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 22 

Slowing or reversing biological ageing would have major implications for mitigating 23 

disease risk and maintaining vitality. While an increasing number of interventions show 24 

promise for rejuvenation, the effectiveness on disparate cell types across the body and the 25 

molecular pathways susceptible to rejuvenation remain largely unexplored. We performed 26 

single-cell RNA-sequencing on 13 organs to reveal cell type specific responses to young or 27 

aged blood in heterochronic parabiosis. Adipose mesenchymal stromal cells, hematopoietic 28 

stem cells, hepatocytes, and endothelial cells from multiple tissues appear especially 29 

responsive. On the pathway level, young blood invokes novel gene sets in addition to 30 

reversing established ageing patterns, with the global rescue of genes encoding electron 31 

transport chain subunits pinpointing a prominent role of mitochondrial function in 32 

parabiosis-mediated rejuvenation. Intriguingly, we observed an almost universal loss of 33 

gene expression with age that is largely mimicked by parabiosis: aged blood reduces global 34 

gene expression, and young blood restores it. Altogether, these data lay the groundwork for 35 

a systemic understanding of the interplay between blood-borne factors and cellular 36 

integrity. 37 

  38 

Most ageing studies have focused on one or a few organs or cell types, with little temporal 39 

resolution. This has greatly limited our ability to interpret how and when ageing impacts 40 

interconnected organ systems. Recently, we performed a systematic characterization of ageing 41 

using bulk RNA-sequencing (RNA-seq) and single-cell RNA-sequencing (scRNA-seq) on 42 

dozens of mouse organs and cell types across the lifespan of the organism. We discovered both 43 

global and tissue/cell type-specific ageing signatures throughout the body1–3. But it remains 44 

unknown how, or if, rejuvenation paradigms affect these global ageing pathways in different cell 45 

types, or if nascent biochemical programs are instigated. The rational design of new therapeutics 46 

is therefore challenging. 47 
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One method of rejuvenation which has induced beneficial effects across organ systems is 48 

heterochronic parabiosis, in which a young and aged mouse share a common circulation. 49 

Phenotypes like cognition, muscle strength, and bone repair have all shown improvement 50 

through exposure to young blood in multiple laboratories4. And recently, epigenetic clock 51 

measurements in aged rats treated with young plasma demonstrated more youthful DNA-52 

methylation profiles in multiple organs5. Parabiosis research has largely focused on age-related 53 

abundance changes to circulating proteins, and several proteins have been determined to mediate 54 

at least some of the observed effects6–10. However, such individual factors have yet to achieve 55 

robust rejuvenation throughout the body, likely in part due to an incomplete understanding of the 56 

effects of parabiosis on distinct organs and cells.  57 

Here we attempt to address this question by performing Smart-seq2-based scRNA-seq of 58 

C57BL6/JN mice following 5 weeks of heterochronic parabiosis, when mice had reached 4 and 59 

19 months of age (equivalent to humans aged around 25 and 65 years). Cells were captured via 60 

flow cytometry into microtiter plates from 13 organs: bladder, brain, brown adipose tissue (BAT, 61 

interscapular depot), diaphragm, gonadal adipose tissue (GAT, inguinal depot), limb muscle, 62 

liver, marrow, mesenteric adipose tissue (MAT), skin, spleen, subcutaneous adipose tissue 63 

(SCAT, posterior depot), and thymus (Fig. 1a,b, Extended Data Fig. 1a-d, Extended Data Tab. 64 

1,2, n=1-4 individual mice per experimental group per organ). By integrating single-cell ageing 65 

data from the simultaneously collected Tabula Muris Senis, we were able to match cell type 66 

annotations per tissue based on k-nearest neighbors, and then compare parabiosis-mediated 67 

rejuvenation (REJ) and accelerated ageing (ACC) to normal ageing (AGE). Raw and annotated 68 

data are available from AWS (https://registry.opendata.aws/tabula-muris-senis/) and GEO 69 

(GSE132042). 70 

 71 

Cell type-specific differential gene expression 72 

A fundamental unanswered question concerning parabiosis is which cell types are susceptible 73 

to accelerated ageing or rejuvenation (Fig. 1a). Out of a total of 13 tissues and >45,000 cells we 74 

were able to analyze differential gene expression in 54 cell types for ACC (isochronic young vs. 75 

heterochronic young) and 57 cell types for REJ (isochronic aged vs. heterochronic aged). 76 

