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Abstract 

When applied to immunity, forward genetic studies use meiotic mapping to provide strong statistical 
evidence that a particular mutation is causative of a particular immune phenotype.  Notwithstanding 
this, co-segregation of multiple mutations, occasional unawareness of mutations, and paucity of 
homozygotes may lead to erroneous declarations of cause and effect.  We sought to improve the 
selection of authentic causative mutations using a machine learning software tool, Candidate Explorer 
(CE), which integrates 65 data features into a single numeric score, mathematically convertible to the 
likelihood of verification of any putative mutation-phenotype association.  CE has identified most genes 
within which mutations can be causative of flow cytometric phenovariation in Mus musculus.  The 
majority of these genes were not previously known to support immune function or homeostasis.  
Mouse geneticists will find CE data informative in identifying causative mutations within quantitative 
trait loci, while clinical geneticists may use CE to help connect causative variants with rare heritable 
diseases of immunity, even in the absence of linkage information. CE displays integrated mutation, 
phenotype, and linkage data, and is freely available for query online. 

Forward genetics always begins with a phenotype, often induced by a random germline mutagen, and 
ends with the discovery of a causative mutation.  We developed a process for rapid identification of 
causative mutations in mice carrying N-ethyl-N-nitrosourea (ENU)-induced germline mutations1, 2.  Our 
pipeline involves mutagenizing male C57BL/6J (G0) mice and breeding them on the C57BL/6J background 
to create G1 male pedigree founders, G2 daughters, and G3 mice of both sexes for phenotypic screening 
(Supplementary Fig. 1).  All G1 founders of pedigrees are whole-exome sequenced to identify >99% of 
ENU-induced non-synonymous coding/splicing changes, and all G2 and G3 mice are genotyped at these 
mutation sites in advance of phenotypic screening.  Automated meiotic mapping (AMM) is performed 
using the program Linkage Analyzer, which tests the null hypothesis for every mutation in every screen; 
i.e., “mutation A is unrelated to phenotypic performance in screen α”1.  Rejection of the null hypothesis 
with a P value ≤ 0.05, with Bonferroni correction for multiple comparisons, has generally been considered 
suggestive of causation.  Verification by an independently generated allele is necessary to confirm the 
association. 

Experience with many thousands of mutation-phenotype associations identified by AMM and either 
verified or excluded by testing CRISPR/Cas9-targeted alleles, has shown that the P value determined by 
AMM is not the sole indicator of causation.  Many other factors, such as the nature of the mutation 
(benign, damaging, null), the essentiality of the gene for survival prior to weaning, pedigree size, the 
number of homozygotes tested, the magnitude of phenotypic effect, data variance characteristic of the 
screen in question, the number of distinct phenotypes caused by the mutation, the presence or absence 
of co-segregating mutations, and the observation of other alleles with similar effects, influence correct 
selection of an authentic causative mutation.  These numerous considerations, not readily integrated into 
a decision by human observers, impelled us to develop Candidate Explorer (CE), a software tool employing 
a supervised machine learning algorithm to estimate the likelihood of verification of any putative 
mutation-phenotype association implicated by AMM.  

In this study, we focused on changes in immune cell populations caused by ENU-induced mutations and 
detected by flow cytometric analysis of peripheral blood leukocytes from G3 mutant mice.  We present 
CE assessments of 81,760 mutation-phenotype associations (P< 0.05).  CE has identified more than 1,000 
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genes with a high and defined probability of verifiable importance in leukocyte development or 
maintenance.  Many of these genes were not previously known to be important in immune function.   

Results 

CE overview 

The purpose of CE is to aid the researcher in predicting whether a mutation associated with a phenotype 
by AMM is a truly causative mutation.  CE evaluates mutation-phenotype associations that pass specific 
basal filters for conventionally good candidates.  In this paper, we use as the default filters: P<0.05 
(Bonferroni corrected), ≥ 10 mice in the tested pedigree, and ≥ 2 homozygous reference mice screened; 
however, more stringent criteria can be set by the user.  The core of CE is a supervised machine learning 
algorithm that outputs a numerical score (ML Score) and a categorical assessment (Candidate Status) of 
each mutation-phenotype association based on input phenotype data (from screening), mutation data, 
gene data, and meiotic mapping data (Fig. 1a).  CE is trained based on phenotypic assessment of mice 
carrying targeted null or replacement alleles of candidate genes (see below).  In training, performed four 
times per day because of the dynamic status of the database, CE associates all defined features of the 
original pedigree screening data with positive or negative outcomes in the assessment of phenotypes in 
a pedigree of gene-targeted mice.  

CE is publicly available for querying mutation-phenotype associations identified in flow cytometry screens 
we have performed to date.  An example of the use of CE is presented in Supplementary Video 1.   

Training and performance of CE 

At present, the CE training set contains 1,990 verified and 2,945 excluded mutation-phenotype 
associations (4,935 assessments in all), based on germline retargeting of 490 genes.  Germline retargeting 
was performed using CRISPR/Cas9 to generate knockout allele(s) of the candidate genes in mice on a pure 
reference background (C57BL/6J or C57BL/6N). Alternatively, when evidence for homozygous lethality of 
null alleles existed (see Essentiality Score) or the ENU mutation was suspected to cause hypermorphic, 
neomorphic, or antimorphic effects, the original ENU allele, typically a point mutation, was re-created by 
CRISPR/Cas9 targeting (designated “replacement” allele).  Mice carrying targeted germline knockout or 
replacement alleles were expanded to form pedigrees containing mice homozygous for the reference 
allele (REF), heterozygous (HET), and homozygous for the variant allele (VAR).  Compound heterozygous 
mice with two variant alleles of a gene were sometimes also generated.  Fresh pedigrees of mice carrying 
the CRISPR-targeted alleles were subjected to the phenotypic screens in which the original ENU mutations 
scored as hits.  CRISPR-targeted mutations were considered verified according to the criteria: 

1. Observation of the same phenotype with the same directionality of change as observed for the 
original ENU allele with a P value better than 0.01, or 

2. Observation of the same phenotype with the opposite directionality of change as observed for 
the original ENU allele with a P value better than 0.001, or 

3. De novo observation of a phenotype (not seen in the original screen) with a P value better than 
0.001. 

The machine learning (ML) Score (range 0-1) output by CE is a class probability related by a polynomial 
function to the actual probability of verification by CRISPR-targeted alleles, as determined by regression 
analysis (Fig. 1b).  In conjunction with the Algorithmic Score, it is used by CE to designate one of four 
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possible Candidate Statuses for each mutation-phenotype association (excellent, good, potential, or not 
good).  We generally choose good or excellent candidates for CRISPR/Cas9 targeting and further study.  
However, ML Scores are not strictly proportional to the probability of verification (Fig. 1b) and some 
“good” or “excellent” candidates fail to verify.  Conversely, “potential” and “not good” candidates will 
sometimes verify as true positive associations.  We take it as a truism that authentic candidates will 
achieve strong ML Scores as more alleles are obtained and tested (approaching saturation) and will 
therefore eventually be verified. 

