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ABSTRACT

Accurate pathogenic detection for single nucleotide variants (SNVs) is a key problem to perform
variant ranking in whole exome sequencing studies. Several in silico tools have been developed to
identify  deleterious  variants.  Locus  variability,  computed  as  Shannon  entropy  from
gnomAD/helixMTdb variant allele frequencies can be used as pathogenic variants predictor. In this
study we evaluate the use of Shannon entropy in non-coding mitochondrial DNA and also in coding
regions with an additional selective pressure  other than  that imposed by the genetic code, as  are
splice-sites. To benchmark this functionality in non-coding mitochondrial variants, Shannon entropy
was compared with HmtVar disease score, outperforming it in non-coding SNVs (AUCH=0.99 in
ROC  curve  and  PR-AUCH=1.00  in  Precision-recall  curve).  In  the  same  way,  for  splice-sites’
variants, Shannon entropy was compared against two state-of-the-art ensemble predictors ada score
and rf score, matching their overall performance both in ROC curves (AUCH=0.95) and Precision-
recall curves (PR-AUC=0.97). Therefore, locus variability could aid in variant ranking process for
these specific types of SNVs.
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BACKGROUND

Whole  Exome Sequencing (WES)  is  a  powerful  technique used  in the  frame of  genetic  based
diseases, specially for mendelian diseases. However, given the high degree of variability in human
population,  WES renders a large amount of variants,  making a challenge discerning pathogenic
variants  from  the  vast  neutral  background.  For  this  purpose,  researchers  have  built  several
predictors to aid in variant ranking process, for the detection of deleterious variants. In this sense,
the degree of human variability could be used as pathogenic predictor.

Up to date the greatest effort in gathering human variability is presented in gnomAD, where are
included variants detected in 125748 whole exome sequences and 15708 whole genome sequences
from  unrelated  individuals1.  Similarly,  helixMTdb  is  a  database  that  retrieve  human  genetic
variability in mitochondrial DNA from 196,554 unrelated individuals2. All this information could be
integrated as a measurement of locus-wise variability, that gives an estimation about the mutational
freedom by genomic position.  Furthermore,  this  measurement could reflect directly the relative
importance of  a specific  genomic position and therefore the pathogenic status  of any mutation
placed there.  Nevertheless,  such predictor  will  define  a  genomic position  more  than  a  specific
mutation. It is known that a characteristic of the genetic code that vast majority of amino acids can
be translated by more than one codon.  This redundancy results  in  the coexistence at  the same
genomic positions of synonymous and lethal SNVs, translated as a decrease in the accuracy of
Shannon entropy as predictor. 
On the other hand, this kind of predictor could be useful for genomic positions where there is no
influence  of  the  genomic  code,  as  non-coding  regions,  or  where  the  effect  of  genetic  code
redundancy is  eclipsed by the selective pressure imposed by an additional  functionality,  as the
splicing in splice-sites.

Eukaryotic  cells  harbor  two  different  genomes,  the  nuclear  and  the  mitochondrial  DNA.  Both
genomes have their own evolutionary engines: while nuclear genome presents sexual reproduction
as source of variability with sister chromatid exchange, mitochondrial DNA is mainly maternally
inherited and has a higher mutation rate as its main source of variability. Therefore, mitochondrial
DNA has  its  own  conservation path and population frequencies that  may not  present  the same
behavior as nuclear DNA for these features. In this context, some of the variants produced by this
larger  mutational  rate,  may  lead  to  mitochondrial  disorders.  Hence,  in  variants  deleteriousness
detection,  this  mitochondrial  particularities are a major point to take into account,  not only for
protein-coding variants, where are focused the vast majority of developed predictors, but also for
non-coding sites as Control region, t-RNA genes or r-RNA genes, that represent approximately the
32% of this genome. 

