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Abstract. Long non-coding RNAs (lncRNAs) are the largest class of non-coding RNAs (ncR-
NAs). However, recent experimental evidence has shown that some lncRNAs contain small open
reading frames (sORFs) that are translated into functional micropeptides. Current methods
to detect misannotated lncRNAs rely on ribosome-profiling (ribo-seq) experiments, which are
expensive and cell-type dependent. In addition, while very accurate machine learning models
have been trained to distinguish between coding and non-coding sequences, little attention has
been paid to the increasing evidence about the incorrect ground-truth labels of some lncR-
NAs in the underlying training datasets. We present a framework that leverages deep learn-
ing models’ training dynamics to determine whether a given lncRNA transcript is misanno-
tated. Our models achieve AUC scores > 91% and AUPR > 93% in classifying non-coding
vs. coding sequences while allowing us to identify possible misannotated lncRNAs present in
the dataset. Our results overlap significantly with a set of experimentally validated misanno-
tated lncRNAs as well as with coding sORFs within lncRNAs found by a ribo-seq dataset.
The general framework applied here offers promising potential for use in curating datasets
used for training coding potential predictors and assisting experimental efforts in character-
izing the hidden proteome encoded by misannotated lncRNAs. Source code is available at
https://github.com/nabiafshan/DetectingMisannotatedLncRNAs.
∗Correspondance: otastan@sabanciuniv.edu
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1 Introduction

Genome-wide transcriptome analyses have revealed that the vast majority of the human genome is
transcribed; but only 2% of the human genome is annotated as protein coding [11]. A considerable
fraction of transcripts are annotated as ncRNAs and lncRNAS constitute the largest category of ncR-
NAs [10]. While lncRNAs studied are known to play vital roles in cellular processes such as regulation
of translation, transcription, chromatin modification and mRNA stability [35,3,39], functions of most
lncRNAs remain unknown. Moreover, although lncRNAs -by definition- do not code for proteins, recent
studies have shown that short the open reading frames (sORFs) within some lncRNAs are translated
into micropeptides of a median length of 23 amino acids [26,1,20,7,13,9]. The translation events of
lncRNAs were overlooked previously because the open reading frames (ORFs) present in lncRNAs do
not meet the conventional criteria of an ORF: that it encodes at least 100 amino acids in eukaryotes
[13]. Despite this, recent studies have shown that micropeptides translated from lncRNAs perform
vital functions across species, including bacteria, flies and humans [30,28,13]. Therefore, identifying
misannotated lncRNAs is a necessary step towards the functional characterization of this large class
of transcripts.

Experimental identification of coding transcripts is performed using ribosome profiling (ribo-seq),
which involves capturing and sequencing RNA fragments protected by ribosomes [17]. Use of ribo-
seq data has revealed many unexpected protein products [5], including sORFs within lncRNAs [18].
However, since ribo-seq data is known to contain false positives [18,19], several computational methods
have been proposed to identify true translated ribo-seq fragments. These include FLOSS [17], ORFscore
[4] and PhyloP [32,29]. FLOSS [17] relies on the typical length of ribo-seq fragments to determine truly
coding ribo-seq fragments. ORFscore [4] relies on the property that translating ribosomes shift by three
nucleotides (ribosome phasing),which leads to a characteristic pattern wherein true positive fragments
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have higher sequencing reads every third nucleotide. PhyloP is used to find true translated ribo-
seq fragments by probing conservation across species [32,29]. These computational methods applied
over ribo-seq data can be used to find sORFs that are both translated and located within lncRNAs.
However, one major limitation of relying on ribo-seq data to identify misannotated lncRNAs is that
not all transcripts are likely to be transcribed and translated at a given time point in a given cell. To
obtain a complete picture of the misannotated lncRNAs in the genome, different cell types, at different
developmental stages, under different environmental conditions need to be sequenced and analyzed.
In contrast, the nucleotide sequence of a lncRNA transcript is unlikely to change across cell types
and conditions. Therefore, methods to detect misannotated lncRNAs from nucleotide sequences will
be useful in assisting experimental efforts and available ribo-seq based computational methods.

Once sufficient coding sORFs have been detected, a dataset containing positive (coding) and neg-
ative (non-coding) examples can be built to train models to predict the coding potential of a given
sORF. These methods can then be used to assess the coding potential of a transcript. For instance,
logistic regression [42] and SVM [37] based models have been proposed to predict the coding potential
of a given sORF with sequence length ≤ 303 nucleotides. To determine whether a lncRNA is misan-
notated by using these methods requires first to extract all possible sORFs in the lncRNA and then
assess the coding potential of each of these sORFs. However, while it is possible to predict the coding
potential of lncRNA sORFs with these tools, it is impossible to evaluate the performance since the
data on which lncRNA sORFs are truly coding is very sparse [42].

Several classical machine learning [23,21,38,41] and deep learning [14,2,6] based models, which focus
on longer length nucleotide sequences as input, have also been developed to predict the coding potential
of a given RNA. Most of these methods demonstrate very high prediction performance. However, using
these, it is not possible to identify lncRNAs that might be misannotated. This is because these models
do not incorporate any strategy to deal with misannotated lncRNAs in the underlying training datasets.
To ensure that we are not overfitting the models to learn biologically irrelevant decision boundaries,
there is a need to find ways to determine possible misannotated RNAs in the underlying training
datasets.

We present a framework that leverages deep learning models’ training dynamics to determine
whether a given lncRNA transcript in the dataset is misannotated. In particular, we train convolutional
neural network (CNN) [24], long short term memory (LSTM) [15], and Transformer [40] architectures
to predict whether a given nucleotide sequence is non-coding or coding and use the training dynamics
to identify possible misannotated lncRNAs [36]. Our models learn biologically relevant features to
distinguish between coding and non-coding RNAs with average AUC scores >91% and identify many
misannotated lncRNAs. By generating unsupervised clusters of coding and non-coding RNAs, we
observe that there might be a continuity in the embedded space between coding and misannotated
lncRNAs. Finally, our results show a significant overlap with previous methods that use ribo-seq data
to identify misannotated lncRNAs as well as with a set of experimentally validated misannotated
lncRNAs. This work represents the first instance where deep learning model training dynamics are
successfully applied to identify misannotated lncRNAs from nucleotide sequences. This approach can
be applied to better curate datasets for training coding potential prediction models and can be applied
alongside ribo-seq data to identify misannotated lncRNAs with high confidence.

