

1 **Full title: Assessment of heterotic potential and combining ability of immortal restorer**
2 **lines derived from an elite rice hybrid, KRH-2, for the development of superior rice**
3 **hybrids**

4

5 **Short title: Immortal restorer lines from KRH-2 and novel rice hybrids development**

6

7 Swapnil Ravindra Kulkarni^{1¶}, Balachandran SM^{1¶*}, Fiyaz RA^{1¶}, Sruthi K¹, Divya
8 Balakrishnan¹, Ulaganathan K², Hari Prasad A.S.¹ and Sundaram RM^{1¶}

9 ¹ICAR-Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, India

10 ²Centre for Plant Molecular Biology (CPMB), Osmania University, Hyderabad, India

11 *Corresponding author

12 Dr. S.M. Balachandran, Principal Scientist (Biotechnology) & Head, Crop Improvement
13 Section, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad-500030, India

14 Email ID: balasena@yahoo.com, Phone (Off): 91-040-24591228; Fax: 91-040-24591217

15 ¶ These authors contributed equally

16

17 **Abstract**

18 Present investigation was carried out to assess the heterotic potential and combining ability of
19 immortal restorer lines [consisting of two recombinant inbred lines (RILs) and two doubled
20 haploid lines (DHLs)] developed from an elite rice hybrid, KRH-2 by crossing them with
21 three popular WA-CMS lines, IR58025A, CRMS32A and APMS6A through line × tester
22 analysis. The doubled haploid line 1 (DHL-1) was observed to be a good general combiner
23 for total grain yield per plant (YLD) and other yield component traits and among the CMS
24 lines, IR58025A was observed to be the best combiner as it showed positive significant
25 values for the traits viz., total grain yield per plant, panicle length and spikelet fertility.

26 Higher preponderance of the variance associated with specific combining ability (SCA) as
27 compared to general combining ability (GCA) variance was observed for most of the traits
28 indicated the predominant role of non-additive gene action in the expression of the traits. Out
29 of twelve novel crosses between the immortal restorer lines derived from KRH-2 and the
30 WA-CMS lines, 66.66% (eight crosses) showed significant and desirable SCA effects for the
31 traits viz., total grain yield per plant, days to fifty percent flowering, plant height, flag leaf
32 length, flag leaf width, number of filled grains per panicle and spikelet fertility. Two crosses
33 IR58025A/RIL-24 and CRMS32A/RIL-24 were observed to be the most promising cross
34 combinations showing standard heterosis of >50% for YLD trait (as compared with KRH-2)
35 with higher prevalence of GCA and SCA, respectively. Heterotic yield advantage of
36 IR58025A/RIL-24 and CRMS32A/RIL-24 was 77.05% and 54.74%, respectively over KRH-
37 2 and these can be utilized for developing commercial hybrids. The present study also
38 indicates the potentiality of RILs in providing useful parental lines for developing heterotic
39 hybrids which are hard to get from outside sources in the new intellectual property regime.

40

41 **Keywords**

42 Rice, KRH-2, hybrid rice, combining ability, gene action, line \times tester analysis, heterosis,
43 RILs, DHLs

44

45 **Introduction**

46 Rice (*Oryza sativa* L.) is one of the world's largest food crop and Asian countries are
47 predominantly dependent on rice for their nutritional and calorific needs. It was predicted by
48 [1] that by 2030, the demand for rice will escalate to 852 million tons. Moreover, the rice
49 breeders have to face many challenges in increasing the rice production due to declining land

50 area for rice cultivation, shortage of labor and water and imminent threats posed by biotic and
51 abiotic stresses [2]. Enhancement of rice productivity through innovative genetic approaches
52 such as hybrid rice technology offers a hope of lessening the gap between rice demand and its
53 production [3]. Hybrid rice breeding aims to break the yield barrier by exploiting the
54 phenomenon of heterosis in order to increase the yield potential beyond the level of high
55 yielding varieties. Being a staple food crop of India, rice is grown in about 44.15 million
56 hectares with annual production of 116.47 million tonnes and productivity of 2638 Kg ha⁻¹
57 ¹[4]. A total of 107 hybrids have been released for commercial cultivation in India [5] but
58 hybrid rice occupies only 3 million hectares of the total rice in the country [6]. Though these
59 rice hybrids yielded 15-20% more than the semi-dwarf inbred varieties [7, 8], their adoption
60 is not up the expected level due to various reasons. Unattractive yield advantage of hybrids,
61 issues related to quality, non-diverse sources of restorers and CMS lines, lack of favorable
62 policies, pricing discrimination against hybrids are some of the reasons for lower adoption of
63 hybrids in India. [9] identified the lack of genetic diversity in the existing rice gene pool and
64 lower to moderate yield advantages in novel hybrids [10] as some of the prime reasons for
65 lesser adoption of hybrid rice for cultivation. As opined by [11], it is possible to overcome the
66 existing yield plateau by broadening the genetic base of rice gene pool through identification
67 of efficient-diverse restorer (R) lines and stable CMS (A) lines with higher out crossing
68 ability and by envisaging novel crosses between them using the three line hybrid system
69 popularly known as cytoplasmic genic male sterile (CGMS) line system. Traditionally, the
70 production of hybrid rice has been based on CMS i.e., the A line, maintainer (B) line and
71 restorer (R) line. This involved the crosses between CMS lines and R lines which produced
72 novel fertile F₁ offsprings. In hybrid rice breeding, there is need to develop an array of
73 diverse restorers as the available CMS lines will suffice to make several crosses. It was noted
74 that the fertility restoration in hybrids was as a consequence of dominant fertility restorer

75 genes (*Rf* genes) from R lines [12-16]. Plant breeders face enormous challenge in the
76 development of heterotic hybrids due to lower diversity among parental lines. Promising
77 parental lines have to be identified based on their combining ability and superior hybrids
78 through their *per se* performance. Therefore, through line \times tester (L \times T) mating design, the
79 potential of individual parental line to transmit the genetic information to novel offsprings
80 can be quantified [17] enabling the assessment of general combining ability (GCA) and
81 specific combining ability (SCA) [3, 18]. GCA prominently associated with additive gene
82 action, evaluates mean performance of a line in various crosses and identifies superior
83 parental lines on the basis of mean value. This aids in the identification of promising parental
84 lines and there by producing heterotic hybrids [3]. The SCA on the other hand, is the result of
85 non-additive in gene action and manifests essentially from over dominance, dominance and
86 epistatic effects [19]. It primarily helps in the identification of promising hybrids by assessing
87 the positive or negative genetic value of the expected mean performance of the parental
88 crosses [20, 21]. The present study aimed at identification of potential restorers from DHL
89 and RIL population derived from an elite rice hybrid KRH-2, assessing *per se* performance of
90 novel hybrids for yield and its component traits, understanding the genetic basis of hybrid
91 improvement through GCA-SCA studies and identification of promising novel heterotic
92 hybrids for commercialization.

93

94 **Materials and methods**

95 **Experimental material**

96 A popular rice hybrid, Karnataka Rice Hybrid-2 (KRH-2) with following characteristics i.e.,
97 medium duration, long-bold grain type, suitable for irrigated ecology and developed by Zonal
98 Agricultural Research Station (ZARS), Mandya, Karnataka, India and with a high yield

99 potential along with its parents, IR58025A (in this study we have used IR58025B line for
100 agro-morphological evaluation as IR58025A does not set seeds) and KMR-3R, was used as
101 the experimental material.

102

103 **Development of KRH-2 doubled haploid lines (DHLs) and**
104 **recombinant inbred lines (RILs) population and their agro-**
105 **morphological evaluation**

106 Genetically pure seeds of parents (IR58025A and KMR-3R) and the elite rice hybrid KRH-2
107 were grown in the research farm of ICAR-Indian Institute of Rice Research (ICAR-IIRR),
108 Hyderabad India, during the dry season of 2015, sowing on well-puddled, leveled and raised
109 nursery beds, 15-20 days old seedlings were transplanted in field with a spacing of 15×20cm
110 (6 rows×20 hills) and the recommended package of practices were adopted for growing the
111 plants. A total of 125 regenerated true and highly stable doubled haploid lines (DHLs) (D_0)
112 were developed following the standardized protocol of [22]. Similarly, for the development
113 of RIL population, the F_1 hybrid seeds (produced from the crosses between IR58025A and
114 KMR-3R) were self-pollinated to produce F_2 progenies. The F_2 progenies were later advanced
115 to further generations in the field through single seed descent (SSD) method in subsequent
116 seasons [23]. A total of 105 individuals consisted of RIL population. Both the DHL and RIL
117 populations were grown for three consecutive seasons (dry season 2016, D_2 generation of
118 DHL population and F_3 generation of RIL population; wet season 2016, D_3 generation and F_4
119 generation; dry season 2017, D_4 generation and F_5 generation) for analyzing their genetic
120 variability with respect to key agro-morphological traits viz., days to fifty percent flowering
121 (DFF), total grain yield per plant (YLD), total number of grains per panicle (GP), filled
122 grains per panicle (FGP), test (1000 grains) weight (TGW), panicle weight (PW), plant height

123 (PH), panicle length (PL), flag leaf length (FLL), flag leaf width (FLW), number of
124 productive tillers (NPT) and biomass (BM). Data was recorded from five healthy plants of
125 middle row of each line, as per the standard evaluation system recommended by [24].

126

127 **Selection of restorers among KRH-2 derived DHL and RIL
128 population and their fertility restoration assessment**

129 A total of 40 lines (among both the immortal populations) were selected based on the
130 presence of fertility restoration genes and performance of the lines for various traits. Of the
131 total 40 lines, 16 DHLs (D_5) which are high-yielding and semi-tall (plant height of 110 ± 5 cm)
132 to tall (plant height of 125 ± 5 cm) and 24 RILs (F_6) i.e., 12 high and 12 low yielding, semi-tall
133 were selected. Molecular screening of selected RILs and DHLs for the presence of fertility
134 restoration genes using functional markers namely RMS-SF21-5 and RMS-PPR9-1, specific
135 for major fertility restorer genes, *Rf3* locus and *Rf4* locus, respectively, was undertaken as
136 described in [25]. For this genomic DNA was extracted from IR58025A, IR58025B, KMR-
137 3R along with the selected RILs and DHLs as described in [26] and allelic status was
138 observed. Further, the allelic status of these lines in terms of their amplification for *Rf3*-*Rf4*
139 loci was correlated with fertility restoration potential in novel hybrids derived from them
140 [25]. The lines were considered as complete restorers if their restoration potential in novel
141 hybrids was observed to be greater than or equal to 70% [15]. The selected lines were test
142 crossed with the WA-CMS line, IR58025A during the wet season of 2017-18 using
143 line \times tester mating design [18]. The novel hybrids produced from these crosses along with
144 their parents (D_6 and F_7 generations), standard varietal checks namely Akshayadhan (AKD)
145 and Varadhan (VRD) were assessed for their agro-morphological trait performance and
146 heterosis studies in dry season of 2018-2019. Novel hybrids produced from two high yielding
147 DHLs namely DHL-1 and DHL-2 and those produced from highest yielding RIL-1 and low

148 yielding RIL-24, were observed to be heterotic than KRH-2 and these four restorers were
149 further selected for test crossing with other CMS lines.

150

151 **Test crossing of selected restorers with popular WA-CMS lines**

152 In wet season of 2018, four selected parental lines viz., DHL-1 (D₇), DHL-2 (D₇), RIL-1 (F₈)
153 and RIL-24 (F₈) were test crossed with three popular CMS lines viz., IR58025A, CRMS32A
154 and APMS6A to assess the general combining ability (GCA) of parents and specific
155 combining ability (SCA) of crosses using line × tester mating design [18].

156

157 **Assessment of general combining ability (GCA) of parents and** 158 **specific combining ability (SCA) of crosses and estimation of** 159 **heterosis of the newly derived hybrids**

160 In dry season of 2019-2020, 12 novel hybrids along with their parents including IR58025B,
161 CRMS32B and APMS6B (Maintainers of CMS lines IR58025A, CRMS32A and APMS6A);
162 four restorer lines DHL-1 (D₈), DHL-2 (D₈), RIL-1 (F₉), RIL-24 (F₉) and five hybrid checks,
163 viz., KRH-2, US312, US314, PA6444, HRI174 were evaluated for combining ability and
164 heterosis studies [27]. Following the randomized complete block design (RCBD) in the
165 experimental field, the data was recorded from ten healthy plants of middle row of each line
166 from two replications (five plants from each replication), as per the standard evaluation
167 system (IRRI, 2002) on 12 important yield attributing traits viz., days to fifty percent
168 flowering (DFF); plant height (PH); flag leaf length (FLL); flag leaf width (FLW); number
169 of productive tillers (NPT); panicle length (PL); total number of grains per panicle
170 (TNGPP); number of filled grains per panicle (NFGPP); number of unfilled grains per
171 panicle (NUFGPP); spikelet fertility in percentage (SFP); test (1,000 grains) weight (TGW)

172 and total grain yield per plant (YLD). Estimates of GCA and SCA [28] were computed using
173 R language statistical software version Ri386 3.3.2.