Unexpectedly, we observe widespread transcriptomic changes, with 85 of 111 comparisons 77 

yielding >100 differentially expressed genes (DEGs) (Fig. 1c, Extended Data Fig. 2a-c), 78 

suggesting that nearly all cells are influenced by age-related changes in blood composition. The 79 

number of DEGs does not appear due to differences in cell number (Extended Data Fig. 2d-h) 80 

and differences between groups in percent mitochondrial genes, ribosomal genes, and ERCCs are 81 

not evident (Extended Data Fig. 1e-g). Furthermore, permuting the experimental groups within 82 

each cell type resulted in fewer than 100 DEGs in 104 cases out of 111, indicating that the 83 

hundreds to thousands of DEGs resulting from heterochronic parabiosis are not random and 84 

likely the result of biology (Extended Data Fig. 3). 85 

Most prominently, hepatocytes exposed to young blood show 1,000 DEGs, with 86 

heterochronic aged hepatocytes undergoing a clear shift toward young in principal component 87 

analysis (Fig. 1c, d). In fact, young hepatocytes exposed to aged blood undergo marked ageing, 88 

with more than 600 DEGs. Considering the liver is the most highly perfused organ and the major 89 

source of plasma proteins, these cells appear to be exceptionally responsive to age-related 90 

changes in the systemic environment. Befittingly, these were one of the first cell types described 91 

to undergo rejuvenation from exposure to young blood11.  92 
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Hepatocytes are perhaps only surpassed in their proximity to blood by those cells that line 93 

blood vessels themselves – endothelial cells (ECs). With 2,429 DEGs after exposure to aged 94 

blood, ECs of the viscerally located MAT represent the most substantial transcriptomic response 95 

among all cells. ECs from the brain, liver, and visceral GAT all feature among the top 11 96 

accelerated ageing cell types, with 300–1,000 DEGs, suggesting that continuous and direct 97 

exposure to the aged circulatory system induces strong transcriptomic changes. With 80-2,432 98 

DEGs each due to young or aged blood, ECs across all tissues seem susceptible to blood-borne 99 

influences, albeit with tissue-specificity, perhaps due to differences in perfusion, differences in 100 

cell intrinsic programs, or influence from parenchymal cells. Recently, transfused aged plasma 101 

was shown to recapitulate transcriptomic ageing of hippocampal ECs, and young plasma 102 

reversed aspects of ageing, especially in capillary ECs12.  103 

Just like ageing of blood vessels, ageing of fat tissues substantially contributes to disease risk 104 

and declining health. Specifically, visceral adipose tissues undergo some of the earliest and most 105 

dramatic transcriptomic changes with age2, and the expansion and inflammation of visceral fat is 106 

especially detrimental. In addition to strong parabiosis-mediated changes in MAT and GAT 107 

endothelial cells, mesenchymal stromal cells (MSCs) in both tissues display large numbers of 108 

DEGs, and principle component analysis reveals marked shifts after exposure to differentially 109 

aged blood (Fig. 1d). In fact, MSCs from adipose tissues exhibit hundreds of DEGs in both 110 

young and aged heterochronic parabionts. In line with recent findings that the pro-ageing 111 

systemic protein CCL116 is produced in visceral adipose tissue13, Ccl11 and other age-related 112 

genes encoding plasma proteins like Chrdl1 and Hp are within the first two principal components 113 

for GAT MSCs (Extended Data Fig. 4a-e), indicating that these cells may be contributors to 114 

ageing of the systemic environment. As well, preadipocytes within the MSC population share 115 

many characteristics with tissue-resident macrophages, and GAT macrophages actually feature 116 

among the top cell types changed with parabiosis (Fig. 1c). 117 

Immune cell accumulation in adipose depots is a fundamental feature of ageing, and indeed 118 

most types, including T cells, B cells, neutrophils, and plasma cells, accrue across diverse 119 

organs2,14. It is interesting that tissue-resident immune cells of both the lymphoid lineage (T, B, 120 

NK cells) and myeloid lineage (monocytes & macrophages) seem liable to the effects of 121 

parabiosis, as do their marrow-resident precursors, hematopoietic stem cells (HSCs; Fig. 1b). In 122 

fact, 1,000 HSC genes are altered by young blood, perhaps indicating a tight-knit relationship 123 

between ageing of the immune system and changes in blood composition. Previously, 124 

heterochronic transplantation of marrow or HSCs in mice has been shown to affect (modulate) a 125 

variety of phenotypes15–18. Most recently, aged HSCs were found to induce circulating 126 

cyclophilin A, encoded by Ppia19, a gene ranked among the top differentially expressed across 127 

cell types exposed to aged blood (Extended Data Fig. 5). Yet here, heterochronic aged HSCs do 128 

not appear to shift via PCA, suggesting that young blood acts primarily on non-ageing pathways. 129 

We therefore asked if parabiosis induces reversal or acceleration of ageing pathways, or if 130 

novel genes are invoked. After integrating FACS-Smart-seq2 data from >37,000 Tabula Muris 131 

Senis cells, we found that for a number of cell types, most notably endothelial cells and MSCs, 132 

the effects of parabiosis are equal to - or even much more pronounced than - ageing, suggesting 133 

that these cells are particularly susceptible to changes in plasma composition with age. In three 134 

cases, a substantial number of accelerated ageing DEGs overlap with those of normal ageing: 135 

60% for GAT MSCs, 80% for HSCs, and 84% for oligodendrocytes (Fig. 1c). Endothelial cells 136 

from a variety of tissues are also consistently among the top cell types with the most parabiosis 137 

