

1 **Developing mammary terminal duct lobular units have a dynamic**
2 **mucosal and stromal immune microenvironment**
3

4 **Running title:** Mammary TDLU development
5

6 Dorottya Nagy^{1,*}, Clare M. C. Gillis¹, Katie Davies², Abigail L. Fowden², Paul
7 Rees^{3,4}, John W. Wills¹, Katherine Hughes¹
8

9 1. Department of Veterinary Medicine, University of Cambridge, Madingley
10 Road, Cambridge, CB3 0ES, United Kingdom.

11 2. Department of Physiology, Development, and Neuroscience, University
12 of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom.

13 3. College of Engineering, Swansea University, Fabian Way, Crymlyn
14 Burrows, Swansea, SA1 8EN, United Kingdom.

15 4. Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA,
16 02142, USA.

17 * Current address: Equine Clinic, Department of Companion Animals and
18 Equids, Faculty of Veterinary Medicine, University of Liège, B 41,
19 Avenue de Cureghem, 5D, Quartier Vallée 2, 4000 Liège, Belgium.

20
21 Authors for correspondence: Katherine Hughes, kh387@cam.ac.uk; John W.
22 Wills, jw2020@cam.ac.uk.
23

24 **Key words:** deep learning; development; macrophage; mammary gland;
25 sheep; tertiary lymphoid structure

26 **Summary statement**

27 Development of terminal duct lobular units in the sheep mammary gland
28 involves distinct growth phases and macrophage and lymphocyte fluxes.
29 Tertiary lymphoid structures are present subjacent to the mucosal epithelium.

30 **Abstract**

31 The human breast and ovine mammary gland undergo a striking degree of
32 postnatal development, leading to formation of terminal duct lobular units
33 (TDLUs). In this study we interrogated aspects of sheep TDLU growth to
34 increase understanding of ovine mammogenesis and as a model for the study
35 of breast development. Mammary epithelial proliferation is significantly higher
36 in lambs less than two months old than in peri-pubertal animals. Ki67
37 expression is polarized to the leading edge of the developing TDLUs.
38 Intraepithelial ductal macrophages exhibit striking periodicity and significantly
39 increased density in lambs approaching puberty. Stromal macrophages are
40 more abundant centrally than peripherally. The developing ovine mammary
41 gland is infiltrated by intraepithelial and stromal T lymphocytes that are
42 significantly more numerous in older lambs. In the stroma, hotspots of Ki67
43 expression colocalize with large aggregates of lymphocytes and macrophages.
44 Multifocally these aggregates exhibit distinct organization consistent with
45 tertiary lymphoid structures. The lamb mammary gland thus exhibits a dynamic
46 mucosal and stromal immune microenvironment and, as such, constitutes a
47 valuable model system that provides new insights into postnatal breast
48 development.

49 **Introduction**

50 The mammary gland undergoes a dramatic degree of postnatal growth,
51 developing from a rudimentary branched structure at birth to an arborizing
52 bilayered ductal network in the nulliparous adult.

53

54 Macrophages are key players in the direction of murine mammary ductal growth
55 (Brady et al., 2016) and there is increasing recognition of a spectrum of
56 mammary macrophage subsets (Wilson et al., 2020b). Mammary macrophages
57 may be derived from the foetal liver and yolk sac and additionally infiltrate
58 postnatally (Jäppinen et al., 2019). Depletion experiments have demonstrated
59 the dependence of mammary postnatal development on macrophages (Gouon-
60 Evans et al., 2000) and that alveolar bud formation and ductal epithelial
61 proliferation are reduced in their absence (Chua et al., 2010). Stat5 is activated
62 in mammary macrophages during development, and mice with macrophages
63 that have conditional deletion of Stat5 exhibit perturbed development (Brady et
64 al., 2017). Cells expressing MHCII are closely associated with murine
65 mammary ducts (Hitchcock et al., 2020, Dawson et al., 2020), and
66 macrophages envelop the pubertal terminal end buds (Stewart et al., 2019).
67 The atypical chemokine receptor ACKR2, which scavenges CC-chemokines,
68 has been implicated in macrophage recruitment during mammary development
69 (Wilson et al., 2017, Wilson et al., 2020a). Intriguingly, macrophage depletion
70 of virgin mice also influences the mammary stromal extracellular matrix
71 composition, highlighting the importance of macrophages in both the epithelial
72 and stromal compartments (Wang et al., 2020).

73

74 CD4+ and CD8+ lymphocytes have also been identified in the murine
75 mammary gland (Plaks et al., 2015, Betts et al., 2018). As T-cell receptor alpha
76 deficient mice exhibit enhanced ductal outgrowths, it is postulated that T-
77 lymphocytes may act in a negative regulatory manner (Plaks et al., 2015).
78 Similarly, lymphocytes are present in the human breast (Howard and
79 Gusterson, 2000, Degnim et al., 2014) although little is known about their
80 developmental role.

81
82 An understanding of postnatal pre-pregnancy breast development in humans
83 is critical to interrogation of the pathogenesis of breast diseases (Osin et al.,
84 1998). Whilst mouse models of mammary development are highly tractable and
85 extremely valuable, they have inherent limitations and caution has been
86 recommended in the extrapolation of results of murine developmental studies
87 directly to humans (Gusterson and Stein, 2012). Potentially pertinent given the
88 complex interactions between cellular compartments, mammary epithelial cells
89 in the breast are surrounded by fibrous connective tissue whereas the murine
90 mammary stroma is adipose-rich (Hovey et al., 1999). By contrast, the ruminant
91 mammary gland exhibits a strikingly similar micro-anatomical arrangement of
92 terminal duct lobular units (TDLUs) and fibrous stroma to the human breast
93 (Hovey et al., 1999, Hughes and Watson, 2018a). We and others have
94 therefore suggested that it represents a valuable adjunctive model of the breast
95 TDLU (Rowson et al., 2012, Hughes, 2020) although further interrogation of the
96 utility of this model is required.

97
98 Sheep are frequently used as a model species in foetal development studies
99 (Morrison et al., 2018) and also constitute a globally valuable production animal
100 species. However, there are currently a number of knowledge gaps concerning
101 the biology of ruminant mammogenesis (Davis, 2017) and a better
102 understanding of ovine-specific mammary development is required to underpin
103 attempts to breed animals for improved milk production efficiency and reduced
104 susceptibility to mastitis.

105
106 Given that studying ovine mammary development will offer new insights
107 relevant to breast development, and that there is a pressing need for species-
108 specific data regarding udder development in the pre-pregnancy ewe, we
109 sought to capitalise on the availability of new technologies to study postnatal
110 mammary development in this species. We utilised deep learning image
111 analysis to define phases of growth in ovine mammary TDLU development and
112 employed 2-dimensional and deep 3-dimensional (3D) imaging approaches to

113 interrogate and quantify the presence of macrophages, lymphocytes and
114 tertiary lymphoid structures within the gland during development.

115

116 **Results and Discussion**

117

118 **Mammary epithelial proliferation is significantly higher in younger lambs**
119 **than in those approaching puberty, with proliferation focused at the**
120 **leading edge of the advancing TDLUs**

121 Preclinical models of tumourigenesis do not always portray the heterogeneity
122 of human disease (Cassidy et al., 2015), and this limitation may also apply to
123 developmental studies where a relatively homogeneous population of rodents,
124 maintained in controlled conditions, may not recapitulate the diversity of the
125 progression of breast development noted in humans (Howard and Gusterson,
126 2000). For this study we therefore selected a heterogeneous population of pre-
127 and peri-pubertal lambs of differing breeds, maintained in different husbandry
128 systems. This population of lambs exhibit developing TDLUs supported by
129 intra- and interlobular stroma (Figs. S1, S2), very similar to the breast, and in
130 contrast to the murine mammary gland (Hovey et al., 1999).

131

132 To assess nulliparous ovine mammary growth dynamics, we performed
133 immunohistochemical staining (IHC) for Ki67 to delineate actively cycling cells.
134 There is significant up-regulation of Ki67 expression in lambs less than 2
135 months old compared to peri-pubertal lambs aged 5-9.5 months old (Fig. 1A-
136 D). This finding is similar to that recorded in a small study of infant breasts
137 where epithelial Ki67 positivity was not detected after 25 days of age (Osin et
138 al., 1998). It also builds upon a historic study using dried fat-free tissue weights
139 to assess mammary growth that suggested that ovine allometric mammary
140 growth occurred at 3-4 months old, prior to puberty. Notably, that analysis was
141 somewhat limited in scope, with only Romney and Romney-cross animals
142 examined and no animals older than 5 months old included in the pre-
143 pregnancy group (Anderson, 1975).

144

145 In the present study, immunofluorescence staining (IF) demonstrates that
146 although the majority of epithelial proliferation is luminal, myoepithelial (basal)
147 cells occasionally express Ki67 (Fig. 1E,F). This highlights similarities with the
148 breast, where sporadic proliferating myoepithelial cells have been noted in
149 normal breast parenchyma of women aged 30 to 68 years, using samples
150 where biopsies or mass removal has included normal tissue (Bankfalvi et al.,
151 2004). There has been a relative paucity of focus on myoepithelial proliferation
152 within the developing breast or mammary gland prior to pregnancy. During
153 lactation, myoepithelial cells contract to deform alveoli, facilitating milk release
154 in response to oxytocin stimulation (Stevenson et al., 2020). Our identification
155 of proliferation within the myoepithelial compartment pre-pregnancy suggests
156 that studying basal epithelial replication during this period may provide new
157 insights into udder development relevant to lactation efficiency.

