

51 **Abstract:** Chemical cross-linking of proteins coupled with mass spectrometry analysis (CXMS) has
52 become a widely used method for protein structure analysis. Central to this technology are chemical
53 cross-linkers. The most popular cross-linkers are N-hydroxysuccinimide (NHS) esters, which react
54 with protein amino groups relatively slowly over 10 minutes or more while in competition with the
55 hydrolysis reaction of NHS esters. To improve the speed of cross-linking, we developed a new class
56 of amine-selective and non-hydrolyzable *di-ortho-phthalaldehyde* (DOPA) cross-linkers. DOPA can
57 cross-link proteins in 10 seconds under near physiological conditions, which is 60 times faster than the
58 NHS ester cross-linker DSS. DOPA also works at low pH, low temperature, or in the presence of high
59 concentrations of denaturants such as 8 M urea or 6 M guanidine hydrochloride. Further, DOPA-
60 mediated pulse cross-linking captured the dynamic conformational changes associated with RNase A
61 unfolding. Lastly, DOPA outperformed DSS at capturing weak but specific protein-protein interactions.
62

63 **Introduction**

64 Proteins constantly undergo conformational changes. Protein motions span a wide range of temporal
65 and spatial scales, from the fast fluctuations of the amino acid side chains in picoseconds to the
66 moderate fluctuations of the surface loops in nanoseconds and to the slow collective motions of the
67 domain/entire protein in microseconds to seconds^{1, 2}. The biological function of a protein is rooted in
68 its physical motions and dynamic properties^{1, 3}. Subunits of protein complexes may initially form
69 encounter complexes (EC) before assembling into the final complex⁴. Proteins experience the most
70 dramatic conformational changes during folding and unfolding and they occur at the large time-scales
71 of subseconds to minutes⁵. Characterizing the different conformational states (i.e., folded, partially
72 folded, and unfolded states) of proteins and probing the conformational transitions between these states
73 are of fundamental importance to biology and of practical value to drug development.
74

75 A variety of tools have been developed for conformational studies of proteins. X-ray crystallography
76 and single particle cryo-electron microscopy (cryo-EM) have revolutionized structural biology by
77 taking “snapshots” of proteins or protein complexes at atomic resolution^{6, 7}. However, these
78 technologies are less effective for protein dynamics studies. NMR spectroscopy can provide valuable
79 information on the dynamics of a protein, but NMR is typically limited to proteins of < 50 kDa^{8, 9}.
80 Fluorescence resonance energy transfer^{10, 11} and electron paramagnetic resonance¹² circumvent protein
81 size limitations by targeted insertion of donor and acceptor fluorophores, or two spin labels,
82 respectively. However, this requires a prior hypothesis and elaborate protein manipulation. Small-
83 angel X-ray scattering (SAXS) is increasingly used to characterize the protein dynamics in solution

84 and without fluorophores^{13, 14}. However, it can only yield changes in radius of gyration, dimensions
85 and macromolecular shape¹⁵.

86

87 Mass spectrometry-based methods, such as hydrogen-deuterium exchange¹⁶, hydroxyl radical
88 footprinting¹⁷, can be used to probe the dynamics of a protein based on the difference in the solvent
89 accessibility among various parts of the protein structure, but they do not provide the three-dimensional
90 (3D) structure information directly. Chemical cross-linking of proteins coupled with mass
91 spectrometry analysis (CXMS, XL-MS, or CLMS) is a straightforward approach for investigating
92 protein structures and protein-protein interactions¹⁸⁻²³. CXMS has a great potential to capture the
93 conformational changes in proteins, owing to the rapid linkage of two amino acid residues lying close
94 to each other in the tertiary structures of proteins. Encouragingly, CXMS has already been utilized
95 successfully to visualize the co-existing protein conformational states²⁴ and to detect the
96 conformational change of a protein under different conditions²⁵. However, to our knowledge, CXMS
97 has not been used to study continuous protein conformational changes, because cross-linking reactions
98 are usually too slow to report them.

99

100 Although a number of chemical cross-linkers can target Lys²⁶⁻²⁹, Arg³⁰, Cys³¹, or acidic amino acids³²,
101 CXMS has largely focused on the lysine-targeting N-hydroxysuccinimide (NHS) ester cross-linkers
102 such as disuccinimidylsuberate (DSS), bis(sulfosuccinimidyl)suberate (BS³), and disuccinimidyl
103 sulfoxide (DSSO) owing to their high reactivity and an abundance of lysine residues on protein
104 surface²⁰. However, the NHS ester-based cross-linking reaction is slow and typically takes 30-60
105 minutes on protein substrates³⁴. Besides, NHS ester is susceptible to rapid hydrolysis in aqueous
106 solutions. The half-life of an NHS ester is about tens of minutes under the typical reaction conditions³⁵.
107 It is thus necessary to develop a fast and stable cross-linker.

108

109 The earliest report of *ortho*-phthalaldehyde (OPA) reacting with an amino group to form an
110 isoindolinone skeleton can be traced back to 1909³⁶. Since then, many OPA-related applications have
111 been reported, including determination of serum protein concentration³⁷, polymer synthesis³⁸, and
112 disinfection of surgical equipments³⁹. A recent study reported that OPA can selectively modify amino
113 groups on natural protein surfaces⁴⁰. Attracted by the unique properties of OPA—amine-selectivity,
114 fast reaction, and no hydrolysis, we set out to develop a new class of amine-selective non-hydrolyzable
115 *di*-*ortho*-phthalaldehyde (DOPA) cross-linkers. In this work, we show that DOPA2, with a spacer arm
116 of two ethylene glycol units, cross-linked proteins ~60 times faster than DSS. Furthermore, DOPA2

117 can cross-link proteins under certain extreme conditions, e.g., low temperature, low pH, or in the
118 presence of high concentrations of denaturants such as 8 M urea or 6 M guanidine hydrochloride
119 (GdnHCl). These unique properties of DOPA2 make it an ideal cross-linker for probing the protein
120 folding/unfolding intermediate states and for capturing the sequential changes during protein unfolding,
121 as demonstrated with the model protein bovine pancreatic ribonuclease A (RNase A). Lastly, we
122 demonstrate that DOPA2 outperforms the NHS ester cross-linkers in capturing weak but specific
123 protein-protein interactions.

124

125 **Results**

126 **I. Development of a new class of amine-reactive cross-linkers**

127 First, we verified that OPA reacts with lysine faster than an NHS ester ([Supplementary Figure 1](#)), as
128 reported before⁴⁰. Next, we tested the OPA reaction with 10 synthetic peptides covering all 20 common
129 amino acids ([Supplementary Table 1](#)). The liquid chromatography coupled with tandem mass
130 spectrometry (LC-MS/MS) analysis confirmed that the major products were N-substituted
131 phthalimidines⁴⁰ formed on lysine ϵ -NH₂ or N-terminal α -NH₂ (Δ mass = +116.0262 Da), as expected
132 ([product 1 in Supplementary Table 2 and Supplementary Figure 2](#)). The loop-linked side product
133 (product 2, Δ mass = +98.0156 Da) resulted from the conjugation of OPA with an amino group and
134 with another nucleophilic group on the same peptide; such nucleophilic groups included α -NH₂, ϵ -NH₂,
135 a sulphydryl group from cysteine, and a phenolic hydroxyl group from tyrosine ([Supplementary Table](#)
136 [2 and Supplementary Figure 2](#)). Apart from corroborating previous reports^{40, 41}, our results established
137 a foundation for further development of OPA-based cross-linkers.

138

139 Next, we synthesized three di-ortho-phthalaldehyde (DOPA) cross-linkers ([Scheme 1](#)). In DOPA-C₂,
140 the two OPA moieties are connected via one ethylene group. In DOPA1 and DOPA2, the spacer arm
141 consists of one and two ethylene glycol units, respectively ([Scheme 1](#)). Both DOPA1 and DOPA2 have
142 better water solubility than DOPA-C₂.

143

144 Using bovine serum albumin (BSA) as a model protein, we optimized the cross-linking conditions for
145 the DOPA cross-linkers. The highest number of cross-linked peptide pairs was obtained after a 10-
146 minute reaction with BSA at a protein:cross-linker ratio of 16:1 (BSA:DOPA, w/w), 25 °C, pH 7.4,
147 and the three amine-free buffer systems—HEPES, PBS, and trimethylamine—worked similarly well
148 ([Supplementary Figure 3a-c](#)). Cross-linking at a protein:DOPA2 ratio of 4:1 (w/w) also performed well,
149 provided that two parallel protease digestions—trypsin plus Asp-N or trypsin alone—were carried out.

150 It bears emphasis that these experiments identified a critical factor for successful DOPA cross-linking:
151 pre-dilution of DOPA to two times its final concentration ([Supplementary Figure 3d](#)).

152

153 **II. Performance of DOPA vs DSS on model proteins**

154 Using a ten-protein mixture as a test sample, we found that peptide pairs cross-linked by DOPA2 (161)
155 outnumbered those by DOPA1 (117) or DOPA-C₂ (57), and two thirds or more of the DOPA1 or DOPA-
156 C₂ cross-linked lysine pairs were also found among the DOPA2 dataset ([Figure 1a-c](#) and
157 [Supplementary Table 3](#)). Next, we conducted a side-by-side comparison of DOPA2 and the widely
158 used NHS ester cross-linker DSS on a panel of six model proteins. For all six proteins with the
159 exception of catalase, DSS cross-links outnumbered DOPA2 cross-links ([Figure 1d](#)). However, the
160 Euclidean distance analysis of each cross-linked residue pair revealed that 44.8% of the DSS cross-
161 links exceeded the maximum allowed cross-linking distance (24.0 Å for DSS, C_α-C_α), indicative of a
162 structural compatibility rate of 55.2% for DSS cross-links, which is much lower than that of DOPA2
163 cross-links (88.3% within the maximum allowed cross-linking distance of 30.2 Å) ([Figure 1e](#)). The
164 same conclusion can be made using the Solvent Accessible Surface Distance (SASD) ([Figure 1e](#)).
165 DOPA-C₂ also achieved a higher structural compatibility rate than DSS (79.0% vs 55.2% by Euclidean
166 distance, or 52.9% vs 34.3% by SASD), although they have similar maximum allowed cross-linking
167 distances (24.9 Å and 24.0 Å, respectively) ([Figure 1e](#)).

168

169 **III. Advantages of DOPA cross-linking**

170 Although DOPA2 performed no better than DSS in terms of the number of cross-links identified in
171 conventional cross-linking experiments ([Figure 1d](#)), it performed better under special conditions, e.g.,
172 low temperature, low pH, and high denaturant concentration. Furthermore, DOPA2 cross-linking
173 reactions are about 60-fold faster than DSS on protein substrates, as described below.

174

175 As shown in [Figure 2a](#), after just ten seconds of DOPA2 cross-linking at room temperature, the vast
176 majority of BSA molecules appeared as covalent dimers on SDS-PAGE. LC-MS/MS analysis showed
177 that as the cross-linking time increases, the number of identified cross-links increased gradually until
178 reaching a plateau of around 150 pairs after ten minutes. Interestingly, 88 (> 50%) cross-links were
179 identified after only 10 seconds of DOPA2 treatment ([Supplementary Figure 4](#)). In contrast, 10 seconds
180 of DSS treatment yielded a tiny amount of covalent dimer, and it took 20 minutes to obtain a similar
181 degree of cross-linking to what DOPA2 achieved in 10 seconds ([Figure 2a](#)). We thus estimate in a
182 conservative manner that DOPA2 cross-linking is 60 times faster than DSS on protein substrates. Also

183 worth noting is that even at 0 °C, DOPA2 readily cross-linked BSA within 30 seconds, whereas DSS
184 hardly generated any BSA dimer bands at 0 °C after 30 minutes (Figure 2b). Upon decreasing the pH
185 from 7.4 to 6.0, DOPA2 rather than DSS successfully cross-linked BSA in 10 seconds (Figure 2c). A
186 further decrease in the reaction pH to 3.0 abolished cross-linking of BSA by either DSS or DOPA2.
187 This is surprising because additional experiments revealed that the performance of DOPA2 for reacting
188 with peptide substrates was highly similar at pH 3.0 and pH 7.4 (Figure 2d [mono and inter-linked](#)
189 [products and Supplementary Table 4a-b](#)). Therefore, the disappearance of DOPA2 cross-linked BSA
190 dimer at pH 3.0 is likely the consequence of acid-induced dissociation of proteins. Additionally, we
191 found that DOPA2 but not DSS was able to cross-link proteins in the presence of urea or GdnHCl
192 within 10 seconds (Figure 2e-g and [Supplementary Table 4c](#)). Successful DSS cross-linking was
193 observed in the presence of urea or GdnHCl, but it took a longer time, such as 15 minutes in 1-4 M
194 urea (not shown) or 6 minutes in 1 M GdnHCl (Figure 2f). Again, under high concentrations of
195 denaturants (> 4 M urea or > 1 M GdnHCl), the disappearance of cross-linked BSA dimer bands was
196 largely attributable to dissociation of BSA dimers. The above results clearly indicate that DOPA2 has
197 the capability to cross-link proteins in the denaturing conditions.

198

199 **IV. Probing the unfolded states of RNase A by DOPA cross-linking**

200 Because DOPA2 is capable of cross-linking proteins under denaturing conditions, we used it as a probe
201 to investigate the partially or fully unfolded states of bovine pancreatic ribonuclease A (RNase A), a
202 classic model for the protein unfolding/refolding studies⁴²⁻⁴⁵. In the first set of experiments, equal
203 amounts of RNase A were incubated at room temperature for one hour in 0, 1, 2, 4, 6, or 8 M urea,
204 followed by DOPA2 treatment for ten seconds, protease digestion, and LC-MS/MS analysis (Figure
205 3a). We made sure that only the most reliable cross-links were used in subsequent analysis by applying
206 a stringent cut-off (FDR<0.01, at least four MS2 spectra at E-value < 1×10⁻⁸) to the pLink 2⁴⁶ search
207 results.

208

209 Based on how their abundances changed from 0 M to 8 M urea, the cross-linked residue pairs were
210 clustered into three groups, as shown in [Figure 3b](#) and [Supplementary Table 5a](#). The numbers of
211 matched MS2 spectra for each residue pair were first normalized within a sample and then normalized
212 across the six conditions (shown as Z-scores on the left axis). Cluster A represents the high-in-the-
213 native-conformation cluster (native cluster), consisting of DOPA2-linked residue pairs that slowly
214 decrease in abundance from 0 M to 6 M urea, followed by a large drop between 6 M and 8 M urea.
215 Cluster B, the high-in-non-native-conformation cluster (non-native cluster), behaves opposite to the

216 native cluster: the relative abundance of these DOPA2-linked lysine pairs remained low in urea
217 concentrations below 6 M, followed by a small increase in 6 M urea and a large increase in 8 M urea.
218 Cluster C, which has only three members, displays a U-shaped curve as the urea concentration
219 increases.

220

221 Consistent with the observations above, circular dichroism (CD) analysis of non-cross-linked RNase
222 A in different concentrations of urea detected little change in mean residue ellipticity (MRE, 222 nm)
223 from 0 M to 6 M urea, then an increase at 7 M and 8 M urea ([Supplementary Figure 5a](#)), indicating a
224 substantial loss of secondary structures between 6 M and 8 M urea. Nevertheless, RNase A in 8 M urea
225 did not unfold completely, for its MRE values (-4749 deg cm² dmol⁻¹) are far from the MRE value of
226 unfolded RNase A (-1793 deg cm² dmol⁻¹) in > 4 M GdnHCl ([Supplementary Figure 5](#)).

227

228 GdnHCl is a stronger denaturant than urea and the GdnHCl concentration at 50% denaturation of
229 RNase A is ~3 M based on the MRE values at 222 nm (-4683 deg cm² dmol⁻¹) ([Supplementary Figure](#)
230 [5b](#)). Therefore, we tracked RNase A unfolding by performing CXMS unfolding experiment in GdnHCl
231 ([Figure 3a](#), [Figure 3c](#) and [Supplementary Table 5b](#)). In agreement with the CD result, as the
232 concentration of GdnHCl increased, the decrease in abundance of the native cluster and the increase
233 in abundance of the non-native cluster quickly reached the maximum level at 3 M GdnHCl ([Figure](#)
234 [3c](#)). Strikingly, most cross-links are the same for unfolding in urea and GdnHCl; only one cross-link
235 belonging to the U-shaped cluster from the urea dataset ([Figure 3b](#)) had a change of profile in the
236 GdnHCl dataset by joining the native cluster ([Figure 3b-c](#)). The above results suggest that protein
237 folding-unfolding induced by urea or GdnHCl can now be investigated by CXMS using DOPA2
238 despite the different properties of these two denaturants.

239

240 A closer examination of the native cluster finds that these DOPA2 cross-links involve mainly lysine
241 residues located on either Helix I (amino acid residues 3-13, colored by cyan) or two surface loops
242 (amino acid residues 34-43, 64-72, colored by cyan) of RNase A ([Figure 3d, in orange box](#)), suggesting
243 that these regions are most sensitive to urea. The CD data indicate that at \leq 4 M urea, Helix I itself is
244 largely intact while the cross-links decrease between Helix I and either of the two loop regions (amino
245 acid residues 34-43, 64-72) ([Figure 3b](#) and [Supplementary Figure 5a](#)). So, we think that the increased
246 separation between Helix I and the two surface loops in urea is likely due to deformation or
247 displacement of three loop regions—the two above plus the one (amino acid residues 14-33)
248 connecting Helix I to the rest of the protein.

249

250 Additionally, we find that the four pairs of disulfide bonds of RNase A (colored dark blue in Figure 3d)
251 are critically involved in defining the path of unfolding. Once these disulfide bonds were disrupted by
252 a reducing reagent, with or without subsequent alkylation, the cross-links displayed completely
253 different abundance profiles from the ones of non-reduced RNase A (compare Supplementary Figure
254 6 to Figure 3b).

255

256 In the non-native cluster, three lysine pairs Lys1-Lys98, Lys61-Lys91, and Lys1-Lys61 (Figure 3d, in
257 blue box) caught our attention, because the two residues in each pair are far apart in primary sequence
258 and in 3D space in the native state. Indeed, these over-length cross-links were hardly detectable from
259 0 M to 4 M urea and then they spiked in 8 M urea. Therefore, it is unlikely that the non-native
260 conformation is exclusively a stretched linear one; certain globular conformations likely exist.

261

262 **V. Analyzing the kinetic RNase A unfolding by DOPA2 cross-linking**

263 Having established that DOPA2 cross-linking can probe the native, partially or fully unfolded states of
264 a protein, we then advanced to studying the kinetics of protein unfolding, i.e., the time-dependence of
265 the transition from the native state to the non-native state. As shown in Figure 3e, RNase A was exposed
266 to 8 M urea for varying amounts of time from 5 seconds to 30 minutes, followed by 10 seconds of
267 DOPA2 cross-linking. The samples were then quenched and processed for LC-MS/MS analysis. After
268 identifying cross-linked peptides through pLink 2 search, we performed cluster analysis to classify the
269 cross-links into groups based on their abundance profile in the unfolding process (Figure 3f and
270 Supplementary Table 5c). Cluster 1 consisted of 22 DOPA2-linked residue pairs whose relative
271 abundance at 8 M urea was low in the two minutes or so and high afterwards. Cluster 2 consisted of
272 seven members and showed an opposite profile with a sharp decrease in abundance after about two
273 minutes of urea exposure (Figure 3f). Cluster 3 was small and less informative. Of note, Cluster 1 is
274 highly enriched (16/22) for members of the non-native cluster (Cluster B in Figure 3b), and Cluster 2
275 is made up entirely of members of the native cluster (Cluster A in Figure 3b). This shows that a large
276 number of cross-links behave similarly in equilibrium and kinetic unfolding of RNase A. Overall,
277 DOPA2 cross-linking is able to capture the crucial states reflecting the concerted conformational
278 changes during RNase A unfolding.

279

280 **VI. Capturing weak but specific protein-protein interactions by DOPA cross-linking**

281 Encouraged by the successful application of rapid DOPA2 cross-linking to the protein unfolding

282 analysis, we set out to find out whether DOPA2 can facilitate analysis of weak protein-protein
283 interactions. We tested this idea by using the bacterial glucose phosphotransferase system^{47,48}, in which
284 the phosphate group from phosphoenolpyruvate is transferred to glucose via Enzyme I, the
285 phosphocarrier protein (HPr), and Enzyme II. Enzyme I consists of an N-terminal domain (EIN) and
286 a C-terminal domain (EIC). Enzyme II (EII) comprises three functional subunits EIIA^{Glc}, EIIB^{Glc}, and
287 EIIC^{Glc}^{47,48}. Weak interactions are responsible for the transferring of phosphate between EIN and HPr^{49,}
288 ⁵⁰ and between EIIA^{Glc} and EIIB^{Glc}⁵¹, and the K_D values for these two protein complexes are $\sim 7 \mu\text{M}$ ⁵²
289 and $\sim 25 \mu\text{M}$ ⁵³, respectively (Figure 4a).

290

291 Consistent with the weak association between EIN and HPr and between EIIA^{Glc} and EIIB^{Glc}, DSS
292 cross-linking yielded no discernable covalent dimer bands on SDS-PAGE at a protein concentration of
293 0.25 mg/mL (for EIN/HPr) or 0.63 mg/mL (for EIIA^{Glc}/EIIB^{Glc}) (Supplementary Figure 7a-b). Note
294 that the protein concentration used here are in the range for conventional cross-linking experiments.
295 Interestingly, faint covalent dimer bands of EIIA^{Glc}/EIIB^{Glc} appeared when the same samples were
296 cross-linked with DOPA2 (Supplementary Figure 7b). In above experiments, the protein
297 concentrations were set to about $1 \times K_D$, i.e., EIN and HPr each at 7 μM (0.06 mg/mL and 0.19 mg/mL,
298 respectively), EIIA^{Glc} and EIIB^{Glc} each at 25 μM (0.40 mg/mL and 0.23 mg/mL, respectively). Under
299 these conditions, the equilibrium concentrations of the heterodimers, EIN/HPr and EIIA^{Glc}/EIIB^{Glc},
300 were 2.67 μM and 9.55 μM , respectively. In other words, only 38% of the protein subunits were in the
301 complex form. When the protein concentrations were increased to $10 \times K_D$, the complex percentage
302 increased to 73%, which corresponds to an equilibrium concentration of 51.09 μM for the EIN/HPr
303 heterodimer and of 182.46 μM for EIIA^{Glc}/EIIB^{Glc}. Thus, this is a 19-fold increase in the quantity of
304 the protein complexes relative to that at $1 \times K_D$. At $10 \times K_D$ concentration, compared to cross-linking
305 with DSS, cross-linking using DOPA2 generated more prominent dimer bands on SDS-PAGE for both
306 complexes (Figure 4b-c and Supplementary Figure 8a-b). This validates the idea that the faster DOPA2
307 cross-linking is superior to DSS cross-linking in capturing weak protein-protein interactions.

308

309 LC-MS/MS analysis of the cross-linked dimers from the gel bands showed that the DOPA2 samples
310 contain more intra- and inter-molecular cross-links than the DSS samples (Supplementary Figure 8c-
311 d). For example, there were 34 DOPA2 and 21 DSS inter-molecular cross-links between EIN and HPr,
312 and 37 DOPA2 and 24 DSS inter-molecular cross-links between EIIA^{Glc} and EIIB^{Glc}, respectively
313 (Supplementary Figure 8c-d). Consistent with the results obtained from six model proteins (Figure 1d-
314 e), a higher percentage of the DOPA2-linked residue pairs are compatible with the crystal structures

315 (Supplementary Figure 8e-g).

316

317 We showed in our previous work⁵⁴ that a vast majority of the EIN/HPr inter-molecular cross-links
318 generated by BS²G or BS³, both NHS ester cross-linkers, reflected ECs, which are a collection of
319 conformations with higher energy and less specific electrostatic attractions between the two protein
320 partners compared to the finally formed complex. These fleeting ECs are too weak to be captured by
321 crystallization, but are detectable by a special NMR method⁵⁵. The lower energy-state stereospecific
322 complex (SC) of EIN/HPr as depicted in the NMR structure is mainly stabilized by the stereospecific
323 hydrogen bonds and hydrophobic interactions^{49, 55}. Only one out of the 13 inter-molecular BS²G or
324 BS³ cross-links comes from SC⁵⁴.

325

326 In this study, we obtained a higher percentage of cross-links representing SC by the use of either
327 DOPA2 cross-linking or the gel band containing covalently linked EIN/HPr. When the EIN/HPr
328 samples were analyzed by LC-MS/MS without SDS-PAGE separation (in-solution samples) as done
329 before⁵⁴, one of the six inter-molecular DOPA2 cross-links fitted with SC (16.7%); in contrast, none
330 of the 13 inter-molecular DSS cross-links fitted with SC (Figure 4d-e, Supplementary Table 6 and
331 Supplementary Table 7a-b). From the gel band of cross-linked EIN/HPr, four (27%) out of the 15 inter-
332 molecular DSS cross-links represented SC (Figure 4e, Supplementary Table 6 and Supplementary
333 Table 7c). Of note is that the cross-links examined here all passed a stringent filter as described above.
334 We estimated that the SC-specific cross-links were enriched by DOPA2 and gel band by factors of
335 about 3 and 2, respectively (Supplementary Table 6). As the SC cross-links are already favored by the
336 use of DOPA2, further increase by analyzing the gel band became less obvious (Figure 4d-e and
337 Supplementary Table 6). Nevertheless, LC-MS/MS analysis of the gel bands containing DOPA2-linked
338 EIN/HPr yielded the best result as 8 out of 25 (32%) inter-molecular cross-links represented SC (Figure
339 4d, Supplementary Table 6 and Supplementary Table 7d). Together, the data above show that DOPA2
340 outperforms DSS in capturing weak but specific protein-protein interactions.

341

342 Discussion

343 In this study, we have developed an amine-selective non-hydrolyzable di-*ortho*-phthalaldehyde cross-
344 linker, DOPA2. It offers fast cross-linking under extreme conditions (e.g., 8 M urea or 6 M GdnHCl)
345 where the commonly used NHS ester cross-linker is ineffective. Our results demonstrate that DOPA2-
346 based CXMS could be a valuable technique to extract information about conformational states,
347 including partially and fully unfolded states, and about continuous conformational changes associated

348 with protein unfolding. We also demonstrate that under the typical, near physiological conditions,
349 DOPA2 is advantageous over NHS ester cross-linkers in capturing weak but specific protein-protein
350 interactions.

351

352 In using DOPA2, one thing to watch out for is not to over-cross-link with it. Because DOPA2 does not
353 hydrolyze, its optimal concentration in protein cross-linking reactions is three- or four-fold lower than
354 that of the NHS ester cross-linker (Figure 2a and Supplementary Figure 3b). When initiating a cross-
355 linking reaction, the protein solution should be mixed with an equal volume of 2× DOPA solution to
356 avoid high local concentration. If proteins are cross-linked using a slightly higher than optimal
357 concentration of DOPA2 (e.g., at 4:1 instead of 16:1 protein/DOPA2, w/w, for BSA), the sample can
358 be digested with a second protease Asp-N following trypsin (Supplementary Figure 3d) to generate
359 shorter, more readily identifiable peptides.

360

361 DOPA2 cross-links proteins very fast (Figure 2a and Supplementary Figure 4). We succeeded in
362 monitoring RNase A unfolding in time intervals as short as five seconds by subjecting each time point
363 sample to DOPA2 cross-linking for only 10 seconds (Figure 3e). It seems that 10 seconds are the
364 minimum reaction time. As shown in Supplementary Figure 4, when the reaction time is reduced from
365 10 minutes to 5 seconds, we see an overwhelming amount of mono-links and a small number of cross-
366 links. This is understandable because in most or all cross-linking reactions, one end of a cross-linker
367 makes a covalent attachment before the other. Extrapolating out the trend line, it is predictable that
368 sub-second DOPA2 cross-linking will generate few cross-links.

369

370 As shown in Figure 2a, cross-linking of BSA by DOPA2 is ~60-fold faster than that by DSS. An earlier
371 study reports that covalent conjugation of OPA to a peptide (equivalent to a mono-link of DOPA) is
372 about eight times as fast as an NHS ester⁴⁰. In our hands, the pseudo-first-order reaction rate constant
373 between OPA and free lysine is too fast to measure. Even when the ratio of free lysine:OPA is adjusted
374 to 1:2, the second-order rate constant is still too fast to be measured accurately with the equipment we
375 have (Supplementary Figure 1b, the amount of product approached the maximum at 30 s). What we
376 can say for certain is that OPA reacts markedly faster than an NHS ester. Possibly in a protein cross-
377 linking reaction, which involves two consecutive OPA or NHS ester reactions, success of the first
378 reaction likely accelerates the second one by reducing the degree of freedom, i.e. creating a proximity
379 effect. This could account for the larger difference in the reaction speed between DOPA and DSS than
380 that between OPA and an NHS ester.

381

382 One intriguing result of our study is the differential preferences of DOPA2 and DSS towards SC and
383 EC, respectively. Namely, for the weak EIN/HPr complex, the relatively slow cross-linking reagent
384 DSS prefers fleeting ECs whereas the faster cross-linking reagent DOPA2 prefers the longer-lived SC.
385 The possible reasons are discussed below.