DEGs in common with ageing. This suggests that a significant part of ageing of these cells may 138 
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be attributed to ageing of the systemic environment. Overall, aged blood induces changes more 139 

akin to ageing than young blood, as can be seen by the larger proportion of overlapping DEGs 140 

for many cell types (Fig. 1c). However, rejuvenation appears to be a much more concerted 141 

process: the core network of ageing DEGs rescued by rejuvenation consists of mitochondrial 142 

electron transport chain genes for multiple cell types (Fig. 1e).  143 

As well, there are numerous instances where accelerated ageing and rejuvenation have little 144 

to no overlap with ageing DEGs. The reason for these discordant results is currently unknown, 145 

but it could be that ageing of these cells is influenced more by other factors, masking subtler 146 

effects caused by an altered systemic circulation. Overall, these data indicate that nearly all cell 147 

types are amenable to reformation via changes to blood composition, even those not directly 148 

exposed to blood. Furthermore, it appears that ageing of certain cell types - especially HSCs 149 

which give rise to circulating and tissue-resident immune cells - is heavily influenced by the 150 

systemic milieu.  151 

 152 

Young blood reverses mitochondrial & global gene expression loss 153 

While ageing is in part manifested differently across tissues and cell types, the substantial 154 

overlap in ageing signatures suggests that targeting common molecular pathways – by modifying 155 

blood composition, for example – could slow or reverse harmful changes throughout the body. 156 

We therefore aimed to determine if parabiosis reverses or accelerates ageing gene expression 157 

signatures that are common to multiple cell types and tissues. We first selected genes 158 

differentially expressed in the most cell types for both parabiosis and ageing, and indicated 159 

agreement with ageing based on the direction of change (Fig. 2a). Foremost is the pronounced 160 

disparity between genes upregulated and those downregulated during ageing. While upregulated 161 

genes appear largely sporadic, downregulated genes show considerable agreement with 162 

parabiosis and enrichment for biological pathways. Furthermore, permuting the experimental 163 

groups within each cell type resulted in almost no overlap with ageing DEGs (Extended Data 164 

Fig. 3). Most conspicuously, across a range of cell types and tissues, exposure to young blood 165 

increases the expression of genes encoding electron transport chain subunits like Cox6c, Cox7c, 166 

Ndufa1, Ndufa3, Atp5k, and Uqcr11, reversing the loss of expression in normal ageing (Fig. 167 

2a,c). In fact, oxidative phosphorylation and the electron transport chain are the top enriched 168 

pathways (Fig. 2b), and of the parabiosis DEGs that agree most consistently with ageing.  169 

The loss and dysregulation of mitochondrial function is one of the most ubiquitous and 170 

drastic mammalian ageing hallmarks2,10, so the widespread rejuvenation observed here hints that 171 

systemic restoration may be possible through manipulation of the systemic environment. Indeed, 172 

rejuvenation of such genes is visible for a variety of cell types, from HSCs and hepatocytes to 173 

endothelial cells and immune cells across tissues (Fig. 2a). Notably, such signatures are absent in 174 

certain cell types (Extended Data Fig. 6), including brain endothelial cells (BECs), which have 175 

been observed to undergo increased expression of electron transport chain genes with age12. This 176 

effect is replicated by exposure to aged mouse plasma, and reversed by exposure to young mouse 177 

plasma in vivo12. Such an exception to the global pattern could prove useful for elucidating the 178 

mechanism of crosstalk between blood factors and mitochondrial function. 179 

Restoration of mitochondrial gene expression is but one part of a more global response to 180 

young blood: not only is gene expression loss with age evident in nearly every cell type, but this 181 

is mimicked by accelerated ageing and reversed by rejuvenation (Fig. 2d). This supports a 182 

fundamental role for transcriptional regulation itself in ageing and rejuvenation paradigms.  183 

 184 
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Structured responses to parabiosis 185 

In spite of the striking rescue to age-related gene expression loss – and specifically to genes 186 

encoding proteins of the mitochondrial electron transport chain - ageing-independent pathways 187 

may also contribute to the parabiosis-mediated functional improvements observed throughout the 188 

body. To investigate the molecular hallmarks induced by parabiosis in each cell type, we 189 

performed unbiased pathway analysis for each cell type in response to ageing and a young or 190 

aged circulatory environment (AGE, REJ, ACC). We identified 4 major pathway clusters (Fig. 191 

3a) which were largely driven by the environment the cells are exposed to rather than inherent 192 

cell or tissue type, as indicated by the adjusted rand index score (Fig. 3b). This clustering 193 

highlights the widespread and comparatively strong influence of ageing, but it also reveals that 194 

ACC largely affects the body either through systemic changes that mimic those of ageing, or 195 

sporadic, cell type-specific effects. On the other hand, cluster 2 indicates ageing- and ACC-196 

independent pathways, suggesting rejuvenation invokes novel biology, whereas the remaining 197 

REJ pathways overlap with ageing or ACC. These data are confirmed when comparing the 198 

percentage of cell types enriched for specific pathways (Fig. 3c), with ageing dominating 199 

pathway analysis, and REJ effects that either act outside ageing pathways or act to oppose ageing 200 

pathways.  Foremost, pathway analysis reveals that the electron transport chain is widely altered 201 

across ageing and REJ, suggesting enhanced metabolic activity in heterochronic aged parabionts 202 