158

159 Having observed that pre-pregnancy ovine mammary epithelial proliferation is
160 not temporally uniform, we wished to interrogate the spatial distribution of Ki67-
161 positive epithelial events. Spatial statistical analyses (Getis-Ord GI*) reveal
162 distinct polarization of epithelial proliferation towards the advancing tips of the
163 developing TDLUs (Fig. 2A-D), echoing non-quantified description of non-
164 random localization of Ki67 expression in the infant breast (Osin et al., 1998).
165 This finding further underlines the utility of the lamb mammary gland as a model
166 of breast development. Interestingly, qualitative descriptions of a similar
167 phenomenon of Ki67 polarization have also been made in rats, where Ki67
168 positivity is focused in the terminal end buds (Hvid et al., 2012).

169

170 **Macrophages exhibit spatial and temporal dynamics within the pre-**
171 **pregnancy TDLU**

172 Having established that the ovine mammary gland exhibits a distinct growth
173 phase during pre-pubertal mammary development, we wished to compare the
174 spatial and temporal distribution of macrophages during development pre-
175 pregnancy. The macrophage marker ionized calcium binding adaptor molecule
176 1 (IBA1) is expressed by macrophages and microglia and is involved in

177 macrophage membrane ruffling (Ohsawa et al., 2000). We have previously
178 utilized this marker to detect ovine mammary macrophages (Hardwick et al.,
179 2020). In the present study, using IBA1 IHC to identify macrophages, we noted
180 distinct periodicity of intraepithelial macrophages both with ducts and ductules
181 (Fig. 3A,B) similar to that reported in mice (Stewart et al., 2019, Dawson et al.,
182 2020). Importantly, we identified a previously unrecognized variation in ductular
183 macrophage density, with a significantly reduced inter-macrophage distance in
184 ducts examined from peri-pubertal animals (Fig. 3C). This increased ductular
185 macrophage density may suggest enhanced immune surveillance in animals
186 approaching puberty, or a reorganization of macrophage distribution following
187 the pulse of growth associated with pre-pubertal development.

188

189 Within the developing TDLU, macrophages are intercalated within the ductal
190 epithelial bilayer similar to the arrangement reported in the mouse (Fig. 3D-F;
191 Movie 1) (Dawson et al., 2020). The TDLU-associated ductal macrophages
192 form a largely contiguous layer sandwiched between the luminal and basal
193 epithelial cells. We hypothesise that during development pre-pregnancy this
194 complex of macrophages is likely to fulfil an immune surveillance function,
195 commensurate with a proposed ability to sample the epithelium through
196 movement of cellular processes (Dawson et al., 2020) and underlining the
197 concept of the mammary ductular microenvironment as a mucosal immune
198 system (Betts et al., 2018).

199

200 In addition to an abundant intraepithelial macrophage population, frequent
201 macrophages are present in the ovine intralobular stroma encasing the
202 developing TDLUs. Interestingly, these stromal macrophages are more
203 numerous in central foci than in peripheral locations (Fig. 3G-I). This may point
204 to stromal macrophage abundance surrounding the developing ruminant gland
205 cistern (Fig. S2), likely reflecting an important role in immune regulation of the
206 mammary microenvironment. However, murine stromal macrophages derived
207 from adult mice have differing gene expression profiles compared to ductal
208 macrophages (Dawson et al., 2020). It is thus probable that stromal

209 macrophages also have other functions. A recent study focusing on mammary
210 stromal macrophages has delineated a homeostatic role for this population,
211 with Lyve-1 expressing stromal macrophages associated with areas of
212 hyaluronan enrichment in both mice and humans. Mice in which macrophages
213 were depleted exhibited increased levels of hyaluronan within the stromal
214 adipose (Wang et al., 2020). It is therefore possible that the abundance of
215 stromal macrophages that we have noted in the central portion of the
216 developing ruminant TDLU may reflect mesenchymal remodelling as the gland
217 cistern develops.

218

219 Although stromal macrophages usually exhibit a relatively regular distribution
220 (Fig. 3G,H), we noted multifocal stromal foci in which there are more dense
221 aggregates of IBA1 positive macrophages admixed with lymphocytes (Fig. 3J).
222 Intriguingly, these correspond to hotspots of Ki67 expression (Fig. 3K,L). The
223 aggregates are predominantly composed of CD3-expressing T lymphocytes,
224 with variable numbers of CD20-expressing B lymphocytes (Fig. 3M). This
225 prompted us to further investigate lymphocyte distribution within the developing
226 ovine TDLUs.

227

228 **Epithelial and stromal T lymphocytes are more abundant in older lambs**
229 **than in neonates, and stromal lymphocytes multifocally form tertiary**
230 **lymphoid structures**

231 Both intraepithelial and stromal CD3+ T lymphocytes are significantly more
232 abundant in older lambs than in neonates (Fig. 4A-D). CD4+ T helper 1
233 lymphocytes have previously been identified as negative regulators of
234 mammary development and so it is tempting to speculatively associate the
235 abundance of intraepithelial T lymphocytes in older lambs with the observed
236 decrease in epithelial proliferation within the TDLU in this age group. The
237 mammary immune system has been likened to a classical mucosal immune
238 system (Betts et al., 2018) and the presence of mammary intraepithelial
239 lymphocytes is reminiscent of other mucosal surfaces such as the intestinal
240 epithelium, where intraepithelial lymphocytes are common (Cheroutre et al.,

241 2011). Notably, the CD3+ T lymphocytes in mammary intraepithelial foci
242 frequently exhibit a similar spatial niche to intraepithelial macrophages,
243 intercalated between the luminal and basal epithelial layers (Fig. 3D-F; Fig. 4E).
244 We and others have previously described mammary intraepithelial lymphocytes
245 in rabbits, mice and humans respectively (Hughes and Watson, 2018b, Plaks
246 et al., 2015, Degnim et al., 2014) and so it seems likely that this distribution is
247 common to many species.

248

249 Finally, we noted that some stromal aggregates of T and B lymphocytes exhibit
250 distinct arrangement with central foci of B lymphocytes surrounded by a more
251 peripheral of T lymphocytes. High endothelial venules, denoted by expression
252 of peripheral node addressin (PNAd), are detectable within these aggregates
253 (Fig. 4F,G) and the groupings exhibit characteristics of tertiary lymphoid
254 structures (TLS). TLS are aggregates of lymphocytes possessing distinct
255 architectural arrangement, similar to secondary lymphoid organs, which may
256 arise in foci of chronic inflammation, or secondary to autoimmune processes or
257 neoplasia (Pipi et al., 2018). In our study, the density of TLS did not differ
258 significantly between neonatal and older lambs, although less tissue area per
259 lamb was available for examination from the neonatal lambs and this may have
260 reduced the likelihood of detecting a TLS (Fig. S3).

261

262 The finding that TLS are present subjacent to the mammary mucosal epithelium
263 is particularly important given that the pre- and peri-pubertal animals studied
264 had never lactated and never exhibited evidence of clinical or subclinical
265 mastitis. Indeed, mastitis would be extremely rare in this age group. Therefore
266 the occurrence of TLS may indicate that mammary pre-lactational
267 subclinical pathogen challenge is common in lambs.

268

269 These observations suggest that the formation of TLS immediately subjacent
270 to mammary ducts in pre-pregnancy animals may constitute a hitherto
271 unrecognised component of the mammary gland's mucosal immune system. It
272 seems likely that these structures may form in response to antigenic stimulation

273 reflecting the contiguity between the mammary epithelium and the epidermis
274 (Betts et al., 2018). Corroborating this finding, we noted that small calibre blood
275 vessels located in foci of mixed T and B lymphocyte aggregates, lacking the
276 zonal organization of TLS, also multifocally and selectively express endothelial
277 PNAd (Fig. 4H). Such vascular expression of PNAd has been suggested to be
278 associated with 'immature' foci in which less organised lymphocyte groupings
279 are in the process of forming TLS (Ager, 2017). Thus the formation of TLS is
280 likely an active ongoing process in nulliparous lambs.

281

282 One benefit of the present study is that much larger tissue areas are typically
283 available for analysis from ovine subjects compared to those likely available
284 from infant breast tissue, or from normal tissue present adjacent to surgically
285 removed breast lesions. Therefore it is possible that TLS are a feature of the
286 mammary mucosal immune system of other species but these structures may
287 be rarely detectable in the samples available to researchers.

288

289 Our work demonstrates that ovine developing mammary TDLUs have a
290 dynamic mucosal and stromal immune microenvironment. We provide valuable
291 new data on the growth phases and macrophage and lymphocyte fluxes
292 occurring prior to gestation and document that TLS do not solely arise as a
293 result of mastitis (Restucci et al., 2019) but rather are a naturally occurring
294 component of the lamb mammary immune microenvironment. We also
295 demonstrate a number of similarities between the ovine mammary gland and
296 human breast. The lamb mammary gland thus constitutes a valuable model
297 system that provides new insights into postnatal breast development.