386

387 The process of capturing a protein-protein interaction by cross-linking may be conceptualized as
388 follows. We start from the moment when one end of the cross-linker already is covalently attached to
389 either of the two protein partners (A and B) that participate in the formation of the final complex A•B.
390 This simplifies the second step of cross-linking to a near first-order reaction, because the attachment
391 reaction by one end of a cross-linker increases its effective local concentration and hence accelerates
392 a subsequent cross-linking reaction by the other end. Assuming that the cross-linker lands on a site that
393 allows inter-protein cross-linking and that everything else is equal, then the likelihood for the formation
394 of an inter-protein cross-link will be determined by the reaction rate of the amine-targeting group and
395 the half-life of the A•B complex. If the reaction rate is not fast enough compared to the half-life of the
396 A•B complex, no inter-protein cross-link will form for this round of association. However, the cross-
397 linker that has been planted onto a protein partner by one end still has a chance to form an inter-protein
398 cross-link in the next round of association before it loses reactivity due to the attack of an intra-
399 molecular amine group or a quenching reagent.

400

401 We propose that DSS or BS³ cross-linking reactions are too slow to capture either the SC or the fleeting
402 ECs in one round of association/dissociation cycle, and the observed cross-links may come from a later
403 association event between a planted subunit and its partner. As an association event starts presumably
404 with nonspecific electrostatic attractions that could result in ECs, it is not surprising that a single-end
405 attached DSS or BS³ cross-linker is able to capture such conformations. This is in line with an earlier
406 work demonstrating that a slow reacting sulfonyl fluoride group can capture weak and transient
407 interactions once planted onto a protein⁵⁶. This explanation fits with the observation that the number
408 of inter-molecular DSS or BS³ cross-links identified from EIN/HPr is small and most of them represent
409 ECs. In contrast, DOPA2 has a faster reaction rate and thus is more efficacious in capturing SC before
410 it dissociates. Because ECs exist as an ensemble of distinct conformations while SC represents a stable
411 conformational state, cross-linked ECs are more heterogeneous than cross-linked SC, thus explaining
412 why ECs are less visible on SDS-PAGE as they spread along the lane and why the visible covalent
413 complex enriches for SC cross-links ([Supplementary Table 6](#)).

414

415 In summary, DOPA not only provides a powerful tool for CXMS to identify weak protein-protein
416 interactions, but also introduces CXMS to new application areas such as studying the conformational
417 changes during protein unfolding.

418

419 **Materials and methods**

420 **Chemical instrumentation and methods**

421 All reactions were carried out in oven-dried glassware under an argon atmosphere, unless otherwise
422 stated. Air and moisture sensitive reagents were transferred by syringe or cannula. Brine refers to a
423 saturated aqueous solution of NaCl. Analytical thin layer chromatography (TLC) was performed on
424 0.25 mm silica gel 60-F plates, using 254 nm UV light as the visualizing agent or staining with
425 potassium permanganate or phosphomolybdic acid and heat as developing agents. Flash
426 chromatography was performed using 200-400 mesh silica gel. Yields refer to chromatographically
427 and spectroscopically pure materials, unless otherwise stated.

428

429 ^1H NMR spectra were recorded on a Varian 400 or 500 MHz spectrometer at ambient temperature with
430 CDCl_3 as the solvent, unless otherwise stated. ^{13}C NMR spectra were recorded on a Varian 100 or 125
431 MHz spectrometer (with complete proton decoupling) at ambient temperature. Chemical shifts are
432 reported in parts per million relative to chloroform (^1H , δ 7.26 ppm; ^{13}C , δ 77.16 ppm). Data for ^1H
433 NMR are reported as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t =
434 triplet, q = quartet, m = multiplet) and coupling constants. High-resolution mass spectra were obtained
435 at Peking University Mass Spectrometry Laboratory using a Bruker APEX instrument.

436

437 Synthetic compounds were analyzed by UPLC/MS on a Waters UPLC H Class and SQ Detector 2
438 system. The system was equipped with a Waters C18 1.7 μm Acquity UPLC BEH column (2.1*50
439 mm), equilibrated with HPLC grade water (solvent A) and HPLC grade acetonitrile (solvent B) with a
440 flow rate of 0.3 mL/min.

441

442 **Reagents and solvents**

443 All chemical reagents were from J&K, Alfa Aesar or TCI Chemicals without further purification unless
444 otherwise stated. DCM and CH_3CN were distilled from calcium hydride; THF was distilled from
445 sodium/benzophenone ketyl prior to use.

446

447 For the MS analysis, DSS, tris(2-carboxyethyl) phosphine (TCEP), and 2-Iodoacetamide (IAA) were

448 purchased from Pierce biotechnology (Thermo Scientific). Guanidine hydrochloride (GdnHCl) was
449 purchased from MP Biomedicals LLC. Dimethylsulfoxide (DMSO), HEPES, NaCl, KCl, urea, CaCl₂,
450 methylamine, and other general chemicals were purchased from Sigma-Aldrich. Acetonitrile, formic
451 acid, acetone, and ammonium bicarbonate were purchased from J.T. Baker. Trypsin, Asp-N (gold mass
452 spectrometry grade) was purchased from Promega.

453

454 **Preparation of protein samples**

455 Aldolase, BSA, catalase, lysozyme, myosin, lactoferrin, carbonic anhydrase 2, and β-amylase were
456 obtained from Sigma-Aldrich. RNase A was purchased from Thermo Fisher. Recombinant GST
457 containing an N-terminal His tag was expressed in *E. coli* BL21 cells from the pDYH24 plasmid and
458 purified with glutathione sepharose (GE Healthcare). PUD-1/PUD-2 heterodimers were purified on a
459 HisTrap column followed by gel filtration. Stock solutions of model proteins were individually buffer
460 exchanged into 20 mM HEPES, pH 8.0 by ultrafiltration. The mixture of ten model proteins was mixed
461 manually and contained: aldolase, BSA, catalase, carbonic anhydrase 2, lysozyme, lactoferrin, β-
462 amylase, myosin, GST and PUD-1/PUD-2. Each of the ten proteins was present at a final concentration
463 of 0.1 mg/mL (total protein concentration, 1 mg/mL).

464

465 The N-terminal domain of *E. coli* enzyme I (EIN, residues 1-249) and the histidine-containing
466 phosphorcarrier protein HPr, EI^A^{Glc} and EI^B^{Glc} were purified as previously described^{49, 57}. Eluted
467 proteins were exchanged into 20 mM HEPES, 150 mM NaCl, pH 7.4.

468

469 **Kinetics experiments for second-order rate constant determination**

470 (1) Equation of calculating the second-order rate constants

$$471 \ln \frac{(a-x)}{(b-x)} = k(a - b)t + \ln \frac{a}{b}$$

472 **a** represented the amount of OPA/NHS ester analogue in the beginning.

473 **b** represented the amount of Boc-OMe-lysine in the beginning.

474 **x** represented the consumption of OPA/NHS ester analogue/Boc-OMe-lysine at time **t**. (The
475 consumption is equivalent)

476 **(a-x)** represented the amount of remaining OPA/ NHS ester analogue at time **t**. This amount is equal
477 to the amount of quenched product.

478 **(b-x)** represented the amount of remaining Boc-OMe-lysine at time **t**.

479 **k** represented the second-order reaction kinetic constants.

480

481 (2) Kinetics experiments of Boc-OMe-lysine with OPA

482 Boc-OMe-lysine (5 μ mol, 1 eq.) was dissolved in 10 mL TEAB buffer at 25 °C. OPA (10 μ mol, 2 eq.)
483 was added in the stirred reaction mixture. The reaction was monitored at 0.5 min, 1 min, 1.5 min, 2
484 min, 2.5 min, 3 min, 3.5 min, 4 min. At each time point, 10 μ l reaction mixture was quenched by 1 μ l
485 98% hydrazine. The conversion was monitored by LC-MS.

486

487 (3) Kinetics experiments of Boc-OMe-lysine with NHS ester analogue

488 Boc-OMe-lysine (5 μ mol, 1 eq.) was dissolved in 10 mL TEAB buffer at 25 °C. NHS (10 μ mol, 2 eq.)
489 was added in the stirred reaction mixture. The reaction was monitored at 2 min, 3 min, 4 min, 5 min,
490 6 min, 7 min, 8 min, 9 min. At each time point, 10 μ l reaction mixture was quenched by 1 μ l 50%
491 hydroxylamine. The conversion was monitored by LC-MS.

492

493 **Characterization of OPA selectivity towards different amino acids**

494 Ten synthesized peptides (listed in Table S1) were dissolved in 20 mM HEPES, pH 7.4 at a final
495 concentration of 2 mM. OPA was added at a final concentration of 2 mM. After one-hour reaction at
496 room temperature, the reaction products were analyzed by LC-MS/MS.

497

498 **Peptide cross-linking**

499 The synthesized peptides VR-7 (sequence: VWDLVKR), KR-7 (sequence: KMRPEVR), TR-8
500 (sequence: TPDVNKDR) and GR-11 (sequence: (N,N-dimethyl-Gly)-VAAAKAAAAR) were
501 dissolved in 20 mM HEPES, pH 7.4 at a final concentration of 2 mM. Cross-linker DOPA2 was added
502 at a final concentration of 2 mM. For testing the activity of DOPA2 under acidic pH or in the presence
503 of high concentrations of denaturants, peptides VR-7, KR-7, TR-8, GR-11 were dissolved in 100 mM
504 citric acid-Na₂HPO₄, pH3.0 or in 6 M GdnHCl at a final concentration of 2 mM. Cross-linker DOPA2
505 was added at a final concentration of 2 mM. After cross-linking at room temperature for one hour,
506 samples were diluted and about 5 pmol of total peptides were subjected to liquid chromatography
507 coupled with tandem mass spectrometry (LC-MS/MS) analysis.

508

509 **Protein cross-linking**

510 The cross-linking conditions, reaction time, reaction temperature, reaction buffers, concentrations of
511 cross-linkers were optimized using protein BSA at the final concentration of 1 mg/mL. Six model
512 proteins and the ten-protein mixture were diluted to 1 mg/mL with HEPES buffer (20 mM HEPES and

513 150 mM NaCl, pH 7.4) and were cross-linked with DOPA-C₂, DOPA1 or DOPA2 (the protein-to-cross-
514 linker mass ratio at 16:1) at room temperature for 10 minutes.

515

516 The reactivity of cross-linkers DOPA2 and DSS in different pH conditions was evaluated with protein
517 BSA. Protein BSA were dissolved in citric acid-Na₂HPO₄ buffers under pH 3.0, pH 4.0, pH 5.0, pH
518 6.0, pH 7.0, pH 7.4, respectively and then were cross-linked with DOPA2 (0.17 mM) or DSS (0.5 mM)
519 for 10 s.

520

521 The reactivity of cross-linkers DOPA2 and DSS in different concentrations of denaturants was
522 evaluated with protein BSA. Protein BSA were in the urea (0 M, 1 M, 2 M, 4 M, 6 M, 8 M) at room
523 temperature for one hour, and then were cross-linked with DOPA2 (0.17 mM) or DSS (0.5 mM) for
524 10 s. In the GdnHCl (0 M, 1 M, 2 M, 3 M), BSA were cross-linked with DOPA2 (0.17 mM) or DSS
525 (0.5 mM) at room temperature for 10 s, 1 min, 6 min, respectively. All the reactions were quenched
526 with 20 mM hydrazine at room temperature for 5 minutes. The cross-linking reaction of RNase A in
527 different concentrations of urea (0 M, 1 M, 2 M, 4 M, 6 M, 8 M) or GdnHCl (0 M, 1 M, 2 M, 3 M, 4
528 M, 5 M, 6 M) is similar to that of protein BSA. Protein RNase A were in the urea for one hour and in
529 the GdnHCl for ten hours before cross-linking. Reactions were quenched as described above. After
530 cross-linking, denaturants were diluted to the final concentration of 1.5 M with 1× PBS buffer, and
531 then cross-linked proteins were precipitated with 4-fold volume of cool acetone.

532

533 For the cross-linking reaction of RNase A in 8 M urea at different time points, 20 μ l 10 mg/mL RNase
534 A was mixed with 160 μ l 10 M urea solution and 20 μ l 1× PBS buffer, pH 7.4, and the timer started
535 timing. 20 μ l protein sample was picked up quickly at the time points 5 s, 10 s, 20 s, 30 s, 1 min, 2 min,
536 5 min, 10 min, 15 min, 30 min, and the reactions were terminated with 20 mM hydrazine at room
537 temperature for 5 minutes. (Note: the first four time points are too dense, and it is difficult to pick up
538 samples continuously and control the time strictly. Thus, the samples of RNase A in 8 M urea were
539 prepared one by one before the addition of cross-linkers.)

540

541 The K_D value of EIN/HPr complex was \sim 7 μ M⁵². EIN/HPr complexes were diluted to 1× K_D (0.25
542 mg/mL) and 10× K_D (2.5 mg/mL), and then were cross-linked with DOPA2 at the final concentration
543 of 0.05 mM, 0.2 mM, 0.8 mM at room temperature for 10 minutes, respectively. EIN/HPr complexes
544 were also cross-linked with DSS at the final concentration of 0.05 mM, 0.2 mM, 0.8 mM at room
545 temperature for one hour.

546

547 The K_D value of EIIA^{Glc}/EIIB^{Glc} complex was estimated to be ~25 μM . According to a previous study,
548 EIIA^{Glc}/EIIB^{Glc} has a K_m value of 1.7-25 μM ⁵³. We did not succeed in obtaining an accurate K_D value
549 by either surface plasmon resonance assay or ELISA. However, it is clear that the binding is weak and
550 the K_D value is likely greater than 10 μM . EIIA^{Glc}/EIIB^{Glc} complexes were diluted to 1× K_D (0.63
551 mg/mL) and 10× K_D (6.3 mg/mL), and then were cross-linked with DOPA2 at the final concentration
552 of 0.005 mM, 0.01 mM, 0.05 mM, 0.2 mM, 0.8 mM at room temperature for 10 minutes, respectively.
553 EIIA^{Glc}/EIIB^{Glc} complexes were also cross-linked with DSS at the final concentration of 0.05 mM, 0.2
554 mM, 0.8 mM at room temperature for one hour.

555

556 **Trypsin digestion**

557 Cross-linked proteins were precipitated with 4-fold volume of acetone for at least 30 minutes at -20
558 °C. The pellets were air dried and then dissolved, assisted by sonication, in 8 M urea, 20 mM
559 methylamine, 100 mM Tris, pH 8.5. After reduction (5 mM TCEP, RT, 20 min) and alkylation (10 mM
560 iodoacetamide, RT, 15 min in the dark), the samples were diluted to 2 M urea with 100 mM Tris, pH
561 8.5. Denatured proteins were digested by trypsin at a 1/50 (w/w) enzyme/substrate ratio at 37 °C for
562 16-18 h, and the reactions were quenched with 5% formic acid (final conc.).

563

564 **LC-MS analysis**

565 All synthesized peptide samples were analyzed using an EASY-nLC 1000 system (Thermo Fisher
566 Scientific) interfaced with a Q-Exactive HF mass spectrometer (Thermo Fisher Scientific). Peptides
567 were loaded on a pre-column (75 μm ID, 4 cm long, packed with ODS-AQ 12 nm-10 μm beads) and
568 separated on an analytical column (75 μm ID, 12 cm long, packed with Luna C18 1.9 μm 100 Å resin).
569 Slight modifications to the separation method were made for different samples. The ten OPA modified
570 peptides were injected and separated with a 30 min linear gradient at a flow rate of 200 nl/min as
571 follows: 0-5% B in 2 min, 5-30% B in 15 min, 30-100% B in 3 min, 100% B for 10 min (A = 0.1%
572 FA, B = 100% ACN, 0.1% FA). The DOPA2 cross-linked peptides VR-7, KR-7, TR-8 and GR-11 were
573 injected and separated with a 30 min linear gradient at a flow rate of 200 nl/min as follows: 0-5% B in
574 2 min, 5-28% B in 15 min, 28-100% B in 3 min, 100% B for 10 min (A = 0.1% FA, B = 100% ACN,
575 0.1% FA). Spectra were acquired in data-dependent mode: the top fifteen most intense precursor ions
576 from each full scan (resolution 60,000) were isolated for HCD MS2 (resolution 15,000, NCE 27) with
577 a dynamic exclusion time of 30 s. Precursors with more than 6+, or unassigned charge states were
578 excluded. In order to acquire more high-quality spectra at the peaks, ten OPA modified peptides were

579 also analyzed with a dynamic exclusion time of 10 s.

580

581 All protein samples were analyzed using an EASY-nLC 1000 system (Thermo Fisher Scientific)
582 interfaced with an HF Q-Exactive mass spectrometer (Thermo Fisher Scientific). Peptides were loaded
583 on a pre-column and separated on an analytical column as noted above. Slight modifications to the
584 separation method were made for different samples. The BSA samples for optimizing the cross-linking
585 conditions, a ten-protein mixture and RNase A were injected and separated with a 60 min linear
586 gradient at a flow rate of 200 nl/min as follows: 0-5% B in 2 min, 5-30% B in 43 min, 30-100% B in
587 5 min, 100% B for 10 min (A = 0.1% FA, B = 100% ACN, 0.1% FA). EIN/HPr and EIIA^{Glc}/EIIB^{Glc}
588 complexes were injected and separated with a 75 min linear gradient at a flow rate of 200 nl/min as
589 follows: 0-5% B in 1 min, 5-35% B in 59 min, 35-100% B in 5 min, 100% B for 10 min (A = 0.1%
590 FA, B = 100% ACN, 0.1% FA). The top fifteen most intense precursor ions from each full scan
591 (resolution 60,000) were isolated for HCD MS2 (resolution 15,000; NCE 27) with a dynamic exclusion
592 time of 30 s. Precursors with 1+, 2+, more than 6+, or unassigned charge states were excluded.

593

594 **Identification of cross-links with pLink 2⁴⁶**

595 The search parameters used for pLink 2 were as follows: instrument, HCD; precursor mass tolerance,
596 20 ppm; fragment mass tolerance 20 ppm; cross-linker DOPA-C₂ (cross-linking sites K and protein N-
597 terminus, cross-link mass-shift 258.068, mono-link w/o hydrazine mass-shift 276.079, mono-link w/t
598 hydrazine mass-shift 272.095); cross-linker DOPA1 (cross-linking sites K and protein N-terminus,
599 cross-link mass-shift 290.058, mono-link w/o hydrazine mass-shift 308.068, mono-link w/t hydrazine
600 mass-shift 304.085), cross-linker DOPA2 (cross-linking sites K and protein N-terminus, cross-link
601 mass-shift 334.084, mono-link w/o hydrazine mass-shift 352.096, mono-link w/t hydrazine mass-shift
602 348.111), cross-linker DSS (cross-linking sites K and protein N-terminus, cross-link mass-shift
603 138.068, mono-link mass-shift 156.079); fixed modification C 57.021; peptide length, minimum 6
604 amino acids and maximum 60 amino acids per chain; peptide mass, minimum 600 and maximum 6,000
605 Da per chain; enzyme, trypsin or trypsin and Asp-N, with up to three missed cleavage sites per cross-
606 link. Protein sequences of model proteins were used for database searching. The results were filtered
607 by requiring a spectral false identification rate < 0.01. MS2 spectra were annotated using pLabel^{58, 59},
608 requiring mass deviation ≤ 20 ppm.

609

610 **Ca-Ca distance calculations**

611 The Ca-Ca Euclidean distances were calculated by an in-house Perl script with the coordinates from

612 the PDB files. The Ca-Ca Solvent Accessible Surface Distance (SASD) were calculated using Jwalk⁶⁰.
613 For model proteins, it is not possible to distinguish from the sequence of the peptide whether the cross-
614 links are intra- or inter- molecular. We thus calculated all the possible combinations and picked those
615 with the shortest Ca-Ca distance. If the SASD of cross-linked residue pairs cannot be calculated due
616 to a lack of surface accessibility, these residue pairs are excluded from calculation. When calculating
617 structural compatibility, the distance cut-offs are 24.9 Å for DOPA-C₂, 27.7 Å for DOPA1, 30.2 Å for
618 DOPA2, and 24.0 Å for DSS.

619

620 **K-means clustering and data normalization**

621 The spectral counts of each cross-linked site pair across all samples were first transformed to Z-Score
622 (mean centered and scaled to the variance). K-means clustering was performed using Cluster 3.0 with
623 the settings of 3 clusters and a maximum of 100 iterations.

624

625 **Circular dichroism (CD) measurements**

626 CD spectra were measured on a Chirascan-plus circular dichroism spectrometer. Measurements were
627 done at 20 °C and pH 7.4. Data were recorded between 210-260 nm and quartz cuvette with 1 mm path
628 length. Measurements were acquired in 1 nm increments with an integration time of 0.5 s. RNase A
629 was measured at 7 μM concentration and in the presence of different concentrations of urea (0 M-8 M)
630 and GdnHCl (0 M-6 M). Three scans were averaged for each measurement. The averaged CD spectra
631 for one condition and its respective buffer were subtracted and then smoothed (window size = 2). The
632 resulting CD spectra were plotted with OriginPro 8.

633

634 **Acknowledgements**

635 We thank Yulu Li and Dr. Jianhua Sui for trying very hard to determine the K_D value of EI $\text{IA}^{\text{Glc}}/\text{EIIB}^{\text{Glc}}$.
636 We gratefully acknowledge financial support from the National Natural Science Foundation of China
637 Grant (21625201, 21961142010, 21661140001, 91853202, and 21521003 to X.L.), the National Key
638 Research and Development Program of China (2017YFA0505200 X.L.), the Beijing Outstanding
639 Young Scientist Program (BJJWZYJH01201910001001 X.L.), the municipal government of Beijing
640 (in the form of NIBS intramural grants), TIMBR, and Tsinghua University, the Program for Donglu
641 Scholar in the Yunnan University.

642

643 **Author contributions**

644 J.-H.W. performed MS experiments, analyzed and interpreted the data, and wrote the manuscript; Y.-

645 L.T. designed and synthesized the compounds, analyzed the data, and wrote the manuscript; M.-Q.D.
646 guided the study, interpreted the data, and wrote the manuscript; X.L., conceived the DOPA cross-liner,
647 guided the study, and revised the manuscript; R.J. did CD analysis, helped with data analysis and
648 interpretation, revised the manuscript; F.X. performed the kinetics experiments; Z.G., X.D., and C.T.
649 provided the EIN/HPr and EIIA^{Glc}/EIIB^{Glc} protein complexes, helped with data analysis and
650 interpretation; Y.Z. and N.H. helped with data analysis and interpretation; D.T. performed MS
651 experiments; Q.L. performed the chemical synthesis; S.-Q.L. helped with data analysis and
652 interpretation, revised the manuscript; K.Y. helped with data analysis and interpretation.

653

654 Competing interests

655 The authors declare no competing interests.

656

657 References

1. Henzler-Wildman, K. & Kern, D. Dynamic personalities of proteins. *Nature* **450**, 964-972 (2007).
2. Li, H., Xie, Y., Liu, C. & Liu, S. Physicochemical bases for protein folding, dynamics, and protein-ligand binding. *Sci China Life Sci* **57**, 287-302 (2014).
3. Boehr, D.D., Nussinov, R. & Wright, P.E. The role of dynamic conformational ensembles in biomolecular recognition. *Nat Chem Biol* **5**, 789-796 (2009).
4. Ubbink, M. The courtship of proteins: understanding the encounter complex. *FEBS Lett* **583**, 1060-1066 (2009).
5. Englander, S.W. & Mayne, L. The nature of protein folding pathways. *Proc Natl Acad Sci U S A* **111**, 15873-15880 (2014).
6. Wlodawer, A., Minor, W., Dauter, Z. & Jaskolski, M. Protein crystallography for aspiring crystallographers or how to avoid pitfalls and traps in macromolecular structure determination. *FEBS J* **280**, 5705-5736 (2013).
7. Bai, X.C., McMullan, G. & Scheres, S.H. How cryo-EM is revolutionizing structural biology. *Trends Biochem Sci* **40**, 49-57 (2015).
8. Sekhar, A. & Kay, L.E. NMR paves the way for atomic level descriptions of sparsely populated, transiently formed biomolecular conformers. *Proc Natl Acad Sci U S A* **110**, 12867-12874 (2013).
9. Ishima, R. & Torchia, D.A. Protein dynamics from NMR. *Nat Struct Biol* **7**, 740-743 (2000).
10. Heyduk, T. Measuring protein conformational changes by FRET/LRET. *Curr Opin Biotechnol* **13**, 292-296 (2002).
11. Kajihara, D. et al. FRET analysis of protein conformational change through position-specific incorporation of fluorescent amino acids. *Nat Methods* **3**, 923-929 (2006).
12. Nesmelov, Y.E. & Thomas, D.D. Protein structural dynamics revealed by site-directed spin labeling and multifrequency EPR. *Biophys Rev* **2**, 91-99 (2010).
13. Jain, R. et al. X-ray scattering experiments with high-flux X-ray source coupled rapid mixing microchannel device and their potential for high-flux neutron scattering investigations. *The European physical journal. E, Soft matter* **36**, 109 (2013).
14. Jain, R. & Techert, S. Time-resolved and in-situ X-ray scattering methods beyond photoactivation: Utilizing high-flux X-ray sources for the study of ubiquitous non-photoactive proteins. *Protein and peptide letters* **23**, 242-254 (2016).
15. Jain, R. et al. Insights into open/closed conformations of the catalytically active human guanylate kinase as investigated by small-angle X-ray scattering. *European biophysics journal : EBJ* **45**, 81-89 (2016).
16. Hamuro, Y. et al. Rapid analysis of protein structure and dynamics by hydrogen/deuterium exchange mass spectrometry. *J Biomol Tech* **14**, 171-182 (2003).

690 17. Wang, L. & Chance, M.R. Structural mass spectrometry of proteins using hydroxyl radical based protein
691 footprinting. *Anal Chem* **83**, 7234-7241 (2011).

692 18. Yang, B. et al. Identification of cross-linked peptides from complex samples. *Nat Methods* **9**, 904-906
693 (2012).

694 19. Liu, F., Rijkers, D.T., Post, H. & Heck, A.J. Proteome-wide profiling of protein assemblies by cross-linking
695 mass spectrometry. *Nat Methods* **12**, 1179-1184 (2015).

696 20. Yu, C. & Huang, L. Cross-linking mass spectrometry: an emerging technology for interactomics and
697 structural biology. *Anal Chem* **90**, 144-165 (2018).

698 21. O'Reilly, F.J. & Rappaport, J. Cross-linking mass spectrometry: methods and applications in structural,
699 molecular and systems biology. *Nat Struct Mol Biol* **25**, 1000-1008 (2018).

700 22. Sinz, A. Cross-Linking/mass spectrometry for studying protein structures and protein-protein interactions:
701 where are we now and where should we go from here? *Angew Chem Int Ed Engl* **57**, 6390-6396 (2018).

702 23. Chavez, J.D. & Bruce, J.E. Chemical cross-linking with mass spectrometry: a tool for systems structural
703 biology. *Curr Opin Chem Biol* **48**, 8-18 (2019).

704 24. Ding, Y.H. et al. Modeling protein excited-state structures from "over-length" chemical cross-links. *J Biol
705 Chem* **292**, 1187-1196 (2017).

706 25. Liu, T. et al. Structural Insights of WHAMM's Interaction with Microtubules by Cryo-EM. *J Mol Biol* **429**,
707 1352-1363 (2017).

708 26. Pilch, P.F. & Czech, M.P. Interaction of cross-linking agents with the insulin effector system of isolated fat
709 cells. Covalent linkage of 125I-insulin to a plasma membrane receptor protein of 140,000 daltons. *J Biol
710 Chem* **254**, 3375-3381 (1979).

711 27. Staros, J.V. N-hydroxysulfosuccinimide active esters: bis(N-hydroxysulfosuccinimide) esters of two
712 dicarboxylic acids are hydrophilic, membrane-impermeant, protein cross-linkers. *Biochemistry* **21**, 3950-
713 3955 (1982).

714 28. Lauber, M.A. & Reilly, J.P. Structural analysis of a prokaryotic ribosome using a novel amidinating cross-
715 linker and mass spectrometry. *J Proteome Res* **10**, 3604-3616 (2011).

716 29. Kao, A. et al. Development of a novel cross-linking strategy for fast and accurate identification of cross-
717 linked peptides of protein complexes. *Mol Cell Proteomics* **10**, M110 002212 (2011).

718 30. Jones, A.X. et al. Improving mass spectrometry analysis of protein structures with arginine-selective
719 chemical cross-linkers. *Nat Commun* **10**, 3911 (2019).

720 31. Gutierrez, C.B. et al. Development of a Novel Sulfoxide-Containing MS-Cleavable Homobifunctional
721 Cysteine-Reactive Cross-Linker for Studying Protein-Protein Interactions. *Anal Chem* **90**, 7600-7607 (2018).

722 32. Leitner, A. et al. Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein
723 complexes. *Proc Natl Acad Sci U S A* **111**, 9455-9460 (2014).

724 33. Zhang, X. et al. Carboxylate-selective chemical cross-Linkers for mass spectrometric analysis of protein
725 structures. *Anal Chem* **90**, 1195-1201 (2018).