The performance of the CE prediction model established using the training set was assessed using the 
repeated 10-fold cross-validation method.  The receiver operating characteristic (ROC) curve has an area 
under the curve (AUC) of 0.944 (Fig. 1c); the current cutoff is 0.43, corresponding to the point with the 
minimum distance to the upper left corner of the ROC curve.  CE ranking of “good” or better corresponds 
to approximately 83% precision (correctly calling a verified candidate “true;” i.e., a 17% false discovery 
rate) and 85% recall (true positive rate) (Table 1).   

CE is also often capable of correctly identifying which mutation is causative when two or more mutations 
co-localize (see also below, Driven By status).  Among 969 such cases, CE correctly identified on average 
87.3% of causative mutations as the top ML scorer, with generally better performance when fewer 
mutations colocalized (Table 2).  As further training is performed, and as the total volume of screening 
data increases (with an attendant increase in the number of genes with allelism and the overall density of 
allelic series), CE performance will continue to improve. 

Input data features 

The CE prediction model was built using a random forest algorithm implemented in the R package and 
currently incorporates 65 features of the input data (33 phenotype features, 20 linkage analysis features, 
8 mutation features, 2 gene features, and 2 other features; Table 3).  The 20 most important features are 
ranked in Table 4.  The Damage Score and Essentiality Score result from independent machine learning 
programs.  The rule-based Algorithmic Score results from computational execution of a fixed algorithm 
that was human designed. 

Damage Score.  The Damage Score (range 0-1), a mutation feature, is the sixth most important feature 
overall in the CE algorithm.  The Damage Score denotes the likelihood that a protein is functionally 
impaired and is determined by a machine learning algorithm that integrates 38 independent prediction 
scores from the human database for Non Synonymous Functional Prediction (dbNSFP) and the probability 
of protein damage to phenovariance caused by mouse mutations3.  A higher score suggests a mutation is 
more likely to be deleterious.  The current Damage Score prediction model was trained on 871 known 
deleterious mutations and 1,797 known neutral mutations.  666 mutations with known effects were used 
to test the performance of the established model, which yielded a ROC curve with area under the curve 
(AUC) of 0.852 (Supplementary Fig. 2). 

Essentiality Score.  The Essentiality Score (range 0-1) is a gene feature and denotes the likelihood of 
lethality prior to weaning age (4 weeks postpartum) in mice homozygous for a robust knockout allele of a 
gene.  The Essentiality Score is calculated using a machine learning algorithm incorporating various 
independent features of genes including gene conservation, protein-protein interaction network, 
expression stage, and viability/proliferative ability of human cell lines in which the gene is mutated.  The 
Essentiality Score prediction model is trained at monthly intervals. The current training data set consists 
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of 3,500 known non-essential genes (Essentiality Score = 0) and 2,058 known essential genes (Essentiality 
Score = 1), determined based on annotations in the Mouse Genome Informatics (MGI) Database and 
observed effects of CRISPR-targeted null mutations we generated in C57BL/6J mice.  The current cutoff 
values are > 0.55 for essential genes and < 0.45 for non-essential genes, and are used to inform gene 
targeting efforts, in which either a knockout allele or a replacement identical to the original ENU allele is 
created for verification of phenotype.  1,389 genes with known effects on viability were used to test the 
performance of the established model, yielding a ROC curve with AUC of 0.893 (Supplementary Fig. 3). 

Algorithmic Score.  Assessments of mutation-phenotype associations are made using a human-developed 
algorithm that outputs a points-based score called the Algorithmic Score (current range -13.5-3.5).  The 
Algorithmic Score appears twice among the most important features contributing to the CE algorithm 
(first and third in importance; Table 4). The algorithm consists of a set of rules based on empirical 
observations (Table 5).  For each feature supporting or opposing the authenticity of a mutation-phenotype 
association, respectively, the Algorithmic Score is increased or decreased.  The features used in the 
Algorithmic Score calculation are similar to those used in the CE machine learning algorithm, but static 
(not influenced by exposure to new training data), and the performance of the rule-based algorithm by 
itself falls short of the performance of the CE prediction model (Fig. 1d).  

Driven By status.  Another input feature to the CE algorithm is generated by a software program called 
Driven By, which evaluates both linked and unlinked candidate mutations to determine the best 
candidate.  At times a cluster of linked mutations fails to undergo meiotic separation; hence more than 
one mutation may stand as a candidate for causation of a phenotype.  On other occasions, as a matter of 
happenstance, homozygotes for a non-causative, unlinked mutation may also be homozygous for a 
causative mutation.  Usually this occurs when the number of homozygotes for the non-causative mutation 
is small.  The Driven By program omits all instances of shared zygosity for both mutations and re-computes 
P values testing departure from the null hypothesis in recessive, additive, and dominant models of 
transmission, and determines which mutation is the more robust causation candidate.  This mutation is 
assigned “driver” status.  Based on other factors (e.g., which mutation is the most damaging, which 
mutation is the most essential for survival to weaning age, and which mutation has evidence of other 
alleles with a similar phenotype), CE may be able to identify the causative mutation out of a set of co-
localizing mutations, giving it a markedly superior ML score. 

Finally, an allelic series probed with a phenotypic screen provides an extremely important clue to 
causation and is considered in CE assessments (Tables 3 and 4, multiple rows).  Superpedigrees—
composites of multiple pedigrees with different alleles assayed in the same screen—are of three types.  
“Gene superpedigrees” pool different and identical alleles of a given gene, subjected to the same screen.  
“Position superpedigrees” pool identical alleles only.  Identical alleles may result from 1) chance mutation 
of the same nucleotide; 2) transmission of a single mutation to multiple G1 descendants of a single G0 
mouse; and 3) a background mutation present in mutagenized stock and shared by multiple G0 mice.  
“Selective gene superpedigrees” incorporate only alleles associated with P values ≤ 0.05 with a common 
direction of effect in a given phenotypic screen, and thus give an intentionally biased view of mutation 
effects.  Because many (but not all) ENU-induced mutations are functionally hypomorphic, a selective 
gene superpedigree for a set of mutations in a particular gene can strongly implicate that gene in the 
phenotype probed by the screen in question.  The number of pedigrees (and alleles) tested is also 
important; for very large genes, hundreds of alleles may have been tested, and the finding that two or 
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three alleles score in a particular screen may be due to chance alone.  CE takes account of this in 
computing probability of causation (Table 4, #7). 