(Fig. 3c,d).  203 

We next sought to determine in which cell types parabiosis-mediated REJ or ACC pathways 204 

most closely agree or disagree with ageing. For each cell type we calculated the spearman 205 

correlation coefficient between pathways for ageing & REJ, ageing & ACC, and REJ & ACC 206 

(Fig. 3e). With a correlation of 0.73, GAT MSCs display a highly similar transcriptional 207 

response to ageing and aged blood, as do HSCs (ρ=0.61). The absence of mitochondrial electron 208 

transport genes common to these two groups is notable. Such genes commonly arise and overlap 209 

between ageing and rejuvenation (Fig. 3f,g), even in cell types for with ACC correlates more 210 

strongly with ageing than REJ does. This suggests that young blood is a potent instigator of 211 

mitochondrial function, while aged blood itself contributes little to the age-related decline. In 212 

fact, mitochondrial genes arise even for cell types in which age-related decline is not evident, 213 

like marrow monocytes (Fig. 3h), supporting the notion that young blood may indeed broadly 214 

enhance mitochondrial function. 215 

There are also cell types for which rejuvenation is highly correlated with ageing, exemplified 216 

by MSCs from the diaphragm (ρ=0.74). In fact the same cell type, present in different organs, 217 

often shows highly divergent responses to ageing, accelerated ageing, and rejuvenation, 218 

indicating that the immediate environment in which a cell resides often exerts more influence 219 

than circulating factors. The consistent exception is endothelial cells, which show high 220 

correlation between AGE, ACC, and REJ, regardless of tissue of origin. We conclude that these 221 

cells are especially susceptible to influences from the systemic environment due to their 222 

continuous exposure to blood. 223 

 224 

Coordinated, organism-wide cellular responses to ageing and parabiosis 225 

In order to appreciate the overarching effects of ageing and parabiosis organism-wide, we asked 226 

if individual cell types throughout the various tissues of the mouse show similar or discordant 227 

transcriptional responses to aging and parabiosis. For all pairwise comparisons between cell 228 

types, we computed the cosine similarity of their respective DEGs for ageing, rejuvenation, and 229 

accelerated ageing (Fig. 4a). While the highest similarities are evident for ageing, the 230 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2020. ; https://doi.org/10.1101/2020.11.06.367078doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.06.367078
http://creativecommons.org/licenses/by-nc/4.0/


transcriptomic signature of rejuvenation elicited by young blood also shows considerable 231 

conservation between cell types. Such commonalities are lacking for accelerated ageing, in 232 

agreement with the divergent pathways arising for top ACC DEGs (Fig. 3d). To determine which 233 

groups of cell types are responsible for the ageing similarity signature, we plotted the closest 234 

connection for each cell type (Fig. 4b). Remarkably, ageing instigates coordinated transcriptomic 235 

changes with high similarity within some tissues, most notably brain, skin, and marrow, yet 236 

clearly distinct signatures between tissues overall, suggesting that local pro-ageing factors or 237 

programs may govern ageing of these tissues. Equally exciting, we discovered that cell types, 238 

such as endothelial cells, MSCs, and immune cells share transcriptional programs of ageing 239 

across vastly different and distant tissues, possibly reflecting cell intrinsic transcriptional 240 

programs of ageing. Indeed, for mesenchymal stromal cells across four adipose tissues and two 241 

skeletal muscle types, the loss of collagen gene expression forms a core node (Fig. 4e,g). In the 242 

context of immune cells, it has been speculated that infiltration of these cells may lead to 243 

“spreading” of ageing in invaded tissues through secreted factors2,20. Future studies may explore 244 

the basis of cellular “hubs” which are transcriptionally related to many cell types - e.g. 245 

monocytes of marrow, ECs of SCAT - while other cell types are less connected.   246 

A similar analysis of parabiosis shows that an aged circulation mimics, in part, the tissue and 247 

cell type specific transcriptional similarities, but they are overall less pronounced, and many 248 

seem to disappear (Fig. 4c). Intriguingly, while skin and marrow maintain solid tissue-wide 249 

cellular transcriptomes following exposure to young blood – albeit different from those observed 250 

with aging – many new transcriptional similarities emerge across cell types and tissues (Fig. 4d). 251 

Most notably, REJ triggers similar transcriptional signatures across highly divergent cell types. 252 

For example, the mitochondrial electron transport gene node emerges once again as a core 253 

rejuvenation network, and is especially strong between MSCs (GAT, MAT), hepatocytes, basal 254 

and epidermal cells from skin, and HSCs and macrophages from marrow (Fig. 4f,h). 255 

 256 

Discussion 257 

Our dataset provides a first look into the transcriptomic effects of heterochronic parabiosis at 258 

single-cell resolution. Continuous exposure to differentially aged blood alters the transcriptomic 259 

landscape across cell types, and we discovered that particular cell types - namely MSCs, ECs, 260 