174

175 **Statistical analysis**

176 Data of twelve agro-morphological and yield related traits were subjected to statistical
177 analysis viz., Analysis of variance (ANOVA), genotypic and phenotypic correlations, genetic
178 variability estimates were analyzed using SAS version 9.2 (SAS Institute Inc., Cary, NC,
179 USA). L×T mating design ANOVA, genetic variances and heritability estimates were
180 computed using R language statistical software version Ri386 3.3.2. Mean, standard
181 deviation (SD), standard error (SE) and coefficient of variation in percentage (CV %) were
182 computed using Microsoft Excel package. Heterobeltiosis, mid-parent heterosis [29] and
183 standard heterosis were estimated using standard formulae [30, 31].

184

185 **Results**

186 **Selection of parents based on assessment of the novel hybrids**

187 Based on the assessment of yield heterosis data (evaluated in dry season of 2018-2019; S1
188 Table and S2 Table) of the novel hybrids, it was observed that two crosses namely
189 IR58025A/DHL-1 and IR58025A/DHL-2 demonstrated very high positive standard heterosis
190 for total grain yield per plant (YLD) as compared to varietal checks (Akshayadhan [AKD]
191 and Varadhan[VRD]) and standard hybrid check(KRH-2). The standard YLD heterosis of the
192 hybrid IR58025A/DHL-1 was observed to be 63.04, 48.61 and 25.21% over the checks AKD,
193 VRD and KRH-2 respectively. While, the hybrid IR58025A/DHL-2 recorded 47.65, 34.58
194 and 10.20% over the checks AKD, VRD and KRH-2 respectively. Further, both DHL-1 and
195 DHL-2, showed the presence of both *Rf3* and *Rf4* (the major fertility restoration genes), when

196 analyzed with functional markers specific for these genes. This was corroborated with the
197 fertility restoration data of both these lines, wherein high values of spikelet fertility were
198 observed in the derived hybrids (viz., 85.42% for DHL-1 and 81.36% for DHL-2). The
199 hybrids derived from the cross IR58025A and the highest yielding RIL-1, demonstrated a
200 yield advantage of 177.34% over AKD, 162.23% over VRD and 111.38% over KRH-2.
201 Another hybrid derived from the cross IR58025A and one of the low yielding RILs, viz.,
202 RIL-24 registered a yield advantage of 38.35% over AKD, 46.32% over VRD and 11.52%
203 over KRH-2. Analysis of fertility restoration of these two lines with respect to *Rf3-Rf4*
204 specific markers revealed the presence of both the loci in them and the results corresponded
205 to the spikelet fertility values of the hybrids derived from the two RILs (80.97% and 85.99%
206 with respect to RIL-1 and RIL-24, respectively).

207

208 **Agro-morphological performance of novel hybrids**

209 Novel hybrids that were developed between three popular CMS lines (IR58025A, CRMS32A
210 and APMS6A) and four selected restorers (DHL-1, DHL-2, RIL-1, RIL-24) were evaluated
211 for their agro-morphological performance in the dry season of 2019-2020 and the details of
212 which are described below.

213

214 **Genetic variability estimates**

215 As shown in S3 Table, in the novel hybrids, high phenotypic (V_p) and high genotypic
216 variance (V_g) was observed for two traits, viz., number of fertile grains per panicle (NFGPP,
217 V_p = 1603.84 and V_g = 1447.75) and total number of grains per panicle (TNGPP, V_p =
218 1556.64 and V_g = 1343.41). The trait flag leaf width (FLW, V_p = 0.04 and V_g = 0.02) was
219 observed to have the lowest phenotypic-genotypic variance. Collectively for all the traits, the
220 phenotypic variance was observed to be higher than the genotypic variance. Based on GCV-

221 PCV values, the traits were classified into three categories, viz., low, moderate and high.
222 Higher (>20%) genotypic coefficient of variance (GCV)-phenotypic coefficient of variance
223 (PCV) values was observed for the traits, NPT, TNGPP, NFGPP, NUFGPP and YLD.
224 Moderate (10%-20%) of GCV-PCV values were observed for the traits DFF, PH, FLL, FLW
225 and SFP while low (0%-10%) of GCV-PCV values were observed for traits viz., PL and
226 TGW. All the traits under study recorded high broad sense heritability (H^2) values except
227 FLW. Genetic advance (GA) was observed within the range of 0.25 (FLW) to 74.46
228 (NFGPP). High GAM values were observed for traits viz., DFF, PH, FLL, NPT, TNGPP,
229 NFGPP, SFP and YLD. High H^2 and high GAM values were observed for the traits DFF, PH,
230 FLL, NPT, TNGPP, NFGPP, SFP and YLD. Moderate H^2 with moderate GAM was observed
231 for FLW trait and high H^2 with moderate GAM was observed for PL trait.

232

233 **Correlation between different traits**

234 Positive correlation was observed between YLD and most of its component traits (S4 Table).
235 Significant positive correlation was observed between YLD and NPT ($r = 0.23$), FLL ($r =$
236 0.05), PL ($r = 0.38$), TNGPP ($r = 0.14$), SFP ($r = 0.45$) and TGW (0.24) at 1% level of
237 significance, while a positive correlation was observed between YLD and FLW ($r = 0.10$),
238 NFGPP ($r = 0.28$) at 5% level of significance. Negative correlation was noticed between
239 YLD and DFF ($r = -0.34$) and NUFGPP ($r = -0.31$) at 1% and 5% levels of significance,
240 respectively. Significant correlation was observed between the traits TNGPP and NPT ($r =$
241 0.26) and PL ($r = 0.42$) at 1% and 5%, levels of significance, respectively. A strong positive
242 correlation between SFP and TNGPP ($r = 0.17$) and negative correlation between NUFGPP (r
243 = -0.78) was observed at 1% level of significance, while significant positive correlation was
244 observed between TGW and TNGPP ($r = 0.51$) at 1%, NPT ($r = 0.26$), PL ($r = 0.09$), NFGPP
245 ($r = 0.19$) and SFP ($r = 0.10$) at 5% level of significance.

246

247 **Estimation of genetic variances and heritability in novel crosses**

248 Genetic parameters such as variance due to general combining ability (GCA), specific
249 combining ability (SCA), GCA variance ratio, additive genetic variance, dominance genetic
250 variance, degree of dominance and broad sense-narrow-sense heritability were estimated
251 among the hybrids. It was observed that for all traits under study, the variance due to SCA
252 (σ^2_{sca}) was higher than GCA (σ^2_{gca}). Also, the dominance genetic variance (δ^2D) was larger
253 than the additive genetic variance (δ^2A) for all the traits. These results are supported with
254 GCA variance ratio ($\sigma^2_{gca} / \sigma^2_{sca}$) being less than 1 for all traits and degree of dominance
255 [$(\delta^2D / \delta^2A)^{1/2}$] being less than 1 for trait viz., TNGPP, NUFGPP, PH, YLD, DFF, FLL and
256 for remaining traits viz., FLW, NPT, PL, NFGPP, SFP and TGW the value was greater than
257 1. Broad sense heritability ($H^2 (%)$) was observed in the range of 56.16% (FLW) to 99.78%
258 (DFF) whereas the narrow sense heritability ($h^2 (%)$) was in the range 14.53% (PL) to
259 49.10% (DFF) (S5 Table).

260

261 **Estimation of heterosis among the novel hybrids**

262 Test crosses carried out between three popular, commonly deployed WA-CMS lines, viz.,
263 IR58025A, CRMS32A, APMS6A and the four selected restorers, viz., RIL-1, RIL-24, DHL-
264 1 and DHL-2 produced twelve novel hybrids, which were evaluated in wet season of 2018. In
265 the present study, variance analysis for all the characters revealed significant variation among
266 the genotypes studied (S6 Table). The coefficient of variation (CV %) values were observed
267 to be <20% for most of the traits except NPT, TNGPP, NFGPP and YLD. The agro-
268 morphological performance of the novel hybrids, parents along with standard hybrid checks
269 is presented in Table 1. The mean values for eleven yield component traits in parents, standard
270 hybrid checks and in novel hybrids were as follows: DFF: 96 (range: 81-122), PH: 99.86 cm

271 (range: 73.98-124.00 cm), FLL: 28.64 cm (range: 20.87-43.01 cm), FLW: 1.37 cm (range:
272 1.10-1.97 cm), NPT: 17 (range: 15-18), PL: 22.89 cm (range: 19-28.01 cm), TNGPP: 120
273 (range: 67-211), NFGPP: 83 (range: 39-173), NUFGPP: 30 (range: 6-81), SFP%: 73.76%
274 (range: 45.90%-93.88%), TGW: 20.17 g (range: 12.37-23.20 g) and YLD: 33.20 g (16.17-
275 50.23 g).

Table 1: Agro-morphological data of novel hybrids derived from the test cross between selected DHL-RIL restorers with three popular WA-CMS lines along with parents and checks

Material/Cross description	Generation	DFF±SE	PH±SE	FLL±SE	FLW±SE	NPT±SE	PL±SE	TNGPP±SE	NFGPP±SE	NUFGPP±SE	SFP±SE	TGW±SE	YLD±SE
APMS6A/RIL-1	Novel hybrid (F ₁)	107±0.00	121.37±0.05	36.35±0.33	1.19±0.44	15±0.52	25.40±0.22	126±0.36	64±0.66	62±0.25	50.98±0.33	21.02±0.28	20.10±0.48
APMS6A/RIL-24		89±0.00	103.82±0.25	29.60±0.47	1.48±0.92	16±0.23	23.15±0.48	123±0.56	90±0.35	33±0.22	73.38±0.23	20.28±0.63	29.20±0.36
APMS6A/DHL-2		91±0.00	73.98±0.45	43.01±0.41	1.13±0.42	18±0.22	19.01±0.22	67±0.58	40±0.21	27±0.36	59.84±0.54	22.46±0.44	16.17±0.22
APMS6A/DHL-1		84±0.00	77.52±0.33	24.00±0.35	1.31±0.66	18±0.42	20.33±0.41	132±0.74	119±0.36	13±0.21	90.16±0.63	19.66±0.32	42.21±0.63
IR58025A/RIL-1		111±0.00	97.37±0.68	28.54±0.68	1.36±0.42	16±0.47	26.48±0.85	116±0.36	95±0.84	21±0.52	81.84±0.45	18.87±0.45	28.68±0.33
IR58025A/RIL-24		122±0.00	97.16±0.74	32.37±0.47	1.34±0.42	15±0.36	28.01±0.36	211±0.44	173±0.74	38±0.36	81.33±0.85	19.36±0.33	50.23±0.21
IR58025A/DHL-2		81±0.00	92.00±0.55	20.87±0.66	1.20±0.36	16±0.21	23.67±0.75	99±0.21	87±0.51	12±0.21	87.60±0.66	23.20±0.77	32.29±0.63
IR58025A/DHL-1		107±0.00	95.83±0.64	32.03±0.12	1.61±0.32	16±0.33	24.73±0.35	109±0.36	84±0.33	25±0.85	76.66±0.21	20.75±0.98	27.88±0.55
CRMS32A/RIL-1		96±0.00	86.77±0.41	29.44±0.47	1.10±0.45	16±0.54	23.86±0.88	103±0.88	64±0.14	39±0.66	62.32±0.96	20.51±0.66	21.00±0.45
CRMS32A/RIL-24		102±0.00	108±0.77	27.33±0.36	1.43±0.42	18±0.36	23.33±0.91	141±0.96	118±0.08	23±0.54	83.40±0.66	20.67±0.23	43.90±0.36
CRMS32A/DHL-2		106±0.00	90.26±0.45	28.33±0.11	1.40±0.44	16±0.33	23.30±0.45	139±0.31	109±0.55	30±0.36	78.54±0.36	22.92±0.33	40.93±0.21
CRMS32A/DHL-1		97±0.00	101.33±0.36	29.33±0.32	1.70±0.43	16±0.47	21.00±0.36	189±0.22	168±0.36	21±0.33	88.99±0.45	15.23±0.21	39.97±0.33
APMS6B	Maintainer	94±0.00	105.67±0.84	25.67±0.49	1.50±0.44	13±0.36	20.67±0.24	156±0.20	106±0.21	50±0.84	66.83±0.63	16.73±0.32	16.73±0.21
IR58025B	Maintainer	88±0.00	85.00±0.33	26.00±0.52	1.13±0.53	17±0.44	21.83±0.47	84±0.19	39±0.25	45±0.78	45.90±0.32	19.40±0.44	12.86±0.95
CRMS32B	Maintainer	92±0.00	87.93±0.48	26.60±0.34	1.17±0.85	14±0.47	21.00±0.36	112±0.88	75±0.77	37±0.66	67.36±0.45	18.06±0.96	18.96±0.36
RIL-1	Tester (F ₇)	88±0.00	124.00±0.96	24.00±0.56	1.23±0.43	18±0.23	22.67±0.55	94±0.71	88±0.44	6±0.95	93.88±0.99	22.57±0.32	35.64±0.66
RIL-24	Tester (F ₇)	103±0.00	128.67±0.44	29.00±0.44	1.43±0.96	14±0.47	23.67±0.36	88±0.36	73±0.95	15±0.66	82.52±0.69	19.77±0.11	20.20±0.32
DHL-2	Tester (D ₄)	91±0.00	110.67±0.42	34.00±0.25	1.97±0.88	13±0.69	25.33±0.44	189±0.44	108±0.35	81±0.35	57.43±0.32	18.73±0.21	16.77±0.02
DHL-1	Tester (D ₄)	85±0.00	94.33±0.36	25.33±0.54	1.37±0.43	14±0.35	21.33±0.96	91±0.36	85±0.24	6±0.45	93.31±0.65	21.87±0.32	25.90±0.22
HRI174	Hybrid check 1	97±0.00	100.00±0.45	29.00±0.77	1.50±0.44	10±0.44	20.00±0.87	98±0.21	69±0.32	29±0.36	69.84±0.75	18.53±0.33	25.60±0.47
PA6444	Hybrid check 2	97±0.00	103.67±0.48	28.00±0.36	1.23±0.21	15±0.87	22.33±0.96	75±0.69	52±0.33	23±0.84	68.91±0.36	20.59±0.56	19.68±0.65
US314	Hybrid check 3	87±0.00	92.00±0.37	27.33±0.42	1.37±0.31	14±0.56	20.83±0.55	80±0.22	45±0.25	35±0.36	56.91±0.44	20.47±0.96	17.38±0.55
US312	Hybrid check 4	90±0.02	101.33±0.48	23.00±0.66	1.53±0.24	14±0.41	25.67±0.36	140±0.47	100±0.66	40±0.22	71.39±0.36	20.13±0.33	25.77±0.36
KRH-2	Hybrid check 5	97±0.00	118.00±0.71	29.00±0.45	1.13±0.63	13±0.36	22.33±0.31	128±0.66	104±0.21	24±0.32	80.97±0.84	21.20±0.32	28.73±0.55
	Mean	97	99.05	28.91	1.40	15	23.23	137	107	30	75.64	20.26	27.08
	SD	10.25	13.12	4.53	0.22	2.20	2.51	70.01	69.86	17.25	13.13	2.04	9.84
	SE	2.05	2.62	0.91	0.04	0.44	0.50	14.00	13.97	3.45	2.63	0.41	1.97
	CV%	10.57	13.25	15.67	15.36	14.28	10.82	51.07	65.49	56.80	17.36	10.05	36.32