298

299 **Materials and Methods**

300

301 **Animals**

302 Mammary tissue was collected for this study from two separate sources.
303 Mammary tissue was collected from female sheep aged less than one year that
304 were submitted to the diagnostic veterinary anatomic pathology service of the

305 Department of Veterinary Medicine, University of Cambridge. Additionally,
306 mammary tissue was obtained post mortem from 2 day old – 9.5 months old
307 Welsh mountain ewes studied for other research purposes (Davies et al., 2020)
308 and euthanased under the Animals (Scientific Procedures) Act 1986. The
309 Ethics and Welfare Committee of the Department of Veterinary Medicine,
310 University of Cambridge, approved the study plan relating to the use of ovine
311 post mortem material for the study of mammary gland biology (reference:
312 CR223). The non-regulated scientific use of post mortem mammary tissue
313 collected from research animals was approved by the Named Veterinary
314 Surgeon of the University of Cambridge. Together, sheep from these two
315 sources comprised a range of hill breeds and crosses, aged between 0 days
316 and 9.5 months.

317

318 In all cases, macro- and microscopic post mortem examination of mammary
319 tissue was conducted by a single American board-certified veterinary
320 pathologist and no tissues with macro- or microscopic mammary pathology
321 were included in the study.

322

323 **Histology**

324 Mammary tissue was fixed in 10% neutral-buffered formalin for approximately
325 72 hours. Tissues were processed and tissue sections were cut at five microns.
326 These were stained with haematoxylin and eosin.

327

328 **Immunohistochemistry and immunofluorescence**

329 Antibodies utilised for immunohistochemical (IHC) and immunofluorescence
330 (IF) staining are detailed in Supplementary Table 1. IHC followed a routine
331 protocol using a PT link antigen retrieval module and high pH antigen retrieval
332 solution (both Dako Pathology/Agilent Technologies, Stockport, UK). Primary
333 and secondary antibodies were incubated for 1 hour at room temperature. For
334 dual IHC staining, an ImmPRESS™ Duet Double Staining Polymer Kit (Vector
335 laboratories, Peterborough, UK) was utilised. Negative control slides were

336 prepared using isotype- and species-matched immunoglobulins or secondary
337 antibody only.

338

339 IF also followed a routine protocol. Antigen retrieval was carried out using a PT
340 link antigen retrieval module and high pH antigen retrieval solution as detailed
341 above. Primary antibodies were incubated overnight at 4°C and secondary
342 antibodies were incubated for 1 hour at room temperature. Nuclei were stained
343 with DAPI (10.9 µM) (Sigma-Aldrich/Merck Life Science UK Limited,
344 Gillingham, UK). Slides were mounted using Vectashield® Vibrance™ Antifade
345 mounting medium (catalogue H-1700; Vector laboratories, Peterborough, UK).
346 Imaging was performed using either a Leica TCS SP8 or a Zeiss LSM780
347 confocal microscope.

348

349 **Tissue clearing and deep 3D imaging**

350 Tissues were optically cleared using the CUBIC protocol as previously
351 described (Susaki et al., 2014, Lloyd-Lewis et al., 2016) with minor
352 modifications as detailed below. Ovine mammary tissue was cut into slices
353 approximately 10 mm thick and was fixed for 6-8 hours in 10% neutral-buffered
354 formalin. Tissue was then sufficiently firm to be cut into smaller pieces, on
355 average 5x8x2 mm. Tissue pieces were subsequently immersed in CUBIC
356 reagent 1A for 4 days at 37 °C with gentle rocking. The CUBIC reagent 1A
357 solution was replaced daily. Samples were blocked in blocking buffer
358 comprising normal goat serum [10% (volume per volume)] and Triton X-100
359 [0.5% (weight per volume)] in PBS. Samples were blocked overnight at 4 °C
360 with gentle agitation. Tissue samples were incubated with primary antibodies
361 diluted in blocking buffer for 4 days at 4 °C with gentle agitation. The samples
362 were then washed at room temperature with gentle rocking in PBS containing
363 Triton X-100 (0.1% (weight per weight)). Secondary antibodies were also
364 prepared in blocking buffer and tissue samples were incubated in these for 2
365 days at 4 °C, with gentle rocking. Following thorough washing as described
366 above, samples were incubated with DAPI (10.9 µM) (Sigma-Aldrich/Merck Life
367 Science UK Limited, Gillingham, UK) for a minimum of 1 hour at room

368 temperature prior to further washing and immersion in CUBIC reagent 2 for at
369 least 2 days at 37 °C with gentle rocking. Negative control tissue was prepared
370 by omitting the primary antibody and using the secondary antibody only.
371 Cleared and stained tissue fragments were imaged in Ibidi 35 mm glass bottom
372 dishes (catalogue 81218-200; ibidi GmbH, Gräfelfing, Germany) using a Leica
373 TCS SP8 confocal microscope. 3D data were visualised using ImarisViewer
374 (Oxford Instruments, UK. Imaris Viewer: a free 3-D/4-D microscopy image
375 viewer. <https://imaris.oxinst.com/imaris-viewer> Accessed 03/11/2020) and
376 Vaa3D (Peng et al., 2014) software.

377

378 **Slide scanning**

379 Slides IHC stained for Ki67, IBA1, and CD3/CD20 were scanned at 40x using
380 a NanoZoomer 2.0RS, C10730, (Hamamatsu Photonics, Hamamatsu City,
381 Japan). Scanned sections were analysed with viewing software (NDP.view2,
382 Hamamatsu Photonics).

383

384 **Computational analyses**

385 *Ki67: Deep Learning Image Analysis*

386 130 image-fields (DAB Ki67⁺ detection/haematoxylin counterstain) each
387 covering 1.5 mm² (6322 x 4581 pixels) were collected from slide scans across
388 animals in RGB tiff format. Images were normalised across the haematoxylin /
389 DAB colour-components using the Macenko approach (Macenko et al., 2009).
390 Fourteen image fields were used to train the deep learning models. Firstly, a
391 two class, semantic pixel classification network (DeepLabV3+ on a pre-trained
392 ResNet18 backbone with output stride eight (He et al., 2016, Chen et al., 2018)
393 was trained to provide a binary mask of 'epithelium' or 'background/other'
394 classes. Input images were passed to the network as patches (2000/image)
395 with dimensions 256, 256, 3 (x, y, channels) and augmented by random x/y
396 reflection and rotation. The network was trained for 150 epochs using a batch
397 size of eight with zero-centre normalisation under stochastic gradient descent
398 using class-weighted cross-entropy loss. The initial learn rate was 0.001 with a

399 drop factor every ten epochs of 0.3, a momentum of 0.9 and L2 regularisation
400 0.05. Patches were shuffled every epoch.

401

402 To segment Ki67⁺ and Ki67⁻ nuclei, a three-class ('Ki67⁺ nuclei', 'Ki67⁻ nuclei',
403 'background/other') Unet model (Ronneberger et al., 2015) was trained – again
404 using data from fourteen, Macenko-normalised image fields. Patches
405 (2000/image) were passed to the network with dimensions 256, 256, 3 (x, y,
406 channels) and simple augmentation by random x/y reflection and rotation. The
407 Unet model utilised an encoder depth of four layers with 64 filters in the first
408 layer. The network used complete, up-convolutional expansion to yield images
409 identically sized to the input layer. Training lasted for fifty epochs, using batch
410 size of eight with zero-centre normalisation under stochastic gradient descent
411 utilising cross-entropy loss. The initial learn rate was 0.05, dropping every ten
412 epochs by 0.1 under momentum 0.9 and L2 regularisation 0.0001.

413

414 Models were trained using MATLAB R2020 and the Deep Learning Toolbox.
415 The trained models, test data alongside all training hyper-parameters and final
416 layer-weightings are available for download at BioStudies database
417 (<http://www.ebi.ac.uk/biostudies>) under accession number S-BSST528. Both
418 models were tested against entirely unseen data (the other 116 fields) and the
419 results validated using boundary overlays and manual image-review by an
420 American board-certified veterinary pathologist. The ratio (pixel area) of Ki67⁺
421 to Ki67⁻ nuclei in the epithelium of each image-field was calculated using the
422 epithelial segmentation mask from the DeepLabV3+ResNet18 model to mask
423 the Unet segmentations for each nuclear phenotype.

424

425 *Ki67: Getis-Ord Spatial Analyses*

426 Per-nuclei intensity and spatial location data were extracted using CellProfiler
427 (Carpenter et al., 2006) as described in previous work (Wills et al., 2020).
428 Statistically significant, spatial 'congregations' of Ki67⁺ nuclei relative to what
429 would be expected by random chance were identified using the Getis-Ord GI*
430 statistical approach (Ord and Getis, 1995). Ki67⁺ and Ki67⁻ nuclear objects

431 segmented by the Unet model were used to define the centroid position for both
432 nuclear phenotypes in an image-field. The spatial concentration of values x_j for
433 j values within a distance d of the value x_i were then defined. To do this, the
434 ratio G_i^* was defined as:

435

$$436 G_i^*(d) = \frac{\sum_{j=1}^n w_{ij}(d)x_j}{\sum_{j=1}^n x_j} \quad (1)$$

437

438 here, $w_{ij}(d)$ defines the numerator contribution of the ratio depending on the
439 distance d . For example, using $w_{ij}(d) = 1$, if $d_{ij} < d$ else; $w_{ij}(d) = 0$ if $d_{ij} > d$. From
440 here, the Getis-Ord statistic is given by:

441

$$442 Z[G_i^*(d)] = \frac{[G_i^*(d) - E(G_i^*(d))]}{\sqrt{\text{var } G_i^*(d)}} \quad (2)$$

443

444 Where, $E(G_i^*(d))$ represents the expected fraction of items within d , assuming
445 a completely random distribution calculated as:

446

$$447 E(G_i^*(d)) = \frac{\sum_j \omega_{ij}(d)}{n-1} \quad (3)$$

448

449 The value $Z[G_i^*(d)]$ now describes the difference in the fraction of values within
450 the distance d from location i from what would be expected by random chance
451 relative to the standard deviation. Here, we discretise each image field into a
452 grid and value x_i is defined as the number of nuclei of a certain phenotype in
453 the grid position i (Wills et al., 2020).