HSCs, and hepatocytes - are especially susceptible to gene expression changes. While the effects 261 

of aged blood tend to accelerate normal ageing changes, young blood both reverses age-related 262 

profiles and initiates novel pathways. Systemic rejuvenation of genes encoding components of 263 

the electron transport chain is especially striking, as is the reversal of global gene expression loss 264 

with age. Together, these findings reveal the molecular details of how ageing and parabiosis 265 

trigger highly complex global responses across the organism, some of which are tissue-specific 266 

and some cell type-specific, likely reflecting a sophisticated combination of cellular, local, and 267 

systemic transcriptional cues. These newly discovered transcriptional programs shared between 268 

cell types in response to the three chronogenic environments suggest possible avenues for 269 

therapeutic interventions. Finally, heterochronic parabiosis represents only one rejuvenation 270 

paradigm, and organism-wide analysis of other interventions, such as was recently conducted for 271 

caloric restriction in rats14, may help uncover complimentary treatments able to more 272 

comprehensively target ageing hallmarks throughout the body.  273 

 274 
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Figure Legends 319 

 320 

Fig. 1. Cell type-specific differential gene expression 321 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2020. ; https://doi.org/10.1101/2020.11.06.367078doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.06.367078
http://creativecommons.org/licenses/by-nc/4.0/


a, Experimental outline. FACS/Smart-seq2-based scRNA-seq data was collected from male 322 

isochronic and heterochronic pairs (n=1-2 individual mice per group; 3-months and 18-months-323 

old), and integrated with FACS/Smart-seq2-based scRNA-seq data from Tabula Muris Senis 324 

male mice (n=4 3-month-old mice; n=6 18-24-month-old mice). IY: isochronic young. HY: 325 

heterochronic young. HA: heterochronic aged. IA: isochronic aged. Y: young. A: aged. ACC: 326 

accelerated ageing. REJ: rejuvenation. AGE: ageing. b, Uniform manifold approximation and 327 

projection (UMAP) based on the first 16 principle components of all parabiosis cells (n=45,331 328 

cells from 13 tissue types). c, Cell types ranked by the number of differentially expressed genes 329 

(DEGs) for ACC (left) and REJ (right). The percentage of DEGs overlapping with those or 330 

normal ageing (AGE) is indicated. The number of cells used for differential expression is in 331 

Extended Data Fig. 2. Differential gene expression was conducted on the CPM normalized and 332 

log-transformed count matrix (p<0.01, eff>0.6, |log2FC|>0.5). d, The first two principal 333 

components (PC1; PC2) for select parabiosis cell types, with the corresponding cells from 334 

Tabula Muris Senis as background heatmaps. PCA was conducted on DEGs as in (c), after pre-335 

selecting the strongest ageing genes (p<0.01, eff>0.6, |log2FC |>0.5). e, Densest STRING 336 

subnetwork of the top DEGs that are consistent with AGE DEGs for select cell types. ACC (top), 337 

REJ (bottom).  STRING links with >0.9 confidence (scale from 0-1) are queried, and the densest 338 

k-core subgraph is shown.  339 

 340 

Fig. 2. Young blood reverses mitochondrial & global gene expression loss 341 

a, DEGs downregulated (left) or upregulated (right) with age that are most frequently rescued 342 

(i.e. “consistent”) across cell types by parabiosis. “Not consistent” indicates if the direction of 343 

change is identical for both ageing and parabiosis. Columns and rows are sorted by cases of 344 

“consistent” minus “not consistent”. Top: the number of cell types for rejuvenation (REJ) and 345 

accelerated ageing (ACC) for which each gene is differentially expressed (“consistent” + “not 346 

consistent”). Left: the number of total DEGs per cell type (“consistent” + “not consistent”). 347 

Bottom: STRING connections between top genes. STRING links with >0.9 confidence (scale 348 

from 0-1) are queried, and the densest k-core subgraph is shown. b, Most enriched pathways 349 

(GO Biological Process  and KEGG) among the top 200 ACC/REJ genes consistently changing 350 

with ageing downregulation. c, Violin plots for liver hepatocytes, GAT MSCs and marrow HSCs 351 

of select genes encoding proteins of the electron transport chain. d, Relative change of the mean 352 

number of genes expressed  for each cell type (left) and combined cell types for each tissue 353 

(right).  354 

 355 

Fig. 3. Structured responses to parabiosis 356 

a, Pathway enrichment and clustering for all cell types for ageing, accelerated aging, and 357 

rejuvenation (GO and KEGG). Four modules are evident, each described by its proportion of 358 

each of the three comparisons (top). Mitochondrial pathways highlighted in teal. b, The adjusted 359 

rand index (ARI) for the four clusters. c, The percentage and effect size of significant tissues and 360 

cell types per pathway. d, For each pairwise comparison between ageing, rejuvenation, and 361 

accelerated ageing, the top pathways are indicated, ranked by the percentage of cell types in 362 

which they emerge. e, Spearman correlation coefficient of DEGs within each cell type between 363 

comparisons (ageing, rejuvenation, accelerated ageing). Each block indicates a cell type within 364 

the designated tissue. Top pathways for GAT MSCs (f), marrow HSCs (g) and marrow 365 

monocytes (h). The proportion of each pathway derived from each comparison is indicated via 366 

pie chart, and related pathways are grouped into modules. 367 
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 368 

