

1 **Characterization of the complete mitochondrial genome of the New Zealand parasitic
2 blowfly *Calliphora vicina* (Insecta: Diptera: Calliphoridae).**

3 Nikola Palevich, Luis Carvalho and Paul Maclean.

4 AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand.

5

6 **ABSTRACT**

7 In the present study, the complete mitochondrial genome of the New Zealand parasitic blowfly
8 *Calliphora vicina* (blue bottle blowfly) field strain NZ_CalVic_NP was generated using next-
9 generation sequencing technology and annotated. The 16,518 bp mitochondrial genome
10 consists of 13 protein-coding genes, two ribosomal RNAs, 22 transfer RNAs, and a 1,689 bp
11 non-coding region, similar to most metazoan mitochondrial genomes. Phylogenetic analysis
12 showed that *C. vicina* NZ_CalVic_NP does not form a monophyletic cluster with the remaining
13 three Calliphorinae species. The complete mitochondrial genome sequence of *C. vicina*
14 NZ_CalVic_NP is a resource to facilitate future species identification research within the
15 Calliphoridae.

16

17 **KEYWORDS:** Diptera, Calliphoridae, Calliphorinae, complete mitochondrial genome,
18 *Calliphora vicina*.

19 The diminished efficacy demonstrated by current members of the Calliphoridae (blowflies)
20 treatments due to the emergence of resistance in blowflies against many classes of insecticides
21 calls for improved DNA-based diagnostics tools. High-level phylogenetic relationships within
22 the Calliphoridae are still largely unresolved primarily due to their large and highly variable
23 mitochondrial (mt) genomes of blowflies. *Calliphora vicina* NZ_CalVic_NP was selected for
24 genome sequencing as a representative of an NZ field strain of *C. vicina*.

25 The *C. vicina* specimen was collected from the Palmerston North area (40°21.3' S, 175°36.7' E), and is stored and available upon request from AgResearch Ltd., Grasslands Research Centre
26 (accession number: NPY120886). High molecular weight genomic DNA was isolated from
27 entire *C. vicina* adult males using a modified phenol:chloroform protocol explained in our
28 previous articles (Palevich et al. 2019a; Palevich et al. 2019b; Palevich et al. 2019d). The
29 Illumina NovaSeq™ 6000 (PE150, Novogene, China) platform was used to amplify the entire
30 mitochondrial genome sequence. The mitochondrial genome was assembled and annotated as
31 previously described (Palevich et al. 2019c; Palevich et al. 2019e; Palevich et al. 2020).

33 The length of complete mitochondrial genome is 16,518 bp, with the overall 77.8% AT content
34 (BioProject ID: PRJNA667961, GenBank accession number: MW123003). The overall
35 nucleotide distribution for the mitochondrial genome is 39.5 % A, 13.0 % C, 9.2 % G, and 38.1
36 % T. The structure of the mitochondrial genome is typical of insect mitochondrial genomes
37 (Cameron 2014) which consists of 13 protein-coding genes, 22 transfer RNAs, and 2 ribosomal
38 RNAs. Among these 37 genes, 23 genes encoded on the majority strand while remaining 14
39 genes encoded on the minority strand. There are eight more complete mitochondrial genomes
40 recorded belong to the genus Calliphora (*C. vicina*, *C. vomitoria*, *C. nigribarbis* and *C.*
41 *chinghaiensis*) (Nelson et al. 2012; Chen et al. 2016; Ren et al. 2016; Karagozlu et al. 2019).
42 In comparison, the reported *C. vicina* NZ_CalVic_NP has the longest complete mitochondrial
43 genome and the size difference with the shortest record is 1,249 bp (*C. chinghaiensis*). The
44 main reason for the size difference is the control region. The entire ‘control region’ that is non-
45 coding and AT-rich lies between the 12S rRNA and tRNA-Ile in insect mitochondrial genomes,
46 and this area in the *C. vicina* NZ_CalVic_NP is 1,689 bp in length which is the longest among
47 all Calliphora records.

48 The phylogenetic position of *C. vicina* NZ_CalVic_NP within the family Calliphorinae was
49 estimated using maximum-likelihood, implemented in RAxML version 8.2.11 (Stamatakis

50 2014), and the Bayesian inference (BI), implemented in MrBayes version 3.2.6 (Huelsenbeck
51 et al. 2001) approaches using default settings.

52 For analysis, the phylogenetic tree was reconstructed using the complete mitogenome
53 sequences of available blowfly species and isolates retrieved from GenBank with the 13
54 concatenated mitochondrial PCGs and rRNA genes (Figure 1). *Calliphora vomitoria* was the
55 most related species with *C. nigribarbis* and *C. chinghaiensis*. Overall, the phylogenetic
56 topology is similar to previous studies (Chen et al. 2016), suggesting that the genus Calliphora
57 is not monophyletic. This study provides additional complete mitogenome data for the
58 improvement and future investigation of the Calliphoridae phylogeny.