454

455 **Manual histopathological assessments**

456 *Assessment of macrophage periodicity*

457 Macrophage periodicity was defined on IBA1 IHC stained sections as a
458 segment of at least 4 evenly spaced intraepithelial macrophages. Spacing
459 between macrophages was measured from the central aspect of the
460 macrophage nucleus to the central aspect of the next macrophage nucleus

461 using the NDP.view2 software. The centre of the cell was inferred in instances
462 where the nucleus was not perfectly sectioned but where there was a strong
463 impression of the nuclear position. Measurements were made parallel to the
464 epithelium. Groups of macrophages were excluded unless they constituted a
465 very tightly clustered small group of less than 3 macrophages in a region of
466 clear periodicity.

467

468 *Sampling for stromal macrophage and T lymphocyte counts*

469 Using NDP.view2 slide viewing software, eight count boxes (400x230 μm ; 4 per
470 central or peripheral location for macrophages) were placed per slide,
471 separately for macrophage and T lymphocyte quantification, at 1.3x
472 magnification where only ductal structure, but not staining, was discernible, to
473 prevent placement bias while maximising the epithelium sampled. Boxes in any
474 fields with slide cutting artefacts or scanning focus artefacts were repositioned.
475 For the macrophage analysis, selected fields were classified as 'peripheral' if
476 sampling the edge of ductal/lobular epithelium, advancing into surrounding
477 adipose tissue, or 'central' if mammary parenchyma was adjacent to the
478 sampled area.

479

480 *Cell quantification for stromal macrophage and T lymphocyte counts*

481 Cells with >50% of their nucleus within the count box, or if equivocal, those
482 along the top and right edges, were counted. A macrophage was counted as
483 an area of IBA-1 expression that was at least 50% of the average luminal
484 epithelial cell nucleus in that count box. 'Stromal macrophage' count was
485 normalised to intralobular stromal area, determined using the NDP.view2
486 freehand annotation tool. 'Epithelial T lymphocytes' had >50% of their
487 cytoplasmic perimeter contacting the basement membrane, with counts
488 normalised per 100 luminal epithelial nuclei in the count box. 'Stromal T
489 lymphocyte' count was normalised to total stromal area within the count box,
490 determined using the NDP.view2 freehand annotation tool.

491

492 *Lymphocyte aggregate qualitative description and density*

493 TLS were defined as a discrete B lymphocyte aggregates with a distinct
494 adjacent T lymphocyte area following previously published work (Buisseret et
495 al., 2017). TLS were counted by two independent observers (DN and KH).
496 Where there was a discrepancy between the counts made by the two
497 investigators, count results from both investigators were reviewed and the final
498 decision on count was made by the American board-certified veterinary
499 pathologist having reviewed the identified structures. The area of mammary
500 tissue analysed for each lamb was determined as above, using the NDP.view2
501 freehand annotation tool.

502

503 **Statistical Analysis**

504 Data was recorded using Excel and analysed with GraphPad Prism 8.4.3.
505 Immune cell counts were compared using Student's unpaired two-tailed T-test
506 or paired two-tailed T-test as appropriate (H_0 = no difference between
507 populations).

508

509 **Acknowledgements**

510 The authors gratefully acknowledge the excellent technical expertise of Debbie
511 Sabin in the preparation of histology sections and unstained tissue sections.
512 Some confocal microscopy images were acquired using equipment at the
513 Cambridge Advanced Imaging Centre (CAIC) and the authors thank members
514 of the CAIC for their advice and support. The Ethics and Welfare Committee of
515 the Department of Veterinary Medicine, University of Cambridge, reviewed the
516 study plan relating to the use of ruminant tissue collected following post mortem
517 examination for the study of mammary gland biology (reference: CR223) and
518 the work of this committee is gratefully recognised. The data detailed in this
519 manuscript were presented in part at the 2020 Winter Meeting of the
520 Pathological Society of Great Britain & Ireland (presentation: 21 January 2020)
521 and the 2020 American College of Veterinary Pathologists Annual Meeting
522 (presentation: 30 October 2020).

523

524 **Competing interests**

525 The authors declare no competing or financial interests.

526

527 **Author contributions**

528 Conceptualization: K.H.; Design/Methodology: P.R., J.W.W., K.H.; Validation:
529 D.N., C.M.C.G., J.W.W., K.H. Formal analysis: J.W.W., K.H.; Investigation:
530 D.N., C.M.C.G., P.R., J.W.W., K.H.; Resources: K. D., A.L.F., K.H.; Writing -
531 original draft: K.H.; Writing - review & editing: D.N., A.L.F., J.W.W., K.H.;
532 Supervision: J.W.W., K.H.; Funding acquisition: K.H.

533

534 **Funding**

535 This work was supported by a grant from the British Veterinary Association
536 Animal Welfare Foundation Norman Hayward Fund awarded to KH [grant
537 number NHF_2016_03_KH]. JWW is grateful to Girton College and the
538 University of Cambridge Herchel-Smith Fund for supporting him with
539 Fellowships. The authors would like to acknowledge the UK Engineering and
540 Physical Sciences Research Council (grant EP/H008683/1), and the UK
541 Biotechnology and Biological Sciences Research Council (grant number
542 BB/P026818/1), both awarded to PR, for supporting the work.

543

544 **Data availability**

545 Trained deep learning models, test data alongside all training hyper-
546 parameters, and final layer-weightings are available for download at BioStudies
547 database (<http://www.ebi.ac.uk/biostudies>) under accession number S-
548 BSST528.

549

550 **References**

551 **Ager, A.** (2017) High Endothelial Venules and Other Blood Vessels: Critical
552 Regulators of Lymphoid Organ Development and Function. *Front Immunol* 8:
553 45.

554 **Anderson, R. R.** (1975) Mammary gland growth in sheep. *J Anim Sci* 41: 118-
555 23.

556 **Bankfalvi, A., Ludwig, A., De-Hesselle, B., Buerger, H., Buchwalow, I. B.**
557 **and Boecker, W.** (2004) Different proliferative activity of the glandular and
558 myoepithelial lineages in benign proliferative and early malignant breast
559 diseases. *Mod Pathol* 17: 1051-61.

560 **Betts, C. B., Pennock, N. D., Caruso, B. P., Ruffell, B., Borges, V. F. and**

561 **Schedin, P.** (2018) Mucosal Immunity in the Female Murine Mammary Gland.

562 *J Immunol* 201: 734-746.

563 **Brady, N. J., Chuntova, P. and Schwertfeger, K. L.** (2016) Macrophages:

564 Regulators of the Inflammatory Microenvironment during Mammary Gland

565 Development and Breast Cancer. *Mediators Inflamm* 2016: 4549676.

566 **Brady, N. J., Farrar, M. A. and Schwertfeger, K. L.** (2017) STAT5 deletion in

567 macrophages alters ductal elongation and branching during mammary gland

568 development. *Dev Biol* 428: 232-244.

569 **Buisseret, L., Desmedt, C., Garaud, S., Fornili, M., Wang, X., Van Den**

570 **Eyden, G., De Wind, A., Duquenne, S., Boisson, A., Naveaux, C., Rothe, F.,**

571 **Rorive, S., Decaestecker, C., Larsimont, D., Piccart-Gebhart, M., Biganzoli,**

572 **E., Sotiriou, C. and Willard-Gallo, K.** (2017) Reliability of tumor-infiltrating

573 lymphocyte and tertiary lymphoid structure assessment in human breast

574 cancer. *Mod Pathol* 30: 1204-1212.

575 **Carpenter, A. E., Jones, T. R., Lamprecht, M. R., Clarke, C., Kang, I. H.,**

576 **Friman, O., Guertin, D. A., Chang, J. H., Lindquist, R. A., Moffat, J.,**

577 **Golland, P. and Sabatini, D. M.** (2006) CellProfiler: image analysis software

578 for identifying and quantifying cell phenotypes. *Genome Biol* 7: R100.

579 **Cassidy, J. W., Caldas, C. and Bruna, A.** (2015) Maintaining Tumor

580 Heterogeneity in Patient-Derived Tumor Xenografts. *Cancer Res* 75: 2963-8.

581 **Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F. and Adam, H.** Encoder-

582 Decoder with Atrous Separable Convolution for Semantic Image Segmentation.

583 2018 Cham. Springer International Publishing, 833-851.

584 **Cheroutre, H., Lambolez, F. and Mucida, D.** (2011) The light and dark sides

585 of intestinal intraepithelial lymphocytes. *Nat Rev Immunol* 11: 445-56.

586 **Chua, A. C., Hodson, L. J., Moldenhauer, L. M., Robertson, S. A. and**

587 **Ingman, W. V.** (2010) Dual roles for macrophages in ovarian cycle-associated

588 development and remodelling of the mammary gland epithelium. *Development*

589 137: 4229-38.