726 34. Ding, Y.H. et al. Increasing the Depth of Mass-Spectrometry-Based Structural Analysis of Protein
727 Complexes through the Use of Multiple Cross-Linkers. *Anal Chem* **88**, 4461-4469 (2016).

728 35. Leitner, A. et al. Probing native protein structures by chemical cross-linking, mass spectrometry, and
729 bioinformatics. *Mol Cell Proteomics* **9**, 1634-1649 (2010).

730 36. Thiele, J. & Schneider, J. Ueber condensationsprodukte des o-Phtalaldehyds. *Justus Liebigs Ann Chem* **369**,
731 287-299 (1909).

732 37. Viets, J.W., Deen, W.M., Troy, J.L. & Brenner, B.M. Determination of serum protein concentration in nanoliter
733 blood samples using fluorescamine or 9-phthalaldehyde. *Anal Biochem* **88**, 513-521 (1978).

734 38. Aso, C., Tagami, S. & Kunitake, T. Polymerization of aromatic aldehydes. IV. Cationic copolymerization of
735 phthalaldehyde isomers and styrene. *J Polym Sci Part A-1: Polym Chem* **8**, 1323-1336 (1970).

736 39. Lerones, C., Mariscal, A., Carnero, M., Garcia-Rodriguez, A. & Fernandez-Crehuet, J. Assessing the residual
737 antibacterial activity of clinical materials disinfected with glutaraldehyde, o-phthalaldehyde, hydrogen
738 peroxide or 2-bromo-2-nitro-1,3-propanediol by means of a bacterial toxicity assay. *Clin Microbiol Infect*
739 **10**, 984-989 (2004).

740 40. Tung, C.L., Wong, C.T., Fung, E.Y. & Li, X. Traceless and chemoselective amine bioconjugation via

741 phthalimidine formation in native protein modification. *Org Lett* **18**, 2600-2603 (2016).

742 41. Zhang, Y., Zhang, Q., Wong, C.T.T. & Li, X. Chemoselective peptide cyclization and bicyclization directly on
743 unprotected peptides. *J Am Chem Soc* **141**, 12274-12279 (2019).

744 42. Neira, J.L. & Rico, M. Folding studies on ribonuclease A, a model protein. *Fold Des* **2**, R1-11 (1997).

745 43. Yan, Y.B., Jiang, B., Zhang, R.Q. & Zhou, H.M. Two-phase unfolding pathway of ribonuclease A during
746 denaturation induced by dithiothreitol. *Protein Sci* **10**, 321-328 (2001).

747 44. Westmoreland, D.G. & Matthews, C.R. Nuclear magnetic resonance study of the thermal denaturation of
748 ribonuclease A: implications for multistate behavior at low pH. *Proc Natl Acad Sci U S A* **70**, 914-918 (1973).

749 45. Garel, J.R., Nall, B.T. & Baldwin, R.L. Guanidine-unfolded state of ribonuclease A contains both fast- and
750 slow-refolding species. *Proc Natl Acad Sci U S A* **73**, 1853-1857 (1976).

751 46. Chen, Z.L. et al. A high-speed search engine pLink 2 with systematic evaluation for proteome-scale
752 identification of cross-linked peptides. *Nat Commun* **10**, 3404 (2019).

753 47. Kotrba, P., Inui, M. & Yukawa, H. Bacterial phosphotransferase system (PTS) in carbohydrate uptake and
754 control of carbon metabolism. *J Biosci Bioeng* **92**, 502-517 (2001).

755 48. Deutscher, J., Francke, C. & Postma, P.W. How phosphotransferase system-related protein phosphorylation
756 regulates carbohydrate metabolism in bacteria. *Microbiol Mol Biol Rev* **70**, 939-1031 (2006).

757 49. Garrett, D.S., Seok, Y.J., Peterkofsky, A., Gronenborn, A.M. & Clore, G.M. Solution structure of the 40,000
758 Mr phosphoryl transfer complex between the N-terminal domain of enzyme I and HPr. *Nat Struct Biol* **6**,
759 166-173 (1999).

760 50. Garrett, D.S., Seok, Y.J., Peterkofsky, A., Clore, G.M. & Gronenborn, A.M. Identification by NMR of the
761 binding surface for the histidine-containing phosphocarrier protein HPr on the N-terminal domain of
762 enzyme I of the Escherichia coli phosphotransferase system. *Biochemistry* **36**, 4393-4398 (1997).

763 51. Cai, M. et al. Solution structure of the phosphoryl transfer complex between the signal-transducing protein
764 IIAGlucose and the cytoplasmic domain of the glucose transporter IICBGlucose of the Escherichia coli
765 glucose phosphotransferase system. *J Biol Chem* **278**, 25191-25206 (2003).

766 52. Suh, J.Y., Tang, C. & Clore, G.M. Role of electrostatic interactions in transient encounter complexes in
767 protein-protein association investigated by paramagnetic relaxation enhancement. *J Am Chem Soc* **129**,
768 12954-12955 (2007).

769 53. Reizer, J. et al. Functional interactions between proteins of the phosphoenolpyruvate:sugar
770 phosphotransferase systems of *Bacillus subtilis* and *Escherichia coli*. *J Biol Chem* **267**, 9158-9169 (1992).

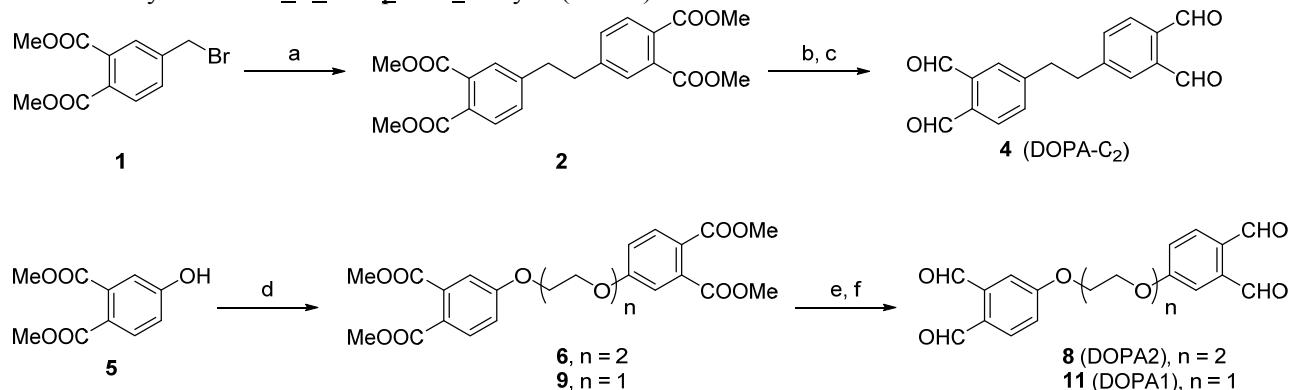
771 54. Gong, Z. et al. Visualizing the ensemble structures of protein complexes using chemical cross-Linking
772 coupled with mass spectrometry. *Biophys Rep* **1**, 127-138 (2015).

773 55. Tang, C., Iwahara, J. & Clore, G.M. Visualization of transient encounter complexes in protein-protein
774 association. *Nature* **444**, 383-386 (2006).

775 56. Yang, B. et al. Proximity-enhanced SuFEx chemical cross-linker for specific and multitargeting cross-linking
776 mass spectrometry. *Proc Natl Acad Sci U S A* **115**, 11162-11167 (2018).

777 57. Xing, Q. et al. Visualizing an ultra-weak protein-protein interaction in phosphorylation signaling. *Angew
778 Chem Int Ed Engl* **53**, 11501-11505 (2014).

779 58. Li, D. et al. pFind: a novel database-searching software system for automated peptide and protein
780 identification via tandem mass spectrometry. *Bioinformatics* **21**, 3049-3050 (2005).


781 59. Wang, L.H. et al. pFind 2.0: a software package for peptide and protein identification via tandem mass
782 spectrometry. *Rapid Commun Mass Spectrom* **21**, 2985-2991 (2007).

783 60. Matthew Allen Bullock, J., Schwab, J., Thalassinos, K. & Topf, M. The Importance of Non-accessible
784 Crosslinks and Solvent Accessible Surface Distance in Modeling Proteins with Restraints From Crosslinking
785 Mass Spectrometry. *Mol Cell Proteomics* **15**, 2491-2500 (2016).

786 61. Combe, C.W., Fischer, L. & Rappaport, J. xiNET: cross-link network maps with residue resolution. *Mol Cell
787 Proteomics* **14**, 1137-1147 (2015).

792

Scheme 1. Syntheses of di-ortho-phthalaldehyde (DOPA) cross-linkers^a

793

794

795 Reagents and conditions: (a) Me_2Zn , $\text{RhCl}(\text{PPh}_3)_3$, THF, 24 h, 76%. (b) DIBAL-H, THF, 12 h. (c) DMP, DCM, 12
796 h, 98% for two steps. (d) Cs_2CO_3 , bis (2-iodoethyl) ether or 1,2-dibromoethane, ACN, 80 °C, 12 h, n = 2, 77%; n =
797 1, 37%. (e) DIBAL-H, THF, 12 h. (f) DMP, DCM, 12 h, n = 2, 93% for two steps; n = 1, 80% for two steps. DIBAL-
798 H = diisobutylaluminum hydride, DMP = Dess-Martin periodinane.

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

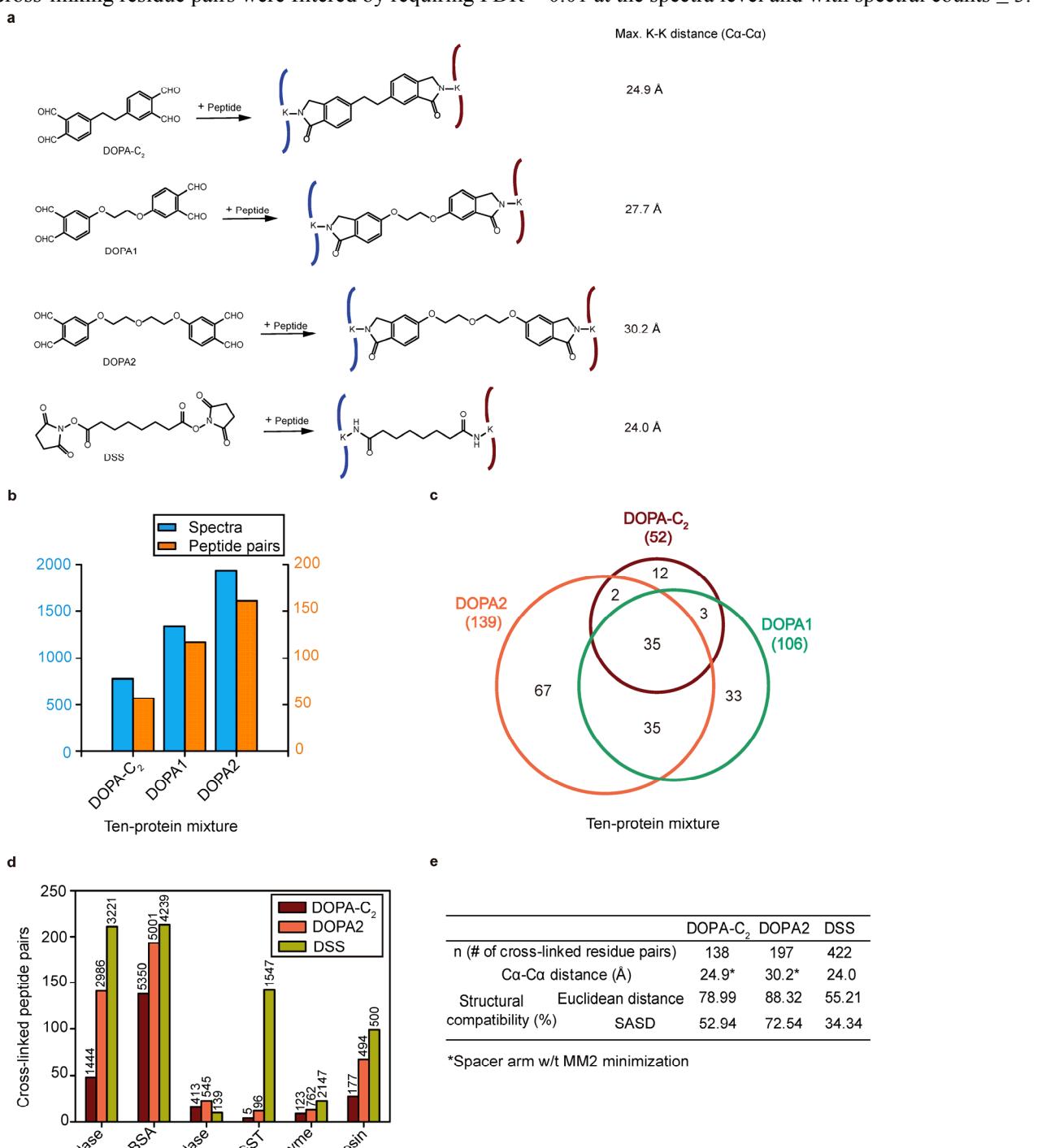
824

825

826

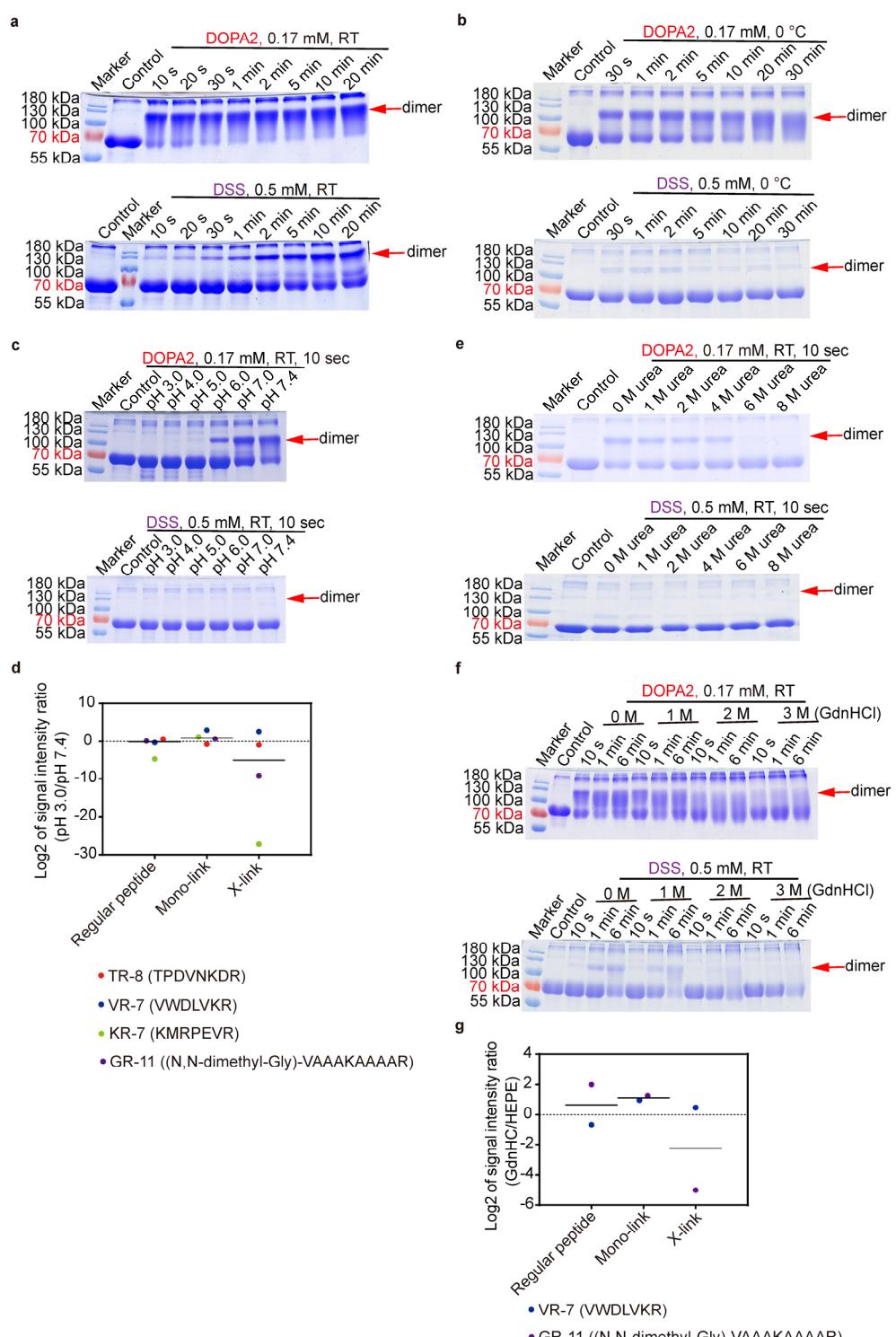
827

828


829

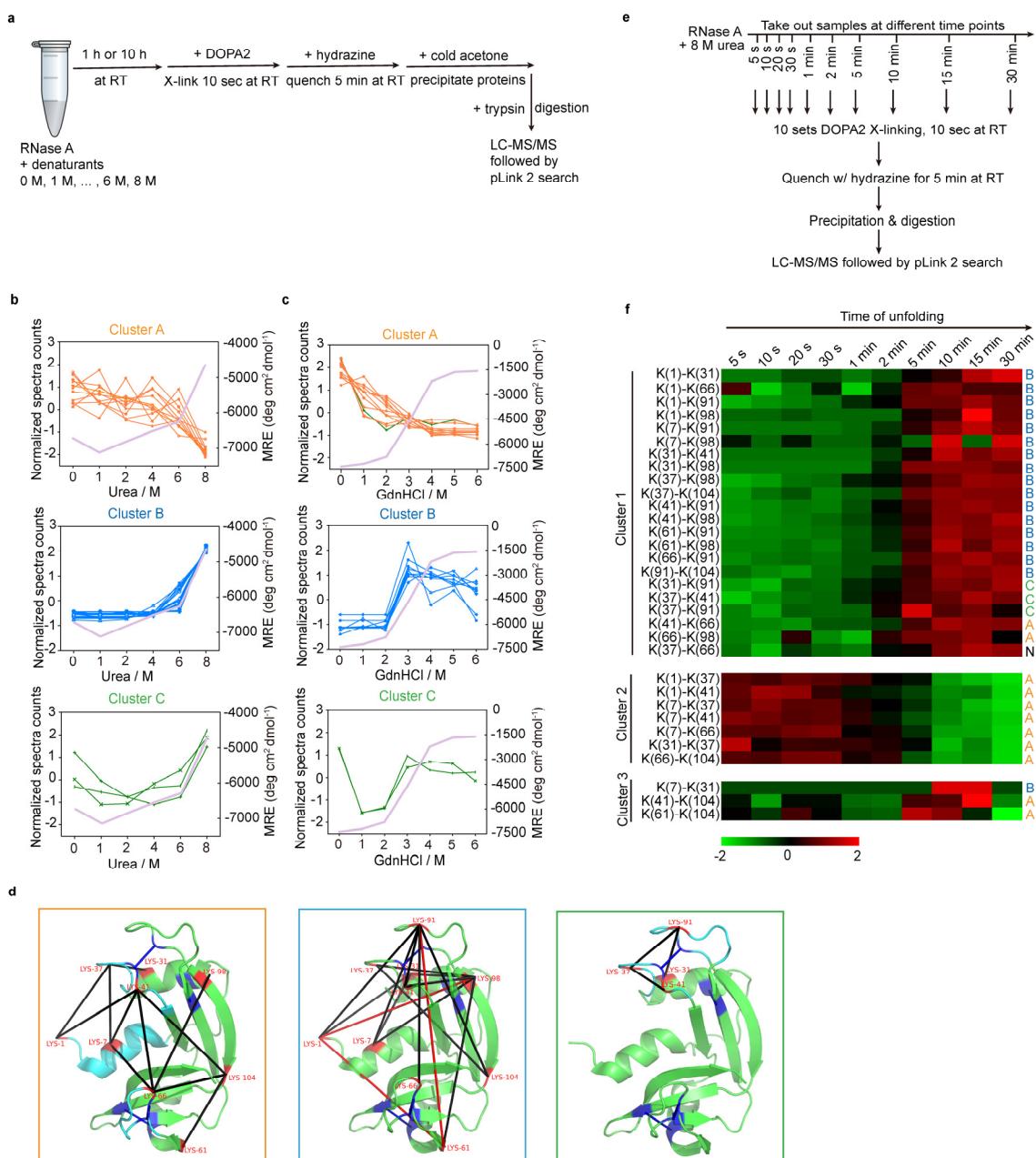
830

831

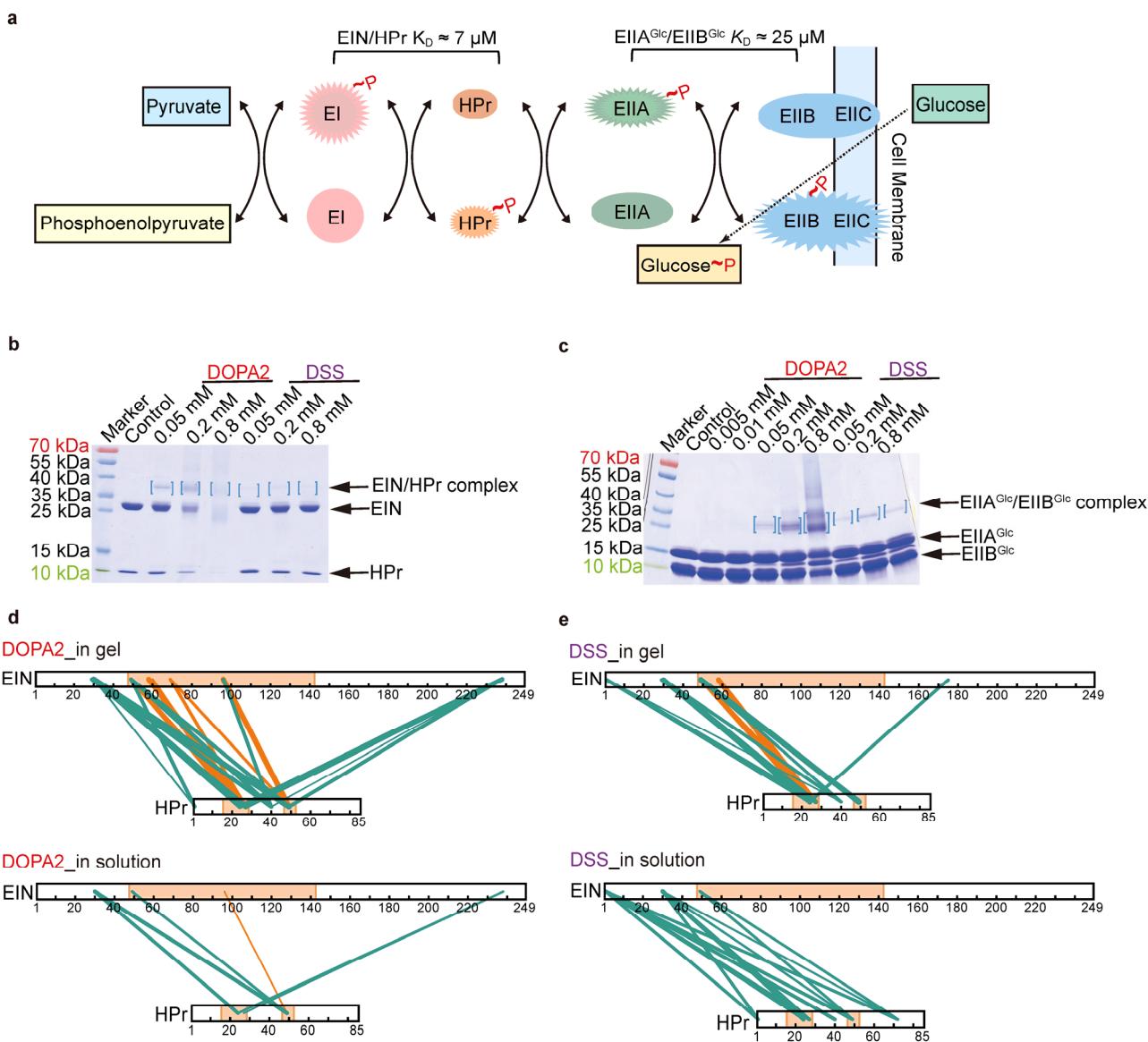

832

833 Figure 1. Evaluating the performance of DOPA.
 834 (a) Cross-linking products of DOPA-C₂, DOPA1, DOPA2, and DSS with peptides. (b) Cross-links identified from a
 835 ten-protein mixture using DOPA-C₂, DOPA1, and DOPA2. The numbers of cross-linked spectra are plotted with blue
 836 columns, and the number of cross-linked peptide pairs are plotted with orange columns. (c) Venn diagram showing
 837 the overlap of residue pairs produced by DOPA-C₂, DOPA1, and DOPA2 from the ten-protein mixture. Identified
 838 cross-links were filtered by requiring an FDR < 0.01 at the spectra level. (d) Performance of DOPA-C₂, DOPA2, and
 839 DSS on model proteins. Numbers of cross-linked peptide pairs are indicated with the colored columns, and spectra
 840 identified from each sample are shown above the columns. Identified cross-links were filtered by requiring an FDR
 841 < 0.01 at the spectra level. (e) The table displays the percentage of residue pairs that are consistent with the structures
 842 of the model proteins, calculated by the use of the Euclidean distance or the solvent accessible surface distance; the
 843 table also gives the maximum distance restraints and the number of cross-links belonging to each linker. Identified
 844 cross-linking residue pairs were filtered by requiring FDR < 0.01 at the spectra level and with spectral counts ≥ 3 .

845


846 Figure 2. Unique properties of DOPA2 compared with DSS.
 847 (a) SDS-PAGE analysis of DOPA2 or DSS-cross-linked BSA under different reaction times at room temperature. (b)
 848 SDS-PAGE of DOPA2 or DSS-cross-linked BSA under different reaction times at 0 °C. (c) SDS-PAGE of DOPA2
 849 or DSS-cross-linked BSA under different pH conditions. (d) The log₂ values of the signal intensity ratio for different
 850 peptide products in a low pH value buffer (3.0) vs. a physiological buffer (7.4). “Regular peptide” refers to free
 851 peptides without cross-linking; “X-link” refers to the situation wherein two peptides are linked with one molecule of
 852 DOPA2; “Mono-link” refers to a peptide that has been modified but is not cross-linked by a cross-linker. (e and f)
 853 SDS-PAGE of DOPA2 or DSS-cross-linked BSA in the presence of the indicated denaturants (urea or GdnHCl). (g)
 854 The log₂ values of the signal intensity ratio for different peptide products in GdnHCl (6 M) vs. a physiological buffer
 855 (HEPES, pH 7.4). The label of products was the same as in d.

857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872


Figure 3. Studying the unfolding of RNase A in chemical denaturants.

(a) Experimental workflow of cross-linking RNase A in different concentrations of denaturants (urea or GdnHCl) using DOPA2. (b) The changes of spectral counts for each identified cross-linked residue pair (normalized across the six conditions, shown as Z-scores on the left axis) and the mean residue ellipticity (MRE) of RNase A monitored by CD at 222 nm (on the right axis) in different concentrations of urea. The residue pairs were classified into three clusters by K-means (Cluster A, Cluster B and Cluster C). (c) As in b, but in different concentrations of GdnHCl. (d) The cross-links identified in different concentrations of urea were mapped on the crystal structure of RNase A (PDB code: 6ETK). Cluster A in orange frame (11 pairs); Cluster B in blue frame (17 pairs); and Cluster C in green frame (3 pairs). The black lines denote that the distance of cross-linked residue pairs is within the restraints of cross-linkers, while the red lines denote that the distance of cross-linked residue pairs is out of the restraints of cross-linkers. The four pairs of disulfide bonds are colored by dark blue. (e) Experimental workflow of cross-linking RNase A at different time points in 8 M urea using DOPA2. (f) The changes of spectral counts for each identified cross-linked residue pair in 8 M urea for different time. The residue pairs were classified into three clusters by K-means (Cluster 1, Cluster 2 and Cluster 3). “N” means that the cross-link is not identified in the different concentrations of urea buffers. Cross-linking residue pairs were filtered by requiring FDR < 0.01 at the spectra level, E-value < 1×10^{-8} and spectral counts > 3.

873

874 Figure 4. DOPA2 can capture weak interactions within the EIN/HPr and EIIA^{Glc}/EIIB^{Glc} complexes.
875 (a) Conceptual diagram of carbohydrate transport and phosphorylation by the phosphotransferase system.
876 (b) SDS-PAGE of DOPA2 or DSS-cross-linked EIN/HPr. The concentration of EIN/HPr is $10 \times K_D$. Dimers are marked by
877 square brackets. (c) As in b, but for the EIIA^{Glc}/EIIB^{Glc} complex. (d) The inter-molecular residue pairs identified by
878 DOPA2 in the dimer gel or in the solution were mapped on the primary sequence of EIN/HPr (visualized using
879 xiNET⁶¹). (e) As in d, but for cross-links identified by DSS. Cross-links were filtered by requiring FDR < 0.01 at the
880 spectra level, E-value < 1×10^{-8} and spectral counts > 3. The interactional interface of EIN and HPr on the specific
881 complex was indicated by light orange color. The green lines and the orange lines denoted the cross-links that belong
882 to encounter complexes and specific complex, respectively. The numbers of the corresponding spectra of each cross-
883 link were indicated by the thickness of the line.