2 Methods

2.1 The overall framework

The workflow for determining misannotated lncRNAs is described in Figure 1. The main steps are
as follows. We train deep learning based sequence classification models that can distinguish coding
and non-coding RNAs. Once we establish that models can achieve good performance on the held-out
test data, we retrain a final model on all the data and inspect its training dynamics to find possibly
misannotated ncRNAs. By focusing especially on the union of the lncRNAs identified as misannotated
by all the models, we arrive at a final list of putative misannotated lncRNAs. We compare this list
to experimentally validated coding ncRNAs as well as to a ribo-seq dataset. We use unsupervised
clustering to find where possibly misannotated lncRNAs are located within the broader RNA clusters.
We also study the features used by the deep learning models to make classification decisions. In
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Fig. 1: Workflow for identifying misannotated lncRNAs by examining the training dynamics of
deep learning models. All RNA sequences are constrained to be between 200-4000 nucleotides long. From
each RNA sequence 3-mer ‘words’ are obtained by using a window that slides by 1 nucleotide at each step. For
each 3-mer ‘word’, 100-dimensional embeddings [31] are obtained. Each RNA also has an associated ground-
truth label, i.e. each RNA is labelled as coding or non-coding. Deep learning models are trained using 100-
dimensional embeddings for contiguous 3-mers from the sequences. At the end of each training epoch, the
predicted probabilities for each RNA being coding or non-coding are saved. After training, the mean and
standard deviation for the ground-truth label probability prediction are calculated and misannotated lncRNAs
are identified. These are compared to lncRNAs containing translated sORFs determined from ribo-seq data.

the following sections we detail the dataset, the sequence classification models trained and the other
analysis we conducted.

2.2 Datasets

We use the dataset of human RNA nucleotide sequences compiled by [38] to train the sequence classi-
fication models. After filtering to remove non-coding RNA sequences < 200 nucleotides in length, the
data comprises of 38,051 coding RNA and 19,472 non-coding RNA sequences. Filtering non-coding
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RNAs by length was necessary since the length distributions of coding and non-coding RNAs in the
dataset was very different; non-coding RNAs are noticeably shorter than coding RNAs. For the deep
learning models to learn biologically relevant features in order to distinguish between coding and non-
coding RNAs, equalizing the sequence length distributions was necessary. If the sequence lengths of
ncRNAs are significantly shorter than those of coding RNAs, then sequence length itself might be used
by the models as a feature distinguishing between coding and non-coding RNAs.

2.3 Deep Learning Model Architectures

We train CNN [24], LSTM [15] and Transformer [40] models to classify non-coding and coding RNA
sequences. Each input sequence is truncated to a length of 4000 nucleotides before being input to
the deep learning models. The sequences are encoded as 1-nucleotide sliding window 3-mers using the
100-dimensional DNA-embeddings generated by [31]. All three models are implemented using Keras
[8]. We use ReLu as the activation function. We trained all models to minimize the sparse categorical
cross-entropy loss using the Adam optimizer [22]. In all cases, we use a batch size of 64.

Convolutional neural network: For the CNN, encoded sequences are fed into an embedding layer
which is followed by 3 layers of 1-D convolution (each with 128 units and filter size 5) and max-pooling
(5 units). These are followed by a dense layer of 128 units.

LSTM: For the LSTM, encoded sequences are fed into an embedding layer which is followed by 2
layers of 1-D convolution (each with 128 units and filter size 5) and max-pooling (5 units), followed by
a bi-directional LSTM layer. These are followed by a dense layer of 128 units.

Transformer: Encoded sequences are added to a positional encoding and fed into a transformer
block followed by global average pooling, dropout and a dense layer of 64 units. The transformer block
comprises of a single-headed self-attention layer and a dense layer both followed by layer normalization.

2.4 Model Evaluation Set Up

We use the human coding & non-coding train and test datasets provided by [38]. We set aside 20% of
the training data as the validation data. We use Keras Tuner [33] to find the optimal set of hyperpa-
rameters for the deep learning models. We created a hyperparameter search space for different model
architecture and hyperparameter assignment values and used the Hyperband tuner [25] to find the
optimal parameters based on validation loss. We tried the following choices for given hyperparameters:
dense layer units 64, 128, and 256, 1-D convolutional filters (64 and 128, LSTM units 64, 128, and 256,
dropout 0.2, 0.3, 0.4 and 0.5 and learning rate (logarithmic sampling between e-2 and e-4. We used
the best model returned by the Hyperband tuner and retrain a model on the train-validation data to
calculate and assess these models’ performances on the held-out test data. Once the test performances
are attained, we rebuilt the models on all data to find the misannotated ncRNAs.

Since the training dataset is imbalanced in favor of coding RNA, we used class-weights inversely
proportional to the number of class samples to ensure learning. Moreover, since a coding RNA is unlikely
to be misannotated, we penalized coding RNA misclassifications 5 times more than non-coding RNA
misclassifications.

2.5 Identifying misannotated lncRNAs using training dynamics

We inspect the deep learning models’ training dynamics to find possible misannotated lncRNAs.
Swayamdipta et al. [36] report that it is possible to identify possibly mislabelled training samples
in a given dataset by inspecting how model predictions for samples behave during training. We employ
this strategy; at the end of each training epoch, the deep learning models are evaluated on the training
examples and the predictions for the class probabilities are saved. Consider a training dataset of size
N,D = {(x, y∗)i}

N
i=1 where the i th instance consists of the observation, xi and its true label under
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Fig. 2: Training dynamics of deep learning models can be used to identify misannotated lncRNAs.
(a) Coding probability prediction (probability of being a coding RNA) across all training epochs shown for
three RNAs. NM 199327 (ground-truth ‘Coding’) and ENST00000558107 (ground-truth ‘Non-coding’) have
high and low coding probability predictions respectively. In contrast, ENST00000447563 consistently has high
coding probability prediction, despite having the ground truth-label ‘Non-coding’. This suggests that it might
be a misannotated lncRNA. In support of this observation, ENST00000447563 (also known as linc00689) was
recently found to be protein coding [13]. (b) Mean (y-axis) and standard deviation (x-axis) of true class
label probability predictions across all training epochs can be used to determine misannotated RNAs. The
misannotated lncRNAs are those in the bottom left quadrant i.e. lncRNAs with low mean and standard
deviation for the ground-truth class (non-coding) probability.