Fig. 4. Coordinated, organism-wide cellular responses to ageing and parabiosis 369 

a, Histogram of cosine similarity of ageing, accelerated ageing, and rejuvenation gene signatures 370 

between each pairwise comparisons of cell types. b-d, Based on the cosine similarities from (a), 371 

each cell type is connected to its most similar cell type. Grey indicates non-unique connections. 372 

e, STRING network of DEGs common to MSCs from GAT, MAT, SCAT, BAT, limb muscle, 373 

and diaphragm. f, STRING network of DEGs common to MSCs (GAT and MAT), hepatocytes, 374 

basal and epidermal cells (skin), and HSCs and macrophages (marrow). STRING links with >0.9 375 

confidence (scale from 0-1) are queried, and the densest k-core subgraph is shown. g-h Most 376 

enriched pathways (GO Biological Process  and KEGG) among the nodes of the networks shown 377 

in (e-f). 378 

 379 

Methods 380 

 381 

Experimental procedures 382 

 383 

Parabiosis and organ collection 384 

3-month-old and 18-month-old male C57BL/6JN mice were shipped from the National Institute 385 

on Ageing colony at Charles River (housed at 19–23�°C) to the Veterinary Medical Unit 386 

(VMU; housed at 20–24�°C)) at the VA Palo Alto (VA). At both locations, mice were housed 387 

on a 12 h/12 h light/dark cycle and provided with food and water ad libitum. The diet at Charles 388 

River was NIH-31, and at the VA VMU was Teklad 2918. Littermates were not recorded or 389 

tracked, and mice were housed at the VA VMU for no longer than 2 weeks before surgery. 390 

Parabiosis via the peritoneal method was accomplished by suturing together the peritoneum 391 

of adjacent flanks, forming a continuous peritoneal cavity. To promote coordinated movement, 392 

adjacent knee joints and elbow joints were joined with nylon monofilament sutures. Skin was 393 

joined with surgical autoclips. All procedures were conducted with aseptic conditions on heating 394 

pads, with mice under continuous isoflurane anesthesia. To prevent infection, limit pain, and 395 

promote hydration, mice were injected with Baytril (5 ug/g), Buprenorphine, and 0.9% (w/v) 396 

sodium chloride, as described previously4,21. Pairs remained together for 5 weeks prior to organ 397 

collection. 398 

After anaesthetization with 2.5% v/v Avertin at 8:00, mice were weighed, shaved, and blood 399 

was drawn via cardiac puncture before transcardial perfusion with 20 ml PBS. Mesenteric 400 

adipose tissue was then immediately collected to avoid exposure to the liver and pancreas 401 

perfusate, which negatively affects cell sorting. Isolating viable single cells from both the 402 

pancreas and the liver of the same mouse was not possible; therefore only one was collected 403 

from each mouse. Whole organs were then dissected in the following order: large intestine, 404 

spleen, thymus, trachea, tongue, brain, heart, lung, kidney, gonadal adipose tissue, bladder, 405 

diaphragm, limb muscle (tibialis anterior), skin (dorsal), subcutaneous adipose tissue (inguinal 406 

pad), brown adipose tissue (interscapular pad), aorta and bone marrow (spine and limb bones). 407 

Organ collection concluded by 10:00. After single-cell dissociation as described below, cell 408 

suspensions were used for FACS of individual cells into 384-well plates. All animal care and 409 

procedures were carried out in accordance with institutional guidelines approved by the VA Palo 410 

Alto Committee on Animal Research. 411 

 412 

Sample size, randomization and blinding 413 
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No sample size choice was performed before the study. Blinding was not performed: the authors 414 

were aware of all data and metadata-related variables during the entire course of the study. 415 

 416 

Tissue dissociation and sample preparation 417 

All tissues were processed as previously described3. 418 

 419 

Single-cell methods 420 

All protocols used in this study are described in detail elsewhere1,3. These include: preparation of 421 

lysis plates; FACS sorting; cDNA synthesis using the Smart-seq2 protocol22,23; library 422 

preparation using an in-house version of Tn524,25; library pooling and quality control; and 423 

sequencing. For further details please refer to https://www.protocols.io/view/smartseq2-for-htp-424 

generation-of-facs-sorted-single-2uwgexe.  425 

 426 

Computational methods 427 

 428 

Data extraction 429 

We unified these data with scRNA-seq profiles of cells from young (3-month-old males) and 430 

aged (combined 18-month-old & 24-month-old males) mice from the Tabula Muris Senis Smart-431 

seq2 data2,3. All subsequent data processing and analysis is conducted on this unified dataset. 432 