884
885
886
887
888
889
890
891
892
893

Supplementary Information Contents

894	Supplementary Figure 1. Rate kinetics of OPA and NHS ester with Boc-OMe-lysine.....	29
895	Supplementary Figure 2. Annotating the reaction products of ten synthetic peptides and OPA in the	
896	selectivity test.....	31
900	Supplementary Figure 3. Optimization of cross-linking conditions using BSA.....	43
901	Supplementary Figure 4. The distribution of mono-links and cross-links on BSA with the increasing	
902	reaction time.....	44
903	Supplementary Figure 5. Circular dichroism spectra in far-UV region measured for RNase A in the	
904	presence of denaturants.....	44
905	Supplementary Figure 6. Studying the unfolding process of RNase A in urea buffer using DOPA2 under	
906	reduction conditions.....	45
907	Supplementary Figure 7. Performance of DOPA2 and DSS on weak protein interactions at the protein	
908	concentration of $1 \times K_D$	45
909	Supplementary Figure 8. Performance of DOPA2 and DSS on weak protein interactions at the protein	
910	concentration of $10 \times K_D$	46
911	Supplementary Table 1. Peptides tested for OPA selectivity.....	47
912	Supplementary Table 2. Products of ten synthesized peptides and OPA.....	48
913	Supplementary Table 3. The composition of a ten-protein mixture and the molecular weight for each	
914	protein.....	49
915	Supplementary Table 4. The intensity of different products in peptide samples cross-linked by DOPA2 or	
916	DSS at low pH and in the presence of denaturants.....	49
917	Supplementary Table 5. The cross-links identified from RNase A by DOPA2.....	50
918	Supplementary Table 6. Inter-molecular cross-links identified from the EIN/HPr complex.....	53
919	Supplementary Table 7. The inter-molecular cross-links identified by DOPA2 or DSS in protein complex	
920	EIN/HPr.....	53
921	Synthetic procedures and analytical data.....	55

933

Supplementary Figure 1. Rate kinetics of OPA and NHS ester with Boc-OMe-lysine.

934

(a) The reaction of OPA with lysine afforded the phthalimidine and the excessive OPA was quenched by hydrazine to afford phthalazine. (b) The rate curve of the reaction of OPA with lysine. (c) The reaction of NHS ester with lysine afforded the amide and the excessive NHS ester was quenched by hydroxylamine. (d) The rate curve of the reaction of NHS ester with lysine. (e) The second-order rate constant of OPA and NHS ester with lysine.

935

936

937

938

939
940

942

943

944

945

946

947

948

949

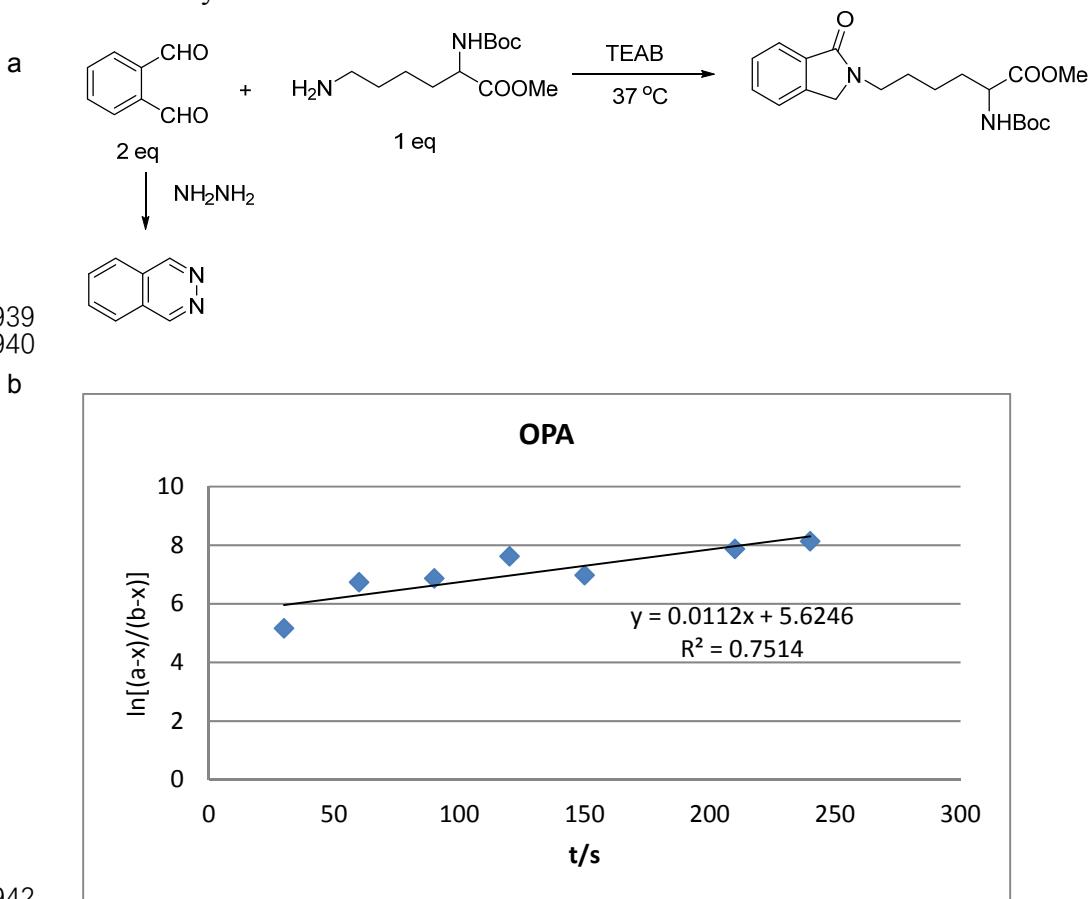
950

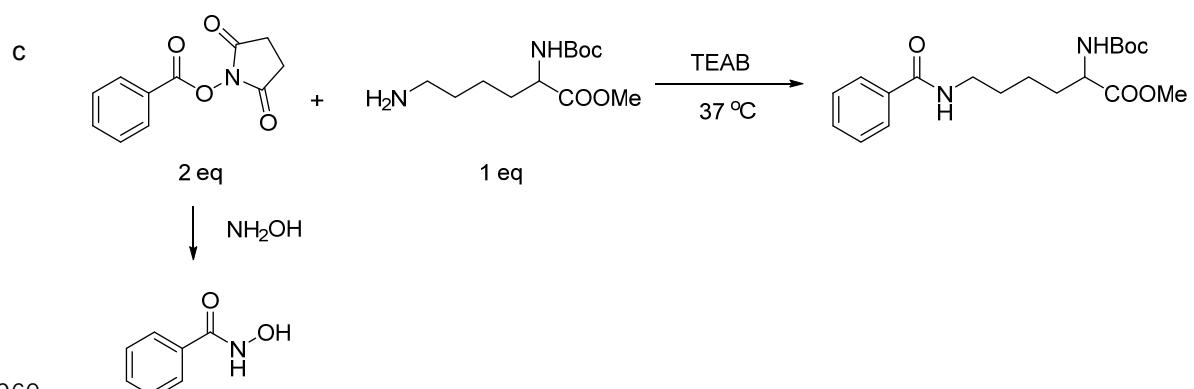
951

952

953

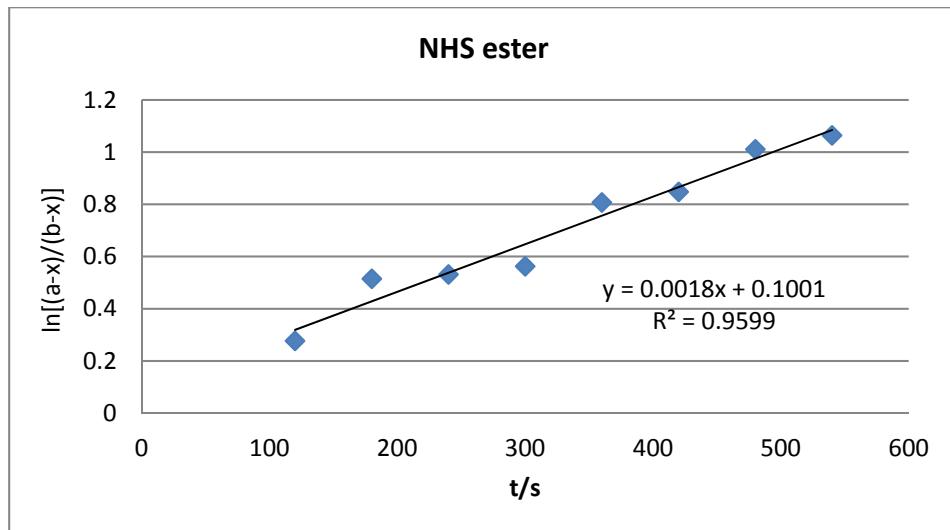
954

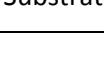

955


956

957

958

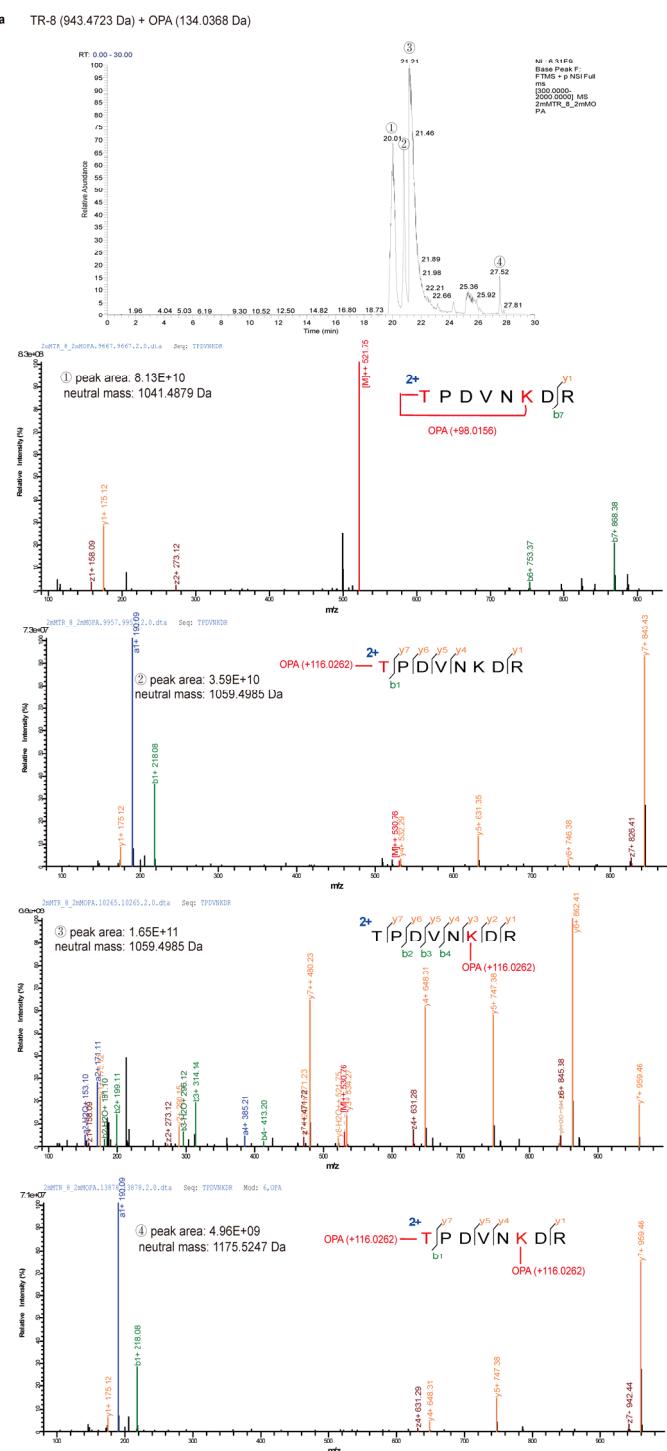

959


960

d

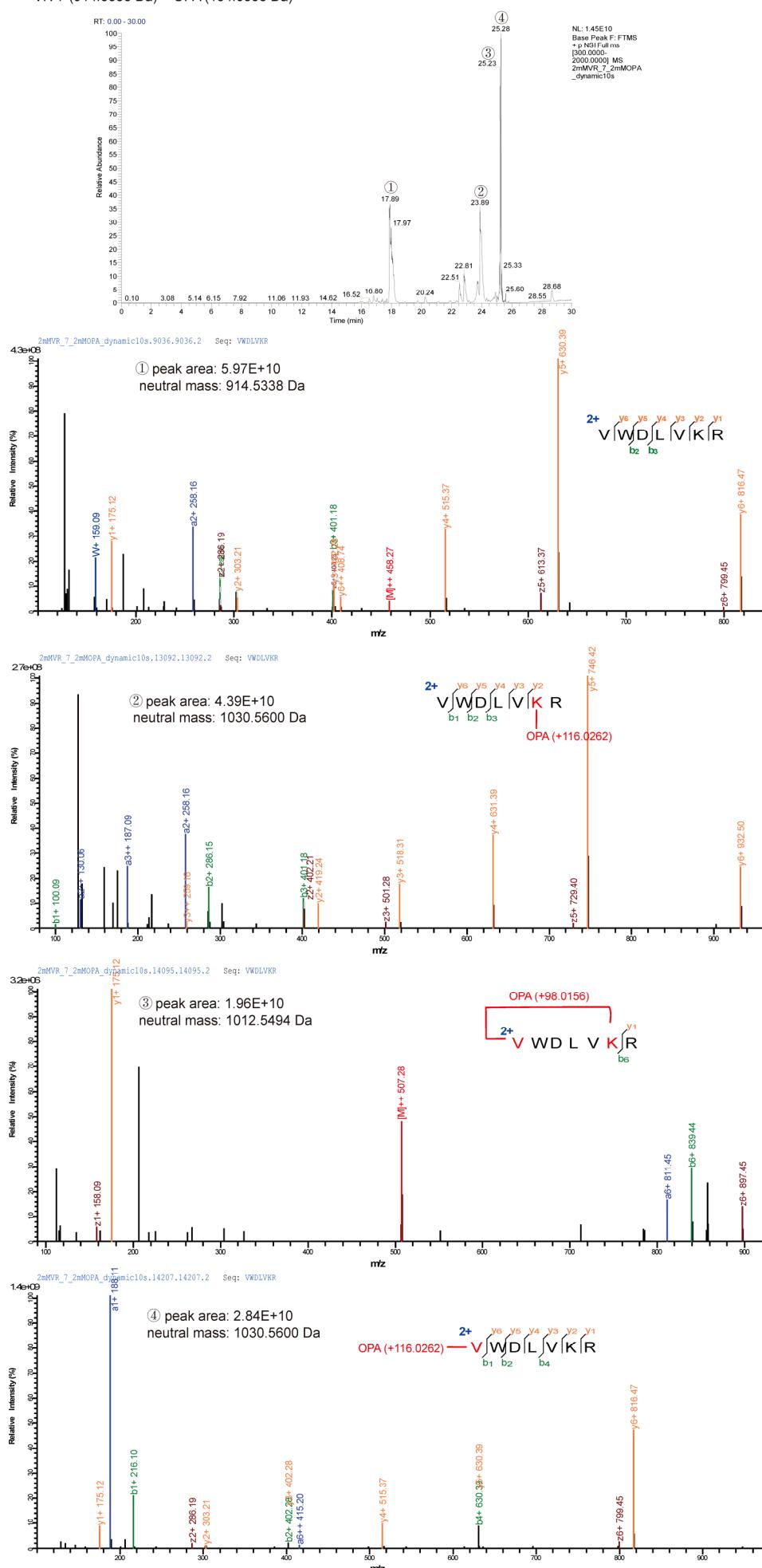
963
964

e

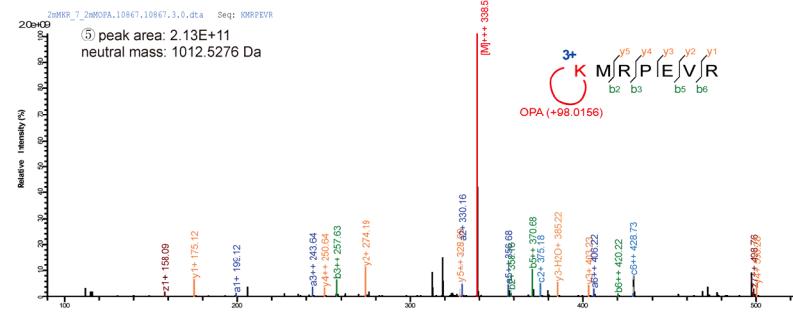
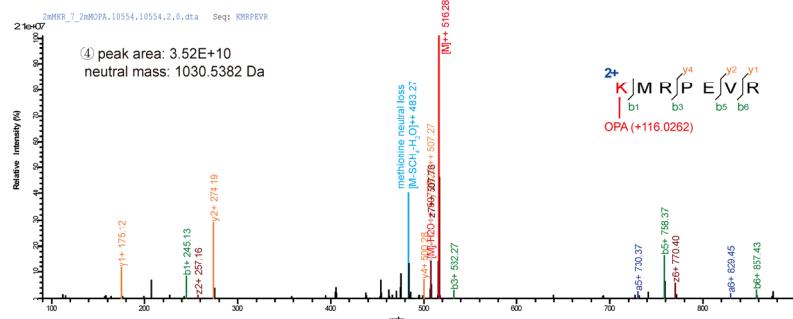
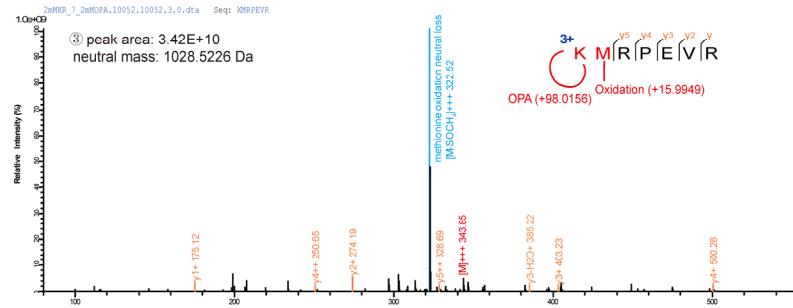
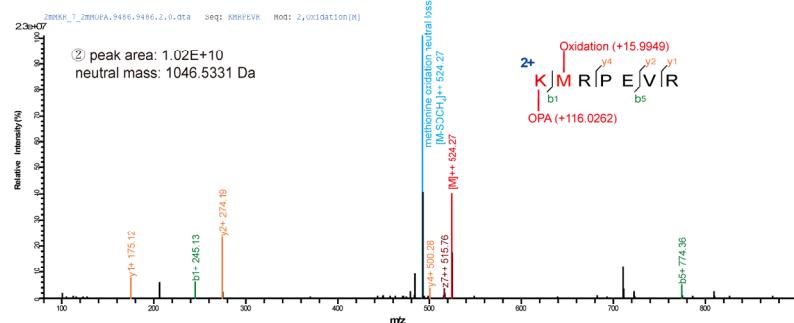
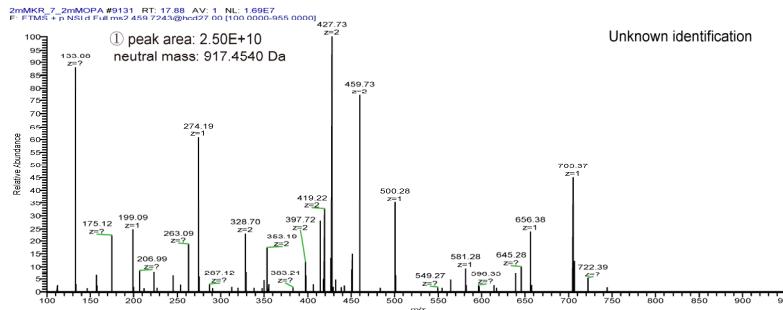
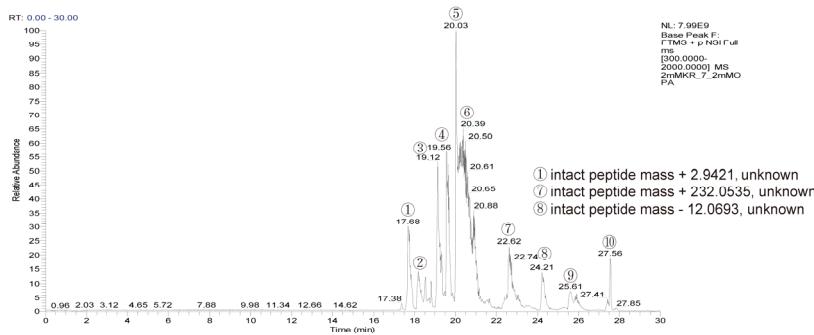

Substrate	Second-order rate constant (M ⁻¹ S ⁻¹)
	2.24
	0.36

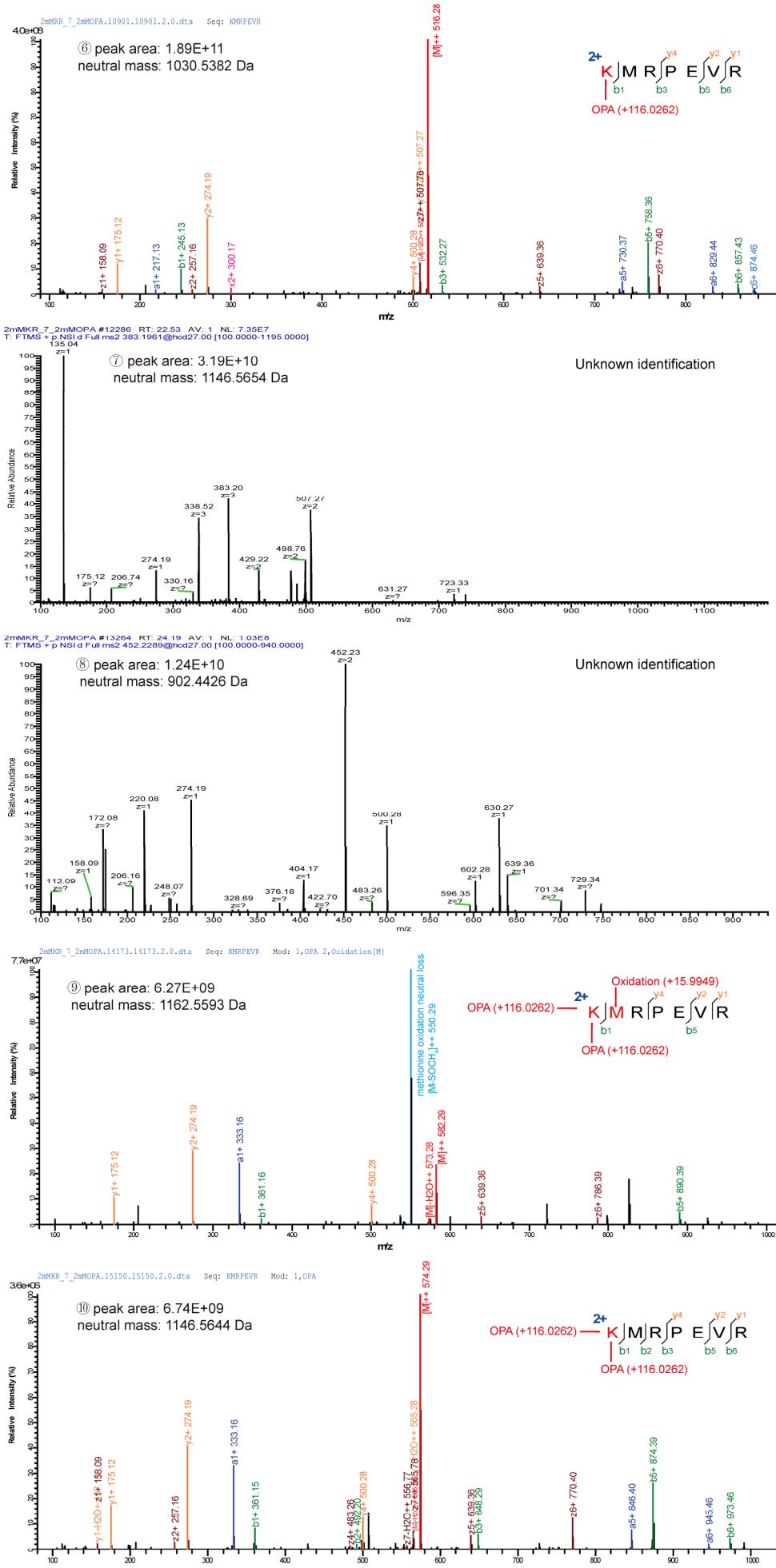
966
967
968
969
970
971
972
973
974
975
976

977
978

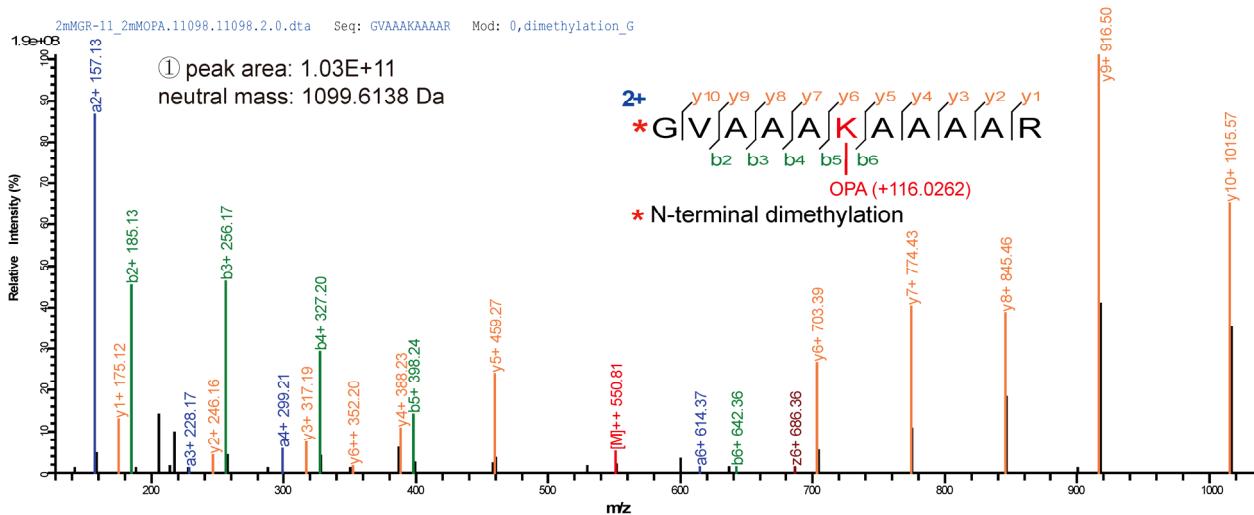
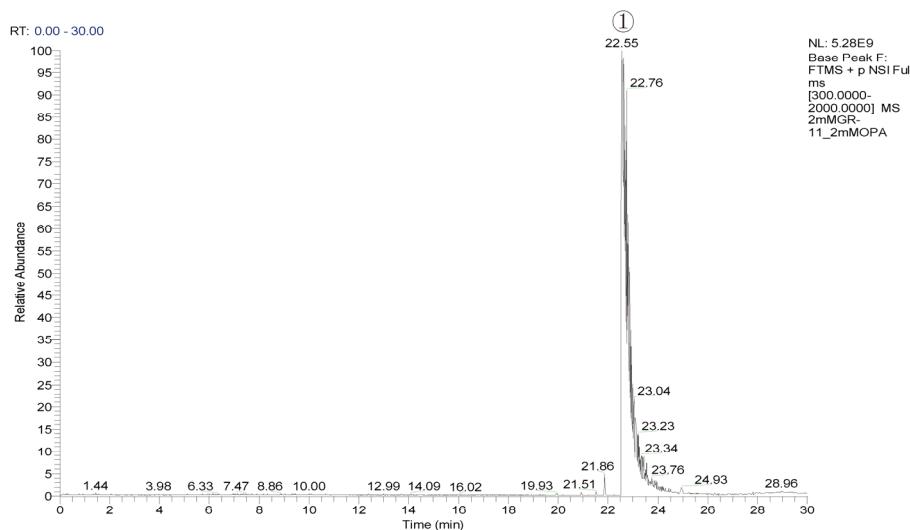

Supplementary Figure 2. Annotating the reaction products of ten synthetic peptides and OPA in the selectivity test.

979 (a - j) MS1 chromatographic peak and the corresponding HCD spectrum of every peak. Lysine ϵ -NH₂ or
980 peptide N-terminal α -NH₂ reacted with OPA, forming N-substituted phthalimidines (product 1, Δ mass = +
981 116.0262 Da). The loop-linked side product (product 2, Δ mass = +98.0156 Da) resulted from OPA jointing
982 an amino group and another nucleophilic group on the same peptide. The modified residues are indicated
983 in red. (Note: peptide GR-11 (d) has no loop-linked side products due to the dimethylation of its N-terminus;
984 the sixth peak in peptide VK-9 (g) was a mixture of two products, as labelled in MS2 spectrum; the second
985 and fourth peaks in peptide HR-9 (i) were presumed to contain the loop-linked side products between N
986 terminal α -NH₂ and a sulphydryl group from cysteine, but some fragment ions support the addition of
987 98.0156 Da at the N terminus without clear explanation, as labelled in MS2 spectrum.)