the task, y∗i . We calculate the mean and the standard deviation of the posterior probability of the
ground-truth label for example i over E epochs as follows [36]:

µ̂i =
1

E

E∑
e=1

pθ(e) (y∗i | xi) , σ̂i =

√∑E
e=1 (pθ(e) (y∗i | xi)− µ̂i)

2

E
(1)

where pθ(e) denotes the probability assigned at the end of the eth epoch by the model parameterized

with θ(e). Using the mean and the standard deviation of the predicted probability of ground-truth class
across all epochs, the training dataset can be divided into three groups: easy-to-learn, ambiguous, and
hard-to-learn. The hard-to-learn samples are those with low mean and low standard deviation of
the true class probabilities. In other words, the model consistently misclassifies these samples across
training epochs. We retrain the models using both the training & test data and consider the lncRNAs
within this hard-to-learn class as candidates for misannotation.

2.6 Comparison to cncRNAdb-a manually curated list of experimentally validated
coding ncRNAs- and ribo-seq based methods to identify coding sORFs within
lncRNAs

We downloaded data from the cncRNAdb [16], a resource that provides a manually curated list of
experimentally validated ncRNAs found to be coding. We filtered data to get lncRNAs found to be
coding in Homo sapiens and compared the list to the misannotated lncRNA candidates generated from
the deep learning models.

Next, we compared the list of misannotated lncRNAs generated by our models to a ribo-seq dataset.
We downloaded data on sORFs identified in the ribo-seq data generated by [12] from sORFs.org [32].
This database provides computations of values of FLOSS [17], ORFscore [4] and PhyloP [29] metrics
for RNAs identified from the ribo-seq data. We used RNAs annotated as lncRNAs and present in both
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the sequence dataset (used to train deep learning models) and the Ribo-seq dataset in our analysis.
According to previous considerations, to get the list of lncRNAs containing translated sORFs, we used
the following cutoff values: ‘Good’ for the Floss-classification, ORFscore > 6 and PhyloP > 4 [32].

3 Results

3.1 Prediction performance of classifying coding vs. non-coding RNAs

Table 1: The test-data performances of the different models trained to classify long non-coding RNAs and
coding RNAs. AUC and AUPR are micro-averaged.

AUC AUPR Precision Recall F1-Score

LSTM 0.94 0.96
Non-Coding 0.93 0.95 0.94

Coding 0.95 0.94 0.94

CNN 0.93 0.95
Non-Coding 0.93 0.92 0.93

Coding 0.93 0.94 0.94

Transformer 0.91 0.93
Non-Coding 0.93 0.88 0.90

Coding 0.90 0.94 0.92

Prediction performances calculated on the held-out test set for the models trained are provided in
Table 1 and show that our models perform well on the classification task. The LSTM model achieves
the highest classification performance with 94% AUC and 96% AUPR. The CNN model performs
similarly well with 93% AUC and 95% AUPR, while the transformer achieves 91% AUC and 93%
AUPR. Since our aim is to study the underlying dataset and find misannotated lncRNAs, higher
prediction performance is not the primary focus. Instead, since we know that the training dataset
contains lncRNAs that have incorrect ground-truth labels, we want to ensure that the models are
not being overfitted to learn features that might not be relevant to learning the biological distinction
between coding and non-coding RNAs as encoded in the nucleotide sequences. In the following sections,
we detail how we employ these models to discover possibly misannotated lncRNAs in the underlying
dataset.

3.2 Training dynamics of deep learning models can be used to identify misannotated
lncRNAs

Having evaluated the CNN, LSTM and Transformer models to distinguish between coding RNA and
non-coding RNA, we retrain the models using all data and inspect each instances training dynamics.
During the training phase of each model, we track the coding probability predictions for each RNA.
Figure 2a shows the predictions for the coding probability for three different RNAs across all training
epochs for the LSTM model. For example, the coding probability predictions for ENST00000447563
(shown in orange) -an RNA annotated as long non-coding (ground-truth)- are consistently high. In
other words, as model training progresses, this RNA is invariably classified as coding. It was recently
shown that ENST00000447563 has been misannotated as lncRNA when it can, in fact, code for a
protein [13]. Two other examples of correctly annotated coding and non-coding RNA are also shown
in Figure 2a. By studying the predictions made by models as they are under training, it is possible to
identify putative misannotated lncRNAs.

Figure 2b expands upon this idea: calculating the mean and standard deviation of predicted prob-
ability for the ground-truth class across all training epochs provides a measure of identifying misanno-
tated lncRNAs. lncRNAs in the lower left quadrant of Figure 2b are considered putative misannotated
lncRNAs; these samples have low mean and standard deviation for the predicted probability of the
ground-truth class over all training epochs. In other words, these lncRNAs are consistently classified
into the non-ground-truth class (coding) and therefore, are likely to be misannotated. It is interesting
to note that the majority of the putative mislabelled samples have ground-truth label ncRNA. This ob-
servation supports the notion that the current method for identifying putative misannotated lncRNAs
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Fig. 3: (a) Comparison of the misannotated lncRNAs obtained from by CNN, LSTM and Transformer models’
training dynamics. (b) Comparison of the misannotated lncRNAs obtained from deep learning models with the
cncRNA database (hypergeometric test, p-value 1e-6), which provides a manually curated list of experimentally
validated coding lncRNAs.
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Fig. 4: Comparison of misannotated lncRNAs found by CNN, LSTM and Transformer models’ training dy-
namics with previous ribo-seq data based methods used to find misannotated lncRNAs from : (a) FLOSS
(p-value ≈ 0), (b) ORFScore (p-value 4e− 320) and (c) PhyloP (p-value (1e− 32)) for the dataset from [12].
Background set has 26857 lncRNAs.

is reasonable. This is because an RNA with ground-truth ‘coding’ is unlikely to be misannotated. In
conclusion, many lncRNAs might be misannotated and sequence information combined with training
dynamics of deep learning based classifiers might help identify such misannotations.

