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ABSTRACT

Accurate pathogenic detection for single nucleotide variants (SNVs) is a key problem to perform
variant ranking in whole exome sequencing studies. Several in silico tools have been developed to
identify deleterious variants. Locus variability, computed as Shannon entropy from
gnomAD/helixMTdb variant allele frequencies can be used as pathogenic variants predictor. In this
study we evaluate the use of Shannon entropy in non-coding mitochondrial DNA and also in coding
regions with an additional selective pressure other than that imposed by the genetic code, as are
splice-sites. To benchmark this functionality in non-coding mitochondrial variants, Shannon entropy
was compared with HmtVar disease score, outperforming it in non-coding SNVs (AUCy=0.99 in
ROC curve and PR-AUCH=1.00 in Precision-recall curve). In the same way, for splice-sites’
variants, Shannon entropy was compared against two state-of-the-art ensemble predictors ada score
and rf score, matching their overall performance both in ROC curves (AUCy=0.95) and Precision-
recall curves (PR-AUC=0.97). Therefore, locus variability could aid in variant ranking process for
these specific types of SNVs.
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BACKGROUND

Whole Exome Sequencing (WES) is a powerful technique used in the frame of genetic based
diseases, specially for mendelian diseases. However, given the high degree of variability in human
population, WES renders a large amount of variants, making a challenge discerning pathogenic
variants from the vast neutral background. For this purpose, researchers have built several
predictors to aid in variant ranking process, for the detection of deleterious variants. In this sense,
the degree of human variability could be used as pathogenic predictor.

Up to date the greatest effort in gathering human variability is presented in gnomAD, where are
included variants detected in 125748 whole exome sequences and 15708 whole genome sequences
from unrelated individuals'. Similarly, helixMTdb is a database that retrieve human genetic
variability in mitochondrial DNA from 196,554 unrelated individuals®. All this information could be
integrated as a measurement of locus-wise variability, that gives an estimation about the mutational
freedom by genomic position. Furthermore, this measurement could reflect directly the relative
importance of a specific genomic position and therefore the pathogenic status of any mutation
placed there. Nevertheless, such predictor will define a genomic position more than a specific
mutation. It is known that a characteristic of the genetic code that vast majority of amino acids can
be translated by more than one codon. This redundancy results in the coexistence at the same
genomic positions of synonymous and lethal SNVs, translated as a decrease in the accuracy of
Shannon entropy as predictor.

On the other hand, this kind of predictor could be useful for genomic positions where there is no
influence of the genomic code, as non-coding regions, or where the effect of genetic code
redundancy is eclipsed by the selective pressure imposed by an additional functionality, as the
splicing in splice-sites.

Eukaryotic cells harbor two different genomes, the nuclear and the mitochondrial DNA. Both
genomes have their own evolutionary engines: while nuclear genome presents sexual reproduction
as source of variability with sister chromatid exchange, mitochondrial DNA is mainly maternally
inherited and has a higher mutation rate as its main source of variability. Therefore, mitochondrial
DNA has its own conservation path and population frequencies that may not present the same
behavior as nuclear DNA for these features. In this context, some of the variants produced by this
larger mutational rate, may lead to mitochondrial disorders. Hence, in variants deleteriousness
detection, this mitochondrial particularities are a major point to take into account, not only for
protein-coding variants, where are focused the vast majority of developed predictors, but also for
non-coding sites as Control region, t-RNNA genes or r-RNA genes, that represent approximately the
32% of this genome.

At the same time, alternative splicing (AS) is a major biological mechanism for rising protein
diversity in organisms. So it should come at no surprise that complexity in AS is correlated with
evolution and tissue complexity®. Given the biological nature of splicing process, splice regions,
understood as those positions located at the boundary of an exon and an intron (splice-site), had a
different evolutionary process than non-splice-sites. Therefore, these regions may not have the same
freedom to be mutated than other protein-coding sites, situation that can be translated in the degree
of variability observed in human population.
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Here, we propose the use of Shannon entropy calculated over the population frequencies associated
to a genomic position, to detect pathogenic single nucleotide variants (SNVs) placed in splice-sites
and non-coding regions in mitochondrial DNA.

MATERIAL AND METHODS

Datasets

In this study we used a composed dataset, that contains 131043 unique variants (65775 pathogenic,
65268 neutral). These variants were obtained from five independent benchmark datasets HumVar?,
ExoVar®, VariBench®, predictSNP’ and SwissVar® and also variants selected from Clinvar archive®?,
classified as benign or pathogenic variants. These 131043 were split according to splice-site/not-
splice-site location, considering splice-sites either within 1-3 bases of the exon or 3-8 bases of the
intron, resulting in 120744 not-splice-site variants and 10294 splice-site SNVs. In order to
benchmark the use of Shannon entropy for deleteriousness detection in splice-site SN'Vs, a subset of
7941 out of 10294 variants, for which there were pre-computed values for ada score and rf score in

dbNSFP!, was selected.