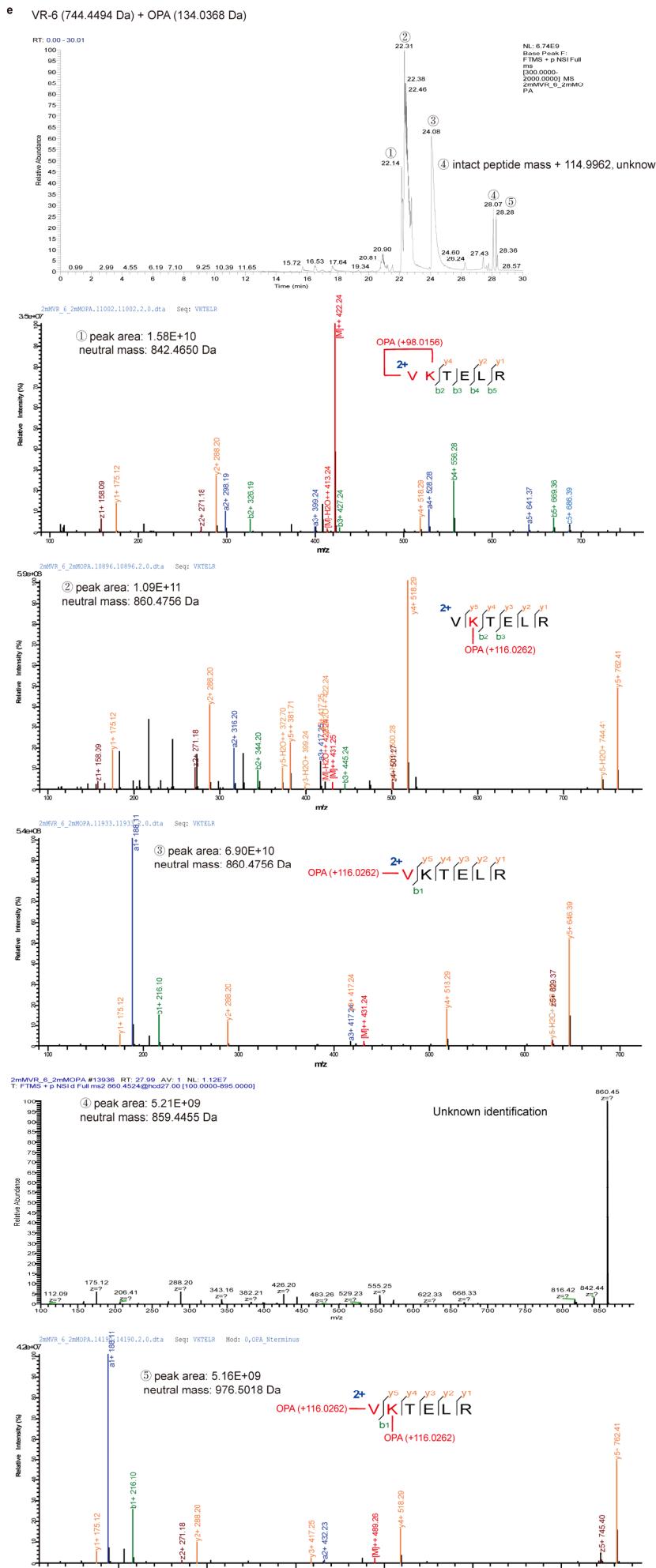







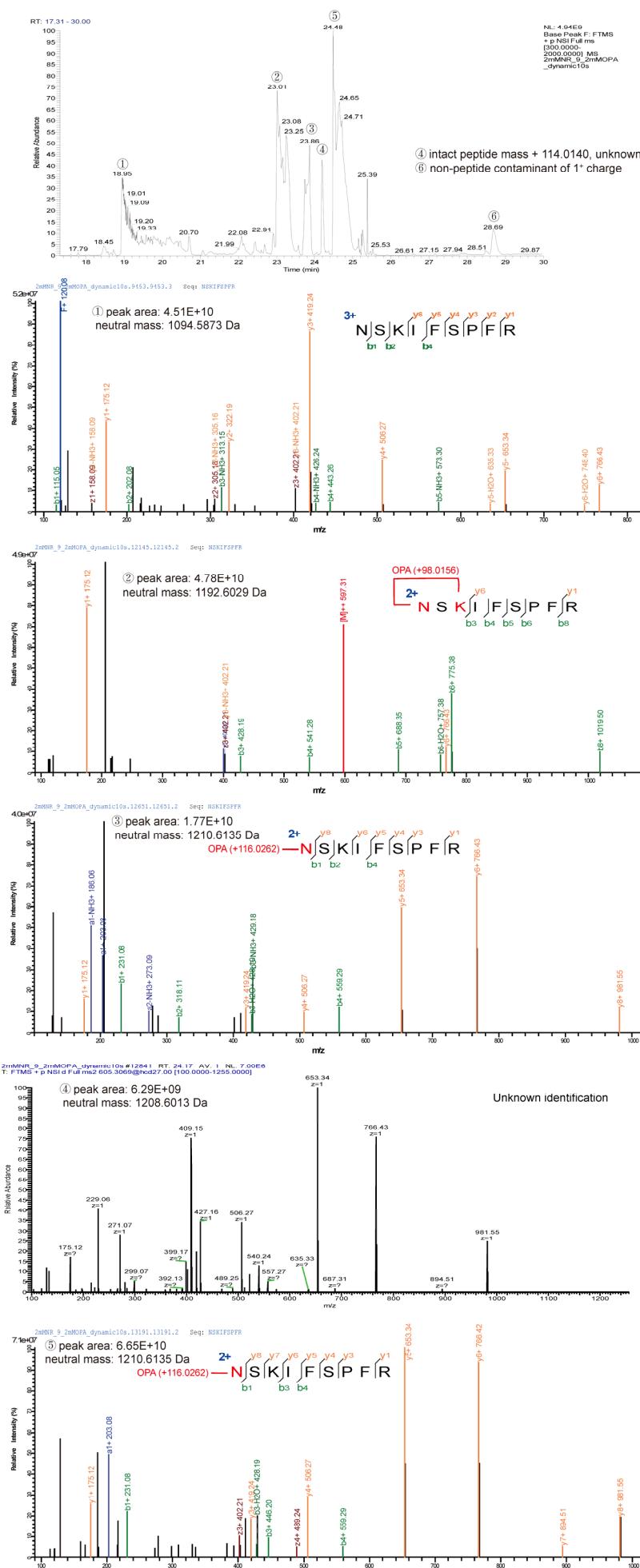

988

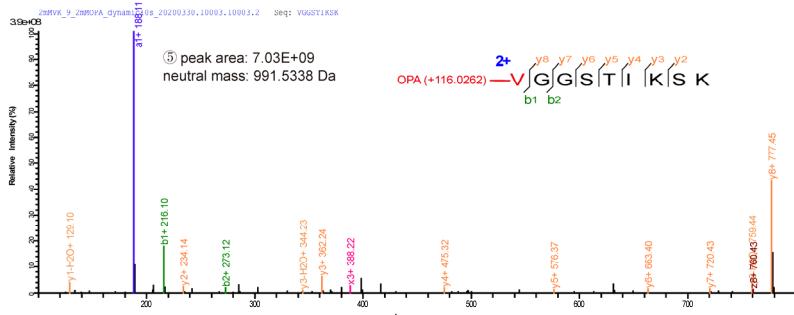
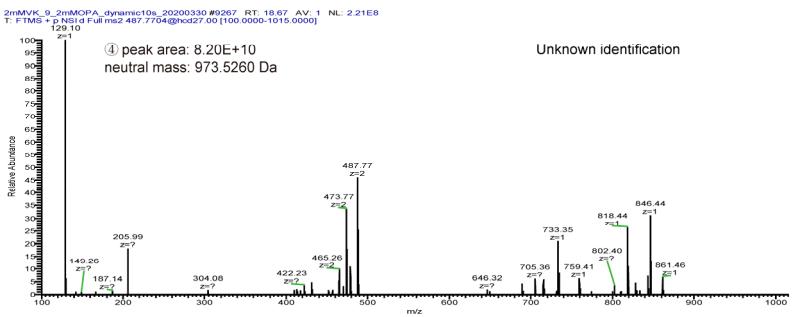
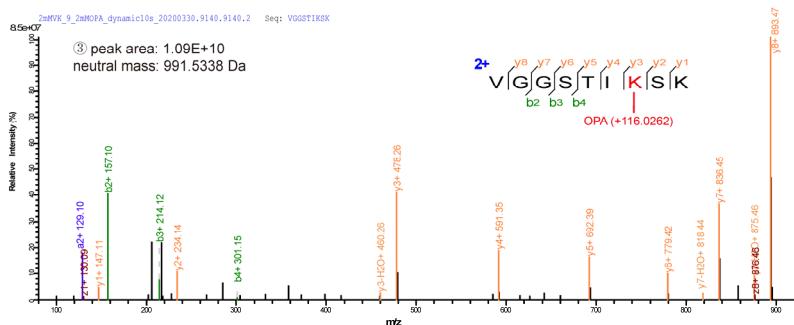
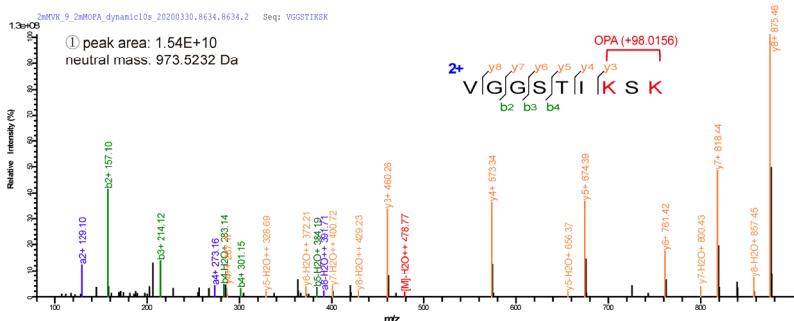
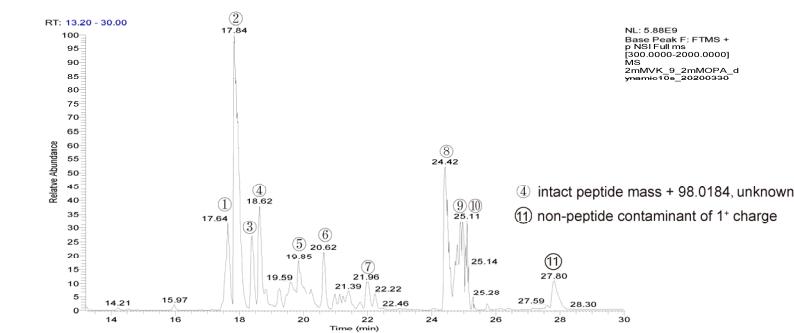
b VR-7 (914.5338 Da) + OPA (134.0368 Da)

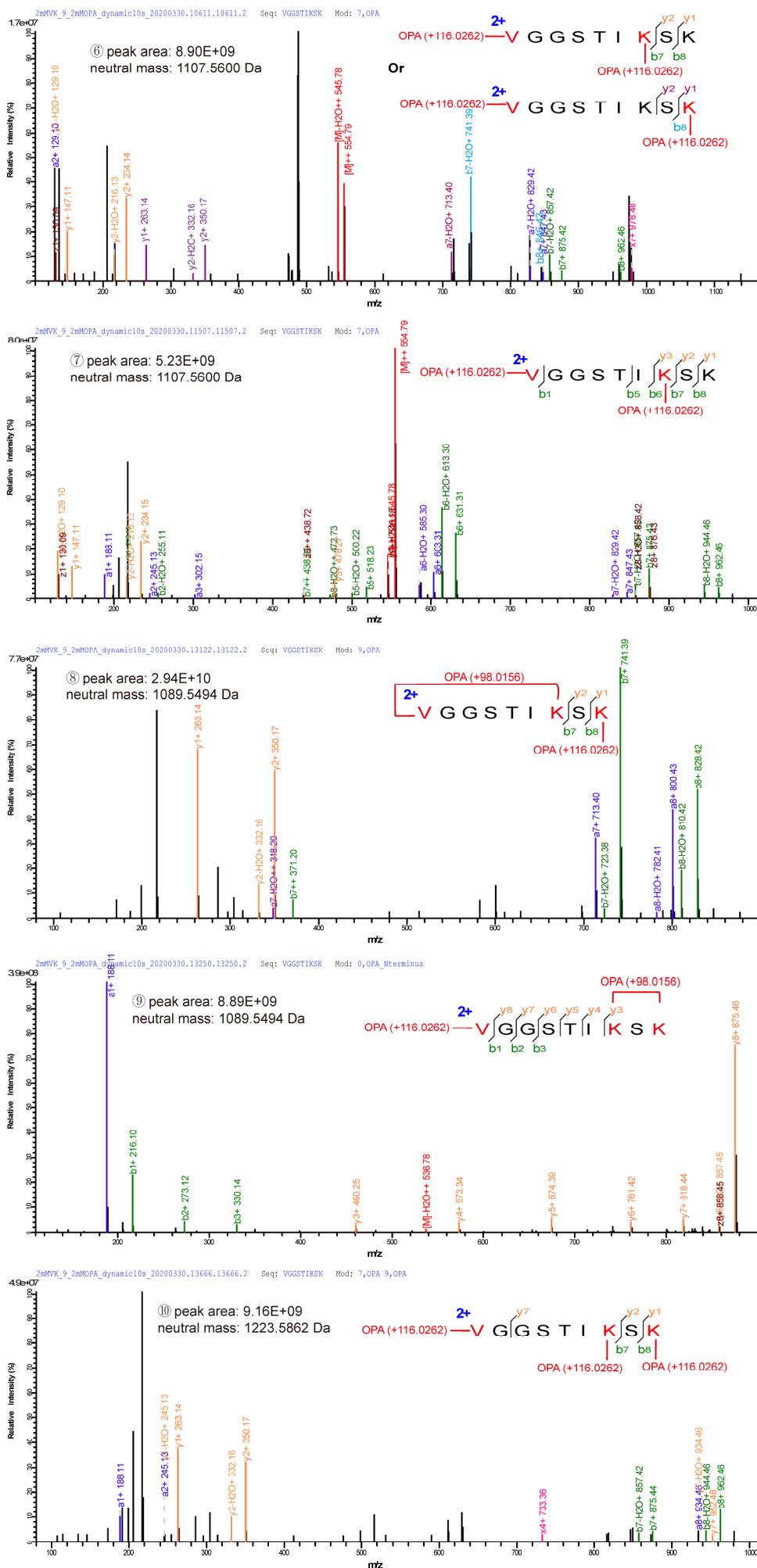



c KR-7 (914.5120 Da) + OPA (134.0368 Da)

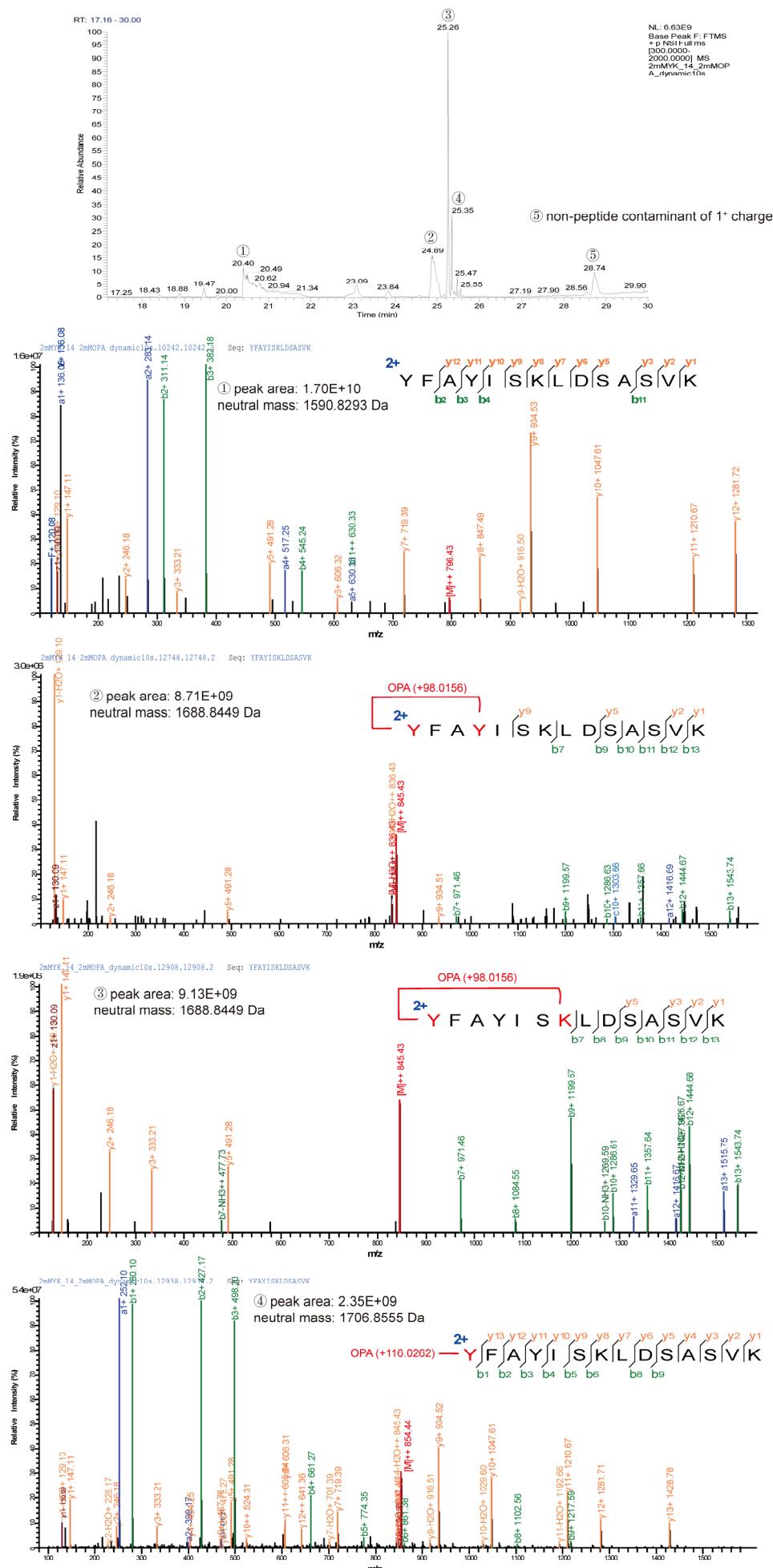



d GR-11 (983.5876 Da) + OPA (134.0368 Da)

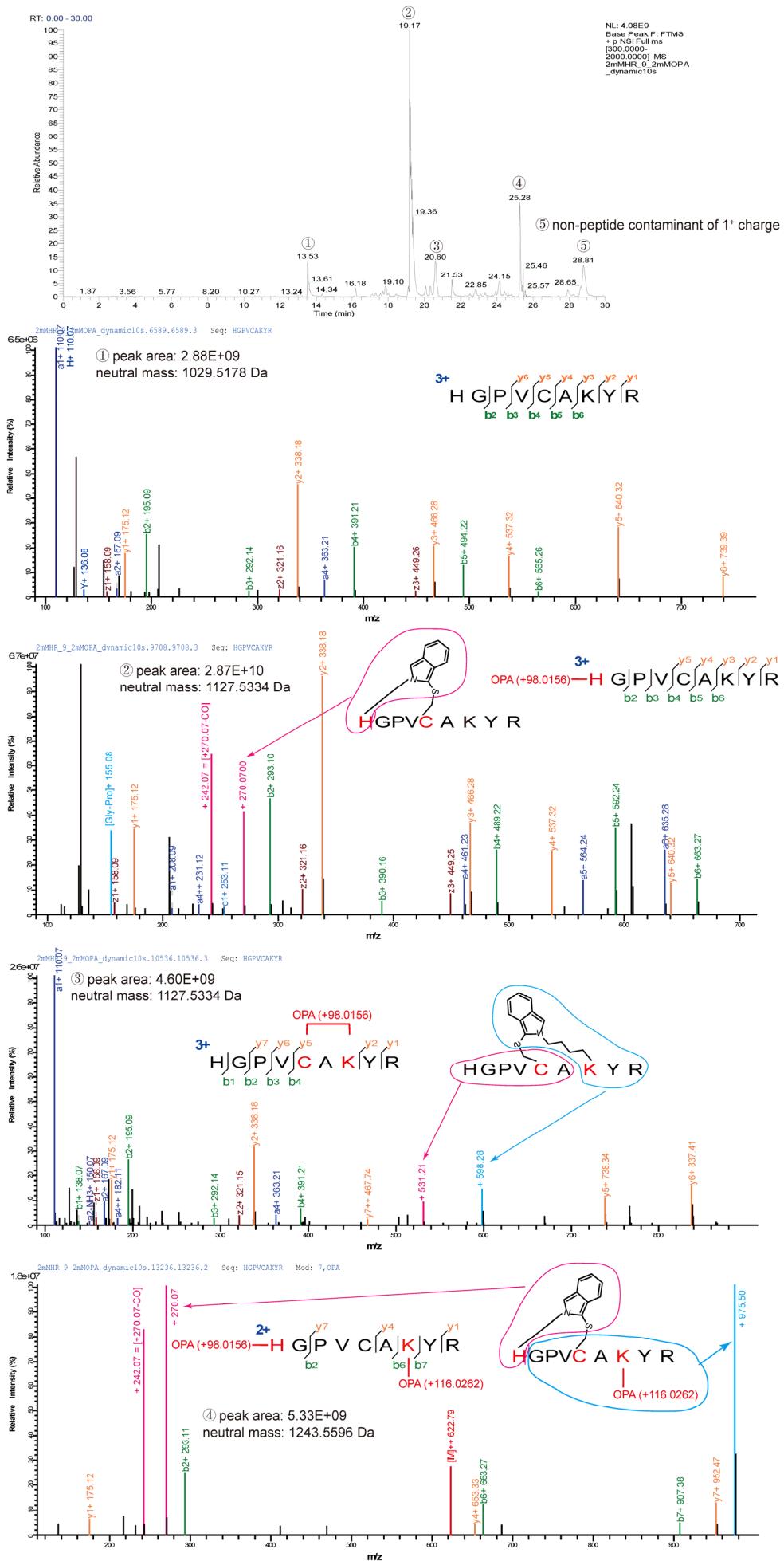





992

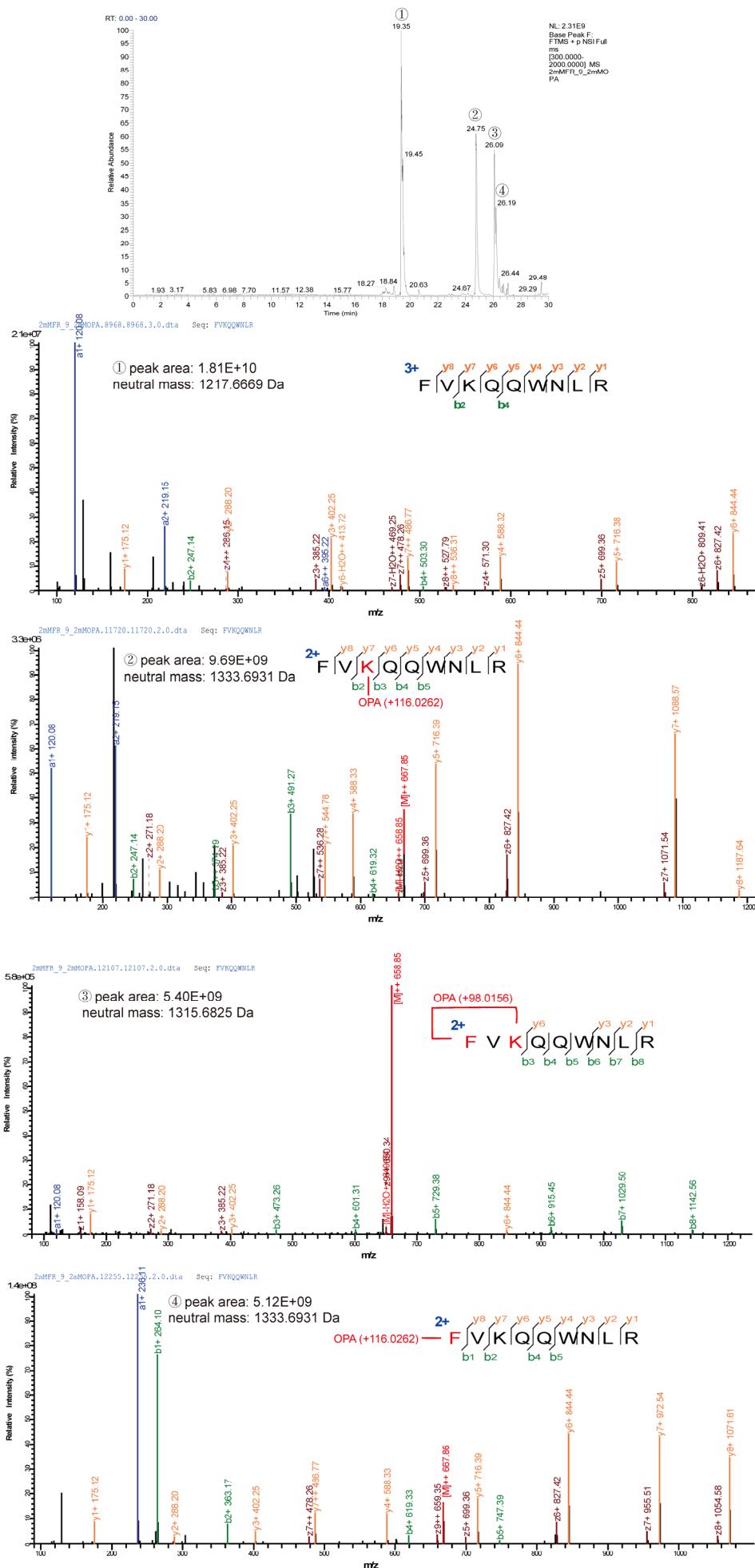


f NR-9 (1094.5873 Da) + OPA (134.0368 Da)

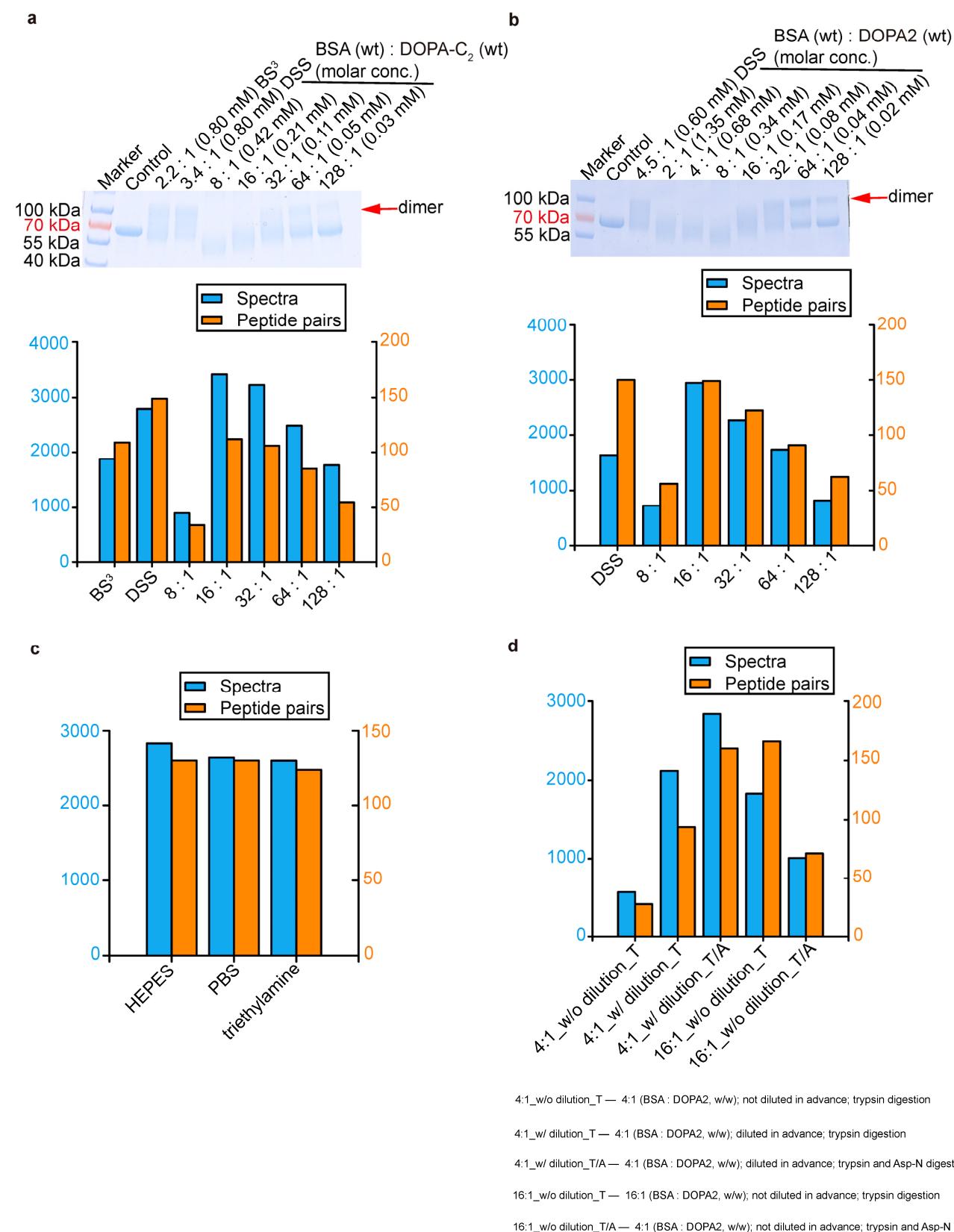


g VK-9 (875.5076 Da) + OPA (134.0368 Da)




h YK-14 (1590.8293 Da) + OPA (134.0368 Da)

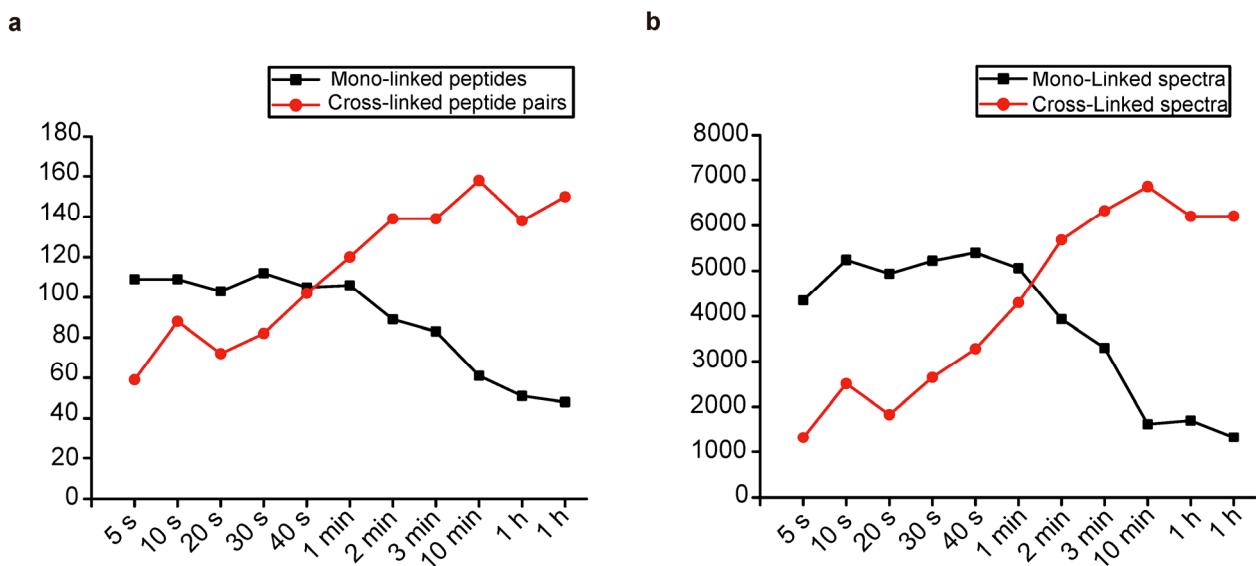
i HR-9 (1029.5178 Da) + OPA (134.0368 Da)


j FR-9 (1217.6669 Da) + OPA (134.0368 Da)

1000
1001
1002
1003
1004
1005

Supplementary Figure 3. Optimization of cross-linking conditions using BSA.

