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Abstract. Long non-coding RNAs (IncRNAs) are the largest class of non-coding RNAs (ncR-
NAs). However, recent experimental evidence has shown that some IncRNAs contain small open
reading frames (sORFs) that are translated into functional micropeptides. Current methods
to detect misannotated IncRNAs rely on ribosome-profiling (ribo-seq) experiments, which are
expensive and cell-type dependent. In addition, while very accurate machine learning models
have been trained to distinguish between coding and non-coding sequences, little attention has
been paid to the increasing evidence about the incorrect ground-truth labels of some IncR-
NAs in the underlying training datasets. We present a framework that leverages deep learn-
ing models’ training dynamics to determine whether a given IncRNA transcript is misanno-
tated. Our models achieve AUC scores > 91% and AUPR > 93% in classifying non-coding
vs. coding sequences while allowing us to identify possible misannotated IncRNAs present in
the dataset. Our results overlap significantly with a set of experimentally validated misanno-
tated IncRNAs as well as with coding sORFs within IncRNAs found by a ribo-seq dataset.
The general framework applied here offers promising potential for use in curating datasets
used for training coding potential predictors and assisting experimental efforts in character-
izing the hidden proteome encoded by misannotated IncRNAs. Source code is available at
https://github.com/nabiafshan/DetectingMisannotatedLncRNAs.
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1 Introduction

Genome-wide transcriptome analyses have revealed that the vast majority of the human genome is
transcribed; but only 2% of the human genome is annotated as protein coding [I1]. A considerable
fraction of transcripts are annotated as ncRNAs and IncRNAS constitute the largest category of ncR-
NAs [10]. While IncRNAs studied are known to play vital roles in cellular processes such as regulation
of translation, transcription, chromatin modification and mRNA stability [35/3J39], functions of most
IncRNAs remain unknown. Moreover, although IncRNAs -by definition- do not code for proteins, recent
studies have shown that short the open reading frames (sORFs) within some IncRNAs are translated
into micropeptides of a median length of 23 amino acids [26/TI20/7/T39]. The translation events of
IncRNAs were overlooked previously because the open reading frames (ORFs) present in IncRNAs do
not meet the conventional criteria of an ORF: that it encodes at least 100 amino acids in eukaryotes
[13]. Despite this, recent studies have shown that micropeptides translated from IncRNAs perform
vital functions across species, including bacteria, flies and humans [30/28/13]. Therefore, identifying
misannotated IncRNAs is a necessary step towards the functional characterization of this large class
of transcripts.

Experimental identification of coding transcripts is performed using ribosome profiling (ribo-seq),
which involves capturing and sequencing RNA fragments protected by ribosomes [I7]. Use of ribo-
seq data has revealed many unexpected protein products [5], including sORFs within IncRNAs [I§].
However, since ribo-seq data is known to contain false positives [I819], several computational methods
have been proposed to identify true translated ribo-seq fragments. These include FLOSS [I7], ORFscore
[4] and PhyloP [3229]. FLOSS [17] relies on the typical length of ribo-seq fragments to determine truly
coding ribo-seq fragments. ORFscore [4] relies on the property that translating ribosomes shift by three
nucleotides (ribosome phasing),which leads to a characteristic pattern wherein true positive fragments
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have higher sequencing reads every third nucleotide. PhyloP is used to find true translated ribo-
seq fragments by probing conservation across species [32l29]. These computational methods applied
over ribo-seq data can be used to find SORF's that are both translated and located within IncRNAs.
However, one major limitation of relying on ribo-seq data to identify misannotated IncRNAs is that
not all transcripts are likely to be transcribed and translated at a given time point in a given cell. To
obtain a complete picture of the misannotated IncRNAs in the genome, different cell types, at different
developmental stages, under different environmental conditions need to be sequenced and analyzed.
In contrast, the nucleotide sequence of a IncRNA transcript is unlikely to change across cell types
and conditions. Therefore, methods to detect misannotated IncRNAs from nucleotide sequences will
be useful in assisting experimental efforts and available ribo-seq based computational methods.

