Based on accumulation of transcripts and proteins in phloem cells, as well as localization
286 on the plasma membrane, we propose that *SISWEET15* participates in apoplastic sugar
287 unloading required for development of tomato fruits. Furthermore, due to the additional
288 tonoplast-localization of *SISWEET15*, perhaps *SISWEET15* also participated in
289 intracellular sugar homeostasis in fruit cells, in particular during fruit maturation (Fig. 2I,
290 J).

291 ***SISWEET15* may be a passive sucrose facilitator for sucrose accumulation**

292 The sucrose-specific transport activity of *SISWEET15*, demonstrated by a yeast
293 complemental assay (Fig. 4), supported its proposed role in sucrose unloading.
294 Corresponding sucrose transport activity has been generally observed in almost all clade
295 III SWEET transporters characterized, e.g. *Arabidopsis AtSWEET10-15* (Chen et al.,
296 2012), cotton *GhSWEET10* (Cox et al., 2017), pear *PuSWEET15* (Li et al., 2020),
297 Cassava *MeSWEET10* (Cohn et al., 2014) and *OsSWEET11* and *15* (Yang et al., 2018),
298 *ZmSWEET13* (Bezrutczyk et al., 2018). Furthermore, based on genetic evidence,
299 sucrose contents in pear fruits were closed linked with expression levels of *PuSWEET15*
300 (Li et al., 2020). These results highlighted a conserved sucrose transport feature of clade
301 III SWEET transporters in both seed and fruit crops. Based on high identities (up to 48%)
302 to its close *Arabidopsis* ortholog (*AtSWEET12*, Km ~70 mM, Supplementary Fig. S4B;
303 Chen et al., 2012), *SISWEET15* transporter probably also operated as a passive facilitator
304 with low affinity, consistent with most characterized SWEET facilitators expressed in sink
305 organs (Guo et al., 2014; Lin et al., 2014; Sosso et al., 2015; Ho et al., 2019). This passive
306 transport fits well with the energy-independent transport nature of sucrose unloading in
307 fruit pericarps that is not inhibited by metabolic inhibitors (e.g. PCMBS and CCCP;
308 Damon et al., 1988; Brown et al., 1997; Obiadalla-Ali et al., 2004) and has low proton
309 ATPase activities (Johnson et al., 1988). Moreover, high sucrose concentrations in SE
310 cells, predicted to up to 500 mM and the steep concentration gradients (~10 fold) of
311 sucrose across the plasma membrane (Damon et al., 1988; Ruan and Patrick, 1995; Patrick,
312 1997), would favor a low affinity facilitator, like *SISWEET15*. Together with its
313 localization at the plasma membrane of phloem cells, the passive sucrose-specific transport
314 feature prompted us to conclude that *SISWEET15* facilitated an energy-efficient sucrose-
315 specific efflux from the plasma membrane of SE-CCs to fruit apoplasm to support fruit
316 expansion.

317 Once sucrose is exported to the fruit apoplasm, it has been estimated that 70% of
318 apoplasmic sucrose is hydrolyzed by cell wall inverses as hexoses, which should be quickly
319 taken up into surrounding parenchyma cells by a hexose transporter in order to maintain a
320 substantial sucrose concentration gradient for continuous unloading (Ruan and Patrick,
321 1995; Brown et al., 1997). Nevertheless, based on uptake of radioactive sucrose in

322 pericarp cells, a small but significant portion of sucrose can be directly imported intact
323 into fruit cytosols (Damon et al., 1988; Johnson et al., 1988; N'tchobo et al., 1999). The
324 non-saturated and PCMBS-insensitive uptake feature of sucrose into fruit pericarp cells
325 is consistent with an energy-independent carrier-mediated sucrose uptake, such as
326 *S/SWEET15* (Damon et al., 1988; Johnson et al., 1988; Brown et al., 1997). Thus, it is
327 likely that plasma-membrane and tonoplast localized *S/SWEET15* also facilitated
328 sucrose import from the apoplasm to the cytosol and vacuole of storage parenchyma for
329 continuous intra- or inter-cellular sugar allocation. Conversely, once sucrose is uploaded
330 into fruit cells, most sugars stored in fruit vacuoles are glucose or fructose (Gillaspy et al.,
331 1993; Milne et al., 2018; Vu DP et al., 2020). Notwithstanding, these stored hexoses could
332 be exported to the cytosol and converted to sucrose, catalyzed by sucrose phosphate
333 synthase (SPS) or Susy (N'tchobo et al., 1999). Changes in cellular sugar formats are
334 ongoing, even during fruit maturation (N'tchobo et al., 1999). In this case, an energy-
335 dependent sucrose uniporter, like *S/SWEET15*, could provide an energy-dependent
336 strategy to regulate sucrose homeostasis in fruit cells.

337 ***S/SWEET15* may function in sucrose unloading from the seed coat**

338 Pronounced accumulation of *S/SWEET15* transcripts and proteins in seed coats and
339 funiculus vascular cells implied that *S/SWEET15* was also involved in sucrose exchange
340 in tomato seeds, which have strong nutrient requirements and are enriched with transporter
341 proteins (Pattison et al., 2015). Requirement of a *S/SWEET15* transporter was consistent
342 with a mandatory apoplastic transport step between maternal (seed coat)-filial (endosperm
343 or embryo) interface in tomato fruits (Ruan et al., 2012). Based on phloem-mobile
344 fluorescent tracers or proteins, sucrose is apparently mostly unloaded from funiculus SEs
345 symplasmically to seed coats (Patrick and Offler, 2001; Zhang et al., 2007), which develop
346 from the ovule integument (Quinet et al., 2019). These integument cells enclose the embryo
347 and are the major site for nutrient release in most developing dicot seeds, as reported in
348 *Arabidopsis* (Stadler et al., 2005) and legume seeds (Wang et al., 1995). Yet, there is a
349 symplasmic disconnection between outer and inner integuments in *Arabidopsis* (Werner et
350 al., 2011), or between seed coat parenchyma cells and filial storage sites in legume seeds
351 (Wang et al., 1995). A similar apoplastic barrier was reported in monocot wheat and rice

352 grains (Opalka and Gates, 1981; Wang and Fisher, 1995). In this scenario, a plasma
353 membrane carrier, such as *SISWEET15*, would be required to mediate sucrose efflux to
354 seed apoplasm. The proton-independent transport feature of the SWEET family is
355 consistent with facilitated diffusion of sucrose efflux from seed coats (Zhang et al., 2007;
356 Milne et al., 2018), as demonstrated in pea (De Jong et al., 1996; Zhou et al., 2007) and
357 wheat (Wang and Fisher, 1995). The low affinity transport feature of SWEET proteins can
358 also be physiologically favored, due to a substantial transmembrane sucrose concentration
359 gradient (up to 50 mM) in maternal releasing cells in wheat grains and legume seeds (Fisher
360 and Wang, 1995; Zhang et al., 2007). Based on these results, we inferred that *SISWEET15*
361 probably facilitated sucrose unloading from funiculus phloem cells and sucrose efflux from
362 the seed coat cells for seed filling.

363 ***SISWEET15*–mediated sucrose export was required for fruit and seed development**

364 Genetic evidence from CRISPR/Cas9 knock-out (KO) tomato mutants confirmed a
365 physiological role of *SISWEET15* in fruit development and seed filling (Fig. 5). A lack of
366 *SISWEET15* transport significantly reduced fruit growth and yield in Micro-Tom tomato
367 (Fig. 6A, B), probably due an inadequate sucrose supply from the releasing phloem.
368 Similarly, seeds were mostly aborted or flaky and lacked embryo development (Fig. 6C,
369 D, E). These phenotypes were consistent with the role of SWEET15 analogs in non-fruit
370 plants. In *Arabidopsis* seeds, *AtSWEET15*, together with two clade III SWEET,
371 *AtSWEET12* and 11, supported a cascade of sucrose transport from the outer and inner
372 integuments to facilitate sucrose exchange from endosperm to embryo (Chen et al., 2015).
373 In rice seeds, *OsSWEET15* collaborated with *OsSWEET11* to mediate sucrose
374 unloading/export from vascular parenchyma into the apoplasmic space, enabling allocation
375 and also export from the nucellar epidermis/aleurone interface to support seed filling (Yang
376 et al., 2018). Defects in SWEET-mediated sucrose transport caused wrinkled and
377 undeveloped seeds (Chen et al., 2015; Yang et al., 2018). Collectively, these studies
378 supported a conserved function of clade III SWEET in sucrose unloading for seed
379 development. In fleshy fruit crops, the same SWEET15 transport system to participate in
380 sucrose unloading in both seed and fruit cells may reflect a close association between seed