CE assessments of 81,961 mutation-phenotype associations identified by AMM in flow cytometry 
screens 

The flow cytometry screens survey 42 parameters of peripheral blood cells, measuring the frequencies of 
various immune cell populations and expression levels of several cell surface markers (Table 6).  Of 
6,680,105 mutation-phenotype associations tested by AMM in the flow cytometry screens, 82,373 passed 
the default initial filters, permitting analysis by CE.  These putative mutation-phenotype associations 
emanated from 37,292 mutations in 14,437 genes, resident in 128,911 G3 mice from 3,664 pedigrees.  
Restriction to “good” or “excellent” candidates reduced the number of mutation-phenotype associations 
to 5,982, emanating from 1,768 mutations in 1,005 genes, resident in 1,297 pedigrees (Supplementary 
Data 1; see also CE online for the most updated data set).  Gene-phenotype associations for the 1,005 
genes (those with at least one good/excellent mutation-phenotype association) are displayed in a 
heatmap in Supplementary Data 2. 

We could make several observations concerning gene-phenotype associations (Supplementary Data 2).  
First, mutations in the majority (696 genes, 69.4%) of the 1,005 genes resulted in three or fewer 
good/excellent phenotype associations, with 438 genes (43.6%) having a single good/excellent phenotype 
association (Fig. 2a).  In contrast, only 26 genes (2.6%) had at least 20 good/excellent phenotype 
associations, and among them 21 are well known immune regulatory genes.  Second, we found that the 
number of good/excellent gene associations varied widely depending on the cell type affected, with B cell 
and T cell phenotypes associated with the most genes and conventional and plasmacytoid dendritic cell 
phenotypes associated with very few genes (Fig. 2b).  Finally, 347 genes (34.6%) known or predicted to be 
essential for viability (Essentiality Score > 0.55) were associated with at least one flow cytometry 
phenotype, indicating that numerous developmentally important genes likely also have postnatal 
functions in leukocytes (Fig. 2c).   

A total of 1,045 mutations in 521 genes rated good/excellent by CE and suspected or proven causative of 
flow cytometry phenotypes were given allele names and annotated as phenotypic mutations in the 
Mutagenetix database, irrespective of present candidate status (Supplementary Data 3).  While we 
consider that named alleles are very likely causative, we cannot be certain that un-named alleles are not 
also causative.  Some of the un-named alleles are designated as “linked to” or “driven by” another 
mutation in the same pedigree.  This may indicate that they are not causative, but does not always 
guarantee it, and in some cases, two named alleles are linked, suggesting that we have declared both 
mutations to be causative (even though they may co-localize).  Definitive evidence for such dual causation 
can only be adduced by CRISPR/Cas9 targeting. 

To begin to distinguish biological processes that may be particularly important for the development or 
maintenance of immune cell populations, we searched for highly represented Gene Ontology (GO) 
annotations associated with the 521 genes with named alleles (Supplementary Data 4 and 5).  As 
expected, the biological process annotations were most highly enriched for terms related to immune 
system processes (180 genes, P = 3.99e-41), lymphocyte activation (102 genes, P = 9.27e-41), immune 
system development (104 genes, P = 1.23e-36), and other immune development/regulatory processes 
(Fig. 3a), which was consistent with our manual evaluation identifying 213 (40.9%) of the 521 genes as 
previously known immune regulators (Supplementary Data 4 and 5).  By manual evaluation, 308 genes 
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represented “new” immunologically important genes, each necessary for a normal flow cytometry profile.  
For many of these genes, mutant alleles were not previously available in mice and no primary 
immunological or other phenotypic data were available.  This may be due in part to known or predicted 
lethality caused by null alleles of 116 of these 308 genes (Essentiality Score > 0.55).  When we excluded 
genes with GO annotations encompassed by the term “immune system process” from the enrichment 
analysis, striking enrichment of genes associated with cellular metabolic processes (203 genes, P = 9.74e-
12) including protein metabolism (97 genes, P = 0.00258) and carbohydrate metabolism (22 genes, P = 
0.00094) was revealed (Fig. 3b and Supplementary Data 6).   

We also performed a more inclusive analysis in which the 521 genes with named alleles were assigned to 
a defined set of broad GO annotations for biological processes without regard for enrichment 
(Supplementary Data 7).  Based on its granular GO annotations, each gene was assigned to any of 71 
parent GO terms to which it was related.  This analysis revealed unexpected links between various types 
of immunodeficiency and genes involved in tissue and organ development, chromosome organization, 
translation, and mRNA processing, among others.  Notably, among the 14 genes associated with mRNA 
processing, we earlier reported immune phenotypes caused by mutations in three of them (Esrp1 4, Rnps1 
5, Snrnp40 6) resulting from splicing dysfunctions.  These findings suggest that human immunodeficiency 
diseases might sometimes originate from mutations affecting proteins needed for transcript processing 
and protein biosynthesis, most of which are essential for life (10/14 essential).  We also noticed that 6 of 
the 14 genes affected 1 or 2 phenotypes only, suggesting cell type-specific effects despite the necessity 
of these genes for a universal cellular process. 

Discussion 

CE allows rapid examination of mutations and genes strongly predicted to affect (or not to affect) 
phenotypes of interest measured in forward genetic screening.  In general, CE is superior to the human 
researcher in evaluating mutation-phenotype associations because of its ability to integrate parameters 
not intuitively favorable or detrimental with respect to linkage analysis, and because it can perform this 
evaluation more rapidly on a large scale.  Using the numerical ML score and categorical assessment given 
by CE, it is simple to rank mutations into priority lists for further in-depth study.  In addition, causative 
mutations can frequently be discerned among several colocalizing mutations.  As millions of 
coding/splicing mutations are introduced into the mouse genome pedigree by pedigree, more extensive 
allelic series will result, and nearly all genes in which causative loss-of-function mutations can exist will be 
identified with high confidence.  CE is a tool necessary to deconvolute causation and permit this to occur.   

Beyond its use as a tool for rapid identification of the mutations responsible for ENU-induced phenotypes, 
CE should be exceptionally useful to mouse geneticists studying complex traits (e.g., the Collaborative 
Cross) and to clinical geneticists concerned with the identification of rare causes of disease phenotypes.  
In the former case, meiotic mapping may confine phenotypes to a relatively large genomic interval, within 
which many candidate genes with mutational differences exist.  If the phenotype is immunologic, 
knowledge of all genes from which flow cytometric phenotypes emanate is an important starting point 
for studies of causation, wherein these genes can be targeted.  In the latter case, for patients with 
immunopathology and flow cytometric anomalies—but no mutation in a “classical” causative gene—
other gene variants may be evaluated using CE.  Mouse gene symbols corresponding to all loci mutated 
in the patient (identified by whole genome or whole exome sequencing) can be entered into CE and 
searched as a batch.  Those found to cause a flow cytometric abnormality in the mouse evocative of that 
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in the patient may be considered prime candidates.  If genetic mapping has been performed in a human 
family and a particular chromosomal region has been identified, the identification of a candidate gene can 
be made with even higher confidence using CE, which also accepts human chromosome coordinates as 
search input.  Moreover, a mutant mouse can, in most cases, be ordered immediately from the MMRRC, 
providing a model of the patient for laboratory study.  Because the majority of mutations cause loss of 
function (rather than gain of function or new functions), and the majority of mouse genes have human 
orthologues or homologues, many such cases might quickly be solved. 