At the same time,  alternative splicing (AS) is  a  major  biological  mechanism for rising protein
diversity in organisms.  So it should come at no surprise that complexity in AS is correlated with
evolution and tissue complexity3.  Given the biological nature of splicing process, splice regions,
understood as those positions located at the boundary of an exon and an intron (splice-site), had a
different evolutionary process than non-splice-sites. Therefore, these regions may not have the same
freedom to be mutated than other protein-coding sites, situation that can be translated in the degree
of variability observed in human population.
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Here, we propose the use of Shannon entropy calculated over the population frequencies associated
to a genomic position, to detect pathogenic single nucleotide variants (SNVs) placed in splice-sites
and non-coding regions in mitochondrial DNA.

M  ATERIAL AND METHODS  

Datasets
In this study we used a composed dataset, that contains 131043 unique variants (65775 pathogenic,
65268 neutral). These variants were obtained from five independent benchmark datasets HumVar4,
ExoVar5, VariBench6, predictSNP7 and SwissVar8 and also variants selected from Clinvar archive9,10,
classified as benign or pathogenic variants. These 131043 were split according to splice-site/not-
splice-site location, considering splice-sites either within 1-3 bases of the exon or 3-8 bases of the
intron,  resulting  in  120744  not-splice-site variants  and   10294  splice-site  SNVs.  In  order  to
benchmark the use of Shannon entropy for deleteriousness detection in splice-site SNVs, a subset of
7941 out of 10294 variants, for which there were pre-computed values for ada score and rf score in
dbNSFP11, was selected. 

For mitochondrial evaluation of Shannon entropy, mitochondrially encoded variants were selected
from the above datasets joined with confirmed variants described in Mitomap12 as pathogenic plus
high frequency variants (Fq>0,01) described in this database. A total number of 451 variants were
obtained, 169 non-coding SNVs (80 in tRNA genes, 33 in rRNA genes and 28 in control region)
and 282 protein-coding SNVs. In non-coding mitochondrial variants 64 out of 169 were neutral and
105 were pathogenic. In addition, in protein-coding mitochondrial variants 157 were neutral and
125 were pathogenic. These variants were annotated with HmtVar disease score13, retrieving 336
annotated variants (112 non-coding & 224 protein-coding), for benchmarking Shannon entropy.

Variants annotation
Splice-site condition was annotated using Variant effect Predictor14, which also was used to retrieve
ada score and rf score values from dbNSFP. Beside this, phastCons15 and phylop16 conservation
scores calculated on multiple sequence alignment from sequences of 100 species of vertebrates, was
retrieved using UCSC table browser data retrieval tool17. Variant allele frequencies were retrieved
from gnomAD 2.1.1 for nuclear encoded variants or helixMTdb, for mitochondrial SNVs. Finally,
HmtVar disease scores were obtained using HmtVar API.

Shannon entropy
Locus variability was calculated using gnomAD/helixMTdb variant allele frequencies as Shannon
entropy for the genomic positions of variants considered in our data sets following the expression:

H=∑
i

F i×log(Fi)

where H is Shannon entropy and Fi is variant allele frequency observed in gnomAD or helixMTdb
for each allele observed in a specific genomic position.  This parameter can take values from 0
onwards,  meaning the higher the value the more variability observed for that genomic position
where is placed the variant we are studying.
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Benchmark of Shannon entropy predictors for splice-site SNVs 
Shannon entropy performance was compared in this variants  with two state-of-the-art  ensemble
scores,  ada score and  rf score  and also with two conservation scores as  phyloP and phastCons,
based on AUC/PR-AUC in receiving operating characteristic (ROC) curves and precision recall
(PR) curves. Joined with this, non parametric statistical hypothesis contrasts were performed to test
AUC differences for ROC curves, calculating the D-statistic as: 

D=
AUC1−AUC2

s

where AUC1 is the area under the curve of one predictor, AUC2 is the area under the curve of the
other  predictor  and  s is  the  standard deviation  for  the difference  between both  values  in  2000
subsets obtained by bootstrap re-sampling, as described in pROC R-package18, which was used for
this purpose. ROC and PR curves analysis were performed using ROCR19 and precrec20 R-packages.