59 **Disclosure statement**

60 No potential conflict of interest was reported by the authors.

61 **Data availability statement**

62 The data that support the findings of this study are openly available in GenBank of NCBI at
63 <https://www.ncbi.nlm.nih.gov>, reference number MW123003.

64 **Funding**

65 This research was supported by the Agricultural and Marketing Research and Development
66 Trust (AGMARDT) Postdoctoral Fellowships Programme [No. P17001] and the AgResearch
67 Ltd Strategic Science Investment Fund (SSIF) [No. PRJ0098715] of New Zealand.

68 **References**

69 Cameron SL. 2014. How to sequence and annotate insect mitochondrial genomes for
70 systematic and comparative genomics research. Systematic Entomology. 39(3):400-411.

71 Chen Y, Shi X, Li D, Chen B, Zhang P, Wu N, Xu Z. 2016. The complete nucleotide sequence
72 of the mitochondrial genome of *Calliphora chinghaiensis* (Diptera: Calliphoridae).
73 Mitochondrial DNA Part B. 1(1):397-398.

74 Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees.
75 Bioinformatics. 17(8):754-755.

76 Karagozlu MZ, Kim JI, Park SH, Shin SE, Kim CB. 2019. The complete mitochondrial genome
77 of a blowfly *Calliphora nigribarbis* (Vollenhoven, 1863) (Insecta: Diptera: Calliphoridae).
78 Mitochondrial DNA Part B. 4(2):2318-2319.

79 Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A,
80 Markowitz S, Duran C. 2012. Geneious Basic: an integrated and extendable desktop
81 software platform for the organization and analysis of sequence data. Bioinformatics.
82 28(12):1647-1649.

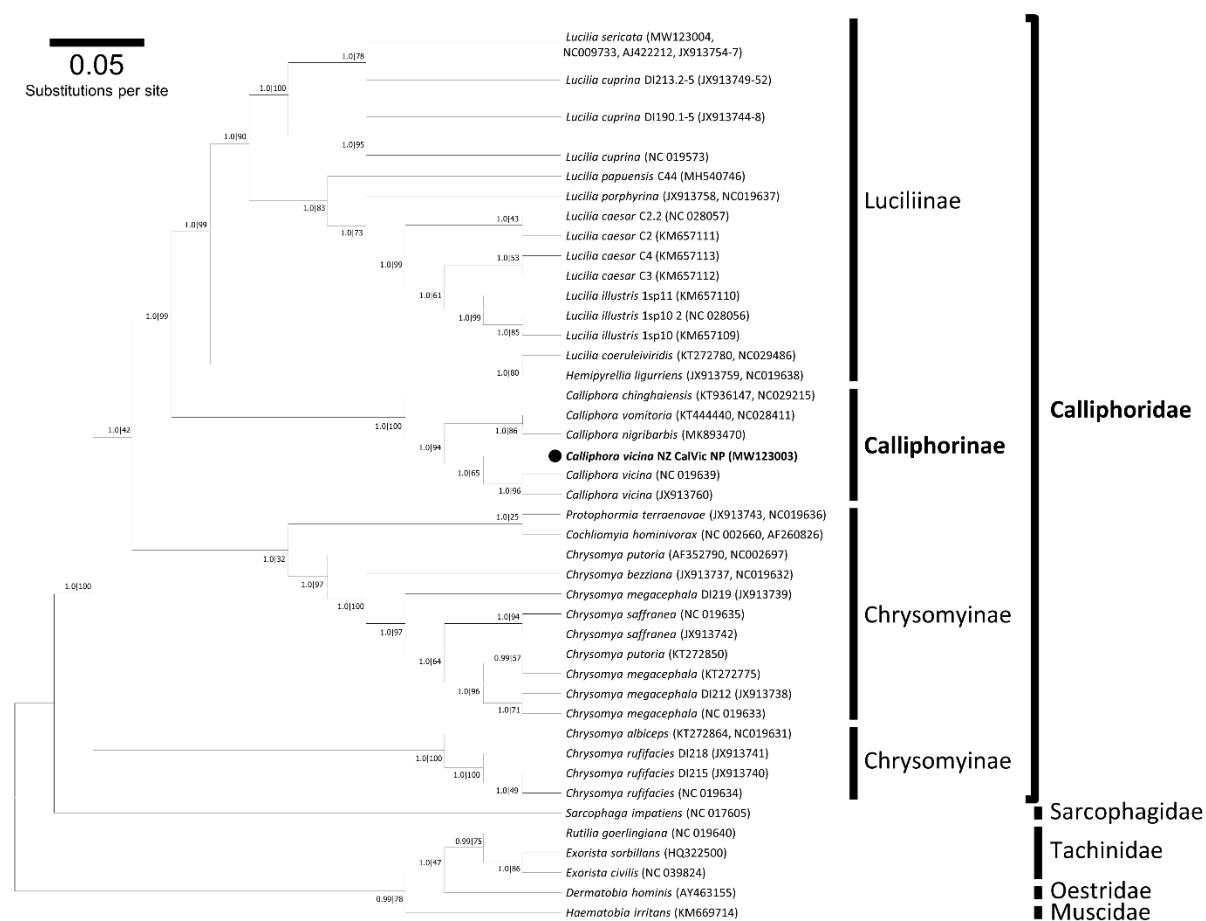
83 Nelson LA, Lambkin CL, Batterham P, Wallman JF, Dowton M, Whiting MF, Yeates DK,
84 Cameron SL. 2012. Beyond barcoding: A mitochondrial genomics approach to molecular
85 phylogenetics and diagnostics of blowflies (Diptera: Calliphoridae). Gene. 511(2):131-142.