381 and fruit development, where signals derived from developing seeds control the rate of cell
382 division in surrounding fruit tissues (Gustafson, 1939; Gillaspy et al., 1993)

383 **MATERIALS AND METHODS**

384 **Plant and growth conditions**

385 Tomato (*Solanum lycopersicum*) Micro-tom was used in this study. Tomato seeds
386 were sterilized using a bleach solution (30% CLOROX and 0.1% Triton X-100) for 8 min
387 and then washed twice with sterilized water. Tomato seeds were germinated in water for 2
388 to 3 d and transferred to soil mixture directly or to 1/2 MS liquid media (0.215%
389 MURASHIGE & SKOOG MEDIUM, 0.1% MES, and 1.5% Agar) for hydroponics
390 cultivation. All plants were grown in a controlled chamber (25°C, 16/8 h light/dark, with
391 ~100 $\mu\text{mol m}^{-2} \text{s}^{-1}$ illumination). To analyze gene expression, various organs, including
392 roots, stems, young leaves (<2 cm long) and mature leaves (>4 cm, terminal leaflet) were
393 collected from 4-week-old tomato plants grown hydroponically. Flower buds (developing
394 green buds), flowers (1DAA, 1 d after anthesis), fruits of 14 (immature green), 21 (mature
395 green), 35 (breaker) and 42 (red) DAA were collected from 5-6 week old plants. All organs
396 were stored at -80°C before analysis.

397 **RNA extraction**

398 Fruit RNA transcripts were isolated according to the CTAB ((1-Hexadecyl)trimethyl-
399 ammonium bromide) extraction method (Zhang et al., 2013). The extraction buffer
400 contained 3% CTAB, 1.4 M NaCl, 20 mM EDTA, 100 mM Tris-HCl, 2% PVP40, and 2%
401 β -Mercaptoethanol (pH 8). In short, samples were ground into powder and mixed with pre-
402 heated CTAB extraction buffer and incubated at 65°C for 30 min. After centrifugation
403 (8000 x g for 15 min), the supernatant was transferred to a new tube and mixed with an
404 equal volume of chloroform:isoamylalcohol (24:1, v/v). The mixture was centrifuged
405 (12000 x g for 30 min) and the supernatant was transferred and mixed with 1/3 volume of
406 10 M LiCl. The reaction was incubated at -20°C overnight. Pellets were collected by
407 centrifugation, washed twice with 200 μL 4M LiCl, and suspended in 180 μL of 10 mM
408 Tris-HCl (pH 7.5) and 20 μL of 3M potassium acetate (pH 5.5). These mixtures were kept
409 on ice for 30 min and then centrifuged. The supernatant was transferred and mixed with

410 the 2.5 volume of pre-cold isopropyl alcohol and stored at -70°C for 3 h. The RNA pellets
411 were collected by centrifugation and washed with 75% ethanol and then dissolved in 20
412 µL DEPC-water.

413 RNA samples from other organs (except for fruits) were isolated using TRIzol reagent
414 as instructed (Ambion® from Life Technologies). In short, samples were ground into
415 powders, mixed with 500 µL TRIzol reagent and centrifuged. The mixtures were then
416 transferred, mixed with 200 µL pre-cold chloroform:isoamyl alcohol (24:1, v/v) and
417 centrifuged. The supernatant was added to 0.5 volume of 99% alcohol and resulting whole
418 mixtures were transferred to an RNA spin column and processed as instructed (GeneMark,
419 <http://www.genemarkbio.com/>). The RNA samples were suspended in 25 µL nuclease-free
420 water and stored at -80°C until analyzed.

421 **Reverse transcription-PCR analysis**

422 Total RNA transcripts were reverse-transcribed and gene-specific primers for 30
423 *SISWEET* genes were used for real-time quantitative PCR (qRT-PCR), as described (Ho et
424 al., 2019). The reference gene *SIActin7* was used to determine relative expression.

425 ***In situ* hybridization**

426 To prepare the probe, partial *SISWEET15* coding sequences of 246 bp were amplified
427 with specific primers (RNAi-15-F and RNAi-15-R; Supplemental Table S1) and cloned
428 into the vector pGM-T (Genomics). Digoxigenin-labeled sense and antisense RNA probes
429 were synthesized following manufacturer's instructions (Roche Applied Science). Mature
430 green fruits (21 DAA) were sliced and fixed in pH 7.0 PFA solution (4%
431 paraformaldehyde, 35 mM sodium hydroxide, 0.1% tween 20 and 0.1% triton X-100 in
432 250 mL PBS) for 16 h at 4°C. Samples were then dehydrated through an ethanol series and
433 embedded into molten wax (Leica). Thick (10 µm) sections were cut on a MICROM 315R
434 microtome (Thermo Scientific). Hybridization and immunological detection of signals
435 with alkaline phosphatase were done as described (Lin et al., 2014).

436 **Expression of GUS fusions**

437 The *SISWEET15* (Solyc09g074530) promoter (2000 bp upstream to ATG) and
438 genomic opening reading frame, including all introns (1348 bp after ATG) were amplified
439 from genomic DNA with specific primers (SWT15-promoter-F and SWT15-promoter-R
440 for promoter and SWT15-g-F and SWT15-g-R for open reading frame; Supplemental
441 Table S1). The *SISWEET15* promoter fragments were purified and cloned into the binary
442 vector pUTKan by *SacI* and *SacII* sites (pUTKan-P*SWEET15*). The *SISWEET15* genomic
443 ORF was then cloned into pUTKan-P*SWEET15* via *SacII* and *BamHI* sites. Tomato plants
444 were transformed with the resulting pUTKan-P*SWEET15*::gSISWEET15 binary vector in the
445 Transgenic Plant Core Lab in Academia Sinica (<http://transplant.sinica.edu.tw/en-aboutus/intro/index3.htm>) and three positive T0 transgenic tomato plants were obtained.
446 Mature fruits of two T0 transgenic plants and various organs from heterozygous soil-grown
447 T1 plants were collected and histochemically stained for 16 h, as described (Ho et al., 2019).
448

449 **Confocal microscopy for GFP fusions**

450 To observe subcellular localization in yeast, the *SISWEET15* cDNA fragment without
451 the stop codon was amplified with a specific primer (5'UTR-SISWT15 and attb-dTGA-R
452 SWT15, Supplemental Table S1), then cloned into the pDONR221. The *SISWEET15*
453 cDNA was then transferred from the pDONR221 clone into p2GWF7 (Karimi et al., 2007).
454 Arabidopsis protoplasts were isolated and transfected with resultant vector p2GWF7-
455 SWT15, as described (Wu et al., 2009). To localize the position of inner membranes,
456 plasma membrane marker *AtPIP2A*:RFP fusions (Nelson et al., 2007), or the vacuolar
457 membrane protein *AtTIP*:RFP fusion (Jauh et al., 1999) were also expressed with
458 *SISWEET15*-GFP in protoplasts. After 20 to 34 h of transformation, fluorescence imaging
459 of protoplasts was done on a Carl Zeiss LSM780 confocal microscope (Instrument
460 Development Center, NCKU). The GFP fluorescence was visualized by excitation with at
461 488 nm and emission between 500 and 545 nm, whereas RFP fluorescence was visualized
462 by excitation with at 561 nm and emission between 566 and 585 nm.

463 **Yeast complementation Assays**

464 To express *SISWEET15* in yeast, cDNA sequence (861 bp) was amplified using
465 Phusion polymerase (New England Biolabs) with gene-specific primers (attb-SISWT15-
17

466 F and SISWT15-F). The cDNA was first cloned into the pDONR221-f1 vector using BP
467 cloning and subsequently transferred to the pDRf1-GW vector using LR Gateway
468 technology (Grefen et al. 2010). The yeast strain YSL2-1 was transformed with the
469 resulting constructs (pDRf1-GW-SISWT15) using the lithium acetate (LiAC) method
470 (Chen et al. 2015). Transformants were selected and spotted on synthetic deficient media
471 supplemented with or without various concentrations of sugars as described previously
472 (Ho et al. 2019). Sequences of primers are provided in Table S1.