276 DFF-Days to fifty percent flowering (in days); PH-Plant Height (cm), FLL-Flag Leaf Length (cm); FLW-Flag Leaf width (cm); NPT-Number of Productive Tillers; PL-Panicle Length (cm); TNGPP-
 277 Total Number of Grains Per Panicle; NFGPP-Number of Filled Grains per Panicle; NUFGPP-Number of Unfilled Grains per Panicle; SFP-Spikelet Fertility in Percentage; TGW-Test (1,000) Grain Weight
 278 (g); YLD-Total grain Yield per plant (g); SD-Standard deviation; SE-Standard error; CV%-Coefficient of variation in percentage

279 Difference in the magnitude of three heterosis categories namely, mid-parent heterosis
280 (MPH), better parent heterosis (BPH) and standard heterosis (SH) for YLD and its allied
281 components was calculated at 1% and 5% level of significance. The average YLD of novel
282 hybrids (32.71 g) was higher than that of the average YLD of the isogenic counterpart of
283 CMS lines (i.e., maintainer lines) (17.56 g), of restorers (average YLD-24.02 g) and that of
284 the standard hybrid checks (average YLD-20.68 g). For YLD trait, seven crosses viz.,
285 IR58025A/RIL-24, CRMS32A/RIL-24, APMS6A/RIL-24, CRMS32A/DHL-1,
286 APMS6A/DHL-1, IR58025A/DHL-2 and CRMS32A/DHL-1 were observed to be positively
287 heterotic as compared to the standard hybrid checks, mid and better parents. The values for
288 standard heterosis ranged from 189.01% (IR58025A/RIL-24 vis-à-vis US314) to 1.09%
289 (IR58025A/RIL-1 vis-à-vis KRH-2) (S7 Table). The details of heterosis of the cross
290 combinations with respect to YLD trait is presented in S7 Table.

291 For NPT trait, novel hybrids from all crosses were observed to have more number of
292 productive tillers than all parents and checks. The magnitude of heterosis was observed in the
293 range of -16.67% (BPH) to 80% (HRI174). Range of NPT in these hybrids was 15-18. Out
294 of twelve novel hybrids, two hybrids derived from the crosses IR58025A/RIL-24 and
295 CRMS32A/DHL-1 were positively heterotic for all the categories of TNGPP heterosis. The
296 trait improvement in these hybrids was observed in the range of 40.58% (MPH) to 170.51%
297 (SH over PA6444). Test weight of three hybrids namely IR58025A/DHL-2 (23.20 g),
298 CRMS32A/DHL-2 (22.92 g) and APMS6A/DHL-2 (22.46 g) surpassed all parents and
299 checks whose heterosis was in the range of 9.99% (SH over PA6444) to 31.87% (MPH).
300 Heterotic details of all cross combinations for the traits other than YLD are presented in S8
301 Table.

302 Early flowering and high yielding hybrid is a desirable combination and in this study
303 four such novel hybrids were identified. IR58025A/DHL-2, a high-yielding (32.29 g) and

304 was an early flowering hybrid (DFF, 81 days) than US314 (early duration hybrid);
305 CRMS32A/DHL-1 with YLD of 39.97 g had DFF (97 days) similar to PA6444 and HRI174
306 (medium duration hybrids) but was late than KRH-2; CRMS32A/RIL-24 (YLD, 43.90 g;
307 DFF, 102 days) was early flowering than the better parent (CRMS32A) but was late than
308 medium duration hybrids (KRH-2, PA6444, HRI174); APMS6A/RIL-24 (YLD, 29.20 g;
309 DFF-89 days) was early flowering than medium duration hybrids (KRH-2, PA6444, HRI174)
310 (Table 1).

311

312 **Combining Ability analysis**

313 The Analysis of Variance of the parental lines and checks using $L \times T$ mating design is
314 presented in Table 2. The variances due to parents were significant for the following traits:
315 DFF, PH, FLW, NPT, PL, NFGPP, NUFGPP, TNGPP, TGW, SFP at $P < 0.001$ and FLL,
316 YLD at $P < 0.05$. Variances due to parents versus crosses were observed to be significant
317 ($P < 0.001$) for traits namely DFF, PH, FLL, NPT and YLD. Variances due to crosses were
318 significant ($P < 0.001$) for all traits except SFP. The $L \times T$ effect was significant ($P < 0.001$) for
319 traits DFF, PH, FLL, NPT and TNGPP whereas the effect was significant ($P < 0.01$) for traits
320 NFGPP, NUFGPP and TGW. Among the proportion of contribution of lines and testers, it
321 was observed that the lines had contributed ($>40\%$) for traits namely NPT, PL, SFP whereas
322 the testers had contributed for traits namely FLW and TGW. A major proportion of trait
323 contribution was observed for traits namely DFF, PH, FLL, NFGPP, TNGPP, TGW and
324 YLD by $L \times T$.

Table 2: Analysis of variance (ANOVA) for yield and its associated traits

Source	df	DFF	PH	FLL	FLW	NPT	PL	NFGPP	NUFGPP	TNGPP	SFP	TGW	YLD
Replication	2	0	0.06	0.3	0.54	0.04	0.17	0.38	0.5	0.32	1.13	0.49	2.43
Genotype	19	59.50***	21.38***	6.98***	6.31***	26.97***	4.05***	5.26***	11.12***	5.35***	7.24***	5.48***	13.13***
Parents	7	16.83***	25.33***	2.87*	9.72***	8.22***	2	2.32	21.23***	5.28***	11.60***	5.46***	3.55*
Parents vs. crosses	1	153.99***	45.45***	13.70***	0.34	160.66***	7.68*	7.14*	4.59	2.6	5.07	2.05	125.28***
Crosses	11	78.06***	16.68***	8.98***	4.68***	26.70***	5.02***	6.96***	5.27***	5.64***	4.65**	5.80***	9.03***
Lines	2	1.06	0.03	0.62	0.84	12.26	7.21	2.44	0.44	1.22	6.08	0.34	0.67
Testers	3	0.73	1.08	0.1	3.21	0.4	4.5	1.02	1.27	0.66	2.23	2.39	0.24
Line × testers	6	83.14***	19.72***	13.04***	2.97*	9.25***	1.63	5.48**	5.41**	5.95***	2.05	4.60**	12.28
Error	50	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
Contribution of lines (%)		20.62	0.64	16.46	9.77	77.26	42.52	35.06	8.35	23.45	48.92	4.9	16.76
Contribution of testers (%)		21.28	34.86	4.28	55.62	3.83	39.79	21.97	35.59	18.99	26.96	51.83	9.11
Contribution of L × T(%)		58.09	64.48	79.24	34.59	18.89	17.67	42.96	56.04	57.55	24.1	43.25	74.12

325 df-Degrees of freedom; DFF-Days to fifty percent flowering; PH-plant height (cm), FLL-Flag leaf length (cm); FLW-Flag leaf width (cm); NPT-Number of productive tillers; PL-panicle length (cm); NFGPP-Number of filled grains per panicle; NUFGPP-Number of unfilled grains per panicle; TNGPP- Total number of grains per panicle; SFP-Spikelet fertility in percentage; 327 TGW-test (1,000) grain weight (g); YLD-Total grain yield per plant (g). *P< 0.05; **P< 0.01; ***P< 0.001

328 **General Combining Ability (GCA) analysis**

329 A brief account of GCA effects of all CMS lines and restorers for various traits namely YLD,
330 NPT, TNGPP and TGW are presented (Table 3). Neither the lines nor the testers could
331 demonstrate positive GCA collectively for all the traits. For total grain yield per plant (YLD)
332 trait, CMS line IR58025A was observed to be the best combiner and DHL-1 (at $P <$
333 0.001) was the best combiner among the testers. For trait number of productive tillers (NPT),
334 APMS6A was observed to be the best combiner with GCA value of 6.22 ($P < 0.001$) followed
335 by DHL-2 (1.67, $P < 0.01$). For TNGPP trait, highest GCA effect was recorded with RIL-24
336 (GCA value: 21.43, $P < 0.01$) followed by CRMS32A (GCA value: 16.2, $P < 0.05$). For one of
337 the most crucial YLD contributing trait i.e., TGW, the following observation was made:
338 DHL-2 was the best combiner (GCA value: 2.10, $P < 0.001$) and APMS6A, the best combiner
339 among the lines (0.55, non-significant).

340

341 **Specific Combining Ability (SCA) analysis**

342 Similar to the results obtained in GCA analysis, none of the novel hybrid combination could
343 demonstrate a positive SCA effect for all traits under study (Table 4). For the traits NPT,
344 TGW and YLD, the highest SCA values of 3.68, 2.29 and 14.15 ($P < 0.001$), respectively,
345 was observed between to the hybrid derived from the cross, IR58025A and DHL-1. For all
346 cross combinations, the range of SCA values for NPT trait was observed to be -3.76 to 3.68
347 ($P < 0.01$) and 58.33% (i.e., seven cross combinations) of hybrids demonstrated positive SCA
348 effect for this trait. For the trait TNGPP, the range of SCA values was observed to be
349 between -36.53 and 50.84. It was noted that, 41.66% of crosses (i.e., five crosses)
350 demonstrated positive SCA effect among which, the hybrid derived from IR58025A/RIL-24
351 recorded the highest SCA value of 50.84 ($P < 0.01$). For TGW trait, apart from the hybrid
352 derived from IR58025A/DHL-1 observed to have the highest SCA effect (2.29, $P < 0.01$),

353 41.66% (i.e., five) of other crosses demonstrated a positive SCA value. Lastly for YLD trait,
354 apart from the cross combination IR58025A/DHL-1 (with highest SCA effect value, 14.15,
355 $P < 0.001$), 33.33% (i.e., four) of remaining crosses showed a positive SCA value. The range
356 of SCA values of all crosses was in the range of -14.3 to 14.15 ($P < 0.001$). SCA effect of all
357 crosses for remaining traits is presented in the Table 4.