3.3 Different deep learning architectures find common misannotated lncRNAs

Figure 3a shows the overlap between the lists of misannotated lncRNAs generated by CNN, LSTM and
Transformer models. It is interesting to note that despite the difference in network architectures, the
intersection of possible misannotated lncRNAs is large. The CNN model identifies the smallest number
of candidate misannotated ncRNAs. It is interesting to note that the number of common candidates
identified by Transformer and LSTM but not by CNN (1394 in total) is large as compared to the
common candidates between CNN & Transformer only (71) and between LSTM & CNN only (171).
1251 candidates are identified by all 3 models.

3.4 Misannotated lncRNAs overlap significantly with manually curated, experimentally
validated coding lncRNAs & with misannotated lncRNAs discovered by ribo-seq

To check if the candidate list of misannotated transcripts overlap with already reported misannoated
ncRNAs, we find the overlap with the cncRNA database. The cncRNA database provides a manually
curated list of experimentally validated coding lncRNAs [16]. Figure 3b shows the overlap between the
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Fig. 5: Misannotated lncRNAs exist in a continuous cluster with coding RNAs. t-SNE clusters
obtained from hand-crafted features [38] generated from nucleotide sequences. Labels (Coding, lncRNA etc.)
are only used for visualizing the clusters, not for generating the clusters. Putative misannotated lncRNAs lie
in a cluster contiguous with coding RNAs. There are other clusters of ncRNAs that are well separated from
coding RNAs and that do not contain any putative misannotated lncRNAs.

list of misannotated lncRNAs generated by our deep learning models and the cncRNA database [16].
There are 225 common misannotated lncRNAs, this overlap is highly significant (hyper-geometric test,
p-value (1e-6)).

Next, we compared the overlap between the misannotated lncRNAs discovered by our deep learning
models with a high-throughput ribo-seq dataset. Figure S4 shows the counts for lncRNAs obtained by
applying 3 different methods (FLOSS, ORFScore and PhyloP) to identify true positives from ribo-seq
data generated by [12]. For FLOSS, lncRNAs with a classification of ‘Good’ are considered candidate
misannotated lncRNAs; it is interesting to note that most of the lncRNAs have a ‘Good’ FLOSS score.
In contrast, fewer lncRNAs are considered misannotated according to ORFScore and PhyloP. The
overlap between these 3 methods to find sORFs from ribo-seq data is shown in Figure S3.

It is important to note that the dataset used in the current work is much smaller and contains fewer
lncRNAs than those found from the [12] ribo-seq dataset. In order to be able to compare the numbers
of misannotated lncRNAs found by the different methods, we first generated a list of lncRNAs that
were present both in the ribo-seq dataset and in the nucleotide sequence dataset used for training deep
learning models. From this common lncRNAs master list, we calculated the overlap between misanno-
tated lncRNAs found by different methods. Figure 4 shows that the overlap between our method and
FLOSS (hypergeometric test, p-value ≈ 0), ORFScore (hypergeometric test, p-value 4e-320) and Phy-
loP (hypergeometric test, p-value 1e-32) significant. This shows that our method successfully identifies
misannotated lncRNAs by learning relevant features from the lncRNA nucleotide sequences.

3.5 Misannotated lncRNAs exist in a continuous cluster with coding RNAs

To analyze the coding and noncoding transcript distributions of the data, we calculated features on
for all RNAs in the dataset, based on properties of the transcripts as in [38]. These features include
ORF length, ORF quality, nucleotide distribution, translated peptide stability etc. used by [38] (see
Table S1 for more details). Using these features, we apply T-distributed stochastic neighbor embedding
(t-SNE) [27] (SciKit-learn implementation [34], perplexity=150, iterations=1000, learning rate=200)
to reveal RNA clusters.
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- - - - - - - - - - - - - - - - - - - - - -atg tgagag aga gat atg tgt gtt ttatag agt gtt ttgtgg ggt gta tacaca cag agg ggg gga gag agg ggg ggg ggt gtt ttc tcccca cag agg gga gac acc ccc ccg cgc gca cac acg cgc gcc ccc cct ctt ttg tgcgcg cgg gga gag agt gtg tgc gcc cct ctg tgc gct ctg tgggga gag agg ggg gga gag agc gcc ccg cgg