Once sufficient coding SORFs have been detected, a dataset containing positive (coding) and neg-
ative (non-coding) examples can be built to train models to predict the coding potential of a given
SORF. These methods can then be used to assess the coding potential of a transcript. For instance,
logistic regression [42] and SVM [37] based models have been proposed to predict the coding potential
of a given sORF with sequence length < 303 nucleotides. To determine whether a IncRNA is misan-
notated by using these methods requires first to extract all possible SORFs in the IncRNA and then
assess the coding potential of each of these SORFs. However, while it is possible to predict the coding
potential of IncRNA sORFs with these tools, it is impossible to evaluate the performance since the
data on which IncRNA sORFs are truly coding is very sparse [42].

Several classical machine learning [23I21188/4T] and deep learning [T4126] based models, which focus
on longer length nucleotide sequences as input, have also been developed to predict the coding potential
of a given RNA. Most of these methods demonstrate very high prediction performance. However, using
these, it is not possible to identify IncRNAs that might be misannotated. This is because these models
do not incorporate any strategy to deal with misannotated IncRNAs in the underlying training datasets.
To ensure that we are not overfitting the models to learn biologically irrelevant decision boundaries,
there is a need to find ways to determine possible misannotated RNAs in the underlying training
datasets.

We present a framework that leverages deep learning models’ training dynamics to determine
whether a given IncRNA transcript in the dataset is misannotated. In particular, we train convolutional
neural network (CNN) [24], long short term memory (LSTM) [I5], and Transformer [40] architectures
to predict whether a given nucleotide sequence is non-coding or coding and use the training dynamics
to identify possible misannotated IncRNAs [36]. Our models learn biologically relevant features to
distinguish between coding and non-coding RNAs with average AUC scores >91% and identify many
misannotated IncRNAs. By generating unsupervised clusters of coding and non-coding RNAs, we
observe that there might be a continuity in the embedded space between coding and misannotated
IncRNAs. Finally, our results show a significant overlap with previous methods that use ribo-seq data
to identify misannotated IncRNAs as well as with a set of experimentally validated misannotated
IncRNAs. This work represents the first instance where deep learning model training dynamics are
successfully applied to identify misannotated IncRNAs from nucleotide sequences. This approach can
be applied to better curate datasets for training coding potential prediction models and can be applied
alongside ribo-seq data to identify misannotated IncRNAs with high confidence.

2 Methods

2.1 The overall framework

The workflow for determining misannotated IncRNAs is described in Figure [I] The main steps are
as follows. We train deep learning based sequence classification models that can distinguish coding
and non-coding RNAs. Once we establish that models can achieve good performance on the held-out
test data, we retrain a final model on all the data and inspect its training dynamics to find possibly
misannotated ncRNAs. By focusing especially on the union of the IncRNAs identified as misannotated
by all the models, we arrive at a final list of putative misannotated IncRNAs. We compare this list
to experimentally validated coding ncRNAs as well as to a ribo-seq dataset. We use unsupervised
clustering to find where possibly misannotated IncRNAs are located within the broader RNA clusters.
We also study the features used by the deep learning models to make classification decisions. In
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Fig.1: Workflow for identifying misannotated IncRNAs by examining the training dynamics of
deep learning models. All RNA sequences are constrained to be between 200-4000 nucleotides long. From
each RNA sequence 3-mer ‘words’ are obtained by using a window that slides by 1 nucleotide at each step. For
each 3-mer ‘word’, 100-dimensional embeddings [3I] are obtained. Each RNA also has an associated ground-
truth label, i.e. each RNA is labelled as coding or non-coding. Deep learning models are trained using 100-
dimensional embeddings for contiguous 3-mers from the sequences. At the end of each training epoch, the
predicted probabilities for each RNA being coding or non-coding are saved. After training, the mean and
standard deviation for the ground-truth label probability prediction are calculated and misannotated IncRNAs
are identified. These are compared to IncRNAs containing translated sORF's determined from ribo-seq data.

the following sections we detail the dataset, the sequence classification models trained and the other
analysis we conducted.