Benchmark of Shannon entropy in mitochondrial SNVs
Shannon entropy was compared  against HmtVar disease score for pathogenic prediction in non-
coding SNVs. In addition, Shannon entropy will also be evaluated in protein-coding

RESULTS

It was observed a significant difference for Shannon entropy between variants located in splice and
not splice regions, by non parametric Kolmogorov-Smirnov test (D=0.186, p<0.001), figure 1a. 

Regarding  to  the  benchmark  results  in  splice-sites,  Shannon  entropy,  with  an  AUCH=0.95,
outperformed rf score (AUCrf_score=0.94), phastCons (AUCphastCons= 0.84) and phyloP (AUCphyloP= 0.9)
and  matches  the  results  of  ada  score  (AUCada_score=0.95),  figure  1b.  AUC  differences  between
Shannon entropy and rf score, phastCons or phyloP were statistically significant (DH_rf_score=2.02,
p<0.05; DH_phastCons=19.12, p<0.001 and DH_phyloP=9.10, p<0.001), while there were no difference with
ada  score  (DH_ada_score=-0.35,  p=0.7232).  Regarding  to  PR  curves  outcomes,  Shannon  entropy
presented a PR-AUCH=0.97 outperforming to phastCons (PR-AUCphastCons=0.91) and phyloP (PR-
AUCphyloPs=0.96), matching rf score results (PR-AUCrf_score=0.97) and being slightly surpassed by
ada score (PR-AUCrf_score=0.98), figure 1c. 
On the other hand, overall performance of Shannon entropy in not-splice-site SNVs, rendered an
AUC=0.86.

For mitochondrial non-coding SNVs, Shannon entropy presented the best behavior compared with
HmtVar  score,  phastCons  or  phyloP,  both  in  ROC  curve  (AUCH=0.98,  AUCHmtVar=0.82,
AUCphastCons=0.86  &  AUCphyloP=0.88)  and  PR  curve  (PR-AUCH=1.00,  PR-AUCHmtVar=0.99,  PR-
AUCphastCons=0.9  & PR-AUCphyloP=0.92),  figures  1d  and  1e.  These  differences  between  Shannon
entropy and all  other  score in  non-coding variants,  were statistically  significant  (DH_HmtVar=2.34,
p<0.05; DH_phastCons=4.31, p<0.001 &  DH_phyloP=3.99, p<0.001).
To  the  contrary,  Shannon  entropy  presented  a  poor  performance  in  protein  coding  variants,
AUCH=0.68, surpassed by HmtVar disease score (AUCHmtVar=0.78).
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According to our data, based on Youden index, we propose a cutoff for deleteriousness detection in
splice  variants  for  Shannon entropy H≤0.001053301 (sensitivity=0.97,  specificity=0.87),  values
below this cutoff should be considered pathogenic. On the other hand, for mitochondrial non-coding
SNVs we propose a threshold  H≤0.009523692 (sensitivity=0.97, specificity=0.92).

Figure 1.  Cumulative density function of locus variability as Shannon entropy comparing splice-
site and not-splice-site positions (A). ROC curves (B) and PR curves (C) for Shannon entropy, ada
score, rf score, phastCons and phyloP conservation scores for deleteriousness detection in splice-
sites SNVs. ROC curves (D) and precision-recall curves (E) for Shannon entropy, HmtVar disease
score phastCons and phyloP conservation scores for pathogenic variants detection in mitochondrial
non-coding  SNVs.  D-statistic  and  its  associated  p-value  refer  to  Kolmogorov-Smirnov  non
parametric test. 
Abreviations: receiving operating characteristic (ROC), precision-recall (PR), Shannon entropy (H)
and single nucleotide variants (SNVs).
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DISCUSSION

Shannon entropy, computed over gnomAD or helixMTdb variant allele frequencies,  reflects  the
freedom for a specific genomic position to be mutated in the population, showing the final picture
of  selective  pressures.  According  to  our  outcomes,  locus  variability  in  splice-site  positions  is
significantly  lower  than  in  not  splice-site  positions,  confirming  the  assumption  of  a  different
performance between both types of genomic regions. This different behavior points to the need to
assess Shannon entropy as predictor separately in both types of regions. 