473 **Creating a *SISWEET15* mutant line using CRISPR/Cas9**

474 To create fragment deletion of *SISWEET15*, two targeted sequences (T1 and T2), from
475 positions +266 and +323 downstream of the translation start site (ATG), were chosen
476 according to a website (<https://crispr.cos.uni-heidelberg.de/>; Fig. 5A). Targeted sequences
477 were synthesized and the whole guide RNA scaffold including T1 and T2 sequences were
478 amplified with specific primers (15-F0 and 15-R0) using the module vector pCBC-DT1T2
479 as a template. Resulting RNA scaffold products were used in an overlap PCR reaction with
480 specific primers (SISWT15-DT1-BsF and SISWT15-DT2-BsR; Brooks et al., 2014).
481 Thereafter, resulting PCR products containing the pCBC-DT1T2 *SISWEET15*-specific
482 cassette were digested with BsaI and inserted into the binary vector pKSE401
483 (Supplemental Figure S6A1 Brooks et al., 2014), which was then introduced into an
484 Agrobacterium strain and transformed into Micro-Tom tomato plant by the Transgenic
485 Plant Core Lab in Academia Sinica
486 (<http://transplant.sinica.edu.tw/en/aboutus/intro/index3.htm>). Nineteen positive T0
487 transgenic tomato plants were regenerated, transferred to soils and grown and fruits and
488 seeds were collected. All primer sequences are shown (Supplemental Table S1).

489 **Genomic DNA extraction and PCR analysis**

490 A mature leaf was collected from each T0 transgenic tomato plant and stored at -80°C
491 pending analysis. Leaf samples were placed in liquid nitrogen, ground into powder and
492 mixed with 500 µL CTAB extraction buffer (3% CTAB, 1.4 M sodium chloride, 2%

493 PVP40, 20 mM pH8 EDTA and 100 mM pH8 Tris-HCl). Mixtures were incubated at 55°C
494 for 15 min and centrifuged at 12000 x g for 5 min. The supernatant was transferred to new
495 tubes, 250 µL chloroform:isoamyl alcohol (24:1, v/v) was added and the solution was
496 vortexed and then centrifuged at 13000 x g for 1 min. The upper supernatant was removed
497 and placed in 37.5 µL of 10 M ammonium acetate and 500 µL of pre-cold 99% alcohol and
498 kept at -20 °C for 2 to 3 h, then centrifuged at 13000 x g for 1 min. Resulting pellets were
499 washed twice with 70% alcohol, incubated at 60 °C for 5 min and finally re-suspended in
500 20 µL of nuclease-free water. To confirm mutation types in transgenic tomato plants,
501 partial *SlSWEET15* fragments were amplified from genomic DNA with specific primers
502 (P1 and P2) and cloned into the vector pGM-T, as instructed (Genomics, Taiwan). For each
503 line, three to six derived clones were sequenced. To examine the transformation event, the
504 gene sequence of Cas9 gene was also amplified with specific primers (Cas9-F and Cas9-
505 R). All primer sequences are listed (Supplemental Table S1).

506 **ACKNOWLEDGEMENTS**

507 This work was financially supported by grants from the Ministry of Science and
508 Technology, Taiwan (MOST 105-2628-B-006-001-MY3; MOST 108-2314-B-006-077-
509 MY3) to W.J.G. Work in the lab of H.E.N was supported by the Deutsche Akademische
510 Austauschdienst (DAAD, project PPP Germany 106-2911-I-006-506). We thank Dr.
511 Peter Goldsbrough in Purdue University (IN, USA) for constructive comments on the
512 manuscript.

513

514 **SUPPLEMENTAL MATERIALS**

515 **Supplemental Table S1. The list of primers used in this study.**

516 **Supplemental Figure S1. Expression of *SlSWEETs* in developing tomato fruits.**

517 **Supplemental Figure S2. Expression pattern of *SlSWEET15* in developing tomato fruits.**

519 **Supplemental Figure S3. Subcellular localization of *SlSWEET15* in Arabidopsis protoplasts after lysis.**

521 **Supplemental Figure S4. Phylogenetic comparison of type III SWEET genes.**

522 **Supplemental Figure S5. Transport activities of *SlSWEET15* to hexoses in yeast.**

523 **Supplemental Figure S6. Identification of Cas9-mediated mutant plants.**

524 **LITERATURE CITED**

525 **Abbes Z, Kharrat M, Delavault P, Chaïbi W, Simier P** (2009) Nitrogen and carbon
526 relationships between the parasitic weed *Orobanche foetida* and susceptible and tolerant
527 faba bean lines. *Plant Physiol Biochem* **47**: 153-159

528 **Barker L, Kühn C, Weise A, Schulz A, Gebhardt C, Hirner B, Hellmann H, Schulze
529 W, Ward JM, Frommer WB** (2000) SUT2, a putative sucrose sensor in sieve elements.
530 *Plant Cell* **12**: 1153-1164

531 **Baxter CJ, Carrari F, Bauke A, Overy S, Hill SA, Quick PW, Fernie AR, Sweetlove
532 LJ** (2005) Fruit carbohydrate metabolism in an introgression line of tomato with increased
533 fruit soluble solids. *Plant Cell Physiol* **46**: 425-437

534 **Bezrutczyk M, Hartwig T, Horschman M, Char SN, Yang J, Yang B, Frommer WB,
535 Sosso D** (2018) Impaired phloem loading in *zmsweet13a,b,c* sucrose transporter triple
536 knock-out mutants in *Zea mays*. *New Phytol* **218**: 594-603

537 **Braun DM, Wang L, Ruan Y-L** (2014) Understanding and manipulating sucrose phloem
538 loading, unloading, metabolism, and signalling to enhance crop yield and food security. *J
539 Exp Bot* **65**: 1713-1735

540 **Brooks C, Nekrasov V, Lippman ZB, Van Eck J** (2014) Efficient gene editing in tomato
541 in the first generation using the clustered regularly interspaced short palindromic
542 repeats/CRISPR-associated9 System. *Plant Physiol* **166**: 1292-1297

543 **Brown MM, Hall JL, Ho LC** (1997) Sugar uptake by protoplasts isolated from tomato
544 fruit tissues during various stages of fruit growth. *Physiol Plant* **101**: 533-539

545 **Brukhin V, Hernould M, Gonzalez N, Chevalier C, Mouras A** (2003) Flower
546 development schedule in tomato *Lycopersicon esculentum* cv. sweet cherry. Sex Plant
547 Reprod **15**: 311-320

548 **Carpaneto A, Koepsell H, Bamberg E, Hedrich R, Geiger D** (2010) Sucrose- and H-
549 dependent charge movements associated with the gating of sucrose transporter ZmSUT1.
550 PLoS One **5**: e12605

551 **Chen H-Y, Huh J-H, Yu Y-C, Ho L-H, Chen L-Q, Tholl D, Frommer WB, Guo W-J**
552 (2015) The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration
553 from roots and restricts *Pythium* infection. Plant J **83**: 1046-1058

554 **Chen L-Q** (2013) SWEET sugar transporters for phloem transport and pathogen nutrition.
555 New Phytol: DOI: 10.1111/nph.12445

556 **Chen L-Q, Cheung LS, Feng L, Tanner W, Frommer WB** (2015) Transport of sugars.
557 Annu Rev Biochem **84**: 865-894

558 **Chen L-Q, Lin IW, Qu X-Q, Sosso D, McFarlane HE, London~o A, Samuels AL,**
559 **Frommer WB** (2015) A cascade of sequentially expressed sucrose transporters in the seed
560 coat and endosperm provides nutrition for the arabidopsis embryo. Plant Cell Online **27**:
561 607-6019

562 **Chen L-Q, Qu X-Q, Hou B-H, Sosso D, Osorio S, Fernie AR, Frommer WB** (2012)
563 Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science
564 **335**: 207-211

565 **Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, Qu XQ, Guo WJ, Kim JG,**
566 **Underwood W, Chaudhuri B, Chermak D, Antony G, White FF, Somerville SC,**
567 **Mudgett MB, Frommer WB** (2010) Sugar transporters for intercellular exchange and
568 nutrition of pathogens. *Nature* **468**: 527-532

569 **Cohn M, Bart RS, Shybut M, Dahlbeck D, Gomez M, Morbitzer R, Hou B-H,**
570 **Frommer WB, Lahaye T, Staskawicz BJ** (2014) *Xanthomonas axonopodis* virulence is
571 promoted by a transcription activator-like effector–mediated induction of a SWEET sugar
572 transporter in Cassava. *Mol Plant Microbe Interact* **27**: 1186-1198