2.2 Datasets

We use the dataset of human RNA nucleotide sequences compiled by [38] to train the sequence classi-
fication models. After filtering to remove non-coding RNA sequences < 200 nucleotides in length, the
data comprises of 38,051 coding RNA and 19,472 non-coding RNA sequences. Filtering non-coding
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RNAs by length was necessary since the length distributions of coding and non-coding RNAs in the
dataset was very different; non-coding RNAs are noticeably shorter than coding RNAs. For the deep
learning models to learn biologically relevant features in order to distinguish between coding and non-
coding RNAs, equalizing the sequence length distributions was necessary. If the sequence lengths of
ncRNAs are significantly shorter than those of coding RNAs, then sequence length itself might be used
by the models as a feature distinguishing between coding and non-coding RNAs.

2.3 Deep Learning Model Architectures

We train CNN [24], LSTM [15] and Transformer [40] models to classify non-coding and coding RNA
sequences. Fach input sequence is truncated to a length of 4000 nucleotides before being input to
the deep learning models. The sequences are encoded as 1-nucleotide sliding window 3-mers using the
100-dimensional DNA-embeddings generated by [31]. All three models are implemented using Keras
[8]. We use ReLu as the activation function. We trained all models to minimize the sparse categorical
cross-entropy loss using the Adam optimizer [22]. In all cases, we use a batch size of 64.

Convolutional neural network: For the CNN, encoded sequences are fed into an embedding layer
which is followed by 3 layers of 1-D convolution (each with 128 units and filter size 5) and max-pooling
(5 units). These are followed by a dense layer of 128 units.

LSTM: For the LSTM, encoded sequences are fed into an embedding layer which is followed by 2
layers of 1-D convolution (each with 128 units and filter size 5) and max-pooling (5 units), followed by
a bi-directional LSTM layer. These are followed by a dense layer of 128 units.

Transformer: Encoded sequences are added to a positional encoding and fed into a transformer
block followed by global average pooling, dropout and a dense layer of 64 units. The transformer block
comprises of a single-headed self-attention layer and a dense layer both followed by layer normalization.

2.4 Model Evaluation Set Up

We use the human coding & non-coding train and test datasets provided by [38]. We set aside 20% of
the training data as the validation data. We use Keras Tuner [33] to find the optimal set of hyperpa-
rameters for the deep learning models. We created a hyperparameter search space for different model
architecture and hyperparameter assignment values and used the Hyperband tuner [25] to find the
optimal parameters based on validation loss. We tried the following choices for given hyperparameters:
dense layer units 64, 128, and 256, 1-D convolutional filters (64 and 128, LSTM units 64, 128, and 256,
dropout 0.2, 0.3, 0.4 and 0.5 and learning rate (logarithmic sampling between e-2 and e-4. We used
the best model returned by the Hyperband tuner and retrain a model on the train-validation data to
calculate and assess these models’ performances on the held-out test data. Once the test performances
are attained, we rebuilt the models on all data to find the misannotated ncRNAs.

Since the training dataset is imbalanced in favor of coding RNA, we used class-weights inversely
proportional to the number of class samples to ensure learning. Moreover, since a coding RNA is unlikely
to be misannotated, we penalized coding RNA misclassifications 5 times more than non-coding RNA
misclassifications.