(a and b) Optimizing the working concentration of cross-linkers DOPA-C₂ and DOPA2. (c) Performance of DOPA2 in HEPES buffer, PBS buffer and triethylamine buffer on BSA. (d) Comparing cross-linking effects of DOPA2 with or without pre-dilution to 2× the final concentration, followed by digestion with trypsin alone or with trypsin plus Asp-N. Identified cross-links were filtered by requiring FDR < 0.01 at the spectral level.

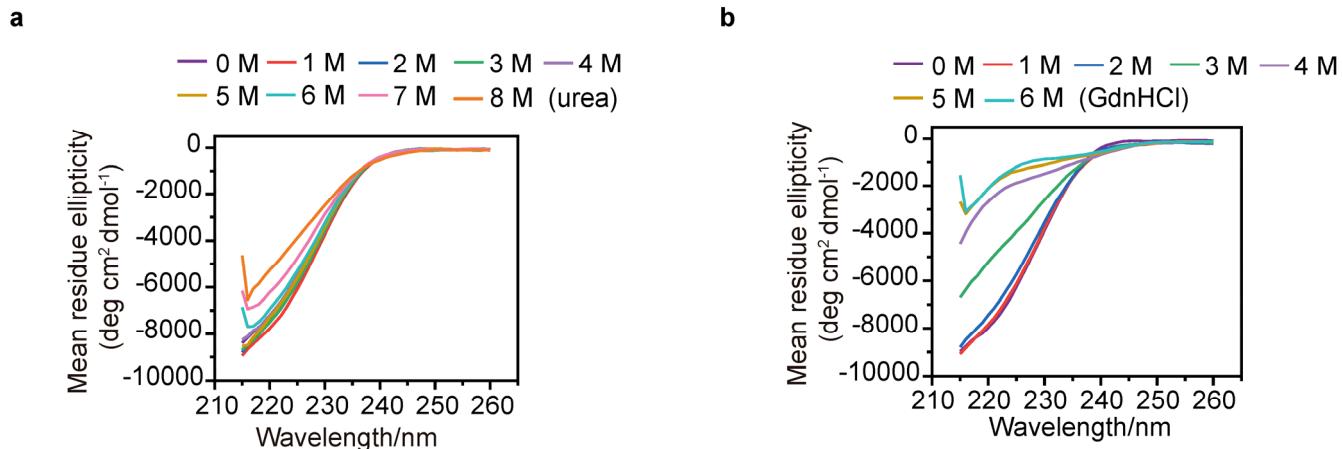

1006

1007
1008

Supplementary Figure 4. The distribution of mono-links and cross-links on BSA with the increasing reaction time.

1009
1010

(a) The number of mono-linked peptides and cross-linked peptide pairs with the increasing reaction time.
(b) The number of mono-linked spectra and cross-linked spectra with the increasing reaction time.

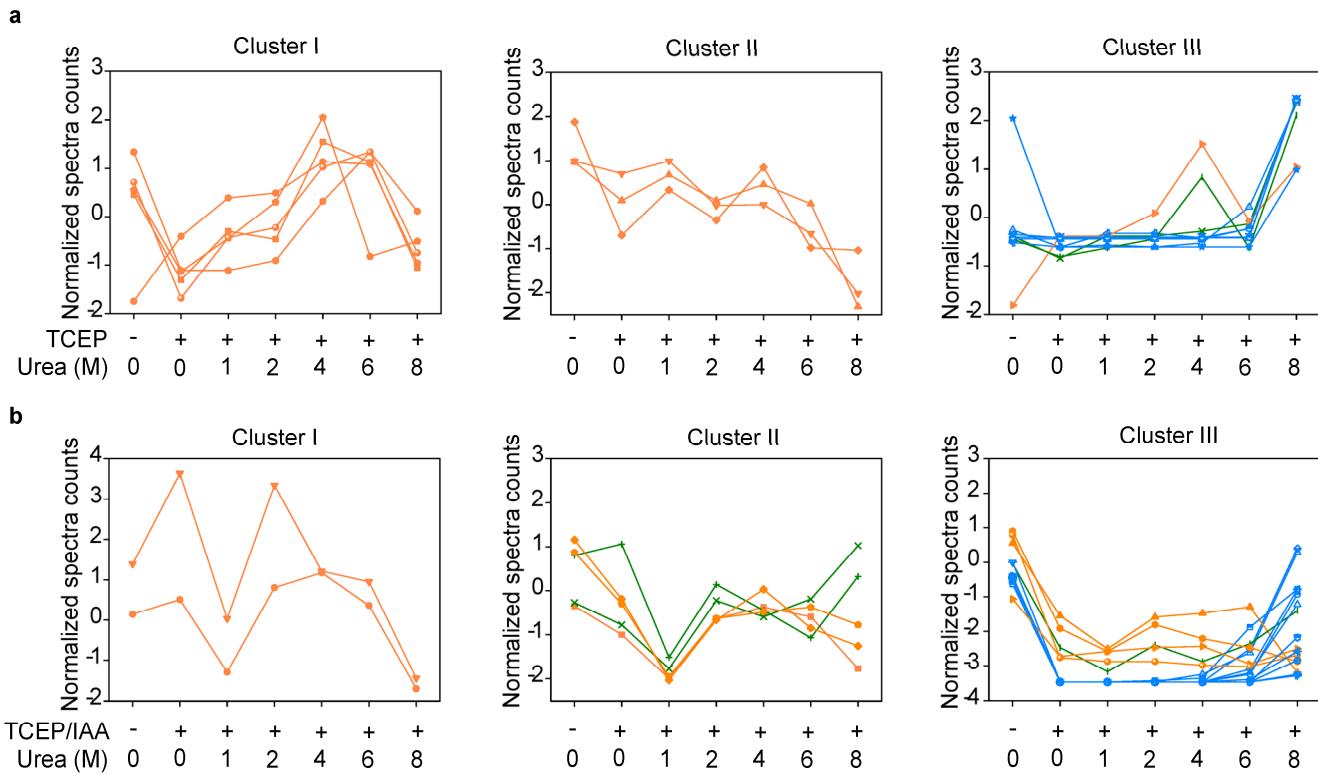


1011
1012
1013

Supplementary Figure 5. Circular dichroism spectra in far-UV region measured for RNase A in the presence of denaturants.

1014
1015
1016
1017

(a) RNase A unfolding at different urea concentrations. (b) RNase A unfolding at different GdnHCl concentrations.

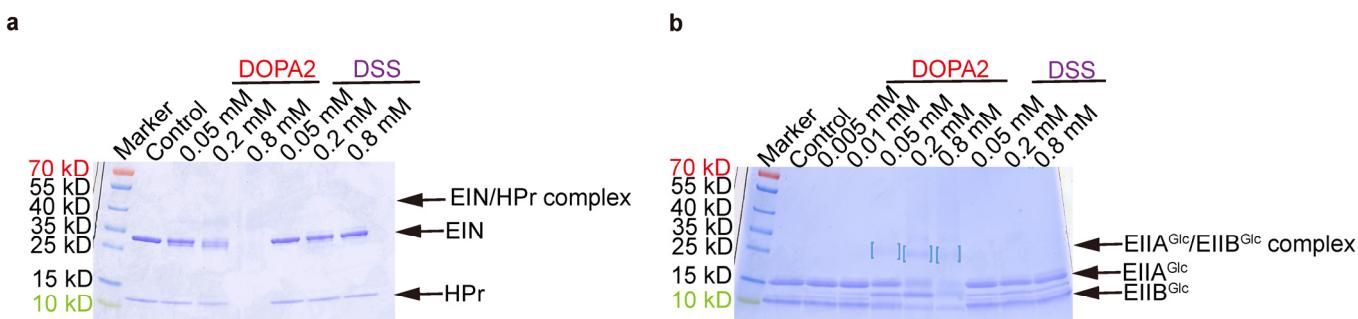

1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031

1032
1033

Supplementary Figure 6. Studying the unfolding process of RNase A in urea buffer using DOPA2 under reduction conditions.

1034
1035
1036
1037
1038
1039
1040

(a) The changes of spectral counts for each identified cross-linked residue pair in different concentrations of urea. And RNase A samples are reduced by TCEP ahead of denaturation in urea buffer. The residue pairs identified were classified into three clusters by K-means (Cluster I, Cluster II, cluster III). The coloring of cross-links is consistent with Cluster A, Cluster B and Cluster C in Figure 3b. (b) Similar to a, but RNase A samples are respectively reduced and blocked by TCEP and IAA ahead of denaturation in urea buffer. Cross-linking residue pairs were filtered by requiring FDR < 0.01 at the spectra level, E-value < 1×10^{-8} and spectral counts > 3.

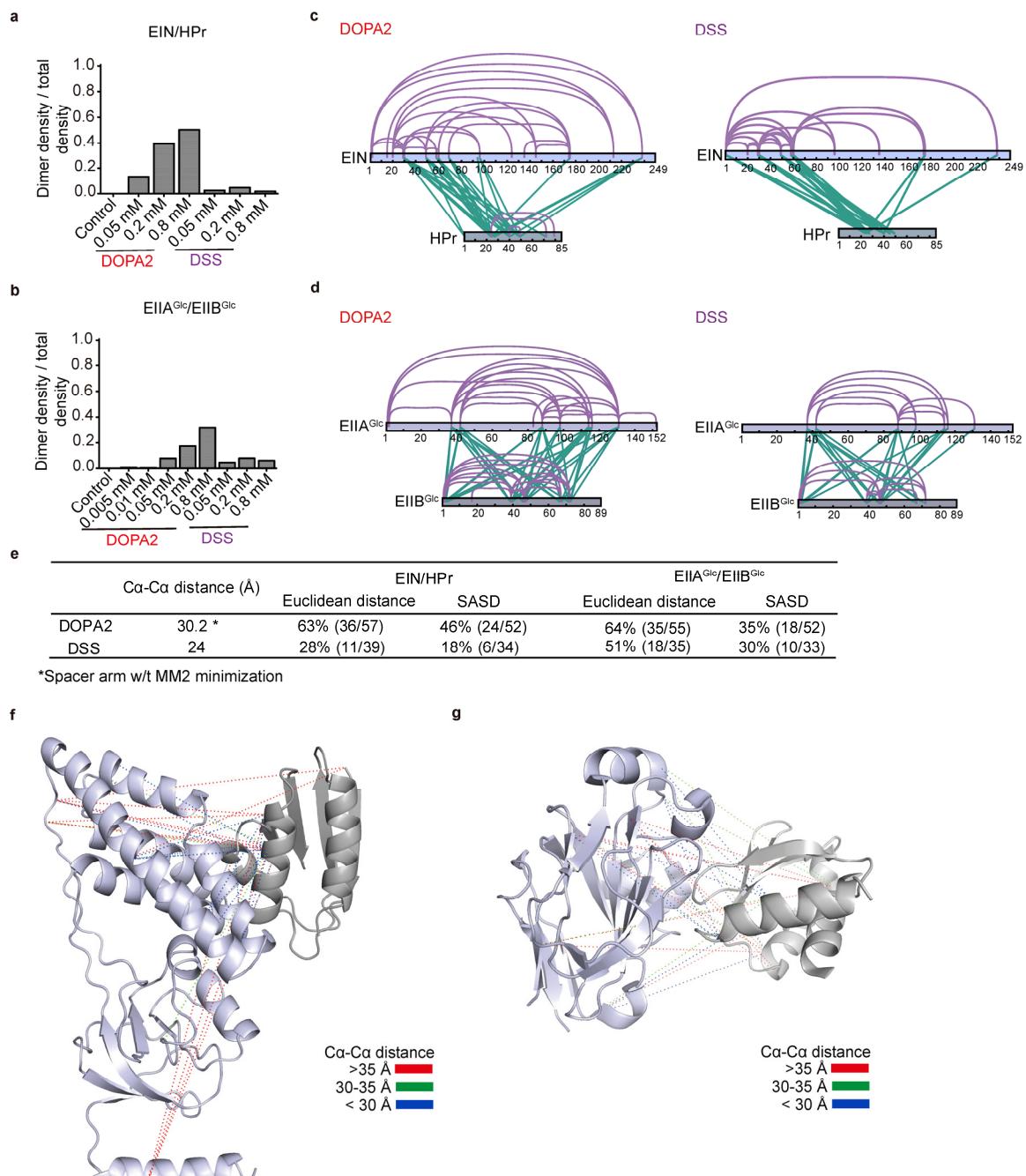


1041
1042
1043

Supplementary Figure 7. Performance of DOPA2 and DSS on weak protein interactions at the protein concentration of $1 \times K_D$.

1044
1045
1046
1047

(a) SDS-PAGE of DOPA2 or DSS-cross-linked EIN/HPr. The concentration of EIN/HPr is $1 \times K_D$. (b) As in a, but for the EIIA^{Glc}/EIIB^{Glc} complex. Dimers were marked by square brackets.


1048
1049
1050
1051
1052
1053

1054
1055

Supplementary Figure 8. Performance of DOPA2 and DSS on weak protein interactions at the protein concentration of $10 \times K_D$.

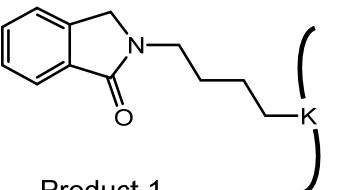
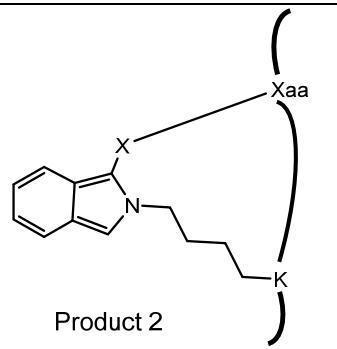
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067

(a) The quantitative data of SDS-PAGE of DOPA2 or DSS-cross-linked EIN/HPr in Figure 4b. The ratio of dimer grey density to total grey density of each sample was shown in a. (b) As in a, but for the EIIA^{Glc}/EIIB^{Glc} in Figure 4d. The ratio of dimer grey density to total grey density of each sample was shown in b. (c) DOPA2-cross-linked or DSS-cross-linked residue pairs identified from excised dimer bands that were mapped to the primary sequences of EIN/HPr complex subunits (visualized using xiNET⁶¹). (d) As in d, but for the EIIA^{Glc}/EIIB^{Glc} complex. (e) The table displays the percentage of residue pairs (inter-links plus intra-links) that are consistent with the structures of weak protein complexes, calculated by the use of the Euclidean distance or the solvent accessible surface distance; the table also displays the maximum distance restraints imposed by each linker. (f and g) Identified inter-molecular DOPA2 cross-links mapped onto the crystal structures of EIN/HPr (PDB code: 3EZA) or EIIA^{Glc}/EIIB^{Glc} (PDB code: 1O2F). The Ca-Ca Euclidean distances of cross-links are color-coded. All the cross-linking residue pairs were filtered by requiring an FDR < 0.01 at the spectra level, E-value < 1×10^{-3} , and spectral counts > 3.

1068

1069

Supplementary Table 1. Peptides tested for OPA selectivity.



Peptide	Sequence	[M+H] ⁺
TR-8	TPDVNKDR	944.4796
VR-7	VWDLVKR	915.5410
KR-7	KMRPEVR	915.5193
GR-11	(N,N-dimethyl-Gly)-VAAAKAAAAR	984.5949
VR-6	VKTEL R	745.4566
NR-9	NSKIFSPFR	1095.5945
VK-9	VGGSTIKSK	876.5149
YK-14	YFAYISKLDSASVK	1591.8366
HR-9	HGPVCAKYR	1030.5251
FR-9	FVKQQWNLR	1218.6742

1070

1071
1072
1073
1074

Supplementary Table 2. Products of ten synthesized peptides and OPA.

Peptides are modified after reacting. For each product, the mass-shift from the intact peptide is indicated, and the relative abundance is calculated based on the chromatographic peak areas from the corresponding. (X = N, S, or O; Xaa = Lys, Cys, Tyr, or the peptide N-terminus)

Chemical structure	Mass-shift from intact peptide	Attachment site	TR-8	VR-7	KR-7	GR-11	VR-6	NR-9	VK-9	YK-14	HR-9	FR-9
 Product 1	$+116.0262$ Da	K	0.58	0.48	0.43	1.00	0.55	-	0.21	-	0.12	0.48
		N-terminus	0.14	0.31	0.02	-	0.35	0.61	0.13	0.12	-	0.25
 Product 2	$+98.0156$ Da	K and N-terminus	0.28	0.21	0.43	-	0.08	0.35	0.30	0.45	-	0.27
		K and K	-	-	-	-	-	-	0.08	-	-	-
		Y and N-terminus	-	-	-	-	-	-	-	0.43	-	-
		C and K/N-terminus	-	-	-	-	-	-	-	-	0.88	-
 Unknown	+2.9421 Da		-	-	0.04	-	-	-	-	-	-	-
	+232.0535 Da		-	-	0.06	-	-	-	-	-	-	-
	-12.0693 Da		-	-	0.02	-	-	-	-	-	-	-
	+114.9962 Da		-	-	-	-	-	0.02	-	-	-	-
	+114.0140 Da		-	-	-	-	-	0.05	-	-	-	-
	+98.0184 Da		-	-	-	-	-	-	0.27	-	-	-

1075 **Supplementary Table 3. The composition of a ten-protein mixture and the molecular weight for**
 1076 **each protein.**

#	Protein Name	MW (kDa)
1	myosin	242
2	lactoferrin	78
3	BSA	69
4	catalase	60
5	β -amylase	56
6	aldolase	39
7	carbonic anhydrase 2	29
8	GST	28
9	PUD-1/PUD-2 heterodimer	17/17
10	lysozyme	16

1077
 1078

1079 **Supplementary Table 4. The intensity of different products in peptide samples cross-linked by**
 1080 **DOPA2 or DSS at low pH and in the presence of denaturants.**

1081 (a) The chromatographic base peak intensity of different products in peptide samples cross-linked by
 1082 DOPA2 in low pH value buffer and physiology buffer. “Regular peptide” refers to free peptides without
 1083 cross-linking; “X-link” refers to the situation wherein two peptides are linked with one molecule of
 1084 DOPA2; “Mono-link” refers to a peptide that has been modified but is not cross-linked by a cross-
 1085 linker. (b) The chromatographic base peak intensity of different products in peptide samples cross-
 1086 linked by DSS in low pH value buffer and physiology buffer. (c) The chromatographic base peak
 1087 intensity of different products in peptide samples cross-linked by DOPA2 in 6 M GdnHCl buffer or
 1088 HEPES buffer.

1089 a

Peptide sequence	DOPA2							
	HEPES Buffer, pH7.4				Citric Acid - Na ₂ HPO ₄ Buffer, pH3.0			
	Regular peptide (A)	X-link (B)	Mono-link (C)	(B+C)/(A+B+C)	Regular peptide (A)	X-link (B)	Mono-link (C)	(B+C)/(A+B+C)
TR-8	5.34E+07	2.36E+06	7.19E+07	0.58156	1.07E+08	1.56E+06	5.45E+07	0.34478
VR-7	8.33E+09	2.63E+06	2.24E+08	0.02647	3.72E+09	9.15E+06	9.88E+08	0.21130
KR-7	2.36E+08	7.38E+08	7.38E+08	0.86227	1.91E+06	0.00E+00	3.57E+08	0.99469
GR-11	8.40E+09	1.52E+09	1.52E+09	0.26542	1.37E+10	4.02E+06	3.68E+09	0.21221

b

Peptide sequence	DSS							
	HEPES Buffer, pH7.4				Citric Acid - Na ₂ HPO ₄ Buffer, pH3.0			
	Regular peptide (A)	X-link (B)	Mono-link (C)	(B+C)/(A+B+C)	Regular peptide (A)	X-link (B)	Mono-link (C)	(B+C)/(A+B+C)
TR-8	1.12E+08	0	6.00E+07	0.34863	8.77E+08	0	3.33E+04	0.00004
VR-7	6.16E+09	0	5.32E+08	0.07951	1.11E+10	0	3.97E+07	0.00357
KR-7	1.03E+08	0	5.07E+08	0.83055	9.69E+07	0	2.23E+06	0.02245
GR-11	9.89E+09	0	1.53E+06	0.00015	1.53E+10	0	1.89E+06	0.00012

c

Peptide sequence	DOPA2							
	HEPES Buffer, pH7.4				6 M GdnHCl			
	Regular peptide (A)	X-link (B)	Mono-link (C)	(B+C)/(A+B+C)	Regular peptide (A)	X-link (B)	Mono-link (C)	(B+C)/(A+B+C)
VR-7	1.71E+10	8.27E+08	6.37E+09	0.29607	2.37E+10	2.56E+09	2.77E+10	0.56072
GR-11	3.01E+08	1.55E+10	1.00E+10	0.98834	7.47E+08	3.01E+08	1.51E+10	0.95381

1090 **Supplementary Table 5. The cross-links identified from RNase A by DOPA2.**

1091 (a) The identified cross-links from RNase A in various concentrations of urea using DOPA2, including
 1092 linked amino acid positions, the $\text{C}\alpha$ - $\text{C}\alpha$ distance of each cross-link on crystal structures and the number
 1093 of spectra seen in different concentrations of urea. (b) As in a, but for identified cross-links from RNase
 1094 A in various concentrations of GdnHCl. (c) Similar to a, but for the identified cross-links from RNase
 1095 A exposed to 8 M urea for varying amounts of time using DOPA2. Cross-linking residue pairs were
 1096 filtered by requiring FDR < 0.01 at the spectra level, E-value < 1×10^{-8} and spectral counts > 3. The
 1097 estimated FDR at the residue pair level is zero.