ggt gtg tgtgtg tgt gtc tcccca cag agg gga gac aca cac acc ccc cct ctt ttg tgcgcg cgg gga gag agt gtg tgt gtc tctctg tgc gct ctg tgggga gag agg ggg gga gag agc gcc cca cag agt gtg tgtgtg tgt gtc tcacag agt gtg tgagag aga gat atg tgg ggc gct cta tatatg tgc gcc ccc ccc cct ctg tggggg ggc gct ctg tgc gct ctg tgtgtg tgt
gtc tcc ccc cca cag agg ggt gtt ttc tcc cct ctc tcacag agt gtc tct ctc tct cta taa aac acc ccc cct ctt ttg tgt gtt ttc tct ctc tca cac aca cag agg ggg ggg gga gat atg tgggga gac act ctc tct ctt ttg tgc gct ctt ttc tct ctt ttc tcc ccc cca caa aac act ctc tcccca cac acc cca caa aag aga gag agg ggg gga gac acc ccg cgt gtc tcc ccc cca
cag agg gga gac acg cgt gtc tcc cct ctt ttc tcc ccc ccc ccg cgg ggg ggc gca cat atc tctctg tgg ggc gcc ccc cct cta tacaca cag agc gct ctg tgc gcc cct ctg tgagag agg ggt gtc tct ctc tcccca cat atc tca cac acc ccg cgt gtt ttgtgg ggc gcg cgc gcc cca cat atc tcacag agt gtc tctctg tgc gct ctg tgtgtg tgcgca cag agc gcc cca
cag agc gct ctg tgt gtt ttgtgg ggt gtt ttgtgggga gag aga gag agc gcc cct ctg tgagaa aag aga gaa aac act ctg tgcgca cag agt gtt ttc tca cac acg cgt gtc tct ctc tca cat atc tct cta taaaaa aag agg gga gag agc gct ctg tgagaa aaa aat atg tga gat ata tat att ttg tgcgca cag agc gct ctt ttc tct ctt ttgtgg ggt gtt ttg tgcgcg cgt
gtg tgcgca cag agt gtg tgagag aga gaa aat atc tctctg tggggg gga gag agc gct ctg tgagaa aac acc cct ctg tgt gtt tta tat atc tctctg tgcgca cat atg tgg ggt gtc tct ctt ttc tcacag aga gaa aaa aat atc tcacag agg ggc gca caa aaa aac act ctc tcgcgg gga gaa aaa aaa aat atg tgc gcc cca caa aac acg cgc gcc cca caa aaa aaa
aaa aat atg tgc gct ctg tga gat atg tggggg ggt gtg tga gac aca caa aaa aag agt gtg tgt gtc tca cac aca cag agg ggt gtg tgtgtg tga gat atg tgcgca cat att tta tacaca caa aaa aat atc tct ctc tcacag agg gga gac act ctt ttg tgt gtt ttc tca cac act ctg tgggga gat att ttg tgagaa aaa aag agg ggt gtc tcacaa aag agc gct ctt ttc tca
cac aca cag agg gga gaa aaa aaa aat atg tga gat atg tgagaa aag agt gtc tcc ccc cca caa aaa aaa aag aga gac acc cca cag aga gaa aaa aat ata tatata tat att ttc tcacag aga gaa aag aga gat atg tgc gcc cca cag agt gtt tta tac act cta tac act ctt tta taaaaa aat atg tgt gtc tcacaa aaa aac acc cca caa aac aca cat att ttc tca
cag aga gaa aaa aat ata taa aac act ctt ttc tcacaa aat atg tga gat att tta tat att ttc tcc cct ctg tgc gcc cca caa aag aga gaa aag agg ggt gtg tgagaa aac acg cgc gct ctg tgggga gag aga gac acc cct ctt tta taa aat atg tgg ggt gtg tgggga gaa aag aga gat atg tgggga gag agg ggg ggc gcg cgt gtc tct ctt ttc tcc cct ctt ttc tct
ctg tgt gtt tta taaaag agc gct ctg tga gac aca caa aac act ctt ttgtgg ggc gct ctt ttc tcccca cat atc tct ctt ttg tgtgtg tgagag agg gga gac acc cct ctc tca cac acc ccc cct cta tac acc cct ctg tgg ggt gtg tgg ggc gca cag aga gag agg gga gac acg cgt gtc tctctg tga gac acg cgc gcc ccc cct ctc tcacaa aat atc tca cat att ttg tgc
gcc ccg cgt gtt tta tacaca cac act ctt ttc tcc ccc cca cag agc gcc cct ctg tgg ggt gtg tgg ggt gtc tcacag agt gtc tct ctc tcc cct ctg tggggg ggg ggt gtc tctctg tgtgtg tgtgtg tgt gtt tta taa aac aca caa aaa aac acc cca cat atc tcgcga gac act ctg tgggga gac aca caa aat atc tcg cgc gca cag agt gtt ttc tcc cct ctt tta tatatg tga
gaa aag agg ggc gct ctt tta tac act ctt tta taaaaa aaa aaa aag agg ggc gct ctc tctctg tgggga gat att ttc tcacag aga gaa aag agc gcg cga gaa aag agt gtc tcg cgc gct ctt ttc tca cat atc tcc ccc ccc ccg cga gat att ttc tcacag aga gac acc ccc cca cat atc tcc cct cta tag agt gtg tgggga gag agg gga gaa aaa aaa aaa aat atc tcc
cct cta tac acc cca cag aga gaa aag aga gaa aag agg ggg ggc gct ctg tga gac acc cca cat ata tagagg gga gaa aac act ctt ttg tgc gcc cca cat att ttc tcc cct ctt ttg tga gac acc ccc ccc cca cat atc tca cat ata tat atc tctctg tgagag agg gga gaa aaa aaa aaa aaa aac aca caa aac aca cag aga gaa aaa aaa aag agg ggt gtc tcacaa
aaa aaa aac acc ccc cca cac acg cgt gtg tgtgta tacacg cgc gcc ccc cca caa aac acg cgt gtc tcc cct ctg tga gat att ttg tga gac acg cga gac act ctt ttg tgc gcc cct ctg tgcgca cag agc gct ctt ttc tctctg tgc gct ctt ttc tcc cct ctg tgagaa aaa aat att ttc tcg cgc gct ctg tgc gct ctg tgc gcc cct ctt ttatagaga gaa aac acc ccc cct ctt
ttg tgt gtc tctctg tgcgca cag agc gcc cca cag agt gtg tggggg ggg gga gag agt gtt ttc tcacag agg gga gac act ctt ttatagagg ggc gcg cgg gga gag agc gct ctg tgc gcc ccc ccc cca cac acc ccc cct ctc tcc cct ctg tgc gct ctt ttgtgg ggc gca cac acc ccc cct ctg tgcgca caa aaa aat ata tacaca cat atg tgc gcc ccc cct ctc tcc ccc
cct ctt ttc tcccca cat atc tcg cgc gct ctg tgcgca cag aga gac acc cct ctc tcacag aga gag agt gtg tggggg ggc gcg cgt gtc tccccg cgg ggt gtc tct ctc tcc cct ctg tgtgtg tgcgcg cgg ggg gga gat atg tgagag aga gaa aat ata tacaca cac aca cac acc ccc cct ctc tcc ccc cct ctt ttc tcccca cat atc tcg cgc gct ctg tgcgca cag aga