2.5 Identifying misannotated IncRNAs using training dynamics

We inspect the deep learning models’ training dynamics to find possible misannotated IncRNAs.
Swayamdipta et al. [36] report that it is possible to identify possibly mislabelled training samples
in a given dataset by inspecting how model predictions for samples behave during training. We employ
this strategy; at the end of each training epoch, the deep learning models are evaluated on the training
examples and the predictions for the class probabilities are saved. Consider a training dataset of size

N,D = {(a:,y*)i}évz1 where the 4 th instance consists of the observation, x; and its true label under
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Fig. 2: Training dynamics of deep learning models can be used to identify misannotated IncRNAs.
(a) Coding probability prediction (probability of being a coding RNA) across all training epochs shown for
three RNAs. NM_199327 (ground-truth ‘Coding’) and ENST00000558107 (ground-truth ‘Non-coding’) have
high and low coding probability predictions respectively. In contrast, ENST00000447563 consistently has high
coding probability prediction, despite having the ground truth-label ‘Non-coding’. This suggests that it might
be a misannotated IncRNA. In support of this observation, ENST00000447563 (also known as linc00689) was
recently found to be protein coding [I3]. (b) Mean (y-axis) and standard deviation (x-axis) of true class
label probability predictions across all training epochs can be used to determine misannotated RNAs. The
misannotated IncRNAs are those in the bottom left quadrant i.e. IncRNAs with low mean and standard
deviation for the ground-truth class (non-coding) probability.

the task, y;. We calculate the mean and the standard deviation of the posterior probability of the
ground-truth label for example ¢ over E epochs as follows [36]:

1 & B o (U | ) — )2

o= oo 07 [0, 5= ¢ D 1)

where pg(.) denotes the probability assigned at the end of the e epoch by the model parameterized

with ¢, Using the mean and the standard deviation of the predicted probability of ground-truth class

across all epochs, the training dataset can be divided into three groups: easy-to-learn, ambiguous, and

hard-to-learn. The hard-to-learn samples are those with low mean and low standard deviation of

the true class probabilities. In other words, the model consistently misclassifies these samples across

training epochs. We retrain the models using both the training & test data and consider the IncRNAs
within this hard-to-learn class as candidates for misannotation.

2.6 Comparison to cncRNAdb-a manually curated list of experimentally validated
coding ncRNAs- and ribo-seq based methods to identify coding sORFs within
IncRNAs

We downloaded data from the cncRNAdb [16], a resource that provides a manually curated list of
experimentally validated ncRNAs found to be coding. We filtered data to get IncRNAs found to be
coding in Homo sapiens and compared the list to the misannotated IncRNA candidates generated from
the deep learning models.

Next, we compared the list of misannotated IncRNAs generated by our models to a ribo-seq dataset.
We downloaded data on sORFs identified in the ribo-seq data generated by [12] from sORFs.org [32].
This database provides computations of values of FLOSS [1I7], ORFscore [4] and PhyloP [29] metrics
for RNAs identified from the ribo-seq data. We used RNAs annotated as IncRNAs and present in both
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the sequence dataset (used to train deep learning models) and the Ribo-seq dataset in our analysis.
According to previous considerations, to get the list of IncRNAs containing translated sORFs, we used
the following cutoff values: ‘Good’ for the Floss-classification, ORFscore > 6 and PhyloP > 4 [32].

3 Results

3.1 Prediction performance of classifying coding vs. non-coding RNAs

Table 1: The test-data performances of the different models trained to classify long non-coding RNAs and
coding RNAs. AUC and AUPR are micro-averaged.

AUC AUPR Precision Recall F1-Score
Non-Coding  0.93 0.95 0.94
LSTM 0.94 096 Coding 0.95 0.94 0.94
Non-Coding 0.93 0.92 0.93
CNN 093095 oding 093 094 094
Non-Coding 0.93 0.88 0.90

Transformer 0.91 0.93 Coding 0.90 0.94 0.92

Prediction performances calculated on the held-out test set for the models trained are provided in
Table [T] and show that our models perform well on the classification task. The LSTM model achieves
the highest classification performance with 94% AUC and 96% AUPR. The CNN model performs
similarly well with 93% AUC and 95% AUPR, while the transformer achieves 91% AUC and 93%
AUPR. Since our aim is to study the underlying dataset and find misannotated IncRNAs, higher
prediction performance is not the primary focus. Instead, since we know that the training dataset
contains IncRNAs that have incorrect ground-truth labels, we want to ensure that the models are
not being overfitted to learn features that might not be relevant to learning the biological distinction
between coding and non-coding RNAs as encoded in the nucleotide sequences. In the following sections,
we detail how we employ these models to discover possibly misannotated IncRNAs in the underlying
dataset.