573 **Cox KL, Meng F, Wilkins KE, Li F, Wang P, Booher NJ, Carpenter SCD, Chen L-Q,**
574 **Zheng H, Gao X, Zheng Y, Fei Z, Yu JZ, Isakeit T, Wheeler T, Frommer WB, He P,**
575 **Bogdanove AJ, Shan L** (2017) TAL effector driven induction of a SWEET gene confers
576 susceptibility to bacterial blight of cotton. *Nat Commun* **8**: 15588

577 **Czereznik A, Busscher M, Bielen BAM, Wolters-Arts M, de Maagd RA, Angenent**
578 **GC** (2012) Regulation of tomato fruit pericarp development by an interplay between
579 CDKB and CDKA1 cell cycle genes. *J Exp Bot* **63**: 2605-2617

580 **Damon S, Hewitt J, Nieder M, Bennett AB** (1988) Sink metabolism in tomato fruit: II.
581 Phloem unloading and sugar uptake. *Plant Physiol* **87**: 731-736

582 **De Jong A, Koerselman-Kooij JW, Schuurmans JAMJ, Borstlap AC** (1996)
583 Characterization of the uptake of sucrose and glucose by isolated seed coat halves of
584 developing pea seeds. Evidence that a sugar facilitator with diffusional kinetics is involved
585 in seed coat unloading. *Planta* **199**: 486-492

586 **Feng C-Y, Han J-X, Han X-X, Jiang J** (2015) Genome-wide identification, phylogeny,
587 and expression analysis of the SWEET gene family in tomato. *Gene* **573**: 261-272

588 **Fisher DB, Wang N** (1995) Sucrose concentration gradients along the post-phloem
589 transport pathway in the maternal tissues of developing wheat grains. *Plant Physiol* **109**:
590 587-592

591 **Gao Y, Zhang C, Han X, Wang ZY, Ma L, Yuan DP, Wu JN, Zhu XF, Liu JM, Li DP,**
592 **Hu YB, Xuan YH** (2018) Inhibition of OsSWEET11 function in mesophyll cells improves
593 resistance of rice to sheath blight disease. *Mol Plant Pathol* **19**: 2149-2161

594 **Gillaspy G, Ben-David H, Gruisse W** (1993) Fruits: A developmental perspective.
595 *Plant cell* **5**: 1439-1451

596 **Guo W-J, Nagy R, Chen H-Y, Pfrunder S, Yu Y-C, Santelia D, Frommer WB,**
597 **Martinoia E** (2014) SWEET17, a facilitative transporter, mediates fructose transport
598 across the tonoplast of arabidopsis roots and leaves. *Plant Physiol* **164**: 777-789

599 **Gustafson FG** (1939) Auxin distribution in fruits and its significance in fruit development.
600 *Am J Bot* **26**: 189-194

601 **Hackel A, Schauer N, Carrari F, Fernie AR, Grimm B, Kühn C** (2006) Sucrose
602 transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different
603 ways. *Plant J* **45**: 180-192

604 **Hetherington SE, Smillie RM, Davies WJ** (1998) Photosynthetic activities of vegetative
605 and fruiting tissues of tomato. *J Exp Bot* **49**: 1173-1181

606 **Ho L-H, Klemens PAW, Neuhaus HE, Hsieh S-Y, Ko H-Y, Guo W-J** (2019)

607 SISWEET1a is involved in glucose import to young leaves in tomato plants. *J Exp Bot* **70**:

608 3241-3254

609 **Hu L, Sun H, Li R, Zhang L, Wang S, Sui X, Zhang Z** (2011) Phloem unloading follows

610 an extensive apoplastic pathway in cucumber (*Cucumis sativus* L.) fruit from anthesis to

611 marketable maturing stage. *Plant Cell Environ* **34**: 1835-1848

612 **Jauh G-Y, Phillips TE, Rogers JC** (1999) Tonoplast intrinsic protein isoforms as markers

613 for vacuolar functions. *Plant Cell* **11**: 1867-1882

614 **Johnson C, Hall JL, Ho LC** (1988) Pathways of uptake and accumulation of sugars in

615 tomato fruit. *Anna Bot* **61**: 593-603

616 **Karimi M, Depicker A, Hilson P** (2007) Recombinational cloning with plant gateway

617 vectors. *Plant Physiol* **145**: 1144-1154

618 **Kuhn C, Grof CPL** (2010) Sucrose transporters of higher plants. *Curr Opin Plant Biol* **13**:

619 287-297

620 **Lalonde S, Tegeder M, Throne-Holst M, Frommer WB, Patrick JW** (2003) Phloem

621 loading and unloading of sugars and amino acids. *Plant Cell Environ* **26**: 37-56

622 **Lemaire-Chamley M, Mounet F, Deborde C, Maucourt M, Jacob D, Moing A** (2019)

623 NMR-based tissular and developmental metabolomics of tomato fruit. *Metabolites* **9**: 93

624 **Li X, Guo W, Li J, Yue P, Bu H, Jiang J, Liu W, Xu Y, Yuan H, Li T, Wang A** (2020)

625 Histone acetylation at the promoter for the transcription factor PuWRKY31 affects sucrose

626 accumulation in pear fruit. *Plant Physiol* **182**: 2035-2046

627 **Lin H-Y, Chen J-C, Wei M-J, Lien Y-C, Li H-H, Ko S-S, Liu Z-H, Fang S-C** (2014)

628 Genome-wide annotation, expression profiling, and protein interaction studies of the core

629 cell-cycle genes in *Phalaenopsis aphrodite*. *Plant Mol Bio* **84**: 203-226

630 **Milne RJ, Grof CPL, Patrick JW** (2018) Mechanisms of phloem unloading: shaped by

631 cellular pathways, their conductances and sink function. *Curr Opin Plant Biol* **43**: 8-15

632 **N'tchobo H, Dali N, Nguyen-Quoc B, Foyer CH, Yelle S** (1999) Starch synthesis in

633 tomato remains constant throughout fruit development and is dependent on sucrose supply

634 and sucrose synthase activity. *J Exp Bot* **50**: 1457-1463

635 **Nelson BK, Cai X, Nebenführ A** (2007) A multicolored set of *in vivo* organelle markers

636 for co-localization studies in *Arabidopsis* and other plants. *Plant J* **51**: 1126-1136

637 **Obiadalla-Ali H, Fernie AR, Kossmann J, Lloyd JR** (2004) Developmental analysis of

638 carbohydrate metabolism in tomato (*Lycopersicon esculentum* cv. Micro-Tom) fruits.

639 *Physiol Plant* **120**: 196-204

640 **Oparka KJ, Gates P** (1981) Transport of assimilates in the developing caryopsis of rice

641 (*Oryza sativa* L.) : The pathways of water and assimilated carbon. *Planta* **152**: 388-396

642 **Osorio S, Ruan Y-L, Fernie AR** (2014) An update on source-to-sink carbon partitioning

643 in tomato. *Front Plant Sci* **5**: 516

644 **Patrick JW** (1997) Phloem unloading: sieve element unloading and post-sieve element

645 transport. *Annu Rev Plant Physiol Plant Mol Biol*. **48**: 191-222

646 **Patrick JW, Offler CE** (1996) Post-sieve element transport of photoassimilates in sink

647 regions. *J Exp Bot* **47**: 1165-1177

648 **Patrick JW, Offler CE** (2001) Compartmentation of transport and transfer events in
649 developing seeds. *J Exp Bot* **52**: 551-564

650 **Pattison RJ, Csukasi F, Zheng Y, Fei Z, van der Knaap E, Catalá C** (2015)
651 Comprehensive tissue-specific transcriptome analysis reveals distinct regulatory programs
652 during early tomato fruit development. *Plant Physiol* **168**: 1684-1701

653 **Paul MJ, Nuccio ML, Basu SS** (2018) Are GM crops for yield and resilience possible?
654 *Trends Plant Sci* **23**: 10-16

655 **Pesaresi P, Mizzotti C, Colombo M, Masiero S** (2014) Genetic regulation and structural
656 changes during tomato fruit development and ripening. *Front Plant Sci* **5**: 124

657 **Quinet M, Angosto T, Yuste-Lisbona FJ, Blanchard-Gros R, Bigot S, Martinez J-P, Lutts S** (2019) Tomato fruit development and metabolism. *Front Plant Sci* **10**: 1554

659 **Ruan Y-l, Patrick J** (1995) The cellular pathway of postphloem sugar transport in
660 developing tomato fruit. *Planta* **196**: 434-444