gac acc cct ctt ttatagaga gag agt gtg tgggga gat atg tgt gtc tccccg cgg ggt gtc tct ctc tcc cct ctg tgtgta tatatg tggggg gga gat atg tgagag aga gaa aat ata tacaca cac acg cgc gcc cct ctt ttc tcc ccc cct ctt ttc tcccca cat atc tcg cgc gct ctg tgcgca cag aga gag agt gtg tgggga gac acg cgt gtc tctctg tgg ggt gtc tct ctc
tcc cct ctg tgtgtg tgtgtg tggggg gga gat ata taa aat ata tacaca cac acg cgc gcc ccc cct ctc tcc cct ctt ttc tcacaa aat atc tcg cgc gct ctg tgcgca cag aga gac acc cct ctc tcacag aga gag agt gtg tgggga gac acg cgt gtc tccccg cgg ggt gtc tct ctc tcc cct ctg tgtgtg tgtgtg tggggg gga gat ata taa aat ata tacaca cac acg cgc
gcc ccc cct ctc tcc cct ctt ttc tcacaa aat atc tcg cgc gct ctg tgcgcg cgg gga gac acc cct ctc tcacag aga gag agt gtg tgggga gat atg tgt gtc tccccg cgg ggt gtc tct ctc tcc cct ctg tgtgta tatatg tggggg gga gat atg tgagag aga gat ata tacaca cac act ctc tcc cct ctt ttc tcc ccc cct ctt ttc tcccca cac act ctg tgc gct ctg tgcgca
cag aga gac acc cct ctc tcacag aga gag agt gtg tgggga gac acg cgt gtc tccccg cgg ggt gtc tct ctc tcc cct ctg tgtgtg tgtgtg tggggg gga gat atg tgagag aga gat ata tacaca cac act ctc tcc cct ctt ttc tcc ccc cct ctt ttc tcccca cac act ctg tgc gct ctg tgcgca cag aga gac acc cct ctc tcacag aga gag agt gtg tgggga gac acg
cgt gtc tccccg cgg ggt gtc tct ctc tcc cct ctt ttg tgtgtg tggggg gga gat atg tgagag aga gaa aat ata tacaca cac act ctc tcc cct ctt ttc tcc ccc cct ctt ttc tcccca cat atc tca cac act ctg tgcgca cag aga gac acc cct ctc tcacag aga gag agt gtg tgggga gac acg cgt gtc tccccg cgg ggt gtc tct ctc tcc cct ctg tgtgtg tgcgcg cgg
ggg gga gac aca caa aag aga gaa aat ata tacaca cac act ctc tcc cct ctt ttc tcc ccc cct ctt ttc tcccca cat atc tca cac act ctg tgcgca cag aga gac acc cct ctc tcacag aga gag agt gtg tgggga gac acg cgt gtc tcccca cag agt gtc tct ctc tcc cct ctg tgtgtg tgcgcg cgg ggg gga gat atg tgagag aga gat ata tacaca cac act ctc tcc
cct ctt ttc tcc ccc cct ctt ttc tcccca cat atc tcg cgc gct ctg tgcgca cag aga gac acc cct ctc tcacag aga gag agt gtg tgggga gac acg cgt gtc tcccca cag agt gtc tct ctc tct ctc tctctg tgtgtg tgcgcg cgg ggg ggc gcc cca caa aag agt gtg tgtgta tacaca cac aca cag agt gtt ttg tgt gtt ttc tccccg cgt gtc tca cac aca caa aac act
ctt ttc tcccca cac acg cga gac aca cag agg ggc gcc cca cag agt gtg tgtgtg tgagag agg ggt gtt ttg tgagag agc gct ctg tgg ggt gtg tgc gct ctg tga gac act ctg tgagaa aaa aaa aac act ctg tgt gtc tcacag agc gct ctg tgc gcc ccc cca caa aag agg gga gac acc cct ctg tggggg gga gag agc gct ctc tctctg tgc gct ctc tcc ccc ccc
cca cac act ctc tcc cct ctg tgg ggt gtg tgtgtg tgcgcg cgg ggt gtc tct ctt ttg tgcgcg cgc gcc cct ctg tgg ggc gcc cct ctc tcc ccc cct ctg tgc gcc cct cta tagagg ggt gtt tta tacaca cat atg tgcgca cag agt gtg tgg ggt gtc tca cat atc tcc ccc ccg cgg ggt gtc tcg cgc gct ctc tcc ccc cca cac aca cac acc ccc ccg cgt gtg tgtgtg tgg
ggg ggc gct ctc tctctg tggggg gga gat atc tcc ccc ccc cct ctc tct ctt ttc tcccca cag agc gcc cca cag agc gcc ccc cca cag agg ggg ggg gga gac aca cat atc tctctg tgg ggc gct ctg tgt gtc tct ctc tcacag agg gga gac acc ccc cca cag agc gcc cca cat atc tctctg tgtgta taaaaa aaa aaa aat att ttatagagg ggc gca cag agg ggt gtc
tcc ccc cct ctt ttc tcacag agt gta tatatg tgc gct ctc tcc cct ctg tgg ggt gtc tcacaa aac aca caa aaa aag aga gaa aaa aaa aaa aac act ctt ttc tcacaa aat att ttg tgagag aga gaa aat atg tgg ggc gca cat atc tctctg tgtgta tat att ttc tccccg cga gaa aag agt gtg tgt gtt ttc tct ctc tct ctc tcacag aga gat atg tgt gtt ttg tgagag agt
gtt ttc tcccca cac act cta taaaag agt gta tagaga gat att ttc tct ctt ttatag agt gtc tctctg tgc gct ctg tgtgta tat atc tcacaa aat atg tga gac aca cac aca cag aga gag aga gag aga gac acg cgt gtg tgcgca cat att tta taaaaa aaa aac acc cct ctc tcacaa aac acc cca cat atg tgtgtg tgggga gat atc tct cta tat att ttc tct ctt ttc tca
cag agt gtt tta taa aat att ttg tgc gct ctt ttc tca cat atg tgtgta tat atc tct ctt ttg tgagaa aag agc gct ctc tctctg tgt gtt tta tat atc tcacag agg ggt gtg tgcgca cat atg tgcgca cac aca cat att ttgtggggg gga gat att ttg tgt gtt tta tatatg tgc gct ctt ttc tcc cct ctg tga gat atg tgagaa aac act ctg tga gac acc cct ctt ttc tct ctt ttc
tca cat att tta tatatg tgcgca caa aag agg ggg ggg gga gaa aag aga gaa aag aga gat atg tgc gct ctg tgcgca cat ata tacaca cag agg gga gat atg tgggga gaa aat ata tat atc tcccca cag agg ggg ggg gga gaa aag aga gac acg cgt gtc tct cta taaaag agg gga gag aga gag aga gat atg tgc gcc ccc cca cag agc gct ctg tggggg