358

359 **Trait wise *per se* performance of novel hybrids**

360 As shown in S9-S10 Tables, all novel hybrids were observed to demonstrate heterosis at least
361 for one trait. The hybrid derived from cross, CRMS32A/DHL-1 (Fig 1, S9 Table) indicated
362 *per se* positive heterotic potential for 66.66% of traits under study (i.e., for eight traits).

363

364 Fig 1. Images of panicles of the novel F₁hybrid derived from the cross CRMS32A (female
365 parent) and DHL-1 (male parent) along with panicles of the hybrids checks KRH-2, US312,
366 US314, PA6444 and HRI174.

367

368 This being an early flowering (DFF, 97 days), it displayed an improvement in six traits viz.,
369 YLD, FLW, NPT, TNGPP, NFGPP and SFP. It also recorded a lesser number of unfilled
370 grains than all standard hybrid checks by 37.50%. The percentage of trait improvement when
371 compared with the mean value of all standard checks observed to be as follows: 38.87%
372 (YLD), 25% (FLW), 18.75% (NPT), 82.69% (TNGPP), 115.18% (NFGPP) and 29.72%
373 (SFP). In 75% of the traits which demonstrated heterosis, SCA of the cross was observed to
374 be the causative effect. The hybrid derived from the cross combination CRMS32A/DHL-2
375 (S10 Table, S1 Fig) was observed to be heterotic for six traits. It was observed to surpass all
376 standard hybrid checks for the traits YLD (by 40.53%), FLL (by 7.09%), NPT (by 18.75%),
377 SFP (by 26.44%) and TGW (by 59.27%). Similar to CRMS32A/DHL-1, this hybrid was also

378 observed to have less number of unfilled grains and exceeded the values of all standard
379 checks by 37.50%. Moreover, 33.33% of traits (i.e., four traits) that showed an improvement
380 were observed to have a higher prevalence of crosses SCA.

381 The hybrid derived from the cross, APMS6A/DHL-2 (S10 Table, S2 Fig), was an
382 early flowering hybrid (DFF, 90 days i.e. four days earlier than the mean DFF value of all
383 standard checks) along with improvement with respect to the traits FLL (58.78%), NPT
384 (27.77%) and had lesser percentage of unfilled grains as compared to all standard checks.
385 Equal preponderance of GCA-SCA effects were observed with respect to contribution
386 towards improvement of the traits in this hybrid. The hybrid derived from the cross
387 IR58025A/DHL-2 (S10 Table, S3 Fig) was an early flowering hybrid (DFF, 81 days i.e.,
388 earlier by 13 days in comparison with the mean value of standard checks) and demonstrated
389 improvement with respect to the traits viz., NPT (by 18.75%), PL (by 16.36%), SFP (by
390 26.44%) and TGW (14.39%). Higher preponderance of GCA of parents was contributing
391 towards the improved traits. The fifth hybrid derived from the cross combination
392 IR58025A/RIL-24 was observed to be positively heterotic than the mean values of all
393 standard checks for four traits namely YLD (by 51.54%), FLL (by 17.69%), TNGPP (by
394 50.71%) and NFGPP (by 56.72%). SCA of the cross combination was the causative effect for
395 heterosis in three traits namely FLL, TNGPP and NFGPP. The details of *per se* performance
396 of other novel hybrids are presented in S10 Table and S4-S8 Fig.

397

398

Table 3: Estimation of general combining ability effects of parents for yield and its associated traits

Parents	DFF	PH	FLL	FLW	NPT	PL	NFGPP	NUFGPP	TNGPP	SFP	TGW	YLD
IR58025A	5.91***	0.13	-1.58	0.02	-5.28***	2.11***	12.97	-3.31	9.65	6.16***	-0.09	6.13***
CRMS32A	0.91***	1.14	-1.42	0.05	-0.93	-0.60	17.76***	-1.57	16.2*	3.96	-0.46	-1.45***
APMS6A	-6.83***	-1.27	3.01**	-0.07	6.22***	-1.50**	-30.75*	4.89	-25.85*	-10.0***	0.55	-4.64*
S.E (line)	0.68	1.58	0.91	0.04	0.54	0.54	7.2	2.77	8.38	2.48	0.41	1.91
RIL-1	5.33***	6.38***	1.4	-0.13	-0.38	1.76***	-18.5***	11.34**	-7.17	-9.11***	-0.16	1.66
DHL-1	-3.33***	-3.89***	-1.58	0.18***	-1.23*	-1.45**	14.18*	-5.6*	8.57	4.21***	-1.74***	4.61***
DHL-2	-6.80***	-10.0***	0.42	-0.11*	1.67**	-1.48**	-15.73**	-7.1	-22.84**	1.76	2.10***	-3.61***
RIL-24	5.08***	7.54***	-0.24	0.06	-0.05	1.17*	20.07**	1.36	21.43**	3.13	-0.19(6)	-2.66***
S. E. (tester)	0.78	1.82	1.05	0.04	0.63	0.63	8.4	3.2	9.68	2.86	0.47	2.2

399 DFF-Days to fifty percent flowering; PH-plant height (cm), FLL-Flag leaf length (cm); FLW-Flag leaf width (cm); NPT-Number of productive tillers; PL-panicle length (cm); NFGPP-
 400 Number of filled grains per panicle; NUFGPP-Number of unfilled grains per panicle TNGPP- Total number of grains per panicle; SFP-Spikelet fertility in percentage; TGW-test (1,000)
 401 grain weight (g); YLD-Total grain yield per plant (g), S.E.-Standard Error; *P< 0.05; **P< 0.01; ***P< 0.001, The significant GCA values (indicated by *) for each trait is presented.
 402

Table 4: Estimation of specific combining ability effects of various crosses for yield and its associated traits

Entry	DFF	PH	FLL	FLW	NPT	PL	NFGPP	NUFGPP	TNGPP	SFP	TGW	YLD
IR58025A/DHL-1	5.08***	4.12*	5.16**	0.04	3.68**	0.59	-38.3***	6.77	-31.57**	-9.28***	2.29**	14.15***
CRMS32A/DHL-1	0.08	8.63***	2.30	0.10	0.07	-0.41	41.48*	0.18**	41.63*	4.98	-2.85***	-8.22***
APMS6A/DHL-1	-5.16***	-12.7***	-7.46***	-0.51	-3.76**	-0.18	-3.12	-6.95	-10.08	12.55***	0.55	-5.92
IR58025A/DHL-2	-17.2***	6.44***	-8.70***	-0.06	1.17	-0.43	-5.67	-4.82	-10.49	3.79*	-0.47	-9.87***
CRMS32A/DHL-2	12.7***	3.70***	-0.69	0.10	-3.17**	1.91	14.32	9.02	23.35	-1.49	0.98	12.68***
APMS6A/DHL-2	4.52***	-10.1***	8.70***	-0.03	1.99	-1.47	-8.64	-4.2	-12.85	-2.3**	-0.5	-2.81***
IR58025A/RIL-1	0.41*	-4.60*	-1.31	0.12	-2.26*	-0.88	5.81	-14.58*	-8.77	9.09***	-1.16	10.57***
CRMS32A/RIL-1	-9.58***	-16.2***	-0.57	-0.16*	2.55*	-0.78	-25.08*	-3.39	28.48*	-3.38	0.83	-6.03***
APMS6A/RIL-1	9.16***	20.81***	1.89	0.04	-0.28	1.66	19.27	17.98**	37.25*	-5.71*	0.32	-1.09***
IR58025A/RIL-24	11.75***	-5.96**	4.16*	-0.1	-2.60*	0.71	38.21**	12.63	50.84**	-3.59	-0.65	-14.3***
CRMS32A/RIL-24	-3.25***	3.86*	-1.02	0.03	0.55	-0.71	-30.72	-5.81	-36.53*	-0.11	1.02	4.53***
APMS6A/RIL-24	-8.50***	2.10	-3.11	0.14	2.05	-0.01	-7.49	-6.81	-14.31	3.71	-0.37	11.28***

403 DFF-Days to fifty percent flowering; PH-plant height (cm), FLL-Flag leaf length (cm); FLW-Flag leaf width (cm); NPT-Number of productive tillers; PL-panicle length (cm); NFGPP-
 404 Number of filled grains per panicle; NUFGPP-Number of unfilled grains per panicle TNGPP- Total number of grains per panicle; SFP-Spikelet fertility in percentage; TGW-test (1,000)
 405 grain weight (g); YLD-Total grain yield per plant (g), *P < 0.05; **P < 0.01; ***P < 0.001, The significant SCA values (indicated by *) for each trait is presented.

406 As shown in S11 Table, *per se* performance of cross combinations was assessed in view
407 of SCA effect contributions in hybrid improvement. For YLD trait, it was observed that the
408 highest yielding novel hybrid derived from the cross IR58025A/RIL-24 (50.23 g/plant) was
409 observed with high GCA effect (6.13, $P < 0.001$). The GCA nature of both the female parent
410 was observed to be high than its male counter-part. The lowest yielding hybrid
411 (APMS6A/DHL-2, 16.17 g/plant) was observed with negative SCA effect (-2.81) wherein the
412 nature of GCA of parents was observed to be low. For TNGPP trait, the hybrid,
413 IR58025A/RIL-24, with highest number of total number of grains per panicle (i.e., 211) was
414 observed with highest SCA effect value of 50.84, $P < 0.001$. Both the parents demonstrated
415 high GCA effects. Also, the hybrid (APMS6A/DHL-2) recorded with lowest number of
416 TNGPP was observed to have a negative SCA effect where both the parents showed low
417 GCA. A similar kind of trend was observed for traits namely FLL, FLW, NFGPP, NUFGPP
418 and SFP.

419

420 **Discussion**

421 The primary objective of heterosis breeding programs in crops is to identify best performing
422 hybrids for commercialization along with identifying genetically diverse and better parental
423 lines which could be utilized for the development of promising hybrids in future crosses [32].
424 Selection of best performing hybrids for yield and other desired characters relies on
425 undertaking trials in multiple environments followed by a rigorous statistical analysis [33].
426 Trials which are based on various mating designs and which are accompanied by statistical
427 analysis not only differentiates between the effect of genetical and environmental factors but
428 also partitions genetic influences into additive and non-additive components [32, 34]. Such
429 statistical analyses are possible only when an in-depth scrutiny of the relationship between
430 combining ability of parental lines and *per se* heterosis of the novel hybrids is

431 undertaken[35]. As opined by [36], combining ability is an estimate of the genotypic values
432 of lines and testers in relation with their offsprings performance using a definite mating
433 design, which is generally assessed through progeny testing. When the novel progeny
434 demonstrates heterosis, the parental lines are considered to have a good general combining
435 ability. Apart from the general combining ability (GCA) which is statistically main effect in
436 nature, specific combining ability (SCA) is also interactive in nature [37]. Both GCA and
437 SCA play a crucial role in novel hybrid development by influencing the evaluation of inbred
438 lines [38]. Moreover, manifestation of GCA is owed to genetic activities among the loci
439 which are largely additive effect in nature coupled with additive \times additive interactions [39]
440 whereas SCA embodies when the genetic loci are under non-additive effects namely
441 dominance and epistatic variances. If epistasis predominates the genetic loci, interactive
442 components namely additive \times dominance and dominance \times dominance interactions come into
443 play [33]. Considering these points, the present study was undertaken with an objective of
444 assessing the heterotic potential and combining ability of immortal restorer lines derived from
445 an elite rice hybrid, KRH-2 and identification of promising hybrids with a potential for
446 commercialization.

447 Evaluation of novel hybrids produced from the test crosses made between popular CMS
448 line, IR58025A and 40 immortal restorers (16 selected DHLs and 24 selected RILs) derived
449 from an elite hybrid KRH-2 demonstrated that four hybrids from restorers namely RIL-1,
450 RIL-24, DHL-1 and DHL-2 out-yielded KRH-2 for YLD trait. Molecular analysis of these
451 four restorers with fertility restoration specific markers for *Rf3* and *Rf4* loci showed the
452 presence of both the genes in them. Also, the fertility restoration analysis of test crosses
453 validated the results of markers analysis and indicated that the DHLs/RILs have complete
454 fertility restoration ability. Our results are in accordance with the reports of [25] and [40],

455 who concluded that that fertility restoration trait is largely controlled by *Rf4* and *Rf3* genes
456 and *Rf4* has a major effect on the trait.