86 Palevich N, Kelly WJ, Ganesh S, Rakonjac J, Attwood GT. 2019a. *Butyrivibrio hungatei*
87 MB2003 Competes Effectively for Soluble Sugars Released by *Butyrivibrio proteoclasticus*
88 B316^T during Growth on Xylan or Pectin. Applied and Environmental Microbiology.
89 85(3):e02056-02018.

90 Palevich N, Kelly WJ, Leahy SC, Denman S, Altermann E, Rakonjac J, Attwood GT. 2019b.
91 Comparative genomics of rumen *Butyrivibrio* spp. uncovers a continuum of polysaccharide-
92 degrading capabilities. Applied and environmental microbiology. 86(1).

93 Palevich N, Maclean P, Baten A, Scott R, Leathwick DM. 2019c. The complete mitochondrial
94 genome of the New Zealand parasitic roundworm *Haemonchus contortus*

95 (Trichostrongyloidea: Haemonchidae) field strain NZ_Hco_NP. Mitochondrial DNA Part
96 B. 4(2):2208-2210.


97 Palevich N, Maclean PH, Baten A, Scott RW, Leathwick DM. 2019d. The Genome Sequence
98 of the Anthelmintic-Susceptible New Zealand *Haemonchus contortus*. Genome biology and
99 evolution. 11(7):1965-1970.

100 Palevich N, Maclean PH, Choi Y-J, Mitreva M. 2020. Characterization of the Complete
101 Mitochondrial Genomes of Two Sibling Species of Parasitic Roundworms, *Haemonchus*
102 *contortus* and *Teladorsagia circumcincta*. Frontiers in Genetics. 11(1066).

103 Palevich N, Maclean PH, Mitreva M, Scott R, Leathwick D. 2019e. The complete
104 mitochondrial genome of the New Zealand parasitic roundworm *Teladorsagia circumcincta*
105 (Trichostrongyloidea: Haemonchidae) field strain NZ_Teci_NP. Mitochondrial DNA Part
106 B. 4(2):2869-2871.

107 Ren L, Guo Q, Yan W, Guo Y, Ding Y. 2016. The complete mitochondria genome of
108 *Calliphora vomitoria* (Diptera: Calliphoridae). Mitochondrial DNA Part B. 1(1):378-379.

109 Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of
110 large phylogenies. Bioinformatics. 30(9):1312-1313.

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

Figure 1. A summary of the molecular phylogeny of the Calliphoridae complete mitochondrial genomes. The evolutionary relationship of *C. vicina* field strain NZ_CalVic_NP (black circle) was compared to the complete mitochondrial genomes of 68 blowfly species or isolates retrieved from GenBank (accession numbers in parentheses) and nucleotide sequences of all protein-coding genes were used for analysis. Phylogenetic analysis was conducted using the Bayesian approach implemented in MrBayes version 3.2.6 (Huelsenbeck et al. 2001) and maximum likelihood (ML) using RAxML version 8.2.11 (Stamatakis 2014). The mtREV with Freqs. (+F) model was used for amino acid substitution and four independent runs were performed for 10 million generations and sampled every 1,000 generations. For reconstruction, the first 25% of the sample was discarded as burnin and visualized using Geneious Prime (Kearse et al. 2012). Nodal support is given: Bayes posterior probabilities|RAxML bootstrap percentage. The phylogram provided is presented to scale (scale bar = 0.05 estimated number of substitutions per site) with the species *Haematobia irritans* from the family Muscidae used as the outgroup.