590 **Davies, K. L., Camm, E. J., Atkinson, E. V., Lopez, T., Forhead, A. J.,**

591 **Murray, A. J. and Fowden, A. L.** (2020) Development and thyroid hormone

592 dependence of skeletal muscle mitochondrial function towards birth. *J Physiol*

593 598: 2453-2468.

594 **Davis, S. R.** (2017) TRIENNIAL LACTATION SYMPOSIUM/BOLFA: Mammary

595 growth during pregnancy and lactation and its relationship with milk yield. *J*

596 *Anim Sci* 95: 5675-5688.

597 **Dawson, C. A., Pal, B., Vaillant, F., Gandolfo, L. C., Liu, Z., Bleriot, C.,**

598 **Ginhoux, F., Smyth, G. K., Lindeman, G. J., Mueller, S. N., Rios, A. C. and**

599 **Visvader, J. E.** (2020) Tissue-resident ductal macrophages survey the

600 mammary epithelium and facilitate tissue remodelling. *Nat Cell Biol* 22: 546-

601 558.

602 **Degnim, A. C., Brahmbhatt, R. D., Radisky, D. C., Hoskin, T. L., Stallings-**

603 **Mann, M., Laudenschlager, M., Mansfield, A., Frost, M. H., Murphy, L.,**

604 **Knutson, K. and Visscher, D. W.** (2014) Immune cell quantitation in normal

605 breast tissue lobules with and without lobulitis. *Breast Cancer Res Treat* 144:

606 539-49.

607 **Gouon-Evans, V., Rothenberg, M. E. and Pollard, J. W.** (2000) Postnatal
608 mammary gland development requires macrophages and eosinophils.
609 *Development* 127: 2269-82.

610 **Gusterson, B. A. and Stein, T.** (2012) Human breast development. *Semin Cell*
611 *Dev Biol* 23: 567-73.

612 **Hardwick, L. J. A., Phythian, C. J., Fowden, A. L. and Hughes, K.** (2020)
613 Size of supernumerary teats in sheep correlates with complexity of the anatomy
614 and microenvironment. *J Anat* 236: 954-962.

615 **He, K., Zhang, X., Ren, S. and Sun, J.** Deep Residual Learning for Image
616 Recognition. 2016 IEEE Conference on Computer Vision and Pattern
617 Recognition (CVPR), 27-30 June 2016 2016. 770-778.

618 **Hitchcock, J. R., Hughes, K., Harris, O. B. and Watson, C. J.** (2020)
619 Dynamic architectural interplay between leucocytes and mammary epithelial
620 cells. *FEBS J* 287: 250-266.

621 **Hovey, R. C., Mcfadden, T. B. and Akers, R. M.** (1999) Regulation of
622 mammary gland growth and morphogenesis by the mammary fat pad: a
623 species comparison. *J Mammary Gland Biol Neoplasia* 4: 53-68.

624 **Howard, B. A. and Gusterson, B. A.** (2000) Human breast development. *J*
625 *Mammary Gland Biol Neoplasia* 5: 119-37.

626 **Hughes, K.** (2020) Comparative mammary gland postnatal development and
627 tumourigenesis in the sheep, cow, cat and rabbit: Exploring the menagerie.
628 *Semin Cell Dev Biol*.

629 **Hughes, K. and Watson, C. J.** (2018a) The mammary microenvironment in
630 mastitis in humans, dairy ruminants, rabbits and rodents: A One Health focus.
631 *J Mammary Gland Biol Neoplasia* 23: 27-41.

632 **Hughes, K. and Watson, C. J.** (2018b) Sinus-like dilatations of the mammary
633 milk ducts, Ki67 expression, and CD3-positive T lymphocyte infiltration, in the
634 mammary gland of wild European rabbits during pregnancy and lactation. *J*
635 *Anat* 233: 266-273.

636 **Hvid, H., Thorup, I., Sjogren, I., Oleksiewicz, M. B. and Jensen, H. E.** (2012)
637 Mammary gland proliferation in female rats: effects of the estrous cycle,
638 pseudo-pregnancy and age. *Exp Toxicol Pathol* 64: 321-32.

639 **Jäppinen, N., Félix, I., Lokka, E., Tyystjärvi, S., Pynttäri, A., Lahtela, T.,**
640 **Gerke, H., Elimä, K., Rantakari, P. and Salmi, M.** (2019) Fetal-derived
641 macrophages dominate in adult mammary glands. *Nat Commun* 10: 281.

642 **Lloyd-Lewis, B., Davis, F. M., Harris, O. B., Hitchcock, J. R., Lourenco, F.**
643 **C., Pasche, M. and Watson, C. J.** (2016) Imaging the mammary gland and
644 mammary tumours in 3D: optical tissue clearing and immunofluorescence
645 methods. *Breast Cancer Res* 18: 127.

646 **Macenko, M., Niethammer, M., Marron, J. S., Borland, D., Woosley, J. T.,**
647 **Guan, X., Schmitt, C. and Thomas, N. E.** A method for normalizing histology
648 slides for quantitative analysis. 2009 IEEE International Symposium on
649 Biomedical Imaging: From Nano to Macro, 28 June-1 July 2009 2009. 1107-
650 1110.

651 **Morrison, J. L., Berry, M. J., Botting, K. J., Darby, J. R. T., Frasch, M. G.,**
652 **Gatford, K. L., Giussani, D. A., Gray, C. L., Harding, R., Herrera, E. A.,**
653 **Kemp, M. W., Lock, M. C., Mcmillen, I. C., Moss, T. J., Musk, G. C., Oliver,**
654 **M. H., Regnault, T. R. H., Roberts, C. T., Soo, J. Y. and Tellam, R. L.** (2018)

655 Improving pregnancy outcomes in humans through studies in sheep. *Am J*
656 *Physiol Regul Integr Comp Physiol* 315: R1123-R1153.

657 **Ohsawa, K., Imai, Y., Kanazawa, H., Sasaki, Y. and Kohsaka, S.** (2000)
658 Involvement of Iba1 in membrane ruffling and phagocytosis of
659 macrophages/microglia. *J Cell Sci* 113 (Pt 17): 3073-84.

660 **Ord, J. K. and Getis, A.** (1995) Local Spatial Autocorrelation Statistics:
661 Distributional Issues and an Application. *Geographical Analysis* 27: 286-306.

662 **Osin, P. P., Anbazhagan, R., Bartkova, J., Nathan, B. and Gusterson, B. A.**
663 (1998) Breast development gives insights into breast disease. *Histopathology*
664 33: 275-83.

665 **Peng, H., Bria, A., Zhou, Z., Iannello, G. and Long, F.** (2014) Extensible
666 visualization and analysis for multidimensional images using Vaa3D. *Nat*
667 *Protoc* 9: 193-208.

668 **Pipi, E., Nayar, S., Gardner, D. H., Colafrancesco, S., Smith, C. and Barone,**
669 **F.** (2018) Tertiary Lymphoid Structures: Autoimmunity Goes Local. *Front*
670 *Immunol* 9: 1952.

671 **Plaks, V., Boldajipour, B., Linnemann, J. R., Nguyen, N. H., Kersten, K.,**
672 **Wolf, Y., Casbon, A. J., Kong, N., Van Den Bijgaart, R. J., Sheppard, D.,**
673 **Melton, A. C., Krummel, M. F. and Werb, Z.** (2015) Adaptive Immune
674 Regulation of Mammary Postnatal Organogenesis. *Dev Cell* 34: 493-504.

675 **Restucci, B., Dipineto, L., Martano, M., Balestrieri, A., Ciccarelli, D.,**
676 **Russo, T. P., Varriale, L. and Maiolino, P.** (2019) Histopathological and
677 microbiological findings in buffalo chronic mastitis: evidence of tertiary lymphoid
678 structures. *J Vet Sci* 20: e28.

679 **Ronneberger, O., Fischer, P. and Brox, T.** U-Net: Convolutional Networks for
680 Biomedical Image Segmentation. 2015 Cham. Springer International
681 Publishing, 234-241.

682 **Rowson, A. R., Daniels, K. M., Ellis, S. E. and Hovey, R. C.** (2012) Growth
683 and development of the mammary glands of livestock: a veritable barnyard of
684 opportunities. *Semin Cell Dev Biol* 23: 557-66.

685 **Stevenson, A. J., Vanwallegem, G., Stewart, T. A., Condon, N. D., Lloyd-**
686 **Lewis, B., Marino, N., Putney, J. W., Scott, E. K., Ewing, A. D. and Davis,**
687 **F. M.** (2020) Multiscale imaging of basal cell dynamics in the functionally mature
688 mammary gland. *Proc Natl Acad Sci U S A* 117(43): 26822-26832.

689 **Stewart, T. A., Hughes, K., Hume, D. A. and Davis, F. M.** (2019)
690 Developmental Stage-Specific Distribution of Macrophages in Mouse
691 Mammary Gland. *Front Cell Dev Biol* 7: 250.

692 **Susaki, E. A., Tainaka, K., Perrin, D., Kishino, F., Tawara, T., Watanabe, T.**
693 **M., Yokoyama, C., Onoe, H., Eguchi, M., Yamaguchi, S., Abe, T., Kiyonari,**
694 **H., Shimizu, Y., Miyawaki, A., Yokota, H. and Ueda, H. R.** (2014) Whole-brain
695 imaging with single-cell resolution using chemical cocktails and computational
696 analysis. *Cell* 157: 726-39.