457 The CV % of the traits DFF, PH, FLL, FLW, PL, SFP and TGW (of parents, novel
458 hybrids and standard hybrid checks) were observed to be below 20%, which indicates that the
459 experiments were, conducted properly [41]. Few traits viz., NPT, TNGPP, NFGPP and YLD
460 recorded higher CV% of > 20%, demonstrating higher genotypic variation between the
461 parental lines, their hybrids and standard checks [42]. Higher phenotypic variance (V_p) and
462 phenotypic coefficient variance (PCV) than their equivalent genotypic variance (V_g) and
463 genotypic coefficient variance (GCV) for all the characters was observed in this study,
464 demonstrating a significant influence of environment on all the traits [43-45]. Though the
465 environmental influence was observed to be higher than genetic preponderance, it was
466 interesting to note that the magnitude of difference between the two kinds of influences was
467 low for all the traits [42]. Therefore, for future breeding programs, selection of genotypes
468 could be based on these traits as pointed out by [44, 46]. Further, [29, 47] indicated that
469 heritability plays an important role in studying quantitative characters by indicating
470 genetically, the reliability of a phenotype for enhancing its breeding value. High heritability
471 estimates for all the traits except FLW demonstrate the traits' higher response during
472 selection. These results are in accordance with the reports of [43, 47, 48]. As opined by [49],
473 the magnitude of genotypic trait improvement in novel population vis-à-vis parental
474 population at certain selection intensity less than one selection cycle is revealed through an
475 assessment of genetic advance (GA). In our study the GA value for YLD trait was observed
476 to be 24.48. This indicates that if better performing hybrids identified in this study are used as
477 restorers in future crossing programs, then they can significantly contribute towards
478 development of better novel hybrids [42]. Further, as pointed out by [50], prediction of
479 genetic gain under selection is more reliable when high heritability (H^2) estimates are

480 combined with high genetic advance as percent of the mean (GAM). It is because GAM helps
481 in understanding the type of gene action for various polygenic traits and therefore combined
482 estimates of high H^2 -high GAM is an important selection parameter. In this study, the traits
483 DFF, PH, FLL, NPT, TNGPP, NFGPP, SFP and YLD demonstrated high H^2 -high GAM and
484 high H^2 with moderate GAM noticed for PL trait. These observations imply the
485 predominance of additive gene action and selection of the above mentioned traits could be
486 possible if done in early generations [49, 51]. However, moderate H^2 with moderate GAM
487 was observed with FLW trait indicating non-additive gene action implying that the
488 improvement of FLW trait is only possible through deployment of recurrent selection method
489 [42, 51].

490 Correlation analysis is used as an important tool for indirect selection as it aids the plant
491 breeder in getting a better understanding of the various traits, which may influence yield. As
492 pointed out by [52], improvement in the desired character (such as grain yield) on the basis of
493 its allied traits selection would be evident in successive generations of segregating
494 population. Keeping these points in view, in this study, the correlation analysis between the
495 various component traits of yield were assessed in the different rice hybrids and the analysis
496 revealed a strong and positive correlation between YLD and its important allied parameters
497 namely NPT, PL, FLL, TNGPP, SFP, FLW and NFGPP at both 1% and 5% levels of
498 significance [53, 54]. This observation indicates that selection of these traits in parental lines
499 will be helpful for development of hybrids with better yield heterosis. A negative correlation
500 was observed between YLD and PH trait in this study and this is in accordance with the
501 earlier reports [55,56]. A positive but insignificant correlation was observed between PH and
502 SFP which is in accordance with the study of [57-59]. Negative correlation between DFF and
503 PH, PT, NFGPP, TGW, YLD was observed in our study. These results are in accordance

504 with [60] (for DFF and YLD), with [61] (for DFF and NPT), with [42] (for DFF and NFGPP,
505 TGW) and is not in accordance with [2, 61] (for DFF and PH).

506 All the novel hybrids were observed to be positively heterotic for any of the three
507 categories of heterosis, for at least one important trait related to productivity. However, none
508 of the hybrids showed positive heterosis for all the traits under study and they out yielded the
509 parents and standard hybrid checks for YLD and its allied trait components in various degrees
510 except for PH. For five traits namely, YLD, FLL, FLW, TNGPP and NFGPP, average
511 standard heterosis (SH) for all cross combinations was the highest and the values were in the
512 range of 1.31% (FLW) to 189.01% (YLD). For six traits namely, NPT, PL, NUFGPP, SFP,
513 TGW and DFF, average mid-parent heterosis (MPH) value was highest among the three
514 categories for all cross combinations and it was in the range of 7.52% (NUFGPP) to 46.08%
515 (NPT). The trait PH demonstrated negative heterosis in the novel hybrids. Different values
516 for variance with respect to mid-parent heterosis (MPH), better parent heterosis (BPH) and
517 standard heterosis (SH) was observed among the novel hybrids. These observations are in
518 accordance with earlier observations those previously reported by [3, 62, 63].

519 Estimates of GCA have been used in various crop breeding systems as an index of
520 breeding value of a particular genotype [38]. A higher value for GCA demonstrates the
521 predominance of parental mean over than the general mean. As per [64], high GCA values
522 are not only indicative of the flow of useful genes from parents to offspring at a higher rate
523 but are also an indicator of additive gene action in play. Therefore, from the breeding point of
524 view, an estimate of higher GCA also indicates higher heritability and reduced environmental
525 effects [33] and higher gene interactions [34, 65]. As observed by [36, 66], a parent that is
526 good in *per se* performance, when used in hybridization may not produce a superior hybrid.
527 In such cases, a superior hybrid can be produced when there would be a proper selection of
528 other parent for hybridization with a poor GCA [67]. In the present study for determining the

529 best combiner among the lines and testers, positive and significant values were considered for
530 all the traits except DFF, PH and NUFGPP. Among the CMS lines under study, IR58025A
531 demonstrated best combining ability for traits viz., PL (2.11***), SFP (6.16***) and YLD
532 (6.13***). CRMS32A was observed to show positive and significant GCA for traits namely
533 NFGPP (17.76***) and TNGPP (16.2*). APMS6A was observed to show best combining
534 ability for the traits namely DFF (-6.83***), FLL (3.01**) and NPT (6.22***). Since,
535 IR58025A showed higher GCA values for YLD trait and for its two crucial trait components;
536 it was considered to be the best combiner among the lines. Among the testers, DHL-1 was
537 observed to have positive and significant GCA values for the traits namely FLW (0.18***),
538 NFGPP (14.18*), SFP (4.21***) and YLD (4.61***). Tester DHL-2 showed positive and
539 significant GCA values for traits NPT (1.67***) and TGW (2.10***) and desirable negative
540 GCA values for the traits DFF (-6.80***) and PH (-10***). RIL-24 was observed to have the
541 higher GCA values for traits PL (1.17*), NFGPP (20.07**) and TNGPP (21.43**). Lastly,
542 RIL-1 showed positive and significant GCA value for trait PL (1.76***). Therefore, DHL-1
543 was identified to be the best combiner among the testers. These observations are in
544 accordance with reports of [3, 68, 69], wherein no single parent was identified to have a good
545 GCA for all the traits in their studies. [2]demonstrated that the most promising and high
546 yielding hybrids in their study were produced from two of the parents which showed the best
547 GCA for grain yield. In our study, the most promising hybrid (CRMS32A/DHL-1) which
548 showed heterosis for eight traits, an equal predominance of SCA and GCA effects was
549 observed which translated into higher percentages of heterosis than all the standard varietal
550 and hybrid checks. Highest yielding hybrid (IR58025A/RIL-24) was produced from those
551 parents who showed the best and poor GCA for YLD trait. Therefore, our observations are
552 partly in accordance with the report of [2].

553 If the potential of a parental line to combine well in a particular cross combination is
554 observed then they are supposed to have a good SCA [33]. Based on the GCA of parents,
555 various types of gene actions have been reported for the manifestation of SCA (in cross
556 combinations) among the various crop systems. As observed by [70, 71], both the parents
557 with a good GCA may produce a high SCA effect attributing to additive × additive gene
558 action whereas desirable additive effects of a good combiner and favorable epistatic
559 interactive effects of poor combiner parent comes into play when good and poor GCA parents
560 results in a high SCA effect [72]. Lastly, both the parents having low GCA effects, if
561 observed to bring about high SCA effect, it may be due to over dominance, non-allelic gene
562 interaction i.e., of dominance × dominance type [73]. In our study for two traits namely
563 FLW and PL, no significant SCA effects were observed, indicating that the trait values are in
564 the range of parental averages [2].

565 The SCA estimates of cross combinations and GCA effects of the parents are described
566 in S9-S10 Tables. For the YLD trait, the highest yielding hybrid (50.23 g /plant) derived from
567 IR58025A/RIL-24 resulted from good-by-poor general combiners, which implies that
568 additive × additive gene action, was the causative effect of heterosis in this cross. In the
569 lowest yielding novel hybrid (16.17 g/plant) derived from the cross combination,
570 APMS6A/DHL-2, both the parents were poor combiners for yield. For NPT trait, four cross
571 combinations, APMS6A/DHL-2, APMS6A/DHL-1, IR58025A/DHL-2 and CRMS32A/RIL-
572 24 produced the hybrid with highest number of productive tillers (i.e.,18). Higher
573 predominance of GCA effect on the above mentioned four crosses, additive × additive gene
574 action of parents brought about heterosis in the NPT trait. Though the hybrid from cross
575 combination APMS6A/DHL-2 had more number of NPT, the least number of TNGPP and
576 NFGPP might be attributed to its least yield. The hybrid produced from the cross
577 combination, IR58025A/RIL-1, was observed to have a negative SCA effect with least

578 number of productive tillers, this demonstrates an occurrence of bad combination of alleles
579 from the parents responsible for negative SCA effect in the hybrid [2]. For TNGPP trait, the
580 hybrid IR58025A/RIL-24 recorded highest number of total grains per panicle (i.e., 211). An
581 exceptionally high SCA value was observed in this hybrid, which validated the SCA's
582 predominance. The nature of GCA effect of one of the parents was high which indicated
583 towards additive \times additive gene action for SCA's prevalence. The least number of total
584 grains per panicle was observed in the hybrid APMS6A/DHL-2. The nature of GCA of
585 parents was poor-by-poor that might have resulted in lesser trait expression. Dominance \times
586 dominance gene interaction promoted the SCA's dominance on the hybrid but the
587 combination of bad parental alleles contributed for a negative SCA value. For TGW trait, the
588 hybrid IR58025A/DHL-2 with the highest TGW (23.20 g) was observed to have a higher
589 GCA effect than SCA as the nature of GCA effect of one of the parents was high. For the
590 cross combination, CRMS32A/DHL-1 the lowest TGW value of 15.23 g might be due to
591 unfavorable allelic combination from parents resulted in negative SCA value. These results
592 are partly in accordance with [2, 3, 62, 63], who reported that in the crosses analyzed in their
593 studies, despite both the parents being good general combiners, they could not produce
594 hybrids with positive SCA values. In our study, in those cross combinations with higher and
595 positive SCA values (due to high GCA values of parents), good combination of alleles from
596 the parents might have resulted in positive SCA [2]. Also, those cross combinations that
597 showed negative SCA effect value in our study, witnessed low to average GCA parental
598 effects which is not in accordance with [68, 69]. The predicted genetic mechanisms of the
599 SCA delineated in this study were in accordance with the report of [33].

600 In our study, the SCA variance was observed to be higher than the GCA variance.
601 Higher values of dominance genetic variance (δ^2D) were observed for all the traits except
602 FLW and PL. With respect to traits viz., TNGPP, NUFGPP, PH, YLD, DFF and FLL, these

603 were under partial dominance, whereas the traits FLW, NPT, PL, NFGPP, SFP and TGW
604 were a consequence of dominance and also the GCA variance ratio for all the traits was
605 below 1. All these observations indicate a predominance of non-additive gene action which is
606 partly in accordance with the report of [2], wherein few traits were observed to be under
607 preponderance of additive gene action. Also, the narrow sense heritability (h^2) values were
608 greater than 10 for all the traits with values being lower than broad sense heritability (H^2). It
609 is surprising to note that trait PL recorded lower values of both h^2 and H^2 . This might be due
610 to lower phenotypic variation among the novel hybrids for this trait as explained by [2]. Our
611 observation of non-additive gene action underlying the genetic variance of all the traits under
612 study are in accordance with earlier observations by [74, 75], thus highlighting the
613 importance of non-additive gene action in heterosis breeding.