In this paper, we evaluated mutation-phenotype associations representative of 14,437 genes with one or 
more variant alleles and 42 flow cytometric parameters of peripheral blood leukocytes.  Flow cytometric 
analyses allow detection and measurement of immune cell populations with specific functional correlates, 
and provide insight into the developmental stages cells traverse.  Abnormal flow cytometry patterns are 
often associated with immune dysfunction, and many immunodeficiency and autoimmune phenotypes 
were initially detected not by functional screens per se, but by analyzing the peripheral blood with flow 
cytometry.  Human disease states, exhibiting similar or identical flow cytometry phenotypes, attest to the 
clinical relevance of many mouse flow cytometry abnormalities7, 8, 9, 10, 11, 12, 13, 14.  We have to date achieved 
approximately 50% genome saturation in screening 42 flow cytometry parameters, from which we 
identified 777 genes with good/excellent phenotype associations not previously associated with immune 
function.  Thus, even with a false discovery rate up to 17%, we expect that about 644 more “new” 
immunologically important genes remain to be found.   

In broadly surveying all 1,005 genes with at least one good/excellent phenotype association, we observed 
that a far greater percentage of genes had one, two, or three good/excellent phenotype associations 
(69.3%) compared to the percentage with many (≥20) good/excellent phenotype associations (2.6%).  
These findings suggest that the majority of genes affecting immune cell populations in the blood carry out 
cell type- or phenotype-specific functions.  We are investigating the hypothesis that identical or similar 
combinations of phenotypes affected by two or more genes can indicate the functioning of those genes 
in a common molecular pathway.  We also observed that good/excellent gene associations did not affect 
cell populations with equal frequency despite uniform phenotypic testing across all screens.  For example, 
CD4+ or CD8+ T cells had 3.6- to 13.1-fold more gene associations than plasmacytoid DC, macrophages, 
or neutrophils.  While a trivial explanation is that significant phenotypic differences are detected less often 
for rarer blood cell populations, another possibility reflecting the biology of the cells is that T cells are 
intrinsically less tolerant of genetic variation than plasmacytoid DC, macrophages, or neutrophils, at least 
with regard to the numbers of these cells represented in the peripheral blood.  An understanding of 
individual protein function and the pathways they regulate is critical to gain insight into these issues.  To 
this end, we performed two types of GO analysis on the set of 521 genes with named alleles, either 
searching for enriched GO terms or binning genes by a static set of broad GO terms, and found several 
previously unappreciated processes that appear to be important in immune cell development or 
maintenance.  These include carbohydrate metabolism, protein metabolism, mRNA processing, 
translation, and anatomical structure development.   Future work should focus on fitting the mechanisms 
of each candidate gene into these larger pathways. 

The vast majority of mice phenotyped by flow cytometry were also phenotyped in other screens, among 
them screens measuring responses to immunization, innate immune responses, body weight, skeletal 
measurements, blood pressure, heart rate, dextran sodium sulfate (DSS) sensitivity, circadian rhythms, 
and/or motor coordination.  In the future, the data from other screens will be released for public users of 
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CE to interpret a wide range of phenotypic consequences that emanate from each mutation.  All 
biomedically relevant phenotypic screens may ultimately enlighten the study of human phenotype and 
help to distinguish mechanisms of phenotypes caused by certain alleles, as many mutations score in 
disparate screens (for example, immune function and body weight, or immune function and 
neurobehavioral function).   

Methods 

Mice 

Eight- to ten-week old C57BL/6J males purchased from The Jackson Laboratory were mutagenized with 
ENU as described previously15. Mutagenized G0 males were bred to C57BL/6J females, and the resulting 
G1 males were crossed to C57BL/6J females to produce G2 mice. G2 females were backcrossed to their 
G1 sires to yield G3 mice, which were screened for phenotypes. Whole-exome sequencing and mapping 
were performed as described1. 

To generate mice carrying CRISPR/Cas9-targeted mutations, female C57BL/6J mice were superovulated 
by injection with 6.5 U pregnant mare serum gonadotropin (PMSG; Millipore), then 6.5 U human chorionic 
gonadotropin (hCG; Sigma-Aldrich) 48 hours later. The superovulated mice were subsequently mated with 
C57BL/6J male mice overnight. The following day, fertilized eggs were collected from the oviducts and in 
vitro transcribed Cas9 mRNA (50 ng/μl) and small base-pairing guide RNA (50 ng/μl) were injected into 
the cytoplasm or pronucleus of the embryos. The injected embryos were cultured in M16 medium (Sigma-
Aldrich) at 37°C and 5% CO2. For the production of mutant mice, 2-cell stage embryos were transferred 
into the ampulla of the oviduct (10−20 embryos per oviduct) of pseudo-pregnant Hsd:ICR (CD-1) (Harlan 
Laboratories) females.  

Mice were housed in specific pathogen-free conditions at the University of Texas Southwestern Medical 
Center and all experimental procedures were performed in accordance with the guidelines established by 
the Institutional Animal Care and Use Committee of the University of Texas Southwestern Medical Center 
and with the National Institutes of Health Guide for the Care and Use of Laboratory Animals. Male and 
female mice were used in all experiments and data for males and females were combined for analysis. 

FACS  

Peripheral blood was collected from G3 mice >6 weeks old by cheek bleeding. Red blood cells (RBCs) were 
lysed with hypotonic buffer (eBioscience). Samples were washed with FACS staining buffer (PBS with 1% 
(w/v) BSA) one time and then centrifuged at 500 × g for 5 minutes. The RBC-depleted samples were 
stained for 1 hour at 4°C, in 100 μl of a 1:200 cocktail of fluorescence-conjugated antibodies to 15 cell 
surface markers encompassing the major immune lineages B220 (BD, clone RA3-6B2), CD19 (BD, clone 
1D3), IgM (BD, clone R6-60.2), IgD (Biolegend, clone 11-26c.2a), CD3ε (BD, clone 145-2C11), CD4 (BD, 
clone RM4-5), CD8α (Biolegend, clone 53-6.7), CD11b (Biolegend, clone M1/70), CD11c (BD, clone HL3), 
F4/80 (Tonbo, clone BM8.1), CD44 (BD, clone 1M7), CD62L (Tonbo, clone MEL-14), CD5 (BD, clone 53-7.3), 
CD43 (BD, clone S7), NK 1.1 (Biolegend, clone OK136)) and 1:200 Fc block (Tonbo, clone 2.4G2). Flow 
cytometry data were collected on a BD LSR Fortessa and the proportions of immune cell populations in 
each G3 mouse were analyzed with FlowJo software. The resulting phenotypic data were uploaded to 
Mutagenetix for automated mapping of causative alleles.  