3.2 Training dynamics of deep learning models can be used to identify misannotated
IncRNAs

Having evaluated the CNN, LSTM and Transformer models to distinguish between coding RNA and
non-coding RNA, we retrain the models using all data and inspect each instances training dynamics.
During the training phase of each model, we track the coding probability predictions for each RNA.
Figure 2al shows the predictions for the coding probability for three different RNAs across all training
epochs for the LSTM model. For example, the coding probability predictions for ENST00000447563
(shown in orange) -an RNA annotated as long non-coding (ground-truth)- are consistently high. In
other words, as model training progresses, this RNA is invariably classified as coding. It was recently
shown that ENST00000447563 has been misannotated as IncRNA when it can, in fact, code for a
protein [I3]. Two other examples of correctly annotated coding and non-coding RNA are also shown
in Figure 2a] By studying the predictions made by models as they are under training, it is possible to
identify putative misannotated IncRNAs.

Figure [2b] expands upon this idea: calculating the mean and standard deviation of predicted prob-
ability for the ground-truth class across all training epochs provides a measure of identifying misanno-
tated IncRNAs. IncRNAs in the lower left quadrant of Figure [2b] are considered putative misannotated
IncRNAs; these samples have low mean and standard deviation for the predicted probability of the
ground-truth class over all training epochs. In other words, these IncRNAs are consistently classified
into the non-ground-truth class (coding) and therefore, are likely to be misannotated. It is interesting
to note that the majority of the putative mislabelled samples have ground-truth label ncRNA. This ob-
servation supports the notion that the current method for identifying putative misannotated IncRNAs


https://doi.org/10.1101/2020.11.07.372771
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.07.372771; this version posted November 8, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Detecting Misannotated Long Non-coding RNAs with Training Dynamics 7
LSTM
CNN 713
171
198
1251 3339 225 937
71 1394
cncRNA
Database
941 CNN, LSTM,
Transformer
Transformer Union

(a) (b)

Fig.3: (a) Comparison of the misannotated IncRNAs obtained from by CNN, LSTM and Transformer models’
training dynamics. (b) Comparison of the misannotated IncRNAs obtained from deep learning models with the
cncRNA database (hypergeometric test, p-value le-6), which provides a manually curated list of experimentally
validated coding IncRNAs.
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Fig.4: Comparison of misannotated IncRNAs found by CNN, LSTM and Transformer models’ training dy-
namics with previous ribo-seq data based methods used to find misannotated IncRNAs from : (a) FLOSS
(p-value = 0), (b) ORFScore (p-value 4e — 320) and (c) PhyloP (p-value (1le — 32)) for the dataset from [12].
Background set has 26857 IncRNAs.

is reasonable. This is because an RNA with ground-truth ‘coding’ is unlikely to be misannotated. In
conclusion, many IncRNAs might be misannotated and sequence information combined with training
dynamics of deep learning based classifiers might help identify such misannotations.

3.3 Different deep learning architectures find common misannotated IncRNAs

Figure [3a] shows the overlap between the lists of misannotated IncRNAs generated by CNN, LSTM and
Transformer models. It is interesting to note that despite the difference in network architectures, the
intersection of possible misannotated IncRNAs is large. The CNN model identifies the smallest number
of candidate misannotated ncRNAs. It is interesting to note that the number of common candidates
identified by Transformer and LSTM but not by CNN (1394 in total) is large as compared to the
common candidates between CNN & Transformer only (71) and between LSTM & CNN only (171).
1251 candidates are identified by all 3 models.