For mitochondrial evaluation of Shannon entropy, mitochondrially encoded variants were selected
from the above datasets joined with confirmed variants described in Mitomap'? as pathogenic plus
high frequency variants (Fq>0,01) described in this database. A total number of 451 variants were
obtained, 169 non-coding SNVs (80 in tRNA genes, 33 in rRNA genes and 28 in control region)
and 282 protein-coding SNVs. In non-coding mitochondrial variants 64 out of 169 were neutral and
105 were pathogenic. In addition, in protein-coding mitochondrial variants 157 were neutral and
125 were pathogenic. These variants were annotated with HmtVar disease score®, retrieving 336
annotated variants (112 non-coding & 224 protein-coding), for benchmarking Shannon entropy.

Variants annotation

Splice-site condition was annotated using Variant effect Predictor', which also was used to retrieve
ada score and rf score values from dbNSFP. Beside this, phastCons' and phylop'® conservation
scores calculated on multiple sequence alignment from sequences of 100 species of vertebrates, was
retrieved using UCSC table browser data retrieval tool". Variant allele frequencies were retrieved
from gnomAD 2.1.1 for nuclear encoded variants or helixMTdb, for mitochondrial SNVs. Finally,
HmtVar disease scores were obtained using HmtVar API.

Shannon entropy
Locus variability was calculated using gnomAD/helixMTdb variant allele frequencies as Shannon
entropy for the genomic positions of variants considered in our data sets following the expression:

H=)_ Fxlog(F,)

where H is Shannon entropy and F; is variant allele frequency observed in gnomAD or helixMTdb
for each allele observed in a specific genomic position. This parameter can take values from 0
onwards, meaning the higher the value the more variability observed for that genomic position
where is placed the variant we are studying.
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Benchmark of Shannon entropy predictors for splice-site SNVs

Shannon entropy performance was compared in this variants with two state-of-the-art ensemble
scores, ada score and rf score and also with two conservation scores as phyloP and phastCons,
based on AUC/PR-AUC in receiving operating characteristic (ROC) curves and precision recall
(PR) curves. Joined with this, non parametric statistical hypothesis contrasts were performed to test
AUC differences for ROC curves, calculating the D-statistic as:

AUC,—AUC,
D=——— -
S

where AUC; is the area under the curve of one predictor, AUC; is the area under the curve of the
other predictor and s is the standard deviation for the difference between both values in 2000
subsets obtained by bootstrap re-sampling, as described in pROC R-package'®, which was used for
this purpose. ROC and PR curves analysis were performed using ROCR" and precrec®® R-packages.

Benchmark of Shannon entropy in mitochondrial SNVs
Shannon entropy was compared against HmtVar disease score for pathogenic prediction in non-
coding SNVs. In addition, Shannon entropy will also be evaluated in protein-coding

RESULTS

It was observed a significant difference for Shannon entropy between variants located in splice and
not splice regions, by non parametric Kolmogorov-Smirnov test (D=0.186, p<0.001), figure 1a.

Regarding to the benchmark results in splice-sites, Shannon entropy, with an AUCy{=0.95,
outperformed rf score (AUCt score=0.94), phastCons (AUChasicons= 0.84) and phyloP (AUC hyi0e= 0.9)
and matches the results of ada score (AUC.d score=0.95), figure 1b. AUC differences between
Shannon entropy and rf score, phastCons or phyloP were statistically significant (D i score=2.02,
p<0.05; Dy_phasicons=19.12, p<0.001 and Dy _phyior=9.10, p<0.001), while there were no difference with
ada score (Duy ada score=-0.35, p=0.7232). Regarding to PR curves outcomes, Shannon entropy
presented a PR-AUCy=0.97 outperforming to phastCons (PR-AUChasicons=0.91) and phyloP (PR-
AUChy10ps=0.96), matching rf score results (PR-AUC se=0.97) and being slightly surpassed by
ada score (PR-AUC score=0.98), figure 1c.

On the other hand, overall performance of Shannon entropy in not-splice-site SNVs, rendered an
AUC=0.86.

For mitochondrial non-coding SNV, Shannon entropy presented the best behavior compared with
HmtVar score, phastCons or phyloP, both in ROC curve (AUCy=0.98, AUCHmwva=0.82,
AUCphasicons=0.86 & AUChy1p=0.88) and PR curve (PR-AUCy=1.00, PR-AUCumwva=0.99, PR-
AUCphasicons=0.9 & PR-AUC;ny1,p=0.92), figures 1d and le. These differences between Shannon
entropy and all other score in non-coding variants, were statistically significant (Dy_pmevar=2.34,
p<0.05; Du_phasicons=4.31, p<0.001 & Dpy_phy1or=3.99, p<0.001).