697 **Wang, Y., Chaffee, T. S., Larue, R. S., Huggins, D. N., Witschen, P. M.,**
698 **Ibrahim, A. M., Nelson, A. C., Machado, H. L. and Schwertfeger, K. L.** (2020)
699 Tissue-resident macrophages promote extracellular matrix homeostasis in the
700 mammary gland stroma of nulliparous mice. *Elife* 9.

701 **Wills, J. W., Robertson, J., Summers, H. D., Miniter, M., Barnes, C., Hewitt,**
702 **R. E., Keita, A. V., Soderholm, J. D., Rees, P. and Powell, J. J.** (2020) Image-

703 Based Cell Profiling Enables Quantitative Tissue Microscopy in
704 Gastroenterology. *Cytometry A*.

705 **Wilson, G. J., Fukuoka, A., Love, S. R., Kim, J., Pingen, M., Hayes, A. J.**
706 **and Graham, G. J.** (2020a) Chemokine receptors coordinately regulate
707 macrophage dynamics and mammary gland development. *Development*
708 147(12): dev187815.

709 **Wilson, G. J., Fukuoka, A., Vidler, F. and Graham, G. J.** (2020b) Diverse
710 myeloid cells are recruited to the developing and inflamed mammary gland.
711 *bioRxiv*: 2020.09.21.306365.

712 **Wilson, G. J., Hewit, K. D., Pallas, K. J., Cairney, C. J., Lee, K. M., Hansell,**
713 **C. A., Stein, T. and Graham, G. J.** (2017) Atypical chemokine receptor ACKR2
714 controls branching morphogenesis in the developing mammary gland.
715 *Development* 144: 74-82.

716

717

718 **Figure legends**

719

720 **Figure 1. Mammary epithelial proliferation is significantly higher in**
721 **younger lambs than in those approaching puberty.**

722 (A-C) IHC for Ki67 in mammary gland from lambs < 2 mo (A) and 5-9.5 mo (B)
723 and accompanying mask derived using an algorithm detecting intra-epithelial
724 Ki67 positive events (C). (D) Scatter plot demonstrating significantly higher
725 levels of epithelial nuclear Ki67 positivity in younger lambs. Dots represent
726 individual lambs. Bars represent mean +/- standard deviation. ** p < 0.01. (E-
727 F) IF for Ki67 (gold), α -SMA (cyan) and DNA (DAPI; magenta) demonstrating
728 that the majority of Ki67 positive nuclei are in the luminal epithelial layer
729 (arrowheads), with rare Ki67 positive nuclei in myoepithelial cells (arrow). (E) 1
730 do lamb. (F) 9.5 mo lamb. do, days old; mo, months old. Images are
731 representative of a minimum of three biological repeats. All IHC images have
732 haematoxylin counterstain. Scale bar = 200 μ m (A-C); 100 μ m (E); 50 μ m (F).

733

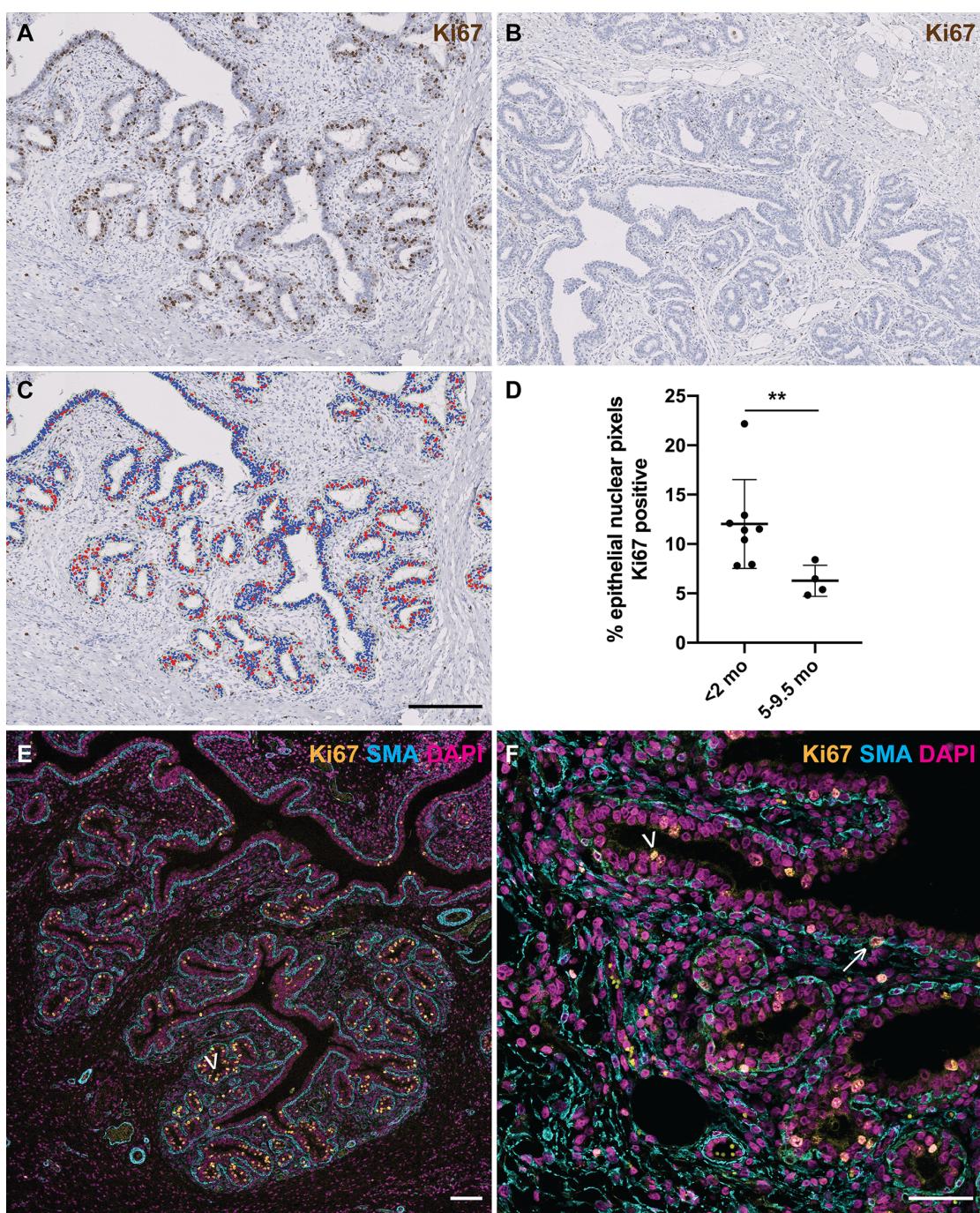
734 **Figure 2. The developing lamb mammary gland exhibits polarity of Ki67**
735 **epithelial expression with Ki67 expression focused at the leading edge of**
736 **the advancing TDLUs.**

737 IHC for Ki67 (A, C) and accompanying Getis-Ord (G-O) statistical analyses (B,
738 D) demonstrating regions with significant spatial congregation of intraepithelial

739 Ki67+ cells (scale (*d*) parameter = 250 px). Mammary gland from lambs < 2 mo
740 (A, B) and 5-9.5 mo (C, D). (A, C) Haematoxylin counterstain. Scale bar = 200
741 μ m. (B, D). Results are representative of four biological repeats (two lambs in
742 each age group).