3.4 Misannotated IncRNAs overlap significantly with manually curated, experimentally
validated coding IncRNAs & with misannotated IncRNAs discovered by ribo-seq

To check if the candidate list of misannotated transcripts overlap with already reported misannoated
ncRNAs, we find the overlap with the cncRNA database. The cncRNA database provides a manually
curated list of experimentally validated coding IncRNAs [16]. Figure [3b|shows the overlap between the
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Fig.5: Misannotated IncRNAs exist in a continuous cluster with coding RNAs. t-SNE clusters
obtained from hand-crafted features [38] generated from nucleotide sequences. Labels (Coding, IncRNA etc.)
are only used for visualizing the clusters, not for generating the clusters. Putative misannotated IncRNAs lie
in a cluster contiguous with coding RNAs. There are other clusters of ncRNAs that are well separated from
coding RNAs and that do not contain any putative misannotated IncRNAs.

list of misannotated IncRNAs generated by our deep learning models and the cncRNA database [16].
There are 225 common misannotated IncRNAs; this overlap is highly significant (hyper-geometric test,
p-value (1le-6)).

Next, we compared the overlap between the misannotated IncRNAs discovered by our deep learning
models with a high-throughput ribo-seq dataset. Figure S4 shows the counts for IncRNAs obtained by
applying 3 different methods (FLOSS, ORFScore and PhyloP) to identify true positives from ribo-seq
data generated by [12]. For FLOSS, IncRNAs with a classification of ‘Good’ are considered candidate
misannotated IncRNAs; it is interesting to note that most of the IncRNAs have a ‘Good’ FLOSS score.
In contrast, fewer IncRNAs are considered misannotated according to ORFScore and PhyloP. The
overlap between these 3 methods to find sORFs from ribo-seq data is shown in Figure S3.

It is important to note that the dataset used in the current work is much smaller and contains fewer
IncRNAs than those found from the [12] ribo-seq dataset. In order to be able to compare the numbers
of misannotated IncRNAs found by the different methods, we first generated a list of IncRNAs that
were present both in the ribo-seq dataset and in the nucleotide sequence dataset used for training deep
learning models. From this common IncRNAs master list, we calculated the overlap between misanno-
tated IncRNAs found by different methods. Figure [4 shows that the overlap between our method and
FLOSS (hypergeometric test, p-value = 0), ORFScore (hypergeometric test, p-value 4e-320) and Phy-
loP (hypergeometric test, p-value 1e-32) significant. This shows that our method successfully identifies
misannotated IncRNAs by learning relevant features from the IncRNA nucleotide sequences.

3.5 Misannotated IncRNAs exist in a continuous cluster with coding RNAs

To analyze the coding and noncoding transcript distributions of the data, we calculated features on
for all RNAs in the dataset, based on properties of the transcripts as in [38]. These features include
ORF length, ORF quality, nucleotide distribution, translated peptide stability etc. used by [38] (see
Tablefor more details). Using these features, we apply T-distributed stochastic neighbor embedding
(t-SNE) [27] (SciKit-learn implementation [34], perplexity=150, iterations=1000, learning rate=200)
to reveal RNA clusters.
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Fig. 6: Attention maps explain which parts of sequence are important for making a classifi-
cation decision. An example attention map extracted from first convolutional layer of CNN model for
ENST00000447563 (a misannotated IncRNA). The ground-truth for this RNA is ‘Non-coding’. However, CNN
model predicts that this is a non-coding RNA with probability 0.12. Attention visualization shows regions with
contiguous ‘A’ nucleotides have high activation weights.