Automated meiotic mapping 
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AMM was performed as previously described1. Briefly, genotypes at all mutation sites present in the 
exomes of G3 mice were determined prior to phenotypic screening: tail DNA from G1 males was subjected 
to whole exome sequencing using an Illumina HiSeq 2500 instrument; G2 and G3 mice were then 
genotyped at the identified mutation sites using an Ion PGM (Life Technologies). Following phenotypic 
screening, linkage analysis using recessive, additive, and dominant models of inheritance was performed 
for every mutation in the pedigree using the program Linkage Analyzer; phenotypic data scatter plots and 
Manhattan plots were displayed using the program Linkage Explorer.  The P values of association between 
genotype and phenotype were calculated using a likelihood ratio test from a generalized linear model or 
generalized linear mixed effect model and Bonferroni correction applied. 

Candidate Explorer 

CE is publicly accessible at https://mutagenetix.utsouthwestern.edu/linksplorer/candidate.cfm.  Linkage 
data obtained through screening will be released in phases according to phenotype. Blood cell flow 
cytometry screening data are currently available for search using CE and new data will be released as they 
are acquired after a six-month delay from the date of screening.   

Damage Score 

The Damage Score is an ensemble score that uses a logistic regression model to integrate 38 independent 
prediction scores from the human database for Non Synonymous Functional Prediction (dbNSFP) and the 
probability of damage by mouse mutations sufficient to cause phenotypic change3. It can be used as a 
quantitative prediction score to measure the likelihood of a mouse mutation being deleterious. 

Our assumption is that if the mouse missense mutation is the same as the human mutation (both 
nucleotide and amino-acid changes), then the mutation effect in human and mouse should be similar.  We 
therefore use human scores to predict likelihood of damage in mice. 

A set of mouse ENU mutations with class tags (known damaging or neutral) was retrieved from the 
Mutagenetix database.  The known mutation class tags come from four sources: 1) physically isolated 
mutations (out of linkage with all other coding/splicing mutations in the pedigree) that fall within essential 
genes yet can be transmitted from heterozygous G2 females and their heterozygous G1 sire to 
homozygous G3 mice at a ratio that does not significantly depart from Mendelian expectation, are 
considered neutral.  2) Conversely, isolated mutations in essential genes that are NOT transmitted to 
homozygosity, to the extent that homozygotes are observed at frequencies significantly beneath the 
expected Mendelian ratio, are considered damaging.  3) Mutations that cause qualitative (usually visible) 
phenotypes are considered damaging.  4)  Mutations that have been verified to be significant in 
phenotypic screening of CRISPR replacement alleles are also considered to be damaging. 

The mutations tagged as damaging or neutral were lifted-over from mouse genome to human genome 
(translated to the equivalent amino acid) and kept for mutations that lead to the same nucleotide and 
amino-acid changes in both genomes. Then we searched for corresponding human mutations in the 
dbNSFP database to obtain scores for all available prediction methods.  The retrieved scores, combined 
with the probability of phenotypically detectable damage by the mutations in mice, were integrated with 
the input data set to fit a logistic regression model.  The fitting process was implemented by the 10-fold 
cross-validation method using R package (caret).  The constructed model (classifier) was then used to 
compute the score of a set of mutations with unknown class membership. The data set used for prediction 
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was created in the same way as data set used for modeling.  The score predicted by the model represents 
the probability of a mutation being in the damaging class.  The higher the score, the more likely to be 
deleterious the mutation.   

The input data set contains 3,334 mouse mutations, of which 1,088 are deleterious and 2,246 are neutral.  
In order to evaluate the performance of the constructed model in predicting the membership of the new 
mutation category, the input data set was randomly divided into two sets:  one set consisting of 2,668 
mutations (80% of original dataset, 871 deleterious mutations and 1,797 neutral mutations) was used to 
train and validate the logistic regression model, and a second set of the remaining 666 mutations was 
used to test the performance of the established model. 

Quartile based correspondence between raw Damage Scores and probability of protein damage to 
phenovariance is shown in Supplementary Table 1. 

Essentiality Score 

Essentiality score (E-score) is used to estimate the likelihood of lethality in mice when the gene is knocked 
out.  Our approach is based on the assumption that essential and non-essential genes in mice can be 
distinguished by various independent features of genes.  The logistic regression method is used to fit the 
features of known essential and non-essential genes in mice to obtain a trained model for predicting the 
unknown essentiality of genes. 

The model uses four main categories of gene features: 1) from literature:  7 gene features, such as gene 
conservation, protein-protein interaction network, expression stage and etc., have been suggested to be 
associated with gene essentiality of many species, including mouse. 2) The essentiality of human 
orthologous genes: the genes required for cell proliferation and viability in tested cell lines are defined as 
essential genes under specific conditions. Frequency of being essential in tested human cell lines was used 
as a feature in our model. 3) pLI score from the ExAC (probability of Loss-of-function Intolerance): the 
closer the score is to 1, the more likely the gene is essential to human survival. 4) Minimum P values for 
an ENU targeted mouse gene obtained from the lethal model by the Linkage Analyzer program. 

The phenotypic description of the 8,032 genes in MGI which may be knocked out in mice was carefully 
reviewed and a set of genes designated as “essential” or “non-essential” were manually curated according 
to the following criterion: 1) If the homozygous knockout allele is explicitly described as causing embryonic 
lethality, neonatal lethality, prenatal lethality, perinatal lethality or pre-weaning lethality, the gene was 
considered to be required to survive before weaning and was classified as an essential gene.  An E-score 
of 1 was assigned to the gene. 2) If homozygous knockout alleles are compatible with viability, normal 
growth, no obvious phenotype, or some phenotype, but not apparent effect on viability, then it was 
classified as a non-essential gene.  An E-score of 0 was assigned to the gene.  In addition, an E-score of 1 
was assigned to those genes verified in our CRISPR KO experiments as causing significant lethality before 
weaning; an E-score of 0 was assigned to genes verified in our CRISPR KO experiments as resulting in 
normal Mendelian ratios in crosses of heterozygous mutants. 