gga gag agt gtc tcc cct cta tatatg tgcgca caa aag agg ggg ggg gga gaa aag aga gaa aag aga gat atg tgc gct ctg tgcgca cat ata tacaca cag agg gga gat atg tggggg gga gat ata tat atc tcccca cag agg ggg ggg gga gaa aag aga gat att ttc tct cta taaaag aga gaa aag aga gag aga gat atg tgc gcc ccc cca cag agc gct ctg tgg
ggg gga gag agt gtc tcc cct cta tatatg tgcgca caa aag agg ggg ggg gga gaa aag aga gaa aag aga gat atg tgc gct ctg tgcgca cat ata tacaca cag agg gga gat atg tggggg gga gat ata tat atc tcccca cag agg ggg ggg gga gaa aag aga gat att ttc tct cta taaaag agg gga gag aga gag aga gac aca cac acc ccc ccg cgg ggc gct
ctg tgggga gaa aag agt gtc tcacaa aag aga gat ata tatatg tgt gtc tcacag agt gtt ttg tgt gtt ttc tcccca cat att tta tatata taa aat ata taaaaa aaa aac acc cca cac act ctc tca cat atg tgt gtt ttatagaga gat atg tgagag agc gct ctg tgagaa aac act ctt ttc tcc ccc cct ctt ttc tcc ccc ccc cca cag agt gtt ttc tct ctt tta tacacg cga gat
atc tcacaa aaa aaa aaa aag agt gtg tgg ggc gct ctg tgt gtc tcc cct cta taaaaa aat att ttc tca cat atc tca cac act ctc tcacaa aat ata tat atc tcc cct ctt ttg tgc gct cta tagaga gag agt gtc tct ctt ttc tcc cct ctt ttg tgt gtc tcacag agc gcc cca cag agg ggc gct ctg tgggga gag agt gtg tgcgca caa aat atg tgtgtg tgcgca caa aat atg
tgg ggc gca cac aca caa aat atc tct ctt ttgtgg ggc gct ctc tca cac act ctg tgcgca caa aac acc cct ctc tctctg tgt gtc tct ctc tcc cct ctg tggggg ggc gct ctc tcacaa aag agc gca caa aat att ttc tct ctt ttc tctctg tgc gcc cct ctc tcacag agc gcc cct ctc tcc cct ctg tgagag agt gta tag agc gct ctg tggggg gga gat att tta tacaca cag
agg ggt gta tatatg tgcgca cac acc cca cac acc cca cat atg tgc gcc ccc cca caa aac act cta taa aat att ttg tgtgta tat att ttc tcacag agt gta tagaga gag aga gac acg cga gag agg ggt gtt ttc tca cac acc cca cat atg tgt gtt ttgtgg ggc gcc cca cag agg ggc gct ctg tgg ggt gtc tct ctc tcgcga gat atc tct ctc tcc cct ctg tga gac acc
cct ctc tcacag agg ggt gta taa aat atc tctctg tgc gcc ccc cca cac acc cct ctt ttgtgg ggc gcc cct ctc tct ctc tcacaa aaa aag agt gtg tgc gct ctg tggggg gga gat att tta tacaca cag aga gac aca cat atg tgagag agc gcc cca cat atc tca cat atg tgc gcc cct ctg tgggga gac aca cat ata taaaag agt gtg tgagag agt gtt tta tatata tat
att ttg tgtgta tat att tta tatata taaaag aga gac act cta tatatg tga gat ata tacaca cag agt gta taaaaa aaa aac acc cca cat atg tgagaa aaa aat atc tcccca caa aaa aat att tta tatata taa aat ata tat atc tca cac aca cac act cta tacaca cat ata taa aat ata tacaca caa aac act ctg tgtgta taa aac acc cct ctc tca cac acc ccg cgc
gcc ccc cct cta tat atc tcc cct ctg tggggg gga gat atg tgtgtg tgtgtg tgt gtc tca cat att tta tatata tag agc gcc cca caa aat att tta tatatg tgg ggc gcc ccc ccc ccc cca cag agc gct ctt ttatag agt gtt ttc tct ctt ttg tgc gct ctt tta tat att ttgtgggga gag aga gag agt gtg tgtgta taa aat att ttc tct ctc tcc ccc cct ctt tta tat att ttc tct
ctt ttg tgc gct ctt ttc tct cta tacaca cag agt gtc tct ctt ttg tgtgtg tgtgta tacaca cat atc tcacag agt gtt tta tat atc tctctg tgt gtt ttg tgt gtc tcc cct ctt ttg tgc gcc cca cag agt gtg tgt gtt ttc tcacaa aaa aag agt gtg tgt gtt tta tat att ttc tcg cgt gta tat att tta tac act ctt tta taaaag agc gct ctc tcc cct ctg tgcgca cag agg ggg gga
gag aga gat att ttatagaga gaa aat att ttc tct ctt ttc tcc ccc ccc cct cta taaaag aga gaa aag aga gaa aaa aat ata taaaag agt gta taa aat ata tag agc gcg cgg gga gag aga gac acc cct ctg tgc gct ctg tggggg ggc gca cac act ctg tgg ggt gtg tgg ggc gcg cgc gcc cca cag agg ggc gct ctt ttgtgg ggc gct ctc tctctg tggggg ggg
ggc gct ctg tgc gcc ccc cca cat atc tcccca cat atc tcc cct ctc tca cac aca cag agc gca cat atg tgg ggc gcg cga gac act ctg tgggga gag agg ggg ggt gtc tct ctt ttg tgc gcc ccc cct ctg tgagag agg ggt gtc tcc ccc ccg cgt gtg tgtgtg tgcgcg cgg gga gag agc gca cag agg ggg ggc gct ctt ttgtgg ggc gca cat att ttc tca cac act ctc
tcc cct cta tagagg ggc gca cac act ctg tgc gct ctg tga gac act ctc tcacag agt gtc tctctg tgt gtc tcc cct ctg tgg ggt gtg tgg ggt gtg tgc gct ctg tggggg gga gag agg ggc gcc ccg cga gaa aaa aac acc ccc ccg cgt gtc tca cat atg tgcgca cat atg tgtgta taaaaa aac acc ccg cgc gcg cgg ggg ggg ggc gcc ccc ccc ccg cgt gtc tct
ctg tgg ggc gca cat atg tgg ggt gtg tgcgca cac acc cct ctg tgtgtg tgc gct ctg tggggg gga gag agt gtg tgc gcc cct cta tatata tagaga gag agt gta tagagg gga gaa aaa aaa aag agt gta tat att ttc tcc cct ctg tgggga gac acc cct ctt tta taaaaa aaa aaa aaa aac act ctt ttatagagg ggc gcc cca caa aaa aaa aaa aaa aag agt gtg
tgt gtt ttgtgg ggt gtt ttg tgagaa aat atc tct ctt ttgtgg ggc gcc cca caa aaa aat att ttgtgggga gaa aac act ctg tgcgca caa aaa aac act ctc tctctg tgtgta tat att tta tat atc tct ctc tcc ccc ccc cct ctt ttg tgtgtg tgagaa aaa aat att ttc tct cta tatatg tgggga gaa aaa aaa aat att ttc tcgcga gag agc gca caa aaa aat ata taaaaa
aat ata tatatg tgcgca cat att ttc tcc ccc cca cag agt gtg