614 Improvement in the quantitative traits is dependent on factors such as proportionate
615 contribution of GCA and SCA to the crosses along with the type of breeding method to be
616 used for augmenting the trait value and whether early or late generations of breeding material
617 are to be used for the same. These factors help a plant breeder to make crucial decisions in
618 the course of plant breeding. As demonstrated by [76, 77] in other crops such as maize, if the
619 GCA variances exceed the SCA variances, the prediction of GCA effects is based on an
620 assessment of genotypes during early generations which aids in identification of promising
621 hybrids. This is because if a line with good GCA is identified during early generations, this
622 early selection aids in the transfer of favorable and heritable genetic material from parents to
623 offsprings [78]. Early testing of such promising lines with high GCA values not only aids in
624 improvement of parental lines but also reduces the cost and time for its development during
625 breeding programs. When high SCA effect indicates the preponderance of non-additive
626 genetic variance, selection of such lines should be undertaken in later generations when such
627 variances are known to get fixed in homozygous lines [79, 80].

628 As suggested by [81], a standard heterosis percentage of 20%-30% in a hybrid is
629 considered optimum to mitigate the higher seed cost and bring profit to farmers in self-
630 pollinated crops such as rice. In our study, the promising heterotic combinations (for YLD
631 trait) were assessed for standard heterosis percentages, for trait *per se* performance and GCA-
632 SCA effects. In our investigation, 58.33% (i.e., seven) of the novel cross combinations had
633 heterosis percentages more than 20% for YLD trait when analyzed for all categories of yield
634 heterosis. Among them, two hybrids namely IR58025A/RIL-24 (50.23 g/plant),
635 CRMS32/RIL-24 (43.90 g/plant) were observed to have standard heterosis of more than 50%
636 when assessed with five standard checks. Also, among the seven novel crosses which were
637 positively heterotic for all categories of YLD trait heterosis, three crosses (42.85%), namely
638 CRMS32A/RIL-24, APMS6A/RIL-24 and CRMS32A/DHL-2 demonstrated high SCA
639 effect. It was interesting to note that, these three cross combinations demonstrated high SCA
640 effects and low GCA value for both the parents. Higher SCA values may be due to over
641 dominance, non-allelic gene interaction i.e., of dominance \times dominance type as delineated by
642 [73]. Therefore, as suggested by [3], in order to produce heterotic F₁s, selection of parents
643 with diverse GCA effects i.e. high-low and low-low may be undertaken to realize better
644 levels of high heterosis. For TNGPP trait, IR58025A/RIL-24 cross observed to demonstrate
645 standard heterosis more than 50% with desirable SCA effects. Therefore, the seven cross
646 combinations, viz., IR58025A/RIL-24, CRMS32A/RIL-24, APMS6A/RIL-24,
647 CRMS32A/DHL-1, APMS6A/DHL-1, IR58025A/DHL-2 and CRMS32A/DHL-2 which
648 demonstrated positive heterosis for all the categories of YLD heterosis could be considered
649 for commercial exploitation. The extra-ordinarily higher levels of heterosis (as high as
650 189.01% of standard heterosis in IR58025A/RIL-24 as compared to check US314) observed
651 in this study were previously reported by [82, 83]. The identified promising novel hybrids in

652 this study needs to be evaluated in multi-location trials to assess their consistency with
653 respect to yield heterosis and after validation; they can be released for cultivation.

654

655 Conclusion

656 In the present study, combining abilities of three popular CMS lines (IR58025A, CRMS32A
657 and APMS6A) and four novel restorers (DHL-1, DHL-2, RIL-1 and RIL-24) through line ×
658 tester analyses were assessed for their utility in hybrid breeding. CMS line IR58025A was
659 identified as best combiner as it showed positive significant values for total grain yield per
660 plant, panicle length and spikelet fertility. Distinct parents that produced heterotic hybrids
661 and possessing varying levels of SCA effects were identified and they could be utilized for
662 heterosis breeding. Seven cross combinations (IR58025A/RIL-24, CRMS32A/RIL-24,
663 APMS6A/RIL-24, CRMS32A/DHL-1, APMS6A/DHL-1, IR58025A/DHL-2 and
664 CRMS32A/DHL-2) which demonstrated positive heterosis for all the categories of yield
665 heterosis were identified for commercialization. These hybrids could be considered for large-
666 scale cultivation after their validation in multi-location trials.

667

668 Acknowledgement

669 Swapnil is grateful to DST INSPIRE Fellowship Division, New Delhi for providing the
670 financial assistance (Grant # DST/INSPIRE Fellowship/2013/1146), Department of
671 Biotechnology (DBT), Govt. of India and to the Director, ICAR-IIRR for providing the
672 infrastructural facilities for carrying out this research work.

673

674

675

676

677 References

678

679 1. Khush G. Strategies for increasing the yield potential of cereals: case of rice as an
680 example. *Plant Breed.* 2013; 132: 433-436.

681 2. Gramaje LV, Caguiat JD, Oscar SJ, dela Cruz QD, Millas RA, Carampatana JE,
682 Tabanao DAA. Heterosis and combining ability analysis in CMS hybrid rice.
683 *Euphytica.* 2020; 216 (14) 1-22.

684 3. Tiwari DK, Pandey P, Giri SP, Dwivedi JL. Heterosis studies for yield and its
685 components in rice hybrids using CMS system. *Asian J. Pl. Sci.* 2011; 10: 29-42.

686 4. DoE&S. Directorate of Economics & Statistics, Department of Agriculture,
687 Cooperation and Farmers Welfare, Government of India. 2019.

688 5. Rao LVS, Fiyaz RA, Jukanti AK, Padmavathi G, Badri J, Anantha MS, Nagarjuna E
689 and Voleti SR. Coordinated Rice Improvement Project in India: Its Significant
690 Achievements and Future prospects. *Oryza.* 2019; 56: 82-91.

691 6. Senguttuvvel P, Revathi P, Kemparaju KB, Sruthi K, Sadath Ali M, KoteswaraRao P,
692 Hari Prasad AS. Rice Hybrids Released in India. Compendium No. 103/2019. ICAR-
693 IIRR, Rajendranagar, Hyderabad-500 030. India. p. 127.

694 7. Virmani SS, Mao CX, Hardy B. Hybrid Rice for food security, poverty alleviation,
695 and environmental protection. In: Proceedings of the 4th International Symposium on
696 Hybrid Rice, Hanoi, Vietnam, 14–17 May 2002. International Rice Research Institute,
697 Los Ban˜os, Philippines. 2003; p 407.

698 8. Kumar A, Singh VJ, Krishnan SG, Vinod KK, Bhowmick PK, Nagarajan M, et al.
699 WA-CMS-based iso-cytoplasmic restorers derived from commercial rice hybrids
700 reveal distinct population structure and genetic divergence towards restorer
701 diversification. *3 Biotech.* 2019; 9: 299, 1-15.

702 9. Xie F, He Z, Esguerra MQ, Qiu F, Ramanathan V. Determination of heterotic groups
703 for tropical Indica hybrid rice germplasm. *TheorAppl Genet.* 2014; 127(2):407–417.

704 10. Spielman DJ, Kolady DE, Ward PS. The prospects for hybrid rice in India. *Food Sec*
705 2013; 5: 651–665.

706 11. Subbaiyan GK, Waters DL, Katiyar SK, Sadananda AR, Vaddadi S, Henry RJ.
707 Genome-wide DNA polymorphisms in elite *indica* rice inbreds discovered by whole-
708 genome sequencing. *Plant Biotechnol J.* 2012; 10: 623–634.

709 12. Young JB, Virmani SS. Inheritance of fertility restoration in a rice cross. *Rice Genet*
710 *Newsl* 1984; 1: 102–103.

711 13. Li YC, Yuan LP. Genetic analysis of fertility restoration in male sterile lines of rice.
712 In: IRRI (ed) *Rice genetics. Hybrid rice/proceedings of the IRG symposium.* 1986;
713 IRRI, Manila, pp 617–632.

714 14. Virmani SS, Raj KG, Casal C, Dalmacio RD, Aurin PA. Current knowledge of and
715 outlook on cytoplasmic genetic male sterility and fertility restoration in rice. In: IRRI
716 (ed) *Rice genetics proceedings of the international rice genetic symposium.* 1986;
717 IRRI, Manila, pp 633–648.

718 15. Govinda Raj K, Virmani SS. Genetics of fertility restoration of WA type cytoplasmic
719 male sterility in rice. *Crop Sci.* 1988; 28: 787–792.

720 16. Teng LS, Shen ZT. Inheritance of fertility restoration for cytoplasmic male sterility in
721 rice. *Rice Genet Newsl.* 1994; 11: 95–97.

722 17. Aly RSH. Relationship between combining ability of grain yield and yield
723 components for some newly yellow maize inbred lines via line × tester analysis. *Alex*
724 *J Agric Res.* 2013; 58(2): 115–124.

725 18. Kempthorne O. *An introduction to genetic statistics.* 1957; Wiley, New York.

726 19. Su J, Zhang F, Yang X, Feng Y, Yang X, Wu Y, et al. Combining ability, heterosis,
727 genetic distance and their intercorrelations for waterlogging tolerance traits in
728 chrysanthemum. *Euphytica*. 2017; 213:42.

729 20. Salgotra RK, Gupta BB, Praveen S. Combining ability studies for yield and yield
730 components in basmati rice. *Oryza*. 2009; 46(1): 12-16.

731 21. Saleem MY, Mirza JI, Haq MA. Combining ability analysis for yield and related traits
732 in basmati rice (*Oryza sativa* L.). *Pak J Bot*. 2010; 42(1): 627–637.

733 22. Balachandran SM, Sarma NP, Siddiq E. Inheritance of anther culture response in rice.
734 *Curr Sci*. 1999; 77: 962-964.

735 23. Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK. An introduction to markers,
736 quantitative trait loci (QTL) mapping and marker-assisted selection for crop
737 improvement: The basic concepts. *Euphytica*. 2005; 142: 169–196.

738 24. IRRI. Standard Evaluation System for Rice (SES). Los Ban˜os. Philippines:
739 International Rice Research Institute (IRRI). 2002; 4 ed., pp. 15–16.

740 25. Pranathi K, Viraktamath BC, Neeraja CN, Balachandran SM, Prasad ASH, Rao PK, et
741 al. Development and validation of candidate gene-specific markers for the major
742 fertility restorer genes, *Rf4* and *Rf3*, in rice. *Mol. Breed*. 2016; 36 (10): 145.

743 26. Dellaporta SL, Jonathan W, James BH. A plant DNA mini preparation: Version II.
744 *Plant MolBiol Rep*. 1983; 1 (4), pp 19-21.

745 27. Virmani SS, Viraktamath BC, Casal CL, Toledo RS, Lopez MT, Manalo JO. Hybrid
746 Rice Breeding Manual. 1997; International Rice Research Institute, Los Ban˜os,
747 Philippines, pp 120-139.

748 28. Singh RK, Chaudhary BD. Biometrical methods in quantitative genetic analysis.
749 1989; Kalyani Publishers, New Delhi, p 318.

750 29. Falconer DS, Mackay TFC. Introduction to quantitative genetics. 1996; Chapman and
751 Hall, London.

752 30. Liang GH, Reddy CR, Dayton AD. Heterosis, inbreeding depression, and heritability
753 estimates in a systematic series of grain sorghum genotypes. *Crop Sci.* 1972; 12(4):
754 409–411.

755 31. Nadarajan N and Gunasekaran M. Quantitative Genetics and Biometrical Techniques
756 in Plant Breeding. 2005; Kalyani Publ., New Delhi.

757 32. Oakey H, Verbyla A, Pitchford W, Cullis B, Kuchel H. Joint modeling of additive and
758 non-additive genetic line effects in single field trials. *TheorAppl Genet.* 2016; 113(5):
759 809–819.

760 33. Fasahat P, Rajabi A, Rad JM, Derera J. Principles and utilization of combining ability
761 in plant breeding. *BiomBiostatInt J.* 2016; 4(1): 1–22.

762 34. Topal A, Aydin C, Akgun N, Babaoglu M. Diallel cross analysis in durum wheat
763 (*Triticum durum*Desf.): identification of best parents for some kernel physical
764 features. *Field Crops Res.* 2004; 87: 1–12.

765 35. Thalapati S, Haritha G, Naga Deepthi N, Prasad Babu A, Surendhar Reddy C,
766 MallikarjunaSwamy BP, et al. Heterosis and combining ability in rice as influenced
767 by introgressions from wild species *Oryzaruifipogon* including *qyld2.1* sub-QTL into
768 the restorer line KMR3. *Euphytica.* 2015; 202: 81–95.

769 36. Allard RW. Principles of Plant Breeding. 1960; John Wiley and Sons Inc, New York,
770 USA.

771 37. Kulembeka HP, Ferguson M, Herselman L, Kanju E, Mkamilo G, Masumba E, et al.
772 Diallel analysis of field resistance to brown streak disease in cassava
773 (*Manihotesculenta*Crantz) landraces from Tanzania. *Euphytica.* 2012; 187(2): 277–
774 288.