 433 

Quality control 434 

We applied standard filtering rules following the guideline of Luecken et al.26. We discarded 435 

cells with (1) fewer than 500 genes or (2) less than total 5,000 reads or (3) more than 30% ERCC 436 

reads or (4) more than 10% mitochondrial reads or (5) more than 10% ribosomal reads. Counts 437 

were then CPM scaled and log-normalized for downstream analysis. Analysis was implemented 438 

with Gseapy 0.10.1, Matplotlib 3.3.2, Networkx27 2.5, Numpy v1.18.1, Pandas v1.0.1, Scanpy28 439 

v1.4.4, Scikit-learn29 v0.22.1, and Seaborn 0.11.0 packages. 440 

 441 

Cell type annotations 442 

We grouped the data based on tissue of origin and computed 32 principal components (PCA) of 443 

the normalized data for each tissue. We embedded the cells in a 32-dimensional latent space 444 

using these PCA components and then identified their k=20 nearest neighbors from the Tabula 445 

Muris Senis data. We then applied majority voting to define the type each cell from the 446 

parabionts. In other words, we calculated the most frequent cell type among the cell’s neighbors 447 

from Tabula Muris Senis and used this to annotate the cell. Note that Tabula Muris Senis 448 

includes some highly specific cluster annotations and we joined some of these to achieve more 449 

robust results, e.g. we merged all the T cell subclusters. These merging rules can be found in 450 

Extended Data Table 3. Finally, to visualize the cell clusters we computed UMAP embeddings30. 451 

We ran the DBSCAN clustering algorithm (eta=0.8) on the UMAP embeddings in order to 452 

identify groups of cells that are not present in both datasets. We discarded clusters of cells from 453 

the analysis that were only present in TMS. To get a global picture of the final dataset we 454 

repeated the PCA and UMAP computations over all cells together. Analysis was implemented in 455 

Python 3.8.3 with Gseapy 0.10.1, Matplotlib 3.3.2, Networkx 2.5, Numpy v1.18.1, Pandas 456 

v1.0.1, Scanpy v1.4.4, Scikit-learn v0.22.1, and Seaborn 0.11.0 packages. 457 

 458 

Differential gene expression 459 
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We systematically analyzed parabiosis signatures across 3 comparisons (Y-O, IY-HY, IO-HO) 460 

within each identified cell type. We conducted single-cell differential gene expression for the 3 461 

comparisons within each cell type separately. Specifically, we computed standard log2-fold 462 

changes as well as the non-parametric unpaired Wilcoxon–Mann–Whitney test31 for each gene. 463 

Finally, we identified genes differentially expressed with effect size>0.6, p-value<0.01 and 464 

|log2FC|>0.5. Note that the effect size of the Wilcoxon–Mann–Whitney test is the AUC metric, 465 

frequently used in case of large datasets since it is not sensitive to the sample size. Hence 466 

filtering for this metric is especially important as single-cell data often contains large sample 467 

sizes with thousands of cells per condition. We discarded genes used for QC filtering from the 468 

DGE analysis. Analysis was implemented in Python 3.8.3 with Gseapy 0.10.1, Matplotlib 3.3.2, 469 

Networkx 2.5, Numpy v1.18.1, Pandas v1.0.1, Scanpy v1.4.4, Scikit-learn v0.22.1, and Seaborn 470 

0.11.0 packages. 471 

 472 

Pathway analysis 473 

Over-representation analysis was performed using GeneTrail 332 for all significantly deregulated 474 

genes in ageing, accelerated ageing and rejuvenation, per tissue and cell type using the categories 475 

of Gene Ontology33 and KEGG pathways34. P-values were adjusted for multiple testing per 476 

database using the Benjamini-Hochberg procedure35. Depleted categories were not considered. 477 

Results were analyzed with the programming language R 4.0.2. To generate the enrichment 478 

heatmap the 30 most enriched categories of each comparison were extracted. The columns of the 479 

enrichment matrix were clustered with hierarchical clustering using Ward’s clustering criterion 480 

and Euclidean distance, based on the discretized P-values (<0.05, <0.01, <0.001). The clustering 481 

was cut at a height of 4. The rows were clustered with complete linkage and Euclidean distance. 482 

The heatmap was plotted with the ComplexHeatmap36 (2.4.2) R package. To determine the major 483 

clustering factor among the comparison, tissues or cell types, we computed the adjusted rand 484 

index (ARI) using the aricode R package (1.0.0) and plotted them as bar plot with ggplot237 485 

(3.3.2). For determining the most different pathways per comparison, we filtered similar terms 486 

using the GOSemSim R package (2.14.0) according to the Jiang measure with a cutoff at a 487 

similarity of 0.7, and excluded KEGG disease pathways. We computed for every setup 488 

comparison the per tissue and cell type similarity of the determined enrichment P-values on the 489 

negative log10 transformed values by using Spearman’s correlation coefficient. Pathway and 490 

gene set networks were generated for each tissue and cell type using the 30 most significant 491 

enrichments and plotted with igraph38 (1.2.5), ggraph (2.0.3), and scatterpie (0.1.5).  492 