In mitochondrial genome, the vast majority of predictors are focused in protein-coding variants
with the significant exception of HmtVar disease score, widely used for pathogenic detection in this
genome. Looking to benchmark outcomes in mitochondrial  SNVs, locus variability as Shannon
entropy  presented  the  best  performance  for  the  classification  of  SNVs  in  non-coding  regions.
Conversely, the behavior of Shannon entropy in protein-coding variants was considerably poor, due
to the genetic code redundancy. This result, joined with the fact that Shannon entropy also presented
a low overall performance   in not-splice SNVs (AUC=0.86), corroborate the unsuitability of this
predictor for SNVs placed in codonic sites.  Nevertheless, Splicing process carries an additional
restriction for splice-sites that can be easily translated in to locus variability terms, confirmed by its
performance as predictor in this positions (AUC=0.95).

Compared  with  ada  score  and rf  score,  locus  variability  as  Shannon entropy matches  or  even
surpassed their outcomes. These two predictors are machine learning ensemble scores, that combine
the  information  from  several  predictors  (Position  Weight  Matrix  (PWM)  model,  MaxEntScan
(MES), Splice Site Prediction by Neural Network (NNSplice), GeneSplicer, Human Splicing Finder
(HSF),  NetGene2,  GENSCAN  and  SplicePredictor)  for  SNVs  located  in  splicing  consensus
regions21. Ada score is the result of training an adaptive boosting model while rf score is a similar
machine learning approach using a random forest. Both predictors are interesting tools but has the
non trivial limitation that there is a limited number of pre-computed values for these scores. In this
sense, Shannon entropy is a measurement of locus variability that can be easily calculated from
gnomAD  variant  allele  frequencies  extracted  for  any  specific  genomic  position  and  could  be
computed  at  genome-wide  scale,  presenting  a  clear  advantage  over  these  two scores,  with  out
loosing sensibility, specificity or precision.  

As locus variability can be understood as the final state of the evolutionary process, in this study we
also compared Shannon entropy against two different conservation scores as phyloP and phastCons,
that relies in different strategies. PhastCons is a hidden Markov model-based method that estimates
conservation rate, for a specific site, taking in to account the rates of neighboring sites. By contrast,
PhyloP scores measure evolutionary conservation at individual alignment sites, giving information
not only about the magnitude but also about the direction of the evolution rate compared with a
neutral  drift  model.  The  two  methods  have  different  strengths  and  weaknesses,  PhastCons  is
effective  for  conserved  elements/regions  detection  and  phyloP,  on  the  other  hand,  is  more
appropriate for evaluating signatures of selection at particular nucleotides or classes of nucleotides.
Shannon entropy outperformed clearly both conservation scores for pathogenic condition detection.
Therefore, this locus variability displays a map among genome-wide splice-sites, that inform about
the differential selective pressure for each position, adding granular information that escape to long
run evolutionary measurements. 
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Regarding to benchmark results in mitochondria, it seems that the locus variability in non-coding
sequences  shows  a  straight  forward  relationship  with  deleteriousness,  not  observed  in  coding
sequences.  Most  of the predictors  used in  mitochondrial  SNVs are designed for  protein-coding
variants, not for variants located at regulatory regions, t-RNA or r-RNA genes. For these specific
regions, Shannon entropy is presented as an interesting predictor for pathogenic SNVs, surpassing
another predictor widely used as is HmtVar disease score.  As observed in splice-sites, Shannon
entropy also surpassed conservation scores as pathogenic predictors, in mitochondrial non-coding
regions.
To conclude, Shannon entropy can act as an accurate predictor tool that matches or even surpasses
pathogenic mutation detection compared with state-of-the-art scores, for SNVs placed in genomic
positions that escape the effect of the redundancy of genetic code.  In consequence,  it  could be
integrated in variant ranking protocols, in order to reduce the number SNVsclassified as variants of
uncertain significance in the context of mendelian or mitochondrial diseases. 

WEB RESOURCES

R statistical software, https://www.r-project.org/
Variant Effect Predictor, https://www.ensembl.org/Tools/VEP/
VariBench, http://structure.bmc.lu.se/VariBench/
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