743

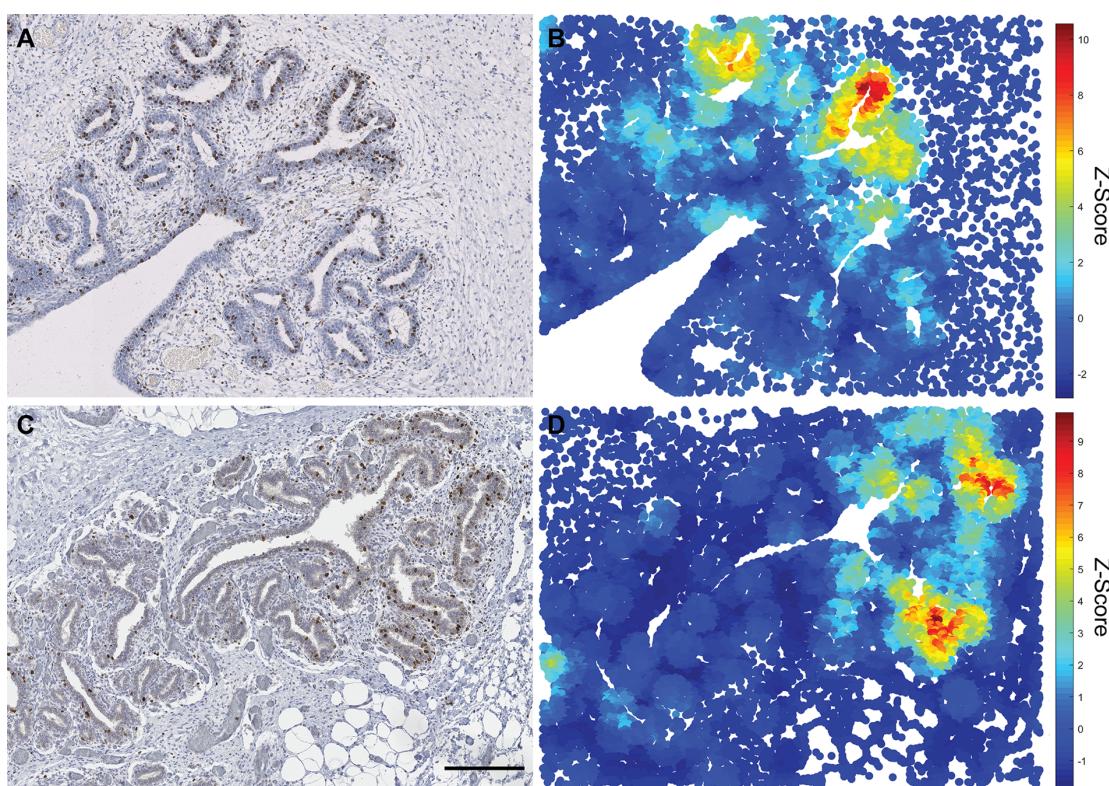
744 **Figure 3. Mammary macrophages exhibit spatial and temporal dynamics**
745 (A-B) IHC for IBA1 reveals macrophage periodicity (arrows) in ducts (A) and
746 ductules (B). (C) Scatter plot demonstrating significantly reduced inter-
747 macrophage distance in lambs aged 5-9.5 months. Dots represent inter-
748 macrophage distances from 13 individual lambs. Bars represent mean +/-
749 standard deviation. **** $p < 0.0001$. (D) IHC for IBA1 (brown) and alpha smooth
750 muscle actin (SMA; pink). Arrows indicate macrophages. (E-F) 3D confocal
751 microscopy of optically cleared ovine mammary tissue with IF for IBA1
752 (magenta) SMA (cyan) and DNA (Hoechst; gold). Images represent 3D
753 maximum intensity projections. Arrow indicates blood vessel. (G-H) IHC for
754 IBA1 in central (G) and peripheral (H) foci. (I) Scatter plot demonstrating
755 significantly reduced macrophage abundance in peripheral compared to central
756 foci. Dots represent average macrophage density for individual lambs. * $p <$
757 0.05. (J-M) Serial sections demonstrating IHC for IBA1 (J) Ki67 (K) and CD3
758 (brown) and CD20 (pink) (M) with accompanying G-O plot for Ki67 (L) (scale
759 (*d*) parameter = 250 px). Arrow indicates co-localization of stromal
760 macrophages, a Ki67 hotspot, and a CD3+ lymphocyte aggregate. Images are
761 representative of a minimum of three biological repeats. All IHC images have
762 haematoxylin counterstain. Scale bar = 40 μ m (A,B,D); 100 μ m (G-H); 200 μ m
763 (J,K,M).


764

765 **Figure 4. T lymphocytes are more abundant in older lambs than in**
766 **neonates, and tertiary lymphoid structures are multifocally present**
767 (A-B) IHC for CD3 (brown) and CD20 (pink) reveals more abundant
768 intraepithelial (black arrows) and stromal (pink arrows) T lymphocytes in older
769 lambs. (C-D) Scatter plots demonstrating significantly increased numbers of
770 epithelial (C) and stromal (D) T lymphocytes in older lambs. Dots represent

771 CD3+ lymphocyte densities from individual lambs. Bars represent mean +/-
772 standard deviation. * p < 0.05; ** p < 0.01. (E) IHC for CD3 (brown) and SMA
773 (pink). Arrows indicate intraepithelial lymphocytes. (F) IHC for CD3 (brown) and
774 CD20 (pink). An aggregate of lymphocytes in a subepithelial focus exhibits a
775 central zone of B lymphocytes surrounded by T lymphocytes. (G-H) IHC for
776 PNAd. (G) Serial section of (F). Arrow indicates high endothelial venule within
777 the aggregate of lymphocytes depicted in (F). (H) Pink arrow indicates PNAd-
778 positive blood vessel amidst lymphocytic infiltrate. Black arrow indicates
779 adjacent negative internal control blood vessel, demonstrating specificity of
780 staining. Images are representative of a minimum of three biological repeats.
781 All IHC images have haematoxylin counterstain. Scale bar = 200 μ m (A,B); 40
782 μ m (E-G); 200 μ m (H).