Figure [5 shows the clusters obtained by performing t-SNE [27] on these features generated from
RNA sequences. The labels of the RNAs (coding, non-coding) are not used while generating the clus-
ters. However, based on available coding and non-coding ground-truth labels, along with the biotype
information for the ncRNAs, we label each individual RNA example. LncRNAs determined as misanno-
tations by the different deep learning models are labeled in black; interestingly, putative misannotated
IncRNAs lie in a cluster contiguous with coding RNAs. This suggests that there is indeed some con-
tinuity between coding and IncRNAs in this embedded space and that the categories might not be
as mutually exclusive as we believe, which is consistent with recent research discovering that some
IncRNAs encode micropeptodes [13]. In support of this, there are clusters of non-coding RNAs (la-
belled Misc RNA) that are well separated from coding RNAs and that do not contain many putative
misannotated IncRNAs.

3.6 Exploring features learnt by models

To understand which which regions of the sequence are useful for making classification decision, we
visualize the activation weights of the model layers. These activation weights determine which sequence
features are paid most attention to by the model. Figure [6] shows an example attention map of a
misannotated IncRNA generated from the first convolutional layer of the CNN model. Supplementary
Figure 1 shows the attention weights visualized for a coding and long non-coding RNA that are not
misannotated according to the criteria described above. The CNN model appears to focus on continuous
stretches of adenines in the sequence to make decisions about whether a given RNA is coding or long
non-coding. This might be because the poly-adenylation sites are one of the major distinguishing
features between coding and non-coding RNAs. Supplementary Figure[S1]shows the average attention
given to all codons for this sequence. Codons with high ‘adenine’ content have higher average attention,
but codons ending with ‘TA’ like ‘ATA’, ‘CTA’, ‘GTA’ & ‘TTA’ also have high average attention.
Studying these and comparing the average attention differences in codons between coding and non-
coding RNAs might prove interesting.

4 Conclusion and Future Work

In this paper, we apply the general framework described by [36] for detecting mislabelled samples in
a training dataset to detect misannotated IncRNAs. The training dataset, comprising of nucleotide
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sequences of coding and non-coding RNA| is used to train CNN, LSTM and Transformer models. At
the end of each training epoch, coding and non-coding prediction probabilities for every RNA sample
are saved. Calculating the mean and standard deviation of the ground-truth class helps determine
whether a given RNA is possibly mislabelled. LncRNAs with low mean and standard deviation for the
non-coding class are the possible misannotations.

A large number of misannotated IncRNAs are identified by all three different deep learning methods.
This is significant since the algorithms to distinguish between coding and non-coding RNAs employed
by the models are different. Moreover, when we compare the misannotations discovered here to previous
methods to detect misannotated IncRNAs from ribo-seq data and manually curated dataset, we see
a large overlap for two of the methods, suggesting that our method is successfully able to detect
misannotated IncRNAs. It is also interesting to note that our method shows a high overlap with a
manually curated list of misannotated IncRNAs. Therefore, we conclude that this approach offers
promising potential for use in curating datasets used for training coding potential predictors and
assisting experimental efforts in characterization of misannotated IncRNAs.

To our knowledge, this work also represents the first instance in which nucleotide sequence em-
beddings and transformer models are applied to the problem of building coding potential predictive
models. Using nucleotide embeddings might be preferable to other representations like one-hot en-
coding [I4] or integer encoding [6] used previously. This is because embeddings are learnt from the
complete human genome and incorporate the context in which a given codon is found in the DNA.
All models are configured to have trainable embeddings; this helps to learn better representations of
codons in RNA] since the original embeddings are learnt from DNA sequences. Future work to compare
the original embeddings to the embeddings generated from models trained here might provide valuable
insight into the differences between codons in DNA and RNA.

One limitation of the approach presented here is that it is computationally intensive since models
need to be retrained on the complete dataset after evaluation of the test set performance. However,
this approach represents the first method that can find possibly misannotated IncRNAs from the
nucleotide sequence alone. In conjugation with ribo-seq data, it can be used to identify misannotated
IncRNAs with high confidence. Moreover, it can be used for curating the training datasets used for
training coding potential predictors. Future work that compares the misannotated IncRNAs obtained
from models here with ribo-seq datasets from different cell-types will provide interesting results on the
cell-line specificity of misannotated IncRNAs.
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