A set of 6,947 genes, in which 2,572 were labeled as essential genes and 4,375 as non-essential genes, 
was integrated with the above-mentioned gene features.  The resulting data set was used to fit a logistic 
regression model with 10-fold cross-validation.  The constructed model was then used to predict the 
essentiality of remaining mouse genes.  The predicted score is between 0 and 1. The closer the score is to 
1, the more likely the gene is essential.  
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To assess the performance of constructed model in predicting unknown essentiality of genes, the data set 
used to construct the model was randomly divided into two sets:  one set consisting of 5,558 genes (80% 
of original dataset, 3,500 non-essential genes and 2,058 essential genes) were used to train and validate 
the logistic regression model, and the remaining 1,389 genes were used to test the performance of the 
established model in the training data set. 

Algorithmic Score 

Each mutation-phenotype association starts with an Algorithmic Score of zero that is adjusted according 
to the rules in Table 5. 

Gene Ontology analysis 

Summaries of GO annotations in Supplementary Data 4 were generated using the Alliance of Genome 
Resources SimpleMine tool (http://tazendra.caltech.edu/~azurebrd/cgi-bin/forms/agr_simplemine.cgi).  
Enriched GO annotations associated with various gene lists were determined using GO TermFinder16 
(https://go.princeton.edu/cgi-bin/GOTermFinder) set to use the Mus musculus annotations (MGI) and 
exclude evidence code “IEA” (inferred from electronic annotation).  The output from GO TermFinder was 
processed using REVIGO to summarize and visualize enriched GO categories17 (http://revigo.irb.hr/).  
REVIGO settings: allowed similarity Medium (0.7), Mus musculus GO database, and semantic similarity 
SlimRel.  GO TermMapper16 was used to assign genes to 71 static GO parent annotations18 
(https://go.princeton.edu/cgi-bin/GOTermMapper). 

Data Availability 

CE is publicly accessible at https://mutagenetix.utsouthwestern.edu/linksplorer/candidate.cfm. 
Sequences of small base-pairing guide RNA used for CRISPR/Cas9 targeting are available by request from 
the corresponding author. 

Acknowledgements 

This work was supported by National Institutes of Health grants R01 AI125581 and U19 AI100627 (to B.B.).  
We thank Diantha La Vine for expert help with illustrations and the video. 

Author Contributions 

Conceptualization: DX, SL, CHB, BB; Methodology: DX, SL, CHB, SH; Software: DX, SL, CHB, SH; Validation: 
DX, SL, CHB, SH, JHC, XZ, AL, EET, ZZ, EN-G, HS, YW, DZ, TY, JSoRelle, TM, LSun, JW, RF, AS, SS, NS, HC, GC, 
BH, SM, DM, BN, ER, AW, MTang, XL, PA, KK, LScott, JQ, SC, BQ, JC, RS, MTadesse, QS, JSantoyo, AB, AJ; 
Formal Analysis: DX, SL, CHB, SH; Investigation: JHC, XZ, AL, EET, ZZ, EN-G, HS, YW, DZ, TY, JSoRelle, TM, 
LSun, JW, RF, AS, SS, NS, HC, GC, BH, SM, DM, BN, ER, AW, MTang, XL, PA, KK, LScott, JQ, SC, BQ, JC, RS, 
MTadesse, QS, JSantoyo, AB, AJ; Data Curation: DX, SL, CHB, SH; Writing-Original Draft: EMYM, BB; 
Writing-Review and Editing: DX, EMYM, BB; Visualization: DX, EMYM, BB; Supervision: BB; Funding 
Acquisition: BB. 

Competing Interests 

The authors declare no competing interests. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 7, 2020. ; https://doi.org/10.1101/2020.11.07.371914doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.07.371914
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

References 

1. Wang, T. et al. Real-time resolution of point mutations that cause phenovariance in mice. Proc 
Natl Acad Sci U S A 112, E440-449 (2015). 

 
2. Simon, M.M. et al. Current strategies for mutation detection in phenotype-driven screens 

utilising next generation sequencing. Mamm Genome 26, 486-500 (2015). 

 
3. Wang, T. et al. Probability of phenotypically detectable protein damage by ENU-induced 

mutations in the Mutagenetix database. Nat Commun 9, 441 (2018). 

 
4. Mager, L.F. et al. The ESRP1-GPR137 axis contributes to intestinal pathogenesis. Elife 6 (2017). 

 
5. Zhong, X. et al. RNPS1 inhibits excessive TNF/TNFR signaling to support hematopoiesis in mice. 

Submitted (2020). 

 
6. Zhang, D. et al. Syndromic immune disorder caused by a viable hypomorphic allele of 

spliceosome component Snrnp40. Nat Immunol 20, 1322-1334 (2019). 

 
7. Suzuki, H. et al. Xid-like immunodeficiency in mice with disruption of the p85alpha subunit of 

phosphoinositide 3-kinase. Science 283, 390-392 (1999). 

 
8. Conley, M.E. et al. Agammaglobulinemia and absent B lineage cells in a patient lacking the p85α 

subunit of PI3K. J Exp Med 209, 463-470 (2012). 

 
9. Sakaguchi, N. et al. Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes 

autoimmune arthritis in mice. Nature 426, 454-460 (2003). 

 
10. Elder, M.E. et al. Human severe combined immunodeficiency due to a defect in ZAP-70, a T cell 

tyrosine kinase. Science 264, 1596-1599 (1994). 

 
11. Chatila, T.A. et al. JM2, encoding a fork head-related protein, is mutated in X-linked 

autoimmunity-allergic disregulation syndrome. J Clin Invest 106, R75-81 (2000). 

 
12. Brunkow, M.E. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the 

fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27, 68-73 (2001). 

 
13. Roifman, C.M. et al. Depletion of CD8+ cells in human thymic medulla results in selective 

immune deficiency. J Exp Med 170, 2177-2182 (1989). 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 7, 2020. ; https://doi.org/10.1101/2020.11.07.371914doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.07.371914
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

14. Minegishi, Y. et al. Mutations in Igalpha (CD79a) result in a complete block in B-cell 
development. J Clin Invest 104, 1115-1121 (1999). 

 
15. Georgel, P., Du, X., Hoebe, K. & Beutler, B. ENU mutagenesis in mice. Methods Mol Biol 415, 1-

16 (2008). 

 
16. Boyle, E.I. et al. GO::TermFinder--open source software for accessing Gene Ontology 

information and finding significantly enriched Gene Ontology terms associated with a list of 
genes. Bioinformatics 20, 3710-3715 (2004). 

 
17. Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of 

gene ontology terms. PLoS One 6, e21800 (2011). 