783


784 **Figure 1**

785

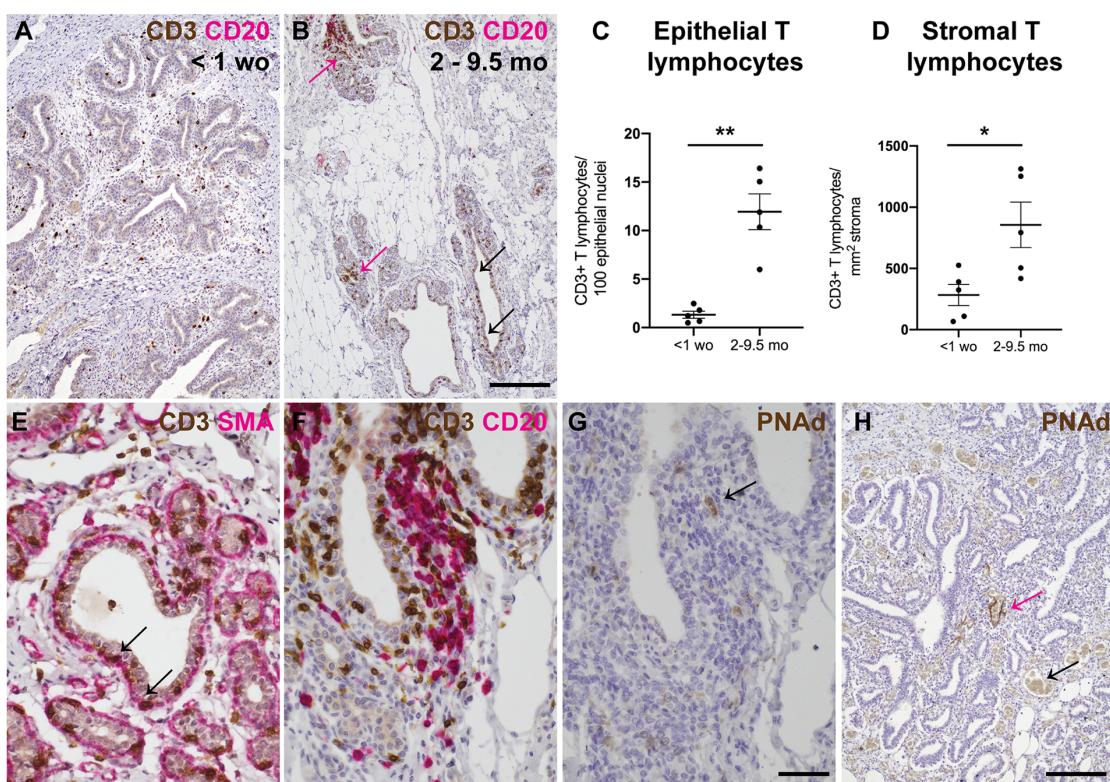
786

787 **Figure 2**

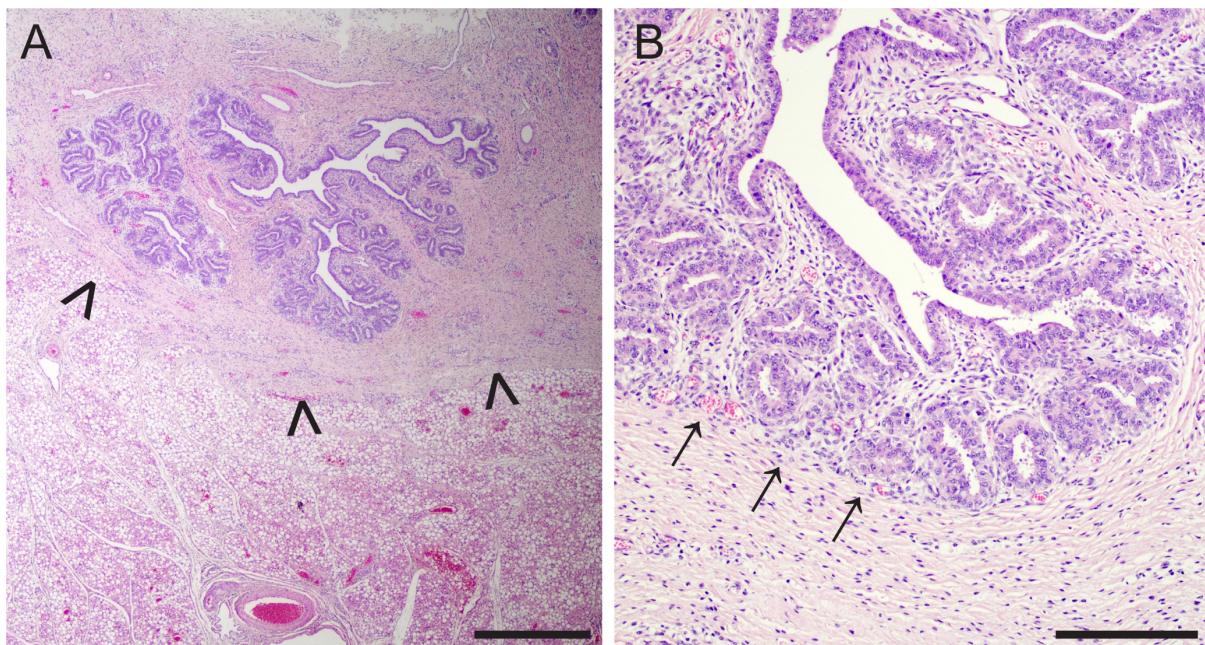
788

789

790


791 **Figure 3**

792


793

794 **Figure 4**

797 **Supplementary data**

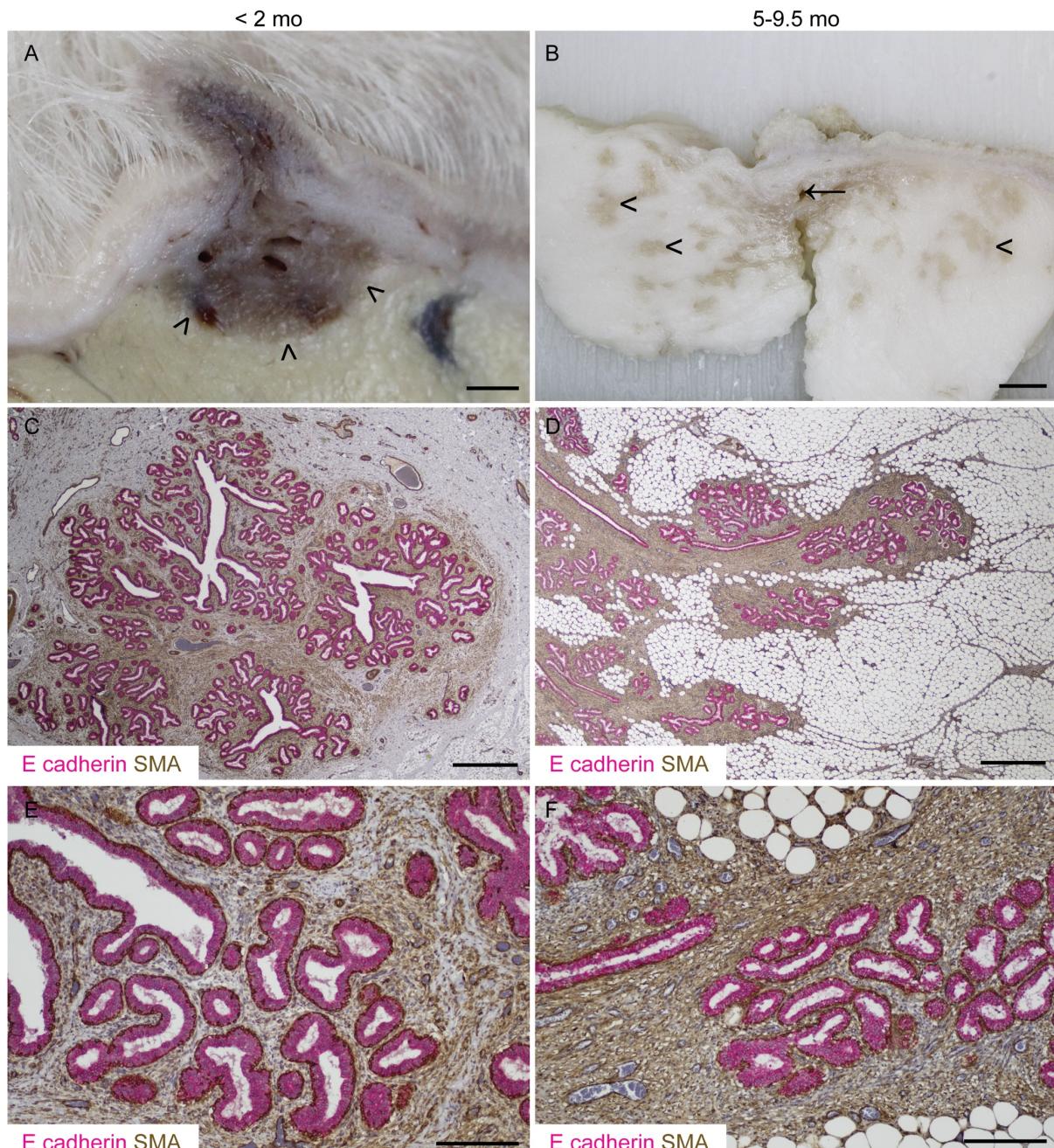
798

799

800

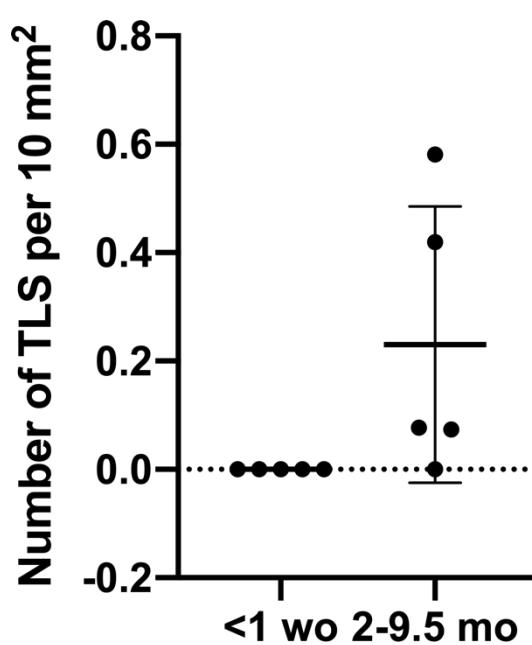
801

802


803

804

805 **Figure S1. Developing ovine terminal duct lobular units (TDLUs) are**
806 **supported by intra- and interlobular stroma.** (A) At birth, the ovine mammary
807 gland comprises a rudimentary structure composed of ducts and developing
808 TDLUs. Arrowheads indicate the boundary with the deeper mammary fat pad,
809 and correspond to the boundary indicated by arrowheads on Figure S2A. (B)
810 The lamb mammary gland exhibits distinct intra- and interlobular stroma.
811 Arrows indicate boundary between intra- and interlobular stroma. Haematoxylin
812 and eosin stain. Bar: 800 microns (A); 200 microns (B). Images are
813 representative of at least three biological repeats from lambs less than one
814 week old.


815

816

Figure S2. Lamb terminal duct lobular units (TDLUs) advance into the mammary fat pad during postnatal development. (A, B) Sub-gross images of fixed mammary tissue. Arrowheads indicate the developing mammary TDLUs infiltrating the mammary fat pad. Arrow indicates rudimentary gland cistern. (C-F) Immunohistochemical staining for E-cadherin (magenta) & alpha-smooth muscle actin (SMA; brown). Haematoxylin counterstain. Bar: 1.5 mm (A); 5 mm (B); 800 microns (C, D); 200 microns (E, F). Images are representative of at least three biological repeats.

831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864

Figure S3. The density of tertiary lymphoid structures (TLS) does not differ significantly between neonatal and older lambs. Scatter plot demonstrating density of TLS in lambs less than one week old (< 1 wo) and aged 2-9.5 months (2-9.5 mo). Dots represent individual lambs. Bars represent mean +/- standard deviation.

865 **Movie 1: Three-dimensional rendering demonstrating the intimate**
866 **association between myoepithelial cells (SMA; grey) and macrophages**
867 **(IBA1; magenta) in CUBIC-cleared developing lamb mammary TDLUs.**

868 **Table S1. Antibodies employed for immunohistochemistry,**
869 **immunofluorescence, and CUBIC.**
870

Target	Application (IHC, immunohistochemistry ; IF, immunofluorescence; CUBIC, 3D tissue clearing)	Species and clone	Dilution	Manufacturer	Catalogue number
Primary antibodies					
Alpha smooth muscle actin	IF; dual colour IHC	Rabbit monoclonal [EPR5368]	1:2000	Abcam	Ab124964
Alpha smooth muscle actin	CUBIC; dual colour IHC	Mouse monoclonal anti-human 1A4	1:100 (CUBIC) 1:400 (dual colour IHC)	Dako/Agilent	M0851
CD3	Dual colour IHC	Mouse monoclonal anti-human clone F7.2.38	1:250	Dako/Agilent	M7254
CD20	Dual colour IHC	Rabbit polyclonal	1:800	Thermo Fisher Scientific	RB-9013-P1
E-cadherin	Dual colour IHC	Rabbit monoclonal	1:400	Cell Signaling Technology	#3195
IBA1	IHC; dual colour IHC	Mouse monoclonal, clone 20A12.1	1:800	Millipore	MABN92
IBA1	CUBIC	Rabbit monoclonal [EPR16588]	1:400	Abcam	Ab178846
Ki67	IHC; IF	Mouse monoclonal anti-human clone MIB-1	1:100	Dako/Agilent	M7240
PNAd	IHC	Rat monoclonal anti-mouse/human clone MECA-79	1:100	BioLegend	120802
Secondary antibodies					

Mouse IgG, Alexa Fluor Plus 488	IF	Goat	1:500	Thermo Fisher Scientific	A32723
Mouse IgG, Alexa Fluor 568	IF	Goat	1:500	Thermo Fisher Scientific	A11031
Rabbit IgG, Alexa Fluor Plus 488	CUBIC	Goat	1:500	Thermo Fisher Scientific	A32731
Rabbit IgG, Alexa Fluor Plus 647	CUBIC	Goat	1:500	Thermo Fisher Scientific	A32733
Rat IgG, peroxidase labelled	IHC	Goat	1:400	Vector laboratories	PI-9400

871

872