775 38. Sprague GF, Tatum LA. General versus specific combining ability in single crosses of
776 corn. *Journal of the American Society of Agronomy*. 1942; 34: 923–932.

777 39. Griffing B. A generalized treatment of the use of diallel crosses, in quantitative
778 inheritance. *Heredity*. 1956; 10, 31–50.

779 40. Sheeba NK, Viraktamath BC, Sivaramakrishnan S, Gangashetti MG, Khera P,
780 Sundaram RM. Validation of molecular markers linked to fertility restorer gene (s) for
781 WA-CMS lines of rice. *Euphytica*. 2009; 167: 217–227.

782 41. Gramaje LV, Caguiat JD, Carampatana JE, Millas RA et al. (2016) Heterosis and
783 combining ability of selected parent lines for hybrid rice (*Oryza sativa* L.)
784 development in PhilRice hybrid rice breeding pool. *Philipp. J. Crop. Sci.* 42: 39.

785 42. Konate AK, Zongo A, Kam H, Sanni A, Audebert A. Genetic variability and
786 correlation analysis of rice (*Oryza sativa* L.). inbred lines based on agro-
787 morphological traits. *Afr. J. Agric. Res.* 2016; 11(35): 3340-3346.

788 43. Dutta P, Dutta PN, Borua PK. Morphological Traits as Selection Indices in Rice: A
789 Statistical View. *Univ. J. Agric. Res.* 2013; 1(3): 85-96.

790 44. Singh A, Singh AK, Singh V, Singh N, Singh VN, Shamin M, et al. Genetic
791 variability among traits associated with grain yield of rice (*Oryza sativa* L.). exposed
792 to drought at flowering stage. *Afr. J. Res.* 2014; 9(16): 1252.

793 45. Tuhina-Khatun M, Hanafi MM, Yusop MR, Wong MY, Salleh FM, Ferdous J.
794 Genetic variation, heritability, and diversity analysis of upland rice (*Oryza sativa* L.).
795 genotypes based on quantitative traits. *BioMed. Res. Inter.* 2015; ID 290861.

796 46. Prajapati MK, Singh CM, Suresh BG, Roopa LG, Jadhav P. Genetic parameters for
797 grain yield and its component characters in rice. *Electron. J. Plant Breed.* 2011; 2(2):
798 235-238.

799 47. Al-Tabbal JA, Al-Fraihat AH. Genetic variation, heritability, phenotypic and
800 genotypic correlation studies for yield and yield components in promising barley
801 genotypes. *J. Agric. Sci.* 2012; 4:3.

802 48. Rafii MY, Zakiah MZ, Asfaliza R, Iffah HMD, Latif MA, Malek MA. Grain quality
803 performance and heritability estimation in selected F_1 rice genotypes. *Sains Malays.*
804 2014; 43 (1): 1-7.

805 49. Wolie A, Dessalegn T, Belete K. Heritability, variance components and genetic
806 advance of some yield and yield related traits in Ethiopian collections of finger millet
807 (*Eleusinecoracana* (L.) Gaertn.) genotypes. *Afr. J. Biotechnol.* 2013; 12(36): 5529-
808 5534.

809 50. Johnson HW, Robinson HF, Comstock RE. Estimation of genetic and environmental
810 variability in soybeans. *Agron. J.* 1955; 47: 314-318.

811 51. Ogunbayo SA, Sie M, Ojo DK, Sanni KA, Akinwale MG, Toulou B, et al. Genetic
812 variation and heritability of yield and related traits in promising rice genotypes (*Oryza*
813 *sativa* L.). *J. Plant Breed. Crop Sci.* 2014; 6(11): 153-159.

814 52. Nor AH, Abdul RH, Mohd RY, Norain MN, Nur IJ. Correlation Analysis on
815 Agronomic Characters in F_1 population derived from a cross of PongsuSeribu 2 and
816 MR 264. R&D Seminar 2014: Research and Development Seminar (2014), Malaysia.

817 53. Kropff MJ, Cassman KG, Peng S, Matthews RB, Setter TL. Quantitative
818 understanding of yield potential. In: Cassman KG (ed) *Breaking the yield barrier*.
819 International Rice Research Institute, Los Ban˜os, 1994; pp 21-38.

820 54. Ying J, Peng S, He Q, Yang H, Yang C, Visperas RM, et al. Comparison of high yield
821 rice in tropical and subtropical environments I. Determinants of grain and dry matter
822 yields. *Field Crop Res.* 1998; 57: 71-84.

823 55. Khan MSK, Iqbal J, Saeed M. Comparative study of agronomic traits of different rice
824 varieties grown under saline and normal conditions. *J. Anim. Plant Sci.* 2014; 24(2):
825 634-642.

826 56. Moosavi M, Ranjbar G, Zarrini HN, Gilani A. Correlation between morphological
827 and physiological traits and path analysis of grain yield in rice genotypes under
828 Khuzestan. *Biol. Forum Int. J.* 2015; 7(1): 43-47.

829 57. Aris H, Bambang K, Supartopo S. Correlation analysis of agronomic characters and
830 grain yield of rice for tidal swamp areas. *Indonesian J. Agric. Sci.* 2010; 11(1): 11-15.

831 58. Kohnaki ME, Kiani G, Nematzadeh G. Relationship between morphological traits in
832 rice restorer lines at F_3 generation using multivariate analysis. *Int. J. Adv. Biol.*
833 *Biomed. Res.* 2013; 1(6): 2013: 572-577.

834 59. Azarpour E. Path coefficient analysis for the yield components of rice cultivars in Iran
835 under different nitrogen levels. *J. Biodivers. Environ. Sci.* 2013; 3(10): 24-30.

836 60. Balakrishnan D, Subrahmanyam D, Badri J, Raju AK, Rao YV, Beerelli K, et al.
837 Genotype \times environment interactions of yield traits in backcross introgression lines
838 derived from *Oryza sativa* cv. Swarna/*Oryzaniwara*. *Front Plant Sci.* 2016; 7:1530.

839 61. Sruthi K, Divya B, Senguttuvvel P, Revathi P, Kempuraju KB, Koteswararao P, et al.
840 Evaluation of genetic diversity of parental lines for development of heterotic groups
841 in hybrid rice (*Oryza sativa* L.). *J. Plant Biochem Biotechnol.* 2019;
842 <https://doi.org/10.1007/s13562-019-00529-9>.

843 62. Sanghera GS, Hussain W. Heterosis and combining ability estimates using line \times
844 tester analysis to develop rice hybrid for temperate conditions. *Not Sci Biol.* 2012;
845 4(3): 131–142.

846 63. Huang M, Chen LY, Chen ZQ. Diallel analysis of combining ability and heterosis for
847 yield and yield components in rice by using positive loci. *Euphytica*. 2015; 205(1):
848 37–50.

849 64. Franco MC, Cassini ST, Oliveira VR, Vieira C, Tsai SM, Cruz CD. Combining ability
850 for nodulation in common bean (*Phaseolus vulgaris* L.) genotypes from Andean and
851 Middle American gene pools. *Euphytica*. 2001; 118(3):265–270.

852 65. Chigeza G, Mashingaidze K, Shanahan P. Advanced cycle pedigree breeding in
853 sunflower. II: combining ability for oil yield and its components. *Euphytica*. 2014;
854 195(2): 183–195.

855 66. Shukla SK, Pandey MP (2008) Combining ability and heterosis over environments for
856 yield and yield components in two-line hybrids involving thermosensitive genic male
857 sterile lines in rice (*Oryza sativa* L.). *Plant Breed*. 127(1): 28–32.

858 67. Bao Y, Wang S, Wang X, Wang Y, LI X, Wang L, et al. Heterosis and combining
859 ability for major yield traits of a new wheat germplasm Shannong 0095 derived from
860 *Thinopyrum intermedium*. *AgrSci China*. 2009; 8 (6): 753–760.

861 68. Latha S, Sharma D, Sanghera GS. Combining ability and heterosis for grain yield and
862 its component traits in rice (*Oryza sativa* L.). *Not Sci Biol*. 2013; 5(1): 90–97.

863 69. Yuga ME, Kimani PM, Olubayo MF, Muthomi JW, Nzuvu FM. Combining ability of
864 heterosis for agronomic and yield traits in indica and japonica rice crosses. *J Agric
865 Sci*. 2018; 10(12): 92–103.

866 70. Dey SS, Singh N, Bhaatia R, Prakash C, Chandel C. Genetic combining ability and
867 heterosis for important vitamins and antioxidant pigments in cauliflower (*Brassica
868 oleracea* var. *botrytis* L.). *Euphytica*. 2014; 195(2): 169–181.

869 71. Verma OP, Srivastava V. Genetic component and combining ability analyses in relation
870 to heterosis for yield and associated traits using three diverse rice-growing
871 ecosystems. *Crop Sci.* 2004; 88(2-3): 91-102.

872 72. Al Lawati AH, Pierce CA, Murray LW, Ray IM. Combining ability and heterosis for
873 forage yield among elite alfalfa core collection accessions with different fall
874 dormancy responses. *Crop Sci.* 2010; 50(1): 150–158.

875 73. Wassimi NN, Isleib TG, Hosfield GL. Fixed effect genetic analysis of a diallel cross
876 in dry beans (*Phaseolus vulgaris* L.). *TheorAppl Genet.* 1986; 72(4): 449–454.

877 74. Ghosh A. Combining ability for yield and its related traits in upland rice. *Oryza.*
878 1993; 30: 275–279.

879 75. Sreeramachandra BM, Satyanarana PV, Madhuri J, Kumar RV. Combining ability
880 analysis for identifying elite parents for hybrid rice. *Oryza.* 2000; 37: 19–22.

881 76. Melchinger A, Schmit W, Geiger HH. Comparison of testcrosses from F_2 and first
882 backcross populations in maize. *Crop Sci.* 1998; 28(5): 743–749.

883 77. Smith JSC, Hussain T, Jones ES, Graham G, Podlich D, Wall S, et al. Use of doubled
884 haploids in maize breeding: implications for intellectual property protection and
885 genetic diversity in hybrid crops. *Mol. Breed.* 2008; 22(1): 51–59.

886 78. LV Ai-zhi, Zhang H, Zhang Z, Tao Y, Yue B, Zheng Y. Conversion of the Statistical
887 Combining Ability into a Genetic Concept. *J. Integr. Agric.* 2012; 11(1): 43-52.

888 79. Bicer BT, Sakar D. Heritability and gene effects for yield and yield components in
889 chickpea. *Hereditas.* 2008; 145(5): 220–224.

890 80. Ertiro BT, Zeleke H, Friesen D, Blummel M, Twumasi-Afriyie S (2013)
891 Relationship between the performance of parental inbred lines and hybrids for food-
892 feed traits in maize (*Zea mays* L.) in Ethiopia. *Field Crops Res.* 2013; 153: 86–93.

893 81. Virmani SS, Chaudhary RC, Khush GS. Current outlook on hybrid rice. *Oryza*. 1981;
894 18: 67-84.

895 82. Dwivedi DK and Pandey MP. Gene action and heterosis for yield and associated traits
896 in indica and tropical japonica crosses of rice (*Oryza sativa* L.) involving wide
897 compatibility gene (s). *Int J Plant Breed Genet.* 2012; 6:140-150.

898 83. Utharasu S and Anandakumar CR. Heterosis and combining ability analysis for grain
899 yield and its component traits in aerobic rice (*Oryza sativa* L.) cultivars. *Electron. J.*
900 *Plant Breed.* 2013, 4(4): 1271-1279.

901

902 **Supporting information**

903 S1 Fig. Images of panicles of the novel F₁ hybrid derived from the cross CRMS32A (female
904 parent) and DHL-2 (male parent) along with panicles of hybrid checks, KRH-2, US312,
905 US314, PA6444 and HRI174. CRMS32A/DHL-2 was used as heading of the image. (TIF).

906

907 S2 Fig. Images of panicles of the novel F₁ hybrid derived from the cross APMS6A (female
908 parent) and DHL-2 (male parent) along with panicles of hybrid checks, KRH-2, US312,
909 US314, PA6444 and HRI174. APMS6A/DHL-2 was used as heading of the image. (TIF).

910

911 S3 Fig. Images of panicles of the novel F₁ hybrid derived from the cross IR58025A (female
912 parent) and DHL-2 (male parent) along with panicles of hybrid checks, KRH-2, US312,
913 US314, PA6444 and HRI174. IR58025A/DHL-2 was used as heading of the image. (TIF).

914

915 S4 Fig. Images of panicles of the novel F₁ hybrid derived from the cross CRMS32A (female
916 parent) and RIL-24 (male parent) along with panicles of hybrid checks, KRH-2, US312,
917 US314, PA6444 and HRI174. CRMS32A/RIL-24 was used as heading of the image. (TIF).