661 **Ruan Y-L, Patrick JW, Bouzayen M, Osorio S, Fernie AR** (2012) Molecular regulation
662 of seed and fruit set. *Trends Plant Sci* **17**: 656-665

663 **Schulze W, Weise A, Frommer WB, Ward JM** (2000) Function of the cytosolic N-
664 terminus of sucrose transporter AtSUT2 in substrate affinity. *FEBS Lett* **485**: 189-194

665 **Shamai A, Petreikov M, Yeselson Y, Faigenboim A, Moy-Komemi M, Cohen S, Cohen D, Besaulov E, Efrati A, Houminer N, Bar M, Ast T, Schuldiner M, Klemens PAW, Neuhaus E, Baxter CJ, Rickett D, Bonnet J, White R, Giovannoni JJ, Levin I, Schaffer A** (2018) Natural genetic variation for expression of a SWEET transporter among

669 wild species of *Solanum lycopersicum* (tomato) determines the hexose composition of
670 ripening tomato fruit. **Plant J** **96**: 343-357

671 **Sosso D, Luo D, Li Q-B, Sasse J, Yang J, Gendrot G, Suzuki M, Koch KE, McCarty**
672 **DR, Chourey PS, Rogowsky PM, Ross-Ibarra J, Yang B, Frommer WB** (2015) Seed
673 filling in domesticated maize and rice depends on SWEET-mediated hexose transport. **Nat**
674 **Genet** **47**: 1489

675 **Stadler R, Lauterbach C, Sauer N** (2005) Cell-to-Cell movement of green fluorescent
676 protein reveals post-phloem transport in the outer integument and identifies symplastic
677 domains in arabidopsis seeds and embryos. **Plant Physiol** **139**: 701-712

678 **Tao Y, Cheung LS, Li S, Eom J-S, Chen L-Q, Xu Y, Perry K, Frommer WB, Feng L**
679 (2015) Structure of a eukaryotic SWEET transporter in a homotrimeric complex. **Nature**
680 **527**: 259-263

681 **Vu DP, Martins Rodrigues C, Jung B, Meissner G, Klemens PAW, Holtgräwe D,**
682 **Fürtauer L, Nägele T, Nieberl P, Pommerrenig B, Neuhaus HE** (2020) Vacuolar
683 sucrose homeostasis is critical for plant development, seed properties, and night-time
684 survival in Arabidopsis. **J Exp Bot** **71**: 4930-4943

685 **Walker AJ, Ho LC** (1977) Carbon Translocation in the tomato: carbon import and fruit
686 growth. **Ann Bot** **41**: 813-823

687 **Wang L-F, Qi X-X, Huang X-S, Xu L-L, Jin C, Wu J, Zhang S-L** (2016)
688 Overexpression of sucrose transporter gene *PbSUT2* from *Pyrus bretschneideri*, enhances
689 sucrose content in *Solanum lycopersicum* fruit. **Plant Physiol Biochem** **105**: 150-161

690 **Wang N, Fisher DB** (1995) Sucrose release into the endosperm cavity of wheat grains
691 apparently occurs by facilitated diffusion across the nucellar cell membranes. *Plant Physiol*
692 **109:** 579-585

693 **Wang S, Yokosho K, Guo R, Whelan J, Ruan Y-L, Ma JF, Shou H** (2019) The soybean
694 sugar transporter GmSWEET15 mediates sucrose export from endosperm to early embryo.
695 *Plant Physiol* **180:** 2133-2141

696 **Wang T, Zhang H, Zhu H** (2019) CRISPR technology is revolutionizing the improvement
697 of tomato and other fruit crops. *Hortic Res* **6:** 77

698 **Wang X-D, Harrington G, Patrick JW, Offler CE, Fieuw S** (1995) Cellular pathway of
699 photosynthate transport in coats of developing seed of *Vicia faba* L. and *Phaseolus vulgaris*
700 L. II. Principal cellular site(s) of efflux. *J Exp Bot* **46:** 49-63

701 **Wang ZP, Deloire A, Carbonneau A, Federspiel B, Lopez F** (2003) An *in vivo*
702 experimental system to study sugar phloem unloading in ripening grape berries during
703 water deficiency stress. *Ann Bot* **92:** 523-528

704 **Werner D, Gerlitz N, Stadler R** (2011) A dual switch in phloem unloading during ovule
705 development in *Arabidopsis*. *Protoplasma* **248:** 225-235

706 **Wu F-H, Shen S-C, Lee L-Y, Lee S-H, Chan M-T, Lin C-S** (2009) Tape-*Arabidopsis*
707 Sandwich - a simpler *Arabidopsis* protoplast isolation method. *Plant Methods* **5:** 16

708 **Yang J, Luo D, Yang B, Frommer WB, Eom J-S** (2018) SWEET11 and 15 as key players
709 in seed filling in rice. *New Phytol* **218:** 604-615

710 **Zhang L-Y, Peng Y-B, Pelleschi-Travier S, Fan Y, Lu Y-F, Lu Y-M, Gao X-P, Shen**
711 **Y-Y, Delrot S, Zhang D-P** (2004) Evidence for Apoplastic Phloem Unloading in
712 Developing Apple Fruit. *Plant Physiol* **135**: 574-586

713 **Zhang L, Zhang Z, Lin S, Zheng T, Yang X** (2013) Evaluation of six methods for
714 extraction of total RNA from Loquat. *Not Bot Horti Agrobo* **41**: 313-316

715 **Zhang W-H, Zhou Y, Dibley KE, Tyerman SD, Furbank RT, Patrick JW** (2007)
716 Nutrient loading of developing seeds. *Funct Plant Biol* **34**: 314-331

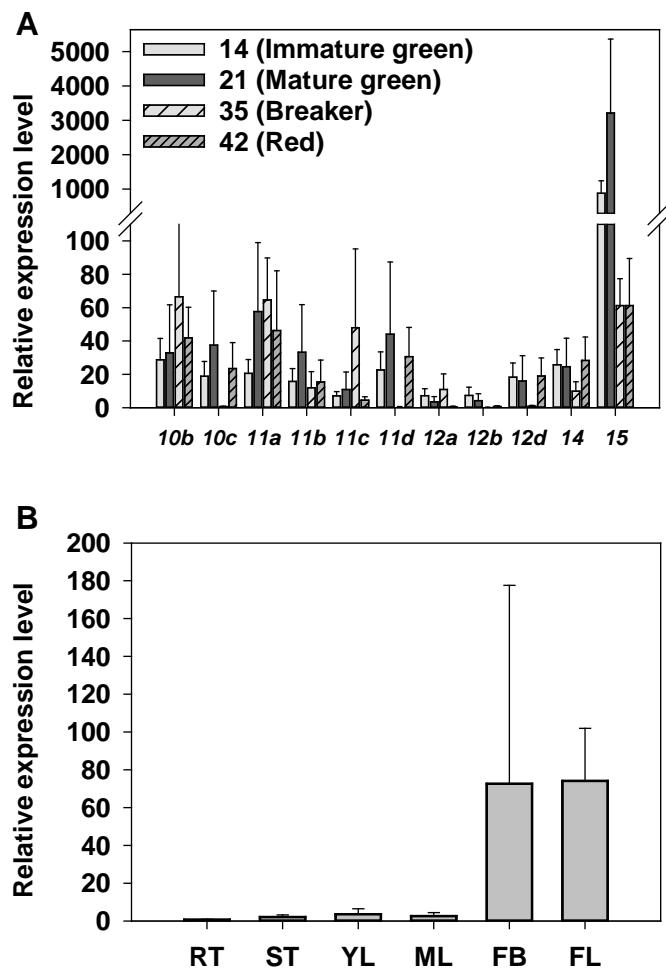
717 **Zhou Y, Qu H, Dibley KE, Offler CE, Patrick JW** (2007) A suite of sucrose transporters
718 expressed in coats of developing legume seeds includes novel pH-independent facilitators.
719 *Plant J* **49**: 750-764

720 **FIGURE LEGENDS**

721 **Figure 1. Expression of *SISWEET15* in tomato organs.** A, Expression of representative
722 clade III *SISWEET* genes in various stages of tomato fruits. B, Expression of *SISWEET15*
723 in non-fruit organs. Total RNA was isolated from fruits of 14, 21, 35, 42 DAA (A) or
724 various organs and the derived cDNA was used for qRT-PCR with specific primers. The
725 ordinate is the relative expression level, normalized to the internal control SIActin7.
726 Results are mean \pm SE from 3-7 independent biological repeats. DAA, day after anthesis.
727 RT, root. ST, stem. YL, young leave. ML, mature leave. FB, flower bud. FL: flower.