 
18. Harris, M.A. et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 

32, D258-261 (2004). 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 7, 2020. ; https://doi.org/10.1101/2020.11.07.371914doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.07.371914
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

 

Figure 1. Candidate Explorer overview and performance. (a) Schematic of input features and outputs 
from CE. (b) Polynomial regression analysis of ML Score and average percentage of verified mutation-
phenotype associations. N=4,893 mutation-phenotype associations and 487 CRISPR/Cas9-targeted 
genes. (c,d) ROC curves for ML Score (c) and Algorithmic Score (d). 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 7, 2020. ; https://doi.org/10.1101/2020.11.07.371914doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.07.371914
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

 

Figure 2. Characteristics of gene-phenotype associations for 1,005 genes with at least one 
good/excellent mutation-phenotype association. (a) Number of good/excellent phenotype associations 
plotted versus gene count. (b) Number of good/excellent gene associations plotted versus flow 
cytometry parameter. Parameters are cell frequencies unless indicated. MFI, mean fluorescence 
intensity. (c) Number and percentage of essential and non-essential genes. 
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Figure 3. Highly represented GO annotations associated with 521 genes with named alleles. Enriched GO 
terms identified by GO Term Finder were distilled to a non-redundant, representative subset of the 
terms and displayed using REVIGO, which employs a semantic similarity-based clustering algorithm. Axes 
have no intrinsic meaning, but semantically similar GO terms are positioned close together so that 
clusters represent related biological processes. Clusters were named according to the general theme of 
the processes in the cluster. (a) GO term clusters representative of all enriched GO terms associated 
with 521 genes with good/excellent phenotype associations and named alleles. (b) Genes associated 
with GO term “immune system process” were removed before analysis of the same gene set as in (a). P 
values represent the statistical significance of the difference between the frequency of the term in the 
dataset and the frequency of the term in the genome. 
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Table 1. CE Performance 
Mutation-phenotype associations (N=82,373; 1,050 verified, 1,393 excluded, 79,930 untested) 

Cutoff True 
positives 

False 
positives 

True 
negatives 

False 
negatives 

Recall Accuracy Precision 

Excellent 656 107 1286 394 62.48% 79.49% 85.98% 
Good and 
above 

899 183 1210 151 85.62% 86.33% 83.09% 

Potential 
and above 

967 509 884 83 92.10% 75.77% 65.51% 

Not good 
and above 

1050 1393 0 0 100% 42.98% 42.98% 

        
Alleles (N=2,252 named alleles; 225 verified, 84 excluded, 1,943 untested) 

Excellent 167 10 74 58 74.22% 77.99% 94.35% 
Good and 
above 

197 16 68 28 87.56% 85.76% 92.49% 

Potential 
and above 

208 48 36 17 92.44% 78.96% 81.25% 

Not good 
and above 

225 84 0 0 100% 72.82% 72.82% 

        
Genes (N=14,437; 126 causative, 89 non-causative, 14,222 untested) 

Excellent 91 9 80 35 72.22% 79.53% 91.00% 
Good and 
above 

112 14 75 14 88.89% 86.98% 88.89% 

Potential 
and above 

120 52 37 6 95.24% 73.02% 69.77% 

Not good 
and above 

126 89 0 0 100% 58.60% 58.60% 
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Table 2. CE performance in scoring colocalizing mutation 
# of co-localized genes Total cases CE rank correctly % Correct 

2 595 520 87.5% 
3 206 210 90.5% 
4 88 81 85.3% 
5 35 25 71.4% 
6 5 4 80.0% 
7 6 5 83.3% 
8 1 1 100.0% 

10 1 1 100.0% 
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Table 3. Features of input data in CE prediction algorithm 
Phenotype Data 
the percentage of VAR mice whose screen results overlap with those of B6 mice  
the percentage of VAR mice whose screen results overlap with those of REF mice  
difference between HET and VAR results 
direction of the results (increased if the VAR average is greater than REF average) 
difference between REF and VAR results 
number of female HET mice 
number of female REF mice 
number of male REF mice 
number of male HET mice 
number of male VAR mice 
number of female VAR mice 
the identity of the phenotype (e.g. FACS T cell) 
the group identity of the phenotype (e.g. FACS screen or Bone screens) 
the number of outliers in REF mice 
the number of outliers in HET mice 
the number of outliers in VAR mice 
difference between REF and B6 results 
difference between REF and HET results 
whether the variance of REF is big 
whether the variance of HET is big 
whether the variance of VAR is big 
whether the average age of the mice for this mutation/phenotype is older than the average 
age of all mice tested this phenotype 
whether the average age of the VAR mice is younger than the average age of the REF mice 
number of pedigrees this gene/phenotype has 
the direction of the position superpedigree results for this mutation/phenotype 
how many pedigrees contributed to the significant position superpedigree results for this 
mutation/phenotype 
number of pedigrees included in the significant position superpedigree results for this 
mutation/phenotype 
the direction of the gene superpedigree results (null alleles) for this phenotype 
the direction of the gene superpedigree results (null+missense alleles) for this phenotype 
whether there are corresponding trimmed results for the untrimmed data with increased 
direction* 
how closely VAR results resemble B6 results 
how closely REF results resemble B6 results 
whether REF and B6 are different 
Linkage Data 
average number of significant Linkage Analyzer runs for each allele of this gene 
number of phenotypes with significant selective gene superpedigree results for this gene 
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number of significant Linkage Analyzer runs for this gene 
number of pedigrees in the selective gene superpedigree and whether the result is significant 
for this gene/phenotype 
number of pedigrees contributing to a significant gene superpedigree result (null alleles)  
number of pedigrees in a significant gene superpedigree run (null alleles) 
the minimum p-value of single Linkage Analyzer for this mutation/phenotype 
the percentage of body weight screens that are significant  
the percentage of FACS screens that are significant  
whether the gene superpedigree results are significant (null+missense) 
whether p-value is significant in both raw and normalized assays for this mutation/phenotype 
whether the minimum p-value is recessive 
whether this phenotype is driven by another mutation 
the percentage of DSS screens that are significant  
number of significant FACS phenotypes for this mutation 
number of significant DSS phenotypes for this mutation 
number of significant body weight phenotypes for this mutation 
whether the position superpedigree results are significant for this mutation/phenotype 
whether the gene superpedigree results are significant (null alleles) 
whether the gene superpedigree results are significant (missense alleles) for this phenotype 
Mutation Data 
damage score for this mutation 
number of alleles this gene has 
whether the mutation is autosomal 
whether the mutation is co-localized with another mutation for this phenotype 
whether the mutation is co-localized with a verified mutation for this phenotype 
whether the mutation is co-localized with an excluded mutation for this phenotype 
whether the mutation is co-localized with a mutation of higher damage score 
the number of splice variants for this mutation 
Gene Data 
the p-value for a lethal phenotype 
the probability that the gene is an essential gene (Essentiality Score) 
Other 
number of phenotypes with Algorithmic Score greater or equal to -0.5 for this mutation 
Algorithmic Score for this mutation/phenotype 