1098

a

	Linked aa positions	Ca-Ca distance (Å) (PDB code: 6ETK)	# of spectra seen in various conc. of urea					
			0 M urea	1 M urea	2 M urea	4 M urea	6 M urea	8 M urea
Cluster A	RNase_A(1)-RNase_A(37)	17.0	206	220	196	230	183	88
	RNase_A(7)-RNase_A(37)	14.5	189	184	177	182	139	82
	RNase_A(1)-RNase_A(41)	19.8	152	198	161	195	125	43
	RNase_A(7)-RNase_A(41)	13.8	480	444	396	356	218	61
	RNase_A(66)-RNase_A(98)	23.3	35	27	49	25	43	11
	RNase_A(41)-RNase_A(66)	18.6	129	125	101	100	83	61
	RNase_A(41)-RNase_A(104)	21.6	132	101	108	91	76	28
	RNase_A(66)-RNase_A(104)	17.0	148	150	124	206	140	34
	RNase_A(7)-RNase_A(66)	19.3	28	18	12	14	19	1
	RNase_A(61)-RNase_A(104)	14.6	19	25	8	6	8	4
Cluster B	RNase_A(31)-RNase_A(37)	7.2	210	180	183	178	150	147
	RNase_A(41)-RNase_A(91)	10.9	0	0	0	21	140	264
	RNase_A(37)-RNase_A(104)	28.2	3	0	0	2	30	80
	RNase_A(37)-RNase_A(98)	18.0	13	9	16	69	149	286
	RNase_A(1)-RNase_A(98)	30.5	0	0	0	0	1	36
	RNase_A(1)-RNase_A(91)	28.2	0	0	0	1	39	82
	RNase_A(7)-RNase_A(98)	22.3	0	0	0	0	4	31
	RNase_A(41)-RNase_A(98)	12.6	0	0	0	7	102	254
	RNase_A(31)-RNase_A(98)	13.5	0	0	0	1	11	50
	RNase_A(66)-RNase_A(91)	27.7	0	0	0	0	10	50
	RNase_A(1)-RNase_A(31)	20.3	1	0	1	0	4	22
	RNase_A(7)-RNase_A(91)	23.9	0	0	0	8	50	114
	RNase_A(7)-RNase_A(31)	14.8	2	0	2	1	4	35
	RNase_A(61)-RNase_A(91)	38.2	0	0	0	0	4	29
	RNase_A(91)-RNase_A(104)	29.0	0	0	0	1	21	86
Cluster C	RNase_A(31)-RNase_A(41)	10.0	0	0	0	0	1	57
	RNase_A(61)-RNase_A(98)	30.0	0	0	0	0	0	27
	RNase_A(1)-RNase_A(61)	30.3	0	0	0	0	0	7

1138
1139

b

	Linked aa positions	Ca-Ca distance (Å) (PDB code: 6ETK)	# of spectra seen in various conc. of GdnHCl					
			0 M GdnHCl	1 M GdnHCl	2 M GdnHCl	3 M GdnHCl	4 M GdnHCl	5 M GdnHCl
Cluster A	RNase_A(37)-RNase_A(41)	9.0	154	68	34	56	43	51
	RNase_A(1)-RNase_A(41)	19.8	55	19	16	12	0	0
	RNase_A(66)-RNase_A(98)	23.3	67	9	1	7	2	0
	RNase_A(41)-RNase_A(66)	18.6	43	7	0	2	4	0
	RNase_A(41)-RNase_A(104)	21.6	118	59	29	24	6	0
	RNase_A(7)-RNase_A(41)	13.8	284	215	125	45	1	0
	RNase_A(7)-RNase_A(37)	14.5	168	150	109	49	39	30
	RNase_A(1)-RNase_A(37)	17.0	80	65	60	42	19	20
	RNase_A(66)-RNase_A(104)	17.0	87	62	52	21	0	0
	RNase_A(7)-RNase_A(66)	19.3	54	32	12	1	0	0
Cluster B	RNase_A(61)-RNase_A(104)	14.6	41	48	25	12	1	0
	RNase_A(37)-RNase_A(98)	18.0	6	18	28	105	106	86
	RNase_A(1)-RNase_A(91)	28.2	0	1	0	35	47	41
	RNase_A(41)-RNase_A(98)	12.6	0	0	0	66	64	67
	RNase_A(1)-RNase_A(98)	30.5	0	0	0	16	15	17
	RNase_A(61)-RNase_A(91)	38.2	0	0	2	55	44	43
	RNase_A(61)-RNase_A(98)	30.0	0	0	0	30	4	10
	RNase_A(41)-RNase_A(91)	10.9	0	0	1	91	82	69
	RNase_A(7)-RNase_A(91)	23.9	0	0	0	15	12	9
Cluster C	RNase_A(91)-RNase_A(104)	29.0	0	7	0	35	22	26
	RNase_A(37)-RNase_A(91)	12.3	69	35	38	59	62	61
	RNase_A(31)-RNase_A(91)	13.3	64	3	7	58	44	41

1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158

1159
1160

C

	Linked aa positions	Ca-Ca distance (PDB code: 6ETK)	# of spectra seen in 8 M urea at different time points									
			5 s	10 s	20 s	30 s	1 min	2 min	5 min	10 min	15 min	30 min
Cluster 1	RNase_A(41)-RNase_A(91)	10.9	18	24	39	33	64	117	166	216	227	217
	RNase_A(41)-RNase_A(98)	12.6	20	30	40	50	69	99	139	192	183	213
	RNase_A(37)-RNase_A(91)	12.3	255	242	268	265	267	311	379	332	345	309
	RNase_A(37)-RNase_A(98)	18.0	81	93	120	126	176	190	232	271	298	292
	RNase_A(1)-RNase_A(91)	28.2	1	7	11	16	30	39	63	62	73	62
	RNase_A(37)-RNase_A(41)	9.0	208	234	253	256	288	314	344	359	391	367
	RNase_A(1)-RNase_A(98)	30.5	0	0	1	0	0	0	6	8	17	10
	RNase_A(61)-RNase_A(98)	30.0	4	4	8	4	15	26	49	80	60	76
	RNase_A(37)-RNase_A(104)	28.2	16	27	36	23	33	40	90	101	98	98
	RNase_A(66)-RNase_A(98)	23.4	11	9	23	10	7	23	28	28	30	20
	RNase_A(7)-RNase_A(98)	22.3	1	0	1	0	0	1	0	4	0	4
	RNase_A(31)-RNase_A(98)	13.5	0	0	0	0	0	11	30	31	31	28
	RNase_A(1)-RNase_A(66)	26.0	16	5	8	12	5	12	17	18	16	16
	RNase_A(1)-RNase_A(31)	20.3	0	0	1	1	0	1	3	4	7	8
	RNase_A(31)-RNase_A(41)	10.0	0	0	0	0	0	4	10	22	17	20
	RNase_A(41)-RNase_A(66)	18.6	7	6	3	18	19	27	61	86	80	77
	RNase_A(31)-RNase_A(91)	13.3	72	64	92	89	111	121	149	169	163	180
	RNase_A(7)-RNase_A(91)	23.9	0	0	0	0	2	8	20	31	38	30
	RNase_A(91)-RNase_A(104)	29.0	53	46	42	53	60	72	97	121	117	123
	RNase_A(66)-RNase_A(91)	27.7	9	14	17	15	24	24	67	78	86	77
	RNase_A(61)-RNase_A(91)	38.2	0	2	5	10	21	43	91	124	112	120
	RNase_A(37)-RNase_A(66)	26.4	15	0	28	17	13	37	42	65	76	70
Cluster 2	RNase_A(7)-RNase_A(37)	14.5	373	407	375	379	331	306	267	204	160	133
	RNase_A(1)-RNase_A(37)	17.0	311	294	315	310	293	263	243	163	144	127
	RNase_A(7)-RNase_A(41)	13.8	353	339	320	327	294	245	201	163	140	115
	RNase_A(1)-RNase_A(41)	19.8	29	34	33	25	19	18	15	9	10	3
	RNase_A(66)-RNase_A(104)	17.0	281	276	294	295	254	265	204	168	179	144
	RNase_A(7)-RNase_A(66)	19.3	81	80	87	90	62	66	49	23	22	11
	RNase_A(31)-RNase_A(37)	7.2	232	209	215	214	214	211	206	182	189	178
Cluster 3	RNase_A(41)-RNase_A(104)	21.6	85	69	86	86	75	74	95	97	117	72
	RNase_A(61)-RNase_A(104)	14.6	143	136	151	142	132	131	165	159	138	111
	RNase_A(7)-RNase_A(31)	14.8	0	0	0	0	0	0	0	3	3	0

1161
1162
1163
1164
1165
1166
1167
1168

1169 **Supplementary Table 6. Inter-molecular cross-links identified from the EIN/HPr complex.**
 1170 The cross-links identification results were filtered by requiring FDR < 0.01 at the spectra level, E-
 1171 value < 1×10^{-8} and spectral counts > 3. The estimated FDR at the residue pair level is zero. The cross-
 1172 links were classified according to their structural compatibility with either the specific complex or the
 1173 encounter complexes. The cross-linking data of 0.05, 0.2, and 0.8 mM DOPA2 or DSS were combined.

Cross-linker	Encounter complexes (ECs)		Specific complex (SC)		Total X-links	Total spectra of Inter-molecular X-links	Total spectra of Intra-molecular X-links	
	# of X-links	# of spectra	# of X-links	# of spectra				
in-solution	DSS	13 (100%)	498 (100%)	0	0	13	498	5007
	DOPA2	5 (83%)	168 (97%)	1 (17%)	5(3%)	6	173	2504
in-gel	DSS	11 (73%)	1515 (60%)	4 (27%)	1027(40%)	15	2542	1187
	DOPA2	17 (68%)	2186 (56.6%)	8 (32%)	1676 (43.4%)	25	3862	4926

1174
 1175 **Supplementary Table 7. The inter-molecular cross-links identified by DOPA2 or DSS in protein**
 1176 **complex EIN/HPr.**

1177 (a) The inter-molecular cross-links identified by DSS in the solution. (b) As in a, but for cross-links
 1178 identified by DOPA2. (c) The inter-molecular cross-links identified by DSS in the gel. (d) As in c, but
 1179 for cross-links identified by DOPA2. Cross-links were filtered by requiring FDR < 0.01 at the spectra
 1180 level, E-value < 1×10^{-8} and spectral counts > 3. The estimated FDR at the residue pair level is zero.

1181 a

Linked aa positions	Total Spec	Best E-value	Ca-Ca distance (Å) (PDB code: 3EZA)	label
EIN(49)-HPr(49)	22	1.78E-20	26.48	in-solution
EIN(30)-HPr(49)	13	3.73E-37	29.90	in-solution
EIN(49)-HPr(72)	20	4.17E-16	35.22	in-solution
HPr(27)-EIN(30)	27	2.66E-19	35.30	in-solution
HPr(24)-EIN(30)	119	2.86E-17	36.78	in-solution
EIN(1)-HPr(49)	48	4.34E-32	44.96	in-solution
HPr(1)-EIN(30)	32	2.72E-19	46.92	in-solution
EIN(30)-HPr(72)	9	3.71E-21	47.21	in-solution
EIN(1)-HPr(40)	58	3.18E-11	48.40	in-solution
EIN(1)-HPr(24)	18	8.06E-17	49.07	in-solution
EIN(1)-HPr(27)	63	5.71E-22	53.15	in-solution
EIN(1)-HPr(72)	32	1.17E-27	60.88	in-solution
EIN(1)-HPr(1)	37	1.26E-31	64.70	in-solution

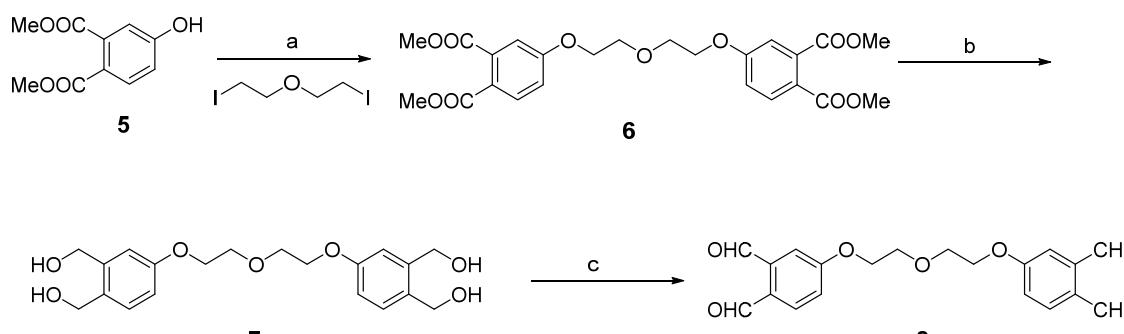
1198 b

Linked aa positions	Total Spec	Best E-value	Ca-Ca distance (Å) (PDB code: 3EZA)	label
HPr(49)-EIN(96)	5	1.92E-19	24.33	in-solution
EIN(49)-HPr(49)	21	1.05E-17	26.48	in-solution
EIN(30)-HPr(49)	83	3.73E-31	29.90	in-solution
HPr(24)-EIN(30)	47	1.95E-12	36.78	in-solution
HPr(24)-EIN(238)	11	5.31E-16	56.10	in-solution
HPr(27)-EIN(238)	6	1.66E-20	61.06	in-solution

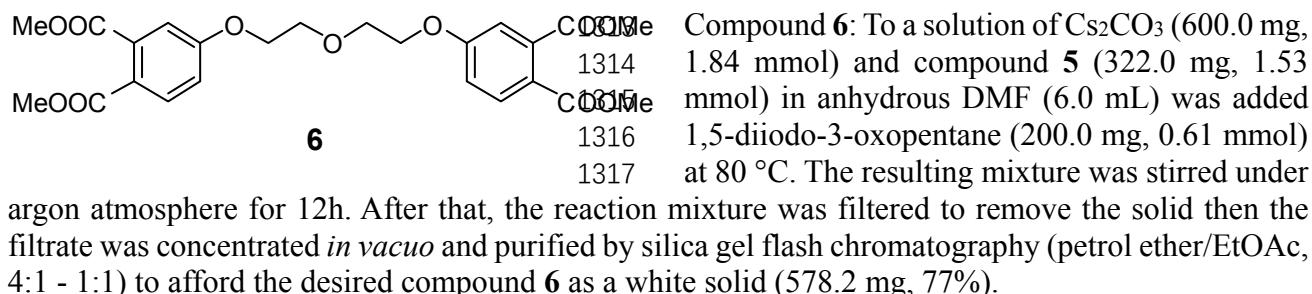
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260

C

Linked aa positions	Total Spec	Best E-value	Ca-C α distance (Å) (PDB code: 3EZA)	label
HPr(24)-EIN(58)	526	3.21E-36	15.38	in-gel
HPr(27)-EIN(58)	238	5.11E-14	19.62	in-gel
HPr(24)-EIN(49)	94	1.58E-12	22.32	in-gel
HPr(27)-EIN(49)	169	4.16E-31	23.42	in-gel
EIN(49)-HPr(49)	702	2.37E-24	26.48	in-gel
HPr(24)-EIN(175)	43	2.83E-22	34.05	in-gel
HPr(27)-EIN(30)	156	2.81E-16	35.30	in-gel
HPr(40)-EIN(49)	27	4.61E-24	36.39	in-gel
HPr(24)-EIN(30)	303	5.70E-20	36.78	in-gel
HPr(27)-EIN(29)	36	2.84E-26	36.85	in-gel
HPr(24)-EIN(29)	56	2.87E-09	37.81	in-gel
EIN(30)-HPr(40)	44	4.52E-21	38.01	in-gel
EIN(1)-HPr(40)	5	1.94E-10	48.40	in-gel
EIN(1)-HPr(24)	81	4.86E-13	49.07	in-gel
EIN(1)-HPr(27)	62	3.69E-21	53.15	in-gel


d

Linked aa positions	Total Spec	Best E-value	Ca-C α distance (Å) (PDB code: 3EZA)	label
HPr(24)-EIN(58)	233	8.11E-40	15.38	in-gel
HPr(27)-EIN(58)	504	4.98E-23	19.62	in-gel
HPr(24)-EIN(60)	15	1.31E-09	20.21	in-gel
HPr(27)-EIN(69)	45	1.65E-14	20.35	in-gel
HPr(49)-EIN(69)	28	1.58E-18	22.20	in-gel
HPr(24)-EIN(49)	127	2.89E-33	22.32	in-gel
HPr(27)-EIN(49)	86	3.44E-23	23.42	in-gel
HPr(49)-EIN(96)	638	3.05E-41	24.33	in-gel
EIN(49)-HPr(49)	78	6.50E-18	26.48	in-gel
EIN(30)-HPr(49)	623	1.18E-34	29.90	in-gel
EIN(29)-HPr(49)	24	6.25E-16	30.92	in-gel
HPr(40)-EIN(96)	56	1.95E-10	31.79	in-gel
HPr(27)-EIN(30)	274	2.13E-21	35.30	in-gel
HPr(40)-EIN(49)	77	3.25E-28	36.39	in-gel
HPr(24)-EIN(30)	209	8.37E-23	36.78	in-gel
HPr(27)-EIN(29)	78	3.22E-26	36.85	in-gel
HPr(24)-EIN(29)	37	1.21E-10	37.81	in-gel
EIN(30)-HPr(40)	130	2.27E-31	38.01	in-gel
EIN(29)-HPr(40)	24	5.62E-16	39.11	in-gel
HPr(1)-EIN(49)	66	6.96E-26	41.09	in-gel
HPr(1)-EIN(30)	7	2.05E-19	46.92	in-gel
HPr(24)-EIN(238)	229	2.10E-13	56.10	in-gel
HPr(49)-EIN(238)	65	1.76E-20	56.45	in-gel
HPr(40)-EIN(238)	4	3.15E-09	60.32	in-gel
HPr(27)-EIN(238)	205	2.49E-32	61.06	in-gel

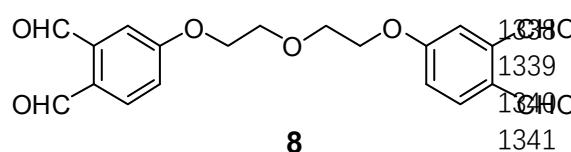


1301 desired compound **4** as a white solid (86.7 mg, 98% for two steps).
1302 ^1H NMR (500 MHz, CDCl_3) δ 10.58 (s, 2H), 10.45 (s, 2H), 7.89 (d, $J = 8.0$ Hz, 2H), 7.79 (d, $J =$
1303 2.0 Hz, 2H), 7.52 (dd, $J = 8.0, 2.0$ Hz, 2H), 3.15 (s, 4H);
1304 ^{13}C NMR (125 MHz, CDCl_3) δ 192.26, 191.99, 147.26, 136.87, 134.94, 133.78, 132.30, 130.60,
1305 37.03;
1306 HRMS (ESI) m/z calculated for $\text{C}_{18}\text{H}_{15}\text{O}_4$ ($\text{M}+\text{H}$)⁺ 295.0970, found 295.0965.

1307
1308


Reagents and conditions: (a) Cs_2CO_3 , DMF , 80°C , 12 h, 77%; (b) DIBAL-H, THF , 50°C , 2.5 h; (c) Dess-Martin periodinane, DCM , 12 h, 93% for two steps.

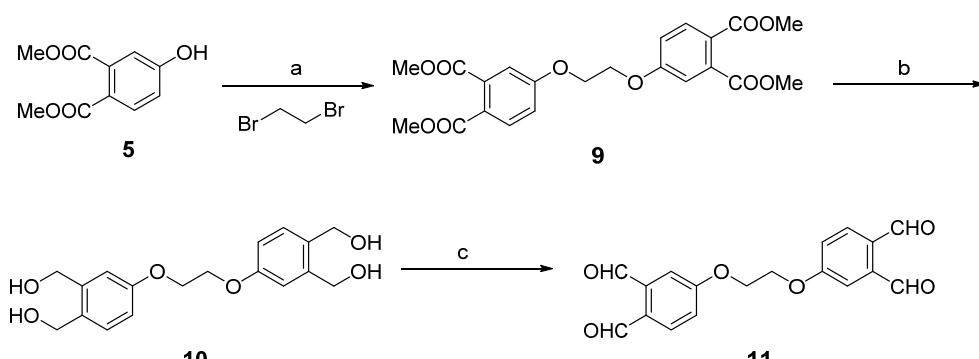
1314 ^1H NMR (400 MHz, CDCl_3) δ 7.79 (d, $J = 8.0$ Hz, 2H), 7.09 (d, $J = 2.0$ Hz, 2H), 7.00 (dd, $J = 8.0, 2.0$ Hz, 2H), 4.20 (m, 4H), 3.93 (m, 4H), 3.88 (d, $J = 16.0$ Hz, 12H);


1315 ^{13}C NMR (100 MHz, CDCl_3) δ 168.86, 166.92, 161.30, 135.75, 131.70, 122.63, 116.50, 114.25, 69.84, 68.00, 52.91, 52.54;

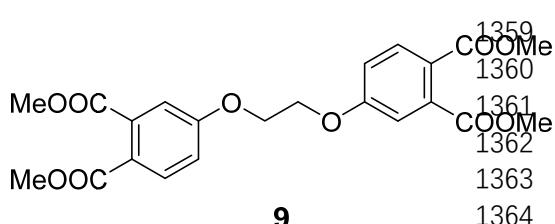
1316 HRMS (ESI) m/z calculated for $\text{C}_{24}\text{H}_{27}\text{O}_{11}$ ($\text{M}+\text{H}$)⁺ 491.1553, found 491.1548.

1318
1319
1320
1321
1322
1323
1324
1325
1326

1327 Compound **7**: To a solution of compound **6** (73.5 mg, 0.15 mmol) in anhydrous THF (3.5 mL) was added DIBAL-H (1.5 mL, 1.50 mmol, 1.0 M in hexanes) at room temperature. The resulting mixture was stirred under argon atmosphere for 2.5 h under 50°C . After that, the reaction mixture was quenched with potassium sodium tartrate solution (5.0 mL). Most organic solvents were removed under reduced pressure and the mixture was extracted with $i\text{-PrOH:CHCl}_3 = 1:3$ (40.0 mL \times 3). The combined organic layers were washed with brine (5.0 mL). After dried over Na_2SO_4 , the solution was concentrated *in vacuo* to afford the desired compound **7** as a white solid without further purification.


Compound **8**: To a solution of compound **7** (~56.0 mg, 0.15 mmol) in anhydrous DCM (9.0 mL) was added Dess-Martin periodinane (382.0 mg, 0.90 mmol) at room temperature. The resulting mixture was stirred under argon atmosphere for 12 h. After that, the

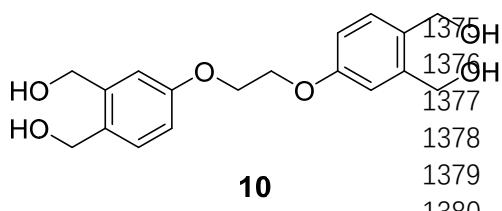
reaction mixture was quenched with Sat. NaHCO₃ (5.0 mL) and Sat. Na₂S₂O₃ (5.0 mL). The mixture was stirred for 1 h and extracted with DCM (15.0 mL×3). The combined organic layers were washed with brine (5.0 mL). After dried over Na₂SO₄, the solution was concentrated *in vacuo* and purified by silica gel flash chromatography (petrol ether/EtOAc, 3:1 - 3:2) to afford the desired compound **8** as a white solid (51.7 mg, 93% for two steps).


¹H NMR (500 MHz, CDCl₃) δ 10.65 (s, 2H), 10.32 (s, 2H), 7.91 (d, *J* = 8.0 Hz, 2H), 7.46 (d, *J* = 2.0 Hz, 2H), 7.23 (dd, *J* = 8.0, 2.0 Hz, 2H), 4.30 (m, 4H), 3.98 (m, 4H);

¹³C NMR (125 MHz, CDCl₃) δ 191.95, 191.07, 163.14, 138.78, 134.82, 129.90, 119.48, 115.33, 69.85, 68.30;

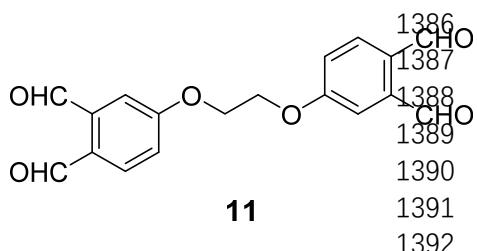
HRMS (ESI) *m/z* calculated for C₂₀H₁₉O₇ (M+H)⁺ 371.1125, found 371.1123.

Reagents and conditions: (a) Cs₂CO₃, DMF, 80 °C, 12 h, 37%; (b) DIBAL-H, THF, 12 h; (c) Dess-Martin periodinane, DCM, 6 h, 80% for two steps.


Compound **9**: To a solution of Cs₂CO₃ (6.2 g, 19.00 mmol) and compound **5** (2.1 g, 10.00 mmol) in anhydrous DMF (100.0 mL) was added ethylene dibromide (7.1 g, 38.00 mmol) at 80 °C. The resulting mixture was stirred under argon atmosphere for 12 h. After that, the reaction mixture was filtered to remove the solid then the filtrate was concentrated *in vacuo* and

purified by silica gel flash chromatography (petrol ether/EtOAc, 10:1 - 5:1) to afford the desired compound **9** as a white solid. If anyone wants to improve the yield of this step, you can decrease the ratio of dibromide (1.6g, 37%).

¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.0 Hz, 2H), 7.12 (d, *J* = 2.0 Hz, 2H), 7.03 (dd, *J* = 8.0, 2.0 Hz, 2H), 4.39 (s, 4H), 3.89 (d, *J* = 16.0 Hz, 12H);


¹³C NMR (100 MHz, CDCl₃) δ 168.73, 166.87, 160.97, 135.77, 131.74, 123.02, 116.57, 114.20, 66.72, 52.93, 52.57;

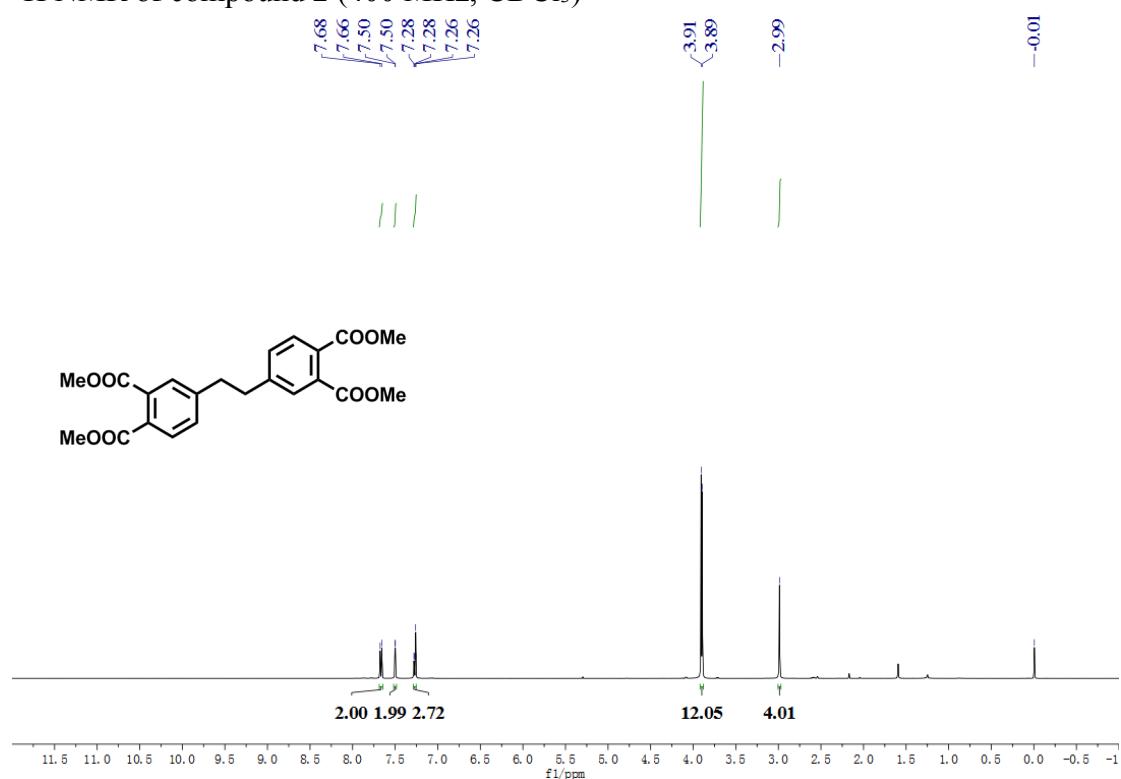
HRMS (ESI) *m/z* calculated for C₂₂H₂₃O₁₀ (M+H)⁺ 447.1286, found 447.1282.

Compound **10**: To a solution of compound **9** (717.2 mg, 1.61 mmol) in anhydrous THF (40.0 mL) was added DIBAL-H (16.1 mL, 16.10 mmol, 1.0 M in hexanes) at room temperature. The resulting mixture was stirred under argon atmosphere for 12 h. After that, the reaction mixture was quenched with potassium sodium tartrate solution (25.0 mL).

1381 Most organic solvents were removed under reduced pressure and the mixture was extracted with *i*-
1382 PrOH:CHCl₃ = 1:3 (100.0 mL×3). The combined organic layers were washed with brine (50.0 mL).
1383 After dried over Na₂SO₄, the solution was concentrated *in vacuo* to afford the desired compound **10** as
1384 a white solid without further purification.
1385

Compound **11**: To a solution of compound **10** (~150.0 mg, 0.45 mmol) in anhydrous DCM (40.0 mL) was added Dess-Martin periodinane (1.1 g, 2.69 mmol) at room temperature. The resulting mixture was stirred under argon atmosphere for 6 h. After that, the reaction mixture was quenched with Sat. NaHCO₃ (20.0 mL) and Sat. Na₂S₂O₃ (20.0 mL). The mixture was stirred for 1 h and extracted with DCM (40.0 mL×3). The

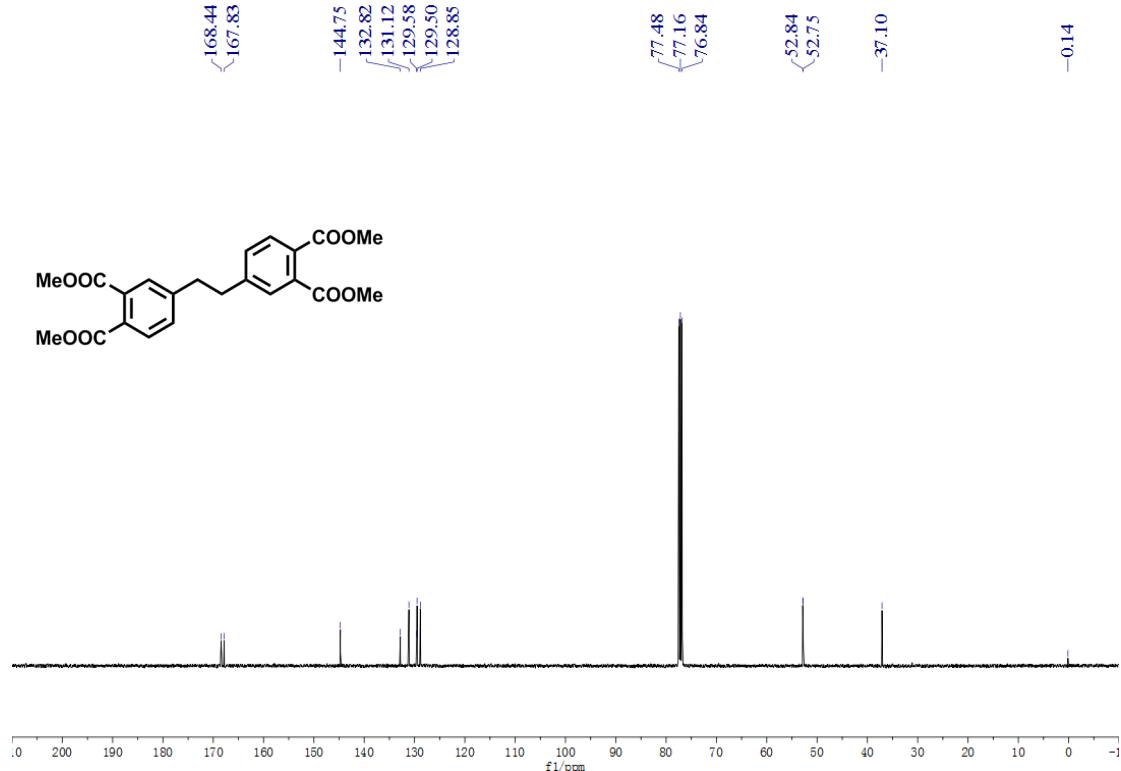
1393 combined organic layers were washed with brine (30.0 mL). After dried over Na₂SO₄, the solution was
1394 concentrated *in vacuo* and purified by silica gel flash chromatography (petrol ether/EtOAc, 5:1 - 1:2)
1395 to afford the desired compound **11** as a white solid (119.0 mg, 80% for two steps).