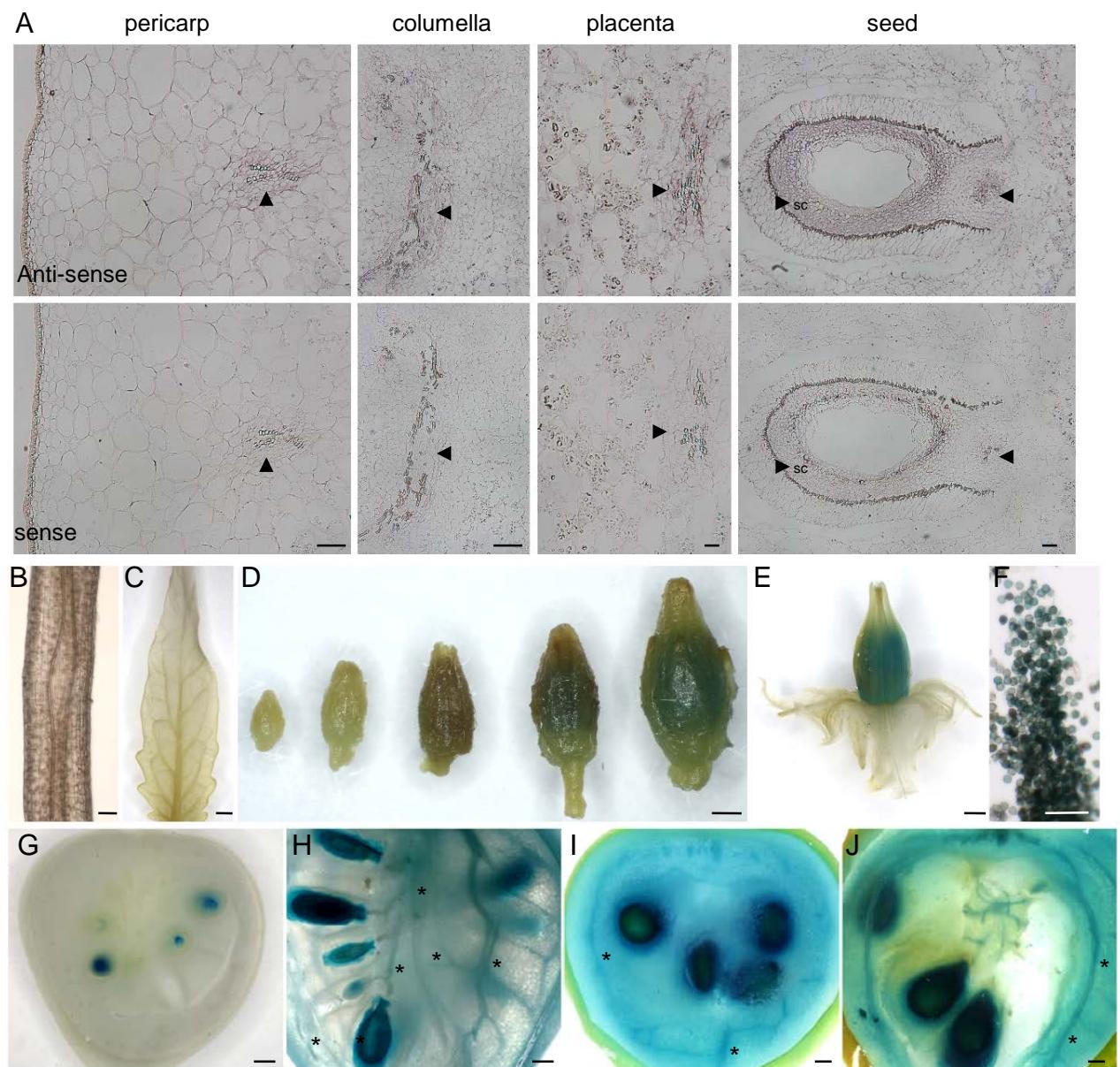
728 **Figure 2. Organ-specific expression patterns of *SISWEET15* in tomato.** A, Cell-
729 specific localization of *SISWEET15* transcripts analyzed by *in situ* hybridization. Cross-
730 sections of tomato fruits (21 DAA) were hybridized with *SISWEET15*-specific anti-sense
731 (top) and sense probes (bottom). Arrowheads indicate locations of signals observed. B-J,
732 Histochemical staining of GUS activities in transgenic tomato plants expressing
733 *SISWEET15*-GUS fusion proteins driven by *SISWEET15* native promoter. B, mature roots.
734 C, young leaflet. D, flower buds. E, mature flower. F, pollens. G-J, fruits of 14, 21, 35, 42
735 DAA. Asterisks indicate localization of signals in vascular tissues. Bars = 100 μ m in A, B
736 and F and 1 mm in C, D, E and G-J.

737 **Figure 3. Dual localizations of *SISWEET15* in *Arabidopsis* protoplasts.** Green and red
738 fluorescence in *Arabidopsis* protoplast expressing *SISWEET15*-GFP fusion proteins and
739 *AtPIP2A*-RFP or *AtTIP*-RFP fusions indicated localization to the plasma membrane and
740 vacuolar membrane, respectively. Images of cells under lysis are also shown. Asterisk (*)
741 and arrowheads indicate chloroplasts and overlapped signals, respectively. Bar = 10 μ m.

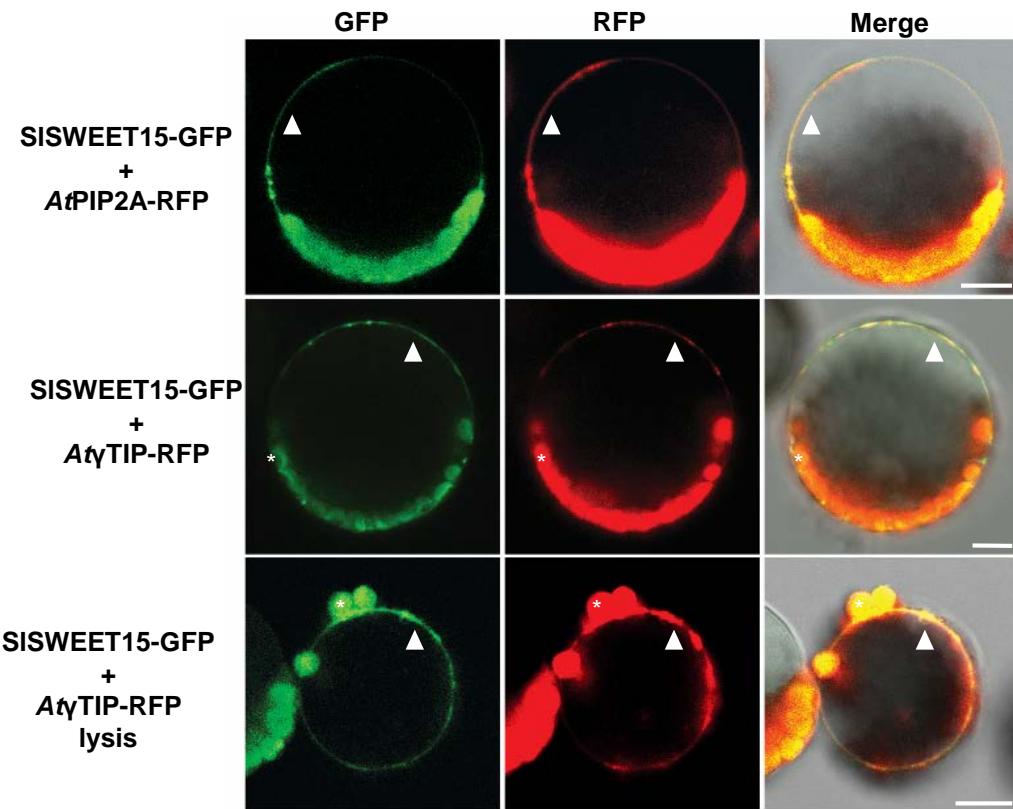

742 **Figure 4. Sucrose transport activity of *SISWEET15* in yeast.** Growth assay of YSL2-1
743 cells expressing *SISWEET15*. Yeast cells expressing *SISWEET15*, *HXT*, *AtSUC2* or an
744 empty vector (vector) were serially diluted (10-fold) and cultured on solid media
745 supplemented with maltose (SDM) or 2 to 5% sucrose, respectively. Images were captured
746 after incubation at 30°C for 4 to 6 d.