*Trimmed results = untrimmed data normalized for cell viability. 
The top 20 most important features are italicized. 
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Table 4. Top 20 most important features of input data in CE prediction algorithm 
1 number of phenotypes with Algorithmic Score greater or equal to -0.5 for this mutation 
2 average number of significant Linkage Analyzer runs for each allele of this gene 
3 Algorithmic Score for this mutation/phenotype 
4 number of phenotypes with significant selective gene superpedigree results for this gene 
5 number of significant Linkage Analyzer runs for this gene 
6 damage score for this mutation 
7 number of pedigrees in the selective gene superpedigree and whether the result is significant 

for this gene/phenotype 
8 number of pedigrees contributing to a significant gene superpedigree result (null alleles) 
9 number of pedigrees in a significant gene superpedigree run (null alleles) 
10 the percentage of VAR mice whose screen results overlap with those of B6 mice  
11 the minimum p-value of single Linkage Analyzer for this mutation/phenotype 
12 the percentage of body weight screens that are significant  
13 the percentage of FACS screens that are significant  
14 the percentage of VAR mice whose screen results overlap with those of REF mice  
15 difference between HET and VAR results 
16 direction of the results (increased if the VAR average is greater than REF average) 
17 whether the gene superpedigree results are significant (null+missense) 
18 difference between REF and VAR results 
19 number of female HET mice 
20 number of female REF mice 

*Ranked from most (1) to least (20) important 
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Table 5. Rules for Algorithmic Score determination 
Feature Points 
REF outliers1 -1 
HET outliers1 -1 
VAR outliers1 -1 
HET results have big variance2 -1 
VAR results have big variance2 -1 
REF and B6 results are different3 -1 
REF and VAR results overlap4 -1 to -3 
B6 and VAR results overlap4 -0.5 
HET results more similar than REF results to B6 results5 -1 to -2 
VAR results more similar than REF results to B6 results6 -1 to -2 
Magnitude of change less than 2-fold for FACS B1 phenotype  -0.5 
Magnitude of change less than 1.5-fold for FACS B1 phenotype  -3 
Magnitude of change less than 2-fold for FACS B2 phenotype  -0.5 
Magnitude of change less than 1.5-fold for FACS B2 phenotype  -3 
Magnitude of change less than 2-fold for FACS DC phenotype  -0.5 
Insignificant position superpedigree result -1 
Significant position superpedigree result (only minority of pedigrees contributed) -1 
In opposite direction of significant position superpedigree result -3 
Significant position superpedigree result 1.5 
In opposite direction of significant gene superpedigree result (null alleles) -3 
Insignificant gene superpedigree result (null allele) -1 
Significant gene superpedigree result (null alleles) 1 
In opposite direction of significant gene superpedigree result (null+missense alleles) -0.5 
Insignificant gene superpedigree result (null+missense alleles) -0.5 
Significant gene superpedigree result (null+missense alleles) 0.5 
In opposite direction of significant gene superpedigree result (missense alleles) -0.5 
Insignificant gene superpedigree result (missense alleles) -0.5 
Significant gene superpedigree result (missense alleles) 0.5 
Significant selective gene superpedigree result with more than 2 pedigrees 3 
Significant selective gene superpedigree result with 2 pedigrees 2 
In opposite direction of insignificant selective gene superpedigree result 1 
In opposite direction of significant selective gene superpedigree result with 2 
pedigrees 

-2 

In opposite direction of significant selective gene superpedigree result with more 
than 2 pedigrees 

-3 

Insignificant selective gene superpedigree result -1 
Significant selective gene superpedigree result exists for other phenotypes 0.5 
Mutation is linked to a more damaging mutation  -1 
Mutation is linked to an excluded mutation  1 
Mutation is linked to a verified mutation  -3 
No corresponding trimmed result -3 
Phenotype is driven by another mutation -1 

1. A screen result is considered as an outlier if its value is outside the range of mean ± 3×standard 
deviation. 
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2. The variance of REF, HET, or VAR results is considered big if the standard deviation is more than 30% 
of the absolute difference between the maximum screening result and the minimum screening result. 

3. REF and B6 results are considered different if the absolute difference between the REF mean and B6 
mean is more than 2×REF standard deviation and 2×B6 standard deviation. 

4. REF or B6 results overlap with VAR results if they are within the range of VAR mean ± 1×VAR standard 
deviation.  

5. HET results are considered more similar than REF results to B6 results if the absolute difference 
between the B6 mean and REF mean is more than half of REF standard deviation and more than the 
absolute difference between HET mean and B6 mean. 

6. VAR results are considered more similar than REF results to B6 results if the absolute difference 
between the B6 mean and REF mean is more than half of REF standard deviation and more than the 
absolute difference between VAR mean and B6 mean. 
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Table 6. Flow cytometry screening parameters 
1 B cells 
2 B:T cell ratio 
3 B-1 B cells 
4 B-1a B cells 
5 B-1a B cells in B-1 B cells 
6 B-1b B cells 
7 B-1b B cells in B-1 B cells 
8 B-2 B cells 
9 B220 MFI 

10 CD11b+ DC (gated in CD11c+ cells) 
11 CD11c+ DC 
12 CD4:CD8 T cell ratio 
13 CD4+ T cells 
14 CD4+ T cells in CD3+ T cells 
15 CD44 MFI on CD4+ T cells 
16 CD44+ CD4+ T cells 
17 CD44 MFI on CD8+ T cells 
18 CD44+ CD8+ T cells 
19 CD44+ T cells 
20 CD44 MFI on T cells 
21 CD8+ T cells 
22 CD8+ T cells in CD3+ T cells 
23 CD8α+ DC (gated in CD11c+ cells) 
24 Central memory CD4+ T cells in CD4+ T cells 
25 Central memory CD8+ T cells in CD8+ T cells 
26 Effector memory CD4+ T cells in CD4+ T cells 
27 Effector memory CD8+ T cells in CD8+ T cells 
28 Effector T cells 
29 IgD MFI 
30 IgD+ B cells 
31 IgM MFI 
32 IgM+ B cells 
33 Macrophages 
34 Memory T cells 
35 Naïve CD4+ T cells in CD4+ T cells 
36 Naïve CD8+ T cells in CD8+ T cells 
37 Naïve T cells 
38 Neutrophils 
39 NK cells 
40 NK1.1+ T cells 
41 Plasmacytoid DC 
42 T cells 

Parameters represent frequencies unless otherwise indicated. MFI, mean fluorescence intensity. 
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