918

919 S5 Fig. Images of panicles of the novel F₁ hybrid derived from the cross APMS6A (female
920 parent) and RIL-24 (male parent) along with panicles of hybrid checks, KRH-2, US312,
921 US314, PA6444 and HRI174. APMS6A/RIL-24 was used as heading of the image. (TIF).

922

923 S6 Fig. Images of panicles of the novel F₁ hybrid derived from the cross CRMS32A (female
924 parent) and RIL-1 (male parent) along with panicles of hybrid checks, KRH-2, US312,
925 US314, PA6444 and HRI174. CRMS32A/RIL-1 was used as heading of the image. (TIF).

926

927 S7 Fig. Images of panicles of the novel F₁ hybrid derived from the cross APMS6A (female
928 parent) and DHL-1 (male parent) along with panicles of hybrid checks, KRH-2, US312,
929 US314, PA6444 and HRI174. APMS6A/DHL-1 was used as heading of the image. (TIF).

930

931 S8 Fig. Images of panicles of the novel F₁ hybrid derived from the cross APMS6A (female
932 parent) and RIL-1 (male parent) along with panicles of hybrid checks, KRH-2, US312,
933 US314, PA6444 and HRI174. APMS6A/RIL-1 was used as heading of the image. (TIF).

934

935 S1 Table: Estimation of standard YLD heterosis in novel F₁ hybrids derived from test crosses
936 of selected 16 DHLs with IR58025A assessed in the dry season of 2018-2019 (DOCX).

937

938 S2 Table: Estimation of standard YLD heterosis in novel F₁ hybrids derived from test crosses
939 of selected 24 RILs (12 high and 12 low yielding) with IR58025A assessed in the dry season
940 of 2018-2019 (DOCX). Footnote common to S1 Table, S2 Table: *Rf3/Rf4*-fertility restoration
941 major loci, DHL-doubled haploid line, RIL-recombinant inbred line, AKD-Akshayadhan,
942 VRD-Varadhan, KRH-2-Karnataka Rice Hybrid-2. Gist of S1-S2 Tables: Promising cross

943 combinations are indicated in bold. Four crosses namely IR58025A/DHL-1, IR58025A/DHL-
944 2, IR58025A/RIL-1 and IR58025A/RIL-24 demonstrated positive standard total grain yield
945 per plant (YLD) heterosis when Akshayadhan (AKD) and Varadhan (VRD) were used as
946 standard varietal checks and KRH-2 as standard hybrid check. Molecular assessment of four
947 donors, DHL-1, DHL-2, RIL-1 and RIL-24 with functional markers specific for *Rf3-Rf4* loci
948 showed the presence of both the loci. Fertility restoration potential of these donors indicated
949 them to be complete restorers. Therefore, these four donors were chosen for test cross with
950 popular CMS lines, IR58025A, CRMS32A and APMS6A in the wet season 2018 (DOCX).

951

952 S3 Table: Genetic variability estimation for 12 agro-morphological traits in novel hybrids
953 derived from the cross between IR58025A, CRMS32A, APMS6A and DHL-1, DHL-2, RIL-
954 1 and RIL-24. Footnote of the S3 Table: Vg-Genotypic variance and Vp-phenotypic variance,
955 GCV-genotypic coefficient of variance and PCV-phenotypic coefficient of variance, H2,
956 broad-sense heritability, GA-genetic advance and GAM-genetic advance as percent of mean,
957 DFF-Days to fifty percent flowering; PH-Plant Height (cm), FLL-Flag leaf length (cm);
958 FLW-Flag Leaf Width (cm); NPT-Number of Productive Tillers; PL-Panicle Length (cm);
959 TNGPP- Total number of grains per panicle; NFGPP-Number of filled grains per panicle;
960 NUFGPP-Number of unfilled grains per panicle; SFP-Spikelet fertility in percentage; TGW-
961 Test (1,000) grain weight (g); YLD-Total grain yield per plant (g) (DOCX).

962

963 S4 Table: Correlation among the agro-morphological traits studied in novel hybrids derived
964 from the cross between IR58025A, CRMS32A, APMS6A and DHL-1, DHL-2, RIL-1 and
965 RIL-24. Footnote of S4 Table: DFF-Days to fifty percent flowering; PH-Plant Height (cm),
966 FLL-Flag Leaf Length (cm); FLW-Flag Leaf width (cm); NPT-Number of Productive
967 Tillers; PL-Panicle Length (cm); TNGPP- Total Number of Grains Per Panicle; NFGPP-

968 Number of Filled Grains per Panicle; NUFGPP-Number of Unfilled Grains per Panicle; SFP-
969 Spikelet Fertility in Percentage; TGW-Test (1,000) Grain Weight (g); YLD-Total grain Yield
970 per plant (g); * $P < 0.05$, ** $P < 0.01$ (DOCX)

971

972 S5 Table: Genetic variances and heritability estimation for total grain yield per plant (YLD)
973 and its allied traits in novel hybrids derived from the cross between IR58025A, CRMS32A,
974 APMS6A and DHL-1, DHL-2, RIL-1 and RIL-24. Footnote of S5 Table: σ^2_{gca} , variance due
975 to general combining ability (GCA); σ^2_{sca} , variance due to specific combining ability (SCA);
976 $\sigma^2_{gca} / \sigma^2_{sca}$, GCA variance ratio; δ^2_A , additive genetic variance; δ^2_D , dominance genetic
977 variance; $(\delta^2_D / \delta^2_A)^{1/2}$, degree of dominance; H^2 , broad-sense heritability; h^2 , narrow-sense
978 heritability; DFF-Days to fifty percent flowering; PH-plant height (cm), FLL-Flag leaf length
979 (cm); FLW-Flag leaf width (cm); NPT-Number of productive tillers; PL-panicle length (cm);
980 NFGPP-Number of filled grains per panicle; NUFGPP-Number of unfilled grains per panicle
981 TNGPP- Total number of grains per panicle; SFP-Spikelet fertility in percentage; TGW-test
982 (1,000) grain weight (g); YLD-Total grain yield per plant (g) (DOCX).

983

984 S6 Table: ANOVA for agro-morphological traits in novel hybrids derived from the cross
985 between IR58025A, CRMS32A, APMS6A and DHL-1, DHL-2, RIL-1 and RIL-24. Footnote
986 of S6 Table: df -degrees of freedom, SS-Sum of Squares, MSS-Mean Sum of Squares, F
987 value-F values statistic, prob-probability value, DFF-Days to fifty percent flowering; PH-
988 Plant Height (cm), FLL-Flag leaf length (cm); FLW-Flag Leaf Width (cm); NPT-Number of
989 Productive Tillers; PL-Panicle Length (cm); TNGPP- Total number of grains per panicle;
990 NFGPP-Number of filled grains per panicle; NUFGPP-Number of unfilled grains per
991 panicle; SFP-Spikelet fertility in percentage; TGW-Test (1,000) grain weight (g); YLD-Total
992 grain yield per plant (g) (DOCX).

993
994 S7 Table: Estimation of standard heterosis (SH), mid-parent heterosis (MPH) and better
995 parent heterosis (BPH) for total grain yield (YLD) of the novel hybrids derived from the
996 cross between IR58025A, CRMS32A, APMS6A and DHL-1, DHL-2, RIL-1 and RIL-24.
997 Footnote of S7 Table: SH(HRI174) (%) -Standard heterosis in percentage when HRI174 is
998 used as varietal check; SH(PA6444) (%) -Standard heterosis in percentage when PA6444 is
999 used as varietal check; SH(US314)(%) -Standard heterosis in percentage when US314 is used
1000 as varietal check; SH (US312)-Standard heterosis in percentage when US312 is used as
1001 varietal check (%); SH(KRH-2)(%) -Standard heterosis in percentage when US314 is used as
1002 varietal check; MPH (%) -Mid parent heterosis; BPH (%) -Better parent heterosis, RIL-1-
1003 highest yielding RIL, RIL-24-low yielding RIL, DHL-1-Highest yielding doubled haploid
1004 line, DHL-2, Second highest yielding doubled haploid line; *P< 0.05, **P< 0.01 (DOCX).
1005
1006 S8 Table: Estimation of standard heterosis, mid-parent heterosis and better parent heterosis
1007 for yield related components in novel hybrids. Footnote of S8 Table: SH(HRI174) (%) -
1008 Standard heterosis in percentage when HRI174 is used as varietal check; SH (PA6444) (%) -
1009 Standard heterosis in percentage when PA6444 is used as varietal check; SH (US314)(%) -
1010 Standard heterosis in percentage when US314 is used as varietal check; SH (US312)-
1011 Standard heterosis in percentage when US312 is used as varietal check (%); SH (KRH-2)(%) -
1012 Standard heterosis in percentage when US314 is used as varietal check; MPH (%) -Mid parent
1013 heterosis; BPH (%) -Better parent heterosis, RIL-1-highest yielding RIL, RIL-24-low yielding
1014 RIL, DHL-1-Highest yielding doubled haploid line, DHL-2, Second highest yielding doubled
1015 haploid line; *P < 0.05, **P < 0.01 (DOCX).
1016

1017 S9 Table: Trait-wise *per se* performance, SCA-GCA effects in most promising novel hybrid.
1018 Foot note of S9 Table: YLD-Total grain yield per plant (g), DFF-Days to fifty percent
1019 flowering; PH-Plant Height (cm), FLL-Flag leaf length (cm); FLW-Flag Leaf Width (cm);
1020 NPT-Number of Productive Tillers; PL-Panicle Length (cm); NFGPP-Number of filled
1021 grains per panicle; NUFGPP-Number of unfilled grains per panicle TNGPP- Total number of
1022 grains per panicle; SFP-Spikelet fertility in percentage; TGW-Test (1,000) grain weight (g);
1023 * $P < 0.05$; ** $P < 0.01$; *** $P < 0.001$; †-early flowering hybrid than HRI174, ‡- denotes
1024 hybrids heterotic than controls namely HRI174, PA6444, US314, US312, KRH-2, ¶-denotes
1025 less number of unfertile grains than standard hybrid checks. Gist of S9 Table: The novel
1026 hybrid was observed to be heterotic than the standard checks for eight crucial yield related
1027 viz., YLD, DFF (early flowering hybrid), NPT, TNGPP, NFGPP, NUFGPP, SFP% traits due
1028 to higher prevalence of specific combining ability (SCA) making it the best performing
1029 hybrid (DOCX).

1030
1031 S10 Table: Trait-wise *per se* performance, SCA-GCA effects in novel hybrids. Foot note of
1032 S10 Table: YLD-Total grain yield per plant (g), DFF-Days to fifty percent flowering; PH-
1033 Plant Height (cm), FLL-Flag leaf length (cm); FLW-Flag Leaf Width (cm); NPT-Number of
1034 Productive Tillers; PL-Panicle Length (cm); NFGPP-Number of filled grains per panicle;
1035 NUFGPP-Number of unfilled grains per panicle TNGPP- Total number of grains per panicle;
1036 SFP-Spikelet fertility in percentage; TGW-Test (1,000) grain weight (g); * $P < 0.05$; ** $P <$
1037 0.01 ; *** $P < 0.001$, SCA-Specific Combining Ability, GCA-General Combining Ability; ‡-
1038 denotes hybrids heterotic than controls namely HRI174, PA6444, US314, US312, KRH-2; ¶-
1039 denotes less number of unfertile grains than checks; †-early flowering hybrid than all checks;
1040 ‡-early flowering hybrid than HRI174, KRH-2 only; ¶-early flowering hybrid than donor

1041 parent, RIL-24, only; ●-early flowering hybrid than all checks except US312; ○-early
1042 flowering hybrid than all checks except US314 (DOCX).

1043

1044 S11 Table: *Per se* performance of cross combinations and SCA effects in hybrid
1045 improvement. Footnote of S11 Table: * $P < 0.05$; ** $P < 0.01$; *** $P < 0.001$. As opined by
1046 Gramaje et al. (2020) selection of cross combinations with high SCA does not lead to the
1047 direct improvement in self-pollinated crops such as rice but we have demonstrated that
1048 crosses with high SCA have considerably improved the traits namely YLD, TNGPP, DFF
1049 (early flowering), PH, FLL, FLW, NFGPP, SFP and NUFGPP. Therefore, from our study, it
1050 can be concluded that the selection of crosses with high SCA did automatically transfer the
1051 SCA effects to better hybrid performance which is contrary to that of Gramaje et al. (2020).

1052 Cross combinations in this study with improved traits due to high SCA are ideal for heterosis
1053 breeding (DOCX).

1054

1055

Main Figure 1