747 **Figure 5. Genotypes of stable *slsweet15* mutant lines via CRISPR/Cas9 gene editing.**
748 A, Genomic structure of *SISWEET15*. P1 and P2 indicated primers used to examine

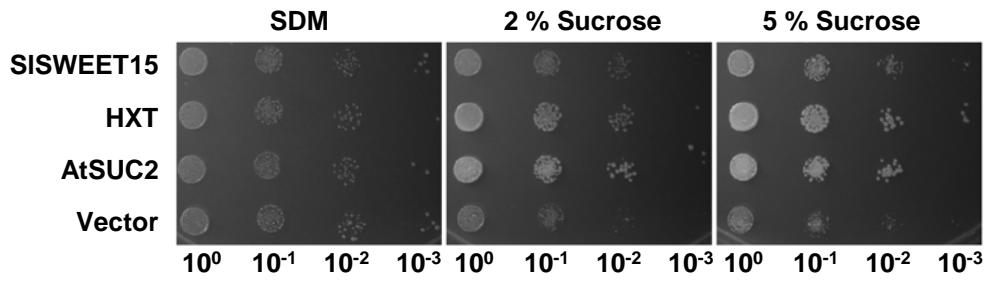
749 mutation types. Red triangles represented positions of two sgRNA sequences used in the
750 binary vector. All numbers denoted the position of the first sequence relative to the start
751 codon. B, Mutation types of *SISWEET15* DNA in transgenic plants. Genomic DNA was
752 isolated from mature leaves of T0 transgenic plants (Cas-15-x) and used to amplify gene
753 fragments flanked with P1 and P2 primer in (A). Sequences of the resulting products from
754 each line are shown. Sequences in blue and yellow represented target1/target2 (T1/T2)
755 gRNA and PAM sequences, respectively. Red dash lines and font indicated deletion and
756 point mutation, respectively. Numbers in red highlighted mutation types. E, exons. I,
757 introns.


758 **Figure 6. Fruit and seed development in *slsweet15* knockout mutant plants.** A and B,
759 Fruit quality of T0 transgenic tomato plants. Mature red fruits were harvested and polar
760 diameters, equatorial diameters (A) and fresh weights (B) were measured. C, Seeds of T0
761 transgenic tomato plants. Pictures are of representative seeds derived from wild type
762 Micro-Tom (MT), transgenic plants without mutation (Cas-15-1-V and Cas-15-2-WT) and
763 homozygous (Homo) or heterozygous (Hetero) mutants. Bar = 1 cm. D, Seed weight of T0
764 transgenic tomato plants. E, Longitudinal sections of wild-type and mutant seed. Bar = 100
765 μ m. WT, WT-V indicated transgenic plants containing non-mutated genotype without or
766 with the vector. Differences from WT (Student's *t*-test): *(P<0.05), **(P<0.01) or
767 ***(P<0.001) asterisks.

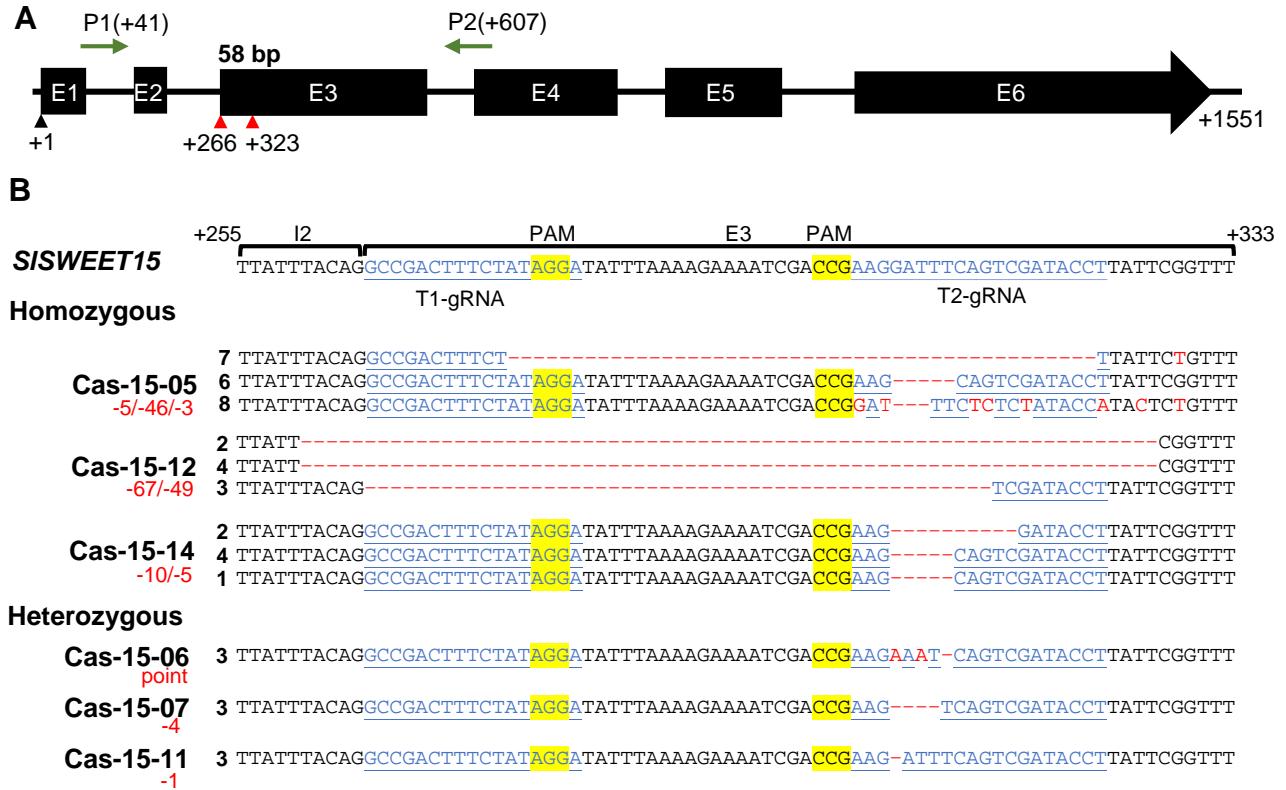
768 **Figure. 7 A functional model of SISWEET15 during fruit and seed development.**
769 When sucrose is translocated from source leaves to developing tomato fruits, SISWEET15
770 located on the plasma membrane of sieve-companion (SE-CC) complexes facilitated
771 sucrose unloading to the fruit apoplasm. In addition, a portion of apoplasmic sucrose could
772 be passively imported by the SISWEET15 uniporter into neighboring parenchyma cells.
773 Conversely, sucrose is also hydrolyzed by cell wall invertase (CWIN) and imported by
774 active hexose transporter (HT). In seeds, SISWEET15 also functions on the seed coat
775 plasma membrane to mediate sucrose importation into an embryo for seed filling. During
776 fruit maturation, SISWEET15 was also located on the vacuolar membrane of pericarp cells
777 and regulated intracellular sucrose dynamics.


Figure 1. Expression of SISWEET15 in tomato organs.