To the contrary, Shannon entropy presented a poor performance in protein coding variants,
AUCu=0.68, surpassed by HmtVar disease score (AUCmva=0.78).
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According to our data, based on Youden index, we propose a cutoff for deleteriousness detection in
splice variants for Shannon entropy H<0.001053301 (sensitivity=0.97, specificity=0.87), values
below this cutoff should be considered pathogenic. On the other hand, for mitochondrial non-coding
SNVs we propose a threshold H<0.009523692 (sensitivity=0.97, specificity=0.92).
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Figure 1. Cumulative density function of locus variability as Shannon entropy comparing splice-
site and not-splice-site positions (A). ROC curves (B) and PR curves (C) for Shannon entropy, ada
score, 1f score, phastCons and phyloP conservation scores for deleteriousness detection in splice-
sites SN'Vs. ROC curves (D) and precision-recall curves (E) for Shannon entropy, HmtVar disease
score phastCons and phyloP conservation scores for pathogenic variants detection in mitochondrial
non-coding SNVs. D-statistic and its associated p-value refer to Kolmogorov-Smirnov non
parametric test.

Abreviations: receiving operating characteristic (ROC), precision-recall (PR), Shannon entropy (H)
and single nucleotide variants (SNVs).
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DISCUSSION

Shannon entropy, computed over gnomAD or helixMTdb variant allele frequencies, reflects the
freedom for a specific genomic position to be mutated in the population, showing the final picture
of selective pressures. According to our outcomes, locus variability in splice-site positions is
significantly lower than in not splice-site positions, confirming the assumption of a different
performance between both types of genomic regions. This different behavior points to the need to
assess Shannon entropy as predictor separately in both types of regions.

In mitochondrial genome, the vast majority of predictors are focused in protein-coding variants

with the significant exception of HmtVar disease score, widely used for pathogenic detection in this
genome. Looking to benchmark outcomes in mitochondrial SNVs, locus variability as Shannon
entropy presented the best performance for the classification of SNVs in non-coding regions.
Conversely, the behavior of Shannon entropy in protein-coding variants was considerably poor, due
to the genetic code redundancy. This result, joined with the fact that Shannon entropy also presented
a low overall performance in not-splice SNVs (AUC=0.86), corroborate the unsuitability of this
predictor for SNVs placed in codonic sites. Nevertheless, Splicing process carries an additional
restriction for splice-sites that can be easily translated in to locus variability terms, confirmed by its
performance as predictor in this positions (AUC=0.95).

Compared with ada score and rf score, locus variability as Shannon entropy matches or even
surpassed their outcomes. These two predictors are machine learning ensemble scores, that combine
the information from several predictors (Position Weight Matrix (PWM) model, MaxEntScan
(MES), Splice Site Prediction by Neural Network (NNSplice), GeneSplicer, Human Splicing Finder
(HSF), NetGene2, GENSCAN and SplicePredictor) for SNVs located in splicing consensus
regions®'. Ada score is the result of training an adaptive boosting model while rf score is a similar
machine learning approach using a random forest. Both predictors are interesting tools but has the
non trivial limitation that there is a limited number of pre-computed values for these scores. In this
sense, Shannon entropy is a measurement of locus variability that can be easily calculated from
gnomAD variant allele frequencies extracted for any specific genomic position and could be
computed at genome-wide scale, presenting a clear advantage over these two scores, with out
loosing sensibility, specificity or precision.

As locus variability can be understood as the final state of the evolutionary process, in this study we
also compared Shannon entropy against two different conservation scores as phyloP and phastCons,
that relies in different strategies. PhastCons is a hidden Markov model-based method that estimates
conservation rate, for a specific site, taking in to account the rates of neighboring sites. By contrast,
PhyloP scores measure evolutionary conservation at individual alignment sites, giving information
not only about the magnitude but also about the direction of the evolution rate compared with a
neutral drift model. The two methods have different strengths and weaknesses, PhastCons is
effective for conserved elements/regions detection and phyloP, on the other hand, is more
appropriate for evaluating signatures of selection at particular nucleotides or classes of nucleotides.
Shannon entropy outperformed clearly both conservation scores for pathogenic condition detection.
Therefore, this locus variability displays a map among genome-wide splice-sites, that inform about
the differential selective pressure for each position, adding granular information that escape to long
run evolutionary measurements.
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Regarding to benchmark results in mitochondria, it seems that the locus variability in non-coding
sequences shows a straight forward relationship with deleteriousness, not observed in coding
sequences. Most of the predictors used in mitochondrial SNVs are designed for protein-coding
variants, not for variants located at regulatory regions, t-RNA or r-RNA genes. For these specific
regions, Shannon entropy is presented as an interesting predictor for pathogenic SNVs, surpassing
another predictor widely used as is HmtVar disease score. As observed in splice-sites, Shannon
entropy also surpassed conservation scores as pathogenic predictors, in mitochondrial non-coding
regions.

To conclude, Shannon entropy can act as an accurate predictor tool that matches or even surpasses
pathogenic mutation detection compared with state-of-the-art scores, for SNVs placed in genomic
positions that escape the effect of the redundancy of genetic code. In consequence, it could be
integrated in variant ranking protocols, in order to reduce the number SNVsclassified as variants of
uncertain significance in the context of mendelian or mitochondrial diseases.

WEB RESOURCES

R statistical software, https://www.r-project.org/
Variant Effect Predictor, https://www.ensembl.org/Tools/VEP/
VariBench, http://structure.bmc.lu.se/VariBench/
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