1396 ¹H NMR (400 MHz, CDCl₃) δ 10.69 (s, 2H), 10.34 (s, 2H), 7.96 (d, *J* = 8.0 Hz, 2H), 7.53 (d, *J* =
1397 2.0 Hz, 2H), 7.29 (dd, *J* = 8.0, 2.0 Hz, 2H), 4.53 (s, 4H);

1398 ¹³C NMR (100 MHz, CDCl₃) δ 191.84, 191.06, 162.71, 138.83, 134.91, 130.20, 119.70, 115.01,
1399 66.92;

1400 HRMS (ESI) *m/z* calculated for C₁₈H₁₅O₆ (M+H)⁺ 327.0863, found 327.0855.

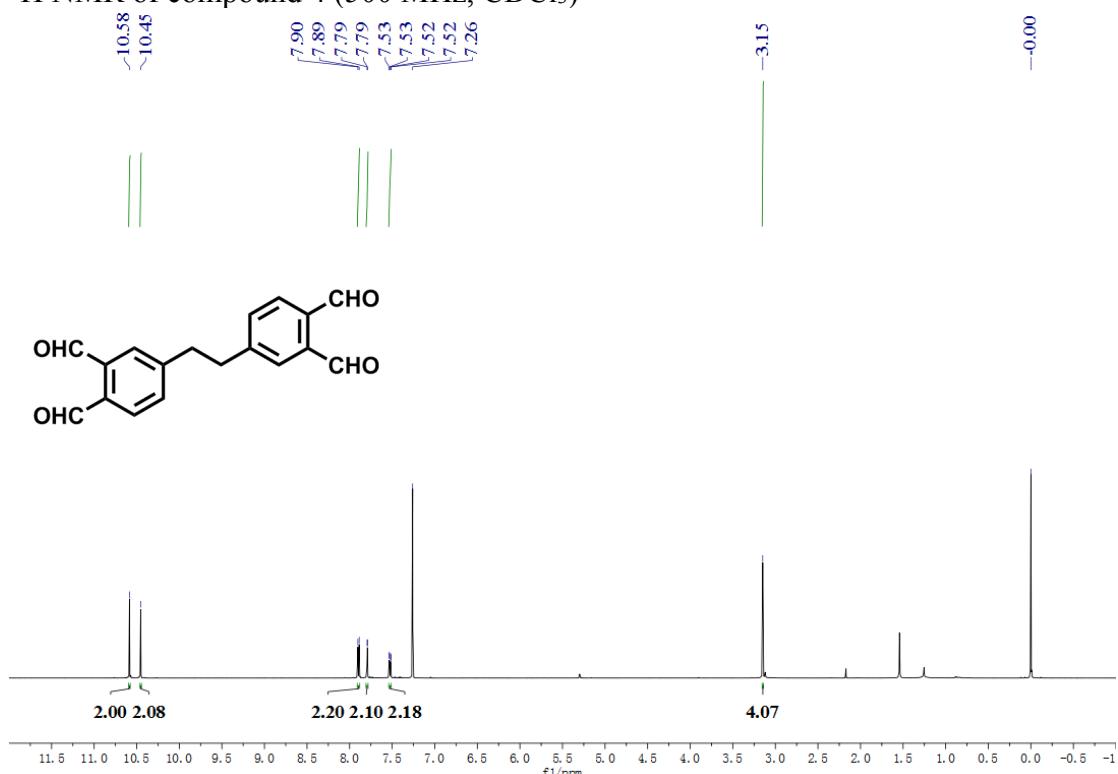
1427 **1H NMR and 13C NMR spectra**


1428 ¹H NMR of compound 2 (400 MHz, CDCl₃)

1429

1430

1431 ¹³C NMR of compound 2 (100 MHz, CDCl₃)

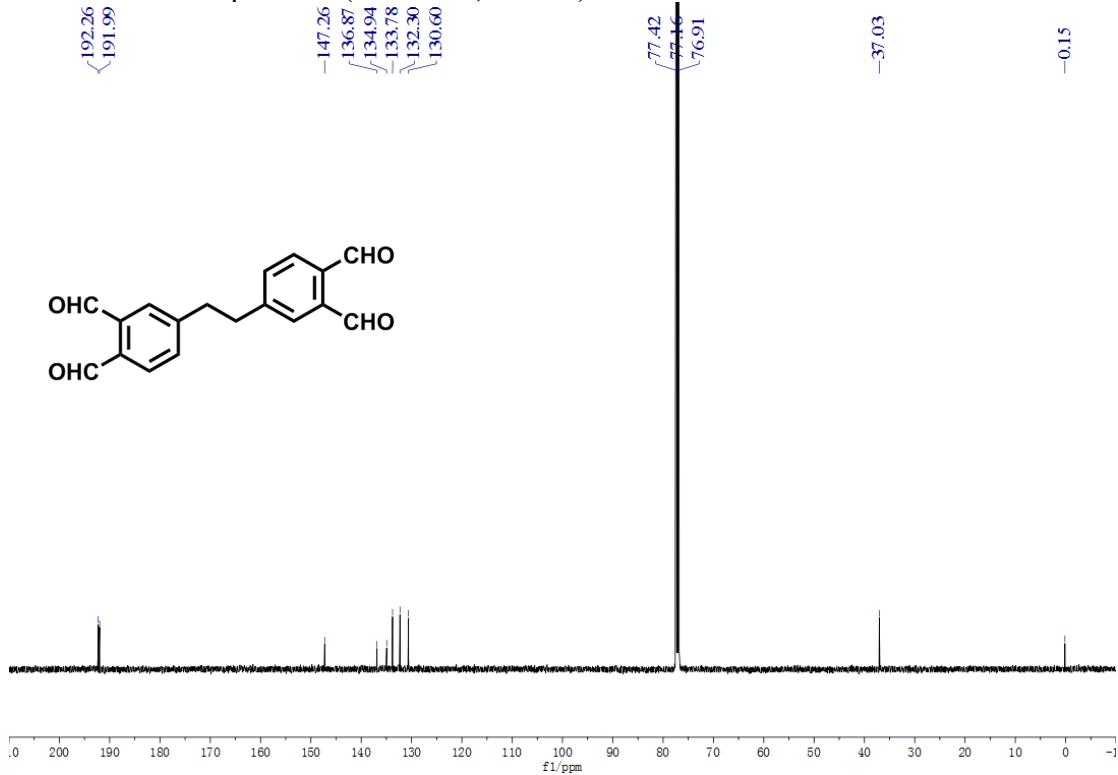

1432

1433

1434

1435

¹H NMR of compound 4 (500 MHz, CDCl₃)



1436

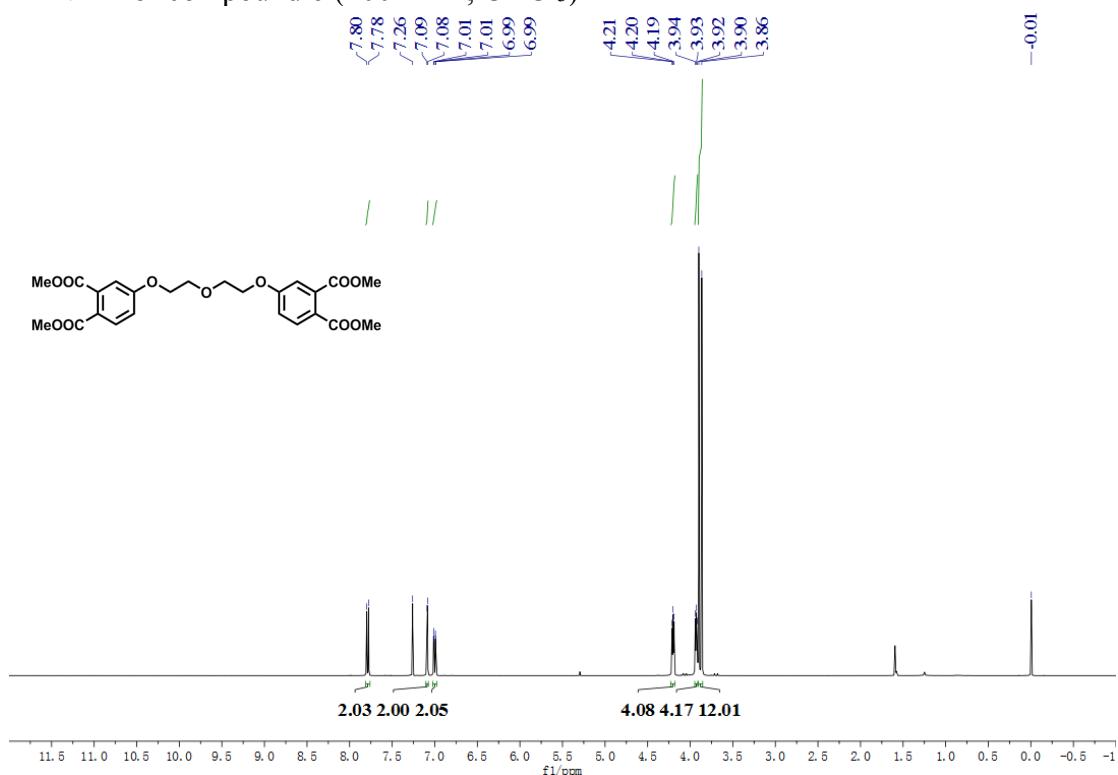
1437

1438

¹³C NMR of compound 4 (125 MHz, CDCl₃)

1439

1440

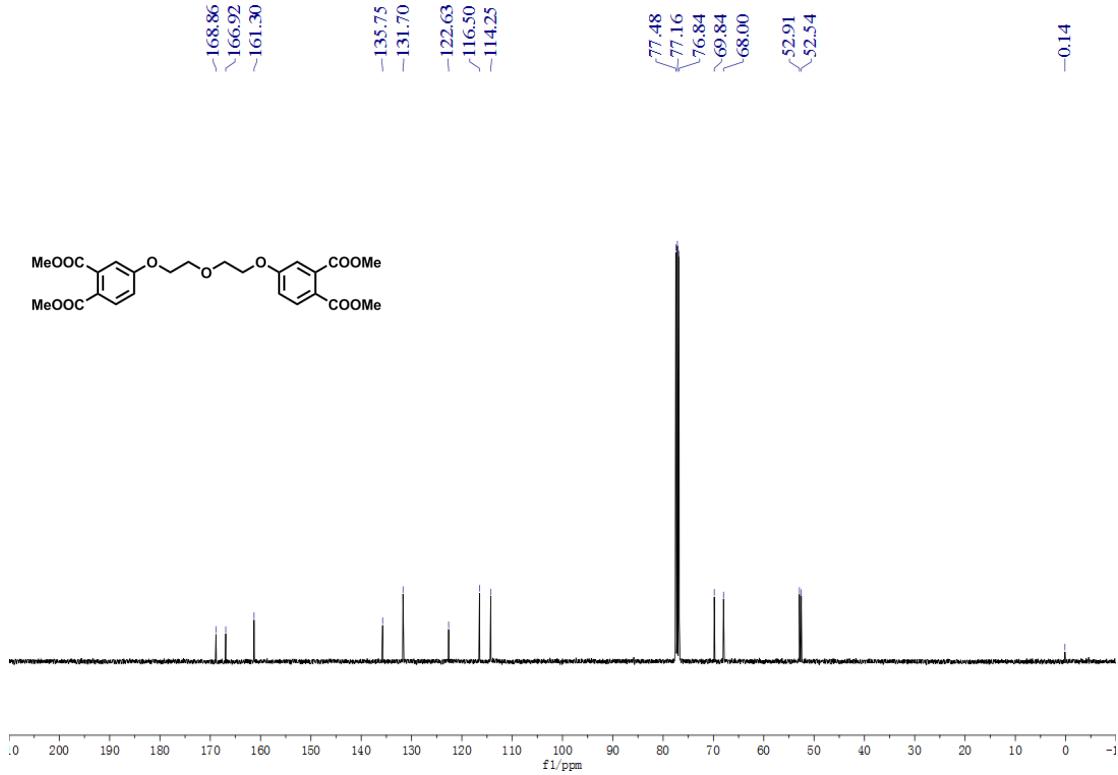

1441

1442

1443

1444

¹H NMR of compound 6 (400 MHz, CDCl₃)



1445

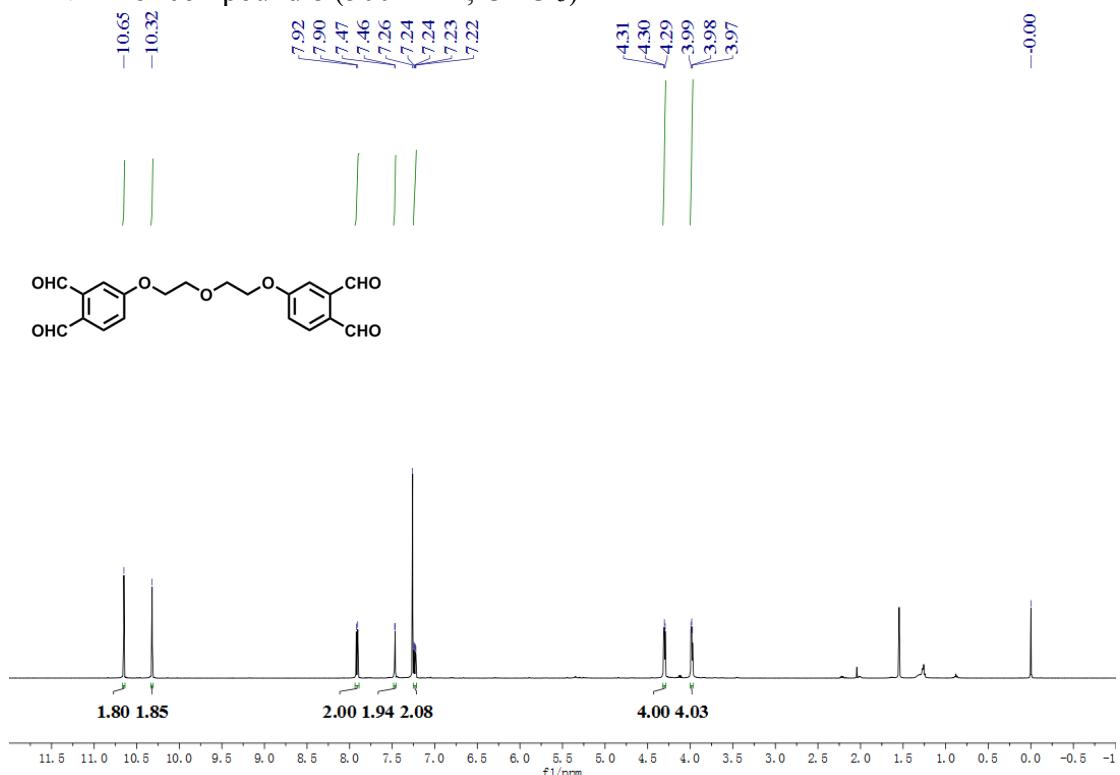
1446

1447

¹³C NMR of compound 6 (100 MHz, CDCl₃)

1448

1449

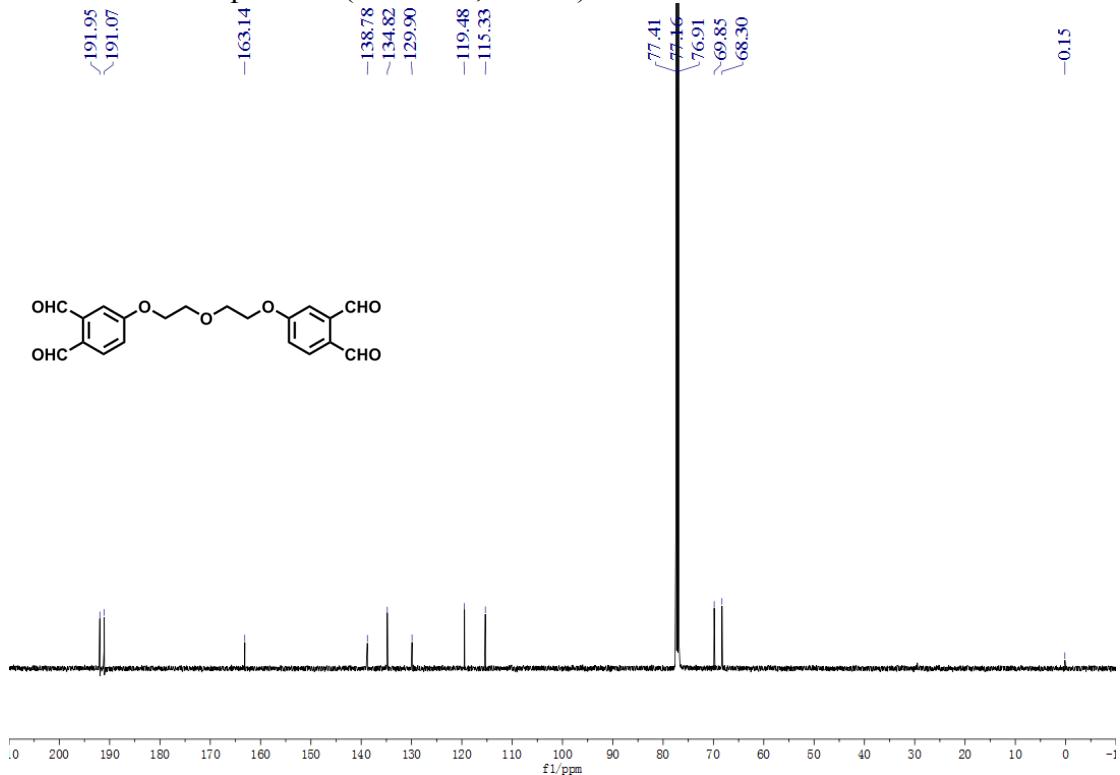

1450

1451

1452

1453

^1H NMR of compound 8 (500 MHz, CDCl_3)



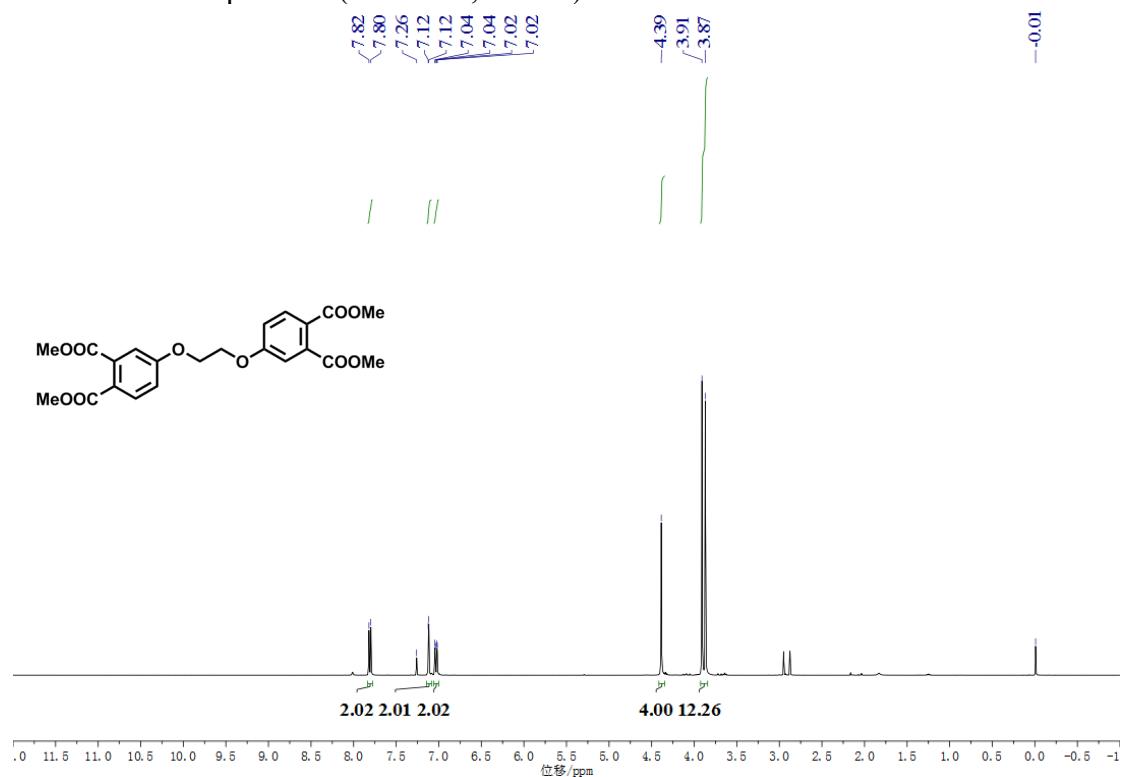
1454

1455

1456

^{13}C NMR of compound 8 (125 MHz, CDCl_3)

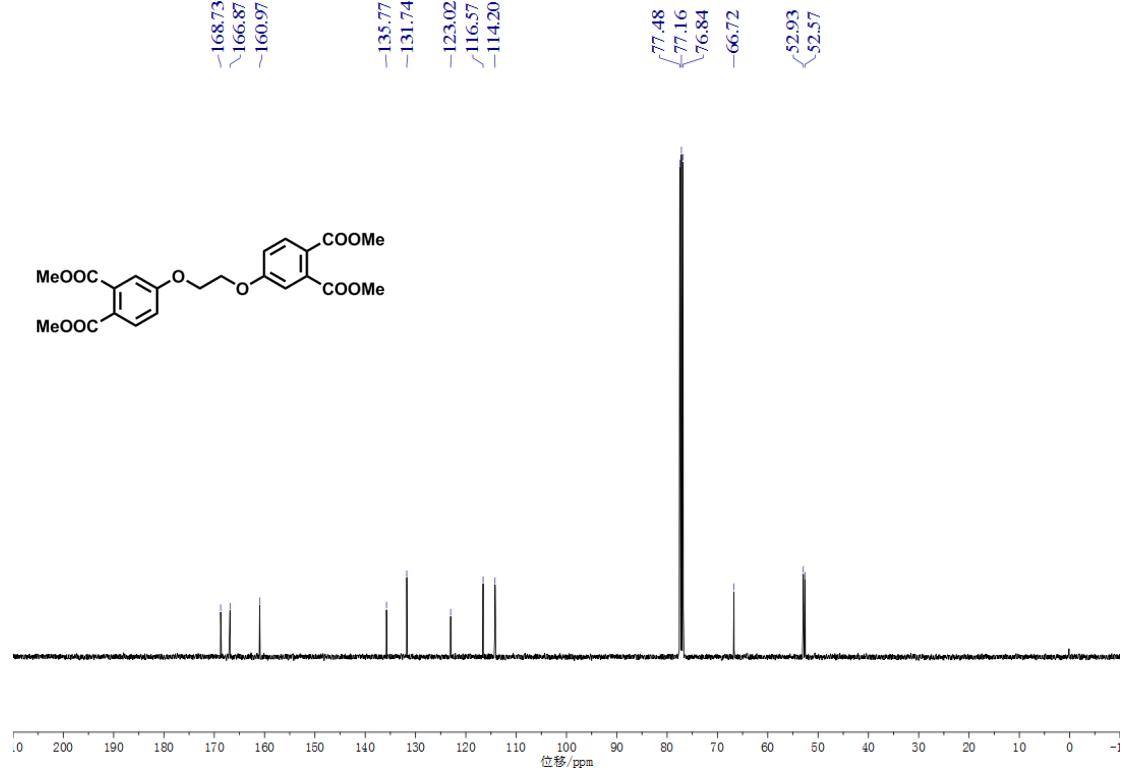
1457


1458

1459

1460

1461

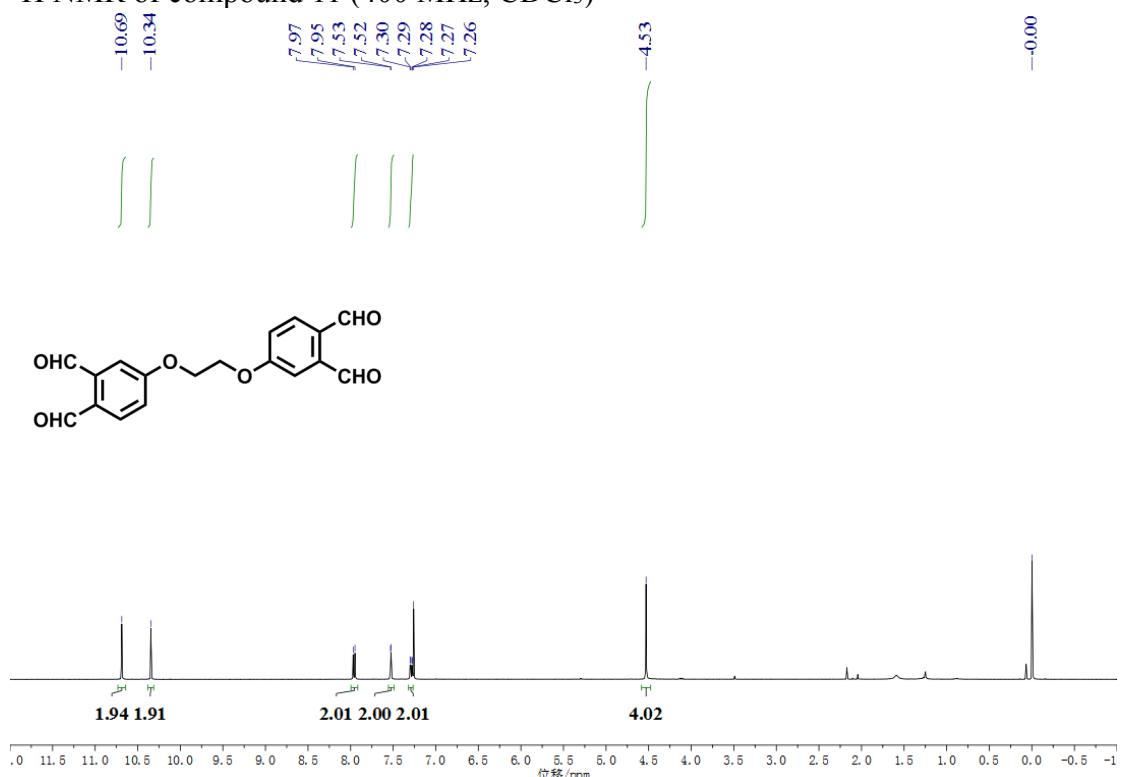

1462 ^1H NMR of compound 9 (400 MHz, CDCl_3)

1463

1464

1465 ^{13}C NMR of compound 9 (100 MHz, CDCl_3)

1466

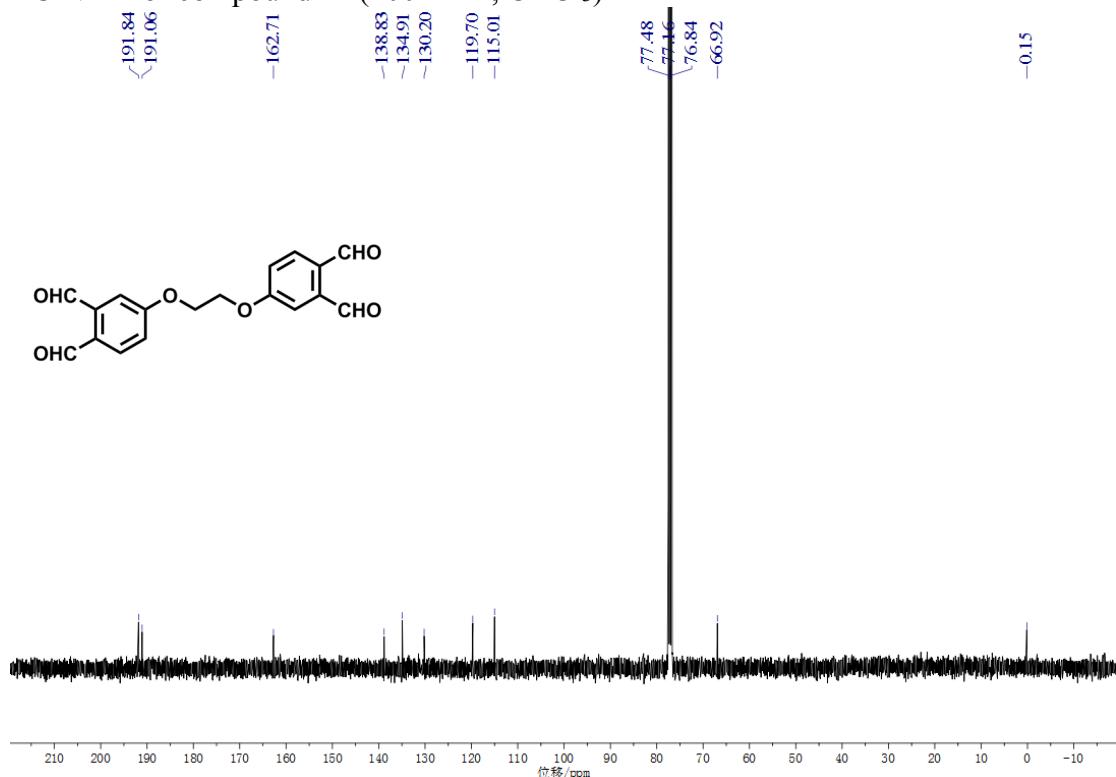

1467

1468

1469

1470

1471 ^1H NMR of compound 11 (400 MHz, CDCl_3)



1472

1473

1474

^{13}C NMR of compound 11 (100 MHz, CDCl_3)

1475

1476

1477

1478

1479