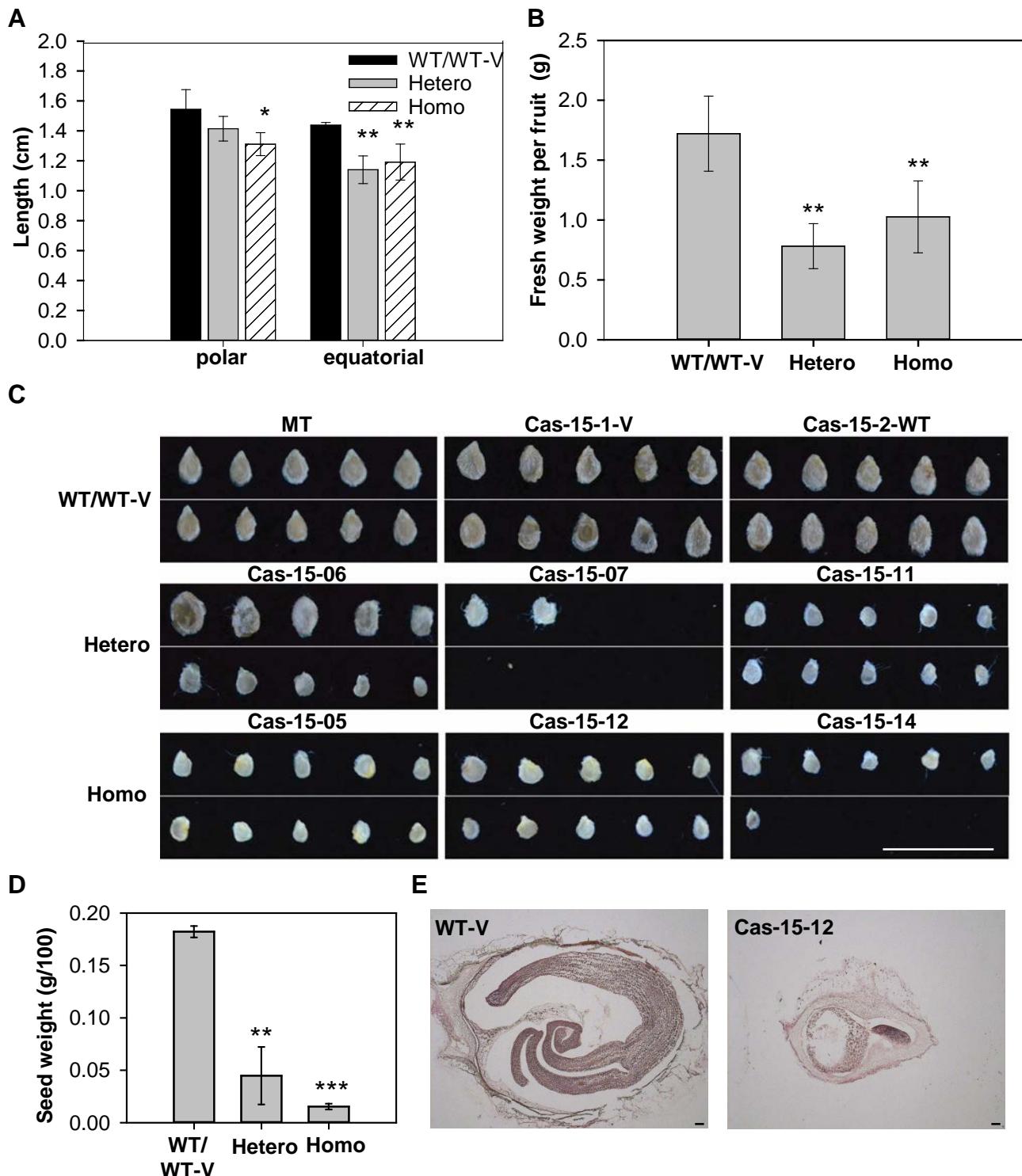
A, Expression of representative clade III SISWEET genes in various stages of tomato fruits. B, Expression of SISWEET15 in non-fruit organs. Total RNA was isolated from fruits of 14, 21, 35, 42 DAA (A) or various organs and the derived cDNA was used for qRT-PCR with specific primers. The ordinate is the relative expression level, normalized to the internal control SIActin7. Results are mean \pm SE from 3-7 independent biological repeats. DAA, day after anthesis. RT, root. ST, stem. YL, young leave. ML, mature leave. FB, flower bud. FL: flower.


Figure 2. Organ specific expression pattern of *SISWEET15* in tomato.

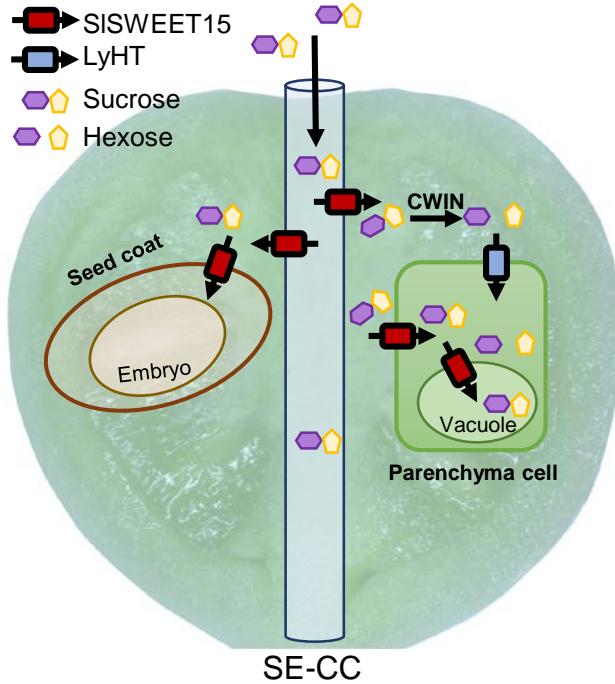
A, Cell-specific localization of *SISWEET15* transcripts analyzed by in situ hybridization. Cross-sections of tomato fruits (21 DAA) were hybridized with *SISWEET15*-specific anti-sense (top) and sense probes (bottom). Arrowheads indicate locations of signals observed. B-J, Histochemical staining of GUS activities in transgenic tomato plants expressing *SISWEET15*-GUS fusion proteins driven by *SISWEET15* native promoter. B, mature roots. C, young leaflet. D, flower buds. E, mature flower. F, pollens. G-J, fruits of 14, 21, 35, 42 DAA. Asterisks indicate localization of signals in vascular tissues. Bars = 100 μ m in A, B and F and 1 mm in C, D, E and G-J.


Figure 3. Dual localizations of SISWEET15 in *Arabidopsis* protoplasts.

Green and red fluorescence in *Arabidopsis* protoplast expressing SISWEET15-GFP fusion proteins and AtPIP2A-RFP or At γ TIP-RFP fusions indicated localization to the plasma membrane and vacuolar membrane, respectively. Images of cells under lysis are also shown. Asterisk (*) and arrowheads indicate chloroplasts and overlapped signals, respectively. Bar = 10 μ m.


Figure 4. Sucrose transport activity of *SISWEET15* in yeast.

Growth assay of YSL2-1 cells expressing *SISWEET15*. Yeast cells expressing *SISWEET15*, *HXT*, *AtSUC2* or an empty vector (vector) were serially diluted (10-fold) and cultured on solid media supplemented with maltose (SDM) or 2 to 5% sucrose, respectively. Images were captured after incubation at 30°C for 4 to 6 d.


Figure 5. Genotypes of stable *slsweet15* mutant lines via CRISPR/Cas9 gene editing.

A, Genomic structure of SISWEET15. P1 and P2 indicated primers used to examine mutation types. Red triangles represented positions of two sgRNA sequences used in the binary vector. All numbers denoted the position of the first sequence relative to the start codon. B, Mutation types of SISWEET15 DNA in transgenic plants. Genomic DNA was isolated from mature leaves of T0 transgenic plants (Cas-15-x) and used to amplify gene fragments flanked with P1 and P2 primer in (A). Sequences of the resulting products from each line are shown. Sequences in blue and yellow represented target1/target2 (T1/T2) gRNA and PAM sequences, respectively. Red dash lines and font indicated deletion and point mutation, respectively. Numbers in red highlighted mutation types. E, exons. I, introns.

Figure 6. Fruit and seed development in *slsweet15* knockout mutant plants.

A and B, Fruit quality of T0 transgenic tomato plants. Mature red fruits were harvested and polar diameters, equatorial diameters (A) and fresh weights (B) were measured. C, Seeds of T0 transgenic tomato plants. Pictures are of representative seeds derived from wild type Micro-Tom (MT), transgenic plants without mutation (Cas-15-1-V and Cas-15-2-WT) and homozygous (Homo) or heterozygous (Hetero) mutants. Bar = 1 cm. D, Seed weight of T0 transgenic tomato plants. E, Longitudinal sections of wild-type and mutant seed. Bar = 100 μ m. WT, WT-V indicated transgenic plants containing non-mutated genotype without or with the vector. Differences from WT (Student's t-test): *(P<0.05), **(P<0.01) or ***(P<0.001) asterisks.

Figure. 7 A functional model of SISWEET15 during fruit and seed development.

When sucrose is translocated from source leaves to developing tomato fruits, SISWEET15 located on the plasma membrane of sieve-companion (SE-CC) complexes facilitated sucrose unloading to the fruit apoplasm. In addition, a portion of apoplasmic sucrose could be passively imported by the SISWEET15 uniporter into neighboring parenchyma cells. Conversely, sucrose is also hydrolyzed by cell wall invertase (CWIN) and imported by active hexose transporter (HT). In seeds, SISWEET15 also functions on the seed coat plasma membrane to mediate sucrose importation into an embryo for seed filling. During fruit maturation, SISWEET15 was also located on the vacuolar membrane of pericarp cells and regulated intracellular sucrose dynamics.