 493 

PCA analysis of responding cell types 494 

For each cell type showing strong response to parabiosis, first we selected ageing genes that 495 

were differentially expressed with effect size>0.6, p-value<0.01 and |log2FC |>0.5 in case of the 496 

Y-O comparison. We then carried out principal component analysis (PCA) across these ageing 497 

genes. In our results we show the 1st and 2nd PCA components of each cell from the parabionts. 498 

We present the ageing signal in the background with kernel density estimation. Analysis was 499 

implemented in Python 3.8.3 with Gseapy 0.10.1, Matplotlib 3.3.2, Networkx 2.5, Numpy 500 

v1.18.1, Pandas v1.0.1, Scanpy v1.4.4, Scikit-learn v0.22.1, and Seaborn 0.11.0 packages. 501 

 502 

Ageing and rejuvenation similarity analysis 503 

We base these analyses on the differential gene expression results. We define similarities for the 504 

3 comparisons (Y-O, IY-HY, IO-HO) separately. First, we select genes that are differentially 505 
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expressed with effect size>0.6, p-value<0.01 and |log2FC|>0.5. Next, we take the vectors 506 

indicating the direction of the expression changes across these genes in case of each cell type (+1 507 

up, 0 no change, -1 down). We compute then the cosine similarities of those vectors to define 508 

pairwise similarities between the cell types. We present the structure of these similarity networks 509 

in our results. Analysis was implemented in Python 3.8.3 with  Gseapy 0.10.1, Matplotlib 3.3.2, 510 

Networkx 2.5, Numpy v1.18.1, Pandas v1.0.1, Scanpy v1.4.4, Scikit-learn v0.22.1, and Seaborn 511 

0.11.0 packages. 512 

 513 

STRING network analysis 514 

For each set of DEGs of interest, first we queried the STRING database for links with >0.9 515 

confidence. Next we selected the densest component of the network with no more than 40 DEGs 516 

within it. Selection was done by k-core decomposition: we recursively pruned the network to 517 

select its subnetwork where each node’s degree is at least k. We set k in order to find the densest 518 

core with no more than 40 DEGs. We used the k-core implementation of networkx 2.5 python 519 

package. 520 

 521 

Code Availability 522 

All code used for analysis will be available upon publication. 523 

 524 

Data Availability 525 

Raw and annotated data are available on AWS (https://registry.opendata.aws/tabula-muris-senis/) 526 

and GEO (GSE132042).  527 

 528 
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a, Uniform manifold approximation and projection (UMAP) based on the first 16 principle 597 

components of all parabiosis and TMS cells (n= 83,277 cells from 13 tissue types). b, Number of 598 

cells per tissue and mouse. c, Total number of cells per cell type (top), fraction of cells covering 599 

each of the 6 experimental conditions per cell type. d, Total number of cells per tissue (top), 600 

fraction of cells covering each of the 6 experimental conditions per tissue (bottom). e-g, For each 601 

experimental condition within each cell type, the percent of reads mapped to ribosomal genes (e), 602 

mitochondrial genes (f), and ERCC spike-ins (g) plotted against the mean number of genes 603 

expressed. 604 

 605 

Extended Data Fig. 2.  606 

a-c, Cumulative distributions of the calculated AUC (a), -log10(p-value) (b) and log2 fold change 607 

values.  Distributions are shown separately for ACC, REJ and AGE DGE. d, Number of DEGs 608 

plotted against the total number of cells within the control and treatment groups. Each dot 609 

represents a DGE comparison within a cell type. e-g, Number of DEGs (top) and sample sizes 610 

(bottom) of DGE comparisons for AGE (e), ACC (f) and REJ (g). h, Fraction of “consistent” and 611 

“not consistent” DEGs with AGE within the ACC (top) and REJ (bottom) comparisons. 612 

 613 

Extended Data Fig. 3.  614 

Number of DEGs shown for each AGE, ACC and REJ comparison after randomly permuting the 615 

condition labels of the cells within each cell type. 616 

 617 

Extended Data Fig. 4.  618 

a-c, Violin plots showing the expression changes of Ccl11 (a), Chrld1 (b) and Hp (c) in fat GAT 619 

MSCs. d-e, Top genes associated with the first (d) and second (e) principal components within 620 

the fat GAT MSCs. PCA was conducted on DEGs after pre-selecting the strongest ageing genes 621 

(p<0.01, eff>0.6, |log2FC |>0.5). 622 

 623 

Extended Data Fig. 5. 624 

Top list of the 100 most frequent DEGs identified for ACC and REJ. Results are shown 625 

separately for up and downregulation. Columns with darker bars indicate top lists where only 626 

changes consistent with AGE are shown. 627 

 628 

Extended Data Fig. 6. 629 

AGE log2FC fold changes of the 76 genes from the GO term “ATP synthesis coupled electron 630 

transport” (GO:0042773) within each cell type. Changes with (p<0.01, eff>0.6, |log2FC |>0.5) 631 

are indicated. 632 

 633 

Extended Data Table 1. List of abbreviations used. 634 

Extended Data Table 2. Number of cells per mouse and cell type. 635 

Extended Data Table 3. List of cell type merging rules. 636 
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