Fig. 6: Attention maps explain which parts of sequence are important for making a classifi-
cation decision. An example attention map extracted from first convolutional layer of CNN model for
ENST00000447563 (a misannotated lncRNA). The ground-truth for this RNA is ‘Non-coding’. However, CNN
model predicts that this is a non-coding RNA with probability 0.12. Attention visualization shows regions with
contiguous ‘A’ nucleotides have high activation weights.

Figure 5 shows the clusters obtained by performing t-SNE [27] on these features generated from
RNA sequences. The labels of the RNAs (coding, non-coding) are not used while generating the clus-
ters. However, based on available coding and non-coding ground-truth labels, along with the biotype
information for the ncRNAs, we label each individual RNA example. LncRNAs determined as misanno-
tations by the different deep learning models are labeled in black; interestingly, putative misannotated
lncRNAs lie in a cluster contiguous with coding RNAs. This suggests that there is indeed some con-
tinuity between coding and lncRNAs in this embedded space and that the categories might not be
as mutually exclusive as we believe, which is consistent with recent research discovering that some
lncRNAs encode micropeptodes [13]. In support of this, there are clusters of non-coding RNAs (la-
belled Misc RNA) that are well separated from coding RNAs and that do not contain many putative
misannotated lncRNAs.

3.6 Exploring features learnt by models

To understand which which regions of the sequence are useful for making classification decision, we
visualize the activation weights of the model layers. These activation weights determine which sequence
features are paid most attention to by the model. Figure 6 shows an example attention map of a
misannotated lncRNA generated from the first convolutional layer of the CNN model. Supplementary
Figure 1 shows the attention weights visualized for a coding and long non-coding RNA that are not
misannotated according to the criteria described above. The CNN model appears to focus on continuous
stretches of adenines in the sequence to make decisions about whether a given RNA is coding or long
non-coding. This might be because the poly-adenylation sites are one of the major distinguishing
features between coding and non-coding RNAs. Supplementary Figure S1 shows the average attention
given to all codons for this sequence. Codons with high ‘adenine’ content have higher average attention,
but codons ending with ‘TA’ like ‘ATA’, ‘CTA’, ‘GTA’ & ‘TTA’ also have high average attention.
Studying these and comparing the average attention differences in codons between coding and non-
coding RNAs might prove interesting.

4 Conclusion and Future Work

In this paper, we apply the general framework described by [36] for detecting mislabelled samples in
a training dataset to detect misannotated lncRNAs. The training dataset, comprising of nucleotide

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2020. ; https://doi.org/10.1101/2020.11.07.372771doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.07.372771
http://creativecommons.org/licenses/by-nd/4.0/


10 Nabi et al.

sequences of coding and non-coding RNA, is used to train CNN, LSTM and Transformer models. At
the end of each training epoch, coding and non-coding prediction probabilities for every RNA sample
are saved. Calculating the mean and standard deviation of the ground-truth class helps determine
whether a given RNA is possibly mislabelled. LncRNAs with low mean and standard deviation for the
non-coding class are the possible misannotations.

A large number of misannotated lncRNAs are identified by all three different deep learning methods.
This is significant since the algorithms to distinguish between coding and non-coding RNAs employed
by the models are different. Moreover, when we compare the misannotations discovered here to previous
methods to detect misannotated lncRNAs from ribo-seq data and manually curated dataset, we see
a large overlap for two of the methods, suggesting that our method is successfully able to detect
misannotated lncRNAs. It is also interesting to note that our method shows a high overlap with a
manually curated list of misannotated lncRNAs. Therefore, we conclude that this approach offers
promising potential for use in curating datasets used for training coding potential predictors and
assisting experimental efforts in characterization of misannotated lncRNAs.

To our knowledge, this work also represents the first instance in which nucleotide sequence em-
beddings and transformer models are applied to the problem of building coding potential predictive
models. Using nucleotide embeddings might be preferable to other representations like one-hot en-
coding [14] or integer encoding [6] used previously. This is because embeddings are learnt from the
complete human genome and incorporate the context in which a given codon is found in the DNA.
All models are configured to have trainable embeddings; this helps to learn better representations of
codons in RNA, since the original embeddings are learnt from DNA sequences. Future work to compare
the original embeddings to the embeddings generated from models trained here might provide valuable
insight into the differences between codons in DNA and RNA.

One limitation of the approach presented here is that it is computationally intensive since models
need to be retrained on the complete dataset after evaluation of the test set performance. However,
this approach represents the first method that can find possibly misannotated lncRNAs from the
nucleotide sequence alone. In conjugation with ribo-seq data, it can be used to identify misannotated
lncRNAs with high confidence. Moreover, it can be used for curating the training datasets used for
training coding potential predictors. Future work that compares the misannotated lncRNAs obtained
from models here with ribo-seq datasets from different cell-types will provide interesting results on the
cell-line specificity of misannotated lncRNAs.
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